Sample records for abundance isotopic

  1. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOEpatents

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  2. Reporting of nitrogen-isotope abundances (Technical Report)

    USGS Publications Warehouse

    Coplen, Tyler B.; Krouse, H.R.; Böhlke, John Karl

    1992-01-01

    To eliminate possible confusion in the reporting of nitrogen-isotope analyses, the Commission on Atomic Weights and Isotopic Abundances recommends that the value 272 be employed for the 14N/15N value of N2 in air for calculating atom percent 15N from measured δ15N values.

  3. Isotope-abundance variations of selected elements (IUPAC technical report)

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D.; Xiao, Y.K.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.

  4. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    During the past three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. As part of my startup package I received funds to construct a state-of-the-art experimental facility to study gas-solid reaction kinetics. Much of our effort was spent developing the methodology to measure the abundance and isotopic composition of Hg at ultratrace levels in solid materials. In our first study, the abundance and isotopic composition of Hg was determined in bulk samples of the Murchison (CM) and Allende (CV) carbonaceous chondrites. We have continued our study of mercury in primitive meteorites and expanded the suite of meteorites to include other members of the CM and CV chondrite group as well as CI and CO chondrites. Samples of the CI chondrite Orgueil, the CM chondrites Murray, Nogoya, and Cold Bokkeveld, the CO chondrites Kainsaz, Omans, and Isna, and the CV chondrites Vigarano, Mokoia, and Grosnaja were tested. We have developed a thermal analysis ICP-MS technique and applied it to the study of a suite of thermally labile elements (Zn, As, Se, Cd, In, Sn, Sb, Te, Hg, Au, Tl, Pb, and Bi) in geologic materials as well.

  5. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    PubMed

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  6. Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)

    USGS Publications Warehouse

    Coplen, Tyler B.; Shrestha, Yesha

    2016-01-01

    There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.

  7. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  8. An investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1977-01-01

    An instrument, the Caltech High Energy Isotope Spectrometer Telescope was developed to measure isotopic abundances of cosmic ray nuclei by employing an energy loss - residual energy technique. A detailed analysis was made of the mass resolution capabilities of this instrument. A formalism, based on the leaky box model of cosmic ray propagation, was developed for obtaining isotopic abundance ratios at the cosmic ray sources from abundances measured in local interstellar space for elements having three or more stable isotopes, one of which is believed to be absent at the cosmic ray sources. It was shown that the dominant sources of uncertainty in the derived source ratios are uncorrelated errors in the fragmentation cross sections and statistical uncertainties in measuring local interstellar abundances. These results were applied to estimate the extent to which uncertainties must be reduced in order to distinguish between cosmic ray production in a solar-like environment and in various environments with greater neutron enrichments.

  9. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  10. Elemental and isotopic abundances in the solar wind

    NASA Technical Reports Server (NTRS)

    Geiss, J.

    1972-01-01

    The use of collecting foils and lunar material to assay the isotopic composition of the solar wind is reviewed. Arguments are given to show that lunar surface correlated gases are likely to be most useful in studying the history of the solar wind, though the isotopic abundances are thought to give a good approximation to the solar wind composition. The results of the analysis of Surveyor material are also given. The conditions leading to a significant component of the interstellar gas entering the inner solar system are reviewed and suggestions made for experimental searches for this fraction. A critical discussion is given of the different ways in which the basic solar composition could be modified by fractionation taking place between the sun's surface and points of observation such as on the Moon or in interplanetary space. An extended review is made of the relation of isotopic and elemental composition of the interplanetary gas to the dynamic behavior of the solar corona, especially processes leading to fractionation. Lastly, connection is made between the subject of composition, nucleosynthesis and the convective zone of the sun, and processes leading to modification of initial accretion of certain gases on the Earth and Moon.

  11. Natural Isotope Abundance in Metabolites: Techniques and Kinetic Isotope Effect Measurement in Plant, Animal, and Human Tissues.

    PubMed

    Tea, Illa; Tcherkez, Guillaume

    2017-01-01

    The natural isotope abundance in bulk organic matter or tissues is not a sufficient base to investigate physiological properties, biosynthetic mechanisms, and nutrition sources of biological systems. In fact, isotope effects in metabolism lead to a heterogeneous distribution of 2 H, 18 O, 13 C, and 15 N isotopes in metabolites. Therefore, compound-specific isotopic analysis (CSIA) is crucial to biological and medical applications of stable isotopes. Here, we review methods to implement CSIA for 15 N and 13 C from plant, animal, and human samples and discuss technical solutions that have been used for the conversion to CO 2 and N 2 for IRMS analysis, derivatization and isotope effect measurements. It appears that despite the flexibility of instruments used for CSIA, there is no universal method simply because the chemical nature of metabolites of interest varies considerably. Also, CSIA methods are often limited by isotope effects in sample preparation or the addition of atoms from the derivatizing reagents, and this implies that corrections must be made to calculate a proper δ-value. Therefore, CSIA has an enormous potential for biomedical applications, but its utilization requires precautions for its successful application. © 2017 Elsevier Inc. All rights reserved.

