Vasoactive intestinal peptide stimulates tracheal submucosal gland secretion in ferret
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peatfield, A.C.; Barnes, P.J.; Bratcher, C.
1983-07-01
We studied the effect of vasoactive intestinal peptide (VIP) on the output of 35S-labeled macromolecules from ferret tracheal explants either placed in beakers or suspended in modified Ussing chambers. In Ussing chamber experiments, the radiolabel precursor, sodium (35S)sulfate, and all drugs were placed on the submucosal side of the tissue. Washings were collected at 30-min intervals from the luminal side and were dialyzed to remove unbound 35S, leaving radiolabeled macromolecules. Vasoactive intestinal peptide at 3 X 10(-7) M stimulated bound 35S output by a mean of + 252.6% (n . 14). The VIP response was dose-dependent with a near maximalmore » response and a half maximal response at approximately 10(-6) M and 10(-8), M, respectively. The VIP effect was not inhibited by a mixture of tetrodotoxin, atropine, I-propranolol, and phentolamine. Vasoactive intestinal peptide had no effect on the electrical properties of the of the tissues. We conclude that VIP stimulates output of sulfated-macromolecules from ferret tracheal submucosal glands without stimulating ion transport. Our studies also suggest that VIP acts on submucosal glands via specific VIP receptors. Vasoactive intestinal peptide has been shown to increase intracellular levels of cyclic AMP, and we suggest that this may be the mechanism for its effect on the output of macromolecules. This mechanism may be important in the neural regulation of submucosal gland secretion.« less
Infection-Mediated Vasoactive Peptides Modulate Cochlear Uptake of Fluorescent Gentamicin
Koo, Ja-Won; Wang, Qi; Steyger, Peter S.
2011-01-01
Inflammatory mediators released during bacterial infection include vasoactive peptides such as histamine and serotonin, and their serum levels are frequently elevated. These peptides also modulate the vascular permeability of endothelial cells lining the blood-brain and blood-labyrinth barriers (BLB). These peptides may also modulate the permeability of the BLB to ototoxic aminoglycoside antibiotics prescribed to resolve bacterial sepsis. To test this hypothesis, we compared the effect of histamine and serotonin on the cochlear distribution of fluorescently conjugated gentamicin (GTTR) in control animals at 0.5, 1 and 3 h after injection of GTTR. The intensity of GTTR fluorescence was attenuated at 1 h in the histamine group compared to control mice, and more intense 3 h after injection (p < 0.05). In the serotonin group, the intensity of GTTR fluorescence was attenuated at 0.5 and 1 h (p < 0.05) and was increased at 3 h compared to control animals, where GTTR intensities peaked at 1 h and then plateaued or was slightly decreased at 3 h. This biphasic pattern of modulation was statistically significant in the apical turn of the cochlea. No difference in the intensity of GTTR fluorescence was observed in kidney proximal tubules. Systemic increases in serum levels of vasoactive peptides can modulate cochlear uptake of gentamicin, likely via permeability changes in the BLB. Conditions that influence serum levels of vasoactive peptides may potentiate aminoglycoside ototoxicity. PMID:21196726
Fink, J S; Verhave, M; Kasper, S; Tsukada, T; Mandel, G; Goodman, R H
1988-01-01
cAMP-regulated transcription of the human vasoactive intestinal peptide gene is dependent upon a 17-base-pair DNA element located 70 base pairs upstream from the transcriptional initiation site. This element is similar to sequences in other genes known to be regulated by cAMP and to sequences in several viral enhancers. We have demonstrated that the vasoactive intestinal peptide regulatory element is an enhancer that depends upon the integrity of two CGTCA sequence motifs for biological activity. Mutations in either of the CGTCA motifs diminish the ability of the element to respond to cAMP. Enhancers containing the CGTCA motif from the somatostatin and adenovirus genes compete for binding of nuclear proteins from C6 glioma and PC12 cells to the vasoactive intestinal peptide enhancer, suggesting that CGTCA-containing enhancers interact with similar transacting factors. Images PMID:2842787
Vasoactive intestinal peptide and electrical activity influence neuronal survival
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brenneman, D.E.; Eiden, L.E.
1986-02-01
Blockage of electrical activity in dissociated spinal cord cultures results in a significant loss of neurons during a critical period in development. Decreases in neuronal cell numbers and SVI-labeled tetanus toxin fixation produced by electrical blockage with tetrodotoxin (TTX) were prevented by addition of vasoactive intestinal peptide (VIP) to the nutrient medium. The most effective concentration of VIP was 0.1 nM. At higher concentrations, the survival-enhancing effect of VIP on TTX-treated cultures was attenuated. Addition of the peptide alone had no significant effect on neuronal cell counts or tetanus toxin fixation. With the same experimental conditions, two closely related peptides,more » PHI-27 (peptide, histidyl-isoleucine amide) and secretin, were found not to increase the number of neurons in TTX-treated cultures. Interference with VIP action by VIP antiserum resulted in neuronal losses that were not significantly different from those observed after TTX treatment. These data indicate that under conditions of electrical blockade a neurotrophic action of VIP on neuronal survival can be demonstrated.« less
NASA Astrophysics Data System (ADS)
Maruno, Kaname; Absood, Afaf; Said, Sami I.
1998-11-01
Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.
Djanani, Angela M; Kähler, Ch M
2002-01-01
Inhibition of neutrophil apoptosis has been identified as a prominent feature in chronic inflammation, parenchymal damage, and unresolved organ dysfunction. Lung injury animal models suggest that the neuropeptides vasoactive intestinal peptide and bombesin are protective. Therefore, in vitro effects of VIP and bombesin on apoptosis of normal human neutrophils were tested. For measuring effects on cell survival and apoptosis, trypan dye exclusion, colorimetric MTT assay to assess cell survival, and caspase-3 assay and annexin-V binding for analysing apoptosis rates were used. Foetal calf serum, Fas ligand, and tumour necrosis factor-alpha served as modulatory control agents; survival-promoting and apoptosis-inducing activities of the respective agents were confirmed. Vasoactive intestinal peptide and bombesin, however, failed to significantly affect cell death in neutrophils. Data suggest that direct regulation of neutrophil apoptosis is unlikely to be among the mechanisms of lung-protective actions of VIP and bombesin.
Pharmacological potential of exercise and RAS vasoactive peptides for prevention of diseases.
Petriz, Bernardo de Assis; de Almeida, Jeeser Alves; Migliolo, Ludovico; Franco, Octavio Luiz
2013-09-01
The Renin-Angiotensin-System (RAS) molecular network has been widely studied, especially with attention to angiotensin II, the main effector peptide among RAS. The relation of Ang II to hypertension pathogenesis has led to research being extended to other molecules from the RAS, such as angiotensin III and IV, angiotensin (1-5), and angiotensin (1-9). Moreover, great pharmacologic advances have been made in hypertension treatment by inhibiting renin and angiotensin converting enzymes and blocking the bonding of angiotensin II to its receptor AT1. Thus, RAS molecular signaling and its effect on blood pressure as well as its relationship to renal function and cardiovascular disease are still being investigated. It is a great challenge to fully cover and understand all molecules from the RAS, especially those that interfere with or have vasoactive properties. Some of these targets respond to exercise, stimulating nitric oxide synthesis and endothelial vasodilation. The activation of these specific molecules via exercise is a systematic way of controlling high blood pressure without pharmacological treatment. Angiotensin (1-7) has been focused due to its vasodilation properties and its responses to exercise, improving vascular function. Thus, stimulation of the ACE2/Ang (1-7)/Mas axis has been gaining ground as a prospective clinical means to attenuate cardiovascular diseases such as hypertension by modulating RAS activity. This review focuses on the vasoactive peptides from the RAS, their responses to exercise and possible trends for pharmacological development. In several cases where exercise training is not achievable, cardiovascular drug therapy with vasodilator peptides may possibly be an option.
Vasoactive intestinal peptide prevents lung injury due to xanthine/xanthine oxidase.
Berisha, H; Foda, H; Sakakibara, H; Trotz, M; Pakbaz, H; Said, S I
1990-08-01
Reactive oxygen species mediate injury and inflammation in many tissues. The addition of xanthine and xanthine oxidase to perfused rat lungs led to increases in peak airway pressure and perfusion pressure, pulmonary edema, and increased protein content in bronchoalveolar lavage fluid. Treatment with 1-10 micrograms.kg-1.min-1 of vasoactive intestinal peptide (VIP), a widely distributed neuropeptide, markedly reduced or totally prevented all signs of injury. Simultaneously, VIP also diminished or abolished the associated generation of arachidonate products. Similar protection was provided by catalase (100 micrograms/ml) but not by the VIP-related peptides secretin or glucagon. The pulmonary vasodilator papaverine (0.15 mg/ml) was also ineffective. Injured lungs that were not treated with VIP released large amounts of this peptide in the perfusate. The results indicate that VIP has potent protective activity against injury triggered by xanthine/xanthine oxidase and may be a physiological modulator of inflammatory tissue damage associated with toxic oxygen metabolites.
Effects of vasoactive intestinal peptide and pancreatic polypeptide in rabbit intestine.
Camilleri, M; Cooper, B T; Adrian, T E; Bloom, S R; Chadwick, V S
1981-01-01
The effects of porcine vasoactive intestinal peptide (VIP) and bovine pancreatic polypeptide (PP) on jejunal, ileal, and colonic fluid transport were studied in the rabbit. VIP produced secretion in the small intestine (jejunum greater than ileum) but did not affect absorption in the colon. PP had no secretory effects in jejunum, ileum, or colon. The small intestinal secretion induced by VIP was not associated with raised cAMP concentrations in the mucosa; this suggests that the secretory effects of VIP in vivo are mediated by a mechanism other than stimulation of adenylate cyclase. PMID:6257593
Characterization of autoantibodies to vasoactive intestinal peptide in asthma.
Paul, S; Said, S I; Thompson, A B; Volle, D J; Agrawal, D K; Foda, H; de la Rocha, S
1989-07-01
Vasoactive intestinal peptide (VIP) is a potent relaxant of the airway smooth muscle. In this study, VIP-binding autoantibodies were observed in the plasma of 18% asthma patients and 16% healthy subjects. Immunoprecipitation studies and chromatography on DEAE-cellulose and immobilized protein G indicated that the plasma VIP-binding activity was largely due to IgG antibodies. Saturation analysis of VIP binding by the plasmas suggested the presence of one or two classes of autoantibodies, distinguished by their apparent equilibrium affinity constants (Ka). The autoantibodies from asthma patients exhibited a larger VIP-binding affinity compared to those from healthy subjects (Ka 7.8 x 10(9) M-1 and 0.13 x 10(9) M-1, respectively; P less than 0.005). The antibodies were specific for VIP, judged by their poor reaction with peptides bearing partial sequence homology with VIP (peptide histidine isoleucine, growth hormone releasing factor and secretin). IgG prepared from the plasma of an antibody-positive asthma patient inhibited the saturable binding of 125I-VIP by receptors in guinea pig lung membranes (by 39-59%; P less than 0.001). These observations are consistent with a role for the VIP autoantibodies in the airway hyperresponsiveness of asthma.
Dalzell, Jonathan R; Seed, Alison; Berry, Colin; Whelan, Carol J; Petrie, Mark C; Padmanabhan, Neal; Clarke, Amanda; Biggerstaff, Fiona; Hillier, Christopher; McMurray, John J V
2014-02-01
New compounds with neprilysin or neutral endopeptidase (NEP) inhibiting activity are under clinical investigation in heart failure and hypertension. We investigated the effect of NEP inhibition on the functional vasomotor responses to a range of vasoactive peptides in human blood vessels. Small human resistance arteries from patients with coronary artery disease and preserved left ventricular systolic function were studied. Thiorphan (a NEP inhibitor) was compared with captopril (an ACE inhibitor) and omapatrilat (a dual NEP-ACE inhibitor) with regard to their effects on the response of human arteries to key vasoactive peptides. As expected, both captopril and omapatrilat (but not thiorphan) inhibited the vasoconstrictor effect of angiotensin I (maximal response [SEM]: 27 ± 8% vehicle, 6 ± 2% captopril, 39 ± 10% thiorphan, 8 ± 7% omapatrilat, P < 0.05). Thiorphan, captopril, and omapatrilat all enhanced the vasodilator response to bradykinin (all P < 0.01). Omapatrilat markedly augmented the vasodilator action of adrenomedullin (P < 0.05), whilst thiorphan and captopril did not. None of the three inhibitors studied affected the vasodilator action of c-type natriuretic peptide, calcitonin gene-related peptide, vasoactive intestinal polypeptide or substance P. NEP inhibition with thiorphan modestly augmented the vasodilator action of bradykinin, but did not potentiate the response to adrenomedullin; dual ACE and NEP inhibition with omapatrilat, as expected, markedly augmented the response to bradykinin and also potentiated the effect of adrenomedullin. Thiorphan weakly enhanced the vasoconstrictor response to angiotensin I. Neither omapatrilat nor thiorphan had any effect on the action of a range of other vasoactive peptides including CNP. © 2013 John Wiley & Sons Ltd.
Deficient Vasoactive Intestinal Peptide Innervation in the Sweat Glands of Cystic Fibrosis Patients
NASA Astrophysics Data System (ADS)
Heinz-Erian, Peter; Dey, Richard D.; Flux, Marinus; Said, Sami I.
1985-09-01
The innervation of acini and ducts of eccrine sweat glands by immunoreactive, vasoactive intestinal peptide--containing nerve fibers was sharply reduced in seven patients with cystic fibrosis compared to eight normal subjects. The decrease in innervation by this neuropeptide, which has been shown to promote blood flow and the movement of water and chloride across epithelial surfaces in other systems, may be a basic mechanism for the decreased water content and relative impermeability of the epithelium to chloride and other ions that characterize cystic fibrosis.
ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension.
Mendoza-Torres, Evelyn; Oyarzún, Alejandra; Mondaca-Ruff, David; Azocar, Andrés; Castro, Pablo F; Jalil, Jorge E; Chiong, Mario; Lavandero, Sergio; Ocaranza, María Paz
2015-08-01
The renin-angiotensin system (RAS) is a key component of cardiovascular physiology and homeostasis due to its influence on the regulation of electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling. Deregulation of this system contributes significantly to the pathophysiology of cardiovascular and renal diseases. Numerous studies have generated new perspectives about a noncanonical and protective RAS pathway that counteracts the proliferative and hypertensive effects of the classical angiotensin-converting enzyme (ACE)/angiotensin (Ang) II/angiotensin type 1 receptor (AT1R) axis. The key components of this pathway are ACE2 and its products, Ang-(1-7) and Ang-(1-9). These two vasoactive peptides act through the Mas receptor (MasR) and AT2R, respectively. The ACE2/Ang-(1-7)/MasR and ACE2/Ang-(1-9)/AT2R axes have opposite effects to those of the ACE/Ang II/AT1R axis, such as decreased proliferation and cardiovascular remodeling, increased production of nitric oxide and vasodilation. A novel peptide from the noncanonical pathway, alamandine, was recently identified in rats, mice and humans. This heptapeptide is generated by catalytic action of ACE2 on Ang A or through a decarboxylation reaction on Ang-(1-7). Alamandine produces the same effects as Ang-(1-7), such as vasodilation and prevention of fibrosis, by interacting with Mas-related GPCR, member D (MrgD). In this article, we review the key roles of ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) and alamandine as counter-regulators of the ACE-Ang II axis as well as the biological properties that allow them to regulate blood pressure and cardiovascular and renal remodeling. © The Author(s), 2015.
Ventilatory effects of substance P, vasoactive intestinal peptide, and nitroprusside in humans.
Maxwell, D L; Fuller, R W; Dixon, C M; Cuss, F M; Barnes, P J
1990-01-01
Animal studies suggest that the neuropeptides, substance P and vasoactive intestinal peptide (VIP), may influence carotid body chemoreceptor activity and that substance P may take part in the carotid body response to hypoxia. The effects of these peptides on resting ventilation and on ventilatory responses to hypoxia and to hypercapnia have been investigated in six normal humans. Infusions of substance P (1 pmol.kg-1.min-1) and of VIP (6 pmol.kg-1.min-1) were compared with placebo and with nitroprusside (5 micrograms.kg-1.min-1) as a control for the hypotensive action of the peptides. Both peptides caused significantly less hypotension than nitroprusside. Substance P and nitroprusside caused significantly greater increases in ventilation and in the hypoxic ventilatory response than VIP. No changes were seen in hypercapnic sensitivity. The stimulation of ventilation and the differential effects on ventilatory chemosensitivity that accompanied hypotension are consistent either with stimulation of carotid body chemoreceptor activity or with an interaction with peripheral chemoreceptor input to the respiratory center, as is seen in animals. The similar cardiovascular but different ventilatory effects of the peptides suggest that substance P may also stimulate the carotid body in a manner independent of the effect of hypotension. This is consistent with a role of substance P in the hypoxic ventilatory response in humans.
Depot formulation of vasoactive intestinal peptide by protamine-based biodegradable nanoparticles.
Wernig, Karin; Griesbacher, Martin; Andreae, Fritz; Hajos, Franz; Wagner, Julian; Mosgoeller, Wilhelm; Zimmer, Andreas
2008-09-10
Drug delivery of protein and peptide-based drugs, which represent a growing and important therapeutic class, is hampered by these drugs' very short half-lives. High susceptibility towards enzymatic degradation necessitates frequent drug administration followed by poor adherence to therapy. Among these drugs is vasoactive intestinal peptide (VIP), a potent systemic and pulmonary vasodilator, which is a promising drug for the treatment of idiopathic pulmonary arterial hypertension (IPAH). Encapsulation of VIP into the nanoparticle matrix of biodegradable protamine-oligonucleotide nanoparticles (proticles) protects the peptide against rapid enzymatic degradation. Additionally, the nanoparticle matrix will be able to sustain drug release. Proticles consist of 18mer non-sense oligonucleotides and protamine, a polycationic arginine-rich peptide. VIP encapsulation occurs during self-assembly of the components. Within the present study, we evaluate nanoparticle size (hydrodynamic diameter) and zeta potential of VIP-loaded proticles as well as encapsulation efficiency and VIP release. Further, the pharmacological VIP response of "encapsulated VIP" is investigated using an ex vivo lung arterial model system. We found satisfying encapsulation efficiency (up to 80%), VIP release (77-87%), and an appropriate nanoparticle size (177-251 nm). Investigations on rat pulmonary arteries showed a modified VIP response of proticle-associated VIP. We noted differences in the profile of artery relaxation where VIP proticles lead to a 20-30% lower relaxation maximum than aqueous VIP solutions followed by prolonged vasodilatation. Our data indicate that proticles could be a feasible drug delivery system for a pulmonary VIP depot formulation.
Nassif, A.; Sexe, R.; Stratton, M.; Standeven, J.; Vernava, A. M.; Kaminski, D. L.
1995-01-01
We investigated whether Clostridium difficile toxin alters colonic tissue levels of vasoactive intestinal peptide (VIP) at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 10−8 M C. difflcile toxin. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. C. difflcile administration produced histologic changes consistent with epithelial damage. This was associated with an increased production of prostaglandin E2 and thromboxane B2. Tissue levels of VIP but not substance P were significantly reduced. This was associated with an increased number of contractions per minute and an average force of each colonic contraction. These results suggest that tissue levels of VIP are suppressed by C. difflcile and may participate in colonic dysmotility during active inflammation. PMID:18475679
Nassif, A; Longo, W E; Sexe, R; Stratton, M; Standeven, J; Vernava, A M; Kaminski, D L
1995-01-01
We investigated whether Clostridium difficile toxin alters colonic tissue levels of vasoactive intestinal peptide (VIP) at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 10(-8) M C. difflcile toxin. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. C. difflcile administration produced histologic changes consistent with epithelial damage. This was associated with an increased production of prostaglandin E(2) and thromboxane B(2). Tissue levels of VIP but not substance P were significantly reduced. This was associated with an increased number of contractions per minute and an average force of each colonic contraction. These results suggest that tissue levels of VIP are suppressed by C. difflcile and may participate in colonic dysmotility during active inflammation.
Covariation of Peptide Abundances Accurately Reflects Protein Concentration Differences*
Pirmoradian, Mohammad
2017-01-01
Most implementations of mass spectrometry-based proteomics involve enzymatic digestion of proteins, expanding the analysis to multiple proteolytic peptides for each protein. Currently, there is no consensus of how to summarize peptides' abundances to protein concentrations, and such efforts are complicated by the fact that error control normally is applied to the identification process, and do not directly control errors linking peptide abundance measures to protein concentration. Peptides resulting from suboptimal digestion or being partially modified are not representative of the protein concentration. Without a mechanism to remove such unrepresentative peptides, their abundance adversely impacts the estimation of their protein's concentration. Here, we present a relative quantification approach, Diffacto, that applies factor analysis to extract the covariation of peptides' abundances. The method enables a weighted geometrical average summarization and automatic elimination of incoherent peptides. We demonstrate, based on a set of controlled label-free experiments using standard mixtures of proteins, that the covariation structure extracted by the factor analysis accurately reflects protein concentrations. In the 1% peptide-spectrum match-level FDR data set, as many as 11% of the peptides have abundance differences incoherent with the other peptides attributed to the same protein. If not controlled, such contradicting peptide abundance have a severe impact on protein quantifications. When adding the quantities of each protein's three most abundant peptides, we note as many as 14% of the proteins being estimated as having a negative correlation with their actual concentration differences between samples. Diffacto reduced the amount of such obviously incorrectly quantified proteins to 1.6%. Furthermore, by analyzing clinical data sets from two breast cancer studies, our method revealed the persistent proteomic signatures linked to three subtypes of breast cancer
Bourgin, P; Lebrand, C; Escourrou, P; Gaultier, C; Franc, B; Hamon, M; Adrien, J
1997-03-01
Rapid eye movement sleep can be elicited in the rat by microinjection of the cholinergic agonist carbachol into the oral pontine reticular nucleus. Intracerebroventricular administration, during the light period, of vasoactive intestinal peptide enhances rapid eye movement sleep in several species. Since this peptide is co-localized with acetylcholine in many neurons in the central nervous system, it was assumed that the oral pontine tegmentum could also be one target for vasoactive intestinal peptide to induce rapid eye movement sleep. This hypothesis was tested by recording the sleep-wakefulness cycle in freely-moving rats injected with vasoactive intestinal peptide or its fragments (1-12 and 10-28) directly into the oral pontine reticular nucleus. when administered into the posterior part of this nucleus, vasoactive intestinal peptide at 1 and 10 ng (in 0.1 microliter of saline), but not its fragments, induced a 2-fold enhancement of rapid eye movement sleep during 4 h, at the expense of wakefulness. At the dose of 10 ng, a significant increase in rapid eye movement sleep persisted for up to 8 h. Moreover, when the peptide was injected into the centre of the positive zone, rapid eye movement sleep was enhanced during three to eight consecutive days. These data provide the first evidence that rapid eye movement sleep can be elicited at both short- and long-term by a single intracerebral microinjection of vasoactive intestinal peptide. Peptidergic mechanisms, possibly in association with cholinergic mechanisms, within the caudal part of the oral pontine reticular nucleus may play a critical role in the long-term regulation of rapid eye movement sleep in rats.
Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase.
Caughey, G H; Leidig, F; Viro, N F; Nadel, J A
1988-01-01
The peptides substance P (SP) and vasoactive intestinal peptide (VIP) released from peptidergic neurons have potent effects on gland secretion and on smooth muscle tone. Because mast cells release proteases during degranulation, and are located in many of the same tissue microenvironments into which SP and VIP are released, we wished to examine whether mast cell proteases, by cleaving and thus inactivating these peptides, could modulate their effects. We used active site-titrated preparations of the two major neutral proteases of mast cell granules, tryptase and chymase, to determine the sites and rates of cleavage of SP and VIP. The proteases were purified from dog mastocytomas. Tryptase cleaved VIP rapidly at two sites with a kcat/Km of 2.2 X 10(5) sec-1 M-1, but had no effect on SP. Chymase cleaved both SP and VIP at primarily a single site with kcat/Km of 3.9 X 10(4) and 5.4 X 10(4) sec-1 M-1, respectively. Thus, these data show that mast cell proteases degrade SP and VIP. The differences in peptidase activity between tryptase and chymase suggest that the consequences of protease release could vary according to mast cell protease phenotype and location in various tissues and species. Tryptase, by cleaving the bronchodilator VIP but not the bronchoconstrictor SP, might promote bronchial hyper-responsiveness in asthma by decreasing the nonadrenergic neural inhibitory influence mediated by VIP. In skin and other tissues, chymase might interrupt axon reflex-mediated neurogenic inflammation by cleaving SP.
Vasoactive Intestinal Peptide Nanomedicine for the Management of Inflammatory Bowel Disease.
Jayawardena, Dulari; Anbazhagan, Arivarasu N; Guzman, Grace; Dudeja, Pradeep K; Onyuksel, Hayat
2017-11-06
Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the intestine, with increasing incidence worldwide. At present, the management of IBD is an unmet medical need due to the ineffectiveness of currently available drugs in treating all patients, and there is strong demand for novel therapeutics. In this regard, vasoactive intestinal peptide, a potent anti-inflammatory endogenous hormone, has shown promise in managing multiple immune disorders in animal models. However, when administered in the free form, VIP undergoes rapid degradation in vivo, and with continuous infusion, it causes severe dose limiting side effects. To overcome these barriers, we have developed a superior mode to deliver VIP in its native form, using sterically stabilized micelles (VIP-SSM). Our previous studies demonstrated that, VIP, when administered in SSM, prevented joint damage and inflammation in a mouse model of rheumatoid arthritis at a significantly lower dose than the free peptide, completely abrogating the serious side effect of hypotension associated with VIP. In the current study, we demonstrate the therapeutic benefit of VIP-SSM over free peptide in reversing severe colitis associated with IBD. First, we conducted preliminary studies with dextran sulfate sodium (DSS) induced colitis in mice, to determine the effectiveness of VIP administered on alternate days in reducing disease severity. Thereafter, a single intra peritoneal injection of VIP-SSM or the free peptide was used to determine its therapeutic effect on the reversal of colitis and associated diarrhea. The results demonstrated that when administered on alternate days, both VIP-SSM and VIP were capable of alleviating DSS colitis in mice. However, when administered as a single dose, in a therapeutic setting, VIP-SSM showed superior benefits compared to the free peptide in ameliorating colitis phenotype. Namely, the loss of solid fecal pellets and increased fluid accumulation in colon resulting from DSS insult
De Vadder, F; Plessier, F; Gautier-Stein, A; Mithieux, G
2015-03-01
Intestinal gluconeogenesis (IGN) promotes metabolic benefits through activation of a gut-brain neural axis. However, the local mediator activating gluconeogenic genes in the enterocytes remains unknown. We show that (i) vasoactive intestinal peptide (VIP) signaling through VPAC1 receptor activates the intestinal glucose-6-phosphatase gene in vivo, (ii) the activation of IGN by propionate is counteracted by VPAC1 antagonism, and (iii) VIP-positive intrinsic neurons in the submucosal plexus are increased under the action of propionate. These data support the role of VIP as a local neuromodulator released by intrinsic enteric neurons and responsible for the induction of IGN through a VPAC1 receptor-dependent mechanism in enterocytes. © 2015 John Wiley & Sons Ltd.
POZO, DAVID; GONZALEZ-REY, ELENA; CHORNY, ALEJO; ANDERSON, PER; VARELA, NIEVES; DELGADO, MARIO
2007-01-01
The induction of immune tolerance is essential for the maintenance of immune homeostasis and to limit the occurrence of exacerbated inflammatory and autoimmune conditions. Multiple mechanisms act together to ensure self-tolerance, including central clonal deletion, cytokine deviation and induction of regulatory T cells. Identifying the factors that regulate these processes is crucial for the development of new therapies of autoimmune diseases and transplantation. The vasoactive intestinal peptide (VIP) is a well-characterized endogenous anti-inflammatory neuropeptide with therapeutic potential for a variety of immune disorders. Here we examine the latest research findings, which indicate that VIP participates in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T-cell effectors. PMID:17521775
Choi, Jae Young; Joo, Nam Soo; Krouse, Mauri E.; Wu, Jin V.; Robbins, Robert C.; Ianowski, Juan P.; Hanrahan, John W.; Wine, Jeffrey J.
2007-01-01
Cystic fibrosis (CF) is caused by dysfunction of the CF transmembrane conductance regulator (CFTR), an anion channel whose dysfunction leads to chronic bacterial and fungal airway infections via a pathophysiological cascade that is incompletely understood. Airway glands, which produce most airway mucus, do so in response to both acetylcholine (ACh) and vasoactive intestinal peptide (VIP). CF glands fail to secrete mucus in response to VIP, but do so in response to ACh. Because vagal cholinergic pathways still elicit strong gland mucus secretion in CF subjects, it is unclear whether VIP-stimulated, CFTR-dependent gland secretion participates in innate defense. It was recently hypothesized that airway intrinsic neurons, which express abundant VIP and ACh, are normally active and stimulate low-level gland mucus secretion that is a component of innate mucosal defenses. Here we show that low levels of VIP and ACh produced significant mucus secretion in human glands via strong synergistic interactions; synergy was lost in glands of CF patients. VIP/ACh synergy also existed in pig glands, where it was CFTR dependent, mediated by both Cl– and HCO3–, and clotrimazole sensitive. Loss of “housekeeping” gland mucus secretion in CF, in combination with demonstrated defects in surface epithelia, may play a role in the vulnerability of CF airways to bacterial infections. PMID:17853942
Effects of vasoactive intestinal peptide on vascular conductance are unaffected by anesthesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouder, T.G.; Huffman, L.J.; Hedge, G.A.
1988-12-01
In rats anesthetized with ketamine and pentobarbital (KET/PB), vasoactive intestinal peptide (VIP) increases vascular conductance (VC) in the salivary gland, pancreas, and thyroid gland, whereas no changes in VC are observed in a number of other organs. Because anesthesia may alter the responsiveness of physiological systems, we compared the effects of VIP on organ VC in conscious or anesthetized rats. Chronically catheterized rats were studied in the conscious state or 30 min after induction of anesthesia with KET/PB, isoflurane, or Inactin. Blood flows were measured by the reference sample version of the radioactive microsphere (MS) technique using two MS injectionsmore » ({sup 141}Ce-MS/{sup 85}Sr-MS). Mean arterial blood pressure was monitored and used in the calculation of VC. Organ VCs were similar under basal conditions in conscious and anesthetized rats. VIP infusion caused systemic hypotension and increased VCs in the salivary gland, pancreas, and thyroid gland, and these responses were largely unaffected by anesthesia. These results indicate that the anesthetics used do not alter basal VC or the responsiveness of the vasculature to exogenous VIP.« less
Trump, D L; Livingston, J N; Baylin, S B
1977-10-01
A case of adult ganglioneuroma-pheochromocytoma with an associated watery diarrhea syndrome is reported. High levels of vasoactive intestinal peptide (VIP) were found in preoperative serum and in tumor tissue. The serum VIP levels fell to normal, and the watery diarrhae syndrome completely ceased following removal of the tumor. In addition to containing VIP, the tumor was rich in catecholamines, and calcitonin. Peptide hormone-containing extracts and catecholamine extracts from the tumor both activated the adenyl cyclase system and increased lipolytic activity in a preparation of isolated rat fat cells. The findings in this patient further link VIP with neural crest tissues, and suggest the importance of determining catecholamine levels in patients with the watery diarrhea syndrome.
Rahardjo, H E; Reichelt, K; Sonnenberg, J E; Sohn, M; Kuczyk, M A; Ückert, S
2016-12-01
Peptides, such as CNP, CGRP and VIP, are involved in the function of male penile erectile tissue. Tissue levels of said peptides are controlled by the endopeptidase enzymes. Theoretically, the inhibition of the degradation of CNP, CGRP and/or VIP should result in an enhancement in penile smooth muscle relaxation. The effects were investigated of CNP or VIP (0.1 nm-1 μm), without and following pre-exposure of the tissue to a threshold concentration of the endopeptidase inhibitor KC 12615 (10 μm, for 20 min), on the reversion of tension induced by means of electrical field stimulation. Drug effects on the production of cyclic AMP/GMP were also evaluated. Neither KC 12615, CNP and VIP nor the combination of CNP plus KC 12615 or VIP plus KC 12615 increased the response of the tissue to EFS. While no effects were observed of a pre-exposure of the tissue to KC 12615 on the production of cyclic AMP in the presence of VIP, an enhancement was registered in the accumulation of cyclic AMP in the presence of CNP plus KC 12615. Further studies are indicated to investigate whether endopeptidase inhibitors might tend to be more effective in tissues affected by a decreased local production of vasoactive peptides. © 2016 Blackwell Verlag GmbH.
Haustein, U F; Weber, B; Seikowski, K
1995-02-01
In 12 patients suffering from systemic sclerosis (SSc) the influence of autogenic training on the plasma level of the neuropeptides substance P and vasoactive intestinal peptide (VIP) was studied. Compared with healthy controls the SSc patients exhibited significantly elevated levels of substance P (mean +/- SD: 7.1 +/- 3.2 pmol/l vs 1.6 +/- 1.6 pmol/l). Apart from variations the VIP plasma concentration did not significantly differ from that in healthy controls (mean +/- SD 10.7 +/- 7.1 pmol/l versus 12.0 +/- 5.3 pmol/l). Autogenic training did not bring about any significant changes in the plasma levels of neuropeptides.
Eng, J; Yu, J; Rattan, S; Yalow, R S
1992-01-01
Evolutionary history suggests that the marsupials entered South America from North America about 75 million years ago and subsequently dispersed into Australia before the separation between South America and Antarctica-Australia. A question of interest is whether marsupial peptides resemble the corresponding peptides of Old or New World mammals. Previous studies had shown that "little" gastrin of the North American marsupial, the opossum, is identical in length to that of the New World mammals, the guinea pig and chinchilla. In this report, we demonstrate that opossum cholecystokinin octapeptide, like that of the Australian marsupials, the Eastern quoll and the Tamar wallaby, is identical to the cholecystokinin octapeptide of Old World mammals and differs from that of the guinea pig and chinchilla. However, opossum vasoactive intestinal polypeptide differs from the usual Old World mammalian vasoactive intestinal polypeptide in five sites: [sequence; see text]. PMID:1542675
Martin, Bronwen; Shin, Yu-Kyong; White, Caitlin M; Ji, Sunggoan; Kim, Wook; Carlson, Olga D; Napora, Joshua K; Chadwick, Wayne; Chapter, Megan; Waschek, James A; Mattson, Mark P; Maudsley, Stuart; Egan, Josephine M
2010-05-01
It is becoming apparent that there is a strong link between taste perception and energy homeostasis. Recent evidence implicates gut-related hormones in taste perception, including glucagon-like peptide 1 and vasoactive intestinal peptide (VIP). We used VIP knockout mice to investigate VIP's specific role in taste perception and connection to energy regulation. Body weight, food intake, and plasma levels of multiple energy-regulating hormones were measured and pancreatic morphology was determined. In addition, the immunocytochemical profile of taste cells and gustatory behavior were examined in wild-type and VIP knockout mice. VIP knockout mice demonstrate elevated plasma glucose, insulin, and leptin levels, with no islet beta-cell number/topography alteration. VIP and its receptors (VPAC1, VPAC2) were identified in type II taste cells of the taste bud, and VIP knockout mice exhibit enhanced taste preference to sweet tastants. VIP knockout mouse taste cells show a significant decrease in leptin receptor expression and elevated expression of glucagon-like peptide 1, which may explain sweet taste preference of VIP knockout mice. This study suggests that the tongue can play a direct role in modulating energy intake to correct peripheral glycemic imbalances. In this way, we could view the tongue as a sensory mechanism that is bidirectionally regulated and thus forms a bridge between available foodstuffs and the intricate hormonal balance in the animal itself.
Stark, Brigitte; Debbage, Paul; Andreae, Fritz; Mosgoeller, Wilhelm; Prassl, Ruth
2007-03-01
A polymer-grafted liposomal formulation that has the potential to be developed for aerosolic pulmonary delivery of vasoactive intestinal peptide (VIP), a potent vasodilatory neuropeptide, is described. As VIP is prone to rapid proteolytic degradation in the microenvironment of the lung a proper delivery system is required to increase the half-life and bioavailability of the peptide. Here we investigate structural parameters of unilamellar liposomes composed of palmitoyl-oleoyl-phosphatidylcholine, lyso-stearyl-phosphatidylglycerol and distearyl-phosphatidyl-ethanolamine covalently linked to polyethylene glycol 2000, and report on VIP-lipid interaction mechanisms. We found that the cationic VIP is efficiently entrapped by the negatively charged spherical liposomes and becomes converted to an amphipathic alpha-helix. By fluorescence spectroscopy using single Trp-modified VIP we could show that VIP is closely associated to the membrane. Our data suggest that the N-terminal random-coiled domain is embedded in the interfacial headgroup region of the phospholipid bilayer. By doing so, neither the bilayer thickness of the lipid membrane nor the mobility of the phospholipid acyl chains are affected as shown by small angle X-ray scattering and electron spin resonance spectroscopy. Finally, in an ex vivo lung arterial model system we found that liposomal-associated VIP is recognized by its receptors to induce vasodilatory effects with comparable high relaxation efficiency as free VIP but with a significantly retarded dilatation kinetics. In conclusion, we have designed and characterized a liposomal formulation that is qualified to entrap biologically active VIP and displays structural features to be considered for delivery of VIP to the lung.
Manchini, Martha Trindade; Serra, Andrey Jorge; Feliciano, Regiane dos Santos; Santana, Eduardo Tadeu; Antônio, Ednei Luis; de Tarso Camillo de Carvalho, Paulo; Montemor, Jairo; Crajoinas, Renato Oliveira; Girardi, Adriana Castello Costa; Tucci, Paulo José Ferreira; Silva, José Antônio
2014-01-01
Low-level laser therapy (LLLT) has been used as an anti-inflammatory treatment in several disease conditions, even when inflammation is a secondary consequence, such as in myocardial infarction (MI). However, the mechanism by which LLLT is able to protect the remaining myocardium remains unclear. The present study tested the hypothesis that LLLT reduces inflammation after acute MI in female rats and ameliorates cardiac function. The potential participation of the Renin-Angiotensin System (RAS) and Kallikrein-Kinin System (KKS) vasoactive peptides was also evaluated. LLLT treatment effectively reduced MI size, attenuated the systolic dysfunction after MI, and decreased the myocardial mRNA expression of interleukin-1 beta and interleukin-6 in comparison to the non-irradiated rat tissue. In addition, LLLT treatment increased protein and mRNA levels of the Mas receptor, the mRNA expression of kinin B2 receptors and the circulating levels of plasma kallikrein compared to non-treated post-MI rats. On the other hand, the kinin B1 receptor mRNA expression decreased after LLLT. No significant changes were found in the expression of vascular endothelial growth factor (VEGF) in the myocardial remote area between laser-irradiated and non-irradiated post-MI rats. Capillaries density also remained similar between these two experimental groups. The mRNA expression of the inducible nitric oxide synthase (iNOS) was increased three days after MI, however, this effect was blunted by LLLT. Moreover, endothelial NOS mRNA content increased after LLLT. Plasma nitric oxide metabolites (NOx) concentration was increased three days after MI in non-treated rats and increased even further by LLLT treatment. Our data suggest that LLLT diminishes the acute inflammation in the myocardium, reduces infarct size and attenuates left ventricle dysfunction post-MI and increases vasoactive peptides expression and nitric oxide (NO) generation. PMID:24991808
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, S.; Florio, T.; Cronin, M.
1986-05-01
Activation of protein kinase C with phorbol ester modifies cyclic AMP production in several anterior pituitary cell systems. In the GH cell line from a rat pituitary tumor, exposure to phorbol 12-myristate 13-acetate (PMA: 100 nM) for 30 minutes significantly reduces vasoactive intestinal peptide (VIP: 100 nM) stimulated adenylate cyclase (AC) activity in subsequent membrane preparations to 62 + 4% of control (n = 6 independent studies). In contrast, these same membrane preparations respond to forskolin (1 ..mu..M) with significantly more activity, 130 +/- 6% of controls (n = 6 independent studies). Finally, phorbol ester does not block an inhibitorymore » hormone input into the AC system; somatostatin (100 nM) reduction of VIP-stimulated AC activity is not significantly different in membrane preparations from PMA treated and control cells (n = 3 independent studies). These other findings lead the authors to propose that protein kinase C can modify several sites in the AC complex in anterior pituitary cells.« less
NASA Astrophysics Data System (ADS)
Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E.
2018-03-01
High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. [Figure not available: see fulltext.
Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E
2018-03-01
High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.
Brzozowski, Tomasz; Magierowska, Katarzyna; Magierowski, Marcin; Ptak-Belowska, Agata; Pajdo, Robert; Kwiecien, Slawomir; Olszanecki, Rafal; Korbut, Ryszard
2017-01-01
Stress is known to cause severe adverse effects in the human gastrointestinal tract including mucosal microbleedings and erosions or even gastric ulceration but the mechanism of these complications has not been fully elucidated. The pathogenesis of stress-induced gastric damage involves the fall in Gastric Blood Flow (GBF), an increase in gastric acid secretion and gastric motility, enhanced adrenergic and cholinergic nerve activity and the rise in gastric mucosal generation of reactive oxygen species. The gastric mucosal defense mechanisms against the deleterious effect of stress include the activation of the hypothalamic-pituitary-adrenal axis which has been linked with glucocorticoids release capable of counteracting of stress-induced gastric lesions. Here we summarize the novel gastroprotective mechanisms against stress damage exhibited by angiotensin-(1-7), the newly discovered metabolite of Renin-Angiotensin System (RAS), the gaseous mediators such as nitric oxide (NO), hydrogen sulfide (H2S) or Carbon Monoxide (CO), and the food intake controlling peptides ghrelin, nesfatin- 1 and apelin possibly acting via brain-gut axis. These bioactive molecules such as RAS vasoactive metabolite angiotensin-(1-7) and appetite peptides have been shown to afford gastroprotective effect against stressinduced gastric lesions mainly mediated by an increase in gastric microcirculation. Gaseous mediators protect the gastric mucosa against stress lesions by mechanism involving the activation of PG/COX and CO/HO-1 biosynthetic pathways, and their anti-inflammatory and anti-oxidizing properties. Thus, these new components add new mechanistic aspects to the common cooperation of NO/NO-synthase, PG/COX systems and vasoactive sensory neuropeptides including CGRP but their gastroprotective efficacy against experimental stress ulcerogenesis requires the confirmation in human clinical trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Alves, Eder Paulo Belato; Alves, Angela Maria Pereira; Pereira, Renata Virginia Fernandes; de Miranda Neto, Marcílio Hubner; Zanoni, Jacqueline Nelisis
2010-02-01
The purpose of this work was to study the area of the varicosities of nerve fibers of myenteric neurons immunoreactive to vasoactive intestinal peptide (VIP-IR) and of the cell bodies of VIP-IR submucosal neurons of the jejunum of diabetic rats supplemented with 2% L-glutamine. Twenty male rats were divided into the following groups: normoglycemic (N), normoglycemic supplemented with L-glutamine (NG), diabetic (D) and diabetic supplemented with L-glutamine (DG). Whole-mounts of the muscle tunica and the submucosal layer were subjected to the immunohistochemical technique for neurotransmitter VIP identification. Morphometric analyses were carried out in 500 VIP-IR cell bodies of submucosal neurons and 2000 VIP-IR varicosities from each group. L-Glutamine supplementation to the normoglycemic animals caused an increase in the areas of the cell bodies (8.49%) and varicosities (21.3%) relative to the controls (P < 0.05). On the other hand, there was a decrease in the areas of the cell bodies (4.55%) and varicosities (28.9%) of group DG compared to those of group D (P < 0.05). It is concluded that L-glutamine supplementation was positive both to normoglycemic and diabetic animals.
Intramural distribution of regulatory peptides in the human stomach and duodenum.
Ferri, G L; Adrian, T E; Ghatei, M A; Soimero, L; Rebecchi, L; Biliotti, G; Polak, J M; Bloom, S R
1987-04-01
The distribution of regulatory peptides was studied by radioimmunoassay in the separated mucosa, submucosa and muscularis externa of the human oxyntic stomach, antrum and duodenum. Immunoreactive gastrin, secretin, gastric inhibitory polypeptide and motilin were virtually confined to the mucosa and duodenal submucosa, where endocrine cells are present. Only minor amounts of motilin and gastrin (3.2 +/- 0.5% and 4.3 +/- 0.8% of their total content, means + SEM, respectively) were found in the separated duodenal muscle. Somatostatin-, vasoactive intestinal polypeptide-, substance P-, and mammalian bombesin-like peptides showed distinct differential distributions in all layers. Substance P was low in the stomach and markedly increased in the duodenum, especially in the mucosa (fundus 0.8 +/- 0.2 pmol/g, duodenum 66 +/- 12). Vasoactive intestinal polypeptide and somatostatin, although well represented in the stomach, also increased in the duodenum in all layers of the wall (whole fundus 281 +/- 33 and 334 +/- 46 pmol/g, antrum 124 +/- 18 and 426 +/- 59, duodenum 507 +/- 99 and 1816 +/- 149, respectively). Mammalian bombesin immunoreactivity was comparatively abundant in the oxyntic stomach (mucosa 34 +/- 4.5 pmol/g, muscularis externa 29 +/- 4.8), less so in the antrum (6.3 +/- 1.5 and 11 +/- 3.2 pmol/g, respectively). Low concentrations of this peptide were measured in the duodenum, practically confined to the muscle (this layer 5.1 +/- 1.5 pmol/g, or 83 +/- 5.6% of the total content).
Vasoactive receptors in abdominal blood vessels of the dogfish shark, Squalus acanthias.
Evans, D H
2001-01-01
Previous studies have demonstrated that the ventral aorta of the dogfish shark, Squalus acanthias, responds to a variety of cell-signaling agents. To investigate the generality of vasoactive receptors in the shark vasculature, in particular a conductance artery (anterior mesenteric) and vein (posterior intestinal), I measured the effect of acetylcholine, endothelin, nitric oxide, natriuretic peptides, and prostaglandins on tension in isolated rings from these vessels. Both vessels responded to these agents, and responses to receptor-specific ligands for endothelin and natriuretic peptide receptors suggest that B-type endothelin receptors are expressed in both vessels and that the artery expresses both A- and B-type natriuretic peptide receptors; however, the vein (like the ventral aorta) expresses only the B-type natriuretic peptide receptor. My data suggest that a suite of signaling systems is ubiquitous in both arteries and veins in at least this elasmobranch species. Their role in hemodynamics and osmoregulation (perfusion of gill and rectal gland) remains to be determined.
Safety of peripheral intravenous administration of vasoactive medication.
Cardenas-Garcia, Jose; Schaub, Karen F; Belchikov, Yuly G; Narasimhan, Mangala; Koenig, Seth J; Mayo, Paul H
2015-09-01
Central venous access is commonly performed to administer vasoactive medication. The administration of vasoactive medication via peripheral intravenous access is a potential method of reducing the need for central venous access. The aim of this study was to evaluate the safety of vasoactive medication administered through peripheral intravenous access. Over a 20-month period starting in September 2012, we monitored the use of vasoactive medication via peripheral intravenous access in an 18-bed medical intensive care unit. Norepinephrine, dopamine, and phenylephrine were all approved for use through peripheral intravenous access. A total of 734 patients (age 72 ± 15 years, male/female 398/336, SAPS II score 75 ± 15) received vasoactive medication via peripheral intravenous access 783 times. Vasoactive medication used was norepinephrine (n = 506), dopamine (n = 101), and phenylephrine (n = 176). The duration of vasoactive medication via peripheral intravenous access was 49 ± 22 hours. Extravasation of the peripheral intravenous access during administration of vasoactive medication occurred in 19 patients (2%) without any tissue injury following treatment, with local phentolamine injection and application of local nitroglycerin paste. There were 95 patients (13%) receiving vasoactive medication through peripheral intravenous access who eventually required central intravenous access. Administration of norepinephrine, dopamine, or phenylephrine by peripheral intravenous access was feasible and safe in this single-center medical intensive care unit. Extravasation from the peripheral intravenous line was uncommon, and phentolamine with nitroglycerin paste were effective in preventing local ischemic injury. Clinicians should not regard the use of vasoactive medication is an automatic indication for central venous access. © 2015 Society of Hospital Medicine.
Vinpocetine and Vasoactive Intestinal Peptide Attenuate Manganese-Induced Toxicity in NE-4C Cells.
Bora, Saylav; Erdogan, Mumin Alper; Armagan, Güliz; Sevgili, Elvin; Dagcı, Taner
2016-12-01
Increased concentration of manganese (Mn) in the brain is known to be associated with excitotoxicity and neuroinflammation. Vinpocetine, an alkaloid derived from the plant Vinca minor L., basically shows its effect via phosphodiesterase inhibition and voltage-dependent Na + channels. Vasoactive intestinal peptide (VIP) has gastrointestinal, vasomotor, muscular, and neuroprotective effects. The aim of this study was to examine the potential protective effects of vinpocetine and VIP against Mn toxicity in NE-4C neural stem cells (NSCs). VIP treatment at 1 μM and vinpocetine treatment at 2 μM concentrations were sufficient to yield maximum protection, and these concentrations were adopted in the following experiments. In this study, Mn treatment significantly increased lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) production, and triggered cell death in NE-4C cultures. However, significant reduction in LDH release was observed following vinpocetine or VIP treatments when compared with control. Similar to these findings, vinpocetine or VIP treatments significantly reduced membrane degradation induced by Mn (p < 0.001). Moreover, vinpocetine attenuated Mn-induced decrease of mitochondrial membrane potential. Similarly, proapoptotic protein bax and ROS production significantly decreased in cells after incubation with vinpocetine (p = 0.01) or VIP in the presence of Mn (p < 0.001). Our study provides the evidence that both vinpocetine and VIP may exert protective effects via modulating oxidative stress and apoptosis in Mn-induced neurodegeneration in NE-4C cells.
Li, Jian-Ming; Darlak, Kasia A; Southerland, Lauren; Hossain, Mohammad S; Jaye, David L; Josephson, Cassandra D; Rosenthal, Hilary; Waller, Edmund K
2013-01-01
Vasoactive intestinal peptide (VIP) is a neuropeptide hormone that suppresses Th1-mediated cellular immunity. We previously reported that VIP-knockout (VIP-KO) mice have enhanced cellular immune responses and increased survival following murine cytomegalovirus (mCMV) infection in C57BL/6 mice. In this study, we tested whether treatment with a VIP receptor antagonistic peptide protects C57BL/6 and BALB/c mice from mCMV-infection. One week of daily subcutaneous injections of VIPhyb was non-toxic and did not alter frequencies of immune cell subsets in non-infected mice. VIPhyb administration to mCMV-infected C57BL/6 and BALB/c mice markedly enhanced survival, viral clearance, and reduced liver and lung pathology compared with saline-treated controls. The numbers of effector/memory CD8+ T-cells and mature NK cells were increased in VIPhyb-treated mice compared with PBS-treated groups. Pharmacological blockade of VIP-receptor binding or genetic blockade of VIP-signaling prevented the up-regulation of PD-L1 and PD-1 expression on DC and activated CD8+ T-cells, respectively, in mCMV-infected mice, and enhanced CD80, CD86, and MHC-II expression on conventional and plasmacytoid DC. VIPhyb-treatment increased type-I IFN synthesis, numbers of IFN-γ- and TNF-α-expressing NK cells and T-cells, and the numbers of mCMV-M45 epitope-peptide-MHC-I tetramer CD8+ T-cells following mCMV infection. VIP-treatment lowered the percentage of Treg cells in spleens compared with PBS-treated WT mice following mCMV infection, while significantly decreasing levels of serum VEGF induced by mCMV-infection. The mice in all treated groups exhibited similar levels of anti-mCMV antibody titers. Short-term administration of a VIP-receptor antagonist represents a novel approach to enhance innate and adaptive cellular immunity in a murine model of CMV infection.
Isoelectric focusing of proteins and peptides
NASA Technical Reports Server (NTRS)
Egen, N.
1979-01-01
Egg-white solution was chosen as the reference solution in order to assess the effects of operational parameters (voltage, flow rate, ampholine pH range and concentration, and protein concentration) of the RIEF apparatus on protein resolution. Topics of discussion include: (1) comparison of RIEF apparatus to conventional IEF techniques (column and PAG) with respect to resolution and throughput; (2) peptide and protein separation (AHF, Thymosin - Fraction 5, vasoactive peptide, L-asparaginase and ACP); and (3) detection of peptides - dansyl derivatives of amino acids and peptides, post-focusing fluorescent labeling of amino acids, peptides and proteins, and ampholine extraction from focused gels.
Daly, J W; Caceres, J; Moni, R W; Gusovsky, F; Moos, M; Seamon, K B; Milton, K; Myers, C W
1992-01-01
A frog used for "hunting magic" by several groups of Panoan-speaking Indians in the borderline between Brazil and Peru is identified as Phyllomedusa bicolor. This frog's skin secretion, which the Indians introduce into the body through fresh burns, is rich in peptides. These include vasoactive peptides, opioid peptides, and a peptide that we have named adenoregulin, with the sequence GLWSKIKEVGKEAAKAAAKAAGKAALGAVSEAV as determined from mass spectrometry and Edman degradation. The natural peptide may contain a D amino acid residue, since it is not identical in chromatographic properties to the synthetic peptide. Adenoregulin enhances binding of agonists to A1 adenosine receptors; it is accompanied in the skin secretion by peptides that inhibit binding. The vasoactive peptide sauvagine, the opioid peptides, and adenoregulin and related peptides affect behavior in mice and presumably contribute to the behavioral sequelae observed in humans. Images PMID:1438301
Daly, J W; Caceres, J; Moni, R W; Gusovsky, F; Moos, M; Seamon, K B; Milton, K; Myers, C W
1992-11-15
A frog used for "hunting magic" by several groups of Panoan-speaking Indians in the borderline between Brazil and Peru is identified as Phyllomedusa bicolor. This frog's skin secretion, which the Indians introduce into the body through fresh burns, is rich in peptides. These include vasoactive peptides, opioid peptides, and a peptide that we have named adenoregulin, with the sequence GLWSKIKEVGKEAAKAAAKAAGKAALGAVSEAV as determined from mass spectrometry and Edman degradation. The natural peptide may contain a D amino acid residue, since it is not identical in chromatographic properties to the synthetic peptide. Adenoregulin enhances binding of agonists to A1 adenosine receptors; it is accompanied in the skin secretion by peptides that inhibit binding. The vasoactive peptide sauvagine, the opioid peptides, and adenoregulin and related peptides affect behavior in mice and presumably contribute to the behavioral sequelae observed in humans.
Baroreflex buffering and susceptibility to vasoactive drugs
NASA Technical Reports Server (NTRS)
Jordan, Jens; Tank, Jens; Shannon, John R.; Diedrich, Andre; Lipp, Axel; Schroder, Christoph; Arnold, Guy; Sharma, Arya M.; Biaggioni, Italo; Robertson, David;
2002-01-01
BACKGROUND: The overall effect of vasoactive drugs on blood pressure is determined by a combination of the direct effect on vascular tone and an indirect baroreflex-mediated effect, a baroreflex buffering of blood pressure. Differences in baroreflex function affect the responsiveness to vasoactive medications, particularly baroreflex buffering of blood pressure; however, the magnitude is not known. METHODS AND RESULTS: We characterized baroreflex function and responses to vasoactive drugs in patients with idiopathic orthostatic intolerance, patients with essential hypertension, patients with monogenic hypertension and brachydactyly, patients with multiple system atrophy, and control subjects. We used phenylephrine sensitivity during ganglionic blockade as a measure of baroreflex buffering. Phenylephrine (25 microg) increased systolic blood pressure 6+/-1.6 mm Hg in control subjects, 6+/-1.1 mm Hg in orthostatic intolerance patients, 18+/-3.9 mm Hg in patients with essential hypertension, 31+/-3.4 mm Hg in patients with monogenic hypertension, and 25+/-3.4 mm Hg in patients with multiple system atrophy. Similar differences in sensitivities between groups were observed with nitroprusside. The sensitivity to vasoactive drugs was highly correlated with baroreflex buffering function and to a lesser degree with baroreflex control of heart rate. In control subjects, sensitivities to nitroprusside and phenylephrine infusions were correlated with baroreflex heart rate control and sympathetic nerve traffic. CONCLUSIONS: Our findings are consistent with an important effect of baroreflex blood pressure buffering on the sensitivity to vasoactive drugs. They suggest that even moderate changes in baroreflex function may have a substantial effect on the sensitivity to vasoactive medications.
Validation of the Vasoactive-Inotropic Score in Pediatric Sepsis*
Tong, Suhong; Deakyne, Sara J.; Davidson, Jesse A.; Scott, Halden F.
2017-01-01
Objectives: To assess the validity of Vasoactive-Inotropic Score as a scoring system for cardiovascular support and surrogate outcome in pediatric sepsis. Design: Secondary retrospective analysis of a single-center sepsis registry. Setting: Freestanding children’s hospital and tertiary referral center. Patients: Children greater than 60 days and less than 18 years with sepsis identified in the emergency department between January 2012 and June 2015 treated with at least one vasoactive medication within 48 hours of admission to the PICU. Interventions: None. Measurements and Main Results: Vasoactive-Inotropic Score was abstracted at 6, 12, 24, and 48 hours post ICU admission. Primary outcomes were ventilator days and ICU length of stay. The secondary outcome was a composite outcome of cardiac arrest/extracorporeal membrane oxygenation/in-hospital mortality. One hundred thirty-eight patients met inclusion criteria. Most common infectious sources were pneumonia (32%) and bacteremia (23%). Thirty-three percent were intubated and mortality was 6%. Of the time points assessed, Vasoactive-Inotropic Score at 48 hours showed the strongest correlation with ICU length of stay (r = 0.53; p < 0.0001) and ventilator days (r = 0.52; p < 0.0001). On multivariable analysis, Vasoactive-Inotropic Score at 48 hours was a strong independent predictor of primary outcomes and intubation. For every unit increase in Vasoactive-Inotropic Score at 48 hours, there was a 13% increase in ICU length of stay (p < 0.001) and 8% increase in ventilator days (p < 0.01). For every unit increase in Vasoactive-Inotropic Score at 12 hours, there was a 14% increase in odds of having the composite outcome (p < 0.01). Conclusions: Vasoactive-Inotropic Score in pediatric sepsis patients is independently associated with important clinically relevant outcomes including ICU length of stay, ventilator days, and cardiac arrest/extracorporeal membrane oxygenation/mortality. Vasoactive-Inotropic Score may be a
Validation of the Vasoactive-Inotropic Score in Pediatric Sepsis.
McIntosh, Amanda M; Tong, Suhong; Deakyne, Sara J; Davidson, Jesse A; Scott, Halden F
2017-08-01
To assess the validity of Vasoactive-Inotropic Score as a scoring system for cardiovascular support and surrogate outcome in pediatric sepsis. Secondary retrospective analysis of a single-center sepsis registry. Freestanding children's hospital and tertiary referral center. Children greater than 60 days and less than 18 years with sepsis identified in the emergency department between January 2012 and June 2015 treated with at least one vasoactive medication within 48 hours of admission to the PICU. None. Vasoactive-Inotropic Score was abstracted at 6, 12, 24, and 48 hours post ICU admission. Primary outcomes were ventilator days and ICU length of stay. The secondary outcome was a composite outcome of cardiac arrest/extracorporeal membrane oxygenation/in-hospital mortality. One hundred thirty-eight patients met inclusion criteria. Most common infectious sources were pneumonia (32%) and bacteremia (23%). Thirty-three percent were intubated and mortality was 6%. Of the time points assessed, Vasoactive-Inotropic Score at 48 hours showed the strongest correlation with ICU length of stay (r = 0.53; p < 0.0001) and ventilator days (r = 0.52; p < 0.0001). On multivariable analysis, Vasoactive-Inotropic Score at 48 hours was a strong independent predictor of primary outcomes and intubation. For every unit increase in Vasoactive-Inotropic Score at 48 hours, there was a 13% increase in ICU length of stay (p < 0.001) and 8% increase in ventilator days (p < 0.01). For every unit increase in Vasoactive-Inotropic Score at 12 hours, there was a 14% increase in odds of having the composite outcome (p < 0.01). Vasoactive-Inotropic Score in pediatric sepsis patients is independently associated with important clinically relevant outcomes including ICU length of stay, ventilator days, and cardiac arrest/extracorporeal membrane oxygenation/mortality. Vasoactive-Inotropic Score may be a useful surrogate outcome in pediatric sepsis.
Sohn, Won; Lee, Oh Young; Lee, Sang Pyo; Lee, Kang Nyeong; Jun, Dae Won; Lee, Hang Lak; Yoon, Byung Chul; Choi, Ho Soon; Sim, Jongmin; Jang, Ki-Seok
2014-01-01
Recent studies have shown that mast cells play an important role in irritable bowel syndrome (IBS). We investigated the relationship between mast cells and the gut hormones substance P and vasoactive intestinal peptide (VIP) in irritable bowel syndrome with diarrhea (IBS-D). Colonoscopic biopsies were performed on the rectal mucosa of 43 subjects (IBS-D patients: 22, healthy volunteers: 21) diagnosed according to the Rome III criteria. Mast cells, and substance P & VIP were evaluated by quantitative immunohistology and image analysis. Mast cells were counted as tryptase-positive cells in the lamina propria, and substance P and VIP levels were expressed as percentages of total areas of staining. Mast cell counts were higher in IBS-D patients than healthy volunteers (9.6 ± 3.3 vs. 5.7 ± 2.5/high power field (HPF), p < 0.01). Substance P was also elevated (0.11 ± 0.08% vs. 0.03 ± 0.02 %, p < 0.01) while VIP was only high in women with IBS-D. Mast cell counts were positively correlated with levels of substance P & VIP in women but not men (women: r = 0.625, p < 0.01 for substance P and r = 0.651, p < 0.01 for VIP). However, mast cell counts were not correlated with IBS symptoms including abdominal pain. Mast cells are activated leading to the raised levels of substance P & VIP in IBS-D patients. However, the correlation between mast cells and levels of substance P & VIP differs according to gender.
Regulatory peptide distribution in separated layers of the human jejunum.
Ferri, G L; Adrian, T E; Soimero, L; McGregor, G P; Ghatei, M A; Morreale, R A; Rebecchi, L; Tonelli, L; Polak, J M; Bloom, S R
1987-01-01
The distribution of regulatory peptides was studied in the separated epithelium, lamina propria, submucosa and muscularis externa of the human jejunum. Gastrin, secretin, gastric inhibitory polypeptide, enteroglucagon and neurotensin immunoreactivity were almost confined to the endocrine cell-containing mucosal epithelium (greater than 98% of the total content), only minor amounts of motilin being detected in non-epithelial layers (3.6 +/- 0.7%, mean +/- SEM, n = 7). Conversely, vasoactive intestinal polypeptide, substance P and mammalian bombesin were virtually limited to non-epithelial layers (greater than 99%). Only somatostatin was found in all layers (44 +/- 6.7% in the epithelium, 34 +/- 5.2% in the lamina propria, 13 +/- 2.9% in the submucosa, and 7.9 +/- 2.8% in the muscularis). Substance P was found in higher concentrations in the mucosa, compared to submucosa and muscle (56 +/- 10, 30 +/- 4.0 and 29 +/- 4.0 pmol/g, respectively), while vasoactive intestinal polypeptide was more abundant in the muscle (411 +/- 52 pmol/g) compared to mucosa and submucosa (228 +/- 64 and 219 +/- 31 pmol/g, respectively). Only low levels of mammalian bombesin were measured, mainly in the muscle (6.9 +/- 1.5 pmol/g, or 89 +/- 3.6% of total content).
Farmer, S. G.; Togo, J.
1990-01-01
1. We have studied the effect of epithelium removal on relaxation of guinea-pig isolated tracheal smooth muscle induced by vasoactive intestinal peptide (VIP) or stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves. Also examined were the effects of inhibitors of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE). 2. Epithelium removal produced a 3.6 +/- 0.4 fold leftward shift in the VIP concentration-response curve. The supersensitivity to VIP, following epithelium removal was abolished by phosphoramidon or thiorphan (NEP inhibitors), but unaffected by captopril (an ACE inhibitor). In intact trachea, the NEP inhibitors produced leftward shifts in the VIP curves similar to those produced by epithelium removal. 3. In contrast to responses to exogenous VIP, neurogenic NANC inhibitory responses to electrical field stimulation were affected neither by epithelial denudation nor by the peptidase inhibitors. 4. As in previous studies, epithelium removal increased tracheal sensitivity to isoprenaline. This was not altered by pretreatment with a cocktail of peptidase inhibitors. Thus, the effect of the NEP inhibitors on responses to VIP appears to be relatively specific. 5. These data indicate that exogenous VIP is a substrate for airway NEP, since inhibition of the enzyme potentiates the peptide. This is further evidence that the airway epithelium provides a source for the metabolism of mediators. 6. In guinea-pig trachea the NEP responsible for cleaving VIP may be located largely in the epithelial layer, since NEP inhibition was without effect on sensitivity to VIP in epithelium-denuded preparations. If VIP is a NANC inhibitory neurotransmitter in this tissue its degradation endogenously does not appear to involve epithelial NEP. PMID:2196967
Lilly, C M; Martins, M A; Drazen, J M
1993-01-01
The effects of enzyme inhibitors on vasoactive intestinal peptide (VIP)-induced decreases in airway opening pressure (PaO) and VIP-like immunoreactivity (VIP-LI) recovery were studied in isolated tracheal superfused guinea pig lungs. In the absence of inhibitors, VIP 0.38 (95% CI 0.33-0.54) nmol/kg animal, resulted in a 50% decrease in PaO and 33% of a 1 nmol/kg VIP dose was recovered as intact VIP. In the presence of two combinations of enzyme inhibitors, SCH 32615 (S, 10 microM) and aprotinin (A, 500 tyrpsin inhibitor units [TIU]/kg) or S and soybean trypsin inhibitor (T, 500 TIU/kg), VIP caused a significantly greater decrease in PaO and greater quantities of VIP were recovered from lung effluent (both P < 0.001). The addition of captopril, (3 microM), leupeptin (4 microM), or bestatin (1 microM) failed to further increase pulmonary relaxation or recovery of VIP-LI. When given singly, A, T, and S did not augment the effects or recovery of VIP. The efficacy of S (a specific inhibitor of neutral endopeptidase [NEP]) and A and T (serine protease inhibitors) thus implicated NEP and at least one serine protease as primary modulators of VIP activity in the guinea pig lung. We sought to corroborate this finding by characterizing the predominant amino acid sites at which VIP is hydrolized in the lung. When [mono(125I)iodo-Tyr10]VIP was offered to the lung, in the presence and absence of the active inhibitors, cleavage products consistent with activity by NEP and a tryptic enzyme were recovered. These data demonstrate that NEP and a peptidase with an inhibitor profile and cleavage pattern compatible with a tryptic enzyme inactivate VIP in a physiologically competitive manner. PMID:7678603
Peptidergic innervation of the human male genital tract.
Gu, J; Polak, J M; Probert, L; Islam, K N; Marangos, P J; Mina, S; Adrian, T E; McGregor, G P; O'Shaughnessy, D J; Bloom, S R
1983-08-01
Four peptides--vasoactive intestinal polypeptide, substance P, somatostatin and a peptide-like avian pancreatic polypeptide--have been found in nerves of the human male genitalia using highly sensitive and specific methods of immunocytochemistry and radioimmunoassay. Five other peptides (met-enkephalin, leu-enkephalin, neurotensin, bombesin and cholecystokinin-8) were absent. Vasoactive intestinal polypeptide was the most abundant peptide, its highest concentration being in the proximal corpus cavernosum. Immunoelectron microscopy localized this peptide to large (97 +/- 20 nm), round, electron-dense granules of p-type nerve terminals. Vasoactive intestinal polypeptide-immunoreactive neuronal cell bodies were found in the prostate gland and the root of the corpus cavernosum. Substance P immunoreactive material was present in smaller concentration and was mainly localized in nerves around the corpuscular receptors of the glans penis. Somatostatin immunoreactive nerves were associated mainly with the smooth muscle of the seminal vesicle and the vas deferens. When antiserum to avian pancreatic polypeptide was applied, certain nerves were stained, particularly in the vas deferens, the prostate gland and the seminal vesicle. However, chromatography detected no pure avian pancreatic polypeptide suggesting the presence of a structurally related substance, possibly neuropeptide Y, which cross-reacts with the avian pancreatic polypeptide antiserum. Similar distributions between vasoactive intestinal polypeptide-immunoreactive and acetylcholinesterase-positive nerves and between avian pancreatic polypeptide-immunoreactive and adrenergic nerves were observed. A general neuronal marker, neuron-specific enolase, was used to investigate the general pattern of the organ's innervation. The abundance and distribution patterns of these peptide-immunoreactive nerves indicate that they may play important roles in the male sexual physiology.
Xu, Zhi-Ran; Wang, Wu-Fang; Liang, Xin-Fang; Liu, Ze-Hua; Liu, Yu; Lin, Liang; Zhu, Xuan
2015-04-01
The present study investigated brain delivery system of vasoactive intestinal peptide (VIP) adsorbed on poly (butyl cyanoacrylate) nanoparticles coated with polysorbate 80 (P80-poly (butyl) cyanoacrylate (PBCA)-nanoparticles (NPs)) and the neuroprotective effects on the formulation in the model of 6-hydroxydopamine (6-OHDA)-induced Parkinsonian dysfunction in the human neuroblastoma cell line SH-SY5Y. Drug-loaded nanoparticles were prepared by emulsion polymerization method using VIP and PBCA and then stirring with polysorbate 80. The resulting nanoparticles possessed high entrapment efficiency and favorable stability against CaCl2 or fetal bovine serum (FBS)-induced aggregation. Use of fluorescein isothiocyanate (FITC)-conjugated polysorbate 80-PBCA nanoparticles in confocal microscopy revealed that nanoparticles are located inside, while the FITC solution could not penetrate into the cells. The blank nanoparticles showed no significant effects on cell viability, indicating that they had no role in protection; however, polysorbate 80-modified VIP-loading PBCA nanoparticles showed enhanced cell viability compared to free VIP in 6-OHDA-mimic cellular model of Parkinson's disease. In addition, the nanoparticles strikingly increased the anti-apoptosis activity and restored the loss of mitochondrial membrane potential (MMP) significantly after the treatment of 6-OHDA. These results demonstrated that the activity of VIP was enhanced by polysorbate 80-PBCA nanoparticles compared to control solutions, suggesting that PBCA nanoparticles coated with polysorbate 80 could be an effective carrier system for VIP.
Montagnese, Catherine M.; Székely, Tamás; Csillag, András; Zachar, Gergely
2015-01-01
Blue tits (Cyanistes coeruleus) are songbirds, used as model animals in numerous studies covering a wide field of research. Nevertheless, the distribution of neuropeptides in the brain of this avian species remains largely unknown. Here we present some of the first results on distribution of Vasotocine (AVT) and Vasoactive intestinal peptide (VIP) in the brain of males and females of this songbird species, using immunohistochemistry mapping. The bulk of AVT-like cells are found in the hypothalamic supraoptic, paraventricular and suprachiasmatic nuclei, bed nucleus of the stria terminalis, and along the lateral forebrain bundle. Most AVT-like fibers course toward the median eminence, some reaching the arcopallium, and lateral septum. Further terminal fields occur in the dorsal thalamus, ventral tegmental area and pretectal area. Most VIP-like cells are in the lateral septal organ and arcuate nucleus. VIP-like fibers are distributed extensively in the hypothalamus, preoptic area, lateral septum, diagonal band of Broca. They are also found in the bed nucleus of the stria terminalis, amygdaloid nucleus of taenia, robust nucleus of the arcopallium, caudo-ventral hyperpallium, nucleus accumbens and the brainstem. Taken together, these results suggest that both AVT and VIP immunoreactive structures show similar distribution to other avian species, emphasizing evolutionary conservatism in the history of vertebrates. The current study may enable future investigation into the localization of AVT and VIP, in relation to behavioral and ecological traits in the brain of tit species. PMID:26236200
Garay, Hilda; Espinosa, Luis Ariel; Perera, Yasser; Sánchez, Aniel; Diago, David; Perea, Silvio E; Besada, Vladimir; Reyes, Osvaldo; González, Luis Javier
2018-04-20
CIGB-300 is a first-in-class synthetic peptide-based drug of 25 amino acids currently undergoing clinical trials in cancer patients. It contains an amidated disulfide cyclic undecapeptide fused to the TAT cell-penetrating peptide through a beta-alanine spacer. CIGB-300 inhibits the CK2-mediated phosphorylation leading to apoptosis of tumor cells in vitro, and in vivo in cancer patients. Despite the clinical development of CIGB-300, the characterization of peptide-related impurities present in the active pharmaceutical ingredient has not been reported earlier. In the decision tree of ICHQ3A(R2) guidelines, the daily doses intake, the abundance, and the identity of the peptide-related species are pivotal nodes that define actions to be taken (reporting, identification, and qualification). For this, purity was first assessed by reverse-phase chromatography (>97%) and low-abundance impurities (≤0.27%) were collected and identified by mass spectrometry. Most of the impurities were generated during peptide synthesis, the spontaneous air oxidation of the reduced peptide, and the lyophilization step. The most abundant impurity, with no biological activity, was the full-length peptide containing Met 17 transformed into a sulfoxide residue. Interestingly, parallel and antiparallel dimers of CIGB-300 linked by 2 intermolecular disulfide bonds exhibited a higher antiproliferative activity than the CIGB-300 monomer. Likewise, very low abundance trimers and tetramers of CIGB-300 linked by disulfide bonds (≤0.01%) were also detected. Here we describe for the first time the presence of active dimeric species whose feasibility as novel CIGB-300 derived entities merits further investigation. Copyright © 2018 European Peptide Society and John Wiley & Sons, Ltd.
Surbhi; Rastogi, A; Rani, S; Kumar, V
2015-05-01
Two experiments examined the expression of gonadotrophin-releasing and inhibiting hormones (GnRH-I, GnRH-II and GnIH), neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) in subtropical Indian weaver birds, which demonstrate relative photorefractoriness. Experiment 1 measured peptide expression levels in the form of immunoreactive (-IR) cells, percentage cell area and cell optical density in the preoptic area (GnRH-I), midbrain (GnRH-II), paraventricular nucleus (GnIH), mediobasal hypothalamus [dorsomedial hypothalamus (DMH), infundibular complex (INc), NPY and VIP] and lateral septal organ (VIP) during the progressive, breeding, regressive and nonbreeding phases of the annual reproductive cycle. GnRH-I was decreased in the nonbreeding and VIP was increased in INc in the breeding and regressive states. GnRH-II and NPY levels did not differ between the testicular phases. Double-labelled immunohistochemistry (IHC) revealed a close association between the GnRH/GnIH, GnRH/NPY, GnRH/VIP and GnIH/NPY peptide systems, implicating them interacting and playing roles in the reproductive regulation in weaver birds. Experiment 2 further measured these peptide levels in the middle of day and night in weaver birds that were maintained under short days (8 : 16 h light /dark cycle; photosensitive), exposed to ten long days (16 : 8 h light /dark cycle; photostimulated) or maintained for approximately 2 years on a 16 : 8 h light /dark cycle (photorefractory). Reproductively immature testes in these groups precluded the possible effect of an enhanced gonadal feedback on the hypothalamic peptide expression. There were group differences in the GnRH-I (not GnRH-II), GnIH, NPY and VIP immunoreactivity, albeit with variations in immunoreactivity measures in the present study. These results, which are consistent with those reported in birds with relative photorefractoriness, show the distribution and possibly a complex interaction of key neuropeptides in the regulation of the
Raderer, M.; Kurtaran, A.; Hejna, M.; Vorbeck, F.; Angelberger, P.; Scheithauer, W.; Virgolini, I.
1998-01-01
Recent studies have shown that various gastrointestinal tumours express substantial amounts of vasoactive intestinal peptide (VIP) receptors. Based on these observations, we have developed a receptor scintigraphy using [123I]VIP as a radioligand. An initial series performed at our institution showed promising potential for visualization of various gastrointestinal adenocarcinomas by means of [123I]VIP. In this article, we now report the results obtained in 80 consecutive patients with colorectal adenocarcinoma. Eighty consecutive patients with histologically verified colorectal cancer underwent scanning by means of [123I]VIP (1 microg, approximately 150 MBq). Thirteen patients were free of tumour after complete resection of Dukes' C cancer, eight patients presented with primary and 14 with locally recurrent tumours but were free of metastases. Ten patients had locally recurrent disease and liver, lung or lymph node metastases. Disease confined to organ metastases (i.e. liver, lung or lymph nodes) was present in 35 patients. The size of the primary or recurrent tumours ranged between 3 and 6 cm, and the size of metastases was between 1 and 13 cm in diameter. Scan results were evaluated independently by two nuclear medicine physicians in a blinded way, and results were then compared with computerized tomography (CT)scans not older than 4 weeks. Seven out of eight primary (87%) and 21 out of 24 (82%) locally relapsing cancers were imaged with [123I]VIP. Negative VIP scans were obtained in all 13 patients in whom the cancers had been curatively resected. All patients with lymph node metastases showed positive VIP scans (four out of four), and positive scans were obtained in 25 out of 28 (89%) patients with liver metastases and in two out of three cases with lung metastases. In four patients with relapsing cancer, the VIP scan indicated the presence of disease before CT, and in two patients the diagnosis of scar tissue instead of a local recurrence of rectal cancer as
Conlon, J M; Eriksson, B; Grimelius, L; Oberg, K; Thim, L
1987-11-15
By using only reverse-phase h.p.l.c., three fragments of prosomatostatin were isolated from an extract of a human pancreatic neuroendocrine tumour that produced somatostatin, vasoactive intestinal polypeptide and gastrin-releasing peptide. The amino acid composition of the peptides indicated that they represented prosomatostatin-(1-63)-peptide, prosomatostain-(65-76)-peptide and prosomatostatin-(79-92)-peptide (somatostatin-14). The identity of prosomatostatin-(1-63)-peptide was confirmed by characterization of the products of digestion with Armillaria mellea (honey fungus) proteinase. Partial micro-sequencing of prosomatostatin-(1-63)-peptide showed that the Gly24-Ala25 bond of preprosomatostatin was the site of cleavage of the signal peptide. Thus human prosomatostatin is a protein of 92 amino acid residues that is proteolytically cleaved in a pancreatic tumour at the site of a dibasic-residue (arginine-lysine) processing site and at a single-monobasic-residue (arginine) processing site.
Conroy, D. M.; Samhoun, M. N.; Piper, P. J.
1991-01-01
1. The effect of vasoactive intestinal peptide (VIP) was studied on the contractile response of guinea-pig lung parenchymal strips (GPP) induced by bronchoconstrictor agonists, such as leukotriene D4 (LTD4), histamine and acetylcholine (ACh). This effect of VIP was compared with helodermin, a peptide that is structurally related to VIP, and galanin, another neuropeptide that is thought to co-exist with VIP. 2. VIP (10 nM) induced a potent and reversible inhibition of the contractions of GPP induced by LTD4 (1-30 pmol) but did not affect those due to ACh (1-100 nmol) or histamine (1-30 nmol). A ten fold higher concentration of VIP (100 nM) did not further inhibit LTD4-induced responses or reduce those induced by histamine or ACh. 3. Helodermin (10 nM) had a similar inhibitory effect on contractions of GPP induced by LTD4 (3-30 pmol) but did not affect contractions induced by histamine (1-10 nmol). 4. Indomethacin (2.8 microM) and salbutamol (10 nM) significantly reduced responses elicited by LTD4 and histamine but not those due to ACh. A ten fold higher concentration of salbutamol (100 nM) further inhibited the contractions due to LTD4 and histamine and at this concentration responses induced by ACh were inhibited. 5. VIP (10 nM) and helodermin (10 nM) significantly reduced the LTD4-induced release of thromboxane A2 (TXA2), measured as TxB2 by radioimmunoassay, from GPP. The smaller release of TxA2 induced by histamine was not significantly reduced in the presence of VIP. 6. In comparative studies, galanin (10-100 nM) did not affect contractions of GPP induced by either LTD4, histamine or ACh.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1725762
Learning to manage vasoactive drugs-A qualitative interview study with critical care nurses.
Häggström, Marie; Bergsman, Ann-Christin; Månsson, Ulrika; Holmström, Malin Rising
2017-04-01
Being a nurse in an intensive care unit entails caring for seriously ill patients. Vasoactive drugs are one of the tools that are used to restore adequate circulation. Critical care nurses often manage and administer these potent drugs after medical advice from physicians. To describe the experiences of critical care nurses learning to manage vasoactive drugs, and to highlight the competence required to manage vasoactive drugs. Twelve critical care nurses from three hospitals in Sweden were interviewed. Qualitative content analysis was applied. The theme "becoming proficient requires accuracy, practice and precaution" illustrated how critical care nurses learn to manage vasoactive drugs. Learning included developing cognitive, psychomotor, and effective skills. Sources for knowledge refers to specialist education combined with practical exercises, collegial support, and accessible routine documents. The competence required to manage vasoactive drugs encompassed well-developed safety thinking that included being careful, in control, and communicating failures. Specific skills were required such as titrating doses, being able to analyse and evaluate the technological assessments, adapting to the situation, and staying calm. Learning to manage vasoactive drugs requires a supportive introduction for novices, collegial support, lifelong learning, and a culture of safety. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of single dose of omeprazole on the gastrointestinal peptide response to food.
Allen, J M; Adrian, T E; Webster, J; Howe, A; Bloom, S R
1984-02-01
The gastrointestinal peptide response to food was assessed in 6 healthy subjects following oral administration of 40 mg omeprazole. There was a small but statistically significant increase in basal plasma gastrin six hours after the dose of omeprazole, but the post-prandial plasma gastrin was not significantly increased. There was no significant effect on basal or post-prandial levels of somatostatin, insulin, pancreatic glucagon, enteroglucagon, gastric inhibitory polypeptide, pancreatic polypeptide, motilin, neurotensin, cholecystokinin, secretin, vasoactive intestinal peptide and gastrin-releasing peptide or blood glucose concentration.
Sano, Shozo; Tagami, Shinji; Hashimoto, Yuuki; Yoshizawa-Kumagaye, Kumiko; Tsunemi, Masahiko; Okochi, Masayasu; Tomonaga, Takeshi
2014-02-07
Selected/multiple reaction monitoring (SRM/MRM) has been widely used for the quantification of specific proteins/peptides, although it is still challenging to quantitate low abundant proteins/peptides in complex samples such as plasma/serum. To overcome this problem, enrichment of target proteins/peptides is needed, such as immunoprecipitation; however, this is labor-intense and generation of antibodies is highly expensive. In this study, we attempted to quantify plasma low abundant APLP1-derived Aβ-like peptides (APL1β), a surrogate marker for Alzheimer's disease, by SRM/MRM using stable isotope-labeled reference peptides without immunoaffinity enrichment. A combination of Cibacron Blue dye mediated albumin removal and acetonitrile extraction followed by C18-strong cation exchange multi-StageTip purification was used to deplete plasma proteins and unnecessary peptides. Optimal and validated precursor ions to fragment ion transitions of APL1β were developed on a triple quadruple mass spectrometer, and the nanoliquid chromatography gradient for peptide separation was optimized to minimize the biological interference of plasma. Using the stable isotope-labeled (SI) peptide as an internal control, absolute concentrations of plasma APL1β peptide could be quantified as several hundred amol/mL. To our knowledge, this is the lowest detection level of endogenous plasma peptide quantified by SRM/MRM.
A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting
Tseng, Hubert; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G.; Wagoner, Matthew; Souza, Glauco R.
2016-01-01
Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945
Jungraithmayr, Wolfgang; De Meester, Ingrid; Matheeussen, Veerle; Inci, Ilhan; Augustyns, Koen; Scharpé, Simon; Weder, Walter; Korom, Stephan
2010-04-01
The T cell activation Ag CD26/dipeptidylpeptidase IV (DPP IV) combines co-stimulatory and enzymatic properties. Catalytically, it functions as an exopeptidase, modulating biological activity of key chemokines and peptides. Here we investigated the effect of organ-specific inhibition of DPP IV catalytic activity on ischemia/reperfusion injury after extended ischemia in the mouse model of orthotopic single lung transplantation. C57BL/6 mice were syngeneically, transplanted, grafts were perfused and stored in Perfadex with (treated) or without (control) a DPP IV enzymatic activity inhibitor (AB192). Transplantation was performed after 18h cold ischemia time; following 2-h reperfusion, grafts were analyzed for oxygenation, thiobarbituric acid-reactive substances, histomorphology, and immunohistochemistry was performed for leukocyte Ag 6, myeloperoxidase, hemoxygenase 1, vasoactive intestinal protein (VIP), and real-time PCR for VIP. Treatment with the DPP IV inhibitor AB192 resulted in significant improvement of gas exchange, less lipid oxidation, preservation of parenchymal ultrastructure, reduced neutrophil infiltration, reduced myeloperoxidase expression, increased hemoxygenase 1 expression, pronounced expression of VIP in alveolar macrophages and increased mRNA expression of VIP. Inhibition of intragraft DPP IV catalytic activity with AB192 strikingly ameliorates ischemia/reperfusion injury after extended ischemia. Furthermore, preservation of endogenous intragraft VIP levels correlate with maintaining lung function and structural integrity. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Peptides as modifiers of Na+-induced pinocytosis in starved Amoeba proteus.
Josefsson, J O; Johansson, P
1985-01-01
Low concentrations of six peptide hormones; glucagon, vasoactive intestinal peptide, substance P, angiotensin II, lysine-vasopressin, arginine-vasopressin, and the chemotactic peptide fMet-Leu-Phe, activated the capacity for pinocytosis in starved Amoeba proteus. Competitive inhibitors of the chemotactic peptide in leucocytes inhibited activation by fMet-Leu-Phe, suggesting that its action in the amoeba is mediated by specific receptors. The opioid peptides, beta-endorphin, dynorphin (1-13) and leu-enkephalin abolished through a naloxone-sensitive mechanism activation by hormones and several other activating agents. Also, low concentrations of beef and pork insulin inhibited activation by peptide hormones. An insulin analogue of low potency in mammalian cells was inactive in the amoeba. These results support the hypothesis that besides opioid receptors, there may be insulin receptors and possibly receptors for several other peptide hormones in Amoeba proteus.
NASA Astrophysics Data System (ADS)
Hernández-Cortés, P.; Toledo-Romero, M. A.; Delgado, M.; Sánchez-González, C. E.; Martin, F.; Galindo-Moreno, P.; O'Valle, F.
2014-08-01
Objective. Attempts have been made to improve nerve conduits in peripheral nerve reconstruction. We investigated the potential therapeutic effect of a vasoactive intestinal peptide (VIP), a neuropeptide with neuroprotective, trophic and developmental regulatory actions, in peripheral nerve regeneration in a severe model of nerve injury that was repaired with nerve conduits. Approach. The sciatic nerve of each male Wistar rat was transected unilaterally at 10 mm and then repaired with Dl-lactic-ɛ-caprolactone conduits. The rats were treated locally with saline, with the VIP, with adipose-derived mesenchymal stem cells (ASCs) or with ASCs that were transduced with the VIP-expressing lentivirus. The rats with the transected nerve, with no repairs, were used as untreated controls. At 12 weeks post-surgery, we assessed their limb function by measuring the ankle stance angle and the percentage of their muscle mass reduction, and we evaluated the histopathology, immunohistochemistry and morphometry of the myelinated fibers. Main results. The rats that received a single injection of VIP-expressing ASCs showed a significant functional recovery in the ankle stance angle (p = 0.049) and a higher number of myelinated fibers in the middle and distal segments of the operated nerve versus the other groups (p = 0.046). Significance. These results suggest that utilization of a cellular substrate, plus a VIP source, is a promising method for enhancing nerve regeneration using Dl-lactic-ɛ-caprolactone conduits and that this method represents a potential useful clinical approach to repairing peripheral nerve damage.
Lavine, M D; Chen, G; Strand, M R
2005-12-01
Inducible expression of antimicrobial peptides and other humoral immune factors by the insect fat body is well documented. Hemocytes comprise the second essential arm of the insect immune system but it is unclear whether antimicrobial peptide genes are expressed by all or only some types of hemocytes. Here we report the cloning of cecropin A (Pi-cecA), lebocin (Pi-leb) and lysozyme (Pi-lys) homologs from the moth Pseudoplusia includens. Relative-quantitative real-time PCR (rq-rtPCR) indicated that transcript abundance for each antimicrobial gene increased in fat body and hemocytes following immune challenge with the Gram-negative bacterium Escherichia coli. Relative transcript abundance of Pi-cecA was much higher in fat body than hemocytes. In contrast, transcript levels of Pi-leb were three-fold lower in hemocytes than fat body while transcript levels of Pi-lys were three-fold higher. Estimates for the overall contribution of the fat body and hemocytes to antimicrobial peptide expression suggested that hemocytes contribute significantly to Pi-lys transcript levels in larvae but produce much smaller amounts of Pi-cecA and Pi-leb compared to the fat body. Each antimicrobial peptide was also inducibly expressed in hemocytes following challenge with the Gram-positive bacterium Micrococcus luteus or when hemocytes formed capsules around chromatography beads. Analysis of hemocyte types indicated that granulocytes and plasmatocytes expressed all three antimicrobial peptides, whereas spherule cells and oenocytoids expressed only lysozyme. Transcriptional profiles of these antimicrobial genes were similar in granulocytes and plasmatocytes in vivo but were very different in vitro.
Wahle, P; Meyer, G
1989-04-08
The early postnatal development of neurons containing vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI) has been analyzed in visual areas 17 and 18 of cats aged from postnatal day (P) 0 to adulthood. Neuronal types are established mainly by axonal criteria. Both peptides occur in the same neuronal types and display the same postnatal chronology of appearance. Several cell types are transient, which means that they are present in the cortex only for a limited period of development. According to their chronology of appearance the VIP/PHI-immunoreactive (ir) cell types are grouped into three neuronal populations. The first population comprises six cell types which appear early in postnatal life. The pseudohorsetail cells of layer I possess a vertically descending axon which initially gives rise to recurrent collaterals, then forms a bundle passing layers III to V, and finally, horizontal terminal fibers in layer VI. The neurons differentiate at P 4 and disappear by degeneration around P 30. The neurons with columnar dendritic fields of layers IV/V are characterized by a vertical arrangement of long dendrites ascending or descending parallel to each other, thus forming an up to 600 microns long dendritic column. Their axons always descend and terminate in broad fields in layer VI. The neurons appear at P 7 and are present until P 20. The multipolar neurons of layer VI occur in isolated positions and have broad axonal territories. The neurons differentiate at P 7 and persist into adulthood. Bitufted to multipolar neurons of layers II/III have axons descending as a single fiber to layer VI, where they terminate. The neurons appear at P 12 and persist into adulthood. The four cell types described above issue a vertically oriented fiber architecture in layers II-V and a horizontal terminal plexus in layer VI which is dense during the second, third and fourth week. Concurrent with the disappearance of the two transient types the number of
Regional differences in concentrations of regulatory peptides in human colon mucosal biopsy.
Calam, J; Ghatei, M A; Domin, J; Adrian, T E; Myszor, M; Gupta, S; Tait, C; Bloom, S R
1989-08-01
The study was undertaken to examine regional differences in the concentrations of five regulatory peptides in the human colonic mucosa. Biopsies were obtained during routine colonoscopy from 33 patients whose colonic mucosa was macroscopically and histologically normal. Regulatory peptides were extracted, and measured by specific radioimmunoassays. Concentrations of three peptides that are present predominantly in endocrine cells within colonic mucosa increased significantly towards the rectum: Mean concentrations of peptide YY, enteroglucagon, and somatostatin were about three times greater in the rectum than in the cecum. However, concentrations of two peptides that are present in mucosal nerve fibers diminished significantly towards the rectum: Mean rectal concentrations of vasoactive intestinal peptide and peptide histidine methionine were both about 0.6 of mean cecal concentrations. Concentrations of all five peptides were lower in biopsies taken from colonic polyps than in normal colonic mucosa. Regional differences in colonic mucosal concentrations of regulatory peptides probably reflect differences in the physiological functions of different parts of the colon.
Hasaneen, Nadia A; Foda, Hussein D; Said, Sami I
2003-09-01
Both vasoactive intestinal peptide (VIP) and nitric oxide (NO) relax airway smooth muscle and are potential co-transmitters of neurogenic airway relaxation. The availability of neuronal NO synthase (nNOS) knockout mice (nNOS-/-) provides a unique opportunity for evaluating NO. To evaluate the relative importance of NO, especially that generated by nNOS, and VIP as transmitters of the inhibitory nonadrenergic, noncholinergic (NANC) system. In this study, we compared the neurogenic (tetrodotoxin-sensitive) NANC relaxation of tracheal segments from nNOS-/- mice and control wild-type mice (nNOS(+/+)), induced by electrical field stimulation (EFS). We also examined the tracheal contractile response to methacholine and its relaxant response to VIP. EFS (at 60 V for 2 ms, at 10, 15, or 20 Hz) dose-dependently reduced tracheal tension, and the relaxations were consistently smaller (approximately 40%) in trachea from nNOS-/- mice than from control wild-type mice (p < 0.001). VIP (10(- 8) to 10(-6) mol/L) induced concentration-dependent relaxations that were approximately 50% smaller in nNOS-/- tracheas than in control tracheas. Methacholine induced concentration-dependent contractions that were consistently higher in the nNOS-/- tracheas relative to wild-type mice tracheas (p > 0.05). Our data suggest that, in mouse trachea, NO is probably responsible for mediating a large (approximately 60%) component of neurogenic NANC relaxation, and a similar (approximately 50%) component of the relaxant effect of VIP. The results imply that NO contributes significantly to neurogenic relaxation of mouse airway smooth muscle, whether due to neurogenic stimulation or to the neuropeptide VIP.
Asmus, Stephen E.; Cocanougher, Benjamin T.; Allen, Donald L.; Boone, John B.; Brooks, Elizabeth A.; Hawkins, Sarah M.; Hench, Laura A.; Ijaz, Talha; Mayfield, Meredith N.
2011-01-01
Cortical interneurons are critical for information processing, and their dysfunction has been implicated in neurological disorders. One subset of this diverse cell population expresses tyrosine hydroxylase (TH) during postnatal rat development. Cortical TH-immunoreactive neurons appear at postnatal day (P) 16. The number of TH cells sharply increases between P16 and P20 and subsequently decreases to adult values. The absence of apoptotic markers in these cells suggests that the reduction in cell number is not due to cell death but is due to a decline in TH production. Cortical TH cells lack all additional catecholaminergic enzymes, and many coexpress GABA and calretinin, but little else is known about their phenotype or function. Because interneurons containing choline acetyltransferase (ChAT) or vasoactive intestinal peptide (VIP) share characteristics with cortical TH neurons, the coexpression of TH with ChAT or VIP was examined throughout the neocortex at P16, P20, and P30. The proportions of TH cell profiles double-labeled for ChAT or VIP significantly increased between P16 and P30. Based on their proximity to blood vessels, intrinsic cholinergic and VIPergic cells have been hypothesized to regulate cortical microcirculation. Labeling with the gliovascular marker aquaporin-4 revealed that at least half of the TH cells were apposed to microvessels at these ages, and many of these cells contained ChAT or VIP. Cortical TH neurons did not coproduce nitric oxide synthase. These results suggest that increasing proportions of cortical TH neurons express ChAT or VIP developmentally and that a subset of these TH neurons may regulate local blood flow. PMID:21295554
Responses of python gastrointestinal regulatory peptides to feeding
Secor, Stephen M.; Fehsenfeld, Drew; Diamond, Jared; Adrian, Thomas E.
2001-01-01
In the Burmese python (Python molurus), the rapid up-regulation of gastrointestinal (GI) function and morphology after feeding, and subsequent down-regulation on completing digestion, are expected to be mediated by GI hormones and neuropeptides. Hence, we examined postfeeding changes in plasma and tissue concentrations of 11 GI hormones and neuropeptides in the python. Circulating levels of cholecystokinin (CCK), glucose-dependent insulinotropic peptide (GIP), glucagon, and neurotensin increase by respective factors of 25-, 6-, 6-, and 3.3-fold within 24 h after feeding. In digesting pythons, the regulatory peptides neurotensin, somatostatin, motilin, and vasoactive intestinal peptide occur largely in the stomach, GIP and glucagon in the pancreas, and CCK and substance P in the small intestine. Tissue concentrations of CCK, GIP, and neurotensin decline with feeding. Tissue distributions and molecular forms (as determined by gel-permeation chromatography) of many python GI peptides are similar or identical to those of their mammalian counterparts. The postfeeding release of GI peptides from tissues, and their concurrent rise in plasma concentrations, suggests that they play a role in regulating python-digestive responses. These large postfeeding responses, and similarities of peptide structure with mammals, make pythons an attractive model for studying GI peptides. PMID:11707600
Wang, Xin; Yang, Chenchen; Zhang, Yajun; Zhen, Xu; Wu, Wei; Jiang, Xiqun
2014-08-01
Selectively activating tumor vessels to increase drug delivery and reduce interstitial fluid pressure of tumors is actively pursued. Here we developed a vasoactive peptide-decorated chitosan nanoparticles for enhancing drug accumulation and penetration in subcutaneous tumor and lung metastasis. The vasoactive peptide used here is bradykinin-potentiating peptide (BPP) containing 9 amino acid residues and the drug is bioreductively sensitive platinum(IV) compound which becomes cisplatin in intracellular reductive environments. Both peptide and drug are covalently linked with chitosan nanoparticles with a diameter of 120 nm. We demonstrate that BPP-decorated chitosan nanoparticles increase the tumorous vascular permeability and reduce the interstitial fluid pressure of tumor simultaneously, both of which improve the penetration of nanoparticles in tumor tissues. The in vivo biodistribution and tumor inhibition examinations demonstrate that the BPP-decorated nanoparticle formulation has more superior efficacy in enhancing drug accumulation in tumor, restraining tumor growth and prolonging the lifetime of tumor-bearing mice than free drug and non-decorated nanoparticle formulation. Meanwhile, the drug accumulation in the lung with metastasis reaches 17% and 20% injected dose per gram of lung for the chitosan nanoparticles without and with BPP decoration, respectively, which is 10-fold larger than that of free cisplatin. The examination of lung metastasis inhibition further indicates that BPP-decorated chitosan nanoparticle formulations can more effectively inhibit lung metastasis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Saul, Anika; Lashley, Tammaryn; Revesz, Tamas; Holton, Janice; Ghiso, Jorge A; Coomaraswamy, Janaky; Wirths, Oliver
2013-05-01
Familial British and familial Danish dementia (FDD) are progressive neurodegenerative disorders characterized by cerebral deposition of the amyloidogenic peptides ABri and ADan, respectively. These amyloid peptides start with an N-terminal glutamate residue, which can be posttranslationally converted into a pyroglutamate (pGlu) modified form, a mechanism which has been extensively described to be relevant for amyloid-beta (Aβ) peptides in Alzheimer's disease. Like pGlu-Aβ peptides, pGlu-ABri peptides have an increased aggregation propensity and show higher toxicity on human neuroblastoma cells as their nonmodified counterparts. We have generated novel N-terminal specific antibodies detecting the pGlu-modified forms of ABri and ADan peptides. With these antibodies we were able to identify abundant extracellular amyloid plaques, vascular, and parenchymal deposits in human familial British dementia and FDD brain tissue, and in a mouse model for FDD. Double-stainings using C-terminal specific antibodies in human samples revealed that highly aggregated pGlu-ABri and pGlu-ADan peptides are mainly present in plaque cores and central vascular deposits, leading to the assumption that these peptides have seeding properties. Furthermore, in an FDD-mouse model ADan peptides were detected in presynaptic terminals of the hippocampus where they might contribute to impaired synaptic transmission. These similarities of ABri and ADan to Aβ in Alzheimer's disease suggest that the posttranslational pGlu-modification of amyloid peptides might represent a general pathological mechanism leading to increased aggregation and toxicity in these forms of degenerative dementias. Copyright © 2013 Elsevier Inc. All rights reserved.
Saul, Anika; Lashley, Tammaryn; Revesz, Tamas; Holton, Janice; Ghiso, Jorge A.; Coomaraswamy, Janaky; Wirths, Oliver
2013-01-01
Familial British (FBD) and familial Danish dementia (FDD) are progressive neurodegenerative disorders characterized by cerebral deposition of the amyloidogenic peptides ABri and ADan. These amyloid peptides start with an N-terminal glutamate residue, which can be posttranslationally converted into a pyroglutamate (pGlu-) modified form, a mechanism which has been extensively described to be relevant for Aβ peptides in Alzheimer’s disease (AD). Like pGlu-Aβ peptides, pGlu-ABri peptides have an increased aggregation propensity and show higher toxicity on human neuroblastoma cells as their non-modified counterparts. We have generated novel N-terminal specific antibodies detecting the pGlu-modified forms of ABri and ADan peptides. With these antibodies we were able to identify abundant extracellular amyloid plaques, vascular and parenchymal deposits in human FBD and FDD brain tissue, as well as in a mouse model for FDD. Double-stainings using C-terminal specific antibodies in human samples revealed that highly aggregated pGlu-ABri and pGlu-ADan peptides are mainly present in plaque cores and central vascular deposits, leading to the assumption that these peptides have seeding properties. Furthermore, in an FDD-mouse model ADan peptides were detected in pre-synaptic terminals of the hippocampus where they might contribute to impaired synaptic transmission. These similarities of ABri and ADan to Aβ in AD suggest that the posttranslational pGlu-modification of amyloid peptides might represent a general pathological mechanism leading to increased aggregation and toxicity in these forms of degenerative dementias. PMID:23261769
Expression and GTP sensitivity of peptide histidine isoleucine high-affinity-binding sites in rat.
Debaigt, Colin; Meunier, Annie-Claire; Goursaud, Stephanie; Montoni, Alicia; Pineau, Nicolas; Couvineau, Alain; Laburthe, Marc; Muller, Jean-Marc; Janet, Thierry
2006-07-01
High-affinity-binding sites for the vasoactive intestinal peptide (VIP) analogs peptide histidine/isoleucine-amide (PHI)/carboxyterminal methionine instead of isoleucine (PHM) are expressed in numerous tissues in the body but the nature of their receptors remains to be elucidated. The data presented indicate that PHI discriminated a high-affinity guanosine 5'-triphosphate (GTP)-insensitive-binding subtype that represented the totality of the PHI-binding sites in newborn rat tissues but was differentially expressed in adult animals. The GTP-insensitive PHI/PHM-binding sites were also observed in CHO cells over expressing the VPAC2 but not the VPAC1 VIP receptor.
Vasoactive exposures during pregnancy and risk of microtia.
Van Bennekom, Carla M; Mitchell, Allen A; Moore, Cynthia A; Werler, Martha M
2013-01-01
Little is known about the etiology of nonsyndromic microtia. This study investigated the hypothesis that microtia is caused by vascular disruption. The study analyzed data from the population-based National Birth Defects Prevention Study (NBDPS) for deliveries between 1997 and 2005. Four hundred eleven nonsyndromic cases of microtia, with or without additional defects, were compared to 6560 nonmalformed infants with respect to maternal exposures to vasoactive medications and smoking during the periconceptional period and conditions that have previously been associated with vascular events (multiple gestation, maternal history of type 1, type 2, or gestational diabetes, and hypertension). Odds ratios (ORs) were estimated with multivariable models, controlling for the effects of race/ethnicity, education, periconceptional folic acid use, and study center. Risk estimates for vasoactive medications and smoking were not meaningfully increased. Maternal type 1/2 diabetes was diagnosed before or during the index pregnancy in 4% and 1% of cases, respectively, compared to 1% and 0.05% of controls; the adjusted OR for these two groups combined was 7.2 (95% confidence interval [CI], 3.9-13.1). Gestational diabetes was observed for 9% of cases and 6% of controls; the OR was moderately elevated (OR, 1.4; 95% CI, 0.9-2.0). ORs were also increased for multiple gestations (OR, 2.5; 95% CI, 1.5-4.2) and pre-existing hypertension (OR, 1.6; 95% CI, 1.0-2.5). Because ORs were only elevated for diabetes and not for vasoactive exposures or other potential vascular events, findings suggest that some microtia occurrences may be part of the diabetic embryopathy rather than manifestations of vascular disruption. Birth Defects Research (Part A), 2013. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
Avital-Cohen, N; Heiblum, R; Argov, N; Rosenstrauch, A; Chaiseha, Y; Mobarkey, N; Rozenboim, I
2012-01-01
Decreasing fertility in aging domestic roosters is a well-known phenomenon. Aging is manifested by a decrease in plasma testosterone level, testis function, and spermatogenesis, resulting in a low level of fertility. The roles of vasoactive intestinal peptide (VIP) and testicular inhibin in this aging process are not clear. The effects of active immunization against VIP, inhibin, or the combination of both hormones on the reproduction of aging White Leghorn (WL) roosters were assayed. In experiment 1a, 60 White Leghorn roosters (67 wk of age) were divided into 4 groups (n = 15/group). The first group was actively immunized against VIP, the second against inhibin, the third against VIP and inhibin, and the fourth served as a control. Active immunization against VIP decreased semen quality parameters, plasma steroid levels, and gene expression of gonadotropin-releasing hormone-I (GnRH-I), follicle-stimulating hormone (FSH), luteinizing hormone (LH), LH receptor, VIP, and prolactin (Prl). Immunization against inhibin increased some of the semen quality parameters and FSH mRNA gene expression but decreased inhibin gene expression. In experiment 1b, at 94 wk of age, we took the actively immunized against VIP group and the control group and divided them into 2 subgroups (n = 7 or 8): the first group was injected with 1 mg of ovine Prl (oPrl) daily for 7 d, and the second group served as a control. Administration of oPrl to previously VIP-immunized birds significantly elevated semen quality parameters. We suggest that VIP, Prl, and inhibin have an important effect on the reproductive axis in aging roosters. Active immunization against VIP-depressed reproductive activity and Prl administration restored their reproduction, indicating that both VIP and Prl are essential for reproduction in aging roosters. Immunization against inhibin improved FSH mRNA gene expression, suggesting a negative role of inhibin on FSH secretion in aging roosters. Not all semen quality parameters
Mehaffy, Carolina; Dobos, Karen M; Nahid, Payam; Kruh-Garcia, Nicole A
2017-01-01
Mycobacterium tuberculosis (Mtb) is the causative agent of Tuberculosis (TB), the number one cause of death due to an infectious disease. TB diagnosis is performed by microscopy, culture or PCR amplification of bacterial DNA, all of which require patient sputum or the biopsy of infected tissue. Detection of mycobacterial products in serum, as biomarkers of diagnosis or disease status would provide an improvement over current methods. Due to the low-abundance of mycobacterial products in serum, we have explored exosome enrichment to improve sensitivity. Mtb resides intracellularly where its secreted proteins have been shown to be packaged into host exosomes and released into the bloodstream. Exosomes can be readily purified assuring an enrichment of mycobacterial analytes from the complex mix of host serum proteins. Multiple reaction monitoring assays were optimized for the enhanced detection of 41 Mtb peptides in exosomes purified from the serum of individuals with TB. Exosomes isolated from the serum of healthy individuals was used to create and validate a unique data analysis algorithm and identify filters to reduce the rate of false positives, attributed to host m / z interference. The final optimized method was tested in 40 exosome samples from TB positive patients. Our enhanced methods provide limit of detection and quantification averaging in the low femtomolar range for detection of mycobacterial products in serum. At least one mycobacterial peptide was identified in 92.5% of the TB positive patients. Four peptides from the Mtb proteins, Cfp2, Mpt32, Mpt64 and BfrB, show normalized total peak areas significantly higher in individuals with active TB as compared to healthy controls; three of the peptides from these proteins have not previously been associated with serum exosomes from individuals with active TB disease. Some of the detected peptides were significantly associated with specific geographical locations, highlighting potential markers that can be
Pharmacologic Effects in vivo in Brain by Vector-Mediated Peptide Drug Delivery
NASA Astrophysics Data System (ADS)
Bickel, Ulrich; Yoshikawa, Takayoshi; Landaw, Elliot M.; Faull, Kym F.; Pardridge, William M.
1993-04-01
Pharmacologic effects in brain caused by systemic administration of neuropeptides are prevented by poor transport of the peptide through the brain vascular endothelium, which comprises the blood-brain barrier in vivo. In the present study, successful application of a chimeric peptide approach to enhance drug delivery through the blood-brain barrier for the purpose of achieving a central nervous system pharmacologic effect is described. The chimeric peptide was formed by linkage of a potent vasoactive intestinal peptide (VIP) analogue, which had been monobiotinylated, to a drug transport vector. The vector consisted of a covalent conjugate of avidin and the OX26 monoclonal antibody to the transferrin receptor. Owing to the high concentration of transferrin receptors on brain capillary endothelia, OX26 targets brain and undergoes receptor-mediated transcytosis through the blood-brain barrier. Systemic infusion of low doses (12 μg/kg) of the VIP chimeric peptide in rats resulted in an in vivo central nervous system pharmacologic effect: a 65% increase in cerebral blood flow. Biotinylated VIP analogue without the brain transport vector was ineffective.
Jesmin, Subrina; Shimojo, Nobutake; Yamaguchi, Naoto; Mowa, Chishimba Nathan; Oki, Masami; Zaedi, Sohel; Sultana, Sayeeda Nusrat; Rahman, Arifur; Islam, Majedul; Sawamura, Atsushi; Gando, Satoshi; Kawano, Satoru; Miyauchi, Takashi; Mizutani, Taro
2014-05-02
Septic shock, the severe form of sepsis, is associated with development of progressive damage in multiple organs. Kidney can be injured and its functions altered by activation of coagulation, vasoactive-peptide and inflammatory processes in sepsis. Endothelin (ET)-1, a potent vasoconstrictor, is implicated in the pathogenesis of sepsis and its complications. Protease-activated receptors (PARs) are shown to play an important role in the interplay between inflammation and coagulation. We examined the time-dependent alterations of ET-1 and inflammatory cytokine, such as tumor necrosis factor (TNF)-α in kidney tissue in lipopolysaccharide (LPS)-induced septic rat model and the effects of PAR2 blocking peptide on the LPS-induced elevations of renal ET-1 and TNF-α levels. Male Wistar rats at 8 weeks of age were administered with either saline solution or LPS at different time points (1, 3, 6 and 10h). Additionally, we treated LPS-administered rats with PAR2 blocking peptide for 3h to assess whether blockade of PAR2 has a regulatory role on the ET-1 level in septic kidney. An increase in ET-1 peptide level was observed in kidney tissue after LPS administration time-dependently. Levels of renal TNF-α peaked (around 12-fold) at 1h of sepsis. Interestingly, PAR2 blocking peptide normalized the LPS-induced elevations of renal ET-1 and TNF-α levels. The present study reveals a distinct chronological expression of ET-1 and TNF-α in LPS-administered renal tissues and that blockade of PAR2 may play a crucial role in treating renal injury, via normalization of inflammation, coagulation and vaso-active peptide. Copyright © 2014 Elsevier Inc. All rights reserved.
Evans, Brian C; Hocking, Kyle M; Kilchrist, Kameron V; Wise, Eric S; Brophy, Colleen M; Duvall, Craig L
2015-06-23
A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.
Atrial natriuretic peptide stimulates salt secretion by shark rectal gland by releasing VIP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, P.; Stoff, J.S.; Solomon, R.J.
1987-01-01
Salt secretion by the isolated perfused rectal gland of the spiny dogfish shark, Squalus acanthias, is stimulated by synthetic rat atrial natriuretic peptide (ANP II) as well as extracts of shark heart, but not by 8-bromo-cyclic guanosine 5'-monophosphate. Cardiac peptides have no effect on isolated rectal gland cells or perfused tubules, suggesting that stimulation requires an intact gland. The stimulation of secretion by ANP II is eliminated by maneuvers that block neurotransmitter release. Cardiac peptides stimulate the release of vasoactive intestinal peptide (VIP), known to be present in rectal glands nerves, into the venous effluent of perfused glands in parallelmore » with their stimulation of salt secretion, but the release of VIP induced by ANP II is prevented by perfusion with procaine. VIP was measured by radioimmunoassay. Cardiac peptides thus appear to regulate rectal gland secretion by releasing VIP from neural stores within the gland. It is possible that other physiological effects of these hormones might be explained by an action to enhanced local release of neurotransmitters.« less
Wiviott, Stephen D; de Lemos, James A; Morrow, David A
2004-08-16
The natriuretic hormones are a family of vasoactive peptides that can be measured circulating in the blood. Because they serve as markers of hemodynamic stress, the major focus of the use of natriuretic peptide levels [predominantly B-type natriuretic peptide (BNP) and N-terminal (NT)-pro-BNP] has been as an aid to the clinical diagnosis and management of congestive heart failure (CHF). Recently, however, the measurement of natriuretic peptides in the acute coronary syndromes (ACS) has been shown to provide information complementary to traditional biomarkers (of necrosis) such as cardiac troponins and creatine kinase (CK). Studies in several types of acute coronary syndromes [ST-segment elevation myocardial infarction (STEMI), non-ST elevation MI (NSTEMI) and unstable angina (UA)] have shown that elevated levels of natriuretic peptides are independently associated with adverse outcomes, particularly mortality. Additional information is obtained from the use natriuretic peptides in combination with other markers of risk including biomarkers of necrosis and inflammation. This review will summarize the scientific rationale and clinical evidence supporting measurement of natriuretic peptides for risk stratification in acute coronary syndromes. Future research is needed to identify therapies of particular benefit for patients with ACS and natriuretic peptide elevation.
Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel; Jesus, Joilson Ramos; Silva, Luciano Paulino; Pires Júnior, Osmindo Rodrigues; Costa-Neto, Claudio Miguel; Oliveira, Eduardo Brandt; Migliolo, Ludovico; Franco, Octávio Luiz; Restini, Carolina Baraldi Araújo; Paulo, Michele; Bendhack, Lusiane Maria; Bemquerer, Marcelo Porto; Oliveira, Aldeidia Pereira; Simonsen, Ulf; Leite, José Roberto de Souza de Almeida
2015-01-01
Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases.
Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel; Jesus, Joilson Ramos; Silva, Luciano Paulino; Pires, Osmindo Rodrigues; Costa-Neto, Claudio Miguel; Oliveira, Eduardo Brandt; Migliolo, Ludovico; Franco, Octávio Luiz; Restini, Carolina Baraldi Araújo; Paulo, Michele; Bendhack, Lusiane Maria; Bemquerer, Marcelo Porto; Oliveira, Aldeidia Pereira; Simonsen, Ulf; Leite, José Roberto de Souza de Almeida
2015-01-01
Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases. PMID:26661890
NASA Astrophysics Data System (ADS)
Said, Sami I.; Berisha, Hasan I.; Pakbaz, Hedayatollah
1996-05-01
Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the ``adult respiratory distress syndrome,'' and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.
Rukavina Mikusic, N. L.; Kravetz, M. C.; Kouyoumdzian, N. M.; Della Penna, S. L.; Rosón, M. I.; Fernández, B. E.; Choi, M. R.
2014-01-01
The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation. PMID:25436148
Rukavina Mikusic, N L; Kravetz, M C; Kouyoumdzian, N M; Della Penna, S L; Rosón, M I; Fernández, B E; Choi, M R
2014-01-01
The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation.
Vasoactive drugs and the gut: is there anything new?
Woolsey, Cheryl A; Coopersmith, Craig M
2006-04-01
Systemic changes in blood pressure and cardiac output induced by pressors and inotropes do not always correlate to improvements in regional perfusion. Since the gut is often referred to as the 'motor' of the systemic inflammatory response syndrome, the impact of vasoactive agents on splanchnic perfusion has theoretical importance. This review will highlight recent studies examining secondary effects of vasoactive agents on intestinal perfusion, metabolism, and barrier function. Norepinephrine has minimal impact on mesenteric blood flow although the combination of norepinephrine and dobutamine increases splanchnic blood flow in sepsis. Dopamine also increases mesenteric blood flow although this may be associated with negative hepatic energy balance at high does. Vasopressin and epinephrine both have negative effects on splanchnic blood flow. Newer inodilators levosimendan and olprinone preferentially improve mesenteric perfusion in animal models. Secondary effects of norepinephrine and dopamine on splanchnic perfusion are minor compared with their systemic effects. While vasopressin usage is increasing in the intensive care unit, caution should be used because of its adverse effects on gut perfusion. Experimental agents for the treatment of heart failure have beneficial gut-specific effects although the clinical significance of this is currently limited by their availability.
Okumus, Nurullah; Atalay, Yildiz; Onal, Eray E; Turkyilmaz, Canan; Senel, Saliha; Gunaydin, Berrin; Pasaoglu, Hatice; Koc, Esin; Ergenekon, Ebru; Unal, Suna
2011-01-01
To investigate the effects of delivery route and maternal anesthesia type and the roles of vasoactive hormones on early postnatal weight loss in term newborns. Ninety-four term infants delivered vaginally (group 1, n=31), cesarean section (C/S) with general anesthesia (GA) (group 2, n=29), and C/S with epidural anesthesia (EA) (group 3, n=34) were included in this study. All infants were weighed at birth and on the second day of life and intravenous (IV) fluid infused to the mothers for the last 6 h prior to delivery was recorded. Serum electrolytes, osmolality, N-terminal proANP (NT-proANP), brain natriuretic peptide (BNP), aldosterone and plasma antidiuretic hormone (ADH) concentrations were measured at cord blood and on the second day of life. Our research showed that postnatal weight loss of infants was higher in C/S than vaginal deliveries (5.7% vs. 1.3%) (p < 0.0001) and in EA group than GA group (6.8% vs. 4.3%) (p < 0.0001). Postnatal weight losses were correlated with IV fluid volume infused to the mothers for the last 6 h prior to delivery (R = 0.814, p = 0.000) and with serum NT-proANP (R = 0.418, p = 0.000), BNP (R = 0.454, p = 0.000), and ADH (R = 0.509, p = 0.000) but not with aldosterone concentrations (p > 0.05). Large amounts of IV fluid given to the mothers who were applied EA prior to the delivery affect their offsprings' postnatal weight loss via certain vasoactive hormones.
[Plant signaling peptides. Cysteine-rich peptides].
Ostrowski, Maciej; Kowalczyk, Stanisław
2015-01-01
Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation.
Reed, Daniel M; Foldes, Gabor; Kirkby, Nicholas S; Ahmetaj-Shala, Blerina; Mataragka, Stefania; Mohamed, Nura A; Francis, Catherine; Gara, Edit; Harding, Sian E; Mitchell, Jane A
2014-12-12
Endothelial cells form a highly specialised lining of all blood vessels where they provide an anti-thrombotic surface on the luminal side and protect the underlying vascular smooth muscle on the abluminal side. Specialised functions of endothelial cells include their unique ability to release vasoactive hormones and to morphologically adapt to complex shear stress. Stem cell derived-endothelial cells have a growing number of applications and will be critical in any organ regeneration programme. Generally endothelial cells are identified in stem cell studies by well-recognised markers such as CD31. However, the ability of stem cell-derived endothelial cells to release vasoactive hormones and align with shear stress has not been studied extensively. With this in mind, we have compared directly the ability of endothelial cells derived from a range of stem cell sources, including embryonic stem cells (hESC-EC) and adult progenitors in blood (blood out growth endothelial cells, BOEC) with those cultured from mature vessels, to release the vasoconstrictor peptide endothelin (ET)-1, the cardioprotective hormone prostacyclin, and to respond morphologically to conditions of complex shear stress. All endothelial cell types, except hESC-EC, released high and comparable levels of ET-1 and prostacyclin. Under static culture conditions all endothelial cell types, except for hESC-EC, had the typical cobblestone morphology whilst hESC-EC had an elongated phenotype. When cells were grown under shear stress endothelial cells from vessels (human aorta) or BOEC elongated and aligned in the direction of shear. By contrast hESC-EC did not align in the direction of shear stress. These observations show key differences in endothelial cells derived from embryonic stem cells versus those from blood progenitor cells, and that BOEC are more similar than hESC-EC to endothelial cells from vessels. This may be advantageous in some settings particularly where an in vitro test bed is required
Vasoactive intestinal peptide test
... found in cells in the nervous system and gut. VIP has many functions, including relaxing certain muscles, triggering release of hormones from the pancreas, gut, and hypothalamus, and increasing the amount of water ...
Effect of peptide histidine valine on cardiovascular and respiratory function in normal subjects.
Chilvers, E R; Dixon, C M; Yiangou, Y; Bloom, S R; Ind, P W
1988-01-01
Non-adrenergic inhibitory nerves may have an important role in regulating airway calibre. A recently discovered peptide, peptide histidine valine, is a potent relaxer of airway smooth muscle in vitro and has been proposed as a possible neurotransmitter in this tissue. The cardiovascular and respiratory effects of graded infusions of this peptide (2.5-10 pmol kg-1 min-1) have been examined in six normal subjects in a placebo controlled, randomised double blind study. The mean (SEM) peak plasma concentration of peptide histidine valine during the highest infusion rate was 2392 (170) pmol/l, representing a 29 fold increase above the basal concentration. This was accompanied by flushing, a significant increase in heart rate of 28 (3.7) beats/min and skin temperature of 1.8 degrees (0.16 degrees) C, but no effect on systolic or diastolic blood pressure. Despite these high plasma concentrations of the peptide and the substantial tachycardia and increase in skin blood flow, there was no change in partial expiratory flow at 40% of vital capacity (Vp40) or in the airway response to inhaled histamine (geometric PD40 9.37 and 9.73 mumol during saline and peptide histidine valine infusion respectively). Although these findings provide no support for a physiological role of peptide histidine valine in controlling airway function in healthy subjects, important effects of locally released peptides in the vasoactive intestinal peptide family cannot be excluded. PMID:3206383
Effect of peptide histidine valine on cardiovascular and respiratory function in normal subjects.
Chilvers, E R; Dixon, C M; Yiangou, Y; Bloom, S R; Ind, P W
1988-10-01
Non-adrenergic inhibitory nerves may have an important role in regulating airway calibre. A recently discovered peptide, peptide histidine valine, is a potent relaxer of airway smooth muscle in vitro and has been proposed as a possible neurotransmitter in this tissue. The cardiovascular and respiratory effects of graded infusions of this peptide (2.5-10 pmol kg-1 min-1) have been examined in six normal subjects in a placebo controlled, randomised double blind study. The mean (SEM) peak plasma concentration of peptide histidine valine during the highest infusion rate was 2392 (170) pmol/l, representing a 29 fold increase above the basal concentration. This was accompanied by flushing, a significant increase in heart rate of 28 (3.7) beats/min and skin temperature of 1.8 degrees (0.16 degrees) C, but no effect on systolic or diastolic blood pressure. Despite these high plasma concentrations of the peptide and the substantial tachycardia and increase in skin blood flow, there was no change in partial expiratory flow at 40% of vital capacity (Vp40) or in the airway response to inhaled histamine (geometric PD40 9.37 and 9.73 mumol during saline and peptide histidine valine infusion respectively). Although these findings provide no support for a physiological role of peptide histidine valine in controlling airway function in healthy subjects, important effects of locally released peptides in the vasoactive intestinal peptide family cannot be excluded.
Sacubitril/valsartan: beyond natriuretic peptides.
Singh, Jagdeep S S; Burrell, Louise M; Cherif, Myriam; Squire, Iain B; Clark, Andrew L; Lang, Chim C
2017-10-01
Natriuretic peptides, especially B-type natriuretic peptide (BNP), have primarily been regarded as biomarkers in heart failure (HF). However, they are also possible therapeutic agents due to their potentially beneficial physiological effects. The angiotensin receptor-neprilysin inhibitor, sacubitril/valsartan, simultaneously augments the natriuretic peptide system (NPS) by inhibiting the enzyme neprilysin (NEP) and inhibits the renin-angiotensin-aldosterone system (RAAS) by blocking the angiotensin II receptor. It has been shown to improve mortality and hospitalisation outcomes in patients with HF due to left ventricular systolic dysfunction. The key advantage of sacubitril/valsartan has been perceived to be its ability to augment BNP, while its other effects have largely been overlooked. This review highlights the important effects of sacubitril/valsartan, beyond just the augmentation of BNP. First we discuss how NPS physiology differs between healthy individuals and those with HF by looking at mechanisms like the overwhelming effects of RAAS on the NPS, natriuretic peptide receptor desensitisation and absolute natriuretic deficiency. Second, this review explores other hormones that are augmented by sacubitril/valsartan such as bradykinin, substance P and adrenomedullin that may contribute to the efficacy of sacubitril/valsartan in HF. We also discuss concerns that sacubitril/valsartan may interfere with amyloid-β homeostasis with potential implications on Alzheimer's disease and macular degeneration. Finally, we explore the concept of 'autoinhibition' which is a recently described observation that humans have innate NEP inhibitory capability when natriuretic peptide levels rise above a threshold. There is speculation that autoinhibition may provide a surge of natriuretic and other vasoactive peptides to rapidly reverse decompensation. We contend that by pre-emptively inhibiting NEP, sacubitril/valsartan is inducing this surge earlier during decompensation
Mueck, A O; Seeger, H; Petersen, G; Schulte-Wintrop, E; Wallwiener, D
2001-12-01
In the present study the effect on the urinary excretion of vasoactive markers of two oral contraceptives (OCs), i.e., Leios, containing 0.02 mg ethinyl estradiol and 0.1 mg levonorgestrel, and Stediril 30, containing 0.03 mg ethinyl estradiol and 0.15 mg levonorgestrel, was investigated. cGMP, prostacyclin and its antagonist thromboxane, serotonin, and urodilatin, a natriuretic and diuretic peptide formed in the kidney, were measured as markers. In a comparative, double-blind, randomized, parallel group study, 34 women received Leios and 33 women Stediril 30. Nocturnal urine was collected before treatment and during cyclic treatment after 3 and 12 cycles. Both contraceptives significantly enhanced cGMP excretion after 12 cycles. The prostacyclin metabolite remained unchanged for both formulations, but the excretion of the thromboxane metabolite was significantly decreased after 12 cycles. Thus, the ratio of prostacyclin to thromboxane, crucial for the resulting effect on vascular tone, increased significantly. For the serotonin metabolite, no changes were observed for both contraceptives. The excretion of urodilatin significantly increased for both preparations after 12 cycles compared to the pretreatment values. These results indicate that the low-dose OCs Leios and Stediril 30 may stimulate the production of some vasoactive markers, at least after 12 cycles of treatment. The positive influence of these contraceptives on the various markers investigated may improve vascular tone, impede development of atherosclerosis and arterial thrombosis, and improve water and electrolyte homeostasis. These effects most likely can be attributed to the estrogenic component. Levonorgestrel may elicit no impact on these estrogen-induced changes that, however, seem only to be manifested after a longer treatment period.