  12. Mercury Abundances and Isotopic Compositions in the Murchison (CM) and Allende (CV)Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Klaue, B.; Blum, J. D.; Buseck, P. R.

    2001-01-01

    The abundance and isotopic composition of Hg was determined in bulk samples of both the Murchison (CM) and Allende (CV) carbonaceous chondrites using single- and multi-collector inductively coupled plasma mass spectrometry (ICP-MS). The bulk abundances of Hg are 294 6 15 ng/g in Murchison and 30.0 6 1.5 ng/g in Allende. These values are within the range of previous measurements of bulk Hg abundances by neutron activation analysis (NAA). Prior studies suggested that both meteorites contain isotopically anomalous Hg, with d l 96/202Hg values for the anomalous, thermal-release components from bulk samples ranging from 2260 %o to 1440 9/00 in Murchison and from 2620 9/00 to 1540 9/00 in Allende (Jovanovic and Reed, 1976a; 1976b; Kumar and Goel, 1992). Our multi-collector ICP-MS measurements suggest that the relative abundances of all seven stable Hg isotopes in both meteorites are identical to terrestrial values within 0.2 to 0.5 9/00m. On-line thermal-release experiments were performed by coupling a programmable oven with the singlecollector ICP-MS. Powdered aliquots of each meteorite were linearly heated from room temperature to 900 C over twenty-five minutes under an Ar atmosphere to measure the isotopic composition of Hg released fiom the meteorites as a h c t i o n of temperature. In separate experiments, the release profiles of S and Se were determined simultaneously with Hg to constrain the Hg distribution within the meteorites and to evaluate the possibility of Se interferences in previous NAA studies. The Hg-release patterns differ between Allende and Murchison. The Hg-release profile for Allende contains two distinct peaks, at 225" and 343"C, whereas the profile for Murchison has only one peak, at 344 C. No isotopically anomalous Hg was detected in the thermal-release experiments at a precision level of 5 to 30 9/00, depending on the isotope ratio. In both meteorites the Hg peak at ;340"C correlates with a peak in the S-release profile. This correlation

  13. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Blum, J. D.; Klaue, Bjorn

    2005-01-01

    During the three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. At the time the grant started, our collaborating PI, Dante Lauretts, was a postdoctoral research associate working with Peter Buseck at Arizona State University. The work on chondritic Hg was done in collaboration with Dante Lauretta and Peter Buseck and this study was published in Lauretta et a1 (2001a). In July, 2001 Dante Lauretta accepted a position as an Assistant Professor in the Lunar and Planetary Laboratory at the University of Arizona. His funding was transferred and this grant has supported much of his research activities during his first two years at the U of A. Several other papers are in preparation and will be published soon. We presented papers on this topic at Goldschmidt Conferences, the Lunar and Planetary Science Conferences, and the Annual Meetings of the Meteoritical Society. The work done under this grant has spurred several new directions of inquiry, which we are still pursuing. Included in this paper are the studies of bulk abundances and isotopic compositions of metreoritic Mercury, and the development of a thermal analysis ICP-MS technique applied to thermally liable elements.

  14. Accurate experimental determination of the isotope effects on the triple point temperature of water. I. Dependence on the 2H abundance

    NASA Astrophysics Data System (ADS)

    Faghihi, V.; Peruzzi, A.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; van Geel, J.; Meijer, H. A. J.

    2015-12-01

    Variation in the isotopic composition of water is one of the major contributors to uncertainty in the realization of the triple point of water (TPW). Although the dependence of the TPW on the isotopic composition of the water has been known for years, there is still a lack of a detailed and accurate experimental determination of the values for the correction constants. This paper is the first of two articles (Part I and Part II) that address quantification of isotope abundance effects on the triple point temperature of water. In this paper, we describe our experimental assessment of the 2H isotope effect. We manufactured five triple point cells with prepared water mixtures with a range of 2H isotopic abundances encompassing widely the natural abundance range, while the 18O and 17O isotopic abundance were kept approximately constant and the 18O  -  17O ratio was close to the Meijer-Li relationship for natural waters. The selected range of 2H isotopic abundances led to cells that realised TPW temperatures between approximately  -140 μK to  +2500 μK with respect to the TPW temperature as realized by VSMOW (Vienna Standard Mean Ocean Water). Our experiment led to determination of the value for the δ2H correction parameter of A2H  =  673 μK / (‰ deviation of δ2H from VSMOW) with a combined uncertainty of 4 μK (k  =  1, or 1σ).

  15. Carbon and nitrogen biogeochemistry in the ocean: A study using stable isotope natural abundance

    NASA Technical Reports Server (NTRS)

    Rau, G. H.; Desmarais, David J.

    1985-01-01

    Determining the biogeochemical pathways traveled by carbon and nitrogen in the ocean is fundamental to the understanding of how the ocean participates in the cycling of these elements within the biosphere. Because biological production, metabolism, and respiration can significantly alter the natural abundance of C-13 and N-15, these abundances can provide important information about the nature of these biological processes and their variability in the marine environment. The research initially seeks to characterize the spatial and temporal patterns of stable isotope abundances in organic matter, and to relate these abundances to C and N biogeochemical processes within selected areas of the northeastern Pacific Ocean.