Lactoferricin B-derived peptides with inhibitory effects on ECE-dependent vasoconstriction.
Fernández-Musoles, Ricardo; López-Díez, José Javier; Torregrosa, Germán; Vallés, Salvador; Alborch, Enrique; Manzanares, Paloma; Salom, Juan B
2010-10-01
Endothelin-converting enzyme (ECE), a key peptidase in the endothelin (ET) system, cleaves inactive big ET-1 to produce active ET-1, which binds to ET(A) receptors to exert its vasoconstrictor and pressor effects. ECE inhibition could be beneficial in the treatment of hypertension. In this study, a set of eight lactoferricin B (LfcinB)-derived peptides, previously characterized in our laboratory as angiotensin-converting enzyme (ACE) inhibitory peptides, was examined for their inhibitory effects on ECE. In vitro inhibitory effects on ECE activity were assessed using both the synthetic fluorogenic peptide substrate V (FPS V) and the natural substrate big ET-1. To study vasoactive effects, an ex vivo functional assay was developed using isolated rabbit carotid artery segments. With FPS V, only four LfcinB-derived peptides induced inhibition of ECE activity, whereas the eight peptides showed ECE inhibitory effects with big ET-1 as substrate. Regarding the ex vivo assays, six LfcinB-derived peptides showed inhibition of big ET-1-induced, ECE-dependent vasoconstriction. A positive correlation between the inhibitory effects of LfcinB-derived peptides on ECE activity when using big ET-1 and the inhibitory effects on ECE-dependent vasoconstriction was shown. ECE-independent vasoconstriction induced by ET-1 was not affected, thus discarding effects of LfcinB-derived peptides on ET(A) receptors or intracellular signal transduction mechanisms. In conclusion, a combined in vitro and ex vivo method to assess the effects of potentially antihypertensive peptides on the ET system has been developed and applied to show the inhibitory effects on ECE-dependent vasoconstriction of six LfcinB-derived peptides, five of which were dual vasopeptidase (ACE/ECE) inhibitors. Copyright © 2010 Elsevier Inc. All rights reserved.
Immunogold staining procedure for the localisation of regulatory peptides.
Varndell, I M; Tapia, F J; Probert, L; Buchan, A M; Gu, J; De Mey, J; Bloom, S R; Polak, J M
1982-01-01
The use of protein A- and IgG-conjugated colloidal gold staining methods for the immuno-localisation of peptide hormones and neurotransmitters at light- and electron microscope level are described and discussed. Bright-field and dark-ground illumination modes have been used to visualise the gold-labelled antigenic sites at the light microscope level. Immunogold staining procedures at the ultrastructural level using region-specific antisera have been adopted to localise specific molecular forms of peptides including gastrin (G17 and G34), glucagon and pro-glucagon, insulin and pro-insulin, in normal tissue and in tumours of the gastroenteropancreatic system. Similar methods have been used to demonstrate the heterogeneity of p-type nerves in the enteric nervous system. Vasoactive intestinal polypeptide (VIP) has been localised to granular sites (mean +/- S.D. granule diameter = 98 +/- 19 nm) in nerve terminals of the enteric plexuses and in tumour cells of diarrhoeogenic VIP-producing neoplasias (mean +/- S.D. granule diameter = 126 +/- 37 nm) using immunogold procedures applied to ultraviolet-cured ultrathin sections. Co-localisation of amines and peptides in carotid body type I cells and in chromaffin cells of normal adrenal medulla and phaeochromocytomas has also been demonstrated. Advantages of the immunogold procedures over alternative immunocytochemical techniques are discussed.
Trebicka, Jonel; Wix, Cyrus; von Heydebrand, Matthias; Hittatiya, Kanishka; Reiberger, Thomas; Klein, Sabine; Schierwagen, Robert; Kristiansen, Glen; Peck-Radosavljevic, Markus; Fischer, Hans-Peter; Møller, Søren; Bendtsen, Flemming; Krag, Aleksander; Sauerbruch, Tilman
2015-04-01
Patients with cirrhosis display hypocontractility of splanchnic vessels because of dysregulation of vasoactive proteins, such as decreased effect of RhoA/ROCK and increased activity of β-Arrestin-2 and eNOS. However, it is unknown whether the dysregulation of vasoactive proteins is displayed in other vessels. We investigated whether expression of vasoactive proteins can be evaluated in gastric mucosa vessels. Biopsies from the gastric mucosa of 111 patients with cirrhosis were collected at three different centres and from 13 controls. Forty-nine patients had received TIPS. Portal pressure gradient was measured in 49 patients with TIPS and in 16 patients without TIPS. Biopsies from the antrum were conserved in formaldehyde for immunohistochemistry or shock-frozen for PCR and Western blot. The mucosal transcription of vascular markers (αSMA, CD31) was higher in cirrhotic patients than controls, which was confirmed by immunohistochemistry. On average, relative mucosal levels of RhoA and ROCK were lower, while β-Arrestin-2 levels were higher in cirrhotic patients compared to controls. Transcriptional levels of eNOS increased with presence of ascites and grade of oesophageal varices. Patients with TIPS showed less pronounced markers of vascular dysfunction in gastric mucosa. This is the first evidence that the expression of vasoactive proteins in mucosa from the gastric antrum of patients with cirrhosis reflects their vascular dysfunction and possibly changes after therapeutic interventions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Robust linear parameter-varying control of blood pressure using vasoactive drugs
NASA Astrophysics Data System (ADS)
Luspay, Tamas; Grigoriadis, Karolos
2015-10-01
Resuscitation of emergency care patients requires fast restoration of blood pressure to a target value to achieve hemodynamic stability and vital organ perfusion. A robust control design methodology is presented in this paper for regulating the blood pressure of hypotensive patients by means of the closed-loop administration of vasoactive drugs. To this end, a dynamic first-order delay model is utilised to describe the vasoactive drug response with varying parameters that represent intra-patient and inter-patient variability. The proposed framework consists of two components: first, an online model parameter estimation is carried out using a multiple-model extended Kalman-filter. Second, the estimated model parameters are used for continuously scheduling a robust linear parameter-varying (LPV) controller. The closed-loop behaviour is characterised by parameter-varying dynamic weights designed to regulate the mean arterial pressure to a target value. Experimental data of blood pressure response of anesthetised pigs to phenylephrine injection are used for validating the LPV blood pressure models. Simulation studies are provided to validate the online model estimation and the LPV blood pressure control using phenylephrine drug injection models representing patients showing sensitive, nominal and insensitive response to the drug.
Calcitonin gene-related peptide stimulates proliferation of human endothelial cells.
Haegerstrand, A; Dalsgaard, C J; Jonzon, B; Larsson, O; Nilsson, J
1990-01-01
The effects of the vasoactive perivascular neuropeptides calcitonin gene-related peptide (CGRP), neurokinin A (NKA), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) on proliferation of cultured human umbilical vein endothelial cells (HUVECs) were investigated. CGRP was shown to increase both cell number and DNA synthesis, whereas NKA, NPY, and VIP were ineffective. 125I-labeled CGRP was shown to bind to HUVECs and this binding was displaced by addition of unlabeled CGRP, suggesting the existence of specific CGRP receptors. The effect of CGRP on formation of adenosine 3',5'-cyclic monophosphate (cAMP) and inositol phosphates (InsP), two intracellular messengers known to be involved in regulation of cell proliferation, was investigated. CGRP stimulated cAMP formation but was without effect on the formation of InsP. Proliferation, as well as cAMP formation, was also stimulated by cholera toxin. Basic fibroblast growth factor stimulated growth without affecting cAMP or InsP formation, whereas thrombin, which increased InsP formation, did not stimulate proliferation. We thus suggest that CGRP may act as a local factor stimulating proliferation of endothelial cells; that the mechanism of action is associated with cAMP formation; and that this effect of CGRP may be important for formation of new vessels during physiological and pathophysiological events such as ischemia, inflammation, and wound healing. PMID:2159144
Calcitonin gene-related peptide stimulates proliferation of human endothelial cells.
Haegerstrand, A; Dalsgaard, C J; Jonzon, B; Larsson, O; Nilsson, J
1990-05-01
The effects of the vasoactive perivascular neuropeptides calcitonin gene-related peptide (CGRP), neurokinin A (NKA), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) on proliferation of cultured human umbilical vein endothelial cells (HUVECs) were investigated. CGRP was shown to increase both cell number and DNA synthesis, whereas NKA, NPY, and VIP were ineffective. 125I-labeled CGRP was shown to bind to HUVECs and this binding was displaced by addition of unlabeled CGRP, suggesting the existence of specific CGRP receptors. The effect of CGRP on formation of adenosine 3',5'-cyclic monophosphate (cAMP) and inositol phosphates (InsP), two intracellular messengers known to be involved in regulation of cell proliferation, was investigated. CGRP stimulated cAMP formation but was without effect on the formation of InsP. Proliferation, as well as cAMP formation, was also stimulated by cholera toxin. Basic fibroblast growth factor stimulated growth without affecting cAMP or InsP formation, whereas thrombin, which increased InsP formation, did not stimulate proliferation. We thus suggest that CGRP may act as a local factor stimulating proliferation of endothelial cells; that the mechanism of action is associated with cAMP formation; and that this effect of CGRP may be important for formation of new vessels during physiological and pathophysiological events such as ischemia, inflammation, and wound healing.
Effect of grazing seedhead-suppressed tall fescue pasture on the vasoactivity of serotonin receptors
USDA-ARS?s Scientific Manuscript database
Previous research has demonstrated that exposure to ergot alkaloids reduces vasoactivity of serotonin (5HT) receptors. Chemical suppression of tall fescue seedhead production is a tool to reduce the level of exposure to ergot alkaloids by a grazing animal. Therefore, the objective was to evaluate co...
A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization
Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.
2011-01-01
Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human
Lei, Y H; Barnes, P J; Rogers, D F
1993-01-01
.v.). SNP significantly (P <0.05) reduced by 65% the bronchoconstriction induced by nerve stimulation at 10 Hz. Methylene blue did not effect baseline PIP in sham-stimulated controls. The airway effects of methylene blue and SNP were not associated with their cardiovascular effects. 6. a-Chymotrypsin (2 units kg-', i.v.) significantly potentiated vagally-induced bronchoconstriction by a further 63% at 2.5 Hz, by a further 95.6% at 5 Hz but did not potentiate the increase in PIP at 10 Hz. alpha-Chymotrypsin also potentiated (by 116%) capsaicin-induced bronchoconstriction. Vasoactive intestinal peptide (VIP, 10 ig kg-' i.v. infused over min) significantly reduced by 70% the increase in PIP induced by NKA (0.1 .Lmol kg-' i.v., infused over 30 s). 7. The combination of a-chymotrypsin (2 units kg-', i.v.) and L-NAME (5 mg kg-', i.v.) significantly potentiated NANC bronchoconstriction by a further 304% at 2.5 Hz, an increase in PIP which was greater than that induced by either a-chymotrypsin or L-NAME alone (P <0.05). 8. We conclude that endogenous NO and a bronchodilator peptide, possibly VIP, released in association with nerve stimulation, as well as activation of soluble guanylyl cyclase, regulate the magnitude of NANC neurogenic bronchoconstriction in guinea-pigs in vivo.
Ahn, Yeong Hee; Kim, Kwang Hoe; Shin, Park Min; Ji, Eun Sun; Kim, Hoguen; Yoo, Jong Shin
2012-02-07
As investigating a proteolytic target peptide originating from the tissue inhibitor of metalloproteinase 1 (TIMP1) known to be aberrantly glycosylated in patients with colorectal cancer (CRC), we first confirmed that TIMP1 is to be a CRC biomarker candidate in human serum. For this, we utilized matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) showing ultrahigh-resolution and high mass accuracy. This investigation used phytohemagglutinin-L(4) (L-PHA) lectin, which shows binding affinity to the β-1,6-N-acetylglucosamine moiety of N-linked glycan on a protein, to compare fractionated aberrant protein glycoforms from both noncancerous control and CRC serum. Each lectin-captured fraction containing aberrant glycoforms of TIMP1 was digested by trypsin, resulting in the tryptic target peptide, representative of the serum glycoprotein TIMP1. The resulting target peptide was enriched using a stable isotope standard and capture by the antipeptide antibody (SISCAPA) technique and analyzed by a 15 T MALDI FTICR mass spectrometer with high mass accuracy (Δ < 0.5 ppm to the theoretical mass value of the target peptide). Since exact measurement of multiplex isotopic peaks of the target peptide could be accomplished by virtue of high mass resolution (Rs > 400,000), robust identification of the target peptide is only achievable with 15 T FTICR MS. Also, MALDI data obtained in this study showed that the L-PHA-captured glycoforms of TIMP1 were measured in the pooled CRC serum with about 5 times higher abundance than that in the noncancerous serum, and were further proved by MRM mass analysis. These results confirm that TIMP1 in human serum is a potent CRC biomarker candidate, demonstrating that ultrahigh-resolution MS can be a powerful tool toward identifying and verifying potential protein biomarker candidates. © 2011 American Chemical Society
Gastrin-Releasing Peptide and Glucose Metabolism Following Pancreatitis.
Pendharkar, Sayali A; Drury, Marie; Walia, Monika; Korc, Murray; Petrov, Maxim S
2017-08-01
Gastrin-releasing peptide (GRP) is a pluripotent peptide that has been implicated in both gastrointestinal inflammatory states and classical chronic metabolic diseases such as diabetes. Abnormal glucose metabolism (AGM) after pancreatitis, an exemplar inflammatory disease involving the gastrointestinal tract, is associated with persistent low-grade inflammation and altered secretion of pancreatic and gut hormones as well as cytokines. While GRP is involved in secretion of many of them, it is not known whether GRP has a role in AGM. Therefore, we aimed to investigate the association between GRP and AGM following pancreatitis. Fasting blood samples were collected to measure GRP, blood glucose, insulin, amylin, glucagon, pancreatic polypeptide (PP), somatostatin, cholecystokinin, gastric-inhibitory peptide (GIP), gastrin, ghrelin, glicentin, glucagon-like peptide-1 and 2, oxyntomodulin, peptide YY (PYY), secretin, vasoactive intestinal peptide, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein (MCP)-1, and interleukin-6. Modified Poisson regression analysis and linear regression analyses were conducted. Four statistical models were used to adjust for demographic, metabolic, and pancreatitis-related risk factors. A total of 83 individuals after an episode of pancreatitis were recruited. GRP was significantly associated with AGM, consistently in all four models (P -trend < 0.05), and fasting blood glucose contributed 17% to the variance of GRP. Further, GRP was significantly associated with glucagon (P < 0.003), MCP-1 (P < 0.025), and TNF-α (P < 0.025) - consistently in all four models. GRP was also significantly associated with PP and PYY in three models (P < 0.030 for both), and with GIP and glicentin in one model (P = 0.001 and 0.024, respectively). Associations between GRP and other pancreatic and gut hormones were not significant. GRP is significantly increased in patients with AGM after pancreatitis and is associated with increased levels of pro
Gastrin-Releasing Peptide and Glucose Metabolism Following Pancreatitis
Pendharkar, Sayali A.; Drury, Marie; Walia, Monika; Korc, Murray; Petrov, Maxim S.
2017-01-01
Background Gastrin-releasing peptide (GRP) is a pluripotent peptide that has been implicated in both gastrointestinal inflammatory states and classical chronic metabolic diseases such as diabetes. Abnormal glucose metabolism (AGM) after pancreatitis, an exemplar inflammatory disease involving the gastrointestinal tract, is associated with persistent low-grade inflammation and altered secretion of pancreatic and gut hormones as well as cytokines. While GRP is involved in secretion of many of them, it is not known whether GRP has a role in AGM. Therefore, we aimed to investigate the association between GRP and AGM following pancreatitis. Methods Fasting blood samples were collected to measure GRP, blood glucose, insulin, amylin, glucagon, pancreatic polypeptide (PP), somatostatin, cholecystokinin, gastric-inhibitory peptide (GIP), gastrin, ghrelin, glicentin, glucagon-like peptide-1 and 2, oxyntomodulin, peptide YY (PYY), secretin, vasoactive intestinal peptide, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein (MCP)-1, and interleukin-6. Modified Poisson regression analysis and linear regression analyses were conducted. Four statistical models were used to adjust for demographic, metabolic, and pancreatitis-related risk factors. Results A total of 83 individuals after an episode of pancreatitis were recruited. GRP was significantly associated with AGM, consistently in all four models (P -trend < 0.05), and fasting blood glucose contributed 17% to the variance of GRP. Further, GRP was significantly associated with glucagon (P < 0.003), MCP-1 (P < 0.025), and TNF-α (P < 0.025) - consistently in all four models. GRP was also significantly associated with PP and PYY in three models (P < 0.030 for both), and with GIP and glicentin in one model (P = 0.001 and 0.024, respectively). Associations between GRP and other pancreatic and gut hormones were not significant. Conclusion GRP is significantly increased in patients with AGM after pancreatitis and is
Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics
Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.
2009-01-01
The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504
Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease
El-Salhy, Magdy; Solomon, Tefera; Hausken, Trygve; Gilja, Odd Helge; Hatlebakk, Jan Gunnar
2017-01-01
Inflammatory bowel disease (IBD) is a chronic recurrent condition whose etiology is unknown, and it includes ulcerative colitis, Crohn’s disease, and microscopic colitis. These three diseases differ in clinical manifestations, courses, and prognoses. IBD reduces the patients’ quality of life and is an economic burden to both the patients and society. Interactions between the gastrointestinal (GI) neuroendocrine peptides/amines (NEPA) and the immune system are believed to play an important role in the pathophysiology of IBD. Moreover, the interaction between GI NEPA and intestinal microbiota appears to play also a pivotal role in the pathophysiology of IBD. This review summarizes the available data on GI NEPA in IBD, and speculates on their possible role in the pathophysiology and the potential use of this information when developing treatments. GI NEPA serotonin, the neuropeptide Y family, and substance P are proinflammatory, while the chromogranin/secretogranin family, vasoactive intestinal peptide, somatostatin, and ghrelin are anti-inflammatory. Several innate and adaptive immune cells express these NEPA and/or have receptors to them. The GI NEPA are affected in patients with IBD and in animal models of human IBD. The GI NEPA are potentially useful for the diagnosis and follow-up of the activity of IBD, and are candidate targets for treatments of this disease. PMID:28811704
Rudovich, Natalia; Pivovarova, Olga; Bernigau, Wolfgang; Sparwasser, Andrea; Tacke, Christopher; Murahovshi, Veronica; Mertes, Gabriele; Birkenfeld, Andreas L; Bergmann, Andreas; Weickert, Martin O; Pfeiffer, Andreas F
2016-12-01
Acarbose, an alpha-glucosidase inhibitor, unexpectedly reduced the incidence of hypertension and cardiovascular endpoints in the STOP-NIDDM study. Based on the growing evidence of a link between vasoregulatory peptides and metabolic traits, we hypothesized that changes of the Glycemic Index by acarbose may modulate vasoregulatory peptide levels via regulation of postprandial metabolism. Subjects with type 2 diabetes and with metabolic syndrome were treated with acarbose (12 weeks, 300mg/d) in a double-blind, placebo-controlled, cross-over intervention. Changes in fasting and postprandial levels of midregional pro-atrial natriuretic peptide (MR-proANP), C-terminal pro-endothelin-1 (CT-proET-1) and midregional pro-adrenomedullin (MR-proADM), WNT1 Inducible Signaling Pathway Protein 1 (WISP1) as well as fasting and postprandial glucose/insulin levels in the liquid meal test were assessed. Acarbose strongly decreased postprandial insulin concentrations in subjects with metabolic syndrome (P=0.004), and postprandial glucose excursions in both groups. Postprandial MR-proANP and CT-proET-1 levels increased after acarbose treatment (P<0.01 and P<0.05, respectively) in subjects with metabolic syndrome only. No effect of acarbose treatment on MR-prADM was observed in both groups. All three peptides were correlated with each over, but neither with insulin sensitivity in euglycemic clamps, nor with adiponectin levels. WISP1 decreased after acarbose treatment in subjects with metabolic syndrome. Plasma MR- proANP and CT-proET-1 concentrations, but not MR-prADM concentrations, were affected by treatment with acarbose over 12 weeks. Our findings provide new possible mechanisms of acarbose action in diabetes and metabolic syndrome.
Kimata, H
2003-06-01
Playing video games causes physical and psychological stress, including increased heart rate and blood pressure and aggression-related feelings. Use of mobile phones is very popular in Japan, and frequent ringing is a common and intrusive part of Japanese life. Atopic eczema/dermatitis syndrome is often exacerbated by stress. Stress increases serum IgE levels, skews cytokine pattern towards Th2 type, enhances allergen-induced skin wheal responses, and triggers mast cell degranulation via substance P, vasoactive intestinal peptide and nerve growth factor. (1). In the video game study, normal subjects (n = 25), patients with allergic rhinitis (n = 25) or atopic eczema/dermatitis syndrome (n = 25) played a video game (STREET FIGHTER II) for 2 h. Before and after the study, allergen-induced wheal responses, plasma levels of substance P, vasoactive intestinal peptide and nerve growth factor, and in vitro production of total IgE, antihouse dust mite IgE and cytokines were measured. (2). In the mobile phone study, normal subjects (n = 27), patients with allergic rhinitis (n = 27) or atopic eczema/dermatitis syndrome (n = 27) were exposed to 30 incidences of ringing mobile phones during 30 min. Before and after the study, allergen-induced wheal responses, plasma levels of substance P, vasoactive intestinal peptide and nerve growth factor were measured. Playing video games had no effect on the normal subjects or the patients with allergic rhinitis. In contrast, playing video games significantly enhanced allergen-induced skin wheal responses and increased plasma levels of substance P, vasoactive intestinal peptide and nerve growth factors in the patients with atopic eczema/dermatitis syndrome. Moreover, playing video games enhanced in vitro production of total IgE and anti-house dust mite IgE with concomitant increased production of IL-4, IL-10 and IL-13 and decreased production of IFN-gamma and IL-12 in the patients with atopic eczema/dermatitis syndrome. However, exposure
Accumulation of deaminated peptides in anoxic sediments of Santa Barbara Basin
NASA Astrophysics Data System (ADS)
Abdulla, Hussain A.; Burdige, David J.; Komada, Tomoko
2018-02-01
Proteins represent the most abundant class of biomolecules in marine sinking particles and microbial biomass, yet their cycling in marine sediments is not fully understood. To investigate whether some portion of hydrolyzed proteins escapes complete remineralization and accumulate in the pore waters, we analyzed dissolved organic matter from the anoxic sediments of Santa Barbara Basin, California, by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS). The results showed an increase in the molecular diversity and abundance of dissolved organic nitrogen (DON) formulas with depth. A comparison of the detected DON formulas to a database of small peptides (2-4 amino acid sequences) returned 119 matches, and these formulas were most abundant near the sediment surface. When we compared our detected formulas to all possible structures that would result from deamination of peptides in the database, we found 680 formula matches. However, these molecular formulas can represent hundreds of different structural isomers (in the present case as many as 3257 different deaminated peptide structures), which cannot be distinguished by the FTICR-MS settings that were used. Analysis of amino acid sequences suggests that these deaminated peptides may be the products of selective degradation of source proteins in marine sediments. We hypothesize that these deaminated peptides accumulate in the pore waters due to extracellular proteinases being inhibited from completely hydrolyzing specific peptides to free amino acids. We suggest that anaerobic microbes deaminate peptides largely to produce H2, which is ultimately used as a reducing agent by other sediment microbes (e.g. CO2 reduction by methanogens). Simple calculations suggest that deaminated peptides may represent ∼25-45% of DOC accumulating in these sediment pore waters. Unlike rapid remineralization of free amino acids, peptide deamination leaves behind the peptide carbon skeleton. Molecular structures of these
Masuyer, Geoffrey; Schwager, Sylva L. U.; Sturrock, Edward D.; Isaac, R. Elwyn; Acharya, K. Ravi
2012-01-01
Angiotensin-I converting enzyme (ACE), a two-domain dipeptidylcarboxypeptidase, is a key regulator of blood pressure as a result of its critical role in the renin-angiotensin-aldosterone and kallikrein-kinin systems. Hence it is an important drug target in the treatment of cardiovascular diseases. ACE is primarily known for its ability to cleave angiotensin I (Ang I) to the vasoactive octapeptide angiotensin II (Ang II), but is also able to cleave a number of other substrates including the vasodilator bradykinin and N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a physiological modulator of hematopoiesis. For the first time we provide a detailed biochemical and structural basis for the domain selectivity of the natural peptide inhibitors of ACE, bradykinin potentiating peptide b and Ang II. Moreover, Ang II showed selective competitive inhibition of the carboxy-terminal domain of human somatic ACE providing evidence for a regulatory role in the human renin-angiotensin system (RAS). PMID:23056909
Riffle, Michael; Merrihew, Gennifer E; Jaschob, Daniel; Sharma, Vagisha; Davis, Trisha N; Noble, William S; MacCoss, Michael J
2015-11-01
Regulation of protein abundance is a critical aspect of cellular function, organism development, and aging. Alternative splicing may give rise to multiple possible proteoforms of gene products where the abundance of each proteoform is independently regulated. Understanding how the abundances of these distinct gene products change is essential to understanding the underlying mechanisms of many biological processes. Bottom-up proteomics mass spectrometry techniques may be used to estimate protein abundance indirectly by sequencing and quantifying peptides that are later mapped to proteins based on sequence. However, quantifying the abundance of distinct gene products is routinely confounded by peptides that map to multiple possible proteoforms. In this work, we describe a technique that may be used to help mitigate the effects of confounding ambiguous peptides and multiple proteoforms when quantifying proteins. We have applied this technique to visualize the distribution of distinct gene products for the whole proteome across 11 developmental stages of the model organism Caenorhabditis elegans. The result is a large multidimensional dataset for which web-based tools were developed for visualizing how translated gene products change during development and identifying possible proteoforms. The underlying instrument raw files and tandem mass spectra may also be downloaded. The data resource is freely available on the web at http://www.yeastrc.org/wormpes/ . Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Riffle, Michael; Merrihew, Gennifer E.; Jaschob, Daniel; Sharma, Vagisha; Davis, Trisha N.; Noble, William S.; MacCoss, Michael J.
2015-11-01
Regulation of protein abundance is a critical aspect of cellular function, organism development, and aging. Alternative splicing may give rise to multiple possible proteoforms of gene products where the abundance of each proteoform is independently regulated. Understanding how the abundances of these distinct gene products change is essential to understanding the underlying mechanisms of many biological processes. Bottom-up proteomics mass spectrometry techniques may be used to estimate protein abundance indirectly by sequencing and quantifying peptides that are later mapped to proteins based on sequence. However, quantifying the abundance of distinct gene products is routinely confounded by peptides that map to multiple possible proteoforms. In this work, we describe a technique that may be used to help mitigate the effects of confounding ambiguous peptides and multiple proteoforms when quantifying proteins. We have applied this technique to visualize the distribution of distinct gene products for the whole proteome across 11 developmental stages of the model organism Caenorhabditis elegans. The result is a large multidimensional dataset for which web-based tools were developed for visualizing how translated gene products change during development and identifying possible proteoforms. The underlying instrument raw files and tandem mass spectra may also be downloaded. The data resource is freely available on the web at http://www.yeastrc.org/wormpes/.
Cunha, J F; Campestrini, F D; Calixto, J B; Scremin, A; Paulino, N
2001-03-01
We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC(50) values of 18 microM and E(max) of 100% (N = 10) or 20 microM and E(max) of 92% (N = 10), respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP). The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 +/- 7.0, 43 +/- 3.9 and 78 +/- 5.6%) in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively). Tetraethylammonium (100 microM), a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 microM), a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 +/- 12%. Glibenclamide (1 or 3 microM), at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K(+) channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 microM), a selective blocker of the large-conductance Ca(2+)-activated K(+) channels, caused rightward shifts (6- and 7-fold) of the gentisic acid concentration-relaxation curve. L-N(G)-nitroarginine (100 microM), a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 microM, while methylene blue (10 or 30 microM) or ODQ (1 microM), the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-(P)-Cl-Phe(6),Leu(17
Gu, Yu-Chun; Chen, De-Zhen
1997-01-01
AIM: To study the immunoreactivity of the Chinese medicine Shenrouyangzhentang to vasoactive intestinal polypeptide (VIP) and its therapeutic mechanism. METHODS: The immunoreactivity of the Chinese medicine Shenrouyangzhentang to VIP was detected in the plasma of 20 normal people and 20 patients with Piyinxu (Spleen Yin deficiency) using the radioimmunoassay (RIA) method. RESULTS: The maximum binding rate B0/T was 53.29%, the non-specific binding rate N0/T was 1.170%, and the VIP standard curve was Y = 0.81983 + 0.44319X - 0.28927X2, R2 = 0.990. The VIP content in Shenrouyangzhentang was 106.6 ng/L ± 20 ng/L), while it was 90.16 ng/L ± 15 ng/L in normal human plasma and 63.25 ng/L ± 11 ng/L in the plasma of Pixinxu patients. The difference between normal plasma and Pixinxu patient plasma was statistically significant (P < 0.05). CONCLUSION: The Chinese medicine Shenrouyangzhentang demonstrated VIP immunoreactivity similar to that of normal plasma. The (vasoactive intestinal polypeptide) VIP content in Pixinxu patient plasma was lower than that in healthy subjects (P < 0.05). PMID:27041949
Guo, Guangyu; Li, Ning
2011-07-01
In the quantitative proteomic studies, numerous in vitro and in vivo peptide labeling strategies have been successfully applied to measure differentially regulated protein and peptide abundance. These approaches have been proven to be versatile and repeatable in biological discoveries. (15)N metabolic labeling is one of these widely adopted and economical methods. However, due to the differential incorporation rates of (15)N or (14)N, the labeling results produce imperfectly matched isotopic envelopes between the heavy and light nitrogen-labeled peptides. In the present study, we have modified the solid Arabidopsis growth medium to standardize the (15)N supply, which led to a uniform incorporation of (15)N into the whole plant protein complement. The incorporation rate (97.43±0.11%) of (15)N into (15)N-coded peptides was determined by correlating the intensities of peptide ions with the labeling efficiencies according to Gaussian distribution. The resulting actual incorporation rate (97.44%) and natural abundance of (15)N/(14)N-coded peptides are used to re-calculate the intensities of isotopic envelopes of differentially labeled peptides, respectively. A modified (15)N/(14)N stable isotope labeling strategy, SILIA, is assessed and the results demonstrate that this approach is able to differentiate the fold change in protein abundance down to 10%. The machine dynamic range limitation and purification step will make the precursor ion ratio deriving from the actual ratio fold change. It is suggested that the differentially mixed (15)N-coded and (14)N-coded plant protein samples that are used to establish the protein abundance standard curve should be prepared following a similar protein isolation protocol used to isolate the proteins to be quantitated. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Modulation of bicarbonate secretion in rabbit duodenum: the role of calcium.
Hogan, D L; Yao, B; Isenberg, J I
1998-01-01
Surface epithelial bicarbonate secretion protects the proximal duodenum from acid peptic injury. Cyclic adenosine monophosphate and calcium serve as intracellular mediators of intestinal transport. Experiments were performed to examine whether calcium participates in duodenal bicarbonate transport. Stripped duodenal mucosa from rabbits was studied in Ussing chambers. HCO3- transport was stimulated by the calcium ionophore A23187, carbachol, vasoactive intestinal peptide, prostaglandin E2, dibutyryl-cyclic adenosine monophosphate, and electrical field stimulation. A23187 stimulated HCO3- secretion and Isc; tetrodotoxin failed to inhibit this effect. The calcium-channel blocker verapamil abolished HCO3- secretion stimulated by carbachol, vasoactive intestinal peptide, and electrical field stimulation, but failed to alter basal, prostaglandin E2- or dibutyryl-cyclic adenosine monophosphate-stimulated HCO3- secretion. Therefore, calcium is likely required during stimulation of duodenal epithelial HCO3- transport by carbachol, vasoactive intestinal peptide, and electrical field stimulation. Prostaglandin E2 and dibutyryl-cyclic adenosine monophosphate appear to activate duodenal HCO3- secretion by a calcium-independent pathway(s).
Amyloid-β peptide structure in aqueous solution varies with fragment size
NASA Astrophysics Data System (ADS)
Wise-Scira, Olivia; Xu, Liang; Kitahara, Taizo; Perry, George; Coskuner, Orkid
2011-11-01
Various fragment sizes of the amyloid-β (Aβ) peptide have been utilized to mimic the properties of the full-length Aβ peptide in solution. Among these smaller fragments, Aβ16 and Aβ28 have been investigated extensively. In this work, we report the structural and thermodynamic properties of the Aβ16, Aβ28, and Aβ42 peptides in an aqueous solution environment. We performed replica exchange molecular dynamics simulations along with thermodynamic calculations for investigating the conformational free energies, secondary and tertiary structures of the Aβ16, Aβ28, and Aβ42 peptides. The results show that the thermodynamic properties vary from each other for these peptides. Furthermore, the secondary structures in the Asp1-Lys16 and Asp1-Lys28 regions of Aβ42 cannot be completely captured by the Aβ16 and Aβ28 fragments. For example, the β-sheet structures in the N-terminal region of Aβ16 and Aβ28 are either not present or the abundance is significantly decreased in Aβ42. The α-helix and β-sheet abundances in Aβ28 and Aβ42 show trends - to some extent - with the potential of mean forces but no such trend could be obtained for Aβ16. Interestingly, Arg5 forms salt bridges with large abundances in all three peptides. The formation of a salt bridge between Asp23-Lys28 is more preferred over the Glu22-Lys28 salt bridge in Aβ28 but this trend is vice versa for Aβ42. This study shows that the Asp1-Lys16 and Asp1-Lys28 regions of the full length Aβ42 peptide cannot be completely mimicked by studying the Aβ16 and Aβ28 peptides.
Functional significance of bioactive peptides derived from soybean.
Singh, Brij Pal; Vij, Shilpa; Hati, Subrota
2014-04-01
Biologically active peptides play an important role in metabolic regulation and modulation. Several studies have shown that during gastrointestinal digestion, food processing and microbial proteolysis of various animals and plant proteins, small peptides can be released which possess biofunctional properties. These peptides are to prove potential health-enhancing nutraceutical for food and pharmaceutical applications. The beneficial health effects of bioactive peptides may be several like antihypertensive, antioxidative, antiobesity, immunomodulatory, antidiabetic, hypocholesterolemic and anticancer. Soybeans, one of the most abundant plant sources of dietary protein, contain 36-56% of protein. Recent studies showed that soy milk, an aqueous extract of soybean, and its fermented product have great biological properties and are a good source of bioactive peptides. This review focuses on bioactive peptides derived from soybean; we illustrate their production and biofunctional attributes. Copyright © 2014 Elsevier Inc. All rights reserved.
Akahoshi, Mitsuteru; Song, Chang Ho; Piliponsky, Adrian M.; Metz, Martin; Guzzetta, Andrew; Åbrink, Magnus; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.
2011-01-01
Mast cell degranulation is important in the pathogenesis of anaphylaxis and allergic disorders. Many animal venoms contain components that can induce mast cell degranulation, and this has been thought to contribute to the pathology and mortality caused by envenomation. However, we recently reported evidence that mast cells can enhance the resistance of mice to the venoms of certain snakes and that mouse mast cell–derived carboxypeptidase A3 (CPA3) can contribute to this effect. Here, we investigated whether mast cells can enhance resistance to the venom of the Gila monster, a toxic component of that venom (helodermin), and the structurally similar mammalian peptide, vasoactive intestinal polypeptide (VIP). Using 2 types of mast cell–deficient mice, as well as mice selectively lacking CPA3 activity or the chymase mouse mast cell protease-4 (MCPT4), we found that mast cells and MCPT4, which can degrade helodermin, can enhance host resistance to the toxicity of Gila monster venom. Mast cells and MCPT4 also can limit the toxicity associated with high concentrations of VIP and can reduce the morbidity and mortality induced by venoms from 2 species of scorpions. Our findings support the notion that mast cells can enhance innate defense by degradation of diverse animal toxins and that release of MCPT4, in addition to CPA3, can contribute to this mast cell function. PMID:21926462
Percy, Andrew J; Yang, Juncong; Chambers, Andrew G; Mohammed, Yassene; Miliotis, Tasso; Borchers, Christoph H
2016-01-01
Quantitative mass spectrometry (MS)-based approaches are emerging as a core technology for addressing health-related queries in systems biology and in the biomedical and clinical fields. In several 'omics disciplines (proteomics included), an approach centered on selected or multiple reaction monitoring (SRM or MRM)-MS with stable isotope-labeled standards (SIS), at the protein or peptide level, has emerged as the most precise technique for quantifying and screening putative analytes in biological samples. To enable the widespread use of MRM-based protein quantitation for disease biomarker assessment studies and its ultimate acceptance for clinical analysis, the technique must be standardized to facilitate precise and accurate protein quantitation. To that end, we have developed a number of kits for assessing method/platform performance, as well as for screening proposed candidate protein biomarkers in various human biofluids. Collectively, these kits utilize a bottom-up LC-MS methodology with SIS peptides as internal standards and quantify proteins using regression analysis of standard curves. This chapter details the methodology used to quantify 192 plasma proteins of high-to-moderate abundance (covers a 6 order of magnitude range from 31 mg/mL for albumin to 18 ng/mL for peroxidredoxin-2), and a 21-protein subset thereof. We also describe the application of this method to patient samples for biomarker discovery and verification studies. Additionally, we introduce our recently developed Qualis-SIS software, which is used to expedite the analysis and assessment of protein quantitation data in control and patient samples.
Starr, Charles G; Maderdrut, Jerome L; He, Jing; Coy, David H; Wimley, William C
2018-06-01
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence. Copyright © 2018 Elsevier Inc. All rights reserved.
Milosh, T S; Maksimovich, N E
2014-01-01
Experiments on a group of 74 pregnant rats upon intramuscular introduction of E. coli lipopolysaccharides during pregnancy revealed the correction effect of taurine on the blood oxygen transport function, prooxidant - antioxidant status, and vasoactive characteristics of vascular endothelium.
Martinet, L; Bonnefond, C; Peytevin, J; Monnerie, R; Marcilloux, J C
1995-01-01
The present study was conducted to visualize neuropeptides in the SCN of a mustelid, the American mink in which seasonal cycles of reproduction rely totally on the annual changes in day length. At this time, data in mustelids are lacking. Results were obtained with in situ hybridization (ISH) using synthetic oligonucleotide vasopressin (AVP) and somatostatin (SOM) and with single and dual immunohistochemistry (IHC) performed with antisera against AVP, SOM, vasoactive intestinal polypeptide (VIP), gastrin releasing peptide (GRP) and met-enkephalin (Met-ENK) in untreated (AVP and VIP) or colchicine (SOM, Met-ENK and GRP) treated adult male and female mink. The most striking result, evidenced by ISH as well as IHC was the lack of AVP, SOM and Met-ENK immunoreactive (ir)-neurons in the SCN. In contrast, strongly VIP ir-perikarya were widely distributed within the SCN and gave rise to a dense network of fibres extending within the periventricular (peVA) and subparaventricular (subPVA) areas. Weakly GRP ir-perikarya were also observed in the median part of the SCN. Dual IHC revealed that the magnocellular neurons located just dorsal to the SCN, in the peVA and subPVA co-stored AVP with VIP, SOM or Met-ENK. The lack of SCN AVP and SOM ir-neurons, reported for the first time in a mammalian species, raises the question of their implication in the functions of the circadian pacemaker and its entrainment by the light/dark cycle in other species. The significance of the large neurons co-storing peptides in the terminal field of VIPergic fibres originating in the SCN has also to be determined. These results suggest that VIP could be of major importance in processing photic information mediating circadian entrainment and consequently annual rhythms.
Physiological effects of major up-regulated Alnus glutinosa peptides on Frankia sp. ACN14a.
Carro, Lorena; Pujic, Petar; Alloisio, Nicole; Fournier, Pascale; Boubakri, Hasna; Poly, Franck; Rey, Marjolaine; Heddi, Abdelaziz; Normand, Philippe
2016-07-01
Alnus glutinosa has been shown previously to synthesize, in response to nodulation by Frankia sp. ACN14a, an array of peptides called Alnus symbiotic up-regulated peptides (ASUPs). In a previous study one peptide (Ag5) was shown to bind to Frankia nitrogen-fixing vesicles and to modify their porosity. Here we analyse four other ASUPs, alongside Ag5, to determine whether they have different physiological effects on in vitro grown Frankia sp. ACN14a. The five studied peptides were shown to have different effects on nitrogen fixation, respiration, growth, the release of ions and amino acids, as well as on cell clumping and cell lysis. The mRNA abundance for all five peptides was quantified in symbiotic nodules and one (Ag11) was found to be more abundant in the meristem part of the nodule. These findings point to some peptides having complementary effects on Frankia cells.
Searle, Brian C.; Egertson, Jarrett D.; Bollinger, James G.; Stergachis, Andrew B.; MacCoss, Michael J.
2015-01-01
Targeted mass spectrometry is an essential tool for detecting quantitative changes in low abundant proteins throughout the proteome. Although selected reaction monitoring (SRM) is the preferred method for quantifying peptides in complex samples, the process of designing SRM assays is laborious. Peptides have widely varying signal responses dictated by sequence-specific physiochemical properties; one major challenge is in selecting representative peptides to target as a proxy for protein abundance. Here we present PREGO, a software tool that predicts high-responding peptides for SRM experiments. PREGO predicts peptide responses with an artificial neural network trained using 11 minimally redundant, maximally relevant properties. Crucial to its success, PREGO is trained using fragment ion intensities of equimolar synthetic peptides extracted from data independent acquisition experiments. Because of similarities in instrumentation and the nature of data collection, relative peptide responses from data independent acquisition experiments are a suitable substitute for SRM experiments because they both make quantitative measurements from integrated fragment ion chromatograms. Using an SRM experiment containing 12,973 peptides from 724 synthetic proteins, PREGO exhibits a 40–85% improvement over previously published approaches at selecting high-responding peptides. These results also represent a dramatic improvement over the rules-based peptide selection approaches commonly used in the literature. PMID:26100116
Comparison of Urine and Plasma Peptidome Indicates Selectivity in Renal Peptide Handling.
Magalhães, Pedro; Pontillo, Claudia; Pejchinovski, Martin; Siwy, Justyna; Krochmal, Magdalena; Makridakis, Manousos; Carrick, Emma; Klein, Julie; Mullen, William; Jankowski, Joachim; Vlahou, Antonia; Mischak, Harald; Schanstra, Joost P; Zürbig, Petra; Pape, Lars
2018-04-03
Urine is considered to be produced predominantly as a result of plasma filtration in the kidney. However, the origin of the native peptides present in urine has never been investigated in detail. Therefore, the authors aimed to obtain a first insight into the origin of urinary peptides based on a side-by-side comprehensive analysis of the plasma and urine peptidome. Twenty-two matched urine and plasma samples are analyzed for their peptidome using capillary electrophoresis coupled to mass spectrometry (CE-MS; for relative quantification) and CE or LC coupled to tandem mass spectrometry (CE- or LC-MS/MS; for peptide identification). The overlap and association of abundance of the different peptides present in these two body fluids are evaluated. The authors are able to identify 561 plasma and 1461 urinary endogenous peptides. Only 90 peptides are detectable in both urine and plasma. No significant correlation is found when comparing the abundance of these common peptides, with the exception of collagen fragments. This observation is also supported when comparing published peptidome data from both plasma and urine. Most of the plasma peptides are not detectable in urine, possibly due to tubular reabsorption. The majority of urinary peptides may in fact originate in the kidney. The notable exception is collagen fragments, which indicates potential selective exclusion of these peptides from tubular reabsorption. Experimental verification of this hypothesis is warranted. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Campeiro, Joana D'Arc; Neshich, Izabella P; Sant'Anna, Osvaldo A; Lopes, Robson; Ianzer, Danielle; Assakura, Marina T; Neshich, Goran; Hayashi, Mirian A F
2015-08-01
Bradykinin-potentiating peptides (BPPs) from the South American pit viper snake venom were the first natural inhibitors of the human angiotensin I-converting enzyme (ACE) described. The pioneer characterization of the BPPs precursor from the snake venom glands by our group showed for the first time the presence of the C-type natriuretic peptide (CNP) in this same viper precursor protein. The confirmation of the BPP/CNP expression in snake brain regions correlated with neuroendocrine functions stimulated us to pursue the physiological correlates of these vasoactive peptides in mammals. Notably, several snake toxins were shown to have endogenous physiological correlates in mammals. In the present work, we expressed in bacteria the BPPs domain of the snake venom gland precursor protein, and this purified recombinant protein was used to raise specific polyclonal anti-BPPs antibodies. The correspondent single protein band immune-recognized in adult rat brain cytosol was isolated by 2D-SDS/PAGE and/or HPLC, before characterization by MS fingerprint analysis, which identified this protein as superoxide dismutase (SOD, EC 1.15.1.1), a classically known enzyme with antioxidant activity and important roles in the blood pressure modulation. In silico analysis showed the exposition of the BPP-like peptide sequences on the surface of the 3D structure of rat SOD. These peptides were chemically synthesized to show the BPP-like biological activities in ex vivo and in vivo pharmacological bioassays. Taken together, our data suggest that SOD protein have the potential to be a source for putative BPP-like bioactive peptides, which once released may contribute to the blood pressure control in mammals. Copyright © 2015 Elsevier Inc. All rights reserved.
Volk, Sonja; Schreiber, Thomas D.; Eisen, David; Wiese, Calvin; Planatscher, Hannes; Pynn, Christopher J.; Stoll, Dieter; Templin, Markus F.; Joos, Thomas O.; Pötz, Oliver
2012-01-01
Blood plasma is a valuable source of potential biomarkers. However, its complexity and the huge dynamic concentration range of its constituents complicate its analysis. To tackle this problem, an immunoprecipitation strategy was employed using antibodies directed against short terminal epitope tags (triple X proteomics antibodies), which allow the enrichment of groups of signature peptides derived from trypsin-digested plasma. Isolated signature peptides are subsequently detected using MALDI-TOF/TOF mass spectrometry. Sensitivity of the immunoaffinity approach was, however, compromised by the presence of contaminant peaks derived from the peptides of nontargeted high abundant proteins. A closer analysis of the enrichment strategy revealed nonspecific peptide binding to the solid phase affinity matrix as the major source of the contaminating peptides. We therefore implemented a sucrose density gradient ultracentrifugation separation step into the procedure. This yielded a 99% depletion of contaminating peptides from a sucrose fraction containing 70% of the peptide-antibody complexes and enabled the detection of the previously undetected low abundance protein filamin-A. Assessment of this novel approach using 15 different triple X proteomics antibodies demonstrated a more consistent detection of a greater number of targeted peptides and a significant reduction in the intensity of nonspecific peptides. Ultracentrifugation coupled with immunoaffinity MS approaches presents a powerful tool for multiplexed plasma protein analysis without the requirement for demanding liquid chromatography separation techniques. PMID:22527512
Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S
2008-09-01
The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.
Nicholls, D P; Riley, M; Elborn, J S; Stanford, C F; Shaw, C; McKillop, J M; Buchanan, K D
1992-10-01
The levels of several regulatory peptides were measured in peripheral plasma samples from individuals with chronic cardiac failure (CCF) and matched controls in both the resting state and during a short period of maximal exercise. Basal levels of noradrenaline (NA; 705 +/- 114 vs 195 +/- 54 ng.l-1; mean +/- SEM; P < 0.05), plasma renin activity (PRA; 12.9 +/- 2.9 vs 2.1 +/- 0.3 ng AI ml-1.h-1; P < 0.05) and aldosterone (ALDO; 325 +/- 49 vs 87 +/- 8 ng.l-1; P < 0.05) were all raised in the patients with CCF, and increased further with exercise. Basal circulating levels of atrial natriuretic peptide (ANP) were also significantly higher in the CCF group compared to controls (136 +/- 35 vs 27 +/- 5 ng.l-1; P < 0.01), but the response to exercise was attenuated, so that at peak exercise, no significant difference was observed. Basal circulating levels of gastrin-releasing peptide (GRP) (29 +/- 4 vs 40 +/- 4 ng.l-1; P < 0.05) and secretin (13 +/- 1 vs 32 +/- 4 ng.l-1; P < 0.05) were significantly lower in the CCF group when compared to controls and there was no significant change in the levels of either peptide with exercise. Levels of neurokinin A (NKA), neuropeptide Y (NPY) and neurotensin (NT) were somewhat higher in patients, but the differences were not significant, and there were no changes during exercise. There were also no significant differences in the levels of vasoactive intestinal peptide (VIP), glucose-dependent insulinotropic polypeptide (GIP), insulin or glucagon in either experimental group both before and during exercise. We have therefore identified different circulating levels of certain regulatory peptides in patients with CCF, but the significance of these remains unclear.
Hippocampal asymmetry in exploratory behavior to vasoactive intestinal polypeptide.
Ivanova, Margarita; Ternianov, Alexandar; Belcheva, Stiliana; Tashev, Roman; Negrev, Negrin; Belcheva, Iren
2008-06-01
The effects of vasoactive intestinal polypeptide (VIP) microinjected uni- or bilaterally into the CA1 hippocampal area of male Wistar rats at a dose of 10, 50 and 100 ng on exploratory behavior were examined. VIP microinjected bilaterally at a high dose (100 ng) significantly decreased the horizontal movements, while at low doses (10 and 50 ng) had no effect on the exploratory activity. Microinjections of VIP into the left hippocampal CA1 area at doses 50 and 100 ng suppressed the exploratory activity, while right-side VIP administration at a dose 100 ng significantly increased horizontal movements compared to the respective controls. Vertical activity was stimulated only by VIP administered into the right hippocampal CA1 area at the three doses used. Neither bilateral nor left injections of VIP induced changes in the vertical movements. The main finding was the presence of hippocampal asymmetry in exploratory behavior to unilateral microinjections of VIP depending on the dose and the microinjected hemisphere.
Gugasyan, R; Vidavsky, I; Nelson, C A; Gross, M L; Unanue, E R
1998-12-01
We report here the identification and quantitation of a minor epitope from hen egg white lysozyme (HEL) isolated from the class II MHC molecule I-Ak of APCs. We isolated and concentrated the peptides from the I-Ak extracts by a peptide-specific mAba, followed by their examination by electrospray mass spectrometry. This initial step improved the isolation, recovery, and quantitation and allowed us to identify 13 different minor peptides using the Ab specific for the HEL tryptic fragment 34-45. The HEL peptides varied on both the amino and carboxy termini. The shortest peptide was a 13-mer (residues 33-45), and the longest peptide was a 19-mer (residues 31-49). The two most abundant were 31-47 (1.3 pmol) and 31-46 (1 pmol), while the least abundant were 31-45 (40 fmol) and 32-45 (4 fmol). Only 0.3% of the total class II molecules were occupied by this family of HEL peptides. The amount of the 31-47 peptide, the predominant member of this series, was 22 times lower than that of 48-62, the major epitope of HEL. The 31-47 peptide bound about 20-fold weaker to I-Ak compared with the dominant 48-62 peptide. Thus, the lower abundance of the minor epitope correlated with its weaker binding strength.
Adult cystic fibrosis: postprandial response of gut regulatory peptides.
Allen, J M; Penketh, A R; Adrian, T E; Lee, Y C; Sarson, D L; Hodson, M E; Batten, J C; Bloom, S R
1983-12-01
Responses of 11 gastrointestinal regulatory peptides to a standard test meal were assessed in 10 adult patients with cystic fibrosis. The basal plasma neurotensin was significantly elevated in patients with cystic fibrosis, being 31.5 +/- 6.1 pmol/L compared with a control value of 10.3 +/- 1.5 pmol/L (p less than 0.005). Plasma neurotensin remained elevated throughout the test period. Basal plasma enteroglucagon was similarly elevated, the patients with fibrocystic disease having levels of 51.3 +/- 4.6 pmol/L compared to controls with levels of 33.2 +/- 6.7 pmol/L (p less than 0.02). There was, however, no significant difference in postprandial levels of plasma enteroglucagon. Postprandial motilin was significantly elevated in the patients with cystic fibrosis; this elevation is in contrast with previous findings in children. Release of gastric inhibitory polypeptide was impaired, while release of cholecystokinin showed no significant difference in control values, although there was a tendency for delay. There was no significant postprandial rise of pancreatic polypeptide in the patients, whose levels were grossly lower than controls. Insulin showed a delayed response. No significant differences were observed between patients and controls in levels of gastrin, pancreatic glucagon, somatostatin, or vasoactive intestinal peptide. The elevation of plasma neurotensin and enteroglucagon in the basal state may reflect an adaptive response and may be part of the improved digestive function in adults compared with children with fibrocystic disease.
Multiplex De Novo Sequencing of Peptide Antibiotics
NASA Astrophysics Data System (ADS)
Mohimani, Hosein; Liu, Wei-Ting; Yang, Yu-Liang; Gaudêncio, Susana P.; Fenical, William; Dorrestein, Pieter C.; Pevzner, Pavel A.
Proliferation of drug-resistant diseases raises the challenge of searching for new, more efficient antibiotics. Currently, some of the most effective antibiotics (i.e., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. The isolation and sequencing of cyclic peptide antibiotics, unlike the same activity with linear peptides, is time-consuming and error-prone. The dominant technique for sequencing cyclic peptides is NMR-based and requires large amounts (milligrams) of purified materials that, for most compounds, are not possible to obtain. Given these facts, there is a need for new tools to sequence cyclic NRPs using picograms of material. Since nearly all cyclic NRPs are produced along with related analogs, we develop a mass spectrometry approach for sequencing all related peptides at once (in contrast to the existing approach that analyzes individual peptides). Our results suggest that instead of attempting to isolate and NMR-sequence the most abundant compound, one should acquire spectra of many related compounds and sequence all of them simultaneously using tandem mass spectrometry. We illustrate applications of this approach by sequencing new variants of cyclic peptide antibiotics from Bacillus brevis, as well as sequencing a previously unknown familiy of cyclic NRPs produced by marine bacteria.
Hypothalamic Agouti-Related Peptide mRNA is Elevated During Natural and Stress-Induced Anorexia.
Dunn, I C; Wilson, P W; D'Eath, R B; Boswell, T
2015-09-01
As part of their natural lives, animals can undergo periods of voluntarily reduced food intake and body weight (i.e. animal anorexias) that are beneficial for survival or breeding, such as during territorial behaviour, hibernation, migration and incubation of eggs. For incubation, a change in the defended level of body weight or 'sliding set point' appears to be involved, although the neural mechanisms reponsible for this are unknown. We investigated how neuropeptide gene expression in the arcuate nucleus of the domestic chicken responded to a 60-70% voluntary reduction in food intake measured both after incubation and after an environmental stressor involving transfer to unfamiliar housing. We hypothesised that gene expression would not change in these circumstances because the reduced food intake and body weight represented a defended level in birds with free access to food. Unexpectedly, we observed increased gene expression of the orexigenic peptide agouti-related peptide (AgRP) in both incubating and transferred animals compared to controls. Also pro-opiomelanocortin (POMC) mRNA was higher in incubating hens and significantly increased 6 days after exposure to the stressor. Conversely expression of neuropeptide Y and cocaine- and amphetamine-regulated transcript gene was unchanged in both experimental situations. We conclude that AgRP expression remains sensitive to the level of energy stores during natural anorexias, which is of adaptive advantage, although its normal orexigenic effects are over-ridden by inhibitory signals. In the case of stress-induced anorexia, increased POMC may contribute to this inhibitory role, whereas, for incubation, reduced feeding may also be associated with increased expression in the hypothalamus of the anorexigenic peptide vasoactive intestinal peptide. © 2015 British Society for Neuroendocrinology.
NASA Technical Reports Server (NTRS)
Frost, S. J.; Whitson, P. A.
1993-01-01
Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.
Peptide synthesis in early earth hydrothermal systems
Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.
2009-01-01
We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.
Zhang, Liangyi; Reilly, James P.
2009-01-01
157 nm photodissociation of N-linked glycopeptides was investigated in MALDI tandem time-of-flight (TOF) and linear ion trap mass spectrometers. Singly-charged glycopeptides yielded abundant peptide and glycan fragments. The peptide fragments included a series of x-, y-, v- and w- ions with the glycan remaining intact. These provide information about the peptide sequence and the glycosylation site. In addition to glycosidic fragments, abundant cross-ring glycan fragments that are not observed in low-energy CID were detected. These fragments provide insight into the glycan sequence and linkages. Doubly-charged glycopeptides generated by nanospray in the linear ion trap mass spectrometer also yielded peptide and glycan fragments. However, the former were dominated by low-energy fragments such as b- and y- type ions while glycan was primarily cleaved at glycosidic bonds. PMID:19113943
Grosvenor, Anita J; Haigh, Brendan J; Dyer, Jolon M
2014-11-01
The extent to which nutritional and functional benefit is derived from proteins in food is related to its breakdown and digestion in the body after consumption. Further, detailed information about food protein truncation during digestion is critical to understanding and optimising the availability of bioactives, in controlling and limiting allergen release, and in minimising or monitoring the effects of processing and food preparation. However, tracking the complex array of products formed during the digestion of proteins is not easily accomplished using classical proteomics. We here present and develop a novel proteomic approach using isobaric labelling to mapping and tracking protein truncation and peptide release during simulated gastric digestion, using bovine lactoferrin as a model food protein. The relative abundance of related peptides was tracked throughout a digestion time course, and the effect of pasteurisation on peptide release assessed. The new approach to food digestion proteomics developed here therefore appears to be highly suitable not only for tracking the truncation and relative abundance of released peptides during gastric digestion, but also for determining the effects of protein modification on digestibility and potential bioavailability.
Long, R G; Bryant, M G; Mitchell, S J; Adrian, T E; Polak, J M; Bloom, S R
1981-05-30
During a six-year period (1973-9) 52 patients with pancreatic tumours and 10 with ganglioneuroblastomas were found to have raised plasma vasoactive intestinal polypeptide (VIP) concentrations. All the patients had severe secretory diarrhoea, weight loss, dehydration, hypokalaemic acidosis, and a raised plasma urea concentration. Reduced gastric acid secretion was seen in 72% of patients. Plasma VIP concentrations were not raised in patients with diarrhoea due to other types of tumour or disease or in hormone-secreting tumours not associated with diarrhoea. Plasma VIP measurement may therefore give clinical guidance in a patient with persistent watery diarrhoea and hypokalaemic acidosis. Surgical excision was clearly the treatment of choice, but metastatic pancreatic tumours usually responded to streptozotocin.
Long, R G; Bryant, M G; Mitchell, S J; Adrian, T E; Polak, J M; Bloom, S R
1981-01-01
During a six-year period (1973-9) 52 patients with pancreatic tumours and 10 with ganglioneuroblastomas were found to have raised plasma vasoactive intestinal polypeptide (VIP) concentrations. All the patients had severe secretory diarrhoea, weight loss, dehydration, hypokalaemic acidosis, and a raised plasma urea concentration. Reduced gastric acid secretion was seen in 72% of patients. Plasma VIP concentrations were not raised in patients with diarrhoea due to other types of tumour or disease or in hormone-secreting tumours not associated with diarrhoea. Plasma VIP measurement may therefore give clinical guidance in a patient with persistent watery diarrhoea and hypokalaemic acidosis. Surgical excision was clearly the treatment of choice, but metastatic pancreatic tumours usually responded to streptozotocin. PMID:6786616
Absolute Quantification of Middle- to High-Abundant Plasma Proteins via Targeted Proteomics.
Dittrich, Julia; Ceglarek, Uta
2017-01-01
The increasing number of peptide and protein biomarker candidates requires expeditious and reliable quantification strategies. The utilization of liquid chromatography coupled to quadrupole tandem mass spectrometry (LC-MS/MS) for the absolute quantitation of plasma proteins and peptides facilitates the multiplexed verification of tens to hundreds of biomarkers from smallest sample quantities. Targeted proteomics assays derived from bottom-up proteomics principles rely on the identification and analysis of proteotypic peptides formed in an enzymatic digestion of the target protein. This protocol proposes a procedure for the establishment of a targeted absolute quantitation method for middle- to high-abundant plasma proteins waiving depletion or enrichment steps. Essential topics as proteotypic peptide identification and LC-MS/MS method development as well as sample preparation and calibration strategies are described in detail.
Cuevas-Durán, Raúl Enrique; Medrano-Rodríguez, Juan Carlos; Sánchez-Aguilar, María; Soria-Castro, Elizabeth; Rubio-Ruíz, María Esther; Del Valle-Mondragón, Leonardo; Sánchez-Mendoza, Alicia; Torres-Narvaéz, Juan Carlos; Pastelín-Hernández, Gustavo; Ibarra-Lara, Luz
2017-11-14
Numerous studies have supported a role for oxidative stress in the development of ischemic damage and endothelial dysfunction. Crataegus oxyacantha ( Co ) and Rosmarinus officinalis ( Ro ) extracts are polyphenolic-rich compounds that have proven to be efficient in the treatment of cardiovascular diseases. We studied the effect of extracts from Co and Ro on the myocardial damage associated with the oxidative status and to the production of different vasoactive agents. Rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); (c) Ro extract-treated myocardial infarction (MI- Ro ); (d) Co extract-treated myocardial infarction (MI- Co ); or (e) Ro+Co -treated myocardial infarction (MI- Ro+Co ). Ro and Co treatments increased total antioxidant capacity, the expression of superoxide dismutase (SOD)-Cu 2+ /Zn 2+ , SOD-Mn 2+ , and catalase, with the subsequent decline of malondialdehyde and 8-hydroxy-2'-deoxyguanosine levels. The extracts diminished vasoconstrictor peptide levels (angiotensin II and endothelin-1), increased vasodilators agents (angiotensin 1-7 and bradikinin) and improved nitric oxide metabolism. Polyphenol treatment restored the left intraventricular pressure and cardiac mechanical work. We conclude that Ro and Co treatment attenuate morphological and functional ischemic-related changes by both an oxidant load reduction and improvement of the balance between vasoconstrictors and vasodilators.
Cuevas-Durán, Raúl Enrique; Medrano-Rodríguez, Juan Carlos; Sánchez-Aguilar, María; Soria-Castro, Elizabeth; Del Valle-Mondragón, Leonardo; Sánchez-Mendoza, Alicia; Torres-Narvaéz, Juan Carlos; Pastelín-Hernández, Gustavo; Ibarra-Lara, Luz
2017-01-01
Numerous studies have supported a role for oxidative stress in the development of ischemic damage and endothelial dysfunction. Crataegus oxyacantha (Co) and Rosmarinus officinalis (Ro) extracts are polyphenolic-rich compounds that have proven to be efficient in the treatment of cardiovascular diseases. We studied the effect of extracts from Co and Ro on the myocardial damage associated with the oxidative status and to the production of different vasoactive agents. Rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); (c) Ro extract-treated myocardial infarction (MI-Ro); (d) Co extract-treated myocardial infarction (MI-Co); or (e) Ro+Co-treated myocardial infarction (MI-Ro+Co). Ro and Co treatments increased total antioxidant capacity, the expression of superoxide dismutase (SOD)-Cu2+/Zn2+, SOD-Mn2+, and catalase, with the subsequent decline of malondialdehyde and 8-hydroxy-2′-deoxyguanosine levels. The extracts diminished vasoconstrictor peptide levels (angiotensin II and endothelin-1), increased vasodilators agents (angiotensin 1–7 and bradikinin) and improved nitric oxide metabolism. Polyphenol treatment restored the left intraventricular pressure and cardiac mechanical work. We conclude that Ro and Co treatment attenuate morphological and functional ischemic-related changes by both an oxidant load reduction and improvement of the balance between vasoconstrictors and vasodilators. PMID:29135932
SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries*
Wu, Jemma X.; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P.
2016-01-01
The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. PMID:27161445
Cheng, Dengfeng; Yin, Duanzhi; Li, Gucai; Wang, Mingwei; Li, Shiqiang; Zheng, Mingqiang; Cai, Hancheng; Wang, Yongxian
2006-12-01
In an effort to develop a peptide-based radiopharmaceutical for the detection of tumors overexpressed vasoactive intestinal peptide receptors with positron emission tomography, we have prepared a novel [R(8,15,21), L17]-VIP peptide for 18F-labeling. This peptide inhibited 125I-VIP binding to rats lung membranes with high affinity [half-maximal inhibitory concentrations (IC50) of 0.12 nm]. Additionally, [R(8,15,21), L17]-VIP showed higher stability than native vasoactive intestinal peptide in vivo of mice. With N-succinimidyl 4-[18F] fluorobenzoate as labeling prosthetic group, [18F]FB-[R(8,15,21), L17]-VIP was obtained in >99% radiochemical purity within 100 min in decay-for-corrected radiochemical yield of 33.6 +/- 3% (n = 5) and a specific radioactivity 255 GBq/micromol at the end of synthesis. Stability of [18F]FB-[R(8,15,21), L17]-VIP in vitro and in vivo were investigated. Biodistribution of this trace was carried out in mice with induced C26 colorectal tumor. Fast clearance of [18F]FB-[R(8,15,21), L17]-VIP from non-target tissues and specific uptakes by tumors realized higher tumor-to-muscle ratio (3.55) and tumor-to-blood ratio (2.37) 60 min postinjection. Clear difference was observed between the blocking and unblocking experiments in biodistribution and whole body radioautography. [18F]FB-[R(8,15,21), L17]-VIP has demonstrated its potential for diagnosing tumors overexpressed vasoactive intestinal peptide receptors both in vitro and in vivo.
Transplantations and Cloning of an Immortal Cell Line from Rat SCN
1994-05-31
of SCN peptides in colonies was examined using rabbit polyclonal antisera against arginine vasopressin (AVP; Arnel Products), gastrin releasing ...examined for expression of arginine vasopressin (AVP), gastrin releasing peptide (GRP), somatostatin (SMT) and vasoactive intestinal polypeptide (VIP...neuronal markers and peptides found within SCN neurons in situ. Concordant with immunostaining data, content, release and mRNA expression of SCN
Kito, Keiji; Okada, Mitsuhiro; Ishibashi, Yuko; Okada, Satoshi; Ito, Takashi
2016-05-01
The accurate and precise absolute abundance of proteins can be determined using mass spectrometry by spiking the sample with stable isotope-labeled standards. In this study, we developed a strategy of hierarchical use of peptide-concatenated standards (PCSs) to quantify more proteins over a wider dynamic range. Multiple primary PCSs were used for quantification of many target proteins. Unique "ID-tag peptides" were introduced into individual primary PCSs, allowing us to monitor the exact amounts of individual PCSs using a "secondary PCS" in which all "ID-tag peptides" were concatenated. Furthermore, we varied the copy number of the "ID-tag peptide" in each PCS according to a range of expression levels of target proteins. This strategy accomplished absolute quantification over a wider range than that of the measured ratios. The quantified abundance of budding yeast proteins showed a high reproducibility for replicate analyses and similar copy numbers per cell for ribosomal proteins, demonstrating the accuracy and precision of this strategy. A comparison with the absolute abundance of transcripts clearly indicated different post-transcriptional regulation of expression for specific functional groups. Thus, the approach presented here is a faithful method for the absolute quantification of proteomes and provides insights into biological mechanisms, including the regulation of expressed protein abundance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adrian, T E; Sagor, G R; Savage, A P; Bacarese-Hamilton, A J; Hall, G M; Bloom, S R
1986-10-01
Peptide YY (PYY) is a 36 amino acid peptide produced by mucosal endocrine cells of the ileum and colon which inhibits acid secretion and intestinal transit in man. To assess its effects on metabolites and digestive hormones PYY was infused into 18 fasting normal subjects at three dose levels (0.06, 0.19, and 0.57 pmol kg-1 min-1), each for a period of 1 h. During the infusions mean plasma PYY levels increased by 8, 25, and 73 pmol/liter, respectively. The mean disappearance half-time on stopping the infusions was 9.2 +/- 0.4 (SEM) min. The mean MCR was 7.3 +/- 0.7 ml kg-1 min-1 and the apparent volume of distribution was calculated to be 94 +/- 9 ml kg-1. During the highest dose infusion there was a significant increase in both systolic and diastolic blood pressure, of 8.6 +/- 3.7 mmHg (P less than 0.05) and 10.9 +/- 3.0 mmHg (P less than 0.01), respectively. PYY caused a significant 50% reduction in plasma pancreatic polypeptide concentrations (P less than 0.05) and a 55% reduction in circulating motilin levels (P less than 0.05). PYY had no significant effect on circulating concentrations of insulin, glucagon, gastrin, gastric inhibitory peptide, neurotensin, enteroglucagon, or vasoactive intestinal peptide. PYY also had no significant effect on circulating concentrations of glucose, lactate, glycerol, or nonesterified fatty acids. This recently discovered human intestinal hormonal peptide thus has significant effects both on gastrointestinal hormones (motilin and pancreatic polypeptide) and blood pressure in man, but appears not to influence glucose or lipid metabolism.
Jacob, Laurent; Combes, Florence; Burger, Thomas
2018-06-18
We propose a new hypothesis test for the differential abundance of proteins in mass-spectrometry based relative quantification. An important feature of this type of high-throughput analyses is that it involves an enzymatic digestion of the sample proteins into peptides prior to identification and quantification. Due to numerous homology sequences, different proteins can lead to peptides with identical amino acid chains, so that their parent protein is ambiguous. These so-called shared peptides make the protein-level statistical analysis a challenge and are often not accounted for. In this article, we use a linear model describing peptide-protein relationships to build a likelihood ratio test of differential abundance for proteins. We show that the likelihood ratio statistic can be computed in linear time with the number of peptides. We also provide the asymptotic null distribution of a regularized version of our statistic. Experiments on both real and simulated datasets show that our procedures outperforms state-of-the-art methods. The procedures are available via the pepa.test function of the DAPAR Bioconductor R package.
Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides
Kang, Hee Kyoung; Choi, Moon-Chang; Seo, Chang Ho; Park, Yoonkyung
2018-01-01
Various organisms exist in the oceanic environment. These marine organisms provide an abundant source of potential medicines. Many marine peptides possess anticancer properties, some of which have been evaluated for treatment of human cancer in clinical trials. Marine anticancer peptides kill cancer cells through different mechanisms, such as apoptosis, disruption of the tubulin-microtubule balance, and inhibition of angiogenesis. Traditional chemotherapeutic agents have side effects and depress immune responses. Thus, the research and development of novel anticancer peptides with low toxicity to normal human cells and mechanisms of action capable of avoiding multi-drug resistance may provide a new method for anticancer treatment. This review provides useful information on the potential of marine anticancer peptides for human therapy. PMID:29558431
New Potent Membrane-Targeting Antibacterial Peptides from Viral Capsid Proteins
Dias, Susana A.; Freire, João M.; Pérez-Peinado, Clara; Domingues, Marco M.; Gaspar, Diana; Vale, Nuno; Gomes, Paula; Andreu, David; Henriques, Sónia T.; Castanho, Miguel A. R. B.; Veiga, Ana S.
2017-01-01
The increasing prevalence of multidrug-resistant bacteria urges the development of new antibacterial agents. With a broad spectrum activity, antimicrobial peptides have been considered potential antibacterial drug leads. Using bioinformatic tools we have previously shown that viral structural proteins are a rich source for new bioactive peptide sequences, namely antimicrobial and cell-penetrating peptides. Here, we test the efficacy and mechanism of action of the most promising peptides among those previously identified against both Gram-positive and Gram-negative bacteria. Two cell-penetrating peptides, vCPP 0769 and vCPP 2319, have high antibacterial activity against Staphylococcus aureus, MRSA, Escherichia coli, and Pseudomonas aeruginosa, being thus multifunctional. The antibacterial mechanism of action of the two most active viral protein-derived peptides, vAMP 059 and vCPP 2319, was studied in detail. Both peptides act on both Gram-positive S. aureus and Gram-negative P. aeruginosa, with bacterial cell death occurring within minutes. Also, these peptides cause bacterial membrane permeabilization and damage of the bacterial envelope of P. aeruginosa cells. Overall, the results show that structural viral proteins are an abundant source for membrane-active peptides sequences with strong antibacterial properties. PMID:28522994
Galkin, A S; Koval'chuk, V V; Gusev, A O
2011-01-01
The aim of present investigation is research of influence of vasoactive and neurometabolic medicines in stroke patients's rehabilitation. We had analysed 280 stroke patients. The degree of rehabilitation had been defined with the help of Barthel and Lindmark scales. The degree of cognitive functions's rehabilitation had been defined with the help of MMSE scale. For every medicine coefficients of efficiency were calculated. As the result of the present investigation the medicine's efficiency was found out. The most efficient medicines in ischaemic stroke patients's rehabilitation among the investigated ones are the medicines which activate the neuronal metabolism, first of all,--ceraxon (citicoline).
Chauvet, Sylvain; Boonen, Marielle; Chevallet, Mireille; Jarvis, Louis; Abebe, Addis; Benharouga, Mohamed; Faller, Peter; Jadot, Michel; Bouron, Alexandre
2015-11-01
The Na(+)/K(+)-ATPase interacts with the non-selective cation channels TRPC6 but the functional consequences of this association are unknown. Experiments performed with HEK cells over-expressing TRPC6 channels showed that inhibiting the activity of the Na(+)/K(+)-ATPase with ouabain reduced the amount of TRPC6 proteins and depressed Ca(2+) entry through TRPC6. This effect, not mimicked by membrane depolarization with KCl, was abolished by sucrose and bafilomycin-A, and was partially sensitive to the intracellular Ca(2+) chelator BAPTA/AM. Biotinylation and subcellular fractionation experiments showed that ouabain caused a multifaceted redistribution of TRPC6 to the plasma membrane and to an endo/lysosomal compartment where they were degraded. The amyloid beta peptide Aβ(1-40), another inhibitor of the Na(+)/K(+)-ATPase, but not the shorter peptide Aβ1-16, reduced TRPC6 protein levels and depressed TRPC6-mediated responses. In cortical neurons from embryonic mice, ouabain, veratridine (an opener of voltage-gated Na(+) channel), and Aβ(1-40) reduced TRPC6-mediated Ca(2+) responses whereas Aβ(1-16) was ineffective. Furthermore, when Aβ(1-40) was co-added together with zinc acetate it could no longer control TRPC6 activity. Altogether, this work shows the existence of a functional coupling between the Na(+)/K(+)-ATPase and TRPC6. It also suggests that the abundance, distribution and activity of TRPC6 can be regulated by cardiotonic steroids like ouabain and the naturally occurring peptide Aβ(1-40) which underlines the pathophysiological significance of these processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Bassani-Sternberg, Michal; Pletscher-Frankild, Sune; Jensen, Lars Juhl; Mann, Matthias
2015-01-01
HLA class I molecules reflect the health state of cells to cytotoxic T cells by presenting a repertoire of endogenously derived peptides. However, the extent to which the proteome shapes the peptidome is still largely unknown. Here we present a high-throughput mass-spectrometry-based workflow that allows stringent and accurate identification of thousands of such peptides and direct determination of binding motifs. Applying the workflow to seven cancer cell lines and primary cells, yielded more than 22,000 unique HLA peptides across different allelic binding specificities. By computing a score representing the HLA-I sampling density, we show a strong link between protein abundance and HLA-presentation (p < 0.0001). When analyzing overpresented proteins – those with at least fivefold higher density score than expected for their abundance – we noticed that they are degraded almost 3 h faster than similar but nonpresented proteins (top 20% abundance class; median half-life 20.8h versus 23.6h, p < 0.0001). This validates protein degradation as an important factor for HLA presentation. Ribosomal, mitochondrial respiratory chain, and nucleosomal proteins are particularly well presented. Taking a set of proteins associated with cancer, we compared the predicted immunogenicity of previously validated T-cell epitopes with other peptides from these proteins in our data set. The validated epitopes indeed tend to have higher immunogenic scores than the other detected HLA peptides. Remarkably, we identified five mutated peptides from a human colon cancer cell line, which have very recently been predicted to be HLA-I binders. Altogether, we demonstrate the usefulness of combining MS-analysis with immunogenesis prediction for identifying, ranking, and selecting peptides for therapeutic use. PMID:25576301
Endogenous Human Milk Peptide Release Is Greater after Preterm Birth than Term Birth123
Dallas, David C; Smink, Christina J; Robinson, Randall C; Tian, Tian; Guerrero, Andres; Parker, Evan A; Smilowitz, Jennifer T; Hettinga, Kasper A; Underwood, Mark A; Lebrilla, Carlito B; German, J Bruce; Barile, Daniela
2015-01-01
Background: Hundreds of naturally occurring milk peptides are present in term human milk. Preterm milk is produced before complete maturation of the mammary gland, which could change milk synthesis and secretion processes within the mammary gland, leading to differences in protein expression and enzymatic activity, thereby resulting in an altered peptide profile. Objective: This study examined differences in peptides present between milk from women delivering at term and women delivering prematurely. Methods: Nano-LC tandem mass spectrometry was employed to identify naturally occurring peptides and compare their abundances between term and preterm human milk samples at multiple time points over lactation. Term milk samples were collected from 8 mothers and preterm milk was collected from 14 mothers. The 28 preterm and 32 term human milk samples were divided into 4 groups based on day of collection (<14, 14–28, 29–41, and 42–58 d). Results: Preterm milk peptide counts, ion abundance, and concentration were significantly higher in preterm milk than term milk. Bioinformatic analysis of the cleavage sites for peptides identified suggested that plasmin was more active in preterm milk than term milk and that cytosol aminopeptidase and carboxypeptidase B2 likely contribute to extensive milk protein breakdown. Many identified milk peptides in both term and preterm milk overlapped with known functional peptides, including antihypertensive, antimicrobial, and immunomodulatory peptides. Conclusion: The high protein degradation by endogenous proteases in preterm milk might attenuate problems because of the preterm infant’s immature digestive system. This trial was registered at clinicaltrials.gov as NCT01817127. PMID:25540406
Therapeutic peptides: new arsenal against drug resistant pathogens.
Mok, Wendy W K; Li, Yingfu
2014-01-01
Our incessant tug-of-war with multidrug resistant pathogenic bacteria has prompted researchers to explore novel methods of designing therapeutics in order to defend ourselves against infectious diseases. Combined advances in whole genome analysis, bioinformatics algorithms, and biochemical techniques have led to the discovery and subsequent characterization of an abundant array of functional small peptides in microorganisms and multicellular organisms. Typically classified as having 10 to 100 amino acids, many of these peptides have been found to have dual activities, executing important defensive and regulatory functions in their hosts. In higher organisms, such as mammals, plants, and fungi, host defense peptides have been shown to have immunomodulatory and antimicrobial properties. In microbes, certain growth-inhibiting peptides have been linked to the regulation of diverse cellular processes. Examples of these processes include quorum sensing, stress response, cell differentiation, biofilm formation, pathogenesis, and multidrug tolerance. In this review, we will present a comprehensive overview of the discovery, characteristics, and functions of host- and bacteria-derived peptides with antimicrobial activities. The advantages and possible shortcomings of using these peptides as antimicrobial agents and targets will also be discussed. We will further examine current efforts in engineering synthetic peptides to be used as therapeutics and/or drug delivery vehicles.
Tu, Chengjian; Shen, Shichen; Sheng, Quanhu; Shyr, Yu; Qu, Jun
2017-01-30
Reliable quantification of low-abundance proteins in complex proteomes is challenging largely owing to the limited number of spectra/peptides identified. In this study we developed a straightforward method to improve the quantitative accuracy and precision of proteins by strategically retrieving the less confident peptides that were previously filtered out using the standard target-decoy search strategy. The filtered-out MS/MS spectra matched to confidently-identified proteins were recovered, and the peptide-spectrum-match FDR were re-calculated and controlled at a confident level of FDR≤1%, while protein FDR maintained at ~1%. We evaluated the performance of this strategy in both spectral count- and ion current-based methods. >60% increase of total quantified spectra/peptides was respectively achieved for analyzing a spike-in sample set and a public dataset from CPTAC. Incorporating the peptide retrieval strategy significantly improved the quantitative accuracy and precision, especially for low-abundance proteins (e.g. one-hit proteins). Moreover, the capacity of confidently discovering significantly-altered proteins was also enhanced substantially, as demonstrated with two spike-in datasets. In summary, improved quantitative performance was achieved by this peptide recovery strategy without compromising confidence of protein identification, which can be readily implemented in a broad range of quantitative proteomics techniques including label-free or labeling approaches. We hypothesize that more quantifiable spectra and peptides in a protein, even including less confident peptides, could help reduce variations and improve protein quantification. Hence the peptide retrieval strategy was developed and evaluated in two spike-in sample sets with different LC-MS/MS variations using both MS1- and MS2-based quantitative approach. The list of confidently identified proteins using the standard target-decoy search strategy was fixed and more spectra/peptides with less
SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries.
Wu, Jemma X; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P
2016-07-01
The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Characterization of Residual Medium Peptides from Yersinia pestis Cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clowers, Brian H.; Wunschel, David S.; Kreuzer, Helen W.
2013-04-03
Using a range of common microbial medium formulations (TSB, BHI, LB, and G-media), two attenuated strains of Y. pestis (KIM D27 (pgm-) and KIMD1 lcr-) were cultivated in triplicate. These cellular suspensions were used to develop a method of extracting residual medium peptides from the final microbial preparation to assess their relative abundance and identity. Across the conditions examined, which included additional cellular washing and different forms of microbial inactivation, residual medium peptides were detected. Despite the range of growth medium sources used and the associated manufacturing processes used in their production, a high degree of peptide similarity was observedmore » for a given medium recipe. These results demonstrate that residual medium peptides are retained using traditional microbial cultivation techniques and may be used to inform forensic investigations with respect to production deduction.« less
Jin, Yan; Yu, Yang; Qi, Yanxia; Wang, Fangjun; Yan, Jiaze; Zou, Hanfa
2016-06-01
This study investigated the relationship between peptide profiles and the bioactivity character of yogurt in simulated gastrointestinal trials. A total of 250, 434 and 466 peptides were identified by LC-MS/MS analyses of yogurt, gastric digest and pancreatic digest. Forty peptides of yogurt survived in gastrointestinal digestion. κ-CN and β-CN contributed the diversity of peptides during the fermentation process and gastrointestinal digestion, respectively. The favorite of κ-CN by lactic acid bacteria complemented gut digestion by hydrolyzing κ-CN, the low abundance milk proteins. The potential bioactivities were evaluated by in vitro ACE and DPP-IV inhibition assays. The ACE inhibition rate of the pancreatic digests was ~4 - and ~2 - fold greater than that of yogurt and the gastric digests. The ACE inhibitory peptides generated during gastrointestinal digestion improved the ACE inhibitory activity of the gastric and pancreatic digests. The DPP-IV inhibition rate of the pancreatic digest was ~6 - and ~3 - fold greater than that of yogurt and the gastric digest. The numbers of potential DPP-IV inhibitory peptides were positively correlated to the DPP-IV inhibitory activity of the gastric and pancreatic digests. The present study describes the characters and bioactivities of peptides from yogurt in a simulated gastrointestinal digestion. The number of peptides identified from yogurt and gastrointestinal digests by LC-MS/MS increased in the simulated gastrointestinal trials. The in vitro ACE and DPP-IV inhibition bioactivities revealed that the bioactivity of yogurt was enhanced during gastrointestinal digestion. The correlation between peptides and bioactivity in vitro indicated that not only the peptides amount but also the proportion of peptides with high bioactivities contributed to increased bioactivity during gastrointestinal digestion. The study of peptides identified from yogurt and digests revealed that the number of released peptides was not determined
Szklany, Kirsten; Ruiter, Evelyn; Mian, Firoz; Kunze, Wolfgang; Bienenstock, John; Forsythe, Paul; Karimi, Khalil
2016-01-01
The nervous and immune systems communicate bidirectionally, utilizing diverse molecular signals including cytokines and neurotransmitters to provide an integrated response to changes in the body's internal and external environment. Although, neuro-immune interactions are becoming better understood under inflammatory circumstances and it has been evidenced that interaction between neurons and T cells results in the conversion of encephalitogenic T cells to T regulatory cells, relatively little is known about the communication between neurons and naïve T cells. Here, we demonstrate that following co-culture of naïve CD4+ T cells with superior cervical ganglion neurons, the percentage of Foxp3 expressing CD4+CD25+ cells significantly increased. This was mediated in part by immune-regulatory cytokines TGF-β and IL-10, as well as the neuropeptide calcitonin gene-related peptide while vasoactive intestinal peptide was shown to play no role in generation of T regulatory cells. Additionally, T cells co-cultured with neurons showed a decrease in the levels of pro-inflammatory cytokine IFN-γ released upon in vitro stimulation. These findings suggest that the generation of Tregs may be promoted by naïve CD4+ T cell: neuron interaction through the release of neuropeptide CGRP.
Vuittenez, F; Guignard, E; Comte, S
1999-01-23
Assess changes in the number of prescriptions for peripheral and cerebral vasoactive drugs for the treatment of lower limb arteritis and cerebrovascular disease since the promulgation in 1995 of prescription standards for the treatment of lower limb arteritis. Assess compliance to prescription standards with a detailed analysis of patient features, prescriptions written for lower limb arteritis, cerebrovascular disease and concomitant diseases and evaluate changes in treatment costs for lower limb arteritis and cerebrovascular disease as well as cost of the full prescription, including treatments for associated diseases. This study was based on data recorded during the Permanent Study of Medical Prescriptions conducted from March 1994 to February 1995 and from March 1995 to February 1996 by the IMS. Prescription costs were established from the National Description Files of the IMS. Treatment costs were expressed as public price (FF) tax included. Prescriptions meeting the following criteria were selected for each period: prescriptions written by general practitioners for drugs with peripheral and cerebral vasoactivity (excepting calcium antagonists with a cerebral target) belonging to the Anatomic Therapeutic Classes C4A1 of the European Pharmaceutical Marketing Research Association, Bromly 1996; prescriptions for diagnoses 447.6 (arteritis) and 437.9 (cerebrovascular disease) according to the 9th WHO classification. A random sample of 500 prescriptions was selected to calculate costs. Since the advent of the prescription standards in 1995, prescriptions have dropped off by 6.3% for lower limb arteritis and by 14.8% for cerebrovascular disease. There was a 3.7 point decline in the percentage of multiple prescriptions of vasoactive drugs for lower limb arteritis (21.7% prior to March 1995 versus 18% after promulgation of the prescription standards, p > 0.1) and a 1.8 increase in the percentage of multiple prescriptions for cerebrovascular disease (14% prior to March
NASA Astrophysics Data System (ADS)
Ernenwein, Dawn M.
2011-12-01
Bottom-up self-assembly of peptides has driven the research progress for the following two projects: protein delivery vehicles of collagen microflorettes and the assembly of gold nanoparticles with coiled-coil peptides. Collagen is the most abundant protein in the mammals yet due to immunogenic responses, batch-to-batch variability and lack of sequence modifications, synthetic collagen has been designed to self-assemble into native collagen-like structures. In particular with this research, metal binding ligands were incorporated on the termini of collagen-like peptides to generate micron-sized particles, microflorettes. The over-arching goal of the first research project is to engineer MRI-active microflorettes, loaded with His-tagged growth factors with differential release rates while bound to stem cells that can be implemented toward regenerative cell-based therapies. His-tagged proteins, such as green fluorescent protein, have successfully been incorporated on the surface and throughout the microflorettes. Protein release was monitored under physiological conditions and was related to particle degradation. In human plasma full release was obtained within six days. Stability of the microflorettes under physiological conditions was also examined for the development of a therapeutically relevant delivery agent. Additionally, MRI active microflorettes have been generated through the incorporation of a gadolinium binding ligand, DOTA within the collagen-based peptide sequence. To probe peptide-promoted self-assemblies of gold nanoparticles (GNPs) by non-covalent, charge complementary interactions, a highly anionic coiled-coil peptide was designed and synthesized. Upon formation of peptide-GNP interactions, the hydrophobic domain of the coiled-coil were shown to promote the self-assembly of peptide-GNPs clustering. Hydrophobic forces were found to play an important role in the assembly process, as a peptide with an equally overall negative charge, but lacking an
Glucagon-related peptides in the mouse retina and the effects of deprivation of form vision.
Mathis, Ute; Schaeffel, Frank
2007-02-01
In chickens, retinal glucagon amacrine cells play an important role in emmetropization, since they express the transcription factor ZENK (also known as NGFI-A, zif268, tis8, cef5, Krox24) in correlation with the sign of imposed image defocus. Pharmacological studies have shown that glucagon can act as a stop signal for axial eye growth, making it a promising target for pharmacological intervention of myopia. Unfortunately, in mammalian retina, glucagon itself has not yet been detected by immunohistochemical staining. To learn more about its possible role in emmetropization in mammals, we studied the expression of different members of the glucagon hormone family in mouse retina, and whether their abundance is regulated by visual experience. Black wildtype C57BL/6 mice, raised under a 12/12 h light/dark cycle, were studied at postnatal ages between P29 and P40. Frosted hemispherical thin plastic shells (diffusers) were placed in front of the right eyes to impose visual conditions that are known to induce myopia. The left eyes remained uncovered and served as controls. Transversal retinal cryostat sections were single- or double-labeled by indirect immunofluorescence for early growth response protein 1 (Egr-1, the mammalian ortholog of ZENK), glucagon, glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), peptide histidine isoleucine (PHI), growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase-activating polypeptide (PACAP), secretin, and vasoactive intestinal polypeptide (VIP). In total, retinas of 45 mice were studied, 28 treated with diffusers, and 17 serving as controls. Glucagon itself was not detected in mouse retina. VIP, PHI, PACAP and GIP were localized. VIP was co-localized with PHI and Egr-1, which itself was strongly regulated by retinal illumination. Diffusers, applied for various durations (1, 2, 6, and 24 h) had no effect on the expression of VIP, PHI, PACAP, and GIP, at least at the protein level. Similarly
What peptides these deltorphins be.
Lazarus, L H; Bryant, S D; Cooper, P S; Salvadori, S
1999-02-01
The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.
Abnormalities of peptide metabolism in Alzheimer disease.
Panchal, Maï; Rholam, Mohamed; Brakch, Noureddine
2004-10-01
The steady-state level of peptide hormones represents a balance between their biosynthesis and proteolytic processing by convertases and their catabolism by proteolytic enzymes. Low levels of neuropeptide Y, somatostatin and corticotropin-releasing factor, described in Alzheimer disease (AD), were related to a defect in proteolytic processing of their protein precursors. In contrast the abundance of beta-amyloid peptides, the major protein constituents of senile plaques is likely related to inefficient catabolism. Therefore, attention is mainly focused on convertases that generate active peptides and counter-regulatory proteases that are involved in their catabolism. Some well-described proteases such as NEP are thought to be involved in beta-amyloid catabolism. The search of other possible candidates represents a primary effort in the field. A variety of vascular risk factors such as diabetes, hypertension and arteriosclerosis suggest that the functional vascular defect contributes to AD pathology. It has also been described that beta-amyloid peptides potentiate endothelin-1 induced vasoconstriction. In this review, we will critically evaluate evidence relating proteases implicated in amyloid protein precursor proteolytic processing and beta-amyloid catabolism.
Evaluating Ga-68 Peptide Conjugates for Targeting VPAC Receptors: Stability and Pharmacokinetics.
Kumar, Pardeep; Tripathi, Sushil K; Chen, C P; Wickstrom, Eric; Thakur, Mathew L
2018-05-25
In recent years, considerable progress has been made in the use of gallium-68 labeled receptor-specific peptides for imaging oncologic diseases. The objective was to examine the stability and pharmacokinetics of [ 68 Ga]NODAGA and DOTA-peptide conjugate targeting VPAC [combined for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP)] receptors on tumor cells. A VPAC receptor-specific peptide was chosen as a model peptide and conjugated to NODAGA and DOTA via solid-phase synthesis. The conjugates were characterized by HPLC and MALDI-TOF. Following Ga-68 chelation, the radiochemical purity of Ga-68 labeled peptide conjugate was determined by radio-HPLC. The stability was tested against transmetallation using 100 nM Fe 3+ /Zn 2+ /Ca 2+ ionic solution and against transchelation using 200 μM DTPA solution. The ex vivo and in vivo stability of the Ga-68 labeled peptide conjugate was tested in mouse plasma and urine. Receptor specificity was determined ex vivo by cell binding assays using human breast cancer BT474 cells. Positron emission tomography (PET)/X-ray computed tomography (CT) imaging, tissue distribution, and blocking studies were performed in mice bearing BT474 xenografts. The chemical and radiochemical purity was greater than 95 % and both conjugates were stable against transchelation and transmetallation. Ex vivo stability at 60 min showed that the NODAGA-peptide-bound Ga-68 reduced to 42.1 ± 3.7 % (in plasma) and 37.4 ± 2.9 % (in urine), whereas the DOTA-peptide-bound Ga-68 was reduced to 1.2 ± 0.3 % (in plasma) and 4.2 ± 0.4 % (in urine) at 60 min. Similarly, the in vivo stability for [ 68 Ga]NODAGA-peptide was decreased to 2.1 ± 0.2 % (in plasma) and 2.2 ± 0.4 % (in urine). For [ 68 Ga]DOTA-peptide, it was decreased to 1.4 ± 0.3 % (in plasma) and 1.2 ± 0.4 % (in urine) at 60 min. The specific BT474 cell binding was 53.9 ± 0.8 % for [ 68 Ga]NODAGA-peptide
Robertson, Laura S.; Fellers, Gary M.; Marranca, Jamie Marie; Kleeman, Patrick M.
2013-01-01
Frogs secrete antimicrobial peptides onto their skin. We describe an assay to preserve and analyze antimicrobial peptide transcripts from field-collected skin secretions that will complement existing methods for peptide analysis. We collected skin secretions from 4 North American species in the field in California and 2 species in the laboratory. Most frogs appeared healthy after release; however, Rana boylii in the Sierra Nevada foothills, but not the Coast Range, showed signs of morbidity and 2 died after handling. The amount of total RNA extracted from skin secretions was higher in R. boylii and R. sierrae compared to R. draytonii, and much higher compared to Pseudacris regilla. Interspecies variation in amount of RNA extracted was not explained by size, but for P. regilla it depended upon collection site and date. RNA extracted from skin secretions from frogs handled with bare hands had poor quality compared to frogs handled with gloves or plastic bags. Thirty-four putative antimicrobial peptide precursor transcripts were identified. This study demonstrates that RNA extracted from skin secretions collected in the field is of high quality suitable for use in sequencing or quantitative PCR (qPCR). However, some species do not secrete profusely, resulting in very little extracted RNA. The ability to measure transcript abundance of antimicrobial peptides in field-collected skin secretions complements proteomic analyses and may provide insight into transcriptional mechanisms that could affect peptide abundance.
Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins.
Suomi, Tomi; Corthals, Garry L; Nevalainen, Olli S; Elo, Laura L
2015-11-06
The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.
Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.
Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G
2018-06-01
The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lin, Shu; Wein, Samuel; Gonzales-Cope, Michelle; Otte, Gabriel L.; Yuan, Zuo-Fei; Afjehi-Sadat, Leila; Maile, Tobias; Berger, Shelley L.; Rush, John; Lill, Jennie R.; Arnott, David; Garcia, Benjamin A.
2014-01-01
To facilitate accurate histone variant and post-translational modification (PTM) quantification via mass spectrometry, we present a library of 93 synthetic peptides using Protein-Aqua™ technology. The library contains 55 peptides representing different modified forms from histone H3 peptides, 23 peptides representing H4 peptides, 5 peptides representing canonical H2A peptides, 8 peptides representing H2A.Z peptides, and peptides for both macroH2A and H2A.X. The PTMs on these peptides include lysine mono- (me1), di- (me2), and tri-methylation (me3); lysine acetylation; arginine me1; serine/threonine phosphorylation; and N-terminal acetylation. The library was subjected to chemical derivatization with propionic anhydride, a widely employed protocol for histone peptide quantification. Subsequently, the detection efficiencies were quantified using mass spectrometry extracted ion chromatograms. The library yields a wide spectrum of detection efficiencies, with more than 1700-fold difference between the peptides with the lowest and highest efficiencies. In this paper, we describe the impact of different modifications on peptide detection efficiencies and provide a resource to correct for detection biases among the 93 histone peptides. In brief, there is no correlation between detection efficiency and molecular weight, hydrophobicity, basicity, or modification type. The same types of modifications may have very different effects on detection efficiencies depending on their positions within a peptide. We also observed antagonistic effects between modifications. In a study of mouse trophoblast stem cells, we utilized the detection efficiencies of the peptide library to correct for histone PTM/variant quantification. For most histone peptides examined, the corrected data did not change the biological conclusions but did alter the relative abundance of these peptides. For a low-abundant histone H2A variant, macroH2A, the corrected data led to a different conclusion than the
Pancreatic tumours produce neurotensin.
Blackburn, A M; Bryant, M G; Adrian, T E; Bloom, S R
1981-04-01
Tumour tissue may secrete substances which are not normally secreted by the original tissue. We have found that 6 out of 21 pancreatic tumours producing vasoactive intestinal peptide also produce neurotensin-like peptides. These are sometimes secreted and very high plasma levels of neurotensin-like immunoreactivity may be found in the circulation.
Vasoactive intestinal polypeptide provokes acetylcholine release from the myenteric plexus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusunoki, M.; Tsai, L.H.; Taniyama, K.
1986-07-01
Effects of vasoactive intestinal polypeptide (VIP) on the release of acetylcholine (ACh) from longitudinal muscle strips with myenteric plexus (LM) preparations were examined in the guinea pig small intestine. VIP (10 to 10 W M) induced a concentration-dependent contraction of LM preparation. The VIP-induced contractions seem to be related to three components, the scopolamine-sensitive, the scopolamine-insensitive, the tetrodotoxin-sensitive, and the tetrodotoxin-insensitive contractions. VIP (10 to 10 W M) induced a concentration-dependent increase in the release of (TH)ACh from LM preparations preloaded with (TH)choline. The VIP-evoked (TH)ACh release was inhibited by removal of CaS from the perfusion medium and by treatmentmore » with tetrodotoxin but not by scopolamine and hexamethonium. The spontaneous and VIP-evoked (TH)ACh release was not affected by phentolamine, propranolol, methysergide, diphenhydramine, cimetidine, bicuculline, or (D-ProS, D-Trp/sup 7,9/)substance P. The result demonstrates that VIP induces contractions of longitudinal smooth muscle directly and indirectly by the stimulation of both cholinergic neurons and noncholinergic excitatory neurons.« less
Vasoactive intestinal polypeptide (VIP) innervation of the human eyelid glands.
Seifert, P; Spitznas, M
1999-06-01
This study was conducted to obtain morphological proof of innervating nerve fibres in the glands of the human eyelid (accessory lacrimal glands of Wolfring, meibomian glands, goblet cells, glands of Zeis, glands of Moll, sweat glands, glands of lanugo hair follicles) and identification of the secretomotorically active neuropeptide vasoactive intestinal polypeptide (VIP) as a common transmitter. Epoxy-embedded ultrathin sections of tissue samples from human eyelids were studied using electron microscopy. Paraffin sections fixed in Bouin-Hollande solution were immunostained with rabbit antiserum against VIP. With the electron microscope we were able to identify nerves in the glandular stroma of all the glands examined with the exception of goblet cells. Intraepithelial single axons were only seen in the parenchyma of Wolfring glands. The morphological findings corresponded with the immunological finding of VIP-positive, nerve-like structures in the same locations, with the exception of lanugo hair follicle glands, and goblet cells. Our findings indicate that the glands of the eyelids and main lacrimal gland represent a functional unit with VIP as a possible common stimulating factor. Copyright 1999 Academic Press.
A Web Server and Mobile App for Computing Hemolytic Potency of Peptides
NASA Astrophysics Data System (ADS)
Chaudhary, Kumardeep; Kumar, Ritesh; Singh, Sandeep; Tuknait, Abhishek; Gautam, Ankur; Mathur, Deepika; Anand, Priya; Varshney, Grish C.; Raghava, Gajendra P. S.
2016-03-01
Numerous therapeutic peptides do not enter the clinical trials just because of their high hemolytic activity. Recently, we developed a database, Hemolytik, for maintaining experimentally validated hemolytic and non-hemolytic peptides. The present study describes a web server and mobile app developed for predicting, and screening of peptides having hemolytic potency. Firstly, we generated a dataset HemoPI-1 that contains 552 hemolytic peptides extracted from Hemolytik database and 552 random non-hemolytic peptides (from Swiss-Prot). The sequence analysis of these peptides revealed that certain residues (e.g., L, K, F, W) and motifs (e.g., “FKK”, “LKL”, “KKLL”, “KWK”, “VLK”, “CYCR”, “CRR”, “RFC”, “RRR”, “LKKL”) are more abundant in hemolytic peptides. Therefore, we developed models for discriminating hemolytic and non-hemolytic peptides using various machine learning techniques and achieved more than 95% accuracy. We also developed models for discriminating peptides having high and low hemolytic potential on different datasets called HemoPI-2 and HemoPI-3. In order to serve the scientific community, we developed a web server, mobile app and JAVA-based standalone software (http://crdd.osdd.net/raghava/hemopi/).
A Web Server and Mobile App for Computing Hemolytic Potency of Peptides.
Chaudhary, Kumardeep; Kumar, Ritesh; Singh, Sandeep; Tuknait, Abhishek; Gautam, Ankur; Mathur, Deepika; Anand, Priya; Varshney, Grish C; Raghava, Gajendra P S
2016-03-08
Numerous therapeutic peptides do not enter the clinical trials just because of their high hemolytic activity. Recently, we developed a database, Hemolytik, for maintaining experimentally validated hemolytic and non-hemolytic peptides. The present study describes a web server and mobile app developed for predicting, and screening of peptides having hemolytic potency. Firstly, we generated a dataset HemoPI-1 that contains 552 hemolytic peptides extracted from Hemolytik database and 552 random non-hemolytic peptides (from Swiss-Prot). The sequence analysis of these peptides revealed that certain residues (e.g., L, K, F, W) and motifs (e.g., "FKK", "LKL", "KKLL", "KWK", "VLK", "CYCR", "CRR", "RFC", "RRR", "LKKL") are more abundant in hemolytic peptides. Therefore, we developed models for discriminating hemolytic and non-hemolytic peptides using various machine learning techniques and achieved more than 95% accuracy. We also developed models for discriminating peptides having high and low hemolytic potential on different datasets called HemoPI-2 and HemoPI-3. In order to serve the scientific community, we developed a web server, mobile app and JAVA-based standalone software (http://crdd.osdd.net/raghava/hemopi/).
2012-01-01
Naturally occurring native peptides provide important information about physiological states of an organism and its changes in disease conditions but protocols and methods for assessing their abundance are not well-developed. In this paper, we describe a simple procedure for the quantification of non-tryptic peptides in body fluids. The workflow includes an enrichment step followed by two-dimensional fractionation of native peptides and MS/MS data management facilitating the design and validation of LC- MRM MS assays. The added value of the workflow is demonstrated in the development of a triplex LC-MRM MS assay used for quantification of peptides potentially associated with the progression of liver disease to hepatocellular carcinoma. PMID:22304756
NASA Astrophysics Data System (ADS)
Lyon, Yana A.; Beran, Gregory; Julian, Ryan R.
2017-07-01
Traditional electron-transfer dissociation (ETD) experiments operate through a complex combination of hydrogen abundant and hydrogen deficient fragmentation pathways, yielding c and z ions, side-chain losses, and disulfide bond scission. Herein, a novel dissociation pathway is reported, yielding homolytic cleavage of carbon-iodine bonds via electronic excitation. This observation is very similar to photodissociation experiments where homolytic cleavage of carbon-iodine bonds has been utilized previously, but ETD activation can be performed without addition of a laser to the mass spectrometer. Both loss of iodine and loss of hydrogen iodide are observed, with the abundance of the latter product being greatly enhanced for some peptides after additional collisional activation. These observations suggest a novel ETD fragmentation pathway involving temporary storage of the electron in a charge-reduced arginine side chain. Subsequent collisional activation of the peptide radical produced by loss of HI yields spectra dominated by radical-directed dissociation, which can be usefully employed for identification of peptide isomers, including epimers.
Sable, Rushikesh; Parajuli, Pravin; Jois, Seetharama
2017-01-01
Nature provides a variety of peptides that are expressed in most living species. Evolutionary pressure and natural selection have created and optimized these peptides to bind to receptors with high affinity. Hence, natural resources provide an abundant chemical space to be explored in peptide-based drug discovery. Marine peptides can be extracted by simple solvent extraction techniques. The advancement of analytical techniques has made it possible to obtain pure peptides from natural resources. Extracted peptides have been evaluated as possible therapeutic agents for a wide range of diseases, including antibacterial, antifungal, antidiabetic and anticancer activity as well as cardiovascular and neurotoxin activity. Although marine resources provide thousands of possible peptides, only a few peptides derived from marine sources have reached the pharmaceutical market. This review focuses on some of the peptides derived from marine sources in the past ten years and gives a brief review of those that are currently in clinical trials or on the market. PMID:28441741
Antimicrobial Peptides and Nanotechnology, Recent Advances and Challenges.
Biswaro, Lubhandwa S; da Costa Sousa, Mauricio G; Rezende, Taia M B; Dias, Simoni C; Franco, Octavio L
2018-01-01
Antimicrobial peptides are sequences of amino acids, which present activity against microorganisms. These peptides were discovered over 70 years ago, and are abundant in nature from soil bacteria, insects, amphibians to mammals and plants. They vary in amino acids number, the distance between amino acids within individual peptide structure, net charge, solubility and other physical chemical properties as well as differ in mechanism of action. These peptides may provide an alternative treatment to conventional antibiotics, which encounter resistance such as the peptide nisin applied in treating methicillin resistant Staphylococcus aureus (MRSA) or may behave synergistically with known antibiotics against parasites for instance, nisin Z when used in synergy with ampicillin reported better activity against Pseudomonas fluorescens than when the antibiotic was alone. AMPs are known to be active against viruses, bacteria, fungi and protozoans. Nanotechnology is an arena which explores the synthesis, characterization and application of an array of delivery systems at a one billionth of meter scale. Such systems are implemented to deliver drugs, proteins, vaccines, and peptides. The role of nanotechnology in delivering AMPs is still at its early development stage. There are challenges of incorporating AMPs into drug delivery system. This review intends to explore in depth, the role of nanotechnology in delivering AMPs as well as presenting the current advances and accompanying challenges of the technology.
Cacanyiova, S; Berenyiova, A; Balis, P; Kristek, F; Grman, M; Ondrias, K; Breza, J; Breza, J
2017-08-01
In normotensive conditions, it has been confirmed that S-nitrosothiols (RSNO), can interact with hydrogen sulfide (H 2 S) and create new substances with specific vasoactive effects. This interaction could also represent a new regulator signaling pathway in conditions of hypertension. Until now, these effects were studied only in normotensive rats, and they have not been carried out in humans yet. We investigated the vasoactive effects of the products of the H 2 S/S-nitrosoglutathione (S/GSNO) interaction in lobar arteries (LA) isolated from the nephrectomized kidneys of patients suffering from arterial hypertension and in renal arteries (RA) of spontaneously hypertensive rats (SHR). The changes in the isometric tension of pre-contracted arteries were evaluated. Acetylcholine-induced vasorelaxation of LA was reduced compared to the effect induced by an NO donor, sodium nitroprusside suggesting an endothelium dysfunction. While 1 μmol/L Na2S had a minimal effect on the vascular tone, the concentration 20 μmol/L evoked a slight vasorelaxation. GSNO at 0.1 μmol/L induced vasorelaxation, which was less pronounced compared to the effect induced by 1 μmol/L. The S/GSNO products (final concentration 0.1 μmol/L) prepared as the mixture of GSNO (0.1 μmol/L) + Na2S (1 μmol/L) induced a higher vasorelaxation compared to GSNO (0.1 μmol/L) alone only in the 5 th minute and without the differences in the speed. On the other hand, the S/GSNO products (final concentration 1 μmol/L) prepared as the mixture of GSNO (1 μmol/L) + Na2S (10 μmol/L) induced a higher and faster vasorelaxation compared to the effect induced by GSNO (1 μmol/L) alone. In RA of SHR this S/GSNO products induced similar vasorelaxation (higher and faster than GSNO) with involvement of HNO (partially) and cGMP as mediators. However, the products of the H 2 S/NO donor (DEA NONOate) manifested differently than S/GSNO indicating the unique interaction between GSNO and H 2 S. In this study, we confirmed
Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.
Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L
2013-01-29
In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.
Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments
Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V.; Rodriguez-Zas, Sandra L.
2013-01-01
In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments. PMID
Uncovering the design rules for peptide synthesis of metal nanoparticles.
Tan, Yen Nee; Lee, Jim Yang; Wang, Daniel I C
2010-04-28
Peptides are multifunctional reagents (reducing and capping agents) that can be used for the synthesis of biocompatible metal nanoparticles under relatively mild conditions. However, the progress in peptide synthesis of metal nanoparticles has been slow due to the lack of peptide design rules. It is difficult to establish sequence-reactivity relationships from peptides isolated from biological sources (e.g., biomineralizing organisms) or selected by combinatorial display libraries because of their widely varying compositions and structures. The abundance of random and inactive amino acid sequences in the peptides also increases the difficulty in knowledge extraction. In this study, a "bottom-up" approach was used to formulate a set of rudimentary rules for the size- and shape-controlled peptide synthesis of gold nanoparticles from the properties of the 20 natural alpha-amino acids for AuCl(4)(-) reduction and binding to Au(0). It was discovered that the reduction capability of a peptide depends on the presence of certain reducing amino acid residues, whose activity may be regulated by neighboring residues with different Au(0) binding strengths. Another finding is the effect of peptide net charge on the nucleation and growth of the Au nanoparticles. On the basis of these understandings, several multifunctional peptides were designed to synthesize gold nanoparticles in different morphologies (nanospheres and nanoplates) and with sizes tunable by the strategic placement of selected amino acid residues in the peptide sequence. The methodology presented here and the findings are useful for establishing the scientific basis for the rational design of peptides for the synthesis of metal nanostructures.
Wang, Y; Conlon, J M
1995-04-01
Vasoactive intestinal polypeptide (VIP) was purified from extracts of the stomachs of the rainbow trout, Oncorhynchus mykiss, and the bowfin, Amia calva. The primary structure of VIP from both species was the same: His-Ser-Asp-Ala-Ile-Phe-Thr-Asp-Asn-Tyr10- Ser-Arg-Phe-Arg-Lys-Gln-Met-Ala-Val-Lys20-Lys-Tyr-Leu-Asn-Ser-Val- Leu-Thr. This amino acid sequence shows only one amino acid substitution (Val5-->Ile) compared with the common sequence of VIP from the chicken, alligator, and European green frog. The structural identity of VIP from the trout and bowfin is consistent with the close phylogenetic relationship between the Salmoniformes and the Amiiformes and the data indicate that pressure to conserve the complete primary structure of VIP during vertebrate evolution has been very strong.
Baracat-Pereira, Maria Cristina; de Oliveira Barbosa, Meire; Magalhães, Marcos Jorge; Carrijo, Lanna Clicia; Games, Patrícia Dias; Almeida, Hebréia Oliveira; Sena Netto, José Fabiano; Pereira, Matheus Rodrigues; de Barros, Everaldo Gonçalves
2012-06-01
The enrichment and isolation of proteins are considered limiting steps in proteomic studies. Identification of proteins whose expression is transient, those that are of low-abundance, and of natural peptides not described in databases, is still a great challenge. Plant extracts are in general complex, and contaminants interfere with the identification of proteins involved in important physiological processes, such as plant defense against pathogens. This review discusses the challenges and strategies of separomics applied to the identification of low-abundance proteins and peptides in plants, especially in plants challenged by pathogens. Separomics is described as a group of methodological strategies for the separation of protein molecules for proteomics. Several tools have been used to remove highly abundant proteins from samples and also non-protein contaminants. The use of chromatographic techniques, the partition of the proteome into subproteomes, and an effort to isolate proteins in their native form have allowed the isolation and identification of rare proteins involved in different processes.
Optimization for Peptide Sample Preparation for Urine Peptidomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigdel, Tara K.; Nicora, Carrie D.; Hsieh, Szu-Chuan
2014-02-25
Analysis of native or endogenous peptides in biofluids can provide valuable insights into disease mechanisms. Furthermore, the detected peptides may also have utility as potential biomarkers for non-invasive monitoring of human diseases. The non-invasive nature of urine collection and the abundance of peptides in the urine makes analysis by high-throughput ‘peptidomics’ methods , an attractive approach for investigating the pathogenesis of renal disease. However, urine peptidomics methodologies can be problematic with regards to difficulties associated with sample preparation. The urine matrix can provide significant background interference in making the analytical measurements that it hampers both the identification of peptides andmore » the depth of the peptidomics read when utilizing LC-MS based peptidome analysis. We report on a novel adaptation of the standard solid phase extraction (SPE) method to a modified SPE (mSPE) approach for improved peptide yield and analysis sensitivity with LC-MS based peptidomics in terms of time, cost, clogging of the LC-MS column, peptide yield, peptide quality, and number of peptides identified by each method. Expense and time requirements were comparable for both SPE and mSPE, but more interfering contaminants from the urine matrix were evident in the SPE preparations (e.g., clogging of the LC-MS columns, yellowish background coloration of prepared samples due to retained urobilin, lower peptide yields) when compared to the mSPE method. When we compared data from technical replicates of 4 runs, the mSPE method provided significantly improved efficiencies for the preparation of samples from urine (e.g., mSPE peptide identification 82% versus 18% with SPE; p = 8.92E-05). Additionally, peptide identifications, when applying the mSPE method, highlighted the biology of differential activation of urine peptidases during acute renal transplant rejection with distinct laddering of specific peptides, which was obscured for most
Toward improved peptide feature detection in quantitative proteomics using stable isotope labeling.
Nilse, Lars; Sigloch, Florian Christoph; Biniossek, Martin L; Schilling, Oliver
2015-08-01
Reliable detection of peptides in LC-MS data is a key algorithmic step in the analysis of quantitative proteomics experiments. While highly abundant peptides can be detected reliably by most modern software tools, there is much less agreement on medium and low-intensity peptides in a sample. The choice of software tools can have a big impact on the quantification of proteins, especially for proteins that appear in lower concentrations. However, in many experiments, it is precisely this region of less abundant but substantially regulated proteins that holds the biggest potential for discoveries. This is particularly true for discovery proteomics in the pharmacological sector with a specific interest in key regulatory proteins. In this viewpoint article, we discuss how the development of novel software algorithms allows us to study this region of the proteome with increased confidence. Reliable results are one of many aspects to be considered when deciding on a bioinformatics software platform. Deployment into existing IT infrastructures, compatibility with other software packages, scalability, automation, flexibility, and support need to be considered and are briefly addressed in this viewpoint article. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peptide-containing nerve fibres in the gut wall in Crohn's disease.
Sjölund, K; Schaffalitzky, O B; Muckadell, D E; Fahrenkrug, J; Håkanson, R; Peterson, B G; Sundler, F
1983-01-01
Neurones containing VIP, substance P, or enkephalin were studied by immunocytochemistry in intestinal specimens from 27 patients with Crohn's disease. Also several endocrine cell systems in the gut were examined. The results were compared with those from a control group of 26 patients. The relative frequency of various endocrine cells did not differ overtly from that in controls. Vasoactive intestinal polypeptide and substance P nerve fibres were distributed in all layers of the gut wall, including the submucosal and myenteric plexuses, whereas enkephalin fibres were restricted to the smooth muscle layer and the myenteric plexus. The distribution and frequency of the peptide-containing nerve fibres were the same in Crohn's disease patients as in control patients. A proportion of these nerve fibres, however, were notably coarse in the Crohn's disease patients. This was particularly apparent in the afflicted parts of the intestine although it was noted also in non-afflicted parts. The concentration of VIP and substance P (expressed as pmol/g wet weight) did not, however, exceed that of the control group. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:6192043
Uckert, Stefan; Stief, Christian G; Lietz, Burckhard; Burmester, Martin; Jonas, Udo; Machtens, Stefan A
2002-09-01
Results from basic research implicate a role for bioactive peptides in controlling the mammalian lower urinary tract. Although various peptides are assumed to be involved in the potentiaton or inhibition of cholinergic or purinergic activity in the urinary bladder, there is still much controversy regarding the mode of action and functional significance of such peptides in detrusor smooth muscle. Thus, we evaluated the functional effects of atrial natriuretic peptide (ANP), calcitonin gene related peptide (CGRP), endothelin 1 (ET-1), substance P (SP) and vasoactive intestinal polypeptide (VIP) on isolated strip preparations of human detrusor smooth muscle and determined the presence of those peptides in the human detrusor by means of immunohistochemistry. The effects of peptides on isometric tension of isolated detrusor strip preparations and on tissue levels of cyclic nucleotides cAMP and cGMP were compared to those of adenylyl cyclase activator forskolin (F), nitric oxide donor Na(+)-nitroprusside (SNP) and non-specific phosphodiesterase (PDE) inhibitor papaverine (P). The effects of the compounds on isometric tension of isolated human detrusor smooth muscle were examined using the organ bath technique. To determine time- and dose-dependent effects on cyclic nucleotide levels, bladder strips were exposed to increasing doses of F, SNP, P, ANP, CGRP and VIP, then rapidly frozen in liquid nitrogen and homogenised in the frozen state. cAMP and cGMP were extracted and assayed using specific radioimmunoassays. The presence of peptides was investigated by light microscopy using the Avidin-Biotin-Complex (ABC) method. F, P and VIP most effectively reversed the carbachol-induced tension of isolated human detrusor strips. Relaxing effects of ANP, CGRP and SNP were negligible. In contrast, ET-1 and SP elicited dose-dependent contractions of the tissue. The relaxing effects of F, P and VIP were accompanied by an increase in cAMP and cGMP levels, respectively. Light microscopy
Baracat-Pereira, Maria Cristina; de Oliveira Barbosa, Meire; Magalhães, Marcos Jorge; Carrijo, Lanna Clicia; Games, Patrícia Dias; Almeida, Hebréia Oliveira; Sena Netto, José Fabiano; Pereira, Matheus Rodrigues; de Barros, Everaldo Gonçalves
2012-01-01
The enrichment and isolation of proteins are considered limiting steps in proteomic studies. Identification of proteins whose expression is transient, those that are of low-abundance, and of natural peptides not described in databases, is still a great challenge. Plant extracts are in general complex, and contaminants interfere with the identification of proteins involved in important physiological processes, such as plant defense against pathogens. This review discusses the challenges and strategies of separomics applied to the identification of low-abundance proteins and peptides in plants, especially in plants challenged by pathogens. Separomics is described as a group of methodological strategies for the separation of protein molecules for proteomics. Several tools have been used to remove highly abundant proteins from samples and also non-protein contaminants. The use of chromatographic techniques, the partition of the proteome into subproteomes, and an effort to isolate proteins in their native form have allowed the isolation and identification of rare proteins involved in different processes. PMID:22802713
Discovery of 12-mer peptides that bind to wood lignin
Yamaguchi, Asako; Isozaki, Katsuhiro; Nakamura, Masaharu; Takaya, Hikaru; Watanabe, Takashi
2016-01-01
Lignin, an abundant terrestrial polymer, is the only large-volume renewable feedstock composed of an aromatic skeleton. Lignin has been used mostly as an energy source during paper production; however, recent interest in replacing fossil fuels with renewable resources has highlighted its potential value in providing aromatic chemicals. Highly selective degradation of lignin is pivotal for industrial production of paper, biofuels, chemicals, and materials. However, few studies have examined natural and synthetic molecular components recognizing the heterogeneous aromatic polymer. Here, we report the first identification of lignin-binding peptides possessing characteristic sequences using a phage display technique. The consensus sequence HFPSP was found in several lignin-binding peptides, and the outer amino acid sequence affected the binding affinity of the peptides. Substitution of phenylalanine7 with Ile in the lignin-binding peptide C416 (HFPSPIFQRHSH) decreased the affinity of the peptide for softwood lignin without changing its affinity for hardwood lignin, indicating that C416 recognised structural differences between the lignins. Circular dichroism spectroscopy demonstrated that this peptide adopted a highly flexible random coil structure, allowing key residues to be appropriately arranged in relation to the binding site in lignin. These results provide a useful platform for designing synthetic and biological catalysts selectively bind to lignin. PMID:26903196
Cour, M; Hernu, R; Bénet, T; Robert, J M; Regad, D; Chabert, B; Malatray, A; Conrozier, S; Serra, P; Lassaigne, M; Vanhems, P; Argaud, L
2013-11-01
Manual changeover of vasoactive drug infusion pumps (CVIP) frequently lead to haemodynamic instability. Some of the newest smart pumps allow automated CVIP. The aim of this study was to compare automated CVIP with manual 'Quick Change' relays. We performed a prospective, quasi-experimental study, in a university-affiliated intensive care unit (ICU). All adult patients receiving continuous i.v. infusion of vasoactive drugs were included. CVIP were successively performed manually (Phase 1) and automatically (Phase 2) during two 6-month periods. The primary endpoint was the frequency of haemodynamic incidents related to the relays, which were defined as variations of mean arterial pressure >15 mm Hg or heart rate >15 bpm. The secondary endpoints were the nursing time dedicated to relays and the number of interruptions in care because of CVIP. A multivariate mixed effects logistic regression was fitted for analytic analysis. We studied 1329 relays (Phase 1: 681, Phase 2: 648) from 133 patients (Phase 1: 63, Phase 2: 70). Incidents related to CVIP decreased from 137 (20%) in Phase 1 to 73 (11%) in Phase 2 (P<0.001). Automated relays were independently associated with a 49% risk reduction of CVIP-induced incidents (adjusted OR=0.51, 95% confidence interval 0.34-0.77, P=0.001). Time dedicated to the relays and the number of interruptions in care to manage CVIP were also significantly reduced with automated relays vs manual relays (P=0.001). These results demonstrate the benefits of automated CVIP using smart pumps in limiting the frequency of haemodynamic incidents related to relays and in reducing the nursing workload.
Goursaud, Stéphanie; Schäfer, Sabrina; Dumont, Amélie O; Vergouts, Maxime; Gallo, Alessandro; Desmet, Nathalie; Deumens, Ronald; Hermans, Emmanuel
2015-01-01
Vasoactive intestinal peptide (VIP) has potent immune modulatory actions that may influence the course of neurodegenerative disorders associated with chronic inflammation. Here, we show the therapeutic benefits of a modified peptide agonist stearyl-norleucine-VIP (SNV) in a transgenic rat model of amyotrophic lateral sclerosis (mutated superoxide dismutase 1, hSOD1(G93A)). When administered by systemic every-other-day intraperitoneal injections during a period of 80 days before disease, SNV delayed the onset of motor dysfunction by no less than three weeks, while survival was extended by nearly two months. SNV-treated rats showed reduced astro- and microgliosis in the lumbar ventral spinal cord and a significant degree of motor neuron preservation. Throughout the treatment, SNV promoted the expression of the anti-inflammatory cytokine interleukin-10 as well as neurotrophic factors commonly considered as beneficial in amyotrophic lateral sclerosis management (glial derived neuroptrophic factor, insulin like growth factor, brain derived neurotrophic factor). The peptide nearly totally suppressed the expression of tumor necrosis factor-α and repressed the production of the pro-inflammatory mediators interleukin-1β, nitric oxide and of the transcription factor nuclear factor kappa B. Inhibition of tumor necrosis factor-α likely accounted for the observed down-regulation of nuclear factor kappa B that modulates the transcription of genes specifically involved in amyotrophic lateral sclerosis (sod1 and the glutamate transporter slc1a2). In line with this, levels of human superoxide dismutase 1 mRNA and protein were decreased by SNV treatment, while the expression and activity of the glutamate transporter-1 was promoted. Considering the large diversity of influences of this peptide on both clinical features of the disease and associated biochemical markers, we propose that SNV or related peptides may constitute promising candidates for amyotrophic lateral sclerosis
Mediation of the vasoactive properties of diadenosine tetraphosphate via various purinoceptors.
van der Giet, M; Jankowski, J; Schlüter, H; Zidek, W; Tepel, M
1998-12-01
The vasoactive properties of P1,P4-diadenosine tetraphosphate (Ap4A) were studied by measuring the effects of perfusion pressure of a rat isolated perfused kidney. The vasoconstrictive response to Ap4A was mediated to a large extent to a P2X receptor which could be shown by inhibition with pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium. The remaining vasoconstriction of Ap4A could be blocked by a 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective A1 receptor antagonist In raised tone preparation Ap4A evoked vasodilation when P2 receptors were blocked by suramin. The dilation was not mediated by a P2Y receptor as the effect could not be blocked by suramin. Ap4A induces vasoconstriction via A1 and P2X receptors and vasodilatation via an unidentified receptor which is not a P2Y receptor. Ap4A may play an important role in kidney perfusion and, thus, in blood-pressure control.