  16. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur

    NASA Astrophysics Data System (ADS)

    Ding, T.; Valkiers, S.; Kipphardt, H.; De Bièvre, P.; Taylor, P. D. P.; Gonfiantini, R.; Krouse, R.

    2001-08-01

    Calibrated values have been obtained for sulfur isotope abundance ratios of sulfur isotope reference materials distributed by the IAEA (Vienna). For the calibration of the measurements, a set of synthetic isotope mixtures were prepared gravimetrically from high purity Ag2S materials enriched in32S, 33S, and 34S. All materials were converted into SF6 gas and subsequently, their sulfur isotope ratios were measured on the SF5+ species using a special gas source mass spectrometer equipped with a molecular flow inlet system (IRMM's Avogadro II amount comparator). Values for the 32S/34S abundance ratios are 22.650 4(20), 22.142 4(20), and 23.393 3(17) for IAEA-S-1, IAEA-S-2, and IAEA-S-3, respectively. The calculated 32S/34S abundance ratio for V-CDT is 22.643 6(20), which is very close to the calibrated ratio obtained by Ding et al. (1999). In this way, the zero point of the VCDT scale is anchored firmly to the international system of units SI. The 32S/33S abundance ratios are 126.942(47), 125.473(55), 129.072(32), and 126.948(47) for IAEA-S-1, IAEA-S-2, IAEA-S-3, and V-CDT, respectively. In this way, the linearity of the V-CDT scale is improved over this range. The values of the sulfur molar mass for IAEA-S-1 and V-CDT were calculated to be 32.063 877(56) and 32.063 911(56), respectively, the values with the smallest combined uncertainty ever reported for the sulfur molar masses (atomic weights).

  17. Isotopic Abundances as Tracers of the Processes of Lunar Formation

    NASA Astrophysics Data System (ADS)

    Pahlevan, K.

    2011-12-01

    Ever since Apollo, isotopic abundances have been used as tracers to study lunar formation, in particular, to study the sources of the lunar material. In the last decade, however, a number of isotopic similarities have been observed between the lunar samples and the Earth's mantle such that these two reservoirs are now known to be indistinguishable from one another to high precision for a variety of isotopic tracers. This occurs against the backdrop of a Solar System that exhibits widespread heterogeneity with respect to these tracers, a situation that strongly argues that the source of the lunar material is the silicate Earth. To reconcile this observation with the fact that the Moon is thought to result from the collision of two isotopically distinct planetary bodies, a scenario has emerged in which the material from the Moon-forming impactor and the proto-Earth are homogenized in the aftermath of the giant impact. This takes place via turbulent mixing in the time after the giant impact but before lunar accretion while the Earth-Moon system exists in the form of a continuous, high-temperature fluid. Importantly, this high-temperature phase of the evolution occurs in the presence of at least two phases (liquid + vapor) making possible chemical and isotopic fractionation. While equilibrium isotopic fractionation tends to zero at high temperatures, and the post giant impact environment experiences some of the highest temperatures encountered in the Earth sciences, there are several factors that nevertheless make equilibrium isotope effects important probes of this early evolution. (1) Because the vaporization of silicates involves decomposition reactions, the bonding environment for elements in the liquid is often very different from that in the vapor. This difference makes the magnitude of isotopic fractionation intrinsically large, even at the relevant temperatures. (2) Since the isotopic composition of a silicate liquid and co-existing vapor are distinctly

  18. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  19. The evolution of the global selenium cycle: Secular trends in Se isotopes and abundances

    NASA Astrophysics Data System (ADS)

    Stüeken, E. E.; Buick, R.; Bekker, A.; Catling, D.; Foriel, J.; Guy, B. M.; Kah, L. C.; Machel, H. G.; Montañez, I. P.; Poulton, S. W.

    2015-08-01

    The Earth's surface has undergone major transitions in its redox state over the past three billion years, which have affected the mobility and distribution of many elements. Here we use Se isotopic and abundance measurements of marine and non-marine mudrocks to reconstruct the evolution of the biogeochemical Se cycle from ∼3.2 Gyr onwards. The six stable isotopes of Se are predominantly fractionated during redox reactions under suboxic conditions, which makes Se a potentially valuable new tool for identifying intermediate stages from an anoxic to a fully oxygenated world. δ82/78Se shows small fractionations of mostly less than 2‰ throughout Earth's history and all are mass-dependent within error. In the Archean, especially after 2.7 Gyr, we find an isotopic enrichment in marine (+0.37 ± 0.27‰) relative to non-marine samples (-0.28 ± 0.67‰), paired with increasing Se abundances. Student t-tests show that these trends are statistically significant. Although we cannot completely rule out the possibility of volcanic Se addition, these trends may indicate the onset of oxidative weathering on land, followed by non-quantitative reduction of Se oxyanions during fluvial transport. The Paleoproterozoic Great Oxidation Event (GOE) is not reflected in the marine δ82/78Se record. However, we find a major inflection in the secular δ82/78Se trend during the Neoproterozoic, from a Precambrian mean of +0.42 ± 0.45‰ to a Phanerozoic mean of -0.19 ± 0.59‰. This drop probably reflects the oxygenation of the deep ocean at this time, stabilizing Se oxyanions throughout the water column. Since then, reduction of Se oxyanions has likely been restricted to anoxic basins and diagenetic environments in sediments. In light of recent Cr isotope data, it is likely that oxidative weathering before the Neoproterozoic produced Se oxyanions in the intermediate redox state SeIV, whereas the fully oxidized species SeVI became more abundant after the Neoproterozoic rise of

  20. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    NASA Astrophysics Data System (ADS)

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-09-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes.