Large Extremity Peripheral Nerve Repair
2014-10-01
has also been shown to produce human-beta-3-defensin. These antimicrobial peptides are implicated in the resistance of epithelial surfaces to...gonadotrophin receptors that regulate prostaglandin production and activity. Epithelial cells manufacture multiple vasoactive peptides , growth factors...200734 P-RCT (n Z 102) PT burns Processed Amnion vs topical antimicrobials . Significantly less dressing changes with amnion. Time to healing, length
Serum Stabilities of Short Tryptophan- and Arginine-Rich Antimicrobial Peptide Analogs
Nguyen, Leonard T.; Chau, Johnny K.; Perry, Nicole A.; de Boer, Leonie; Zaat, Sebastian A. J.; Vogel, Hans J.
2010-01-01
Background Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the “antimicrobial centre” of bovine lactoferricin as well as an antimicrobial sequence obtained through the screening of a hexapeptide combinatorial library. Methodology/Principal Findings HPLC, mass spectrometry and antimicrobial assays were carried out to explore the consequences of the modifications on the serum stability and microbicidal activity of the peptides. The results show that C-terminal amidation increases the antimicrobial activity but that it makes little difference to its proteolytic degradation in human serum. On the other hand, N-terminal acetylation decreases the peptide activities but significantly increases their protease resistance. Peptide cyclization of the hexameric peptides was found to be highly effective for both serum stability and antimicrobial activity. However the two cyclization strategies employed have different effects, with disulfide cyclization resulting in more active peptides while backbone cyclization results in more proteolytically stable peptides. However, the benefit of backbone cyclization did not extend to longer 11-mer peptides derived from the same region of lactoferricin. Mass spectrometry data support the serum stability assay results and allowed us to determine preferred proteolysis sites in the peptides. Furthermore, isothermal titration calorimetry experiments showed that the peptides all had weak interactions with albumin, the most abundant protein in human serum. Conclusions/Significance Taken together, the results provide insight into the behavior of the peptides in human serum and will therefore aid in advancing antimicrobial peptide design towards systemic applications. PMID:20844765
Lindner, Simon; Fiedler, Luise; Wängler, Björn; Bartenstein, Peter; Schirrmacher, Ralf; Wängler, Carmen
2018-05-29
Radiolabeled heterobivalent peptidic ligands (HBPLs), being able to address different receptors, are highly interesting tumor imaging agents as they can offer multiple advantages over monovalent peptide receptor ligands. However, few examples of radiolabeled HBPLs have been described so far. One promising approach is the combination of gastrin-releasing peptide receptor (GRPR)- and vasoactive intestinal peptide receptor subtype 1 (VPAC 1 R)-targeting peptides into one single radioligand since gastrinomas, prostate and breast cancer have been shown to concomitantly or complementarily overexpress both receptors. Here we report the design and synthesis of different HBPLs, comprising a GRPR-binding (BBN 7-14 ) and a VPAC 1 R-targeting (PACAP-27) peptide. The heterodimers were varied with regard to the distance between the peptide binders and the steric rigidity of the systems. We radiolabeled the HBPLs 19-23 as well as their monomeric reference standards 26 and 27 with 68 Ga, achieving radiochemical yields and purities of 95-99% and non-optimized molar activities of 25-61 GBq/μmol. We tested the stability of the radioligands and further evaluated them in vitro regarding their uptake in different prostate carcinoma cell lines (PC-3, DU-145 and VCaP cells). We found that the heterobivalent substances [ 68 Ga]19 - [ 68 Ga]23 showed comparable uptakes into the tumor cells to those of the respective monomers [ 68 Ga]26 and [ 68 Ga]27, indicating that both peptides are still able to address their target receptors. Furthermore, the obtained results indicate that in case of overall low receptor densities, heterobivalent peptides surpass peptide monomers in tumor cell uptake. Most importantly, it could be shown by blocking studies that both peptide parts of the HBPL [ 68 Ga]19 contributed to tumor cell uptake in VCaP cells, expressing both receptor types. Thus, we describe here the first examples of HBPLs being able to address the GRPR as well as the VPAC 1 R and have the
Ramesh Babu, A; Raju, G; Purna Chander, C; Shoban Babu, B; Srinivas, R; Sharma, G V M
A new class of Boc-N-protected hybrid peptides derived from L- Ala and ε 6 -Caa (L-Ala = L-Alanine, Caa = C-linked carboamino acid derived from D-xylose) have been studied by positive ion electrospray ionization (ESI) ion-trap tandem mass spectrometry (MS/MS). MS n spectra of protonated and alkali-cationized hybrid peptides produce characteristic fragmentation involving the peptide backbone, the tert-butyloxycarbonyl (Boc) group, and the side chain. The dipeptide positional isomers are differentiated by the collision-induced dissociation (CID) of the protonated and alkali-cationized peptides. The CID of [M + H] + ion of Boc-NH-L-Ala-ε-Caa- OCH 3 (1) shows a prominent [M + H - C 4 H 8 ] + ion, which is totally absent for its positional isomer Boc-NH-ε-Caa-L-Ala-OCH 3 (6), which instead shows significant loss of t-butanol. The formation of the [M + Cat - C 4 H 8 ] + ion is totally absent and [M + Cat - Boc + H] + is prominent in the CID of the [M + Cat] + ion of Boc-NH-L-Ala-ε-Caa- OCH 3 (1), whereas the former is highly abundant and the latter is of low abundance for its positional isomer Boc-NH-ε-Caa-L-Ala-OCH 3 (6). It is observed that 'b' ions are abundant when oxazolone structures are formed through a five-membered cyclic transition state in tetra-, penta-, and hexapeptides and the cyclization process for larger 'b' ions led to an insignificant abundance. However, the significant 'b' ion is formed in ε,α-dipeptide, which may have a seven-membered substituted 2-oxoazepanium ion structure. The MS n spectra of [M + Cat - Boc + H] + ions of these peptides are found to be significantly different to those of [M + H - Boc + H] + ions. The CID spectra of [M + Cat - Boc + H] + ions of peptide acids containing L-Ala at the C-terminus show an abundant N-terminal rearrangement ion, [b n + 17 + Cat] + , which is absent for the peptide acids containing ε-Caa at the C-terminus. Thus, the results of these hybrid peptides
Dexamethasone increases production of C-type natriuretic peptide in the sheep brain.
Wilson, Michele O; McNeill, Bryony A; Barrell, Graham K; Prickett, Timothy C R; Espiner, Eric A
2017-10-01
Although C-type natriuretic peptide (CNP) has high abundance in brain tissues and cerebrospinal fluid (CSF), the source and possible factors regulating its secretion within the central nervous system (CNS) are unknown. Here we report the dynamic effects of a single IV bolus of dexamethasone or saline solution on plasma, CSF, CNS and pituitary tissue content of CNP products in adult sheep, along with changes in CNP gene expression in selected tissues. Both CNP and NTproCNP (the amino-terminal product of proCNP) in plasma and CSF showed dose-responsive increases lasting 12-16 h after dexamethasone, whereas other natriuretic peptides were unaffected. CNS tissue concentrations of CNP and NTproCNP were increased by dexamethasone in all of the 12 regions examined. Abundance was highest in limbic tissues, pons and medulla oblongata. Relative to controls, CNP gene expression ( NPPC ) was upregulated by dexamethasone in 5 of 7 brain tissues examined. Patterns of responses differed in pituitary tissue. Whereas the abundance of CNP in both lobes of the pituitary gland greatly exceeded that of brain tissues, neither CNP nor NTproCNP concentration was affected by dexamethasone, despite an increase in NPPC expression. This is the first report of enhanced production and secretion of CNP in brain tissues in response to a corticosteroid. Activation of CNP secretion within CNS tissues by dexamethasone, not exhibited by other natriuretic peptides, suggests an important role for CNP in settings of acute stress. Differential findings in pituitary tissues likely relate to altered processing of proCNP storage and secretion. © 2017 Society for Endocrinology.
PECAN: Library Free Peptide Detection for Data-Independent Acquisition Tandem Mass Spectrometry Data
Ting, Ying S.; Egertson, Jarrett D.; Bollinger, James G.; Searle, Brian C.; Payne, Samuel H.; Noble, William Stafford; MacCoss, Michael J.
2017-01-01
In mass spectrometry-based shogun proteomics, data-independent acquisition (DIA) is an emerging technique for unbiased and reproducible measurement of protein mixtures. Without targeting a specific precursor ion, DIA MS/MS spectra are often highly multiplexed, containing product ions from multiple co-fragmenting precursors. Thus, detecting peptides directly from DIA data is challenging; most DIA data analyses require spectral libraries. Here we present a new library-free, peptide-centric tool PECAN that detects peptides directly from DIA data. PECAN reports evidence of detection based on product ion scoring, enabling detection of low abundance analytes with poor precursor ion signal. We benchmarked PECAN with chromatographic peak picking accuracy and peptide detection capability. We further validated PECAN detection with data-dependent acquisition and targeted analyses. Last, we used PECAN to build a library from DIA data and to query sequence variants. Together, these results show that PECAN detects peptides robustly and accurately from DIA data without using a library. PMID:28783153
Ga2O3 photocatalyzed on-line tagging of cysteine to facilitate peptide mass fingerprinting.
Qiao, Liang; Su, Fangzheng; Bi, Hongyan; Girault, Hubert H; Liu, Baohong
2011-09-01
β-Ga(2)O(3) is a wide-band-gap semiconductor having strong oxidation ability under light irradiation. Herein, the steel target plates modified with β-Ga(2)O(3) nanoparticles have been developed to carry out in-source photo-catalytic oxidative reactions for online peptide tagging during laser desorption/ionization mass spectrometry (LDI-MS) analysis. Under UV laser irradiation, β-Ga(2)O(3) can catalyze the photo-oxidation of 2-methoxyhydroquinone added to a sample mixture to 2-methoxy benzoquinone that can further react with the thiol groups of cysteine residues by Michael addition reaction. The tagging process leads to appearance of pairs of peaks with an m/z shift of 138.1Th. This online labelling strategy is demonstrated to be sensitive and efficient with a detection-limit at femtomole level. Using the strategy, the information on cysteine content in peptides can be obtained together with peptide mass, therefore constraining the database searching for an advanced identification of cysteine-containing proteins from protein mixtures. The current peptide online tagging method can be important for specific analysis of cysteine-containing proteins especially the low-abundant ones that cannot be completely isolated from other high-abundant non-cysteine-proteins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development and Testing of a 212Pb/212Bi Peptide for Targeting Metastatic Melanoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, Darrell R.
2012-10-25
The purpose of this project is to develop a new radiolabeled peptide for imaging and treating metastatic melanoma. The immunoconjugate consists of a receptor-specific peptide that targets melanoma cells. The beta-emitter lead-212 (half-life = 10.4 hours) is linked by coordination chemistry to the peptide. After injection, the peptide targets melanoma receptors on the surfaces of melanoma cells. Lead-212 decays to the alpha-emitter bismuth-212 (half-life = 60 minutes). Alpha-particles that hit melanoma cell nuclei are likely to kill the melanoma cell. For cancer cell imaging, the lead-212 is replaced by lead-203 (half-life = 52 hours). Lead-203 emits 279 keV photons (80.1%more » abundance) that can be imaged and measured for biodistribution analysis, cancer imaging, and quantitative dosimetry.« less
Li, Xiao; Tan, Jie; Yu, Jiekai; Feng, Jiandong; Pan, Aiwu; Zheng, Shu; Wu, Jianmin
2014-11-07
Small peptides in serum are potential biomarkers for the diagnosis of cancer and other diseases. The identification of peptide biomarkers in human plasma/serum has become an area of high interest in medical research. However, the direct analysis of peptides in serum samples using mass spectrometry is challenging due to the low concentration of peptides and the high abundance of high-molecular-weight proteins in serum, the latter of which causes severe signal suppression. Herein, we reported that porous semiconductor-noble metal hybrid nanostructures can both eliminate the interference from large proteins in serum samples and significantly enhance the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) yields of peptides captured on the nanostructure. Serum peptide fingerprints with high fidelity can be acquired rapidly, and successful discrimination of colorectal cancer patients based on peptide fingerprints is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.
Selective enrichment and desalting of hydrophilic peptides using graphene oxide.
Jiang, Miao; Qi, Linyu; Liu, Peiru; Wang, Zijun; Duan, Zhigui; Wang, Ying; Liu, Zhonghua; Chen, Ping
2016-08-01
The wide variety and low abundance of peptides in tissue brought great difficulties to the separation and identification of peptides, which is not in favor of the development of peptidomics. RP-HPLC, which could purify small molecules based on their hydrophobicity, has been widely used in the separation and enrichment of peptide due to its fast, good reproducibility and high resolution. However, RP-HPLC requires the instrument and expensive C18 column and its sample capacity is also limited. Recently, graphene oxide has been applied to the adsorption of amino acids. However, the enrichment efficiency and selectivity of graphene oxide for peptides remain unclear. In this study, the adsorption efficiency and selectivity of graphene oxide and RP-C18 matrix were compared on trypsinized α-actin and also on tissue extracts from pituitary gland and hippocampus. For α-actin, there exhibit similar elution peaks for total trypsinized products and those adsorpted by GO and C18 matrix. But peptides adsorbed by GO showed the higher hydrophilic peaks than which adsorbed by C18 matrix. The resulted RP-HPLC profile showed that most of peptides enriched by graphene oxide were eluted at low concentration of organic solvent, while peptides adsorbed by RP-C18 matrix were mostly eluted at relatively high concentration. Moreover, mass spectrometry analysis suggested that, in pituitary sample, there were 495 peptides enriched by graphene oxide, 447 peptides enriched by RP-C18 matrix while in hippocampus sample 333 and 243 peptides respectively. The GRAVY value analysis suggested that the graphene oxide has a stronger adsorption for highly hydrophilic peptides compared to the RP-C18 matrix. Furthermore, the combination of these two methods could notably increase the number of identification peptides but also the number of predicted protein precursors. Our study provided a new thought to the role of graphene oxide during the enrichment of peptides from tissue which should be useful for
Selection of peptides interfering with protein-protein interaction.
Gaida, Annette; Hagemann, Urs B; Mattay, Dinah; Räuber, Christina; Müller, Kristian M; Arndt, Katja M
2009-01-01
Cell physiology depends on a fine-tuned network of protein-protein interactions, and misguided interactions are often associated with various diseases. Consequently, peptides, which are able to specifically interfere with such adventitious interactions, are of high interest for analytical as well as medical purposes. One of the most abundant protein interaction domains is the coiled-coil motif, and thus provides a premier target. Coiled coils, which consist of two or more alpha-helices wrapped around each other, have one of the simplest interaction interfaces, yet they are able to confer highly specific homo- and heterotypic interactions involved in virtually any cellular process. While there are several ways to generate interfering peptides, the combination of library design with a powerful selection system seems to be one of the most effective and promising approaches. This chapter guides through all steps of such a process, starting with library options and cloning, detailing suitable selection techniques and ending with purification for further down-stream characterization. Such generated peptides will function as versatile tools to interfere with the natural function of their targets thereby illuminating their down-stream signaling and, in general, promoting understanding of factors leading to specificity and stability in protein-protein interactions. Furthermore, peptides interfering with medically relevant proteins might become important diagnostics and therapeutics.
Chakraborty, Tandra R; Tkalych, Oleg; Nanno, Daniela; Garcia, Angelo L; Devi, Lakshmi A; Salton, Stephen R J
2006-05-17
Two novel granin-like polypeptides, VGF and pro-SAAS, which are stored in and released from secretory vesicles and are expressed widely in nervous, endocrine, and neuroendocrine tissues, play roles in the regulation of body weight, feeding, and energy expenditure. Both VGF and pro-SAAS are cleaved into peptide fragments, several of which are biologically active. We utilized a highly sensitive and specific radioimmunoassay (RIA) to immunoreactive, pro-SAAS-derived PEN peptides, developed another against immunoreactive, VGF-derived AQEE30 peptides, and quantified these peptides in various mouse tissues and brain regions. Immunoreactive AQEE30 was most abundant in the pituitary, while brain levels were highest in hypothalamus, striatum, and frontal cortex. Immunoreactive PEN levels were highest in the pancreas and spinal cord, and in brain, PEN was most abundant in striatum, hippocampus, pons and medulla, and cortex. Since both peptides were expressed in hypothalamus, a region of the brain that controls feeding and energy expenditure, double label immunofluorescence studies were employed. These demonstrated that 42% of hypothalamic arcuate neurons coexpress VGF and SAAS peptides, and that the intracellular distributions of these peptides in arcuate neurons differed. By RIA, cold stress increased immunoreactive AQEE30 and PEN peptide levels in female but not male hypothalamus, while a high fat diet increased AQEE30 and PEN peptide levels in female but not male hippocampus. VGF and SAAS-derived peptides are therefore widely expressed in endocrine, neuroendocrine, and neural tissues, can be accurately quantified by RIA, and are differentially regulated in the brain by diet and cold stress.
... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... pancreatic tumors called VIPomas (associated with vasoactive intestinal peptide (VIP) hormone production). Concentrations of calcitonin may be increased with ...
Ye, Xueting; Zhao, Nan; Yu, Xi; Han, Xiaoli; Gao, Huiyuan; Zhang, Xiaozhe
2016-11-01
Panax ginseng is an important herb that has clear effects on the treatment of diverse diseases. Until now, the natural peptide constitution of this herb remains unclear. Here, we conduct an extensive characterization of Ginseng peptidome using MS-based data mining and sequencing. The screen on the charge states of precursor ions indicated that Ginseng is a peptide-rich herb in comparison of a number of commonly used herbs. The Ginseng peptides were then extracted and submitted to nano-LC-MS/MS analysis using different fragmentation modes, including CID, high-energy collisional dissociation, and electron transfer dissociation. Further database search and de novo sequencing allowed the identification of total 308 peptides, some of which might have important biological activities. This study illustrates the abundance and sequences of endogenous Ginseng peptides, thus providing the information of more candidates for the screening of active compounds for future biological research and drug discovery studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jarnuczak, Andrew F; Lee, Dave C H; Lawless, Craig; Holman, Stephen W; Eyers, Claire E; Hubbard, Simon J
2016-09-02
Quantitative mass spectrometry-based proteomics of complex biological samples remains challenging in part due to the variability and charge competition arising during electrospray ionization (ESI) of peptides and the subsequent transfer and detection of ions. These issues preclude direct quantification from signal intensity alone in the absence of a standard. A deeper understanding of the governing principles of peptide ionization and exploitation of the inherent ionization and detection parameters of individual peptides is thus of great value. Here, using the yeast proteome as a model system, we establish the concept of peptide F-factor as a measure of detectability, closely related to ionization efficiency. F-factor is calculated by normalizing peptide precursor ion intensity by absolute abundance of the parent protein. We investigated F-factor characteristics in different shotgun proteomics experiments, including across multiple ESI-based LC-MS platforms. We show that F-factors mirror previously observed physicochemical predictors as peptide detectability but demonstrate a nonlinear relationship between hydrophobicity and peptide detectability. Similarly, we use F-factors to show how peptide ion coelution adversely affects detectability and ionization. We suggest that F-factors have great utility for understanding peptide detectability and gas-phase ion chemistry in complex peptide mixtures, selection of surrogate peptides in targeted MS studies, and for calibration of peptide ion signal in label-free workflows. Data are available via ProteomeXchange with identifier PXD003472.
Bollineni, Ravi Chand; Guldvik, Ingrid J; Grönberg, Henrik; Wiklund, Fredrik; Mills, Ian G; Thiede, Bernd
2015-12-21
Depletion of highly abundant proteins is an approved step in blood plasma analysis by mass spectrometry (MS). In this study, we explored a precipitation and differential protein solubility approach as a fractionation strategy for abundant protein removal from plasma. Total proteins from plasma were precipitated with 90% saturated ammonium sulfate, followed by differential solubilization in 55% and 35% saturated ammonium sulfate solutions. Using a four hour liquid chromatography (LC) gradient and an LTQ-Orbitrap XL mass spectrometer, a total of 167 and 224 proteins were identified from the 55% and 35% ammonium sulfate fractions, whereas 235 proteins were found in the remaining protein fractions with at least two unique peptides. SDS-PAGE and exclusive total spectrum counts from LC-MS/MS analyses clearly showed that majority of the abundant plasma proteins were solubilized in 55% and 35% ammonium sulfate solutions, indicating that the remaining protein fraction is of potential interest for identification of less abundant plasma proteins. Serum albumin, serotransferrin, alpha-1-antitrypsin and transthyretin were the abundant proteins that were highly enriched in 55% ammonium sulfate fractions. Immunoglobulins, complement system proteins, and apolipoproteins were among other abundant plasma proteins that were enriched in 35% ammonium sulfate fractions. In the remaining protein fractions a total of 40 unique proteins were identified of which, 32 proteins were identified with at least 10 exclusive spectrum counts. According to PeptideAtlas, 9 of these 32 proteins were estimated to be present at low μg ml(-1) (0.12-1.9 μg ml(-1)) concentrations in the plasma, and 17 at low ng ml(-1) (0.1-55 ng ml(-1)) range.
Wang, Huixin; Wang, Bing; Wei, Zhonglin; Zhang, Hao; Guo, Xinhua
2015-01-01
A good understanding of gas-phase fragmentation chemistry of peptides is important for accurate protein identification. Additional product ions obtained by sodiated peptides can provide useful sequence information supplementary to protonated peptides and improve protein identification. In this work, we first demonstrate that the sodiated a3 ions are abundant in the tandem mass spectra of sodium-cationized peptides although observations of a3 ions have rarely been reported in protonated peptides. Quantum chemical calculations combined with tandem mass spectrometry are used to investigate this phenomenon by using a model tetrapeptide GGAG. Our results reveal that the most stable [a3 + Na - H](+) ion is present as a bidentate linear structure in which the sodium cation coordinates to the two backbone carbonyl oxygen atoms. Due to structural inflexibility, further fragmentation of the [a3 + Na - H](+) ion needs to overcome several relatively high energetic barriers to form [b2 + Na - H](+) ion with a diketopiperazine structure. As a result, low abundance of [b2 + Na - H](+) ion is detected at relatively high collision energy. In addition, our computational data also indicate that the common oxazolone pathway to generate [b2 + Na - H](+) from the [a3 + Na - H](+) ion is unlikely. The present work provides a mechanistic insight into how a sodium ion affects the fragmentation behaviors of peptides. Copyright © 2015 John Wiley & Sons, Ltd.
pH-driven colloidal transformations based on the vasoactive drug nicergoline.
Salentinig, Stefan; Tangso, Kristian J; Hawley, Adrian; Boyd, Ben J
2014-12-16
The structure of colloidal self-assembled drug delivery systems can be influenced by intermolecular interactions between drug and amphiphilic molecules, and is important to understand in the context of designing improved delivery systems. Controlling these structures can enable controlled or targeted release systems for poorly water-soluble drugs. Here we present the interaction of the hydrophobic vasoactive drug nicergoline with the internal structure of nanostructured emulsion particles based on the monoglyceride-water system. Addition of this drug leads to modification of the internal bicontinuous cubic structure to generate highly pH-responsive systems. The colloidal structures were characterized with small-angle X-ray scattering and visualized using cryogenic transmission electron microscopy. Reversible transformations to inverse micelles at high pH, vesicles at low pH, and the modification of the spacing of the bicontinuous cubic structure at intermediate pH were observed, and enabled the in situ determination of an apparent pKa for the drug in this system--a difficult task using solution-based approaches. The characterization of this phase behavior is also highly interesting for the design of pH-responsive controlled release systems for poorly water-soluble drug molecules.
PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, Ying S.; Egertson, Jarrett D.; Bollinger, James G.
Data-independent acquisition (DIA) is an emerging mass spectrometry (MS)-based technique for unbiased and reproducible measurement of protein mixtures. DIA tandem mass spectrometry spectra are often highly multiplexed, containing product ions from multiple cofragmenting precursors. Detecting peptides directly from DIA data is therefore challenging; most DIA data analyses require spectral libraries. Here we present PECECAN (http://pecan.maccosslab.org), a library-free, peptide-centric tool that robustly and accurately detects peptides directly from DIA data. PECECAN reports evidence of detection based on product ion scoring, which enables detection of low-abundance analytes with poor precursor ion signal. We demonstrate the chromatographic peak picking accuracy and peptide detectionmore » capability of PECECAN, and we further validate its detection with data-dependent acquisition and targeted analyses. Lastly, we used PECECAN to build a plasma proteome library from DIA data and to query known sequence variants.« less
LC-MS/MS Identification of Species-Specific Muscle Peptides in Processed Animal Proteins.
Marchis, Daniela; Altomare, Alessandra; Gili, Marilena; Ostorero, Federica; Khadjavi, Amina; Corona, Cristiano; Ru, Giuseppe; Cappelletti, Benedetta; Gianelli, Silvia; Amadeo, Francesca; Rumio, Cristiano; Carini, Marina; Aldini, Giancarlo; Casalone, Cristina
2017-12-06
An innovative analytical strategy has been applied to identify signature peptides able to distinguish among processed animal proteins (PAPs) derived from bovine, pig, fish, and milk products. Proteomics was first used to elucidate the proteome of each source. Starting from the identified proteins and using a funnel based approach, a set of abundant and well characterized peptides with suitable physical-chemical properties (signature peptides) and specific for each source was selected. An on-target LC-ESI-MS/MS method (MRM mode) was set up using standard peptides and was then applied to selectively identify the PAP source and also to distinguish proteins from bovine carcass and milk proteins. We believe that the method described meets the request of the European Commission which has developed a strategy for gradually lifting the "total ban" toward "species to species ban", therefore requiring official methods for species-specific discrimination in feed.
Comparison of Different IMAC Techniques Used for Enrichment of Phosphorylated Peptides
Kånge, Rikard; Selditz, Ulrike; Granberg, Maria; Lindberg, Ulrika; Ekstrand, Gunnar; Ek, Bo; Gustafsson, Magnus
2005-01-01
Four commercially available immobilized metal ion affinity chromatography (IMAC) methods for phosphopeptide enrichment were compared using small volumes and concentrations of phosphopeptide mixtures with or without extra-added bovine serum albumin (BSA) nonphosphorylated peptides. Addition of abundant tryptic BSA peptides to the phosphopeptide mixture increases the demand for selective IMAC capture. While SwellGel gallium Discs, IPAC Metal Chelating Resin, and ZipTipMC Pipette Tips allow for the possibility of enriching phosphopeptides, the Gyrolab MALDI IMAC1 also presents the possibility of verifying existing phosphopeptides after a dephosphorylation step. Phosphate-containing peptides are identified through a mass shift between phosphorylated and dephosphorylated spectra of 80 Da (or multiples of 80 Da). This verification is useful if the degree of phosphorylation is low in the sample or if the ionization is unfavorable, which often is the case for phosphopeptides. A peptide mixture in which phosphorylated serine, threonine, and tyrosine were represented was diluted in steps and thereafter enriched using the four different IMAC methods prior to analyses with matrix assisted laser desorption/ionization mass spectrometry. The enrichment of phosphopeptides using SwellGel Gallium Discs or Gyrolab MALDI IMAC1 was not significantly affected by the addition of abundant BSA peptides added to the sample mixture, and the achieved detection limits using these techniques were also the lowest. All four of the included phosphopeptides were detected by MALDI-MS only after enrichment using the Gyrolab MALDI IMAC1 compact disc (CD) and detection down to low femtomole levels was possible. Furthermore, selectivity, reproducibility, and detection for a number of other phosphopeptides using the IMAC CD are reported herein. For example, two phosphopeptides sent out in a worldwide survey performed by the Proteomics Research Group (PRG03) of the Association of Biomolecular Resource
Phage display peptide libraries: deviations from randomness and correctives
Ryvkin, Arie; Ashkenazy, Haim; Weiss-Ottolenghi, Yael; Piller, Chen; Pupko, Tal; Gershoni, Jonathan M
2018-01-01
Abstract Peptide-expressing phage display libraries are widely used for the interrogation of antibodies. Affinity selected peptides are then analyzed to discover epitope mimetics, or are subjected to computational algorithms for epitope prediction. A critical assumption for these applications is the random representation of amino acids in the initial naïve peptide library. In a previous study, we implemented next generation sequencing to evaluate a naïve library and discovered severe deviations from randomness in UAG codon over-representation as well as in high G phosphoramidite abundance causing amino acid distribution biases. In this study, we demonstrate that the UAG over-representation can be attributed to the burden imposed on the phage upon the assembly of the recombinant Protein 8 subunits. This was corrected by constructing the libraries using supE44-containing bacteria which suppress the UAG driven abortive termination. We also demonstrate that the overabundance of G stems from variant synthesis-efficiency and can be corrected using compensating oligonucleotide-mixtures calibrated by mass spectroscopy. Construction of libraries implementing these correctives results in markedly improved libraries that display random distribution of amino acids, thus ensuring that enriched peptides obtained in biopanning represent a genuine selection event, a fundamental assumption for phage display applications. PMID:29420788
Schwenk, Jochen M; Omenn, Gilbert S; Sun, Zhi; Campbell, David S; Baker, Mark S; Overall, Christopher M; Aebersold, Ruedi; Moritz, Robert L; Deutsch, Eric W
2017-12-01
Human blood plasma provides a highly accessible window to the proteome of any individual in health and disease. Since its inception in 2002, the Human Proteome Organization's Human Plasma Proteome Project (HPPP) has been promoting advances in the study and understanding of the full protein complement of human plasma and on determining the abundance and modifications of its components. In 2017, we review the history of the HPPP and the advances of human plasma proteomics in general, including several recent achievements. We then present the latest 2017-04 build of Human Plasma PeptideAtlas, which yields ∼43 million peptide-spectrum matches and 122,730 distinct peptide sequences from 178 individual experiments at a 1% protein-level FDR globally across all experiments. Applying the latest Human Proteome Project Data Interpretation Guidelines, we catalog 3509 proteins that have at least two non-nested uniquely mapping peptides of nine amino acids or more and >1300 additional proteins with ambiguous evidence. We apply the same two-peptide guideline to historical PeptideAtlas builds going back to 2006 and examine the progress made in the past ten years in plasma proteome coverage. We also compare the distribution of proteins in historical PeptideAtlas builds in various RNA abundance and cellular localization categories. We then discuss advances in plasma proteomics based on targeted mass spectrometry as well as affinity assays, which during early 2017 target ∼2000 proteins. Finally, we describe considerations about sample handling and study design, concluding with an outlook for future advances in deciphering the human plasma proteome.
Mizutani, Shigehiko; Wright, John W.; Kobayashi, Hiroshi
2011-01-01
Preeclampsia and preterm delivery are important potential complications in pregnancy and represent the leading causes for maternal and perinatal morbidity and mortality. The mechanisms underlying both diseases remain unknown, thus available treatments (beta2-stimulants and magnesium sulfate) are essentially symptomatic. Both molecules have molecular weights less than 5–8 kDa, cross the placental barrier, and thus exert their effects on the fetus. The fetus produces peptides that are highly vasoactive and uterotonic and increase in response to maternal stress and with continued development. Fetal peptides are also small molecules that inevitably leak across into the maternal circulation. Aminopeptidases such as placental leucine aminopeptidase (P-LAP) and aminopeptidase A (APA) are large molecules that do not cross the placental barrier. We have shown that APA acts as an antihypertensive agent in the pregnant spontaneously hypertensive rat by degrading vasoactive peptides and as a result returns the animal to a normotensive state. P-LAP also acts as an antiuterotonic agent by degrading uterotonic peptides and thus prolongs gestation in the pregnant mouse. Given the ever increasing worldwide incidences of preeclampsia and preterm labor, it is imperative that new agents be developed to safely prolong gestation. We believe that the use of aminopeptidases hold promise in this regard. PMID:21188170
Neurogenic vasodilatation and plasma leakage in the skin.
Holzer, P
1998-01-01
1. Primary afferent nerve fibers control cutaneous blood flow and vascular permeability by releasing vasoactive peptides. These vascular reactions and the additional recruitment of leukocytes are commonly embodied in the term neurogenic inflammation. 2. Calcitonin gene-related peptide (CGRP) acting via CGRP1 receptors is the principal transmitter of neurogenic dilatation of arterioles whereas substance P (SP) and neurokinin A (NKA) acting via NK1 receptors mediate the increase in venular permeability. 3. Neurogenic vasodilatation and plasma protein leakage play a role in inflammation because many inflammatory and immune mediators including interleukin-1 beta, nitric oxide, prostanoids, protons, bradykinin, histamine, and 5-hydroxytryptamine can stimulate peptidergic afferent nerve fibers or enhance their excitability. 4. Neurogenic inflammatory reactions can be suppressed by alpha 2-adrenoceptor agonists, histamine acting via H1 receptors, 5-hydroxytryptamine acting via 5-HT1B receptors, opioid peptides, and somatostatin through prejunctional inhibition of peptide release from vasoactive afferent nerve fibers. CGRP, SP, and NKA receptor antagonists are powerful pharmacological tools to inhibit neurogenic inflammation at the postjunctional level. 5. Imbalance between the facilitatory and inhibitory influences on afferent nerve activity has a bearing on chronic inflammatory disease. Impaired nerve function represents a deficit in skin homeostasis while neuronal overactivity is a factor in allergic and hyperreactive disorders of the skin.
Vicentini, Geraldo E.; Fracaro, Luciane; de Souza, Sara R. G.; Martins, Heber A.; Guarnier, Flávia A.; Zanoni, Jacqueline N.
2016-01-01
Gastrointestinal dysmotility frequently occurs in cancer cachexia and may result from damage to enteric innervation caused by oxidative stress, especially due to glutathione depletion. We assessed the effect of dietary supplementation with 20 g/kg l-glutamine (a glutathione precursor) on the intrinsic innervation of the enteric nervous system in healthy and Walker 256 tumor-bearing Wistar rats during the development of experimental cachexia (14 days), in comparison with non-supplemented rats, by using immunohistochemical methods and Western blotting. The total neural population and cholinergic subpopulation densities in the myenteric plexus, as well as the total population and VIPergic subpopulation in the submucosal plexus of the jejunum and ileum, were reduced in cachectic rats, resulting in adaptive morphometric alterations and an increase in vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) expression, suggesting a neuroplastic response. l-glutamine supplementation prevented decrease in myenteric neuronal density in the ileum, morphometric alterations in the neurons and nerve fibers (in both the plexuses of the jejunum and ileum), and the overexpression of VIP and CGRP. Cancer cachexia severely affected the intrinsic innervation of the jejunum and ileum to various degrees and this injury seems to be associated with adaptive neural plasticity. l-glutamine supplementation presented partial protective effects on the enteric innervation against cancer cachexia, possibly by attenuating oxidative stress. PMID:27635657
Vicentini, Geraldo E; Fracaro, Luciane; de Souza, Sara R G; Martins, Heber A; Guarnier, Flávia A; Zanoni, Jacqueline N
2016-01-01
Gastrointestinal dysmotility frequently occurs in cancer cachexia and may result from damage to enteric innervation caused by oxidative stress, especially due to glutathione depletion. We assessed the effect of dietary supplementation with 20 g/kg l-glutamine (a glutathione precursor) on the intrinsic innervation of the enteric nervous system in healthy and Walker 256 tumor-bearing Wistar rats during the development of experimental cachexia (14 days), in comparison with non-supplemented rats, by using immunohistochemical methods and Western blotting. The total neural population and cholinergic subpopulation densities in the myenteric plexus, as well as the total population and VIPergic subpopulation in the submucosal plexus of the jejunum and ileum, were reduced in cachectic rats, resulting in adaptive morphometric alterations and an increase in vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) expression, suggesting a neuroplastic response. l-glutamine supplementation prevented decrease in myenteric neuronal density in the ileum, morphometric alterations in the neurons and nerve fibers (in both the plexuses of the jejunum and ileum), and the overexpression of VIP and CGRP. Cancer cachexia severely affected the intrinsic innervation of the jejunum and ileum to various degrees and this injury seems to be associated with adaptive neural plasticity. l-glutamine supplementation presented partial protective effects on the enteric innervation against cancer cachexia, possibly by attenuating oxidative stress.
Zhang, Fan; Briones, Andrea; Soloviev, Mikhail
2016-01-01
This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.
Staines, Donald R
2004-01-01
Chronic fatigue syndrome is a disorder characterised by prolonged fatigue and debility and is mostly associated with post-infection sequelae although ongoing infection is unproven. Immunological aberration is likely and this may prove to be associated with an expanding group of vasoactive neuropeptides in the context of molecular mimicry and inappropriate immunological memory. Vasoactive neuropeptides including vasoactive intestinal peptide (VIP) and pituitary adenylate activating polypeptide (PACAP) belong to the secretin/glucagon superfamily and act as hormones, neurotransmitters, immune modulators and neurotrophes. They are readily catalysed to smaller peptide fragments by antibody hydrolysis. They and their binding sites are immunogenic and are known to be associated with a range of autoimmune conditions. Vasoactive neuropeptides are widely distributed in the body particularly in the central, autonomic and peripheral nervous systems and have been identified in the gut, adrenal gland, reproductive organs, vasculature, blood cells and other tissues. They have a vital role in maintaining vascular flow in organs, and in thermoregulation, memory and concentration. They are co-transmitters for acetylcholine, nitric oxide, endogenous opioids and insulin, are potent immune regulators with primarily anti-inflammatory activity, and have a significant role in protection of the nervous system to toxic assault, promotion of neural development and the maintenance of homeostasis. This paper describes a biologically plausible mechanism for the development of CFS based on loss of immunological tolerance to the vasoactive neuropeptides following infection, significant physical exercise or de novo. It is proposed that release of these substances is accompanied by a loss of tolerance either to them or their receptor binding sites in CFS. Such an occurrence would have predictably serious consequences resulting from compromised function of the key roles these substances perform. All
Li, Xiao-jun; Yi, Eugene C; Kemp, Christopher J; Zhang, Hui; Aebersold, Ruedi
2005-09-01
There is an increasing interest in the quantitative proteomic measurement of the protein contents of substantially similar biological samples, e.g. for the analysis of cellular response to perturbations over time or for the discovery of protein biomarkers from clinical samples. Technical limitations of current proteomic platforms such as limited reproducibility and low throughput make this a challenging task. A new LC-MS-based platform is able to generate complex peptide patterns from the analysis of proteolyzed protein samples at high throughput and represents a promising approach for quantitative proteomics. A crucial component of the LC-MS approach is the accurate evaluation of the abundance of detected peptides over many samples and the identification of peptide features that can stratify samples with respect to their genetic, physiological, or environmental origins. We present here a new software suite, SpecArray, that generates a peptide versus sample array from a set of LC-MS data. A peptide array stores the relative abundance of thousands of peptide features in many samples and is in a format identical to that of a gene expression microarray. A peptide array can be subjected to an unsupervised clustering analysis to stratify samples or to a discriminant analysis to identify discriminatory peptide features. We applied the SpecArray to analyze two sets of LC-MS data: one was from four repeat LC-MS analyses of the same glycopeptide sample, and another was from LC-MS analysis of serum samples of five male and five female mice. We demonstrate through these two study cases that the SpecArray software suite can serve as an effective software platform in the LC-MS approach for quantitative proteomics.
Raucher, Drazen; Moktan, Shama; Massodi, Iqbal; Bidwell, Gene L
2009-10-01
Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.
Role of pulmonary diseases and physical condition in the regulation of vasoactive hormones.
Hietanen, E; Marniemi, J; Liippo, K; Seppänen, A; Hartiala, J; Viinamäki, O
1988-12-01
Lungs have many non-respiratory metabolic functions, of which some take place in the capillary endothelium, while others are in parenchymal lung tissue. We have studied the role of the lungs in the metabolism of vasoactive and some other hormones by comparing patients who have undergone lung resection to those having various obstructive or fibrotic lung diseases. We have also compared these groups with persons in good physical health. The data suggested that lung resection patients had low angiotensin II levels in plasma but the response of angiotensin II to exercise was normal. Also adrenalin concentration was low in the lung resection group while dopamine did not show any significant difference between the groups. When hormone levels were correlated to the exercise data, renin levels were especially related to physical condition. Serum post-exercise renin values were inversely related to the uneven distribution of lung perfusion, possibly thus reflecting the diminished pulmonary vascularization. A negative association was found between angiotensin II and diffusion capacity. Thus, the angiotensin II levels may preferably be controlled by the non-circulatory functions of the lungs.
Karlsson, J. A.; Persson, C. G.
1983-01-01
Propranolol-resistant neurogenic relaxation persisted in (carbachol-contracted) guinea-pig tracheae already relaxed by supramaximal concentrations of vasoactive intestinal polypeptide (VIP). Also, VIP relaxed preparations that were under neurogenic inhibition. In hilus bronchi, about 60% of a neurogenic contraction was atropine-resistant. (Arg5, D-Trp7.9) SP 5-11 specifically antagonized this contraction and those produced by exogenous substance P. Substance P, but not VIP, seems to be involved in nerve-mediated effects on guinea-pig airway tone. PMID:6197124
Karlsson, J A; Persson, C G
1983-07-01
Propranolol-resistant neurogenic relaxation persisted in (carbachol-contracted) guinea-pig tracheae already relaxed by supramaximal concentrations of vasoactive intestinal polypeptide (VIP). Also, VIP relaxed preparations that were under neurogenic inhibition. In hilus bronchi, about 60% of a neurogenic contraction was atropine-resistant. (Arg5, D-Trp7.9) SP 5-11 specifically antagonized this contraction and those produced by exogenous substance P. Substance P, but not VIP, seems to be involved in nerve-mediated effects on guinea-pig airway tone.
Effects of Chemical Structure on Hydrolysis Pathways of Small Peptides in Coastal Seawater
NASA Astrophysics Data System (ADS)
Liu, S.; Reyna, N. E.; Hamdan, L. J.; Liu, Z.
2016-02-01
Deciphering peptide hydrolysis pathways is key to understanding the mechanism of peptide hydrolysis, in particular the types of extracellular enzymes that are active in seawater. From the hydrolyzed fragments of small peptides, one can estimate the role of amino-, carboxy-, and endopeptidases in a quantitative way. In this study, we incubated several small peptides with different amino acid compositions, alanine-valine-phenylalanine-alanine (AVFA), phenylalanine-alanine-serine-tryptophan-glycine-alanine (FASWGA), VFA, SWGA, VVFA, arginine-valine-phenylalanine-alanine (RVFA), SVFA, aspartic acid-valine-phenylalanine-alanine (DVFA), trialanine (AAA), and AVF in two coastal seawaters (ship channel seawater in the western Gulf of Mexico and Sta. C6 seawater in the northern Gulf of Mexico). In both seawaters, aminopeptidases played a more dominant role (22-67%) in hydrolyzing peptides with hydrophobic amino acid at the N-terminus, such as AVFA, VVFA, VFA, and AAA, or with basic amino acid at the N-terminus (RVFA), as compared to those with N-terminal polar amino acid (SVFA, SWGA) or acidic amino acid (DVFA) (0-24%). This result indicates that amino acid composition in a peptide structure affects how the peptide is hydrolyzed. We also found that peptides in the C6 seawater were hydrolyzed dominantly by aminopeptidases (10-59%), while those in the ship channel seawater also by endo- or carboxypeptidases (9-69%). This pattern suggests that peptide hydrolysis pathways depend on specific environment conditions, such as bacterial community structure, that can lead to variations in abundances or activities among amino-, carboxy- and endopeptidases. Overall, the results provide insights into the effects of chemical structure and seawater environment on peptide hydrolysis pathways.
The cuticular localization of integument peptides from particular routing categories.
Locke, M; Kiss, A; Sass, M
1994-10-01
The distribution of integument peptides in relation to chitin and structural features has been studied in the surface epidermis of the caterpillar of Calpodes ethlius by immunoblotting and immunogold labelling using antibodies prepared to peptides isolated from lamellate endocuticle or from hemolymph. The intermoult cuticle consists of an epicuticle, an endocuticle of many chitin containing lamellae, and a chitin containing assembly zone directly above the apical epidermal microvilli and the perimicrovillar space. During the intermoult, the epidermis secretes peptides constitutively, that is, secretory vesicles containing peptides exocytose without accumulating, traverse the perimicrovillar space and form lamellae in the assembly zone. At moulting, the epidermis deposits ecdysial droplets in addition. These interrupt the last few lamellae which later go on to become the perforated ecdysial membrane. The integument is involved with four routing classes of peptide. Secretion is apical into the cuticle (C), basal into the hemolymph (H), bidirectional (BD), or transported to the cuticle across the epidermis from the hemolymph (T). Some peptides change their routing at moulting. There are several patterns of localization. (1) C and BD cuticular peptides occur mainly in chitin containing lamellate cuticle. (2) Some are also present in epicuticle, and are therefore not obligatorily linked to chitin or matrix between chitin fibers. Cuticular peptides that also occur in the hemolymph are glycosylated, whereas most that are only secreted apically into the cuticle are not. All BD but few C peptides carry alpha-D-glucose/alpha-D-mannose. Some C and BD peptides carry N-acetyl glucosamine. (3) C36 extracted from cuticle has most N-acetyl glucosamine and colocalizes with chitin rather than the protein matrix. It is therefore probably the main link between chitin fibers and the matrix. (4) H235 is barely detectable at the apical cell surface during the intermoult but is abundant
Ahn, Sung Hee; Bae, Yong Jin; Moon, Jeong Hee; Kim, Myung Soo
2013-09-17
We propose to divide matrix suppression in matrix-assisted laser desorption ionization into two parts, normal and anomalous. In quantification of peptides, the normal effect can be accounted for by constructing the calibration curve in the form of peptide-to-matrix ion abundance ratio versus concentration. The anomalous effect forbids reliable quantification and is noticeable when matrix suppression is larger than 70%. With this 70% rule, matrix suppression becomes a guideline for reliable quantification, rather than a nuisance. A peptide in a complex mixture can be quantified even in the presence of large amounts of contaminants, as long as matrix suppression is below 70%. The theoretical basis for the quantification method using a peptide as an internal standard is presented together with its weaknesses. A systematic method to improve quantification of high concentration analytes has also been developed.
Lunder, Mojca; Drevenšek, Gorazd; Černe, Darko; Marc, Janja; Janić, Miodrag; Šabovič, Mišo
2013-03-01
Recently it has been shown that statins and angiotensin receptor blockers (ARBs) at low doses express beneficial pleiotropic vascular effects. We aimed to explore whether these drugs at low doses induce the expression of vasoactive-related genes. Sixty adult Wistar rats were treated with low-dose atorvastatin (2 mg/kg), low-dose losartan (5 mg/kg), their combination or saline daily for 4, 6, or 8 weeks. Expression of the vasoactive-related genes endothelin receptor type A (EDNRA), endothelial nitric oxide synthase 3 (NOS3), inducible nitric oxide synthase 2 (NOS2), and angiotensin II receptor type 1 (AGTRL1a) was measured in isolated thoracic aortas. Expression of EDNRA gradually decreased, the lowest values being obtained after 8 weeks (low-dose atorvastatin, losartan [1.6- and 1-7-fold vs controls, respectively; both P < .05], and the combination [2.3-fold vs control, P < .001]). The highest values of NOS3 were obtained after 6 weeks (low-dose atorvastatin, losartan, and their combination, 3.1-fold, P < .01; 3.4-fold, P < .001; and 3.6-fold, P < .001 vs controls, respectively) and then declined after 8 weeks. The combination was more effective in inducing total NOS3 expression when compared to the separate drugs (1.4-fold; P < .05). Importantly, expression of NOS3 was associated with increased plasma NO levels and positively correlated with thoracic aorta relaxation. No changes in expression of NOS2 and AGTRL1a were observed. We showed that low-dose atorvastatin or losartan and especially their combination increases the expression of NOS3 and decreases the expression of EDNRA. These findings are valuable in explaining the effectiveness of the "low-dose pharmacological approach" for improvement in arterial function.
Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.
Ahmed, Marya
2017-10-24
Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.
Zhang, Qibin; Tang, Ning; Brock, Jonathan W. C.; Mottaz, Heather M.; Ames, Jennifer M.; Baynes, John W.; Smith, Richard D.; Metz, Thomas O.
2008-01-01
Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. ETD fragmentation mode permitted identification of a significantly higher number of glycated peptides (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing enrichment on first the protein and then the peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS and using ETD as the fragmentation mode is an efficient approach for analysis of glycated proteins and may have broad application in studies of diabetes mellitus. PMID:17488106
Insecticidal peptides from the theraposid spider Brachypelma albiceps: an NMR-based model of Ba2.
Corzo, Gerardo; Bernard, Cedric; Clement, Herlinda; Villegas, Elba; Bosmans, Frank; Tytgat, Jan; Possani, Lourival D; Darbon, Herve; Alagón, Alejandro
2009-08-01
Soluble venom and purified fractions of the theraposid spider Brachypelma albiceps were screened for insecticidal peptides based on toxicity to crickets. Two insecticidal peptides, named Ba1 and Ba2, were obtained after the soluble venom was separated by high performance liquid chromatography and cation exchange chromatography. The two insecticidal peptides contain 39 amino acid residues and three disulfide bonds, and based on their amino acid sequence, they are highly identical to the insecticidal peptides from the theraposid spiders Aphonopelma sp. from the USA and Haplopelma huwenum from China indicating a relationship among these genera. Although Ba1 and Ba2 were not able to modify currents in insect and vertebrate cloned voltage-gated sodium ion channels, they have noteworthy insecticidal activities compared to classical arachnid insecticidal toxins indicating that they might target unknown receptors in insect species. The most abundant insecticidal peptide Ba2 was submitted to NMR spectroscopy to determine its 3-D structure; a remarkable characteristic of Ba2 is a cluster of basic residues, which might be important for receptor recognition.
Chen, Yao-Yi; Dasari, Surendra; Ma, Ze-Qiang; Vega-Montoto, Lorenzo J.; Li, Ming
2013-01-01
Spectral counting has become a widely used approach for measuring and comparing protein abundance in label-free shotgun proteomics. However, when analyzing complex samples, the ambiguity of matching between peptides and proteins greatly affects the assessment of peptide and protein inventories, differentiation, and quantification. Meanwhile, the configuration of database searching algorithms that assign peptides to MS/MS spectra may produce different results in comparative proteomic analysis. Here, we present three strategies to improve comparative proteomics through spectral counting. We show that comparing spectral counts for peptide groups rather than for protein groups forestalls problems introduced by shared peptides. We demonstrate the advantage and flexibility of this new method in two datasets. We present four models to combine four popular search engines that lead to significant gains in spectral counting differentiation. Among these models, we demonstrate a powerful vote counting model that scales well for multiple search engines. We also show that semi-tryptic searching outperforms tryptic searching for comparative proteomics. Overall, these techniques considerably improve protein differentiation on the basis of spectral count tables. PMID:22552787
Chen, Yao-Yi; Dasari, Surendra; Ma, Ze-Qiang; Vega-Montoto, Lorenzo J; Li, Ming; Tabb, David L
2012-09-01
Spectral counting has become a widely used approach for measuring and comparing protein abundance in label-free shotgun proteomics. However, when analyzing complex samples, the ambiguity of matching between peptides and proteins greatly affects the assessment of peptide and protein inventories, differentiation, and quantification. Meanwhile, the configuration of database searching algorithms that assign peptides to MS/MS spectra may produce different results in comparative proteomic analysis. Here, we present three strategies to improve comparative proteomics through spectral counting. We show that comparing spectral counts for peptide groups rather than for protein groups forestalls problems introduced by shared peptides. We demonstrate the advantage and flexibility of this new method in two datasets. We present four models to combine four popular search engines that lead to significant gains in spectral counting differentiation. Among these models, we demonstrate a powerful vote counting model that scales well for multiple search engines. We also show that semi-tryptic searching outperforms tryptic searching for comparative proteomics. Overall, these techniques considerably improve protein differentiation on the basis of spectral count tables.
Ampulexins: A New Family of Peptides in Venom of the Emerald Jewel Wasp, Ampulex compressa.
Moore, Eugene L; Arvidson, Ryan; Banks, Christopher; Urenda, Jean Paul; Duong, Elizabeth; Mohammed, Haroun; Adams, Michael E
2018-03-27
The parasitoid wasp Ampulex compressa injects venom directly into the brain and subesophageal ganglion of the cockroach Periplaneta americana, inducing a 7 to 10 day lethargy termed hypokinesia. Hypokinesia presents as a significant reduction in both escape response and spontaneous walking. We examined aminergic and peptidergic components of milked venom with HPLC and MALDI-TOF mass spectrometry. HPLC coupled with electrochemical detection confirmed the presence of dopamine in milked venom, while mass spectrometry revealed that the venom gland and venom sac have distinct peptide profiles, with milked venom predominantly composed of venom sac peptides. We isolated and characterized novel α-helical, amphipathic venom sac peptides that constitute a new family of venom toxins termed ampulexins. Injection of the most abundant venom peptide, ampulexin 1, into the subesophageal ganglion of cockroaches resulted in a short-term increase in escape threshold. Neither milked venom nor venom peptides interfered with growth of Escherichia coli or Bacillus thuringiensis on agar plates, and exposure to ampulexins or milked venom did not induce cell death in Chinese hamster ovary cells (CHO-K1) or Hi5 cells ( Trichoplusia ni).
Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.
Nuti, Ramya; Goud, Nerella S; Saraswati, A Prasanth; Alvala, Ravi; Alvala, Mallika
2017-01-01
Antimicrobial resistance (AMR) has posed a serious threat to global public health and it requires immediate action, preferably long term. Current drug therapies have failed to curb this menace due to the ability of microbes to circumvent the mechanisms through which the drugs act. From the drug discovery point of view, the majority of drugs currently employed for antimicrobial therapy are small molecules. Recent trends reveal a surge in the use of peptides as drug candidates as they offer remarkable advantages over small molecules. Newer synthetic strategies like organometalic complexes, Peptide-polymer conjugates, solid phase, liquid phase and recombinant DNA technology encouraging the use of peptides as therapeutic agents with a host of chemical functions, and tailored for specific applications. In the last decade, many peptide based drugs have been successfully approved by the Food and Drug Administration (FDA). This success can be attributed to their high specificity, selectivity and efficacy, high penetrability into the tissues, less immunogenicity and less tissue accumulation. Considering the enormity of AMR, the use of Antimicrobial Peptides (AMPs) can be a viable alternative to current therapeutics strategies. AMPs are naturally abundant allowing synthetic chemists to develop semi-synthetics peptide molecules. AMPs have a broad spectrum of activity towards microbes and they possess the ability to bypass the resistance induction mechanisms of microbes. The present review focuses on the potential applications of AMPs against various microbial disorders and their future prospects. Several resistance mechanisms and their strategies have also been discussed to highlight the importance in the current scenario. Breakthroughs in AMP designing, peptide synthesis and biotechnology have shown promise in tackling this challenge and has revived the interest of using AMPs as an important weapon in fighting AMR. Copyright© Bentham Science Publishers; For any queries
Effect of calcitonin on gastrointestinal regulatory peptides in man.
Stevenson, J C; Adrian, T E; Christofides, N D; Bloom, S R
1985-05-01
A major physiological role of calcitonin in humans appears to be regulation of skeletal turnover. It has been suggested that another function of calcitonin is to prevent post-prandial rises in calcium, particularly in animals, but the importance of such a function in man remains to be determined. Although it is known that calcitonin has an inhibitory effect on the secretion of gastrin and insulin, its actions on other gut and pancreatic hormones have not previously been studied. To investigate interrelations between calcitonin and gastrointestinal regulatory peptides, 0.5 mg synthetic human calcitonin was administered to 10 fasting patients. No changes in the plasma concentrations of glucose, somatostatin, neurotensin, enteroglucagon, vasoactive intestinal polypeptide or bombesin were observed. In contrast, profound falls in the circulating levels of gastrin, insulin and pancreatic glucagon were seen, reaching a maximum shortly after the peak of plasma calcitonin concentration. Marked changes were also observed in the levels of motilin, pancreatic polypeptide and, to a lesser extent, gastric inhibitory polypeptide, but the maximal falls occurred about 40 min later, coinciding with a significant fall in serum calcium. It is possible that the effect of calcitonin on these hormones was direct, perhaps receptor-mediated. The falls in levels of motilin and pancreatic polypeptide could have been further enhanced by changes in extracellular calcium ion concentrations. Whether any of these effects of calcitonin occur physiologically remains to be determined. However, these findings suggest new therapeutic possibilities for calcitonin.
Andersson, P O; Bloom, S R; Edwards, A V; Järhult, J; Mellander, S
1983-01-01
Vascular and motor responses in the rectum to pelvic nerve stimulation are described in the anaesthetized cat and compared with corresponding effects observed in the colon. The responses comprise a cholinergic and a non-cholinergic component, and an attempt has been made to elucidate the latter. Pelvic nerve stimulation evoked a pronounced and well maintained vasodilator response in the rectum whereas that in the colon was transient. Maximal vasodilatation occurred at much lower stimulus frequencies in the rectum (2-4 Hz) than it did in the colon (8-16 Hz) and maximal blood flow under these conditions was also greater in the rectum (greater than 200 ml 100 g-1 min-1) than the colon (less than 150 ml 100 g-1 min-1). Muscarinic blockade further curtailed the colonic vasodilator response to pelvic nerve stimulation, whereas the rectal dilatation was only slightly reduced in the presence of atropine. Pelvic nerve stimulation caused a substantial release of vasoactive intestinal polypeptide (VIP) from the rectum, which was related both in magnitude and duration to the vasodilatation. Intra-arterial infusions of VIP, which reproduced this rise in rectal venous VIP concentration, caused a rectal vasodilator response which closely resembled that during pelvic nerve stimulation after cholinergic blockade. The rectal vasculature was estimated to be 50-100 times more sensitive to VIP than the colonic vasculature. VIP therefore seems to be the most likely putative neurotransmitter responsible for non-cholinergic rectal vasodilatation. Stimulation of the pelvic nerves also caused rapid contractile motor responses before, and more gradual motor responses after, muscarinic blockade in both the colon and rectum, in the latter preceded by a non-cholinergic relaxation. These patterns of motor activity largely confirm previous results. Infusions of substance P effectively mimicked the non-cholinergic contractile motor responses but failed to demonstrate significant release of this
Pezeshki, A; Muench, G P; Chelikani, P K
2012-09-01
The role of distal gut signals in control of feed intake and metabolism in cattle has received scant attention. Peptide YY (PYY) and glucagon-like peptide-1, which are secreted from enteroendocrine cells of the distal gut in monogastrics have several functions, including regulation of energy balance. However, little is known of the tissue expression of these peptides and their receptors in cattle. The aim of the current study was to characterize the tissue distribution of PYY, neuropeptide Y receptor Y2 (Y2), proglucagon (GCG), and glucagon-like peptide-1 receptor (GLP1R) in various peripheral tissues of cattle. Four male 7-wk-old dairy calves were euthanized and 16 peripheral tissues were collected. Conventional PCR and quantitative real-time PCR were performed to confirm tissue expression and quantify the transcript abundance in various tissues. The results of conventional PCR revealed that mRNA for both PYY and Y2 was detectable in the rumen, abomasum, duodenum, jejunum, ileum, and colon but not in other tissues. Quantitative real-time PCR data demonstrated that PYY mRNA was 2- to 3-fold greater in the pancreas, kidney, and heart relative to the liver. By conventional PCR, GCG mRNA was detected in the abomasum, duodenum, jejunum, ileum, and colon and GLP1R mRNA was expressed in all gut segments, pancreas, spleen, and kidney. Quantitative real-time PCR data demonstrated that, relative to transcript abundance in the liver, GCG mRNA was 4- to 40-fold higher from abomasum to colon, and GLP1R mRNA was 50- to 300-fold higher from the rumen to colon, 14-fold greater in the pancreas, 18-fold higher in the spleen, and 166-fold greater in the kidney. The tissue distribution of PYY, GCG, and their receptors observed in the current study is, in general, consistent with expression patterns in monogastrics. The predominant expression of PYY, Y2, and GCG in the gut, and the presence of GLP1R in multiple peripheral tissues suggest a role for PYY in controlling gut functions and
Manual method of visually identifying candidate signals for a targeted peptide.
Filimonov, Aleksey; Kopylov, Arthur; Lisitsa, Andrey; Archakov, Alexander
2018-04-15
The purpose of this study is to improve peptide signal identification in groups of extracted ion chromatograms (XICs) obtained with the liquid chromatography-selected reaction monitoring (LC-SRM) technique and a triple quadrupole mass spectrometer (QqQ) operating in one of the supported multiple reaction monitoring (MRM) modes. The imperfection of quadrupole mass analyzers causes ion interference, which impedes the identification of peptide signals as chromatographic peak groups in relevant retention time intervals. To investigate this problem in depth, the QqQ conversion of the eluate into XIC groups was considered as the consecutive transformations of the particles' abundances as the corresponding functions of retention time. In this study, the hypothesis that, during this conversion, the same chromatographic profile should be preserved as an implicit sign in each chromatographic peak of the signal was confirmed for peptides. To examine chromatographic profiles, continuous transformations of XIC groups were derived and implemented in srm2prot Express software (s2pe, http://msr.ibmc.msk.ru/s2pe). Because of ion interference, several peptide-like signals may appear in one XIC group. Therefore, these signals must be considered candidates for a targeted peptide's signal and should be resolved after identification. The theoretical investigation of intensity functions as XICs that are not distorted by noise produced three rules for Identifying Candidate Signals for a targeted Peptide (ICSP, http://msr.ibmc.msk.ru/ICSP) that constitute the proposed manual visual method. We theoretically and experimentally compared this method with the conventional semiempirical intuitive technique and found that the former significantly streamlines peptide signal identification and avoids typical errors. Copyright © 2018 Elsevier B.V. All rights reserved.
Schittenhelm, Ralf B.; Sivaneswaran, Saranjah; Lim Kam Sian, Terry C. C.; Croft, Nathan P.; Purcell, Anthony W.
2016-01-01
Expression of HLA-B27 is strongly associated with ankylosing spondylitis (AS) and other spondyloarthropathies. While this is true for the majority of HLA-B27 allotypes, HLA-B*27:06 and HLA-B*27:09 are not associated with AS. These two subtypes contain polymorphisms that are ideally positioned to influence the bound peptide repertoire. The existence of disease-inducing peptides (so-called arthritogenic peptides) has therefore been proposed that are exclusively presented by disease-associated HLA-B27 allotypes. However, we have recently demonstrated that this segregation of allotype-bound peptides is not the case and that many peptides that display sequence features predicted to favor binding to disease-associated subtypes are also capable of being presented naturally by protective alleles. To further probe more subtle quantitative changes in peptide presentation, we have used a combination of data-independent acquisition (DIA) and multiple reaction monitoring (MRM) mass spectrometry to quantify the abundance of 1646 HLA-B27 restricted peptides across the eight most frequent HLA-B27 allotypes (HLA-B*27:02-HLA-B*27:09). We utilized K means cluster analysis to group peptides with similar allelic binding preferences across the eight HLA-B27 allotypes, which enabled us to identify the most-stringent binding characteristics for each HLA-B27 allotype and further refined their existing consensus-binding motifs. Moreover, a thorough analysis of this quantitative dataset led to the identification of 26 peptides, which are presented in lower abundance by HLA-B*27:06 and HLA-B*27:09 compared with disease-associated HLA-B27 subtypes. Although these differences were observed to be very subtle, these 26 peptides might encompass the sought-after arthritogenic peptide(s). PMID:26929215
Schittenhelm, Ralf B; Sivaneswaran, Saranjah; Lim Kam Sian, Terry C C; Croft, Nathan P; Purcell, Anthony W
2016-06-01
Expression of HLA-B27 is strongly associated with ankylosing spondylitis (AS) and other spondyloarthropathies. While this is true for the majority of HLA-B27 allotypes, HLA-B*27:06 and HLA-B*27:09 are not associated with AS. These two subtypes contain polymorphisms that are ideally positioned to influence the bound peptide repertoire. The existence of disease-inducing peptides (so-called arthritogenic peptides) has therefore been proposed that are exclusively presented by disease-associated HLA-B27 allotypes. However, we have recently demonstrated that this segregation of allotype-bound peptides is not the case and that many peptides that display sequence features predicted to favor binding to disease-associated subtypes are also capable of being presented naturally by protective alleles. To further probe more subtle quantitative changes in peptide presentation, we have used a combination of data-independent acquisition (DIA) and multiple reaction monitoring (MRM) mass spectrometry to quantify the abundance of 1646 HLA-B27 restricted peptides across the eight most frequent HLA-B27 allotypes (HLA-B*27:02-HLA-B*27:09). We utilized K means cluster analysis to group peptides with similar allelic binding preferences across the eight HLA-B27 allotypes, which enabled us to identify the most-stringent binding characteristics for each HLA-B27 allotype and further refined their existing consensus-binding motifs. Moreover, a thorough analysis of this quantitative dataset led to the identification of 26 peptides, which are presented in lower abundance by HLA-B*27:06 and HLA-B*27:09 compared with disease-associated HLA-B27 subtypes. Although these differences were observed to be very subtle, these 26 peptides might encompass the sought-after arthritogenic peptide(s). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Waliczek, Mateusz; Kijewska, Monika; Rudowska, Magdalena; Setner, Bartosz; Stefanowicz, Piotr; Szewczuk, Zbigniew
2016-11-01
Mass spectrometric analysis of trace amounts of peptides may be problematic due to the insufficient ionization efficiency resulting in limited sensitivity. One of the possible ways to overcome this problem is the application of ionization enhancers. Herein we developed new ionization markers based on 2,4,6-triphenylpyridinium and 2,4,6-trimethylpyridinium salts. Using of inexpensive and commercially available pyrylium salt allows selective derivatization of primary amino groups, especially those sterically unhindered, such as ɛ-amino group of lysine. The 2,4,6-triphenylpyridinium modified peptides generate in MS/MS experiments an abundant protonated 2,4,6-triphenylpyridinium ion. This fragment is a promising reporter ion for the multiple reactions monitoring (MRM) analysis. In addition, the fixed positive charge of the pyridinium group enhances the ionization efficiency. Other advantages of the proposed ionization enhancers are the simplicity of derivatization of peptides and the possibility of convenient incorporation of isotopic labels into derivatized peptides.
NASA Astrophysics Data System (ADS)
Xu, Dandan; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei; Song, Fei
2016-04-01
Turbot ( Scophthalmus maximus L.), a carnivorous fish species with high dietary protein requirement, was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach, pyloric caeca, rectum, and three equal parts of the remainder of the intestine. The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns. Peptide transporter 1 (PepT1) was rich in proximal intestine while peptide transporter 2 (PepT2) was abundant in distal intestine. A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B0-type amino acid transporter 1 (B0AT1), L-type amino acid transporter 2 (LAT2), T-type amino acid transporter 1 (TAT1), proton-coupled amino acid transporter 1 (PAT1), y+L-type amino acid transporter 1 (y+LAT1), and cationic amino acid transporter 2 (CAT2) while ASC amino acid transporter 2 (ASCT2), sodium-coupled neutral amino acid transporter 2 (SNAT2), and y+L-type amino acid transporter 2 (y+LAT2) abundantly expressed in stomach. In addition, system b0,+ transporters (rBAT and b0,+AT) existed richly in distal intestine. These findings comprehensively characterized the distribution of solute carrier family proteins, which revealed the relative importance of peptide and amino acid absorption through luminal membrane. Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.
Ikegaki, I; Suzuki, Y; Satoh, S; Asano, T; Shibuya, M; Sugita, K
1989-10-01
The effects of calcitonin gene-related peptide (CGRP) on canine cerebral arteries and on vertebral blood flow were investigated in-vivo and in-vitro and the findings compared with the effects of vasoactive intestinal peptide (VIP) and substance P. Administration of CGRP into the vertebral artery caused a dose-dependent and long-lasting increase in blood flow. The in-vivo vasodilatory effects of substance P and VIP were short-lasting. CGRP (0.1 to 100 nmol/l) elicited a concentration-dependent relaxation of the isolated middle cerebral and basilar arteries when the tissues were precontracted by exposure to prostaglandin F2 alpha (PGF2 alpha). This effect was not antagonized by propranolol, atropine, tetrodotoxin, (N-Ac-Tyr1, D-Phe2)-growth hormone-releasing factor(1-29)-NH2 or (D-Pro2, D-Trp7,9) substance P. CGRP also reduced concentration-dependently the contraction of cerebral arteries induced by KCl or 9,11-epithio-11,12-metano-thromboxane A2 (STXA2). Mechanical removal of the endothelium did not abolish the vasodilatory response to CGRP. In PGF2 alpha-contracted canine cerebral arteries, VIP (0.1 to 100 nmol/l) was less potent a vasodilator than CGRP. At low concentrations (0.01 to 1 nmol/l) substance P elicited a rapid and short-lasting relaxation, and in the absence of endothelium this relaxation disappeared. These findings are clear evidence that CGRP modulates vascular tone.
Biochemical functionalization of peptide nanotubes with phage displayed peptides
NASA Astrophysics Data System (ADS)
Swaminathan, Swathi; Cui, Yue
2016-09-01
The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, Handan; Samaeekia, Ravand; Schnorenberg, Mathew R.
Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are twomore » major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.« less
Vasonatrin peptide: a unique synthetic natriuretic and vasorelaxing peptide.
Wei, C M; Kim, C H; Miller, V M; Burnett, J C
1993-01-01
This study reports the cardiovascular and renal actions of a novel and newly synthesized 27-amino acid peptide termed vasonatrin peptide (VNP). VNP is a chimera of atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP). This synthetic peptide possesses the 22-amino acid structure of CNP, which is a cardiovascular selective peptide of endothelial origin and is structurally related to ANP. VNP also possesses the five-amino acid COOH terminus of ANP. The current study demonstrates both in vitro and in vivo that VNP possesses the venodilating actions of CNP, the natriuretic actions of ANP, and unique arterial vasodilating actions not associated with either ANP or CNP. Images PMID:8408658
Partridge, Thomas; Nicastri, Annalisa; Kliszczak, Anna E.; Yindom, Louis-Marie; Kessler, Benedikt M.; Ternette, Nicola; Borrow, Persephone
2018-01-01
Elucidation of novel peptides presented by human leukocyte antigen (HLA) class I alleles by immunopeptidomics constitutes a powerful approach that can inform the rational design of CD8+ T cell inducing vaccines to control infection with pathogens such as human immunodeficiency virus type 1 (HIV-1) or to combat tumors. Recent advances in the sensitivity of liquid chromatography tandem mass spectrometry instrumentation have facilitated the discovery of thousands of natural HLA-restricted peptides in a single measurement. However, the extent of contamination of class I-bound peptides identified using HLA immunoprecipitation (IP)-based immunopeptidomics approaches with peptides from other sources has not previously been evaluated in depth. Here, we investigated the specificity of the IP-based immunopeptidomics methodology using HLA class I- or II-deficient cell lines and membrane protein-specific antibody IPs. We demonstrate that the 721.221 B lymphoblastoid cell line, widely regarded to be HLA class Ia-deficient, actually expresses and presents peptides on HLA-C*01:02. Using this cell line and the C8166 (HLA class I- and II-expressing) cell line, we show that some HLA class II-bound peptides were co-purified non-specifically during HLA class I and membrane protein IPs. Furthermore, IPs of “irrelevant” membrane proteins from HIV-1-infected HLA class I- and/or II-expressing cells revealed that unusually long HIV-1-derived peptides previously reported by us and other immunopeptidomics studies as potentially novel CD8+ T cell epitopes were non-specifically co-isolated, and so constitute a source of contamination in HLA class I IPs. For example, a 16-mer (FLGKIWPSYKGRPGNF), which was detected in all samples studied represents the full p1 segment of the abundant intracellular or virion-associated proteolytically-processed HIV-1 Gag protein. This result is of importance, as these long co-purified HIV-1 Gag peptides may not elicit CD8+ T cell responses when incorporated
Yun, Soi; Ryu, Hyunmin; Lee, E K
2017-09-10
Phage display biopanning is a powerful in vitro selection process for screening and identifying peptides that bind to a target protein of interest. With the aim of replacing antibodies in immuno-diagnostic applications, we identified peptides whose binding characteristics mimicked those of anti-human myeloperoxidase (hMPO), a biomarker for acute cardiac diseases. Based on ELISA results from four phage clones, we selected and chemically synthesized a 12-mer peptide (SYIEPPERHRHR). Quartz crystal microbalance and surface plasmon resonance analyses revealed that the molar binding equilibrium ratio of the synthesized peptide was 0.023, approximately 43-fold lower than that of the anti-hMPO antibody. The dissociation constant (K d ) was 57nM, which was comparable to that of the native antibody (83nM). Next, we biotinylated the peptide at its N-terminus and attached the biotinylated peptide to the surface of streptavidin-coated magnetic particles to assess its ability to selectively capture hMPO. The binding equilibrium data were similar to the previous analyses; specifically, around 0.021mol peptide bound to 1mol of hMPO. Antigen capture was found to be selective and to be relatively little influenced by the presence of human serum albumin (HSA), an abundant constituent of serum. Our work demonstrates the potential of immunomagnetic isolation to achieve selective capture of a low-concentration antigen from complex solutions such as serum. Copyright © 2016 Elsevier B.V. All rights reserved.
Bertenshaw, G P; Turk, B E; Hubbard, S J; Matters, G L; Bylander, J E; Crisman, J M; Cantley, L C; Bond, J S
2001-04-20
Meprin A and B are highly regulated, secreted, and cell-surface metalloendopeptidases that are abundantly expressed in the kidney and intestine. Meprin oligomers consist of evolutionarily related alpha and/or beta subunits. The work herein was carried out to identify bioactive peptides and proteins that are susceptible to hydrolysis by mouse meprins and kinetically characterize the hydrolysis. Gastrin-releasing peptide fragment 14-27 and gastrin 17, regulatory molecules of the gastrointestinal tract, were found to be the best peptide substrates for meprin A and B, respectively. Peptide libraries and a variety of naturally occurring peptides revealed that the meprin beta subunit has a clear preference for acidic amino acids in the P1 and P1' sites of substrates. The meprin alpha subunit selected for small (e.g. serine, alanine) or hydrophobic (e.g. phenylalanine) residues in the P1 and P1' sites, and proline was the most preferred amino acid at the P2' position. Thus, although the meprin alpha and beta subunits share 55% amino acid identity within the protease domain and are normally localized at the same tissue cell surfaces, they have very different substrate and peptide bond specificities indicating different functions. Homology models of the mouse meprin alpha and beta protease domains, based on the astacin crystal structure, revealed active site differences that can account for the marked differences in substrate specificity of the two subunits.
Kato, Ryuji; Kaga, Chiaki; Kunimatsu, Mitoshi; Kobayashi, Takeshi; Honda, Hiroyuki
2006-06-01
Peptide array, the designable peptide library covalently synthesized on cellulose support, was applied to assay peptide-cell interaction, between solid-bound peptides and anchorage-dependant cells, to study objective peptide design. As a model case, cell-adhesive peptides that could enhance cell growth as tissue engineering scaffold material, was studied. On the peptide array, the relative cell-adhesion ratio of NIH/3T3 cells was 2.5-fold higher on the RGDS (Arg-Gly-Asp-Ser) peptide spot as compared to the spot with no peptide, thus indicating integrin-mediated peptide-cell interaction. Such strong cell adhesion mediated by the RGDS peptide was easily disrupted by single residue substitution on the peptide array, thus indicating that the sequence recognition accuracy of cells was strictly conserved in our optimized scheme. The observed cellular morphological extension with active actin stress-fiber on the RGD motif-containing peptide supported our strategy that peptide array-based interaction assay of solid-bound peptide and anchorage-dependant cells (PIASPAC) could provide quantitative data on biological peptide-cell interaction. The analysis of 180 peptides obtained from fibronectin type III domain (no. 1447-1629) yielded 18 novel cell-adhesive peptides without the RGD motif. Taken together with the novel candidates, representative rules of ineffective amino acid usage were obtained from non-effective candidate sequences for the effective designing of cell-adhesive peptides. On comparing the amino acid usage of the top 20 and last 20 peptides from the 180 peptides, the following four brief design rules were indicated: (i) Arg or Lys of positively charged amino acids (except His) could enhance cell adhesion, (ii) small hydrophilic amino acids are favored in cell-adhesion peptides, (iii) negatively charged amino acids and small amino acids (except Gly) could reduce cell adhesion, and (iv) Cys and Met could be excluded from the sequence combination since they have
Comprehensive Peptide Analysis of Mouse Brain Striatum Identifies Novel sORF-Encoded Polypeptides.
Budamgunta, Harshavardhan; Olexiouk, Volodimir; Luyten, Walter; Schildermans, Karin; Maes, Evelyne; Boonen, Kurt; Menschaert, Gerben; Baggerman, Geert
2018-04-30
Bio-active peptides are involved in the regulation of most physiological processes in the body. Classical bio-active peptides (CBAPs) are cleaved from a larger precursor protein and stored in secretion vesicles from which they are released in the extracellular space. Recently, another non-classical type of bio-active peptides (NCBAPs) have gained interest. These typically are not secreted but instead appear to be translated from short open reading frames (sORF) and released directly into the cytoplasm. In contrast to CBAPs, these peptides are involved in the regulation of intra-cellular processes such as transcriptional control, calcium handling and DNA repair. However, bio-chemical evidence for the translation of sORFs remains elusive. Comprehensive analysis of sORF-encoded polypeptides (SEPs) is hampered by a number of methodological and biological challenges: the low molecular mass (many 4-10 kDa), the low abundance, transient expression and complications in data analysis. We developed a strategy to address a number of these issues. Our strategy is to exclude false positive identifications. in total sample, we identified 926 peptides originated from 37 known (neuro)peptide precursors in mouse striatum,. In addition, four SEPs were identified including NoBody, a SEP that was previously discovered in humans and three novel SEPS from 5' untranslated transcript regions (UTRs). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Big angiotensin-25: a novel glycosylated angiotensin-related peptide isolated from human urine.
Nagata, Sayaka; Hatakeyama, Kinta; Asami, Maki; Tokashiki, Mariko; Hibino, Hajime; Nishiuchi, Yuji; Kuwasako, Kenji; Kato, Johji; Asada, Yujiro; Kitamura, Kazuo
2013-11-29
The renin-angiotensin system (RAS), including angiotensin II (Ang II), plays an important role in the regulation of blood pressure and body fluid balance. Consequently, the RAS has emerged as a key target for treatment of kidney and cardiovascular disease. In a search for bioactive peptides using an antibody against the N-terminal portion of Ang II, we identified and characterized a novel angiotensin-related peptide from human urine as a major molecular form. We named the peptide Big angiotensin-25 (Bang-25) because it consists of 25 amino acids with a glycosyl chain and added cysteine. Bang-25 is rapidly cleaved by chymase to Ang II, but is resistant to cleavage by renin. The peptide is abundant in human urine and is present in a wide range of organs and tissues. In particular, immunostaining of Bang-25 in the kidney is specifically localized to podocytes. Although the physiological function of Bang-25 remains uncertain, our findings suggest it is processed from angiotensinogen and may represent an alternative, renin-independent path for Ang II synthesis in tissue. Copyright © 2013. Published by Elsevier Inc.
Cell Penetrating Peptides and Cationic Antibacterial Peptides
Rodriguez Plaza, Jonathan G.; Morales-Nava, Rosmarbel; Diener, Christian; Schreiber, Gabriele; Gonzalez, Zyanya D.; Lara Ortiz, Maria Teresa; Ortega Blake, Ivan; Pantoja, Omar; Volkmer, Rudolf; Klipp, Edda; Herrmann, Andreas; Del Rio, Gabriel
2014-01-01
Cell penetrating peptides (CPP) and cationic antibacterial peptides (CAP) have similar physicochemical properties and yet it is not understood how such similar peptides display different activities. To address this question, we used Iztli peptide 1 (IP-1) because it has both CPP and CAP activities. Combining experimental and computational modeling of the internalization of IP-1, we show it is not internalized by receptor-mediated endocytosis, yet it permeates into many different cell types, including fungi and human cells. We also show that IP-1 makes pores in the presence of high electrical potential at the membrane, such as those found in bacteria and mitochondria. These results provide the basis to understand the functional redundancy of CPPs and CAPs. PMID:24706763
Bernfur, Katja; Larsson, Olaf; Larsson, Christer; Gustavsson, Niklas
2013-01-01
Metabolic labeling of proteins with a stable isotope (15N) in intact Arabidopsis plants was used for accurate determination by mass spectrometry of differences in protein abundance between plasma membranes isolated from leaves and roots. In total, 703 proteins were identified, of which 188 were predicted to be integral membrane proteins. Major classes were transporters, receptors, proteins involved in membrane trafficking and cell wall-related proteins. Forty-one of the integral proteins, including nine of the 13 isoforms of the PIP (plasma membrane intrinsic protein) aquaporin subfamily, could be identified by peptides unique to these proteins, which made it possible to determine their relative abundance in leaf and root tissue. In addition, peptides shared between isoforms gave information on the proportions of these isoforms. A comparison between our data for protein levels and corresponding data for mRNA levels in the widely used database Genevestigator showed an agreement for only about two thirds of the proteins. By contrast, localization data available in the literature for 21 of the 41 proteins show a much better agreement with our data, in particular data based on immunostaining of proteins and GUS-staining of promoter activity. Thus, although mRNA levels may provide a useful approximation for protein levels, detection and quantification of isoform-specific peptides by proteomics should generate the most reliable data for the proteome. PMID:23990937
Peptide reranking with protein-peptide correspondence and precursor peak intensity information.
Yang, Chao; He, Zengyou; Yang, Can; Yu, Weichuan
2012-01-01
Searching tandem mass spectra against a protein database has been a mainstream method for peptide identification. Improving peptide identification results by ranking true Peptide-Spectrum Matches (PSMs) over their false counterparts leads to the development of various reranking algorithms. In peptide reranking, discriminative information is essential to distinguish true PSMs from false PSMs. Generally, most peptide reranking methods obtain discriminative information directly from database search scores or by training machine learning models. Information in the protein database and MS1 spectra (i.e., single stage MS spectra) is ignored. In this paper, we propose to use information in the protein database and MS1 spectra to rerank peptide identification results. To quantitatively analyze their effects to peptide reranking results, three peptide reranking methods are proposed: PPMRanker, PPIRanker, and MIRanker. PPMRanker only uses Protein-Peptide Map (PPM) information from the protein database, PPIRanker only uses Precursor Peak Intensity (PPI) information, and MIRanker employs both PPM information and PPI information. According to our experiments on a standard protein mixture data set, a human data set and a mouse data set, PPMRanker and MIRanker achieve better peptide reranking results than PetideProphet, PeptideProphet+NSP (number of sibling peptides) and a score regularization method SRPI. The source codes of PPMRanker, PPIRanker, and MIRanker, and all supplementary documents are available at our website: http://bioinformatics.ust.hk/pepreranking/. Alternatively, these documents can also be downloaded from: http://sourceforge.net/projects/pepreranking/.
Seneweera, Saman; Kailasapathy, Kaila
2011-07-01
We investigated the delivery of calcium-alginate encapsulated peptidase (Flavourzyme(®), Aspergillus oryzae) on proteolysis of Cheddar cheese. Physical and chemical characteristics such as moisture, pH and fat content were measured, and no differences were found between control and experimental cheese at day 0. SDS-PAGE analysis clearly showed that proteolysis of α and k casein was significantly accelerated after three months of maturity in the experimental cheese. A large number of low molecular weight peptides were found in the water soluble fraction of the experimental cheeses and some of these peptides were new. N-terminal amino acid sequence analysis identified these as P(1), Leu-Thu-Glu; P(3), Asp-Val-Pro-Ser-Glu) and relatively abundant stable peptides P(2), P(4), Arg-Pro-Lys-His-Pro-Ile; P(5), Arg-Pro-Lys-His-Pro-Ile-Lys and P(6). These peptides were mainly originated from αs1-CN and β-CN. Three of the identified peptides (P(1), P(2), P(3) and P(4)) are known to biologically active and P(1) and P(3) were only present in experimental cheese suggesting that experimental cheese has improved health benefits.
Cyclic peptides and their interaction with peptide coated surfaces
NASA Astrophysics Data System (ADS)
Palmer, F.; Tünnemann, R.; Leipert, D.; Stingel, C.; Jung, G.; Hoffmann, V.
2001-05-01
Focusing on biochemical and pharmaceutical inhibitor systems the interaction of cyclic peptides with model peptides have been investigated by ATR-FTIR-spectroscopy. Information about the participation of special functional groups e.g. COOH, COO -, NH 3+ or peptide backbone was gathered by observing cyclohexapeptides (c(X 1LX 2LX 3)) which are interacting with covalently coated Si-ATR-crystals ( L-arginine, tripeptide I (aNS), tripeptide II (SNa)). To determine the interaction, further studies about the band sequence (1800-1500 cm -1) for non-adsorbed cyclohexapeptides and for the interaction with the silicon surface (SiOH) were necessary. The spectra of the interacting cyclohexapeptides with the SiOH-groups were treated like reference spectra for the evaluation of the peptide-peptide interaction. Based on these spectra, we can conclude that there is peptide-peptide interaction with the coating and not with the residual OH-groups. Determination of interaction mechanisms was done by spectra which represent adsorbed molecules only. The amount of adsorbed molecules was considerably less than a monolayer. Therefore the intensities of the spectra are about 10 -4 absorbance units. The spectra contain information about both changes of the coating and of the cyclohexapeptide.
St John, Ashley L; Rathore, Abhay PS; Raghavan, Bhuvanakantham; Ng, Mah-Lee; Abraham, Soman N
2013-01-01
Dengue Virus (DENV), a flavivirus spread by mosquito vectors, can cause vascular leakage and hemorrhaging. However, the processes that underlie increased vascular permeability and pathological plasma leakage during viral hemorrhagic fevers are largely unknown. Mast cells (MCs) are activated in vivo during DENV infection, and we show that this elevates systemic levels of their vasoactive products, including chymase, and promotes vascular leakage. Treatment of infected animals with MC-stabilizing drugs or a leukotriene receptor antagonist restores vascular integrity during experimental DENV infection. Validation of these findings using human clinical samples revealed a direct correlation between MC activation and DENV disease severity. In humans, the MC-specific product, chymase, is a predictive biomarker distinguishing dengue fever (DF) and dengue hemorrhagic fever (DHF). Additionally, our findings reveal MCs as potential therapeutic targets to prevent DENV-induced vasculopathy, suggesting MC-stabilizing drugs should be evaluated for their effectiveness in improving disease outcomes during viral hemorrhagic fevers. DOI: http://dx.doi.org/10.7554/eLife.00481.001 PMID:23638300
Vistoropsky, Yulia; Heiblum, Rachel; Smorodinsky, Nechama-Ina; Barnea, Anat
2016-08-15
Neurogenesis and neuronal recruitment occur in adult brains of many vertebrates, and the hypothesis is that these phenomena contribute to the brain plasticity that enables organisms to adjust to environmental changes. In mammals, vasoactive intestinal polypeptide (VIP) is known to have many neuroprotective properties, but in the avian brain, although widely distributed, its role in neuronal recruitment is not yet understood. In the present study we actively immunized adult zebra finches against VIP conjugated to KLH and compared neuronal recruitment in their brains, with brains of control birds, which were immunized against KLH. We looked at two forebrain regions: the nidopallium caudale (NC), which plays a role in vocal communication, and the hippocampus (HC), which is involved in the processing of spatial information. Our data demonstrate that active immunization against VIP reduces neuronal recruitment, inhibits reproduction, and induces molting, with no change in plasma prolactin levels. Thus, our observations suggest that VIP has a direct positive role in neuronal recruitment and reproduction in birds. J. Comp. Neurol. 524:2516-2528, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cook, Shannon L.; Jackson, Glen P.
2011-06-01
The dissociation behavior of phosphorylated and sulfonated peptide anions was explored using metastable atom-activated dissociation mass spectrometry (MAD-MS) and collision-induced dissociation (CID). A beam of high kinetic energy helium (He) metastable atoms was exposed to isolated phosphorylated and sulfonated peptides in the 3- and 2- charge states. Unlike CID, where phosphate losses are dominant, the major dissociation channels observed using MAD were Cα - C peptide backbone cleavages and neutral losses of CO2, H2O, and [CO2 + H2O] from the charge reduced (oxidized) product ion, consistent with an electron detachment dissociation (EDD) mechanism such as Penning ionization. Regardless of charge state or modification, MAD provides ample backbone cleavages with little modification loss, which allows for unambiguous PTM site determination. The relative abundance of certain fragment ions in MAD is also demonstrated to be somewhat sensitive to the number and location of deprotonation sites, with backbone cleavage somewhat favored adjacent to deprotonated sites like aspartic acid residues. MAD provides a complementary dissociation technique to CID, ECD, ETD, and EDD for peptide sequencing and modification identification. MAD offers the unique ability to analyze highly acidic peptides that contain few to no basic amino acids in either negative or positive ion mode.
Peptide-formation on cysteine-containing peptide scaffolds
NASA Technical Reports Server (NTRS)
Chu, B. C.; Orgel, L. E.
1999-01-01
Monomeric cysteine residues attached to cysteine-containing peptides by disulfide bonds can be activated by carbonyldiimidazole. If two monomeric cysteine residues, attached to a 'scaffold' peptide Gly-Cys-Glyn-Cys-Glu10, (n = 0, 1, 2, 3) are activated, they react to form the dipeptide Cys-Cys. in 25-65% yield. Similarly, the activation of a cysteine residue attached to the 'scaffold' peptide Gly-Cys-Gly-Glu10 in the presence of Arg5 leads to the formation of Cys-Arg5 in 50% yield. The significance of these results for prebiotic chemistry is discussed.
Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides.
Nishikimi, Toshio; Kuwahara, Koichiro; Nakao, Kazuwa
2011-03-01
The mammalian natriuretic peptide family consists of atrial (ANP), brain [B-type; BNP] and C-type natriuretic peptide (CNP) and three receptors, natriuretic receptors-A (NPR-A), -B (NPR-B) and -C (NPR-C). Both ANP and BNP are abundantly expressed in the heart and are secreted mainly from the atria and ventricles, respectively. By contrast, CNP is mainly expressed in the central nervous system, bone and vasculature. Plasma concentrations of both ANP and BNP are elevated in patients with cardiovascular disease, though the magnitude of the increase in BNP is usually greater than the increase in ANP. This makes BNP is a clinically useful diagnostic marker for several pathophysiological conditions, including heart failure, ventricular remodeling and pulmonary hypertension, among others. Recent studies have shown that in addition to BNP-32, proBNP-108 also circulates in human plasma and that levels of both forms are increased in heart failure. Furthermore, proBNP-108 is O-glycosylated and circulates at higher levels in patients with severe heart failure. In this review we discuss recent progress in our understanding of the biochemistry, molecular biology and clinical relevance of the natriuretic peptide system. Copyright © 2011 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C.; Cao, Xing-Jun; Bhanu, Natarajan V.; Wang, Xiaoshi; Sidoli, Simone; Liu, Shichong; Garcia, Benjamin A.
2015-01-01
Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples. PMID:25805797
Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Bowie, John H
2013-05-30
To investigate the fragmentations in the negative-ion electrospray mass spectra of peptides containing tyrosine sulfate. Possible fragmentation mechanisms were explored using a Waters QTOF2 tandem mass spectrometer in concert with calculations at the CAM-B3LYP/6-311++g(d,p) level of theory. The major negative ion formed in the ESI-MS of peptides containing tyrosine sulfate is [(M-H)-SO3](-) and this process normally yields the base peak of the spectrum. The basic backbone cleavages of [(M-H)-SO3](-) allowed the sequence of the peptide to be determined. Rearrangement reactions involving the formation of HOSO3(-) and [(M-H)-H2SO4](-) yielded minor peaks with relative abundances ≤ 10% and ≤ 2%, respectively. The mass spectra of the [M-H](-) and [(M-H)-SO3](-) anions of peptides containing tyrosine sulfate allowed the position of the tyrosine sulfate group to be determined, together with the amino acid sequence of the peptide. Copyright © 2013 John Wiley & Sons, Ltd.
Xiang, Ning; Lyu, Yuan; Zhu, Xiao; Bhunia, Arun K; Narsimhan, Ganesan
2016-11-01
Antimicrobial peptides (AMPs) inactivate microbial cells through pore formation in cell membrane. Because of their different mode of action compared to antibiotics, AMPs can be effectively used to combat drug resistant bacteria in human health. AMPs can also be used to replace antibiotics in animal feed and immobilized on food packaging films. In this research, we developed a methodology based on mechanistic evaluation of peptide-lipid bilayer interaction to identify AMPs from soy protein. Production of AMPs from soy protein is an attractive, cost-saving alternative for commercial consideration, because soy protein is an abundant and common protein resource. This methodology is also applicable for identification of AMPs from any protein. Initial screening of peptide segments from soy glycinin (11S) and soy β-conglycinin (7S) subunits was based on their hydrophobicity, hydrophobic moment and net charge. Delicate balance between hydrophilic and hydrophobic interactions is necessary for pore formation. High hydrophobicity decreases the peptide solubility in aqueous phase whereas high hydrophilicity limits binding of the peptide to the bilayer. Out of several candidates chosen from the initial screening, two peptides satisfied the criteria for antimicrobial activity, viz. (i) lipid-peptide binding in surface state and (ii) pore formation in transmembrane state of the aggregate. This method of identification of antimicrobial activity via molecular dynamics simulation was shown to be robust in that it is insensitive to the number of peptides employed in the simulation, initial peptide structure and force field. Their antimicrobial activity against Listeria monocytogenes and Escherichia coli was further confirmed by spot-on-lawn test. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Baixiong; Tan, Junjun; Li, Chuanzhao; Zhang, Jiahui; Ye, Shuji
2018-06-13
The balance of lipid-peptide and peptide-peptide interactions at cell membrane is essential to a large variety of cellular processes. In this study, we have experimentally demonstrated for the first time that sum frequency generation vibrational spectroscopy can be used to probe the peptide-peptide and lipid-peptide interactions in cell membrane in situ and in real time by determination of the line width of amide I band of protein backbone. Using a "benchmark" model of α-helical WALP23, it is found that the dominated lipid-peptide interaction causes a narrow line width of the amide I band, whereas the peptide-peptide interaction can markedly broaden the line width. When WALP23 molecules insert into the lipid bilayer, a quite narrow line width of the amide I band is observed because of the lipid-peptide interaction. In contrast, when the peptide lies down on the bilayer surface, the line width of amide I band becomes very broad owing to the peptide-peptide interaction. In terms of the real-time change in the line width, the transition from peptide-peptide interaction to lipid-peptide interaction is monitored during the insertion of WALP23 into 1,2-dipalmitoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DPPG) lipid bilayer. The dephasing time of a pure α-helical WALP23 in 1-palmitoyl-2-oleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) and DPPG bilayer is determined to be 2.2 and 0.64 ps, respectively. The peptide-peptide interaction can largely accelerate the dephasing time.
Tissue viability imaging: microvascular response to vasoactive drugs induced by iontophoresis.
Henricson, Joakim; Nilsson, Anders; Tesselaar, Erik; Nilsson, Gert; Sjöberg, Folke
2009-09-01
When one is studying the physiology of the cutaneous microcirculation there is a need for relevant non-invasive and versatile techniques. In this study we used a new optical device, the tissue viability imager (TiVi), to map changes in cutaneous microvascular concentrations of red blood cells during iontophoresis of vasoactive substances (noradrenaline (NA) and phenylephrine (Phe) for vasoconstriction and acetylcholine (ACh) and sodium nitroprusside (SNP) for vasodilatation). We aimed to present data both individually and pooled, using a four-variable logistic dose response model that is commonly used in similar in vitro vascular studies. The accuracy of the TiVi was also investigated by calculating the coefficient of variation and comparing it with similar tests previously done using laser Doppler imaging. Tests were also performed using the TiVi and LDPI simultaneously to further compare the two methods. Results showed that the TiVi is capable of quantifying vascular responses to iontophorised noradrenaline and phenylephrine without the need to increase background flow first. Fitting the TiVi data to the dose response model resulted in ED(50)-values with narrow confidence intervals and acceptable r(2) values. Mean ED(50)-values for the TiVi did not differ significantly from similar values obtained using laser Doppler. Results further seem to suggest that when the blood perfusion increases during vasodilatation in skin the initial phase relies mainly on an increase in red blood cell concentration whereas the further perfusion increase is due to an increase in red blood cell velocity.
Sheynkman, Gloria M.; Shortreed, Michael R.; Frey, Brian L.; Scalf, Mark; Smith, Lloyd M.
2013-01-01
Each individual carries thousands of non-synonymous single nucleotide variants (nsSNVs) in their genome, each corresponding to a single amino acid polymorphism (SAP) in the encoded proteins. It is important to be able to directly detect and quantify these variations at the protein level in order to study post-transcriptional regulation, differential allelic expression, and other important biological processes. However, such variant peptides are not generally detected in standard proteomic analyses, due to their absence from the generic databases that are employed for mass spectrometry searching. Here, we extend previous work that demonstrated the use of customized SAP databases constructed from sample-matched RNA-Seq data. We collected deep coverage RNA-Seq data from the Jurkat cell line, compiled the set of nsSNVs that are expressed, used this information to construct a customized SAP database, and searched it against deep coverage shotgun MS data obtained from the same sample. This approach enabled detection of 421 SAP peptides mapping to 395 nsSNVs. We compared these peptides to peptides identified from a large generic search database containing all known nsSNVs (dbSNP) and found that more than 70% of the SAP peptides from this dbSNP-derived search were not supported by the RNA-Seq data, and thus are likely false positives. Next, we increased the SAP coverage from the RNA-Seq derived database by utilizing multiple protease digestions, thereby increasing variant detection to 695 SAP peptides mapping to 504 nsSNV sites. These detected SAP peptides corresponded to moderate to high abundance transcripts (30+ transcripts per million, TPM). The SAP peptides included 192 allelic pairs; the relative expression levels of the two alleles were evaluated for 51 of those pairs, and found to be comparable in all cases. PMID:24175627
The Use of Chromium(III) to Supercharge Peptides by Protonation at Low Basicity Sites
NASA Astrophysics Data System (ADS)
Feng, Changgeng; Commodore, Juliette J.; Cassady, Carolyn J.
2015-02-01
The addition of chromium(III) nitrate to solutions of peptides with seven or more residues greatly increases the formation of doubly protonated peptides, [M + 2H]2+, by electrospray ionization. The test compound heptaalanine has only one highly basic site (the N-terminal amino group) and undergoes almost exclusive single protonation using standard solvents. When Cr(III) is added to the solution, abundant [M + 2H]2+ forms, which involves protonation of the peptide backbone or the C-terminus. Salts of Al(III), Mn(II), Fe(III), Fe(II), Cu(II), Zn (II), Rh(III), La(III), Ce(IV), and Eu(III) were also studied. Although several metal ions slightly enhance protonation, Cr(III) has by far the greatest ability to generate [M + 2H]2+. Cr(III) does not supercharge peptide methyl esters, which suggests that the mechanism involves interaction of Cr(III) with a carboxylic acid group. Other factors may include the high acidity of hexa-aquochromium(III) and the resistance of Cr(III) to reduction. Nitrate salts enhance protonation more than chloride salts and a molar ratio of 10:1 Cr(III):peptide produces the most intense [M + 2H]2+. Cr(III) also supercharges numerous other small peptides, including highly acidic species. For basic peptides, Cr(III) increases the charge state (2+ versus 1+) and causes the number of peptide molecules being protonated to double or triple. Chromium(III) does not supercharge the proteins cytochrome c and myoglobin. The ability of Cr(III) to enhance [M + 2H]2+ intensity may prove useful in tandem mass spectrometry because of the resulting overall increase in signal-to-noise ratio, the fact that [M + 2H]2+ generally dissociate more readily than [M + H]+, and the ability to produce [M + 2H]2+ precursors for electron-based dissociation techniques.
Ferri, G L; Adrian, T E; Soimero, L; Blank, M; Cavalli, D; Biliotti, G; Polak, J M; Bloom, S R
1989-04-01
The intramural distribution of vasoactive intestinal polypeptide (VIP), substance P, somatostatin and mammalian bombesin was studied in the oesophago-gastro-pyloric region of the human gut. At each of 21 sampling sites encompassing this entire area, the gut wall was separated into mucosa, submucosa and muscularis externa, and extracted for radioimmunoassay. VIP levels in the mucosa were very high in the proximal oesophagus (1231 +/- 174 pmol/g, mean +/- SEM) and showed varied, but generally decreasing concentrations towards the stomach, followed by a clear-cut increase across the pyloric canal (distal antrum: 73 +/- 16 pmol/g, proximal duodenum: 366 +/- 62 pmol/g); consistent levels were found in submucosa and muscle (200-400 pmol/g) at most sites, the stomach again showing lower concentrations. By contrast, substance P was present in small amounts as far as the proximal stomach, but sharply increased across the pyloric canal, especially in mucosa and submucosa (distal antrum: 20 +/- 6.5 and 5.5 +/- 1.3 pmol/g; proximal duodenum: 62 +/- 8.5 and 34 +/- 11 pmol/g, respectively). Somatostatin concentrations were very low in the mucosa of the oesophagus and stepwise increased in the cardiac, mid-gastric and pyloric mucosa (cardia: 224 +/- 72 pmol/g; distal antrum: 513 +/- 152 pmol/g; proximal duodenum: 1013 +/- 113 pmol/g); concentrations in the submucosa and muscularis were generally low, with the exception of antrum and duodenum. Mammalian bombesin was comparatively well represented throughout the oesophageal muscularis (5-8 pmol/g), but most abundant in the stomach in all layers (oxyntic mucosa: 24 +/- 2.7 pmol/g; submucosa: 20 +/- 5.7 pmol/g; muscle: 28 +/- 5.0 pmol/g).(ABSTRACT TRUNCATED AT 250 WORDS)
The latest development of antihypertensive medication
NASA Astrophysics Data System (ADS)
Nasution, S.; Rey, I.; Effendi-YS, R.
2018-03-01
Hypertension is the most common risk factor for cardiovascular disease, stroke, renal failure, and death. Recent drug monitoring studies found non-adherence to BP lowering therapy in 25% to 65% of patients with apparent treatment-resistant hypertension (TRH). This review focuses on the latest development of antihypertensive medication, such as vasopeptidase inhibitors, aldosterone synthase inhibitors, Soluble Epoxide Hydrolase Inhibitors, agonists of natriuretic peptide receptor, Vasoactive Intestinal Peptide Receptor Agonist, a novel mineralocorticoid receptor antagonist, inhibitors of aminopeptidase A, dopamine β-hydroxylase inhibitor, intestinal Na+/H+ exchanger 3 inhibitor and other agents.
García-García, Fabio; Acosta-Peña, Eva; Venebra-Muñoz, Arturo; Murillo-Rodríguez, Eric
2009-08-01
Kuniomi Ishimori and Henri Piéron were the first researchers to introduce the concept and experimental evidence for a chemical factor that would presumably accumulate in the brain during waking and eventually induce sleep. This substance was named hypnotoxin. Currently, the variety of substances which have been shown to alter sleep includes peptides, cytokines, neurotransmitters and some substances of lipidic nature, many of which are well known for their involvement in other biological activities. In this chapter, we describe the sleep-inducing properties of the vasoactive intestinal peptide, prolactin, adenosine and anandamide.
Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.
Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper
2016-10-10
Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Gardner, Myles W.; Smith, Suncerae I.; Ledvina, Aaron R.; Madsen, James A.; Coon, Joshua J.; Schwartz, Jae C.; Stafford, George C.; Brodbelt, Jennifer S.
2009-01-01
A dual pressure linear ion trap mass spectrometer was modified to permit infrared multiphoton dissociation (IRMPD) in each of the two cells - the first a high pressure cell operated at nominally 5 × 10-3 Torr and the second a low pressure cell operated at nominally 3 × 10-4 Torr. When IRMPD was performed in the high pressure cell, most peptide ions did not undergo significant photodissociation; however, in the low pressure cell peptide cations were efficiently dissociated with less than 25 ms of IR irradiation regardless of charge state. IRMPD of peptide cations allowed the detection of low m/z product ions including the y1 fragments and immonium ions which are not typically observed by ion trap collision induced dissociation (CID). Photodissociation efficiencies of ~100% and MS/MS (tandem mass spectrometry) efficiencies of greater than 60% were observed for both multiply and singly protonated peptides. In general, higher sequence coverage of peptides was obtained using IRMPD over CID. Further, greater than 90% of the product ion current in the IRMPD mass spectra of doubly charged peptide ions was composed of singly charged product ions compared to the CID mass spectra in which the abundances of the multiply and singly charged product ions were equally divided. Highly charged primary product ions also underwent efficient photodissociation to yield singly charged secondary product ions, thus simplifying the IRMPD product ion mass spectra. PMID:19739654
Yu, Yue; Liu, Hongwei; Tu, Maolin; Qiao, Meiling; Wang, Zhenyu; Du, Ming
2017-12-01
Ruditapes philippinarum is nutrient-rich and widely-distributed, but little attention has been paid to the identification and characterization of the bioactive peptides in the bivalve. In the present study, we evaluated the peptides of the R. philippinarum that were enzymolysised by trypsin using a combination of ultra-performance liquid chromatography separation and electrospray ionization quadrupole time-of-flight tandem mass spectrometry, followed by data processing and sequence-similarity database searching. The potential allergenicity of the peptides was assessed in silico. The enzymolysis was performed under the conditions: E:S 3:100 (w/w), pH 9.0, 45 °C for 4 h. After separation and detection, the Swiss-Prot database and a Ruditapes philippinarum sequence database were used: 966 unique peptides were identified by non-error tolerant database searching; 173 peptides matching 55 precursor proteins comprised highly conserved cytoskeleton proteins. The remaining 793 peptides were identified from the R. philippinarum sequence database. The results showed that 510 peptides were labeled as allergens and 31 peptides were potential allergens; 425 peptides were predicted to be nonallergenic. The abundant peptide information contributes to further investigations of the structure and potential function of R. philippinarum. Additional in vitro studies are required to demonstrate and ensure the correct production of the hydrolysates for use in the food industry with respect to R. philippinarum. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Antimicrobial Peptides in 2014
Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing
2015-01-01
This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720
Grandclément, B; Morel, G
1998-06-01
Atrial natriuretic peptide (ANP) and two complementary peptides named brain natriuretic peptide and C-type natriuretic peptide are involved in diuresis, natriuresis, hypotension and vasorelaxation. Their actions are mediated by highly selective and specific ANP receptors. Three subtypes have been characterized and cloned: ANP receptor A, -B and -C. In the present study, the mRNA for each subtype was detected by ultrastructural in situ hybridization on ultrathin sections of Lowicryl-embedded tissue and frozen tissue. The distribution of mRNA (visualized by gold particles) for each subtype was found to differ in different cells of the nephron. The three subtypes of this receptor family were expressed in all the parts of the nephron, but their expression levels were different. The ANPR-A mRNA was the most abundant in cells of glomerulus, proximal and distal tubules. The subtype C was the least expressed mRNA in glomerulus. In contrast, the subcellular localization of the three mRNAs was similar; they were found in the cytoplasmic matrix and the euchromatin of the nucleus. In conclusion, the differential expression of these mRNAs in kidney cortex indicates that these three peptides act directly in differing parts of nephron regions which are the glomerulus, the proximal and distal tubules.
Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA
2011-07-12
Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.
Regulatory Peptides in Plants.
Vanyushin, B F; Ashapkin, V V; Aleksandrushkina, N I
2017-02-01
Many different peptides regulating cell differentiation, growth, and development are found in plants. Peptides participate in regulation of plant ontogenesis starting from pollination, pollen tube growth, and the very early stages of embryogenesis, including formation of embryo and endosperm. They direct differentiation of meristematic stem cells, formation of tissues and individual organs, take part in regulation of aging, fruit maturation, and abscission of plant parts associated with apoptosis. Biological activity of peptides is observed at very low concentrations, and it has mainly signal nature and hormonal character. "Mature" peptides appear mainly due to processing of protein precursors with (or without) additional enzymatic modifications. Plant peptides differ in origin, structure, and functional properties. Their specific action is due to binding with respective receptors and interactions with various proteins and other factors. Peptides can also regulate physiological functions by direct peptide-protein interactions. Peptide action is coordinated with the action of known phytohormones (auxins, cytokinins, and others); thus, peptides control phytohormonal signal pathways.
Inflammatory and Vasoactive Effects of Serum Following Inhalation of Varied Complex Mixtures.
Aragon, Mario J; Chrobak, Izabela; Brower, Jeremy; Roldan, Luis; Fredenburgh, Laura E; McDonald, Jacob D; Campen, Matthew J
2016-04-01
Chronic cardiovascular disease is associated with air pollution exposure in epidemiology and toxicology studies. Inhaled toxicants can induce changes in serum bioactivity that impact endothelial inflammatory gene expression in vitro and impair vasorelaxation ex vivo, which are common precursors to atherosclerosis. Comparisons between single pollutants and common combustion mixtures, in terms of driving such serum inflammatory and vasoactive effects, have not been characterized. Healthy C57BL/6 mice were exposed to a single 6-h period of contrasting pollutant atmospheres: road dust, mixed vehicle emissions (MVE; a combination of gasoline and diesel engine emissions) particulate matter, mixed vehicle emissions gases, road dust plus ozone, road dust plus MVE, and hardwood smoke. Serum obtained from mice 24 h after these exposures was used as a stimulus to assess inflammatory potential in two assays: incubated with primary murine cerebrovascular endothelial cells for 4 h to measure inflammatory gene expression or applied to naïve aortic rings in an ex vivo myographic preparation. Road dust and wood smoke exposures were most potent at inducing inflammatory gene expression, while MVE atmospheres and wood smoke were most potent at impairing vasorelaxation to acetylcholine. Responses are consistent with recent reports on MVE toxicity, but reveal novel serum bioactivity related to wood smoke and road dust. These studies suggest that the compositional changes in serum and resultant bioactivity following inhalation exposure to pollutants may be highly dependent on the composition of mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xueyun; Deng, Liulin; Baker, Erin S.
2017-01-01
Ion mobility spectrometry (IMS) was utilized to separate Aβ peptide variants containing isomeric asparic and isoaspartic acid residues with either al- ord-form. The abundance of each variant is of great interest in Alzheimer's disease studies and also to evaluate how often these modifications are occurring in other environmental and biological samples.
A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone.
Pruitt, Rory N; Joe, Anna; Zhang, Weiguo; Feng, Wei; Stewart, Valley; Schwessinger, Benjamin; Dinneny, José R; Ronald, Pamela C
2017-07-01
The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides. Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides. Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence. These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.
A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone
Pruitt, Rory N.; Joe, Anna; Zhang, Weiguo; Feng, Wei; Stewart, Valley; Schwessinger, Benjamin; Dinneny, José R.; Ronald, Pamela C.
2018-01-01
Summary The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides.Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides.Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence.These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide. PMID:28556915
Reisdorph, Nichole; Armstrong, Michael; Powell, Roger; Quinn, Kevin; Legg, Kevin; Leung, Donald; Reisdorph, Rick
2018-05-01
Previous work from our laboratories utilized a novel skin taping method and mass spectrometry-based proteomics to discover clinical biomarkers of skin conditions; these included atopic dermatitis, Staphylococcus aureus colonization, and eczema herpeticum. While suitable for discovery purposes, semi-quantitative proteomics is generally time-consuming and expensive. Furthermore, depending on the method used, discovery-based proteomics can result in high variation and inadequate sensitivity to detect low abundant peptides. Therefore, we strove to develop a rapid, sensitive, and reproducible method to quantitate disease-related proteins from skin tapings. We utilized isotopically-labeled peptides and tandem mass spectrometry to obtain absolute quantitation values on 14 peptides from 7 proteins; these proteins had shown previous importance in skin disease. The method demonstrated good reproducibility, dynamic range, and linearity (R 2 > 0.993) when n = 3 standards were analyzed across 0.05-2.5 pmol. The method was used to determine if differences exist between skin proteins in a small group of atopic versus non-atopic individuals (n = 12). While only minimal differences were found, peptides were detected in all samples and exhibited good correlation between peptides for 5 of the 7 proteins (R 2 = 0.71-0.98). This method can be applied to larger cohorts to further establish the relationships of these proteins to skin disease. Copyright © 2017. Published by Elsevier B.V.
2014-01-01
Background The aim of this discovery study was the identification of peptide serum biomarkers for detecting biliary tract cancer (BTC) using samples from healthy volunteers and benign cases of biliary disease as control groups. This work was based on the hypothesis that cancer-specific exopeptidases exist and that their activities in serum can generate cancer-predictive peptide fragments from circulating proteins during coagulation. Methods This case control study used a semi-automated platform incorporating polypeptide extraction linked to matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) to profile 92 patient serum samples. Predictive models were generated to test a validation serum set from BTC cases and healthy volunteers. Results Several peptide peaks were found that could significantly differentiate BTC patients from healthy controls and benign biliary disease. A predictive model resulted in a sensitivity of 100% and a specificity of 93.8% in detecting BTC in the validation set, whilst another model gave a sensitivity of 79.5% and a specificity of 83.9% in discriminating BTC from benign biliary disease samples in the training set. Discriminatory peaks were identified by tandem MS as fragments of abundant clotting proteins. Conclusions Serum MALDI MS peptide signatures can accurately discriminate patients with BTC from healthy volunteers. PMID:24495412
Dhein, Stefan; Hagen, Anja; Jozwiak, Joanna; Dietze, Anna; Garbade, Jens; Barten, Markus; Kostelka, Martin; Mohr, Friedrich-Wilhelm
2010-03-01
Co-ordinated electrical activation of the heart is maintained by intercellular coupling of cardiomyocytes via gap junctional channels located in the intercalated disks. These channels consist of two hexameric hemichannels, docked to each other, provided by either of the adjacent cells. Thus, a complete gap junction channel is made from 12 protein subunits, the connexins. While 21 isoforms of connexins are presently known, cardiomyocytes typically are coupled by Cx43 (most abundant), Cx40 or Cx45. Some years ago, antiarrhythmic peptides were discovered and synthesised, which were shown to increase macroscopic gap junction conductance (electrical coupling) and enhance dye transfer (metabolic coupling). The lead substance of these peptides is AAP10 (H-Gly-Ala-Gly-Hyp-Pro-Tyr-CONH(2)), a peptide with a horseshoe-like spatial structure as became evident from two-dimensional nuclear magnetic resonance studies. A stable D: -amino-acid derivative of AAP10, rotigaptide, as well as a non-peptide analogue, gap-134, has been developed in recent years. Antiarrhythmic peptides act on Cx43 and Cx45 gap junctions but not on Cx40 channels. AAP10 has been shown to enhance intercellular communication in rat, rabbit and human cardiomyocytes. Antiarrhythmic peptides are effective against ventricular tachyarrhythmias, such as late ischaemic (type IB) ventricular fibrillation, CaCl(2) or aconitine-induced arrhythmia. Interestingly, the effect of antiarrhythmic peptides is higher in partially uncoupled cells and was shown to be related to maintained Cx43 phosphorylation, while arrhythmogenic conditions like ischaemia result in Cx43 dephosphorylation and intercellular decoupling. It is still a matter of debate whether these drugs also act against atrial fibrillation. The present review outlines the development of this group of peptides and derivatives, their mode of action and molecular mechanisms, and discusses their possible therapeutic potential.
ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina
Kawamura, Hajime; Sugiyama, Tetsuya; Wu, David M; Kobayashi, Masato; Yamanishi, Shigeki; Katsumura, Kozo; Puro, Donald G
2003-01-01
In this study we tested the hypothesis that extracellular ATP regulates the function of the pericyte-containing retinal microvessels. Pericytes, which are more numerous in the retina than in any other tissue, are abluminally located cells that may adjust capillary perfusion by contracting and relaxing. At present, knowledge of the vasoactive molecules that regulate pericyte function is limited. Here, we focused on the actions of extracellular ATP because this nucleotide is a putative glial-to-vascular signal, as well as being a substance released by activated platelets and injured cells. In microvessels freshly isolated from the adult rat retina, we monitored ionic currents via perforated-patch pipettes, measured intracellular calcium levels with the use of fura-2, and visualized microvascular contractions with the aid of time-lapse photography. We found that ATP induced depolarizing changes in the ionic currents, increased calcium levels and caused pericytes to contract. P2X7 receptors and UTP-activated receptors mediated these effects. Consistent with ATP serving as a vasoconstrictor for the pericyte-containing microvasculature of the retina, the microvascular lumen narrowed when an adjacent pericyte contracted. In addition, the sustained activation of P2X7 receptors inhibited cell-to-cell electrotonic transmission within the microvascular networks. Thus, ATP not only affects the contractility of individual pericytes, but also appears to regulate the spatial and temporal dynamics of the vasomotor response. PMID:12876212
Systematic Errors in Peptide and Protein Identification and Quantification by Modified Peptides*
Bogdanow, Boris; Zauber, Henrik; Selbach, Matthias
2016-01-01
The principle of shotgun proteomics is to use peptide mass spectra in order to identify corresponding sequences in a protein database. The quality of peptide and protein identification and quantification critically depends on the sensitivity and specificity of this assignment process. Many peptides in proteomic samples carry biochemical modifications, and a large fraction of unassigned spectra arise from modified peptides. Spectra derived from modified peptides can erroneously be assigned to wrong amino acid sequences. However, the impact of this problem on proteomic data has not yet been investigated systematically. Here we use combinations of different database searches to show that modified peptides can be responsible for 20–50% of false positive identifications in deep proteomic data sets. These false positive hits are particularly problematic as they have significantly higher scores and higher intensities than other false positive matches. Furthermore, these wrong peptide assignments lead to hundreds of false protein identifications and systematic biases in protein quantification. We devise a “cleaned search” strategy to address this problem and show that this considerably improves the sensitivity and specificity of proteomic data. In summary, we show that modified peptides cause systematic errors in peptide and protein identification and quantification and should therefore be considered to further improve the quality of proteomic data annotation. PMID:27215553
Lambeir, A M; Durinx, C; Proost, P; Van Damme, J; Scharpé, S; De Meester, I
2001-11-02
Dipeptidyl-peptidase IV (DPPIV/CD26) metabolizes neuropeptides regulating insulin secretion. We studied the in vitro steady-state kinetics of DPPIV/CD26-mediated truncation of vasoactive intestinal peptide (VIP), pituitary adenylyl cyclase-activating peptide (PACAP27 and PACAP38), gastrin-releasing peptide (GRP) and neuropeptide Y (NPY). DPPIV/CD26 sequentially cleaves off two dipeptides of VIP, PACAP27, PACAP38 and GRP. GRP situates between the best DPPIV/CD26 substrates reported, comparable to NPY. Surprisingly, the C-terminal extension of PACAP38, distant from the scissile bond, improves both PACAP38 binding and turnover. Therefore, residues remote from the scissile bond can modulate DPPIV/CD26 substrate selectivity as well as residues flanking it.
Lacombe, C; Cifuentes-Diaz, C; Dunia, I; Auber-Thomay, M; Nicolas, P; Amiche, M
2000-09-01
The development of the dermal glands of the arboreal frog Phyllomedusa bicolor was investigated by immunocytochemistry and electron microscopy. The 3 types of glands (mucous, lipid and serous) differed in size and secretory activity. The mucous and serous glands were apparent in the tadpole skin, whereas the lipid glands developed later in ontogenesis. The peptide antibiotics dermaseptins and the D-amino acid-containing peptide opioids dermorphins and deltorphins are abundant in the skin secretions of P. bicolor. Although these peptides differ in their structure and activity they are derived from precursors that have very similar preproregions. We used an antibody to the common preproregion of preprodermaseptins and preprodeltorphins and immunofluorescence analysis to show that only the serous glands are specifically involved in the biosynthesis and secretion of dermaseptins and deltorphins. Scanning and transmission electron microscopy revealed that the serous glands of P bicolor have morphological features, especially the secretory granules, which differ from those of the glands in Xenopus laevis skin.
NASA Astrophysics Data System (ADS)
Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L. C.
2011-12-01
We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D2O and compare with experimental observations.
Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L C
2011-12-21
We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D(2)O and compare with experimental observations.
New APETx-like peptides from sea anemone Heteractis crispa modulate ASIC1a channels.
Kalina, Rimma; Gladkikh, Irina; Dmitrenok, Pavel; Chernikov, Oleg; Koshelev, Sergey; Kvetkina, Aleksandra; Kozlov, Sergey; Kozlovskaya, Emma; Monastyrnaya, Margarita
2018-06-01
Sea anemones are an abundant source of various biologically active peptides. The hydrophobic 20% ethanol fraction of tropical sea anemone Heteractis crispa was shown to contain at least 159 peptide compounds including neurotoxins, proteinase and α-amylase inhibitors, as well as modulators of acid-sensing ion channels (ASICs). The three new peptides, π-AnmTX Hcr 1b-2, -3, and -4 (41 aa) (short names Hcr 1b-2, -3, -4), identified by a combination of reversed-phase liquid chromatography and mass spectrometry were found to belong to the class 1b sea anemone neurotoxins. The amino acid sequences of these peptides were determined by Edman degradation and tandem mass spectrometry. The percent of identity of Hcr 1b-2, -3, and -4 with well-known ASIC3 inhibitors Hcr 1b-1 from H. crispa and APETx2 from Anthopleura elegantissima is 95-78% and 46-49%, respectively. Electrophysiological experiments on homomeric ASIC channels expressed in Xenopus laevis oocytes establish that these peptides are the first inhibitors of ASIC1a derived from sea anemone venom. The major peptide, Hcr 1b-2, inhibited both rASIC1a (IC 50 4.8 ± 0.3 μM; nH 0.92 ± 0.05) and rASIC3 (IC 50 15.9 ± 1.1 μM; nH 1.0 ± 0.05). The maximum inhibition at saturating peptide concentrations reached 64% and 81%, respectively. In the model of acid-induced muscle pain Hcr 1b-2 was also shown to exhibit an antihyperalgesic effect, significantly reducing of the pain threshold of experimental animals. Copyright © 2018 Elsevier Inc. All rights reserved.
Peptide library synthesis on spectrally encoded beads for multiplexed protein/peptide bioassays
NASA Astrophysics Data System (ADS)
Nguyen, Huy Q.; Brower, Kara; Harink, Björn; Baxter, Brian; Thorn, Kurt S.; Fordyce, Polly M.
2017-02-01
Protein-peptide interactions are essential for cellular responses. Despite their importance, these interactions remain largely uncharacterized due to experimental challenges associated with their measurement. Current techniques (e.g. surface plasmon resonance, fluorescence polarization, and isothermal calorimetry) either require large amounts of purified material or direct fluorescent labeling, making high-throughput measurements laborious and expensive. In this report, we present a new technology for measuring antibody-peptide interactions in vitro that leverages spectrally encoded beads for biological multiplexing. Specific peptide sequences are synthesized directly on encoded beads with a 1:1 relationship between peptide sequence and embedded code, thereby making it possible to track many peptide sequences throughout the course of an experiment within a single small volume. We demonstrate the potential of these bead-bound peptide libraries by: (1) creating a set of 46 peptides composed of 3 commonly used epitope tags (myc, FLAG, and HA) and single amino-acid scanning mutants; (2) incubating with a mixture of fluorescently-labeled antimyc, anti-FLAG, and anti-HA antibodies; and (3) imaging these bead-bound libraries to simultaneously identify the embedded spectral code (and thus the sequence of the associated peptide) and quantify the amount of each antibody bound. To our knowledge, these data demonstrate the first customized peptide library synthesized directly on spectrally encoded beads. While the implementation of the technology provided here is a high-affinity antibody/protein interaction with a small code space, we believe this platform can be broadly applicable to any range of peptide screening applications, with the capability to multiplex into libraries of hundreds to thousands of peptides in a single assay.