  1. Potassium isotope abundances in Australasian tektites and microtektites.

    NASA Astrophysics Data System (ADS)

    Herzog, G. F.; O'D. Alexander, C. M.; Berger, E. L.; Delaney, J. S.; Glass, B. P.

    2008-10-01

    We report electron microprobe determinations of the elemental compositions of 11 Australasian layered tektites and 28 Australasian microtektites; and ion microprobe determinations of the 41K/39K ratios of all 11 tektites and 13 of the microtektites. The elemental compositions agree well with literature values, although the average potassium concentrations measured here for microtektites, 1.1 1.6 wt%, are lower than published average values, 1.9 2.9 wt%. The potassium isotope abundances of the Australasian layered tektites vary little. The average value of δ41K, 0.02 ± 0.12‰ (1σ mean), is indistinguishable from the terrestrial value (= 0 by definition) as represented by our standard, thereby confirming four earlier tektite analyses of Humayun and Koeberl (2004). In agreement with those authors, we conclude that evaporation has significantly altered neither the isotopic nor the elemental composition of Australasian layered tektites for elements less volatile than potassium. Although the average 41K/39K ratio of the microtektites, 1.1 ± 1.7‰ (1σ mean), is also statistically indistinguishable from the value for the standard, the individual ratios vary over a very large range, from -10.6 ± 1.4‰ to +13.8 ± 1.5‰ and at least three of them are significantly different from zero. We interpret these larger variations in terms of the evaporation of isotopically light potassium; condensation of potassium in the vapor plume; partial or complete stirring and quenching of the melts; and the possible uptake of potassium from seawater. That the average 41K/39K ratio of the microtektites equals the terrestrial value suggests that the microtektite-forming system was compositionally closed with respect to potassium and less volatile elements. The possibility remains open that 41K/39K ratios of microtektites vary systematically with location in the strewn field.

  2. Ar39 Detection at the 10-16 Isotopic Abundance Level with Atom Trap Trace Analysis

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Williams, W.; Bailey, K.; Davis, A. M.; Hu, S.-M.; Lu, Z.-T.; O'Connor, T. P.; Purtschert, R.; Sturchio, N. C.; Sun, Y. R.; Mueller, P.

    2011-03-01

    Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric Ar39 (half-life=269yr), a cosmogenic isotope with an isotopic abundance of 8×10-16. In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors.

  3. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  4. Relative and accurate measurement of protein abundance using 15N stable isotope labeling in Arabidopsis (SILIA).

    PubMed

    Guo, Guangyu; Li, Ning

    2011-07-01

    In the quantitative proteomic studies, numerous in vitro and in vivo peptide labeling strategies have been successfully applied to measure differentially regulated protein and peptide abundance. These approaches have been proven to be versatile and repeatable in biological discoveries. (15)N metabolic labeling is one of these widely adopted and economical methods. However, due to the differential incorporation rates of (15)N or (14)N, the labeling results produce imperfectly matched isotopic envelopes between the heavy and light nitrogen-labeled peptides. In the present study, we have modified the solid Arabidopsis growth medium to standardize the (15)N supply, which led to a uniform incorporation of (15)N into the whole plant protein complement. The incorporation rate (97.43±0.11%) of (15)N into (15)N-coded peptides was determined by correlating the intensities of peptide ions with the labeling efficiencies according to Gaussian distribution. The resulting actual incorporation rate (97.44%) and natural abundance of (15)N/(14)N-coded peptides are used to re-calculate the intensities of isotopic envelopes of differentially labeled peptides, respectively. A modified (15)N/(14)N stable isotope labeling strategy, SILIA, is assessed and the results demonstrate that this approach is able to differentiate the fold change in protein abundance down to 10%. The machine dynamic range limitation and purification step will make the precursor ion ratio deriving from the actual ratio fold change. It is suggested that the differentially mixed (15)N-coded and (14)N-coded plant protein samples that are used to establish the protein abundance standard curve should be prepared following a similar protein isolation protocol used to isolate the proteins to be quantitated. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Isotopic abundances of Hg in mercury stars inferred from the Hg II line at 3984 A

    NASA Technical Reports Server (NTRS)

    White, R. E.; Vaughan, A. H., Jr.; Preston, G. W.; Swings, J. P.