NASA Astrophysics Data System (ADS)
Pfammatter, Sibylle; Bonneil, Eric; McManus, Francis P.; Thibault, Pierre
2018-04-01
The small ubiquitin-like modifier (SUMO) is a member of the family of ubiquitin-like modifiers (UBLs) and is involved in important cellular processes, including DNA damage response, meiosis and cellular trafficking. The large-scale identification of SUMO peptides in a site-specific manner is challenging not only because of the low abundance and dynamic nature of this modification, but also due to the branched structure of the corresponding peptides that further complicate their identification using conventional search engines. Here, we exploited the unusual structure of SUMO peptides to facilitate their separation by high-field asymmetric waveform ion mobility spectrometry (FAIMS) and increase the coverage of SUMO proteome analysis. Upon trypsin digestion, branched peptides contain a SUMO remnant side chain and predominantly form triply protonated ions that facilitate their gas-phase separation using FAIMS. We evaluated the mobility characteristics of synthetic SUMO peptides and further demonstrated the application of FAIMS to profile the changes in protein SUMOylation of HEK293 cells following heat shock, a condition known to affect this modification. FAIMS typically provided a 10-fold improvement of detection limit of SUMO peptides, and enabled a 36% increase in SUMO proteome coverage compared to the same LC-MS/MS analyses performed without FAIMS. [Figure not available: see fulltext.
Brahim, Bessem; Tabet, Jean-Claude; Alves, Sandra
2018-02-01
Gas-phase fragmentation of single strand DNA-peptide noncovalent complexes is investigated in positive and negative electrospray ionization modes.Collision-induced dissociation experiments, performed on the positively charged noncovalent complex precursor ions, have confirmed the trend previously observed in negative ion mode, i.e. a high stability of noncovalent complexes containing very basic peptidic residues (i.e. R > K) and acidic nucleotide units (i.e. Thy units), certainly incoming from the existence of salt bridge interactions. Independent of the ion polarity, stable noncovalent complex precursor ions were found to dissociate preferentially through covalent bond cleavages of the partners without disrupting noncovalent interactions. The resulting DNA fragment ions were found to be still noncovalently linked to the peptides. Additionally, the losses of an internal nucleic fragment producing "three-body" noncovalent fragment ions were also observed in both ion polarities, demonstrating the spectacular salt bridge interaction stability. The identical fragmentation patterns (regardless of the relative fragment ion abundances) observed in both polarities have shown a common location of salt bridge interaction certainly preserved from solution. Nonetheless, most abundant noncovalent fragment ions (and particularly three-body ones) are observed from positively charged noncovalent complexes. Therefore, we assume that, independent of the preexisting salt bridge interaction and zwitterion structures, multiple covalent bond cleavages from single-stranded DNA/peptide complexes rely on an excess of positive charges in both electrospray ionization ion polarities.
Effect of physicochemical properties of peptides from soy protein on their antimicrobial activity.
Xiang, Ning; Lyu, Yuan; Zhu, Xiao; Bhunia, Arun K; Narsimhan, Ganesan
2017-08-01
Antimicrobial peptides (AMPs) kill microbial cells through insertion and damage/permeabilization of the cytoplasmic cell membranes and has applications in food safety and antibiotic replacement. Soy protein is an attractive, abundant natural source for commercial production of AMPs. In this research, explicit solvent molecular dynamics (MD) simulation was employed to investigate the effects of (i) number of total and net charges, (ii) hydrophobicity (iii) hydrophobic moment and (iv) helicity of peptides from soy protein on their ability to bind to lipid bilayer and their transmembrane aggregates to form pores. Interaction of possible AMP segments from soy protein with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPC/POPG) bilayers, a mimic of bacterial cell membrane, was investigated. Pore formation was insensitive to helicity and occurred for hydrophobicity threshold in the range of -0.3-0kcal/mol, hydrophobic moment threshold of 0.3kcal/mol, net charge threshold of 2. Though low hydrophobicity and high number of charges help in the formation of water channel for transmembrane aggregates, insertion of peptides with these properties requires overcome of energy barrier, as shown by potential of mean force calculations, thereby resulting in low antimicrobial activity. Experimental evaluation of antimicrobial activity of these peptides against Gram positive L. monocytogenes and Gram negative E. coli as obtained by spot-on-lawn assay was consistent with simulation results. These results should help in the development of guidelines for selection of peptides with antimicrobial activity based on their physicochemical properties. Copyright © 2017 Elsevier Inc. All rights reserved.
Wilms, Dominik; Andrä, Jörg
2017-01-01
Current cancer treatment is frequently compromised by severe adverse effects on healthy cells and tissues as well as by the increasing burden of (multi-)drug resistances. Some representatives of small, amphipathic peptides known as host defense peptides possess the potential to overcome these limitations and to evolve as future anti-cancer therapeutics. Peptide NK-2, derived from porcine NK-lysin, was originally discovered due to its broad-spectrum antimicrobial activities. Today, also potent anti-cancer activity is proven and accompanied by low toxicity towards normal human cells. The molecular basis underlying this target selectivity remains rather elusive. Nevertheless, it is presumptive that preferential peptide interactions with surface factors non-abundant on healthy human cells play a key role. Here, we investigated the cytotoxicity of peptide NK-2 and structurally improved anti-cancer variants thereof against two patient-derived colorectal cancer cell lines, exposing high and low levels of phosphatidylserine on their cell surfaces, respectively. Concluding from a range of in vitro tests involving cellular as well as lipid vesicle-based methods, it is proposed that the magnitude of the accessible membrane surface charge is not a primarily decisive factor for selective peptide interactions. Instead, it is suggested that the level of membrane surface-exposed phosphatidylserine is of crucial importance for the activity of peptide NK-2 and enhanced variants thereof in terms of their cancer cell selectivity, the overall efficacy, as well as the underlying mode of action and kinetics. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Urinary Peptides As a Novel Source of T Cell Allergen Epitopes
da Silva Antunes, Ricardo; Pham, John; McMurtrey, Curtis; Hildebrand, William H.; Phillips, Elizabeth; Mallal, Simon; Sidney, John; Busse, Paula; Peters, Bjoern; Schulten, Véronique; Sette, Alessandro
2018-01-01
Mouse allergy in both laboratory workers and in inner-city children is associated with allergic rhinitis and asthma, posing a serious public health concern. Urine is a major source of mouse allergens, as mice spray urine onto their surroundings, where the proteins dry up and become airborne on dust particles. Here, we tested whether oligopeptides that are abundant in mouse urine may contribute to mouse allergic T cell response. Over 1,300 distinct oligopeptides were detected by mass spectrometry analysis of the low molecular weight filtrate fraction of mouse urine (LoMo). Posttranslationally modified peptides were common, accounting for almost half of total peptides. A pool consisting of 225 unique oligopeptides of 13 residues or more in size identified within was tested for its capacity to elicit T cell reactivity in mouse allergic donors. Following 14-day in vitro stimulation of PBMCs, we detected responses in about 95% of donors tested, directed against 116 distinct peptides, predominantly associated with Th2 cytokines (IL-5). Peptides from non-urine related proteins such as epidermal growth factor, collagen, and Beta-globin accounted for the highest response (15.9, 9.1, and 8.1% of the total response, respectively). Peptides derived from major urinary proteins (MUPs), kidney androgen-regulated protein (KAP), and uromodulin were the main T cell targets from kidney or urine related sources. Further ex vivo analysis of enrichment of 4-1BB expressing cells demonstrated that LoMo pool-specific T cell reactivity can be detected directly ex vivo in mouse allergic but not in non-allergic donors. Further cytometric analysis of responding cells revealed a bone fide memory T cell phenotype and confirmed their Th2 polarization. Overall, these data suggest that mouse urine-derived oligopeptides are a novel target for mouse allergy-associated T cell responses, which may contribute to immunopathological mechanisms in mouse allergy. PMID:29755469
Ulivieri, Cristina; Citro, Alessandra; Ivaldi, Federico; Mascolo, Dina; Ghittoni, Raffaella; Fanigliulo, Daniela; Manca, Fabrizio; Baldari, Cosima Tatiana; Li Pira, Giuseppina; Del Pozzo, Giovanna
2008-08-15
Several efforts have been invested in the identification of CTL and Th epitopes, as well as in the characterization of their immunodominance and MHC restriction, for the generation of a peptide-based HCMV vaccine. Small synthetic peptides are, however, poor antigens and carrier proteins are important for improving the efficacy of synthetic peptide vaccines. Recombinant bacteriophages appear as promising tools in the design of subunit vaccines. To investigate the antigenicity of peptides carried by recombinant bacteriophages we displayed different HCMV MHCII restricted peptides on the capsid of filamentous bacteriophage (fd) and found that hybrid bacteriophages are processed by human APC and activate HCMV-specific CD4 T-cells. Furthermore we constructed a reporter T-cell hybridoma expressing a chimeric TCR comprising murine alphabeta constant regions and human variable regions specific for the HLA-A2 restricted immunodominant NLV peptide of HCMV. Using the filamentous bacteriophage as an epitope carrier, we detected a more robust and long lasting response of the reporter T-cell hybridoma compared to peptide stimulation. Our results show a general enhancement of T-cell responses when antigenic peptides are carried by phages.
Two-dimensional replica exchange approach for peptide-peptide interactions
NASA Astrophysics Data System (ADS)
Gee, Jason; Shell, M. Scott
2011-02-01
The replica exchange molecular dynamics (REMD) method has emerged as a standard approach for simulating proteins and peptides with rugged underlying free energy landscapes. We describe an extension to the original methodology—here termed umbrella-sampling REMD (UREMD)—that offers specific advantages in simulating peptide-peptide interactions. This method is based on the use of two dimensions in the replica cascade, one in temperature as in conventional REMD, and one in an umbrella sampling coordinate between the center of mass of the two peptides that aids explicit exploration of the complete association-dissociation reaction coordinate. To mitigate the increased number of replicas required, we pursue an approach in which the temperature and umbrella dimensions are linked at only fully associated and dissociated states. Coupled with the reweighting equations, the UREMD method aids accurate calculations of normalized free energy profiles and structural or energetic measures as a function of interpeptide separation distance. We test the approach on two families of peptides: a series of designed tetrapeptides that serve as minimal models for amyloid fibril formation, and a fragment of a classic leucine zipper peptide and its mutant. The results for these systems are compared to those from conventional REMD simulations, and demonstrate good convergence properties, low statistical errors, and, for the leucine zippers, an ability to sample near-native structures.
Miura, Shin-Ichiro; Nakayama, Asuka; Tomita, Sayo; Matsuo, Yoshino; Suematsu, Yasunori; Saku, Keijiro
2015-01-01
Bifunctional angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) that can block the activation of not only AT1 receptor, but also neprilysin, which metabolizes vasoactive peptides including atrial natriuretic peptide (ANP), are currently being developed. However, the usefulness of the inactivation of ANP in addition to the AT1 receptor with regard to aldosterone (Ald) synthesis is not yet clear. We evaluated the inhibitory effects of various ARBs combined with or without ANP on Ang II-induced adrenal Ald synthesis using a human adrenocortical cell line (NCI-H295R). Ang II increased Ald synthesis in a dose- and time-dependent manner. Ald synthesis induced by Ang II was completely blocked by azilsartan, but not PD123319 (AT2 receptor antagonist). CGP42112 AT2 receptor agonist did not affect Ald synthesis. While most ARBs block Ang II-induced Ald synthesis to different extents, azilsartan and olmesartan have similar blocking effects on Ald synthesis. The different effects of ARBs were particularly observed at 10(-7) and 10(-8 )M. ANP attenuated Ang II-induced Ald synthesis, and ANP-mediated attenuation of Ang II-induced Ald synthesis were blocked by inhibitors of G-protein signaling subtype 4 and protein kinase G. ANP (10(-8) and 10(-7 )M) without ARBs inhibited Ald synthesis, and the combination of ANP (10(-7 )M) and ARB (10(-8 )M) had an additive effect with respect to the inhibition of Ald synthesis. In conclusions, ARBs had differential effects on Ang II-induced Ald synthesis, and ANP may help to block Ald synthesis when the dose of ARB is not sufficient to block its secretion.
Bidwell, Gene L; Raucher, Drazen
2009-10-01
Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that inhibit signal transduction cascades are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Given our current knowledge of protein sequences, structures and interaction interfaces, therapeutic peptides that inhibit interactions of interest are easily designed. These peptides are advantageous because they are highly specific for the interaction of interest, and they are much more easily developed than small molecule inhibitors of the same interactions. The main hurdle to application of peptides for cancer therapy is their poor pharmacokinetic and biodistribution parameters. Therefore, successful development of peptide delivery vectors could potentially make possible the use of this new and very promising class of anticancer agents.
Ligand-regulated peptide aptamers.
Miller, Russell A
2009-01-01
The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.
Antimicrobial Peptides in Reptiles
van Hoek, Monique L.
2014-01-01
Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867
Porto, William F; Irazazabal, Luz; Alves, Eliane S F; Ribeiro, Suzana M; Matos, Carolina O; Pires, Állan S; Fensterseifer, Isabel C M; Miranda, Vivian J; Haney, Evan F; Humblot, Vincent; Torres, Marcelo D T; Hancock, Robert E W; Liao, Luciano M; Ladram, Ali; Lu, Timothy K; de la Fuente-Nunez, Cesar; Franco, Octavio L
2018-04-16
Plants are extensively used in traditional medicine, and several plant antimicrobial peptides have been described as potential alternatives to conventional antibiotics. However, after more than four decades of research no plant antimicrobial peptide is currently used for treating bacterial infections, due to their length, post-translational modifications or high dose requirement for a therapeutic effect . Here we report the design of antimicrobial peptides derived from a guava glycine-rich peptide using a genetic algorithm. This approach yields guavanin peptides, arginine-rich α-helical peptides that possess an unusual hydrophobic counterpart mainly composed of tyrosine residues. Guavanin 2 is characterized as a prototype peptide in terms of structure and activity. Nuclear magnetic resonance analysis indicates that the peptide adopts an α-helical structure in hydrophobic environments. Guavanin 2 is bactericidal at low concentrations, causing membrane disruption and triggering hyperpolarization. This computational approach for the exploration of natural products could be used to design effective peptide antibiotics.
Luo, Zuyuan; Deng, Yi; Zhang, Ranran; Wang, Mengke; Bai, Yanjie; Zhao, Qiang; Lyu, Yalin; Wei, Jie; Wei, Shicheng
2015-07-01
Combination of mesoporous silica materials and bioactive factors is a promising niche-mimetic solution as a hybrid bone substitution for bone tissue engineering. In this work, we have synthesized biocompatible silica-based nanoparticles with abundant mesoporous structure, and incorporated bone-forming peptide (BFP) derived from bone morphogenetic protein-7 (BMP-7) into the mesoporous silica nanoparticles (MSNs) to obtain a slow-release system for osteogenic factor delivery. The chemical characterization demonstrates that the small osteogenic peptide is encapsulated in the mesoporous successfully, and the nitrogen adsorption-desorption isotherms suggest that the peptide encapsulation has no influence on mesoporous structure of MSNs. In the cell experiment, the peptide-laden MSNs (p-MSNs) show higher MG-63 cell proliferation, spreading and alkaline phosphatase (ALP) activity than the bare MSNs, indicating good in vitro cytocompatibility. Simultaneously, the osteogenesis-related proteins expression and calcium mineral deposition disclose enhanced osteo-differentiation of human mesenchymal stem cells (hMSCs) under the stimulation of the p-MSNs, confirming that BFP released from MSNs could significantly promote the osteogenic differentiation of hMSCs, especially at 500μg/mL of p-MSNs concentration. The peptide-modified MSNs with better bioactivity and osteogenic differentiation make it a potential candidate as bioactive material for bone repairing, bone regeneration, and bio-implant coating applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Ye, Huijun; Wang, Libing; Huang, Renliang; Su, Rongxin; Liu, Boshi; Qi, Wei; He, Zhimin
2015-10-14
The aim of this study was to explore the influence of amphiphilic and zwitterionic structures on the resistance of protein adsorption to peptide self-assembled monolayers (SAMs) and gain insight into the associated antifouling mechanism. Two kinds of cysteine-terminated heptapeptides were studied. One peptide had alternating hydrophobic and hydrophilic residues with an amphiphilic sequence of CYSYSYS. The other peptide (CRERERE) was zwitterionic. Both peptides were covalently attached onto gold substrates via gold-thiol bond formation. Surface plasmon resonance analysis results showed that both peptide SAMs had ultralow or low protein adsorption amounts of 1.97-11.78 ng/cm2 in the presence of single proteins. The zwitterionic peptide showed relatively higher antifouling ability with single proteins and natural complex protein media. We performed molecular dynamics simulations to understand their respective antifouling behaviors. The results indicated that strong surface hydration of peptide SAMs contributes to fouling resistance by impeding interactions with proteins. Compared to the CYSYSYS peptide, more water molecules were predicted to form hydrogen-bonding interactions with the zwitterionic CRERERE peptide, which is in agreement with the antifouling test results. These findings reveal a clear relation between peptide structures and resistance to protein adsorption, facilitating the development of novel peptide-containing antifouling materials.
Pitteri, Sharon J.; Chrisman, Paul A.; Hogan, Jason M.; McLuckey, Scott A.
2005-01-01
Ion–ion reactions between a variety of peptide cations (doubly and triply charged) and SO2 anions have been studied in a 3-D quadrupole ion trap, resulting in proton and electron transfer. Electron transfer dissociation (ETD) gives many c- and z-type fragments, resulting in extensive sequence coverage in the case of triply protonated peptides with SO2·−. For triply charged neurotensin, in which a direct comparison can be made between 3-D and linear ion trap results, abundances of ETD fragments relative to one another appear to be similar. Reactions of doubly protonated peptides with SO2·− give much less structural information from ETD than triply protonated peptides. Collision-induced dissociation (CID) of singly charged ions formed in reactions with SO2·− shows a combination of proton and electron transfer products. CID of the singly charged species gives more structural information than ETD of the doubly protonated peptide, but not as much information as ETD of the triply protonated peptide. PMID:15762593
Plant peptide hormone signalling.
Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi
2015-01-01
The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. © 2015 Authors; published by Portland Press Limited.
Yang, Xu; Lazar, Iulia M
2009-03-27
The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing approximately 1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Preliminary experiments
2009-01-01
Background The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. Methods MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. Results In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing ~1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Conclusion
Abundance of introduced species at home predicts abundance away in herbaceous communities
Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.
2011-01-01
Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.
Pilot study on peptide purity—synthetic human C-peptide
NASA Astrophysics Data System (ADS)
Josephs, R. D.; Li, M.; Song, D.; Daireaux, A.; Choteau, T.; Stoppacher, N.; Westwood, S.; Wielgosz, R.; Xiao, P.; Liu, Y.; Gao, X.; Zhang, C.; Zhang, T.; Mi, W.; Quan, C.; Huang, T.; Li, H.; Melanson, J. E.; Ün, I.; Gören, A. C.; Quaglia, M.; Warren, J.
2017-01-01
Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a pilot study, CCQM-P55.2, was coordinated by the Bureau International des Poids et Mesures (BIPM) and the Chinese National Institute of Metrology (NIM). Four Metrology Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of human C-peptide (hCP) present as the main component in the comparison sample for CCQM-P55.2. The comparison samples were prepared from synthetic human hCP purchased from a commercial supplier and used as provided without further treatment or purification. hCP was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of short (up to 5 kDa), non-cross-linked synthetic peptides/proteins. It was anticipated to provide an analytical measurement challenge representative for the value-assignment of compounds of broadly similar structural characteristics. The majority of participants used a quantitative nuclear magnetic resonance spectroscopy (qNMR) corrected for peptide impurities. Other participants provided results obtained by peptide impurity corrected amino acid analysis (PICAA) or elemental analysis (PICCHN). It was decided to assign reference values based on the KCRVs of CCQM-K115 for both the hCP mass fraction and the mass fraction of the peptide related impurities as indispensable contributor regardless of the use of PICAA, mass balance or any other approach to determine the hCP purity. This allowed participants to demonstrate the efficacy of their implementation of the approaches used to determine the hCP mass fraction. In particular it allows participants to demonstrate the efficacy of their implementation of peptide related impurity identification and quantification. The assessment of the mass fraction of peptide impurities is based on the assumption that only the most exhaustive and
Yulyaningsih, Ernie; Loh, Kim; Lin, Shu; Lau, Jackie; Zhang, Lei; Shi, Yanchuan; Berning, Britt A; Enriquez, Ronaldo; Driessler, Frank; Macia, Laurence; Khor, Ee Cheng; Qi, Yue; Baldock, Paul; Sainsbury, Amanda; Herzog, Herbert
2014-01-07
Y-receptors control energy homeostasis, but the role of Npy6 receptors (Npy6r) is largely unknown. Young Npy6r-deficient (Npy6r(-/-)) mice have reduced body weight, lean mass, and adiposity, while older and high-fat-fed Npy6r(-/-) mice have low lean mass with increased adiposity. Npy6r(-/-) mice showed reduced hypothalamic growth hormone releasing hormone (Ghrh) expression and serum insulin-like growth factor-1 (IGF-1) levels relative to WT. This is likely due to impaired vasoactive intestinal peptide (VIP) signaling in the suprachiasmatic nucleus (SCN), where we found Npy6r coexpressed in VIP neurons. Peripheral administration of pancreatic polypeptide (PP) increased Fos expression in the SCN, increased energy expenditure, and reduced food intake in WT, but not Npy6r(-/-), mice. Moreover, intraperitoneal (i.p.) PP injection increased hypothalamic Ghrh mRNA expression and serum IGF-1 levels in WT, but not Npy6r(-/-), mice, an effect blocked by intracerebroventricular (i.c.v.) Vasoactive Intestinal Peptide (VPAC) receptors antagonism. Thus, PP-initiated signaling through Npy6r in VIP neurons regulates the growth hormone axis and body composition. Copyright © 2014 Elsevier Inc. All rights reserved.
Peptide Array X-Linking (PAX): A New Peptide-Protein Identification Approach
Okada, Hirokazu; Uezu, Akiyoshi; Soderblom, Erik J.; Moseley, M. Arthur; Gertler, Frank B.; Soderling, Scott H.
2012-01-01
Many protein interaction domains bind short peptides based on canonical sequence consensus motifs. Here we report the development of a peptide array-based proteomics tool to identify proteins directly interacting with ligand peptides from cell lysates. Array-formatted bait peptides containing an amino acid-derived cross-linker are photo-induced to crosslink with interacting proteins from lysates of interest. Indirect associations are removed by high stringency washes under denaturing conditions. Covalently trapped proteins are subsequently identified by LC-MS/MS and screened by cluster analysis and domain scanning. We apply this methodology to peptides with different proline-containing consensus sequences and show successful identifications from brain lysates of known and novel proteins containing polyproline motif-binding domains such as EH, EVH1, SH3, WW domains. These results suggest the capacity of arrayed peptide ligands to capture and subsequently identify proteins by mass spectrometry is relatively broad and robust. Additionally, the approach is rapid and applicable to cell or tissue fractions from any source, making the approach a flexible tool for initial protein-protein interaction discovery. PMID:22606326
Ventura, Andréa M C; Shieh, Huei Hsin; Bousso, Albert; Góes, Patrícia F; de Cássia F O Fernandes, Iracema; de Souza, Daniela C; Paulo, Rodrigo Locatelli Pedro; Chagas, Fabiana; Gilio, Alfredo E
2015-11-01
The primary outcome was to compare the effects of dopamine or epinephrine in severe sepsis on 28-day mortality; secondary outcomes were the rate of healthcare-associated infection, the need for other vasoactive drugs, and the multiple organ dysfunction score. Double-blind, prospective, randomized controlled trial from February 1, 2009, to July 31, 2013. PICU, Hospital Universitário da Universidade de São Paulo, Brazil. Consecutive children who are 1 month to 15 years old and met the clinical criteria for fluid-refractory septic shock. Exclusions were receiving vasoactive drug(s) prior to hospital admission, having known cardiac disease, having already participated in the trial during the same hospital stay, refusing to participate, or having do-not-resuscitate orders. Patients were randomly assigned to receive either dopamine (5-10 μg/kg/min) or epinephrine (0.1-0.3 μg/kg/min) through a peripheral or intraosseous line. Patients not reaching predefined stabilization criteria after the maximum dose were classified as treatment failure, at which point the attending physician gradually stopped the study drug and started another catecholamine. Physiologic and laboratory data were recorded. Baseline characteristics were described as proportions and mean (± SD) and compared using appropriate statistical tests. Multiple regression analysis was performed, and statistical significance was defined as a p value of less than 0.05. Baseline characteristics and therapeutic interventions for the 120 children enrolled (63, dopamine; 57, epinephrine) were similar. There were 17 deaths (14.2%): 13 (20.6%) in the dopamine group and four (7%) in the epinephrine group (p=0.033). Dopamine was associated with death (odds ratio, 6.5; 95% CI, 1.1-37.8; p=0.037) and healthcare-associated infection (odds ratio, 67.7; 95% CI, 5.0-910.8; p=0.001). The use of epinephrine was associated with a survival odds ratio of 6.49. Dopamine was associated with an increased risk of death and healthcare
Campbell, John D.; Buckland, Karen F.; McMillan, Sarah J.; Kearley, Jennifer; Oldfield, William L.G.; Stern, Lawrence J.; Grönlund, Hans; van Hage, Marianne; Reynolds, Catherine J.; Boyton, Rosemary J.; Cobbold, Stephen P.; Kay, A. Barry; Altmann, Daniel M.; Larché, Mark
2009-01-01
Treatment of patients with allergic asthma using low doses of peptides containing T cell epitopes from Fel d 1, the major cat allergen, reduces allergic sensitization and improves surrogate markers of disease. Here, we demonstrate a key immunological mechanism, linked epitope suppression, associated with this therapeutic effect. Treatment with selected epitopes from a single allergen resulted in suppression of responses to other (“linked”) epitopes within the same molecule. This phenomenon was induced after peptide immunotherapy in human asthmatic subjects and in a novel HLA-DR1 transgenic mouse model of asthma. Tracking of allergen-specific T cells using DR1 tetramers determined that suppression was associated with the induction of interleukin (IL)-10+ T cells that were more abundant than T cells specific for the single-treatment peptide and was reversed by anti–IL-10 receptor administration. Resolution of airway pathophysiology in this model was associated with reduced recruitment, proliferation, and effector function of allergen-specific Th2 cells. Our results provide, for the first time, in vivo evidence of linked epitope suppression and IL-10 induction in both human allergic disease and a mouse model designed to closely mimic peptide therapy in humans. PMID:19528258
Sheng, Quanhu; Li, Rongxia; Dai, Jie; Li, Qingrun; Su, Zhiduan; Guo, Yan; Li, Chen; Shyr, Yu; Zeng, Rong
2015-01-01
Isobaric labeling techniques coupled with high-resolution mass spectrometry have been widely employed in proteomic workflows requiring relative quantification. For each high-resolution tandem mass spectrum (MS/MS), isobaric labeling techniques can be used not only to quantify the peptide from different samples by reporter ions, but also to identify the peptide it is derived from. Because the ions related to isobaric labeling may act as noise in database searching, the MS/MS spectrum should be preprocessed before peptide or protein identification. In this article, we demonstrate that there are a lot of high-frequency, high-abundance isobaric related ions in the MS/MS spectrum, and removing isobaric related ions combined with deisotoping and deconvolution in MS/MS preprocessing procedures significantly improves the peptide/protein identification sensitivity. The user-friendly software package TurboRaw2MGF (v2.0) has been implemented for converting raw TIC data files to mascot generic format files and can be downloaded for free from https://github.com/shengqh/RCPA.Tools/releases as part of the software suite ProteomicsTools. The data have been deposited to the ProteomeXchange with identifier PXD000994. PMID:25435543
Sutherland, Chris; Royle, Andy
2016-01-01
This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).
Flanking signal and mature peptide residues influence signal peptide cleavage
Choo, Khar Heng; Ranganathan, Shoba
2008-01-01
Background Signal peptides (SPs) mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I), and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i) eukaryotes (Euk) (ii) Gram-positive (Gram+) bacteria, and (iii) Gram-negative (Gram-) bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs. PMID:19091014
Liu, Haipeng; Yu, Jia; Qiao, Rui; Zhou, Mi; Yang, Yongtao; Zhou, Jian; Xie, Peng
2016-01-01
The enormous depth complexity of the human plasma proteome poses a significant challenge for current mass spectrometry-based proteomic technologies in terms of detecting low-level proteins in plasma, which is essential for successful biomarker discovery efforts. Typically, a single-step analytical approach cannot reduce this intrinsic complexity. Current simplex immunodepletion techniques offer limited capacity for detecting low-abundance proteins, and integrated strategies are thus desirable. In this respect, we developed an improved strategy for analyzing the human plasma proteome by integrating polyethylene glycol (PEG) fractionation with immunoaffinity depletion. PEG fractionation of plasma proteins is simple, rapid, efficient, and compatible with a downstream immunodepletion step. Compared with immunodepletion alone, our integrated strategy substantially improved the proteome coverage afforded by PEG fractionation. Coupling this new protocol with liquid chromatography-tandem mass spectrometry, 135 proteins with reported normal concentrations below 100 ng/mL were confidently identified as common low-abundance proteins. A side-by-side comparison indicated that our integrated strategy was increased by average 43.0% in the identification rate of low-abundance proteins, relying on an average 65.8% increase of the corresponding unique peptides. Further investigation demonstrated that this combined strategy could effectively alleviate the signal-suppressive effects of the major high-abundance proteins by affinity depletion, especially with moderate-abundance proteins after incorporating PEG fractionation, thereby greatly enhancing the detection of low-abundance proteins. In sum, the newly developed strategy of incorporating PEG fractionation to immunodepletion methods can potentially aid in the discovery of plasma biomarkers of therapeutic and clinical interest. PMID:27832179
Primary structure of the abundant seed albumin of Theobroma cacao by mass spectrometry.
Kochhar, S; Gartenmann, K; Juillerat, M A
2000-11-01
The most abundant albumin present in seeds of Theobroma cacao was purified to apparent homogeneity as judged by high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and NH(2)-terminal sequence analysis. Tryptic peptide mass fingerprinting of the purified protein by HPLC/ESI-MS showed the presence of 16 masses that matched the expected tryptic peptides corresponding to 95% of the translated amino acid sequence from the cDNA of the 21 kDa cocoa albumin. Collision-induced dissociation MS/MS analysis of the C-terminal peptide isolated from the CNBr cleavage products provided unequivocal evidence that the mature cocoa albumin protein is nine amino acid residues shorter than expected from the reported cDNA of its corresponding gene. The experimentally determined M(r) value of 20234 was in excellent agreement with the truncated version of the amino acid sequence. The purified cocoa albumin inhibited the catalytic activities of bovine trypsin and chymotrypsin. The inhibition was stoichiometric with 1 mol of trypsin or chymotrypsin being inhibited by 1 mol of inhibitor with apparent dissociation constants (K(i)) of 9.5 x 10(-8) and 2. 3 x 10(-6) M, respectively, for inhibitor binding at pH 8.5 and 37 degrees C. No inhibition of the catalytic activities of subtilisin, papain, pepsin, and cocoa endoproteases was detected under their optimal reaction conditions.
Synthesis, molecular docking and anticancer studies of peptides and iso-peptides.
Jabeen, Farukh; Panda, Siva S; Kondratyuk, Tamara P; Park, Eun-Jung; Pezzuto, John M; Ihsan-ul-Haq; Hall, C Dennis; Katritzky, Alan R
2015-08-01
Chiral peptides and iso-peptides were synthesized in excellent yield by using benzotriazole mediated solution phase synthesis. Benzotriazole acted both as activating and leaving group, eliminating frequent use of protection and subsequent deprotection. The procedure was based on the hypothesis that epimerization should be suppressed in solution due to a faster coupling rate than SPPS. All the synthesized peptides complied with Lipinski's Ro5 except for the rotatable bonds. Inhibition of cell proliferation of cancer cell lines is one of the most commonly used methods to study the effectiveness of any anticancer agents. Synthesized peptides and iso-peptides were tested against three cancer cell lines (MCF-7, MDA-MB 231) to determine their anti-proliferative potential. NFkB was also determined. Molecular docking studies were also carried out to complement the experimental results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Umadevi, P; Soumya, M; George, Johnson K; Anandaraj, M
2018-05-01
Plant antimicrobial peptides are the interesting source of studies in defense response as they are essential components of innate immunity which exert rapid defense response. In spite of abundant reports on the isolation of antimicrobial peptides (AMPs) from many sources, the profile of AMPs expressed/identified from single crop species under certain stress/physiological condition is still unknown. This work describes the AMP signature profile of black pepper and their expression upon Phytophthora infection using label-free quantitative proteomics strategy. The differential expression of 24 AMPs suggests that a combinatorial strategy is working in the defense network. The 24 AMP signatures belonged to the cationic, anionic, cysteine-rich and cysteine-free group. As the first report on the possible involvement of AMP signature in Phytophthora infection, our results offer a platform for further study on regulation, evolutionary importance and exploitation of theses AMPs as next generation molecules against pathogens.
NASA Astrophysics Data System (ADS)
Fouque, Kevin Jeanne Dit; Lavanant, Hélène; Zirah, Séverine; Hegemann, Julian D.; Zimmermann, Marcel; Marahiel, Mohamed A.; Rebuffat, Sylvie; Afonso, Carlos
2017-02-01
Lasso peptides are characterized by a mechanically interlocked structure, where the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring. Their compact and stable structures have a significant impact on their biological and physical properties and make them highly interesting for drug development. Ion mobility - mass spectrometry (IM-MS) has shown to be effective to discriminate the lasso topology from their corresponding branched-cyclic topoisomers in which the C-terminal tail is unthreaded. In fact, previous comparison of the IM-MS data of the two topologies has yielded three trends that allow differentiation of the lasso fold from the branched-cyclic structure: (1) the low abundance of highly charged ions, (2) the low change in collision cross sections (CCS) with increasing charge state and (3) a narrow ion mobility peak width. In this study, a three-dimensional plot was generated using three indicators based on these three trends: (1) mean charge divided by mass (ζ), (2) relative range of CCS covered by all protonated molecules (ΔΩ/Ω) and (3) mean ion mobility peak width (δΩ). The data were first collected on a set of twenty one lasso peptides and eight branched-cyclic peptides. The indicators were obtained also for eight variants of the well-known lasso peptide MccJ25 obtained by site-directed mutagenesis and further extended to five linear peptides, two macrocyclic peptides and one disulfide constrained peptide. In all cases, a clear clustering was observed between constrained and unconstrained structures, thus providing a new strategy to discriminate mechanically interlocked topologies.
An enhancer peptide for membrane-disrupting antimicrobial peptides
2010-01-01
Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4) by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn). Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin) killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus), whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin) were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane. PMID:20152058
Ferrante, Andrea; Gorski, Jack
2012-01-01
The mechanism of HLA-DM (DM) activity is still unclear. We have shown that DM-mediated peptide release from HLA-DR (DR) is dependent on the presence of exchange peptide. However, DM also promotes a small amount of peptide release in the absence of exchange peptide. Here we show that SDS-PAGE separates purified peptide/DR1 complexes (pDR1) into two conformers whose ratio is peptide Kd-dependent. In the absence of exchange peptide, DM only releases peptide from the slower migrating conformer. Addition of exchange peptide converts the DM-resistant conformer to the slower migrating conformer, which is DM labile. Thus, exchange peptide generates a conformer of pDR1 which constitutes the intermediate for peptide exchange and the substrate for DM activity. The resolution of the intermediate favors the highest affinity peptide. However, once folded into the DM-resistant conformer, even low affinity peptides can be presented in the absence of free peptide, broadening the repertoire available for presentation. PMID:22545194
C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...
Ayres, Cory M.; Corcelli, Steven A.; Baker, Brian M.
2017-01-01
Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic “energy landscapes” of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology. PMID:28824655
Ayres, Cory M; Corcelli, Steven A; Baker, Brian M
2017-01-01
Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic "energy landscapes" of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology.
Application of synthetic peptides for detection of anti-citrullinated peptide antibodies.
Trier, Nicole Hartwig; Holm, Bettina Eide; Slot, Ole; Locht, Henning; Lindegaard, Hanne; Svendsen, Anders; Nielsen, Christoffer Tandrup; Jacobsen, Søren; Theander, Elke; Houen, Gunnar
2016-02-01
Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA) and represent an important tool for the serological diagnosis of RA. In this study, we describe ACPA reactivity to overlapping citrullinated Epstein-Barr virus nuclear antigen-1 (EBNA-1)-derived peptides and analyze their potential as substrates for ACPA detection by streptavidin capture enzyme-linked immunosorbent assay. Using systematically overlapping peptides, containing a 10 amino acid overlap, labelled with biotin C-terminally or N-terminally, sera from 160 individuals (RA sera (n=60), healthy controls (n=40), systemic lupus erythematosus (n=20), Sjögren's syndrome (n=40)) were screened for antibody reactivity. Antibodies to a panel of five citrullinated EBNA-1 peptides were found in 67% of RA sera, exclusively of the IgG isotype, while 53% of the patient sera reacted with a single peptide, ARGGSRERARGRGRG-Cit-GEKR, accounting for more than half of the ACPA reactivity alone. Moreover, these antibodies were detected in 10% of CCP2-negative RA sera. In addition, 47% of the RA sera reacted with two or three citrullinated EBNA-1 peptides from the selected peptide panel. Furthermore, a negative correlation between the biotin attachment site and the location of citrulline in the peptides was found, i.e. the closer the citrulline was located to biotin, the lower the antibody reactivity. Our data suggest that citrullinated EBNA-1 peptides may be considered a substrate for the detection of ACPAs and that the presence of Epstein-Barr virus may play a role in the induction of these autoantibodies. Copyright © 2016 Elsevier Inc. All rights reserved.
Castillo, Julio; Brown, Mark R.; Strand, Michael R.
2011-01-01
All vector mosquito species must feed on the blood of a vertebrate host to produce eggs. Multiple cycles of blood feeding also promote frequent contacts with hosts, which enhance the risk of exposure to infectious agents and disease transmission. Blood feeding triggers the release of insulin-like peptides (ILPs) from the brain of the mosquito Aedes aegypti, which regulate blood meal digestion and egg formation. In turn, hemocytes serve as the most important constitutive defense in mosquitoes against pathogens that enter the hemocoel. Prior studies indicated that blood feeding stimulates hemocytes to increase in abundance, but how this increase in abundance is regulated is unknown. Here, we determined that phagocytic granulocytes and oenocytoids express the A. aegypti insulin receptor (AaMIR). We then showed that: 1) decapitation of mosquitoes after blood feeding inhibited hemocyte proliferation, 2) a single dose of insulin-like peptide 3 (ILP3) sufficient to stimulate egg production rescued proliferation, and 3) knockdown of the AaMIR inhibited ILP3 rescue activity. Infection studies indicated that increased hemocyte abundance enhanced clearance of the bacterium Escherichia coli at lower levels of infection. Surprisingly, however, non-blood fed females better survived intermediate and high levels of E. coli infection than blood fed females. Taken together, our results reveal a previously unrecognized role for the insulin signaling pathway in regulating hemocyte proliferation. Our results also indicate that blood feeding enhances resistance to E. coli at lower levels of infection but reduces tolerance at higher levels of infection. PMID:21998579
Coarse Graining to Investigate Membrane Induced Peptide Folding of Anticancer Peptides
NASA Astrophysics Data System (ADS)
Ganesan, Sai; Xu, Hongcheng; Matysiak, Silvina
Information about membrane induced peptide folding mechanisms using all-atom molecular dynamics simulations is a challenge due to time and length scale issues.We recently developed a low resolution Water Explicit Polarizable PROtein coarse-grained Model by adding oppositely charged dummy particles inside protein backbone beads.These two dummy particles represent a fluctuating dipole,thus introducing structural polarization into the coarse-grained model.With this model,we were able to achieve significant α- β secondary structure content de novo,without any added bias.We extended the model to zwitterionic and anionic lipids,by adding oppositely charged dummy particles inside polar beads, to capture the ability of the head group region to form hydrogen bonds.We use zwitterionic POPC and anionic POPS as our model lipids, and a cationic anticancer peptide,SVS1,as our model peptide.We have characterized the driving forces for SVS1 folding on lipid bilayers with varying anionic and zwitterionic lipid compositions.Based on our results, dipolar interactions between peptide backbone and lipid head groups contribute to stabilize folded conformations.Cooperativity in folding is induced by both intra peptide and membrane-peptide interaction.
USDA-ARS?s Scientific Manuscript database
Atoms in biomolecular structures like alpha helices contain an array of distances and angles which include abundant multiple patterns of redundancies. Thus all peptides backbones contain the three atom sequence N-C*C, whereas the repeating set of a four atom sequences (N-C*C-N, C*-C-N-C*, and C-N-C...
Farrah, Terry; Deutsch, Eric W.; Omenn, Gilbert S.; Sun, Zhi; Watts, Julian D.; Yamamoto, Tadashi; Shteynberg, David; Harris, Micheleen M.; Moritz, Robert L.
2014-01-01
The kidney, urine, and plasma proteomes are intimately related: proteins and metabolic waste products are filtered from the plasma by the kidney and excreted via the urine, while kidney proteins may be secreted into the circulation or released into the urine. Shotgun proteomics datasets derived from human kidney, urine, and plasma samples were collated and processed using a uniform software pipeline, and relative protein abundances were estimated by spectral counting. The resulting PeptideAtlas builds yielded 4005, 2491, and 3553 nonredundant proteins at 1% FDR for the kidney, urine, and plasma proteomes, respectively—for kidney and plasma, the largest high-confidence protein sets to date. The same pipeline applied to all available human data yielded a 2013 Human PeptideAtlas build containing 12,644 nonredundant proteins and at least one peptide for each of ~14,000 Swiss-Prot entries, an increase over 2012 of ~7.5% of the predicted human proteome. We demonstrate that abundances are correlated between plasma and urine, examine the most abundant urine proteins not derived from either plasma or kidney, and consider the biomarker potential of proteins associated with renal decline. This analysis forms part of the Biology and Disease-driven Human Proteome Project (B/D-HPP) and a contribution to the Chromosome-centric Human Proteome Project (C-HPP) special issue. PMID:24261998
Wang, Dong; Jones, Laura M; Urwin, Peter E; Atkinson, Howard J
2011-03-07
Cyst nematodes are a group of plant pathogens each with a defined host range that cause major losses to crops including potato, soybean and sugar beet. The infective mobile stage hatches from dormant eggs and moves a short distance through the soil to plant roots, which it then invades. A novel strategy for control has recently been proposed in which the plant is able to secrete a peptide which disorientates the infective stage and prevents invasion of the pathogen. This study provides indirect evidence to support the mechanism by which one such peptide disrupts chemosensory function in nematodes. The peptide is a disulphide-constrained 7-mer with the amino acid sequence CTTMHPRLC that binds to nicotinic acetylcholine receptors. A fluorescently tagged version of this peptide with both epifluorescent and confocal microscopy was used to demonstrate that retrograde transport occurs from an aqueous environment along bare-ending primary cilia of chemoreceptive sensilla. The peptide is transported to the cell bodies of these neurons and on to a limited number of other neurons to which they connect. It appears to be localised in both neuronal processes and organelles adjacent to nuclei of some neurons suggesting it could be transported through the Golgi apparatus. The peptide takes 2.5 h to reach the neuronal cell bodies. Comparative studies established that similar but less abundant uptake occurs for Caenorhabditis elegans along its well studied dye-filling chemoreceptive neurons. Incubation in peptide solution or root-exudate from transgenic plants that secrete the peptide disrupted normal orientation of infective cyst nematodes to host root diffusate. The peptide probably undergoes transport along the dye-filling non-cholinergic chemoreceptive neurons to their synapses where it is taken up by the interneurons to which they connect. Coordinated responses to chemoreception are disrupted when the sub-set of cholinergic interneurons secrete the peptide at synapses that
Kume, Akiko; Kawai, Shun; Kato, Ryuji; Iwata, Shinmei; Shimizu, Kazunori; Honda, Hiroyuki
2017-02-01
To investigate the binding properties of a peptide sequence, we conducted principal component analysis (PCA) of the physicochemical features of a tetramer peptide library comprised of 512 peptides, and the variables were reduced to two principal components. We selected IL-2 and IgG as model proteins and the binding affinity to these proteins was assayed using the 512 peptides mentioned above. PCA of binding affinity data showed that 16 and 18 variables were suitable for localizing IL-2 and IgG high-affinity binding peptides, respectively, into a restricted region of the PCA plot. We then investigated whether the binding affinity of octamer peptide libraries could be predicted using the identified region in the tetramer PCA. The results show that octamer high-affinity binding peptides were also concentrated in the tetramer high-affinity binding region of both IL-2 and IgG. The average fluorescence intensity of high-affinity binding peptides was 3.3- and 2.1-fold higher than that of low-affinity binding peptides for IL-2 and IgG, respectively. We conclude that PCA may be used to identify octamer peptides with high- or low-affinity binding properties from data from a tetramer peptide library. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Sedo, Aleksi; Duke-Cohan, Jonathan S; Balaziova, Eva; Sedova, Liliana R
2005-01-01
Several of the proinflammatory peptides involved in rheumatoid arthritis pathogenesis, including peptides induced downstream of tumor necrosis factor-α as well as the monocyte/T cell-attracting chemokines RANTES and stromal cell-derived factor (SDF)-1α and the neuropeptides vasoactive intestinal peptide (VIP) and substance P, have their biological half-lives controlled by dipeptidyl peptidase IV (DPPIV). Proteolysis by DPPIV regulates not only the half-life but also receptor preference and downstream signaling. In this article, we examine the role of DPPIV homologs, including CD26, the canonical DPPIV, and their substrates in the pathogenesis of rheumatoid arthritis. The differing specific activities of the DPPIV family members and their differential inhibitor response provide new insights into therapeutic design. PMID:16277701
Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms.
Dos Santos-Pinto, José Roberto Aparecido; Perez-Riverol, Amilcar; Lasa, Alexis Musacchio; Palma, Mario Sergio
2018-06-15
Among venomous animals, Hymenoptera have been suggested as a rich source of natural toxins. Due to their broad ecological diversity, venom from Hymenoptera insects (bees, wasps and ants) have evolved differentially thus widening the types and biological functions of their components. To date, insect toxinology analysis have scarcely uncovered the complex composition of bee, wasp and ant venoms which include low molecular weight compounds, highly abundant peptides and proteins, including several allergens. In Hymenoptera, these complex mixtures of toxins represent a potent arsenal of biological weapons that are used for self-defense, to repel intruders and to capture prey. Consequently, Hymenoptera venom components have a broad range of pharmacological targets and have been extensively studied, as promising sources of new drugs and biopesticides. In addition, the identification and molecular characterization of Hymenoptera venom allergens have allowed for the rational design of component-resolved diagnosis of allergy, finally improving the outcome of venom immunotherapy (VIT). Until recently, a limited number of Hymenoptera venoms had been unveiled due to the technical limitations of the approaches used to date. Nevertheless, the application of novel techniques with high dynamic range has significantly increased the number of identified peptidic and proteinaceous toxins. Considering this, the present review summarizes the current knowledge about the most representative Hymenoptera venom peptides and proteins which are under study for a better understanding of the insect-caused envenoming process and the development of new drugs and biopesticides. Copyright © 2018 Elsevier Ltd. All rights reserved.
Petidis, Konstantinos; Douma, Stella; Doumas, Michael; Basagiannis, Ilias; Vogiatzis, Konstantinos; Zamboulis, Chrysanthos
2008-01-01
Background Acute vigorous exercise, associated with increased release of plasma catecholamines, transiently increases the risk of primary cardiac arrest. We tested the effect of acute submaximal exercise on vasoactive substances and their combined result on platelet function. Methods Healthy volunteers, hypertensive patients and patients with coronary artery disease (CAD) performed a modified treadmill exercise test. We determined plasma catecholamines, thromboxane A2, prostacyclin, endothelin-1 and platelet aggregation induced by adenosine diphosphate (ADP) and collagen at rest and during exercise. Results Our results during exercise showed a) platelet activation (increased thromboxane B2, TXB2), b) increased prostacyclin release from endothelium and c) decreased platelet aggregation in all groups, significantly more in healthy volunteers than in patients with CAD (with hypertensives lying in between these two groups). Conclusion Despite the pronounced activation of Sympathetic Nervous System (SNS) and increased TXB2 levels during acute exercise platelet aggregation decreases, possibly to counterbalance the prothrombotic state. Since this effect seems to be mediated by the normal endothelium (through prostacyclin and nitric oxide), in conditions characterized by endothelial dysfunction (hypertension, CAD) reduced platelet aggregation is attenuated, thus posing such patients in increased risk for thrombotic complications. PMID:18505546
Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates
ERIC Educational Resources Information Center
Kirin, Srecko I.; Noor, Fozia; Metzler-Nolte, Nils; Mier, Walter
2007-01-01
A simple and relatively inexpensive procedure for preparing a biologically active peptide using solid phase peptide synthesis (SPPS) is described. Fourth-year undergraduate students have gained firsthand experience from the solid-phase synthesis techniques and they have become familiar with modern analytical techniques based on the particular…
Improving Peptide Applications Using Nanotechnology.
Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P
2016-01-01
Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.
Baum, Florian; Fedorova, Maria; Ebner, Jennifer; Hoffmann, Ralf; Pischetsrieder, Monika
2013-12-06
Milk is an excellent source of bioactive peptides. However, the composition of the native milk peptidome has only been partially elucidated. The present study applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) directly or after prefractionation of the milk peptides by reverse-phase high-performance liquid chromatography (RP-HPLC) or OFFGEL fractionation for the comprehensive analysis of the peptide profile of raw milk. The peptide sequences were determined by MALDI-TOF/TOF or nano-ultra-performance liquid chromatography-nanoelectrospray ionization-LTQ-Orbitrap-MS. Direct MALDI-TOF-MS analysis led to the assignment of 57 peptides. Prefractionation by both complementary methods led to the assignment of another 191 peptides. Most peptides originate from α(S1)-casein, followed by β-casein, and α(S2)-casein. κ-Casein and whey proteins seem to play only a minor role as peptide precursors. The formation of many, but not all, peptides could be explained by the activity of the endogenous peptidases, plasmin or cathepsin D, B, and G. Database searches revealed the presence of 22 peptides with established physiological function, including those with angiotensin-converting-enzyme (ACE) inhibitory, immunomodulating, or antimicrobial activity.
Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling.
Assem, Naila; Ferreira, David J; Wolan, Dennis W; Dawson, Philip E
2015-07-20
Macrocyclization is a broadly applied approach for overcoming the intrinsically disordered nature of linear peptides. Herein, it is shown that dichloroacetone (DCA) enhances helical secondary structures when introduced between peptide nucleophiles, such as thiols, to yield an acetone-linked bridge (ACE). Aside from stabilizing helical structures, the ketone moiety embedded in the linker can be modified with diverse molecular tags by oxime ligation. Insights into the structure of the tether were obtained through co-crystallization of a constrained S-peptide in complex with RNAse S. The scope of the acetone-linked peptides was further explored through the generation of N-terminus to side chain macrocycles and a new approach for generating fused macrocycles (bicycles). Together, these studies suggest that acetone linking is generally applicable to peptide macrocycles with a specific utility in the synthesis of stabilized helices that incorporate functional tags. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Agatoxin-like peptides in the neuroendocrine system of the honey bee and other insects.
Sturm, Sebastian; Ramesh, Divya; Brockmann, Axel; Neupert, Susanne; Predel, Reinhard
2016-01-30
We investigated the peptide inventory of the corpora cardiaca (CC) of the honey bee, Apis mellifera, by direct tissue profiling using MALDI-TOF MS combined with proteomic approaches focusing on cysteine-containing peptides. An agatoxin-like peptide (ALP) was identified as a component of the glandular part of the CC and was associated with the presence of the adipokinetic hormone in mass spectra. Although abundant in the CC, ALP does not belong to the toxins observed in the venom gland of A. mellifera. Homologs of ALP are highly conserved in major groups of arthropods and in line with this we detected ALP in the CC of non-venomous insects such as cockroaches and silverfish. In the American cockroach, Periplaneta americana, ALP was also identified in the CNS and stomatogastric nervous system. This is the first report that establishes the presence of ALPs in the neuroendocrine tissues of insects and further studies are necessary to reveal common functions of these peptides, e.g. as antimicrobial agents, ion channel modulators or classical neuropeptides. Among the messenger molecules of the nervous system, neuropeptides represent the structurally most diverse class and basically participate in the regulation of all physiological processes. The set of neuropeptides, their functions and spatial distribution are particularly well-studied in insects. Until now, however, several potential neuropeptide receptors remained orphan, which indicates the existence of so far unknown ligands. In our study, we used proteomic methods such as cysteine modification, enzymatic digestion and peptide derivatization, combined with direct tissue profiling by MALDI-TOF mass spectrometry, for the discovery of novel putative messenger molecules in the neuroendocrine system. The described presence of agatoxin-like peptides in the nervous system of the honey bee and other insects was overseen so far and is thus a remarkable addition to the very well studied neuropeptidome of insects. It is not
Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity
NASA Astrophysics Data System (ADS)
Soares, Jason W.; Mello, Charlene M.
2004-03-01
Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.
Müller, Michael; König, Finja; Meyer, Nina; Gattlen, Jasmin; Pieles, Uwe; Peters, Kirsten; Kreikemeyer, Bernd; Mathes, Stephanie; Saxer, Sina
2018-01-01
Self-assembling peptide hydrogels can be modified regarding their biodegradability, their chemical and mechanical properties and their nanofibrillar structure. Thus, self-assembling peptide hydrogels might be suitable scaffolds for regenerative therapies and tissue engineering. Owing to the use of various peptide concentrations and buffer compositions, the self-assembling peptide hydrogels might be influenced regarding their mechanical characteristics. Therefore, the mechanical properties and stability of a set of self-assembling peptide hydrogels, consisting of 11 amino acids, made from four beta sheet self-assembling peptides in various peptide concentrations and buffer compositions were studied. The formed self-assembling peptide hydrogels exhibited stiffnesses ranging from 0.6 to 205 kPa. The hydrogel stiffness was mostly affected by peptide sequence followed by peptide concentration and buffer composition. All self-assembling peptide hydrogels examined provided a nanofibrillar network formation. A maximum self-assembling peptide hydrogel dissolution of 20% was observed for different buffer solutions after 7 days. The stability regarding enzymatic and bacterial digestion showed less degradation in comparison to the self-assembling peptide hydrogel dissolution rate in buffer. The tested set of self-assembling peptide hydrogels were able to form stable scaffolds and provided a broad spectrum of tissue-specific stiffnesses that are suitable for a regenerative therapy. PMID:29657766
Biodiscovery of aluminum binding peptides
NASA Astrophysics Data System (ADS)
Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra
2013-05-01
Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.
Mickoleit, Frank; Borkner, Christian B; Toro-Nahuelpan, Mauricio; Herold, Heike M; Maier, Denis S; Plitzko, Jürgen M; Scheibel, Thomas; Schüler, Dirk
2018-03-12
Magnetosomes are natural magnetic nanoparticles with exceptional properties that are synthesized in magnetotactic bacteria by a highly regulated biomineralization process. Their usability in many applications could be further improved by encapsulation in biocompatible polymers. In this study, we explored the production of spider silk-inspired peptides on magnetosomes of the alphaproteobacterium Magnetospirillum gryphiswaldense. Genetic fusion of different silk sequence-like variants to abundant magnetosome membrane proteins enhanced magnetite biomineralization and caused the formation of a proteinaceous capsule, which increased the colloidal stability of isolated particles. Furthermore, we show that spider silk peptides fused to a magnetosome membrane protein can be used as seeds for silk fibril growth on the magnetosome surface. In summary, we demonstrate that the combination of two different biogenic materials generates a genetically encoded hybrid composite with engineerable new properties and enhanced potential for various applications.
Guerrero, Andres; Dallas, David C.; Contreras, Stephanie; Chee, Sabrina; Parker, Evan A.; Sun, Xin; Dimapasoc, Lauren; Barile, Daniela; German, J. Bruce; Lebrilla, Carlito B.
2014-01-01
An extensive mass spectrometry analysis of the human milk peptidome has revealed almost 700 endogenous peptides from 30 different proteins. Two in-house computational tools were created and used to visualize and interpret the data through both alignment of the peptide quasi-molecular ion intensities and estimation of the differential enzyme participation. These results reveal that the endogenous proteolytic activity in the mammary gland is remarkably specific and well conserved. Certain proteins—not necessarily the most abundant ones—are digested by the proteases present in milk, yielding endogenous peptides from selected regions. Our results strongly suggest that factors such as the presence of specific proteases, the position and concentration of cleavage sites, and, more important, the intrinsic disorder of segments of the protein drive this proteolytic specificity in the mammary gland. As a consequence of this selective hydrolysis, proteins that typically need to be cleaved at specific positions in order to exert their activity are properly digested, and bioactive peptides encoded in certain protein sequences are released. Proteins that must remain intact in order to maintain their activity in the mammary gland or in the neonatal gastrointestinal tract are unaffected by the hydrolytic environment present in milk. These results provide insight into the intrinsic structural mechanisms that facilitate the selectivity of the endogenous milk protease activity and might be useful to those studying the peptidomes of other biofluids. PMID:25172956
Zhang, Daniel Y; Azrad, Maria; Demark-Wahnefried, Wendy; Frederickson, Christopher J; Lippard, Stephen J; Radford, Robert J
2015-02-20
Small-molecule fluorescent sensors are versatile agents for detecting mobile zinc in biology. Capitalizing on the abundance of validated mobile zinc probes, we devised a strategy for repurposing existing intensity-based sensors for quantitative applications. Using solid-phase peptide synthesis, we conjugated a zinc-sensitive Zinpyr-1 derivative and a zinc-insensitive 7-hydroxycoumarin derivative onto opposite ends of a rigid P9K peptide scaffold to create HcZ9, a ratiometric fluorescent probe for mobile zinc. A plate reader-based assay using HcZ9 was developed, the accuracy of which is comparable to that of atomic absorption spectroscopy. We investigated zinc accumulation in prostatic cells and zinc levels in human seminal fluid. When normal and tumorigenic cells are bathed in zinc-enriched media, cellular mobile zinc is buffered and changes slightly, but total zinc levels increase significantly. Quantification of mobile and total zinc levels in human seminal plasma revealed that the two are positively correlated with a Pearson's coefficient of 0.73.
Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens.
Hu, Fengjiao; Wu, Qiaoxing; Song, Shuang; She, Ruiping; Zhao, Yue; Yang, Yifei; Zhang, Meikun; Du, Fang; Soomro, Majid Hussain; Shi, Ruihan
2016-12-05
Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.
Hou, Junjie; Zhang, Chengqian; Xue, Peng; Wang, Jifeng; Chen, Xiulan; Guo, Xiaojing; Yang, Fuquan
2017-01-01
Ovarian cancer is one of the most common cancer among women in the world, and chemotherapy remains the principal treatment for patients. However, drug resistance is a major obstacle to the effective treatment of ovarian cancers and the underlying mechanism is not clear. An increased understanding of the mechanisms that underline the pathogenesis of drug resistance is therefore needed to develop novel therapeutics and diagnostic. Herein, we report the comparative analysis of the doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI/ADR-RES cells using integrated global proteomics and N-glycoproteomics. A total of 1525 unique N-glycosite-containing peptides from 740 N-glycoproteins were identified and quantified, of which 253 N-glycosite-containing peptides showed significant change in the NCI/ADR-RES cells. Meanwhile, stable isotope labeling by amino acids in cell culture (SILAC) based comparative proteomic analysis of the two ovarian cancer cells led to the quantification of 5509 proteins. As about 50% of the identified N-glycoproteins are low-abundance membrane proteins, only 44% of quantified unique N-glycosite-containing peptides had corresponding protein expression ratios. The comparison and calibration of the N-glycoproteome versus the proteome classified 14 change patterns of N-glycosite-containing peptides, including 8 up-regulated N-glycosite-containing peptides with the increased glycosylation sites occupancy, 35 up-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy, 2 down-regulated N-glycosite-containing peptides with the decreased glycosylation sites occupancy, 46 down-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy. Integrated proteomic and N-glycoproteomic analyses provide new insights, which can help to unravel the relationship of N-glycosylation and multidrug resistance (MDR), understand the mechanism of MDR, and discover the new diagnostic and
USDA-ARS?s Scientific Manuscript database
Calcium (Ca) is one of the most abundant inorganic elements in the human body and has many important physiological roles. Prebiotics and bioactive peptides are two important substances used to promote calcium uptake. However, the difference in mechanisms of the calcium uptake from these two suppleme...
Biomedical Applications of Organometal-Peptide Conjugates
NASA Astrophysics Data System (ADS)
Metzler-Nolte, Nils
Peptides are well suited as targeting vectors for the directed delivery of metal-based drugs or probes for biomedical investigations. This chapter describes synthetic strategies for the preparation of conjugates of medically interesting peptides with covalently bound metal complexes. Peptides that were used include neuropeptides (enkephalin, neuropeptide Y, neurotensin), uptake peptides (TAT and poly-Arg), and intracellular localization sequences. To these peptides, a whole variety of transition metal complexes has been attached in recent years by solid-phase peptide synthesis (SPPS) techniques. The metal complex can be attached to the peptide on the resin as part of the SPPS scheme. Alternatively, the metal complex may be attached to the peptide as a postsynthetic modification. Advantages as well as disadvantages for either strategy are discussed. Biomedical applications include radiopharmaceutical applications, anticancer and antibacterial activity, metal-peptide conjugates as targeted CO-releasing molecules, and metal-peptide conjugates in biosensor applications.
Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides
Mulder, Kelly C. L.; Lima, Loiane A.; Miranda, Vivian J.; Dias, Simoni C.; Franco, Octávio L.
2013-01-01
Cationic antimicrobial peptides (AMPs) and host defense peptides (HDPs) show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their biochemical features, selectivity against extra targets, and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the current scenario for production and the use of nanotechnology as delivery tool for both classes of cationic peptides, as well as the perspectives on improving them is considered. PMID:24198814
Peptide Vaccines for Leishmaniasis.
De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B
2018-01-01
Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.
A Cocoa Peptide Protects Caenorhabditis elegans from Oxidative Stress and β-Amyloid Peptide Toxicity
Martorell, Patricia; Bataller, Esther; Llopis, Silvia; Gonzalez, Núria; Álvarez, Beatriz; Montón, Fernando; Ortiz, Pepa; Ramón, Daniel; Genovés, Salvador
2013-01-01
Background Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. Methodology/Principal Findings A bioactive peptide, 13L (DNYDNSAGKWWVT), was obtained from a hydrolyzed cocoa by-product by chromatography. The in vitro inhibition of prolyl endopeptidase (PEP) was used as screening method to select the suitable fraction for peptide identification. Functional analysis of 13L peptide was achieved using the transgenic Caenorhabditis elegans strain CL4176 expressing the human Aβ1–42 peptide as a pre-clinical in vivo model for Alzheimer's disease. Among the peptides isolated, peptide 13L (1 µg/mL) showed the highest antioxidant activity (P≤0.001) in the wild-type strain (N2). Furthermore, 13L produced a significant delay in body paralysis in strain CL4176, especially in the 24–47 h period after Aβ1–42 peptide induction (P≤0.0001). This observation is in accordance with the reduction of Aβ deposits in CL4176 by western blot. Finally, transcriptomic analysis in wild-type nematodes treated with 13L revealed modulation of the proteosomal and synaptic functions as the main metabolic targets of the peptide. Conclusions/Significance These findings suggest that the cocoa 13L peptide has antioxidant activity and may reduce Aβ deposition in a C. elegans model of Alzheimer's disease; and therefore has a putative therapeutic potential for prevention of age-related diseases. Further studies in murine models and humans will be essential to analyze the effectiveness of the 13L peptide in higher animals. PMID:23675471
Deutsch, Eric W
2010-01-01
PeptideAtlas is a multi-species compendium of peptides observed with tandem mass spectrometry methods. Raw mass spectrometer output files are collected from the community and reprocessed through a uniform analysis and validation pipeline that continues to advance. The results are loaded into a database and the information derived from the raw data is returned to the community via several web-based data exploration tools. The PeptideAtlas resource is useful for experiment planning, improving genome annotation, and other data mining projects. PeptideAtlas has become especially useful for planning targeted proteomics experiments.
JOB, MARTIN O.; KUHAR, MICHAEL J.
2017-01-01
In this study, we reexamined the effect of CART peptide on psychostimulant (PS)-induced locomotor activity (LMA) in individual rats. The Methods utilized were as previously published. The PS-induced LMA was defined as the distance traveled after PS administration (intraperitoneal), and the CART peptide effect was defined as the change in the PS-induced activity after bilateral intra-NAc administration of CART peptide. The experiments included both male and female Sprague-Dawley rats, and varying the CART peptide dose and the PS dose. While the average effect of CART peptide was to inhibit PS-induced LMA, the effect of CART peptide on individual PS treated animals was not always inhibitory and sometimes even produced an increase or no change in PS-induced LMA. Upon further analysis, we observed a linear correlation, reported for the first time, between the magnitude of PS-induced LMA and the CART peptide effect. Because CART peptide inhibits PS-induced LMA when it is large, and increases PS-induced LMA when it is small, the peptide can be considered a homeostatic regulator of dopamine (DA)-induced LMA, which supports our earlier homeostatic hypothesis. PMID:28215744
PH dependent adhesive peptides
Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan
2010-06-29
A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzke, Melissa M.; Brown, Joseph N.; Gritsenko, Marina A.
2013-02-01
Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used to identify and quantify peptides in complex biological samples. In particular, label-free shotgun proteomics is highly effective for the identification of peptides and subsequently obtaining a global protein profile of a sample. As a result, this approach is widely used for discovery studies. Typically, the objective of these discovery studies is to identify proteins that are affected by some condition of interest (e.g. disease, exposure). However, for complex biological samples, label-free LC-MS proteomics experiments measure peptides and do not directly yield protein quantities. Thus, protein quantification must be inferred frommore » one or more measured peptides. In recent years, many computational approaches to relative protein quantification of label-free LC-MS data have been published. In this review, we examine the most commonly employed quantification approaches to relative protein abundance from peak intensity values, evaluate their individual merits, and discuss challenges in the use of the various computational approaches.« less
Liu, Yufang; Eichler, Jutta; Pischetsrieder, Monika
2015-11-01
Milk provides a wide range of bioactive substances, such as antimicrobial peptides and proteins. Our study aimed to identify novel antimicrobial peptides naturally present in milk. The components of an endogenous bovine milk peptide database were virtually screened for charge, amphipathy, and predicted secondary structure. Thus, 23 of 248 screened peptides were identified as candidates for antimicrobial effects. After commercial synthesis, their antimicrobial activities were determined against Escherichia coli NEB5α, E. coli ATCC25922, and Bacillus subtilis ATCC6051. In the tested concentration range (<2 mM), bacteriostatic activity of 14 peptides was detected including nine peptides inhibiting both Gram-positive and Gram-negative bacteria. The most effective fragment was TKLTEEEKNRLNFLKKISQRYQKFΑLPQYLK corresponding to αS2 -casein151-181 , with minimum inhibitory concentration (MIC) of 4.0 μM against B. subtilis ATCC6051, and minimum inhibitory concentrations of 16.2 μM against both E. coli strains. Circular dichroism spectroscopy revealed conformational changes of most active peptides in a membrane-mimic environment, transitioning from an unordered to α-helical structure. Screening of food peptide databases by prediction tools is an efficient method to identify novel antimicrobial food-derived peptides. Milk-derived antimicrobial peptides may have potential use as functional food ingredients and help to understand the molecular mechanisms of anti-infective milk effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Space-based measurements of elemental abundances and their relation to solar abundances
NASA Technical Reports Server (NTRS)
Coplan, M. A.; Ogilvie, K. W.; Bochsler, P.; Geiss, J.
1990-01-01
The Ion Composition Instrument (ICI) aboard the ISEE-3/ICE spacecraft was in the solar wind continuously from August 1978 to December 1982. The results made it possible to establish long-term average solar wind abundance values for helium, oxygen, neon, silicon, and iron. The Charge-Energy-Mass instrument aboard the CCE spacecraft of the AMPTE mission has measured the abundance of these elements in the magnetosheath and has also added carbon, nitrogen, magnesium, and sulfur to the list. There is strong evidence that these magnetosheath abundances are representative of the solar wind. Other sources of solar wind abundances are Solar Energetic Particle experiments and Apollo lunar foils. When comparing the abundances from all of these sources with photospheric abundances, it is clear that helium is depleted in the solar wind while silicon and iron are enhanced. Solar wind abundances for carbon, nitrogen, oxygen, and neon correlate well with the photospheric values. The incorporation of minor ions into the solar wind appears to depend upon both the ionization times for the elements and the Coulomb drag exerted by the outflowing proton flux.
Qeli, Ermir; Omasits, Ulrich; Goetze, Sandra; Stekhoven, Daniel J; Frey, Juerg E; Basler, Konrad; Wollscheid, Bernd; Brunner, Erich; Ahrens, Christian H
2014-08-28
The in silico prediction of the best-observable "proteotypic" peptides in mass spectrometry-based workflows is a challenging problem. Being able to accurately predict such peptides would enable the informed selection of proteotypic peptides for targeted quantification of previously observed and non-observed proteins for any organism, with a significant impact for clinical proteomics and systems biology studies. Current prediction algorithms rely on physicochemical parameters in combination with positive and negative training sets to identify those peptide properties that most profoundly affect their general detectability. Here we present PeptideRank, an approach that uses learning to rank algorithm for peptide detectability prediction from shotgun proteomics data, and that eliminates the need to select a negative dataset for the training step. A large number of different peptide properties are used to train ranking models in order to predict a ranking of the best-observable peptides within a protein. Empirical evaluation with rank accuracy metrics showed that PeptideRank complements existing prediction algorithms. Our results indicate that the best performance is achieved when it is trained on organism-specific shotgun proteomics data, and that PeptideRank is most accurate for short to medium-sized and abundant proteins, without any loss in prediction accuracy for the important class of membrane proteins. Targeted proteomics approaches have been gaining a lot of momentum and hold immense potential for systems biology studies and clinical proteomics. However, since only very few complete proteomes have been reported to date, for a considerable fraction of a proteome there is no experimental proteomics evidence that would allow to guide the selection of the best-suited proteotypic peptides (PTPs), i.e. peptides that are specific to a given proteoform and that are repeatedly observed in a mass spectrometer. We describe a novel, rank-based approach for the prediction
Key comparison study on peptide purity—synthetic human C-peptide
NASA Astrophysics Data System (ADS)
Josephs, R. D.; Li, M.; Song, D.; Westwood, S.; Stoppacher, N.; Daireaux, A.; Choteau, T.; Wielgosz, R.; Xiao, P.; Liu, Y.; Gao, X.; Zhang, C.; Zhang, T.; Mi, W.; Quan, C.; Huang, T.; Li, H.; Flatschart, R.; Borges Oliveira, R.; Melanson, J. E.; Ohlendorf, R.; Henrion, A.; Kinumi, T.; Wong, L.; Liu, Q.; Oztug Senal, M.; Vatansever, B.; Ün, I.; Gören, A. C.; Akgöz, M.; Quaglia, M.; Warren, J.
2017-01-01
Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM-K115, was coordinated by the Bureau International des Poids et Mesures (BIPM) and the Chinese National Institute of Metrology (NIM). Eight Metrology Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of human C-peptide (hCP) present as the main component in the comparison sample for CCQM-K115. The comparison samples were prepared from synthetic human hCP purchased from a commercial supplier and used as provided without further treatment or purification. hCP was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of short (up to 5 kDa), non-cross-linked synthetic peptides/proteins. It was anticipated to provide an analytical measurement challenge representative for the value-assignment of compounds of broadly similar structural characteristics. The majority of participants used a peptide impurity corrected amino acid analysis (PICAA) approach as the amount of material that has been provided to each participant (25 mg) is insufficient to perform a full mass balance based characterization of the material by a participating laboratory. The coordinators, both the BIPM and the NIM, were the laboratories to use the mass balance approach as they had more material available. It was decided to propose KCRVs for both the hCP mass fraction and the mass fraction of the peptide related impurities as indispensable contributor regardless of the use of PICAA, mass balance or any other approach to determine the hCP purity. This allowed participants to demonstrate the efficacy of their implementation of the approaches used to determine the hCP mass fraction. In particular it allows participants to demonstrate the efficacy of their implementation of peptide related impurity identification and quantification
Peptide Signaling in Plant Development
Katsir, Leron; Davies, Kelli A.; Bergmann, Dominique C.; Laux, Thomas
2011-01-01
Cell-to-cell communication is integral to the evolution of multicellularity. In plant development, peptide signals relay information coordinating cell proliferation and differentiation. These peptides are often encoded by gene families and bind to corresponding families of receptors. The precise spatiotemporal expression of signals and their cognate receptors underlies developmental patterning, and expressional and biochemical changes over evolutionary time have likely contributed to the refinement and complexity of developmental programs. Here, we discuss two major plant peptide families which have central roles in plant development: the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) peptide family and the EPIDERMAL PATTERNING FACTOR (EPF) family. We discuss how specialization has enabled the CLE peptides to modulate stem cell differentiation in various tissue types, and how differing activities of EPF peptides precisely regulate the stomatal developmental program, and we examine the contributions of these peptide families to plant development from an evolutionary perspective. PMID:21549958
Exploration of the Medicinal Peptide Space.
Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart
2016-01-01
The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs.
Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C
2015-03-23
Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.
NASA Astrophysics Data System (ADS)
Edelson-Averbukh, Marina; Shevchenko, Andrej; Pipkorn, Rüdiger; Lehmann, Wolf D.
2011-12-01
Unambiguous differentiation between isobaric sulfated and phosphorylated tyrosine residues (sTyr and pTyr) of proteins by mass spectrometry is challenging, even using high resolution mass spectrometers. Here we show that upon negative ion mode collision-induced dissociation (CID), pTyr- and sTyr-containing peptides exhibit entirely different modification-specific fragmentation patterns leading to a rapid discrimination between the isobaric covalent modifications using the tandem mass spectral data. This study reveals that the ratio between the relative abundances of [M-H-80]- and [M-H-98]- fragment ions in ion-trap CID and higher energy collision dissociation (HCD) spectra of singly deprotonated +80 Da Tyr-peptides can be used as a reliable indication of the Tyr modification group nature. For multiply deprotonated +80 Da Tyr-peptides, CID spectra of sTyr- and pTyr-containing sequences can be readily distinguished based on the presence/absence of the [M-nH-79](n-1)- and [M-nH-79-NL]( n-1)- ( n = 2, 3) fragment ions (NL = neutral loss).
Yao, Ning; Chen, Hemei; Lin, Huaqing; Deng, Chunhui; Zhang, Xiangmin
2008-03-21
Human serum contains a complex array of proteolytically derived peptides (serum peptidome), which contain biomarkers of preclinical screening and disease diagnosis. Recently, commercial C(8)-functionalized magnetic beads (1-10 microm) were widely applied to the separation and enrichment of peptides in human serum, prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. In this work, laboratory-prepared C(8)-functionalized magnetic nanoparticles (about 50 nm) were prepared and applied to the fast separation and the enrichment of peptides from serum. At first, the C(8)-magnetic nanoparticles were synthesized by modifying amine-functionalized magnetic nanoparticles with chlorodimethyloctylsilane. These synthesized C(8)-amine-functionalized magnetic particles have excellent magnetic responsibility, high dispersibility and large surface area. Finally, the C(8)-magnetic nanoparticles were successfully applied to fast and efficient enrichment of low-abundance peptides from protein tryptic digestion and human serum followed by MALDI-TOF-MS analysis.
Mohammed, Yassene; Domański, Dominik; Jackson, Angela M; Smith, Derek S; Deelder, André M; Palmblad, Magnus; Borchers, Christoph H
2014-06-25
One challenge in Multiple Reaction Monitoring (MRM)-based proteomics is to select the most appropriate surrogate peptides to represent a target protein. We present here a software package to automatically generate these most appropriate surrogate peptides for an LC/MRM-MS analysis. Our method integrates information about the proteins, their tryptic peptides, and the suitability of these peptides for MRM which is available online in UniProtKB, NCBI's dbSNP, ExPASy, PeptideAtlas, PRIDE, and GPMDB. The scoring algorithm reflects our knowledge in choosing the best candidate peptides for MRM, based on the uniqueness of the peptide in the targeted proteome, its physiochemical properties, and whether it previously has been observed. The modularity of the workflow allows further extension and additional selection criteria to be incorporated. We have developed a simple Web interface where the researcher provides the protein accession number, the subject organism, and peptide-specific options. Currently, the software is designed for human and mouse proteomes, but additional species can be easily be added. Our software improved the peptide selection by eliminating human error, considering multiple data sources and all of the isoforms of the protein, and resulted in faster peptide selection - approximately 50 proteins per hour compared to 8 per day. Compiling a list of optimal surrogate peptides for target proteins to be analyzed by LC/MRM-MS has been a cumbersome process, in which expert researchers retrieved information from different online repositories and used their own reasoning to find the most appropriate peptides. Our scientific workflow automates this process by integrating information from different data sources including UniProt, Global Proteome Machine, NCBI's dbSNP, and PeptideAtlas, simulating the researchers' reasoning, and incorporating their knowledge of how to select the best proteotypic peptides for an MRM analysis. The developed software can help to
Synthesis of peptide .alpha.-thioesters
Camarero, Julio A [Livermore, CA; Mitchell, Alexander R [Livermore, CA; De Yoreo, James J [Clayton, CA
2008-08-19
Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.
Mocellin, Simone
2012-01-01
Peptides derived from tumor associated antigens can be utilized to elicit a therapeutically effective immune response against melanoma in experimental models. However, patient vaccination with peptides - although it is often followed by the induction of melanoma- specific T lymphocytes - is rarely associated with tumor response of clinical relevance. In this review I summarize the principles of peptide design as well as the results so far obtained in the clinical setting while treating cutaneous melanoma by means of this active immunotherapy strategy. I also discuss some immunological and methodological issues that might be helpful for the successful development of peptide-based vaccines.
Kim, Ha-Kun; Chun, Dae-Sik; Kim, Joon-Sik; Yun, Cheol-Ho; Lee, Ju-Hoon; Hong, Soon-Kwang; Kang, Dae-Kyung
2006-09-01
Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide-lactoferricin fusion gene. The monomeric acidic peptide-lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-beta-D-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.
Temussi, Piero A
2012-02-01
The taste of peptides is seldom one of the most relevant issues when one considers the many important biological functions of this class of molecules. However, peptides generally do have a taste, covering essentially the entire range of established taste modalities: sweet, bitter, umami, sour and salty. The last two modalities cannot be attributed to peptides as such because they are due to the presence of charged terminals and/or charged side chains, thus reflecting only the zwitterionic nature of these compounds and/or the nature of some side chains but not the electronic and/or conformational features of a specific peptide. The other three tastes, that is, sweet, umami and bitter, are represented by different families of peptides. This review describes the main peptides with a sweet, umami or bitter taste and their relationship with food acceptance or rejection. Particular emphasis will be given to the sweet taste modality, owing to the practical and scientific relevance of aspartame, the well-known sweetener, and to the theoretical importance of sweet proteins, the most potent peptide sweet molecules. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.
Contribution of Peptide Backbone to Anti-Citrullinated Peptide Antibody Reactivity
Trier, Nicole Hartwig; Dam, Catharina Essendrup; Olsen, Dorthe Tange; Hansen, Paul Robert; Houen, Gunnar
2015-01-01
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases, affecting approximately 1–2% of the world population. One of the characteristic features of RA is the presence of autoantibodies. Especially the highly specific anti-citrullinated peptide antibodies (ACPAs), which have been found in up to 70% of RA patients’ sera, have received much attention. Several citrullinated proteins are associated with RA, suggesting that ACPAs may react with different sequence patterns, separating them from traditional antibodies, whose reactivity usually is specific towards a single target. As ACPAs have been suggested to be involved in the development of RA, knowledge about these antibodies may be crucial. In this study, we examined the influence of peptide backbone for ACPA reactivity in immunoassays. The antibodies were found to be reactive with a central Cit-Gly motif being essential for ACPA reactivity and to be cross-reactive between the selected citrullinated peptides. The remaining amino acids within the citrullinated peptides were found to be of less importance for antibody reactivity. Moreover, these findings indicated that the Cit-Gly motif in combination with peptide backbone is essential for antibody reactivity. Based on these findings it was speculated that any amino acid sequence, which brings the peptide into a properly folded structure for antibody recognition is sufficient for antibody reactivity. These findings are in accordance with the current hypothesis that structural homology rather than sequence homology are favored between citrullinated epitopes. These findings are important in relation to clarifying the etiology of RA and to determine the nature of ACPAs, e.g. why some Cit-Gly-containing sequences are not targeted by ACPAs. PMID:26657009
Identification of tissue-specific targeting peptide
NASA Astrophysics Data System (ADS)
Jung, Eunkyoung; Lee, Nam Kyung; Kang, Sang-Kee; Choi, Seung-Hoon; Kim, Daejin; Park, Kisoo; Choi, Kihang; Choi, Yun-Jaie; Jung, Dong Hyun
2012-11-01
Using phage display technique, we identified tissue-targeting peptide sets that recognize specific tissues (bone-marrow dendritic cell, kidney, liver, lung, spleen and visceral adipose tissue). In order to rapidly evaluate tissue-specific targeting peptides, we performed machine learning studies for predicting the tissue-specific targeting activity of peptides on the basis of peptide sequence information using four machine learning models and isolated the groups of peptides capable of mediating selective targeting to specific tissues. As a representative liver-specific targeting sequence, the peptide "DKNLQLH" was selected by the sequence similarity analysis. This peptide has a high degree of homology with protein ligands which can interact with corresponding membrane counterparts. We anticipate that our models will be applicable to the prediction of tissue-specific targeting peptides which can recognize the endothelial markers of target tissues.
[Distiller Yeasts Producing Antibacterial Peptides].
Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V
2015-01-01
A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.
Binkowski, Brock F; Miller, Russell A; Belshaw, Peter J
2005-07-01
We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.
Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays.
Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki
2016-11-19
The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides.
Focused Screening of ECM-Selective Adhesion Peptides on Cellulose-Bound Peptide Microarrays
Kanie, Kei; Kondo, Yuto; Owaki, Junki; Ikeda, Yurika; Narita, Yuji; Kato, Ryuji; Honda, Hiroyuki
2016-01-01
The coating of surfaces with bio-functional proteins is a promising strategy for the creation of highly biocompatible medical implants. Bio-functional proteins from the extracellular matrix (ECM) provide effective surface functions for controlling cellular behavior. We have previously screened bio-functional tripeptides for feasibility of mass production with the aim of identifying those that are medically useful, such as cell-selective peptides. In this work, we focused on the screening of tripeptides that selectively accumulate collagen type IV (Col IV), an ECM protein that accelerates the re-endothelialization of medical implants. A SPOT peptide microarray was selected for screening owing to its unique cellulose membrane platform, which can mimic fibrous scaffolds used in regenerative medicine. However, since the library size on the SPOT microarray was limited, physicochemical clustering was used to provide broader variation than that of random peptide selection. Using the custom focused microarray of 500 selected peptides, we assayed the relative binding rates of tripeptides to Col IV, collagen type I (Col I), and albumin. We discovered a cluster of Col IV-selective adhesion peptides that exhibit bio-safety with endothelial cells. The results from this study can be used to improve the screening of regeneration-enhancing peptides. PMID:28952593
Bioavailability and transport of peptides and peptide drugs into the brain.
Egleton, R D; Davis, T P
1997-01-01
Rational drug design and the targeting of specific organs has become a reality in modern drug development, with the emergence of molecular biology and receptor chemistry as powerful tools for the pharmacologist. A greater understanding of peptide function as one of the major extracellular message systems has made neuropeptides an important target in neuropharmaceutical drug design. The major obstacle to targeting the brain with therapeutics is the presence of the blood-brain barrier (BBB), which controls the concentration and entry of solutes into the central nervous system. Peptides are generally polar in nature, do not easily cross the blood-brain barrier by diffusion, and except for a small number do not have specific transport systems. Peptides can also undergo metabolic deactivation by peptidases of the blood, brain and the endothelial cells that comprise the BBB. In this review, we discuss a number of the recent strategies which have been used to promote peptide stability and peptide entry into the brain. In addition, we approach the subject of targeting specific transport systems that can be found on the brain endothelial cells, and describe the limitations of the methodologies that are currently used to study brain entry of neuropharmaceuticals.
Fujita, Seiya; Matsuura, Kazunori
2014-01-01
A viral β-annulus peptide connected with a zinc oxide (ZnO)-binding sequence (HCVAHR) at its N-terminal was synthesized, and the inclusion behavior of quantum-sized ZnO nanoparticles into the peptide nanocapsules formed by self-assembly of the peptide in water was investigated. Dynamic light scattering (DLS) measurements showed that ZnO nanoparticles (approximately 10 nm) in the presence of the peptide (0.1 mM) formed assemblies with an average size of 48 ± 24 nm, whereas ZnO nanoparticles in the absence of the peptide formed large aggregates. Transmission electron microscopy (TEM) observations of the ZnO nanoparticles in the presence of the peptide revealed that ZnO nanoparticles were encapsulated into the peptide nanocapsules with a size of approximately 50 nm. Fluorescence spectra of a mixture of the peptide and ZnO nanoparticles suggested that the ZnO surface and the peptide interact. Template synthesis of ZnO nanoparticles with the peptide nanocapsules afforded larger nanoparticles (approximately 40 nm), which are not quantum-sized ZnO. PMID:28344248
Nongonierma, Alice B; FitzGerald, Richard J
2015-01-01
Inhibition of dipeptidyl peptidase-IV (DPP-IV) is used as a means to regulate post-prandial serum glucose in type 2 diabetics. The effect of drug (Sitagliptin®)/peptide and binary peptide mixtures on DPP-IV inhibition was studied using an isobole approach. Five peptides (Ile-Pro-Ile-Gln-Tyr, Trp-Lys, Trp-Pro, Trp-Arg and Trp-Leu), having DPP-IV half maximum inhibitory concentration values (IC₅₀)<60 μM and reported to act through different inhibition mechanisms, were investigated. The dose response relationship of Sitagliptin : peptide (1:0, 0:1, 1:852, 1:426 and 1:1704 on a molar basis) and binary Ile-Pro-Ile-Gln-Tyr : peptide (1:0, 0:1, 1:1, 1:2 and 2:1 on a molar basis) mixtures for DPP-IV inhibition was characterised. Isobolographic analysis showed, in most instances, an additive effect on DPP-IV inhibition. However, a synergistic effect was observed with two Sitagliptin:Ile-Pro-Ile-Gln-Tyr (1:426 and 1:852) mixtures and an antagonistic effect was seen with one Sitagliptin : Trp-Pro (1:852) mixture, and three binary peptide mixtures (Ile-Pro-Ile-Gln-Tyr : Trp-Lys (1:1 and 2:1) and Ile-Pro-Ile-Gln-Tyr:Trp-Leu (1:2)). The results show that Sitagliptin and food protein-derived peptides can interact, thereby enhancing overall DPP-IV inhibition. Combination of Sitagliptin with food protein-derived peptides may help in reducing drug dosage and possible associated side-effects.
Antimicrobial Peptides from Fish
Masso-Silva, Jorge A.; Diamond, Gill
2014-01-01
Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555
Cheng, Yali; Avis, Tyler J; Bolduc, Sébastien; Zhao, Yingyi; Anguenot, Raphaël; Neveu, Bertrand; Labbé, Caroline; Belzile, François; Bélanger, Richard R
2008-12-01
Secretion of recombinant proteins aims to reproduce the correct posttranslational modifications of the expressed protein while simplifying its recovery. In this study, secretion signal sequences from an abundantly secreted 34-kDa protein (P34) from Pseudozyma flocculosa were cloned. The efficiency of these sequences in the secretion of recombinant green fluorescent protein (GFP) was investigated in two Pseudozyma species and compared with other secretion signal sequences, from S. cerevisiae and Pseudozyma spp. The results indicate that various secretion signal sequences were functional and that the P34 signal peptide was the most effective secretion signal sequence in both P. flocculosa and P. antarctica. The cells correctly processed the secretion signal sequences, including P34 signal peptide, and mature GFP was recovered from the culture medium. This is the first report of functional secretion signal sequences in P. flocculosa. These sequences can be used to test the secretion of other recombinant proteins and for studying the secretion pathway in P. flocculosa and P. antarctica.
Development of peptide-containing nerves in the human fetal prostate gland.
Jen, P Y; Dixon, J S
1995-08-01
Immunohistochemical methods were used to study the developing peptidergic innervation of the human fetal prostate gland in a series of specimens ranging in gestational age from 13 to 30 wk. The overall innervation of each specimen was visualised using protein gene product 9.5 (PGP), a general nerve marker. The onset and development of specific neuropeptide-containing subpopulations were investigated using antisera to neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), bombesin (BOM), somatostatin (SOM), leu-enkephalin (l-ENK) and met-enkephalin (m-ENK). In addition the occurrence and distribution of presumptive noradrenergic nerves was studied using antisera to dopamine-beta-hydroxylase (D beta H) and tyrosine hydroxylase (TH). At 13 wk numerous branching PGP-immunoreactive (-IR) nerves were observed in the capsule of the developing prostate gland and surrounding the preprostatic urethra but the remainder of the gland was devoid of nerves. The majority of nerves in the capsule contained D beta H and TH and were presumed to be noradrenergic in type while other nerves (in decreasing numbers) contained NPY, l-ENK, SP and CGRP. Nerves associated with the preprostatic urethra did not contain any of the neuropeptides under investigation. At 17 wk the density of nerves in the capsule had increased and occasional m-ENK-, VIP- and BOM-IR nerve fibres were also observed. In addition PGP, D beta H-, TH-, NPY- and l-ENK-IR nerves occurred in association with smooth muscle bundles which at 17 wk were present in the outer part of the gland. Occasional PGP-IR nerves were also present at the base of the epithelium forming some of the prostatic glands. At 23 wk some of the subepithelial nerves showed immunoreactivity for NPY, VIP or l-ENK. At 26 wk smooth muscle bundles occurred throughout the gland and were richly innervated by PGP, D beta H and TH-IR nerves while a less dense plexus was formed by NPY- and l
Plant peptides in defense and signaling.
Marmiroli, Nelson; Maestri, Elena
2014-06-01
This review focuses on plant peptides involved in defense against pathogen infection and those involved in the regulation of growth and development. Defense peptides, defensins, cyclotides and anti-microbial peptides are compared and contrasted. Signaling peptides are classified according to their major sites of activity. Finally, a network approach to creating an interactomic peptide map is described. Copyright © 2014 Elsevier Inc. All rights reserved.
Ozuna, Carmen V; Iehisa, Julio C M; Giménez, María J; Alvarez, Juan B; Sousa, Carolina; Barro, Francisco
2015-06-01
The gluten proteins from wheat, barley and rye are responsible both for celiac disease (CD) and for non-celiac gluten sensitivity, two pathologies affecting up to 6-8% of the human population worldwide. The wheat α-gliadin proteins contain three major CD immunogenic peptides: p31-43, which induces the innate immune response; the 33-mer, formed by six overlapping copies of three highly stimulatory epitopes; and an additional DQ2.5-glia-α3 epitope which partially overlaps with the 33-mer. Next-generation sequencing (NGS) and Sanger sequencing of α-gliadin genes from diploid and polyploid wheat provided six types of α-gliadins (named 1-6) with strong differences in their frequencies in diploid and polyploid wheat, and in the presence and abundance of these CD immunogenic peptides. Immunogenic variants of the p31-43 peptide were found in most of the α-gliadins. Variants of the DQ2.5-glia-α3 epitope were associated with specific types of α-gliadins. Remarkably, only type 1 α-gliadins contained 33-mer epitopes. Moreover, the full immunodominant 33-mer fragment was only present in hexaploid wheat at low abundance, probably as the result of allohexaploidization events from subtype 1.2 α-gliadins found only in Aegilops tauschii, the D-genome donor of hexaploid wheat. Type 3 α-gliadins seem to be the ancestral type as they are found in most of the α-gliadin-expressing Triticeae species. These findings are important for reducing the incidence of CD by the breeding/selection of wheat varieties with low stimulatory capacity of T cells. Moreover, advanced genome-editing techniques (TALENs, CRISPR) will be easier to implement on the small group of α-gliadins containing only immunogenic peptides. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd.
Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil
2018-02-01
Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Collagen like peptide bioconjugates for targeted drug delivery applications
NASA Astrophysics Data System (ADS)
Luo, Tianzhi
Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP), are short synthetic peptides which mimic the triple helical conformation of native collagens. In the past few decades, collagen like peptides and their conjugated hybrids have become a new class of biomaterials that possesses unique structures and properties. In addition to traditional applications of using CLPs to decipher the role of different amino acid residues and tripeptide motifs in stabilizing the collagen triple helix and mimicking collagen fibril formation, with the introduction of specific interactions including electrostatic interactions, pi-pi stacking interaction and metal-ligand coordination, a variety of artificial collagen-like peptides with well-defined sequences have been designed to create higher order assemblies with specific biological functions. The CLPs have also been widely used as bioactive domains or physical cross-linkers to fabricate hydrogels, which have shown potential to improve cell adhesion, proliferation and ECM macromolecule production. Despite this widespread use, the utilization of CLPs as domains in stimuli responsive bioconjugates represents a relatively new area for the development of functional polymeric materials. In this work, a new class of thermoresponsive diblock conjugates, containing collagen-like peptides and a thermoresponsive polymer, namely poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA), is introduced. The CLP domain maintains its triple helix conformation after conjugation with the polymer. The engineered LCST of these conjugates has enabled temperature-induced assembly under aqueous conditions, at physiologically relevant temperatures, into well-defined vesicles with diameters of approximately 50-200 nm. The formation of nanostructures was driven by
Detoxification depot for beta-amyloid peptides.
Sundaram, Ranjini K; Kasinathan, Chinnaswamy; Stein, Stanley; Sundaram, Pazhani
2008-02-01
Alzheimer's Disease (AD) is caused by the deposition of insoluble and toxic amyloid peptides (Abeta) in the brain leading to memory loss and other associated neurodegenerative symptoms. To date there is limited treatment options and strategies for treating AD. Studies have shown that clearance of the amyloid plaques from the brain and thus from the blood could be effective in stopping and or delaying the progression of the disease. Small peptides derived from the Abeta-42 sequence, in particular KLVFF, have shown to be effective binders of Abeta peptides and thus could be useful in delaying progression of the disease. We have taken advantage of this property by generating the retro-inverso (RI) version of this peptide, ffvlk, in different formats. We are presenting a new detox gel system using poly ethylene glycol (PEG), polymerized and cross linked with the RI peptides. We hypothesize that detox gel incorporating RI peptides will act like a 'sink' to capture the Abeta peptides from the surrounding environment. We tested these detox gels for their ability to capture biotinylated Abeta-42 peptides in vitro. The results showed that the detox gels bound Abeta-42 peptides effectively and irreversibly. Gels incorporating the tetramer RI peptide exhibited maximum binding capacity. The detox gel could be a potential candidate for treatment strategies to deplete the brain of toxic amyloid peptides.
Elguoshy, Amr; Hirao, Yoshitoshi; Xu, Bo; Saito, Suguru; Quadery, Ali F; Yamamoto, Keiko; Mitsui, Toshiaki; Yamamoto, Tadashi
2017-12-01
In an attempt to complete human proteome project (HPP), Chromosome-Centric Human Proteome Project (C-HPP) launched the journey of missing protein (MP) investigation in 2012. However, 2579 and 572 protein entries in the neXtProt (2017-1) are still considered as missing and uncertain proteins, respectively. Thus, in this study, we proposed a pipeline to analyze, identify, and validate human missing and uncertain proteins in open-access transcriptomics and proteomics databases. Analysis of RNA expression pattern for missing proteins in Human protein Atlas showed that 28% of them, such as Olfactory receptor 1I1 ( O60431 ), had no RNA expression, suggesting the necessity to consider uncommon tissues for transcriptomic and proteomic studies. Interestingly, 21% had elevated expression level in a particular tissue (tissue-enriched proteins), indicating the importance of targeting such proteins in their elevated tissues. Additionally, the analysis of RNA expression level for missing proteins showed that 95% had no or low expression level (0-10 transcripts per million), indicating that low abundance is one of the major obstacles facing the detection of missing proteins. Moreover, missing proteins are predicted to generate fewer predicted unique tryptic peptides than the identified proteins. Searching for these predicted unique tryptic peptides that correspond to missing and uncertain proteins in the experimental peptide list of open-access MS-based databases (PA, GPM) resulted in the detection of 402 missing and 19 uncertain proteins with at least two unique peptides (≥9 aa) at <(5 × 10 -4 )% FDR. Finally, matching the native spectra for the experimentally detected peptides with their SRMAtlas synthetic counterparts at three transition sources (QQQ, QTOF, QTRAP) gave us an opportunity to validate 41 missing proteins by ≥2 proteotypic peptides.
Buckley, Mike
2016-03-24
Collagen is one of the most ubiquitous proteins in the animal kingdom and the dominant protein in extracellular tissues such as bone, skin and other connective tissues in which it acts primarily as a supporting scaffold. It has been widely investigated scientifically, not only as a biomedical material for regenerative medicine, but also for its role as a food source for both humans and livestock. Due to the long-term stability of collagen, as well as its abundance in bone, it has been proposed as a source of biomarkers for species identification not only for heat- and pressure-rendered animal feed but also in ancient archaeological and palaeontological specimens, typically carried out by peptide mass fingerprinting (PMF) as well as in-depth liquid chromatography (LC)-based tandem mass spectrometric methods. Through the analysis of the three most common domesticates species, cow, sheep, and pig, this research investigates the advantages of each approach over the other, investigating sites of sequence variation with known functional properties of the collagen molecule. Results indicate that the previously identified species biomarkers through PMF analysis are not among the most variable type 1 collagen peptides present in these tissues, the latter of which can be detected by LC-based methods. However, it is clear that the highly repetitive sequence motif of collagen throughout the molecule, combined with the variability of the sites and relative abundance levels of hydroxylation, can result in high scoring false positive peptide matches using these LC-based methods. Additionally, the greater alpha 2(I) chain sequence variation, in comparison to the alpha 1(I) chain, did not appear to be specific to any particular functional properties, implying that intra-chain functional constraints on sequence variation are not as great as inter-chain constraints. However, although some of the most variable peptides were only observed in LC-based methods, until the range of
Cell-penetrating peptides and antimicrobial peptides: how different are they?
Henriques, Sónia Troeira; Melo, Manuel Nuno; Castanho, Miguel A. R. B.
2006-01-01
Some cationic peptides, referred to as CPPs (cell-penetrating peptides), have the ability to translocate across biological membranes in a non-disruptive way and to overcome the impermeable nature of the cell membrane. They have been successfully used for drug delivery into mammalian cells; however, there is no consensus about the mechanism of cellular uptake. Both endocytic and non-endocytic pathways are supported by experimental evidence. The observation that some AMPs (antimicrobial peptides) can enter host cells without damaging their cytoplasmic membrane, as well as kill pathogenic agents, has also attracted attention. The capacity to translocate across the cell membrane has been reported for some of these AMPs. Like CPPs, AMPs are short and cationic sequences with a high affinity for membranes. Similarities between CPPs and AMPs prompted us to question if these two classes of peptides really belong to unrelated families. In this Review, a critical comparison of the mechanisms that underlie cellular uptake is undertaken. A reflection and a new perspective about CPPs and AMPs are presented. PMID:16956326
Self Assembled Bi-functional Peptide Hydrogels with Biomineralization-Directing Peptides
Gungormus, Mustafa; Branco, Monica; Fong, Hanson; Schneider, Joel P.; Tamerler, Candan; Sarikaya, Mehmet
2014-01-01
A peptide-based hydrogel has been designed that directs the formation of hydroxyapatite. MDG1, a twenty-seven residue peptide, undergoes triggered folding to form an unsymmetrical β-hairpin that self-assembles in response to an increase in solution ionic strength to yield a mechanically rigid, self supporting hydrogel. The C-terminal portion of MDG1 contains a heptapeptide (MLPHHGA) capable of directing the mineralization process. Circular dichroism spectroscopy indicates that the peptide folds and assembles to form a hydrogel network rich in β-sheet secondary structure. Oscillatory rheology indicates that the hydrogel is mechanical rigid (G′ ∼ 2500 Pa) before mineralization. In separate experiments, mineralization was induced both biochemically and with cementoblast cells. Mineralization-domain had little effect on the mechanical rigidity of the gel. SEM and EDS show that MDG1 gels are capable of directing the formation of hydroxapatite. Control hydrogels, prepared by peptides either lacking the mineral-directing portion or reversing its sequence, indicated that the heptapeptide is necessary and its actions are sequence specific. PMID:20591477
Viral peptides-MHC interaction: Binding probability and distance from human peptides.
Santoni, Daniele
2018-05-23
Identification of peptides binding to MHC class I complex can play a crucial role in retrieving potential targets able to trigger an immune response. Affinity binding of viral peptides can be estimated through effective computational methods that in the most of cases are based on machine learning approach. Achieving a better insight into peptide features that impact on the affinity binding rate is a challenging issue. In the present work we focused on 9-mer peptides of Human immunodeficiency virus type 1 and Human herpes simplex virus 1, studying their binding to MHC class I. Viral 9-mers were partitioned into different classes, where each class is characterized by how far (in terms of mutation steps) the peptides belonging to that class are from human 9-mers. Viral 9-mers were partitioned in different classes, based on the number of mutation steps they are far from human 9-mers. We showed that the overall binding probability significantly differs among classes, and it typically increases as the distance, computed in terms of number of mutation steps from the human set of 9-mers, increases. The binding probability is particularly high when considering viral 9-mers that are far from all human 9-mers more than three mutation steps. A further evidence, providing significance to those special viral peptides and suggesting a potential role they can play, comes from the analysis of their distribution along viral genomes, as it revealed they are not randomly located, but they preferentially occur in specific genes. Copyright © 2018 Elsevier B.V. All rights reserved.
Khavinson, Vladimir Kh
2002-01-01
A technology has been developed for manufacturing of biologically active complex peptide preparations from extracts of different tissues. In particular, the pineal preparation (Epithalamin) augments the in vitro outgrowth of explants from the pineal gland but not from other tissues, the latter being stimulated by peptide preparations from respective tissues. Epithalamin increases melatonin production by the pineal gland of rats, improves immunological parameters in rats and mice, produces anticarcinogenic effects in different experimental models, stimulates antioxidant defenses, and restores the reproductive function in old rats. These effects are combined in the ability of Epithalamin to increase the lifespan in rats, mice, and fruit flies. Many of these effects are reproduced in clinical trials, which have demonstrated the geroprotector activity of Epithalamin in humans. Among the effects of the thymic preparation Thymalin, those related to its ability to stimulate immunity are the most prominent. This ability is associated with anticarcinogenic and geroprotector activities. Clinical trials of the peptide preparations obtained from other organs including the prostate, the cerebral cortex, and the eye retina, have demonstrated beneficial effects reflected by the improvement of the conditions of respective organs. Based on the data about the amino acid compositions of the peptide preparations, novel principles of the design of biologically active short peptides possessing tissue-specific activities has been developed. Dipeptides specific for the thymus and tetrapeptides specific for the heart, liver, brain cortex, and pineal glands stimulate the in vitro outgrowth of explants of respective organs. Interestingly, for eye retina and the pineal gland, a common tetrapeptide Ala-Glu-Asp-Gly (Epitalon) has been designed, probably reflecting the common embryonal origin of these two organs. Epitalon reproduces the effects of Epithalamin including those related to its
Kozaki, Ikko; Shimizu, Kazunori; Honda, Hiroyuki
2017-08-01
Intracellular functional peptides that play a significant role inside cells have been receiving a lot of attention as regulators of cellular activity. Previously, we proposed a novel screening system for intracellular functional peptides; it combined a photo-cleavable peptide array system with cell-penetrating peptides (CPPs). Various peptides can be delivered into cells and intracellular functions of the peptides can be assayed by means of our system. The aim of the present study was to demonstrate that the proposed screening system can be used for assessing the intracellular activity of peptides. The cell death-inducing peptide (LNLISKLF) identified in a mitochondria-targeting domain (MTD) of the Noxa protein served as an original peptide sequence for screening of peptides with higher activity via modification of the peptide sequence. We obtained 4 peptides with higher activity, in which we substituted serine (S) at the fifth position with phenylalanine (F), valine (V), tryptophan (W), or tyrosine (Y). During analysis of the mechanism of action, the modified peptides induced an increase in intracellular calcium concentration, which was caused by the treatment with the original peptide. Higher capacity for cell death induction by the modified peptides may be caused by increased hydrophobicity or an increased number of aromatic residues. Thus, the present work suggests that the intracellular activity of peptides can be assessed using the proposed screening system. It could be used for identifying intracellular functional peptides with higher activity through comprehensive screening. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Diller, Kyle I; Bayden, Alexander S; Audie, Joseph; Diller, David J
2018-01-01
There is growing interest in peptide-based drug design and discovery. Due to their relatively large size, polymeric nature, and chemical complexity, the design of peptide-based drugs presents an interesting "big data" challenge. Here, we describe an interactive computational environment, PeptideNavigator, for naturally exploring the tremendous amount of information generated during a peptide drug design project. The purpose of PeptideNavigator is the presentation of large and complex experimental and computational data sets, particularly 3D data, so as to enable multidisciplinary scientists to make optimal decisions during a peptide drug discovery project. PeptideNavigator provides users with numerous viewing options, such as scatter plots, sequence views, and sequence frequency diagrams. These views allow for the collective visualization and exploration of many peptides and their properties, ultimately enabling the user to focus on a small number of peptides of interest. To drill down into the details of individual peptides, PeptideNavigator provides users with a Ramachandran plot viewer and a fully featured 3D visualization tool. Each view is linked, allowing the user to seamlessly navigate from collective views of large peptide data sets to the details of individual peptides with promising property profiles. Two case studies, based on MHC-1A activating peptides and MDM2 scaffold design, are presented to demonstrate the utility of PeptideNavigator in the context of disparate peptide-design projects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Goursaud, Stéphanie; Focant, Marylène C; Berger, Julie V; Nizet, Yannick; Maloteaux, Jean-Marie; Hermans, Emmanuel
2011-10-01
Degeneration of corpus callosum appears in patients with amyotrophic lateral sclerosis (ALS) before clinical signs of upper motor neuron death. Considering the ALS-associated impairment of astrocytic glutamate uptake, we have characterized the expression and activity of the glutamate transporter isoforms GLT-1a and GLT-1b in the corpus callosum of transgenic rats expressing a mutated form of the human superoxide dismutase 1 (hSOD1(G93A)). We have also studied the effect of peptide histidine isoleucine (PHI), a vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 2 (VPAC(2)) agonist on glutamate transporters both in vivo and in callosal astrocytes. Before the onset of motor symptoms, the expression of both transporter isoforms was correlated with a constitutive activity of caspase-3. This enzyme participates in the down-regulation of GLT-1 in ALS, and here we demonstrated its involvement in the selective degradation of GLT-1a in the white matter. A single stereotactic injection of PHI into the corpus callosum of symptomatic rats decreased caspase-3 activity and promoted GLT-1a expression and uptake activity. Together, with evidence for a reduced expression of prepro-VIP/PHI mRNA in the corpus callosum of transgenic animals, these data shed light on the modulatory role of the VIP/PHI system on the glutamatergic transmission in ALS.
Can Occupancy–Abundance Models Be Used to Monitor Wolf Abundance?
Latham, M. Cecilia; Latham, A. David M.; Webb, Nathan F.; Mccutchen, Nicole A.; Boutin, Stan
2014-01-01
Estimating the abundance of wild carnivores is of foremost importance for conservation and management. However, given their elusive habits, direct observations of these animals are difficult to obtain, so abundance is more commonly estimated from sign surveys or radio-marked individuals. These methods can be costly and difficult, particularly in large areas with heavy forest cover. As an alternative, recent research has suggested that wolf abundance can be estimated from occupancy–abundance curves derived from “virtual” surveys of simulated wolf track networks. Although potentially more cost-effective, the utility of this approach hinges on its robustness to violations of its assumptions. We assessed the sensitivity of the occupancy–abundance approach to four assumptions: variation in wolf movement rates, changes in pack cohesion, presence of lone wolves, and size of survey units. Our simulations showed that occupancy rates and wolf pack abundances were biased high if track surveys were conducted when wolves made long compared to short movements, wolf packs were moving as multiple hunting units as opposed to a cohesive pack, and lone wolves were moving throughout the surveyed landscape. We also found that larger survey units (400 and 576 km2) were more robust to changes in these factors than smaller survey units (36 and 144 km2). However, occupancy rates derived from large survey units rapidly reached an asymptote at 100% occupancy, suggesting that these large units are inappropriate for areas with moderate to high wolf densities (>15 wolves/1,000 km2). Virtually-derived occupancy–abundance relationships can be a useful method for monitoring wolves and other elusive wildlife if applied within certain constraints, in particular biological knowledge of the surveyed species needs to be incorporated into the design of the occupancy surveys. Further, we suggest that the applicability of this method could be extended by directly incorporating some of its
Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin
2015-02-01
We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing. Copyright © 2015 John Wiley & Sons, Ltd.
Heiser, Ryan A; Snyder, Christopher M; St Clair, James; Wysocki, Lawrence J
2011-07-01
A fundamental problem in immunoregulation is how CD4(+) T cells react to immunogenic peptides derived from the V region of the BCR that are created by somatic mechanisms, presented in MHC II, and amplified to abundance by B cell clonal expansion during immunity. BCR neo Ags open a potentially dangerous avenue of T cell help in violation of the principle of linked Ag recognition. To analyze this issue, we developed a murine adoptive transfer model using paired donor B cells and CD4 T cells specific for a BCR-derived peptide. BCR peptide-specific T cells aborted ongoing germinal center reactions and impeded the secondary immune response. Instead, they induced the B cells to differentiate into short-lived extrafollicular plasmablasts that secreted modest quantities of Ig. These results uncover an immunoregulatory process that restricts the memory pathway to B cells that communicate with CD4 T cells via exogenous foreign Ag.
Parkash, A; Ng, T B; Tso, W W
2002-05-01
A peptide designated charantin, with a molecular mass of 9.7 kDa, was isolated from bitter gourd seeds. The procedure comprised affinity chromatography on Affi-gel blue gel, ion-exchange chromatography on Mono S and gel filtration on Superdex 75. The N-terminal sequence of charantin exhibited marked similarity to that of the 7.8-kDa napin-like peptide previously isolated from bitter gourd seeds. Charantin inhibited cell-free translation in a rabbit reticulocyte lysate system with an IC50 of 400 nm, a potency lower than that of the previously reported small ribosome-inactivating protein gamma-momorcharin (IC50 = 55 nm) which also exhibited an abundance of arginine and glutamate/glutamine residues. Charantin reacted positively in the N-glycosidase assay, yielding a band similar to that formed by the small ribosome-inactivating proteins gamma-momorcharin and luffin S.
Synthesis of peptide thioacids at neutral pH using bis(2-sulfanylethyl)amido peptide precursors.
Pira, Silvain L; Boll, Emmanuelle; Melnyk, Oleg
2013-10-18
Reaction of bis(2-sulfanylethyl)amido (SEA) peptides with triisopropylsilylthiol in water at neutral pH yields peptide thiocarboxylates. An alkylthioester derived from β-alanine was used to trap the released bis(2-sulfanylethyl)amine and displace the equilibrium toward the peptide thiocarboxylate.
Hewel, Johannes A.; Liu, Jian; Onishi, Kento; Fong, Vincent; Chandran, Shamanta; Olsen, Jonathan B.; Pogoutse, Oxana; Schutkowski, Mike; Wenschuh, Holger; Winkler, Dirk F. H.; Eckler, Larry; Zandstra, Peter W.; Emili, Andrew
2010-01-01
Effective methods to detect and quantify functionally linked regulatory proteins in complex biological samples are essential for investigating mammalian signaling pathways. Traditional immunoassays depend on proprietary reagents that are difficult to generate and multiplex, whereas global proteomic profiling can be tedious and can miss low abundance proteins. Here, we report a target-driven liquid chromatography-tandem mass spectrometry (LC-MS/MS) strategy for selectively examining the levels of multiple low abundance components of signaling pathways which are refractory to standard shotgun screening procedures and hence appear limited in current MS/MS repositories. Our stepwise approach consists of: (i) synthesizing microscale peptide arrays, including heavy isotope-labeled internal standards, for use as high quality references to (ii) build empirically validated high density LC-MS/MS detection assays with a retention time scheduling system that can be used to (iii) identify and quantify endogenous low abundance protein targets in complex biological mixtures with high accuracy by correlation to a spectral database using new software tools. The method offers a flexible, rapid, and cost-effective means for routine proteomic exploration of biological systems including “label-free” quantification, while minimizing spurious interferences. As proof-of-concept, we have examined the abundance of transcription factors and protein kinases mediating pluripotency and self-renewal in embryonic stem cell populations. PMID:20467045
Le Bihan, Thierry; Robinson, Mark D; Stewart, Ian I; Figeys, Daniel
2004-01-01
Although HPLC-ESI-MS/MS is rapidly becoming an indispensable tool for the analysis of peptides in complex mixtures, the sequence coverage it affords is often quite poor. Low protein expression resulting in peptide signal intensities that fall below the limit of detection of the MS system in combination with differences in peptide ionization efficiency plays a significant role in this. A second important factor stems from differences in physicochemical properties of each peptide and how these properties relate to chromatographic retention and ultimate detection. To identify and understand those properties, we compared data from experimentally identified peptides with data from peptides predicted by in silico digest of all corresponding proteins in the experimental set. Three different complex protein mixtures extracted were used to define a training set to evaluate the amino acid retention coefficients based on linear regression analysis. The retention coefficients were also compared with other previous hydrophobic and retention scale. From this, we have constructed an empirical model that can be readily used to predict peptides that are likely to be observed on our HPLC-ESI-MS/MS system based on their physicochemical properties. Finally, we demonstrated that in silico prediction of peptides and their retention coefficients can be used to generate an inclusion list for a targeted mass spectrometric identification of low abundance proteins in complex protein samples. This approach is based on experimentally derived data to calibrate the method and therefore may theoretically be applied to any HPLC-MS/MS system on which data are being generated.
Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase
NASA Astrophysics Data System (ADS)
Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František
2018-05-01
We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.
Food-derived immunomodulatory peptides.
Santiago-López, Lourdes; Hernández-Mendoza, Adrián; Vallejo-Cordoba, Belinda; Mata-Haro, Verónica; González-Córdova, Aarón F
2016-08-01
Food proteins contain specific amino acid sequences within their structures that may positively impact bodily functions and have multiple immunomodulatory effects. The functional properties of these specific sequences, also referred to as bioactive peptides, are revealed only after the degradation of native proteins during digestion processes. Currently, milk proteins have been the most explored source of bioactive peptides, which presents an interesting opportunity for the dairy industry. However, plant- and animal-derived proteins have also been shown to be important sources of bioactive peptides. This review summarizes the in vitro and in vivo evidence of the role of various food proteins as sources of immunomodulatory peptides and discusses the possible pathways involving these properties. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Tissue-specific effects of peptides.
Khavinson, V K
2001-08-01
Synthetic peptides (cytogens) Cortagen, Epithalon, Livagen, and Vilon stimulated the growth of explants from rat brain cortex, subcortical structures, liver, and thymus, respectively, in organotypic cultures. These peptides produced tissue-specific effects: they stimulated the growth of explants from tissues, whose cytomedins (peptide complexes) were used for chemical synthesis.
Peptides that influence membrane topology
NASA Astrophysics Data System (ADS)
Wong, Gerard C. L.
2014-03-01
We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)
Richardson, Keith; Denny, Richard; Hughes, Chris; Skilling, John; Sikora, Jacek; Dadlez, Michał; Manteca, Angel; Jung, Hye Ryung; Jensen, Ole Nørregaard; Redeker, Virginie; Melki, Ronald; Langridge, James I.; Vissers, Johannes P.C.
2013-01-01
A probability-based quantification framework is presented for the calculation of relative peptide and protein abundance in label-free and label-dependent LC-MS proteomics data. The results are accompanied by credible intervals and regulation probabilities. The algorithm takes into account data uncertainties via Poisson statistics modified by a noise contribution that is determined automatically during an initial normalization stage. Protein quantification relies on assignments of component peptides to the acquired data. These assignments are generally of variable reliability and may not be present across all of the experiments comprising an analysis. It is also possible for a peptide to be identified to more than one protein in a given mixture. For these reasons the algorithm accepts a prior probability of peptide assignment for each intensity measurement. The model is constructed in such a way that outliers of any type can be automatically reweighted. Two discrete normalization methods can be employed. The first method is based on a user-defined subset of peptides, while the second method relies on the presence of a dominant background of endogenous peptides for which the concentration is assumed to be unaffected. Normalization is performed using the same computational and statistical procedures employed by the main quantification algorithm. The performance of the algorithm will be illustrated on example data sets, and its utility demonstrated for typical proteomics applications. The quantification algorithm supports relative protein quantification based on precursor and product ion intensities acquired by means of data-dependent methods, originating from all common isotopically-labeled approaches, as well as label-free ion intensity-based data-independent methods. PMID:22871168
Maize Bioactive Peptides against Cancer
NASA Astrophysics Data System (ADS)
Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio
2017-06-01
Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.
Peptides and peptidomimetics as immunomodulators
Gokhale, Ameya S; Satyanarayanajois, Seetharama
2014-01-01
Peptides and peptidomimetics can function as immunomodulating agents by either blocking the immune response or stimulating the immune response to generate tolerance. Knowledge of B- or T-cell epitopes along with conformational constraints is important in the design of peptide-based immunomodulating agents. Work on the conformational aspects of peptides, synthesis and modified amino acid side chains have contributed to the development of a new generation of therapeutic agents for autoimmune diseases and cancer. The design of peptides/peptidomimetics for immunomodulation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus and HIV infection is reviewed. In cancer therapy, peptide epitopes are used in such a way that the body is trained to recognize and fight the cancer cells locally as well as systemically. PMID:25186605
High Throughput Identification of Antimicrobial Peptides from Fish Gastrointestinal Microbiota.
Dong, Bo; Yi, Yunhai; Liang, Lifeng; Shi, Qiong
2017-08-30
Antimicrobial peptides (AMPs) are a group of small peptides, which are secreted by almost all creatures in nature. They have been explored in therapeutic and agricultural aspects as they are toxic to many bacteria. A considerable amount of work has been conducted in analyzing 16S and metagenomics of the gastrointestinal (GI) microbiome of grass carp ( Ctenopharyngodon idellus ). However, these datasets are still untapped resources. In this present study, a homologous search was performed to predict AMPs from our newly generated metagenome of grass carp. We identified five AMPs with high similarities to previously reported bacterial toxins, such as lantibiotic and class II bacteriocins. In addition, we observed that the top abundant genus in the GI microbiota of the grass carp was generally consistent with the putative AMP-producing strains, which are mainly from Lactobacillales . Furthermore, we constructed the phylogenetic relationship of these putative AMP-producing bacteria existing in the GI of grass carp and some popular commercial probiotics (commonly used for microecologics), demonstrating that they are closely related. Thus, these strains have the potential to be developed into novel microecologics. In a word, we provide a high-throughput way to discover AMPs from fish GI microbiota, which can be developed as alternative pathogen antagonists (toxins) for microecologics or probiotic supplements.
He, Yawen; Zhao, Ruiming; Di, Zhiyong; Li, Zhongjie; Xu, Xiaobo; Hong, Wei; Wu, Yingliang; Zhao, Huabin; Li, Wenxin; Cao, Zhijian
2013-08-26
The scorpion family Chaerilidae is phylogenetically differentiated from Buthidae. Their venom components are not known, and the evolution of the venom components is not well understood. Here, we performed a transcriptome analysis of the venom glands from two scorpion species, Chaerilus tricostatus and Chaerilus tryznai. Fourteen types of venom peptides were discovered from two species, 10 of which were shared by both C. tricostatus and C. tryznai. Notably, the venom components of Chaerilidae were also found to contain four toxin types (NaTx, β-KTx, Scamp and bpp-like peptides), previously considered to be specific to Buthidae. Moreover, cytolytic peptides were the most abundant toxin type in C. tricostatus, C. tryznai and the family Euscorpiidae. Furthermore, 39 and 35 novel atypical venom molecules were identified from C. tricostatus and C. tryznai, respectively. Finally, the evolutionary analysis showed that the NaTx, β-KTx, and bpp-like toxin types were recruited into the venom before the lineage split between Buthidae and non-Buthidae families. This study provides an integrated understanding of the venom components of the scorpion family Chaerilidae. The family Chaerilidae has a specific venom arsenal that is intermediate between Buthidae and non-Buthidae, which suggests the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae species. This work gave a first overview of the venom components of Chaerilidae scorpions, and discovered large numbers of new toxin molecules, which significantly enriches the molecular diversity of scorpion venom peptides/proteins components. Based on phylogenetic analysis we speculated that the NaTx, β-KTx and bpp-like toxin type genes were recruited into venom before the lineage split between Buthidae and non-Buthidae. By Comparing the toxin types and abundance of the Buthidae, Chaerilidae and non-Buthidae families, we found that the family Chaerilidae has a specific venom arsenal that is intermediate
Insect Peptides - Perspectives in Human Diseases Treatment.
Chowanski, Szymon; Adamski, Zbigniew; Lubawy, Jan; Marciniak, Pawel; Pacholska-Bogalska, Joanna; Slocinska, Malgorzata; Spochacz, Marta; Szymczak, Monika; Urbanski, Arkadiusz; Walkowiak-Nowicka, Karolina; Rosinski, Grzegorz
2017-01-01
Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Helicity of short E-R/K peptides.
Sommese, Ruth F; Sivaramakrishnan, Sivaraj; Baldwin, Robert L; Spudich, James A
2010-10-01
Understanding the secondary structure of peptides is important in protein folding, enzyme function, and peptide-based drug design. Previous studies of synthetic Ala-based peptides (>12 a.a.) have demonstrated the role for charged side chain interactions involving Glu/Lys or Glu/Arg spaced three (i, i + 3) or four (i, i + 4) residues apart. The secondary structure of short peptides (<9 a.a.), however, has not been investigated. In this study, the effect of repetitive Glu/Lys or Glu/Arg side chain interactions, giving rise to E-R/K helices, on the helicity of short peptides was examined using circular dichroism. Short E-R/K-based peptides show significant helix content. Peptides containing one or more E-R interactions display greater helicity than those with similar E-K interactions. Significant helicity is achieved in Arg-based E-R/K peptides eight, six, and five amino acids long. In these short peptides, each additional i + 3 and i + 4 salt bridge has substantial contribution to fractional helix content. The E-R/K peptides exhibit a strongly linear melt curve indicative of noncooperative folding. The significant helicity of these short peptides with predictable dependence on number, position, and type of side chain interactions makes them an important consideration in peptide design.
Shen, Sanbing; Spratt, Christopher; Sheward, W. John; Kallo, Imre; West, Katrine; Morrison, Christine F.; Coen, Clive W.; Marston, Hugh M.; Harmar, Anthony J.
2000-01-01
The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) belong to a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, and growth hormone-releasing hormone. Microinjection of VIP or PACAP into the rodent suprachiasmatic nucleus (SCN) phase shifts the circadian pacemaker and VIP antagonists, and antisense oligodeoxynucleotides have been shown to disrupt circadian function. VIP and PACAP have equal potency as agonists of the VPAC2 receptor (VPAC2R), which is expressed abundantly in the SCN, in a circadian manner. To determine whether manipulating the level of expression of the VPAC2R can influence the control of the circadian clock, we have created transgenic mice overexpressing the human VPAC2R gene from a yeast artificial chromosome (YAC) construct. The YAC was modified by a strategy using homologous recombination to introduce (i) the HA epitope tag sequence (from influenza virus hemagglutinin) at the carboxyl terminus of the VPAC2R protein, (ii) the lacZ reporter gene, and (iii) a conditional centromere, enabling YAC DNA to be amplified in culture in the presence of galactose. High levels of lacZ expression were detected in the SCN, habenula, pancreas, and testis of the transgenic mice, with lower levels in the olfactory bulb and various hypothalamic areas. Transgenic mice resynchronized more quickly than wild-type controls to an advance of 8 h in the light-dark (LD) cycle and exhibited a significantly shorter circadian period in constant darkness (DD). These data suggest that the VPAC2R can influence the rhythmicity and photic entrainment of the circadian clock. PMID:11027354
Hevein-Like Antimicrobial Peptides of Plants.
Slavokhotova, A A; Shelenkov, A A; Andreev, Ya A; Odintsova, T I
2017-12-01
Plant antimicrobial peptides represent one of the evolutionarily oldest innate immunity components providing the first line of host defense to pathogen attacks. This review is dedicated to a small, currently actively studied family of hevein-like peptides that can be found in various monocot and dicot plants. The review thoroughly describes all known peptides belonging to this family including data on their structures, functions, and antimicrobial activity. The main features allowing to assign these peptides to a separate family are given, and the specific characteristics of each peptide are described. Further, the mode of action for hevein-like peptides, their role in plant immune system, and the applications of these molecules in biotechnology and medicine are considered.
Small interfering RNA mediated knockdown of irisin suppresses food intake and modul