    1976-01-01

    Wavelengths of the Hg II absorption feature at 3984 A in 30 Hg stars are distributed uniformly from the value for the terrestrial mix to a value that corresponds to nearly pure Hg-204. The wavelengths are correlated loosely with effective temperatures inferred from Q(UBV). Relative isotopic abundances derived from partially resolved profiles of the 3984-A line in iota CrB, chi Lup, and HR 4072 suggest that mass-dependent fractionation has occurred in all three stars. It is supposed that such fractionation occurs in all Hg stars, and a scheme whereby isotopic compositions can be inferred from a comparison of stellar wavelengths and equivalent widths with those calculated for a family of fractionated isotopic mixes. Theoretical profiles calculated for the derived isotopic composition agree well with high-resolution interferometric profiles obtained for three of the stars.

  6. Specific activity and isotope abundances of strontium in purified strontium-82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzsimmons, J. M.; Medvedev, D. G.; Mausner, L. F.

    2015-11-12

    A linear accelerator was used to irradiate a rubidium chloride target with protons to produce strontium-82 (Sr-82), and the Sr-82 was purified by ion exchange chromatography. The amount of strontium associated with the purified Sr-82 was determined by either: ICP-OES or method B which consisted of a summation of strontium quantified by gamma spectroscopy and ICP-MS. The summation method agreed within 10% to the ICP-OES for the total mass of strontium and the subsequent specific activities were determined to be 0.25–0.52 TBq mg -1. Method B was used to determine the isotope abundances by weight% of the purified Sr-82, andmore » the abundances were: Sr-82 (10–20.7%), Sr-83 (0–0.05%), Sr-84 (35–48.5%), Sr-85 (16–25%), Sr-86 (12.5–23%), Sr-87 (0%), and Sr-88 (0–10%). The purified strontium contained mass amounts of Sr-82, Sr-84, Sr-85, Sr-86, and Sr-88 in abundances not associated with natural abundance, and 90% of the strontium was produced by the proton irradiation. A comparison of ICP-OES and method B for the analysis of Sr-82 indicated analysis by ICP-OES would be easier to determine total mass of strontium and comply with regulatory requirements. An ICP-OES analytical method for Sr-82 analysis was established and validated according to regulatory guidelines.« less

  7. Atmospheric Trace Gas Abundances and Stable Isotope Ratios via IR-LIF

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2004-01-01

    We propose to develop new technologies with support provided by PIDDP that will enable the in situ measurements of abundances and stable isotope ratios in important radiatively and biogenically active gases such as carbon dioxide, carbon monoxide, water, methane, nitrous oxide, and hydrogen sulfide to very high precision (0.1 per mil or better for the isotopic ratios, for example). Such measurements, impossible at present, could provide pivotal new constraints on the global (bio)geochemical budgets of these critical species, and could also be used to examine the dynamics of atmospheric transport on Mars, Titan, and other solar system bodies. We believe the combination of solid state light sources with imaging of the IR laser induced fluorescence (IR-LIF) via newly available detector arrays will make such in situ measurements possible for the first time. Even under ambient terrestrial conditions, the LIF yield from vibrational excitation of species such as water and carbon dioxide should produce emission measures well in excess of ten billion photons/sec from samples volumes of order 1 c.c. These count rates can, in principle, yield detection limits into the sub-ppt range that are required for the in situ isotopic study of atmospheric trace gases. While promising, such technologies are relatively immature, but developing rapidly, and there are a great many uncertainties regarding their applicability to in situ IR-LIF planetary studies. We therefore feel PIDDP support will be critical to developing these new tools, and propose a three-year program to combine microchip near-IR lasers with low background detection axes and state-of-the-art HgCdTe detectors developed for astronomical spectroscopy to investigate the sensitivity of IR-LIF under realistic planetary conditions, to optimize the optical pumping and filtering schemes for important species, and to apply the spectrometer to the non-destructive measurement of stable isotopes in a variety of test samples. These

  8. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the earth's core

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; White, W. M.; Jochum, K. P.; Hofmann, A. W.

    1986-01-01

    The hypothesis that the mantle Pb isotope ratios reflect continued extraction of Pb into the earth's core over geologic time is evaluated by studying the depeletion of chalcophile and siderophile elements in the mantle. Oceanic basalt samples are analyzed in order to determine the Pb, Sr, and Nd isotropic compositions and the abundances of siderophile and chalcophile elements and incompatible lithophile elements. The data reveal that there is no systematic variation of siderophile or chalcophile element abundances relative to abundances of lithophile elements and the Pb/Ce ratio of the mantle is constant. It is suggested that the crust formation involves nonmagmatic and magmatic processes.

  9. Characteristics of Martian Crustal Materials and Implications for Magmatic Assimilation: Preliminary Re-Os Isotope and Highly Siderophile Element Abundance Data for Nakhlites and Tissint

    NASA Astrophysics Data System (ADS)

    Mari, N.; Riches, A. J. V.; Hallis, L. J.; Lee, M. R.

    2017-07-01

    This project, for the first time, aims to integrate nakhlite Os-isotope compositions and HSE abundance data with S-isotope compositions for sample fractions for which textural information is constrained prior to destructive analyses.

  10. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia

    NASA Technical Reports Server (NTRS)

    Baur, M. E.; Hayes, J. M.; Studley, S. A.; Walter, M. R.

    1985-01-01

    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron.

  11. Abundances in red giant stars - Carbon and oxygen isotopes in carbon-rich molecular envelopes

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.; Sahai, R.

    1987-01-01

    Millimeter-wave observations have been made of isotopically substituted CO toward the envelopes of 11 carbon-rich stars. In every case, C-13O was detected and model calculations were used to estimate the C-12/C-13 abundance ratio. C-17O was detected toward three, and possibly four, envelopes, with sensitive upper limits for two others. The CO-18 variant was detected in two envelopes. New results include determinations of oxygen isotopic ratios in the two carbon-rich protoplanetary nebulae CRL 26688 and CRL 618. As with other classes of red giant stars, the carbon-rich giants seem to be significantly, though variably, enriched in O-17. These results, in combination with observations in interstellar molecular clouds, indicate that current knowledge of stellar production of the CNO nuclides is far from satisfactory.

  12. The Determination of the Natural Abundance of the Isotopes of Chlorine: An Introductory Experiment in Mass Spectrometry.

    ERIC Educational Resources Information Center

    O'Malley, Rebecca M.

    1982-01-01

    Describes a laboratory experiment which introduces basic principles and experimental techniques of mass spectrometry for fourth year undergraduate (B.Sc.) students. Laboratory procedures, background information, and discussion of results are provided for the experiment in which the natural isotopic abundance of chlorine is determined. (Author/JN)

  13. Rhenium-osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites

    NASA Astrophysics Data System (ADS)

    Riches, Amy J. V.; Day, James M. D.; Walker, Richard J.; Simonetti, Antonio; Liu, Yang; Neal, Clive R.; Taylor, Lawrence A.

    2012-11-01

    Coupled 187Os/188Os compositions and highly-siderophile-element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for eight angrite achondrite meteorites that include quenched- and slowly-cooled textural types. These data are combined with new major- and trace-element concentrations determined for bulk-rock powder fractions and constituent mineral phases, to assess angrite petrogenesis. Angrite meteorites span a wide-range of HSE abundances from <0.005 ppb Os (e.g., Northwest Africa [NWA] 1296; Angra dos Reis) to >100 ppb Os (NWA 4931). Chondritic to supra-chondritic 187Os/188Os (0.1201-0.2127) measured for Angra dos Reis and quenched-angrites correspond to inter- and intra-sample heterogeneities in Re/Os and HSE abundances. Quenched-angrites have chondritic-relative rare-earth-element (REE) abundances at 10-15×CI-chondrite, and their Os-isotope and HSE abundance variations represent mixtures of pristine uncontaminated crustal materials that experienced addition (<0.8%) of exogenous chondritic materials during or after crystallization. Slowly-cooled angrites (NWA 4590 and NWA 4801) have fractionated REE-patterns, chondritic to sub-chondritic 187Os/188Os (0.1056-0.1195), as well as low-Re/Os (0.03-0.13), Pd/Os (0.071-0.946), and relatively low-Pt/Os (0.792-2.640). Sub-chondritic 187Os/188Os compositions in NWA 4590 and NWA 4801 are unusual amongst planetary basalts, and their HSE and REE characteristics may be linked to melting of mantle sources that witnessed prior basaltic melt depletion. Angrite HSE-Yb systematics suggest that the HSE behaved moderately-incompatibly during angrite magma crystallization, implying the presence of metal in the crystallizing assemblage. The new HSE abundance and 187Os/188Os compositions indicate that the silicate mantle of the angrite parent body(ies) (APB) had HSE abundances in chondritic-relative proportions but at variable abundances at the time of angrite crystallization. The HSE systematics of angrites are

  14. Isotopic Compositions of the Elements, 2001

    NASA Astrophysics Data System (ADS)

    Böhlke, J. K.; de Laeter, J. R.; De Bièvre, P.; Hidaka, H.; Peiser, H. S.; Rosman, K. J. R.; Taylor, P. D. P.

    2005-03-01

    The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the "best measurement" of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E) and its uncertainty U[Ar(E)] recommended by CAWIA in 2001.

  15. Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.

    2015-01-01

    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.

  16. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal

  17. Accurate experimental determination of the isotope effects on the triple point temperature of water. II. Combined dependence on the 18O and 17O abundances

    NASA Astrophysics Data System (ADS)

    Faghihi, V.; Kozicki, M.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; Peruzzi, A.; Meijer, H. A. J.

    2015-12-01

    This paper is the second of two articles on the quantification of isotope effects on the triple point temperature of water. In this second article, we address the combined effects of 18O and 17O isotopes. We manufactured five triple point cells with waters with 18O and 17O abundances exceeding widely the natural abundance range while maintaining their natural 18O/17O relationship. The 2H isotopic abundance was kept close to that of VSMOW (Vienna Standard Mean Ocean Water). These cells realized triple point temperatures ranging between  -220 μK to 1420 μK with respect to the temperature realized by a triple point cell filled with VSMOW. Our experiment allowed us to determine an accurate and reliable value for the newly defined combined 18, 17O correction parameter of AO  =  630 μK with a combined uncertainty of 10 μK. To apply this correction, only the 18O abundance of the TPW needs to be known (and the water needs to be of natural origin). Using the results of our two articles, we recommend a correction equation along with the coefficient values for isotopic compositions differing from that of VSMOW and compare the effect of this new equation on a number of triple point cells from the literature and from our own institute. Using our correction equation, the uncertainty in the isotope correction for triple point cell waters used around the world will be  <1 μK.

  18. A history of violence: Insights into post-accretionary heating in carbonaceous chondrites from volatile element abundances, Zn isotopes and water contents

    NASA Astrophysics Data System (ADS)

    Mahan, Brandon; Moynier, Frédéric; Beck, Pierre; Pringle, Emily A.; Siebert, Julien

    2018-01-01

    Carbonaceous chondrites (CCs) may have been the carriers of water, volatile and moderately volatile elements to Earth. Investigating the abundances of these elements, their relative volatility, and isotopes of state-change tracer elements such as Zn, and linking these observations to water contents, provide vital information on the processes that govern the abundances and isotopic signatures of these species in CCs and other planetary bodies. Here we report Zn isotopic data for 28 CCs (20 CM, 6 CR, 1 C2-ung, and 1 CV3), as well as trace element data for Zn, In, Sn, Tl, Pb, and Bi in 16 samples (8 CM, 6 CR, 1 C2-ung, and 1 CV3), that display a range of elemental abundances from case-normative to intensely depleted. We use these data, water content data from literature and Zn isotopes to investigate volatile depletions and to discern between closed and open system heating. Trace element data have been used to construct relative volatility scales among the elements for the CM and CR chondrites. From least volatile to most, the scale in CM chondrites is Pb-Sn-Bi-In-Zn-Tl, and for CR chondrites it is Tl-Zn-Sn-Pb-Bi-In. These observations suggest that heated CM and CR chondrites underwent volatile loss under different conditions to one another and to that of the solar nebula, e.g. differing oxygen fugacities. Furthermore, the most water and volatile depleted samples are highly enriched in the heavy isotopes of Zn. Taken together, these lines of evidence strongly indicate that heated CM and CR chondrites incurred open system heating, stripping them of water and volatiles concomitantly, during post-accretionary shock impact(s).

  19. Isotopic compositions of the elements, 2001

    USGS Publications Warehouse

    Böhlke, J.K.; De Laeter, J. R.; De Bievre, P.; Hidaka, H.; Peiser, H.S.; Rosman, K.J.R.; Taylor, P.D.P.

    2005-01-01

    The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the “best measurement” of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E)">Ar(E)Ar(E) and its uncertainty U[Ar(E)]">U[Ar(E)]U[Ar(E)] recommended by CAWIA in 2001.

  20. ISO/GUM UNCERTAINTIES AND CIAAW (UNCERTAINTY TREATMENT FOR RECOMMENDED ATOMIC WEIGHTS AND ISOTOPIC ABUNDANCES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOLDEN,N.E.

    2007-07-23

    The International Organization for Standardization (ISO) has published a Guide to the expression of Uncertainty in Measurement (GUM). The IUPAC Commission on Isotopic Abundance and Atomic Weight (CIAAW) began attaching uncertainty limits to their recommended values about forty years ago. CIAAW's method for determining and assigning uncertainties has evolved over time. We trace this evolution to their present method and their effort to incorporate the basic ISO/GUM procedures into evaluations of these uncertainties. We discuss some dilemma the CIAAW faces in their present method and whether it is consistent with the application of the ISO/GUM rules. We discuss the attemptmore » to incorporate variations in measured isotope ratios, due to natural fractionation, into the ISO/GUM system. We make some observations about the inconsistent treatment in the incorporation of natural variations into recommended data and uncertainties. A recommendation for expressing atomic weight values using a tabulated range of values for various chemical elements is discussed.« less

  1. Carbon-13 Isotopic Abundance and Concentration of Atmospheric Methane for Background Air in the Southern and Northern Hemispheres from 1978 to 1989 (NDP-049)

    DOE Data Explorer

    Stevens, C. M. [Chemical Technology Division, Argonne National Laboratory, Argonne, Illinois (USA)

    2012-01-01

    This data package presents atmospheric CH4 concentration and 13C isotopic abundance data derived from air samples collected over the period 1978-1989 at globally distributed clean-air sites. The data set comprises 201 records, 166 from the Northern Hemisphere and 35 from the Southern Hemisphere. The air samples were collected mostly in rural or marine locations remote from large sources of CH4 and are considered representative of tropospheric background conditions. The air samples were processed by isolation of CH4 from air and conversion to CO2 for isotopic analysis by isotope ratio mass spectrometry. These data represent one of the earliest records of 13C isotopic yy!measurements for atmospheric methane and have been used to refine estimates of CH4 emissions, calculate annual growth rates of emissions from changing sources, and provide evidence for changes in the rate of atmospheric removal of CH4. The data records consist of sample collection date; number of samples combined for analysis; sampling location; analysis date; CH4 concentration; 13C isotopic abundance; and flag codes to indicate outliers, repeated analyses, and other information.

  2. The Mean Life Squared Relationship for Abundances of Extinct Radioactivities

    NASA Technical Reports Server (NTRS)

    Lodders, K.; Cameron, A. G. W.

    2004-01-01

    We discovered that the abundances of now extinct radioactivities (relative to stable reference isotopes) in meteorites vary as a function of their mean lifetimes squared. This relationship applies to chondrites, achondrites, and irons but to calcium-aluminum inclusions (CAIs). Certain meteorites contain excesses in isotopic abundances from the decay of radioactive isotopes with half-lives much less than the age of the solar system. These short-lived radioactivities are now extinct, but they were alive when meteorites assembled in the early solar system. The origin of these radioactivities and the processes which control their abundances in the solar nebula are still not well understood. Some clues may come from our finding that the meteoritic abundances of now extinct radioactivities (relative to stable reference isotopes) vary as a function of their mean lifetimes squared. This relationship applies to chondrites, achondrites, and irons, but not to CAIs. This points to at least two different processes establishing the abundances of short-lived isotopes found in the meteoritic record.

  3. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  4. Hyperfine Induced Transitions as Diagnostics of Low Density Plasmas and Isotopic Abundance ratios.

    NASA Astrophysics Data System (ADS)

    Brage, T.; Judge, P. G.; Aboussaid, A.; Godefroid, M. R.; Jonsson, P.; Leckrone, D. S.

    1996-05-01

    We propose a new diagnostics of isotope abundance ratios and electron densities for low density plasmas, in the form of J = 0 -> J(') = 0 radiative transitions. These are usually viewed as being allowed only through two-photon decay, but they may also be induced by the hyperfine (HPF) interaction in atomic ions. This predicts a companion line to the E1] and M2 lines in the UV0.01 multiplet of ions isoelectronic to beryllium (e.g. C III, N IV, O V and Fe XXII) or magnesium (e.g. Si II, Ca IX, Fe XV and Ni XVII). As an example the companion line to the well known lambda lambda 1906.7,1908.7 lines in C III will be at 1909.597 Angstroms, but only present in the (13) C isotope (which has nuclear spin different from zero). We present new and accurate decay rates for the nsnp (3P^oJ) -> ns(2) (1S_{J('}=0)) transitions in ions of the Be (n=2) and Mg (n=3) isoelectronic sequences. We show that the HPF induced decay rates for the J = 0 -> J(') = 0 transitions are many orders of magnitude larger than those for the competing two-photon processes and, when present, are typically one or two orders of magnitude smaller than the decay rates of the magnetic quadrupole ( J = 2-> J(') = 0) transitions for these ions. We show that several of these HPF-induced transitions are of potential astrophysical interest, in ions of C, N, Na, Mg, Al, Si, K, Cr, Fe and Ni. We highlight those cases that may be of particular diagnostic value for determining isotopic abundance ratios and/or electron densities from UV or EUV emission line data. We present our atomic data in the form of scaling laws so that, given the isotopic nuclear spin and magnetic moment, a simple expression yields estimates for HPF induced decay rates. We examine some UV solar and nebular data in the light of these new results and suggest possible cases for future study. We could not find evidence for the existence of HPF induced lines in the spectra we examined, but we demonstrate that existing data have come close to providing

  5. A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets

    PubMed Central

    Carreer, William J.; Flight, Robert M.; Moseley, Hunter N. B.

    2013-01-01

    New metabolomics applications of ultra-high resolution and accuracy mass spectrometry can provide thousands of detectable isotopologues, with the number of potentially detectable isotopologues increasing exponentially with the number of stable isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics (SIRM) experiments. This huge increase in usable data requires software capable of correcting the large number of isotopologue peaks resulting from SIRM experiments in a timely manner. We describe the design of a new algorithm and software system capable of handling these high volumes of data, while including quality control methods for maintaining data quality. We validate this new algorithm against a previous single isotope correction algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct for the effects of natural abundance for both 13C and 15N isotopes on a set of raw isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. PMID:24404440

  6. Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin

    2016-09-01

    The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.

  7. Isotopic abundance in atom trap trace analysis

    DOEpatents

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  8. Anomalous 13C isotope abundances in C3S and C4H observed toward the cold interstellar cloud, Taurus Molecular Cloud-1.

    PubMed

    Sakai, Nami; Takano, Shuro; Sakai, Takeshi; Shiba, Shoichi; Sumiyoshi, Yoshihiro; Endo, Yasuki; Yamamoto, Satoshi

    2013-10-03

    We have studied the abundances of the (13)C isotopic species of C3S and C4H in the cold molecular cloud, Taurus Molecular Cloud-1 (Cyanopolyyne Peak), by radioastronomical observations of their rotational emission lines. The CCCS/(13)CCCS and CCCS/C(13)CCS ratios are determined to be >206 and 48 ± 15, respectively. The CC(13)CS line is identified with the aid of laboratory microwave spectroscopy, and the range of the CCCS/CC(13)CS ratio is found to be from 30 to 206. The abundances of at least two (13)C isotopic species of C3S are thus found to be different. Similarly, it is found that the abundances of the four (13)C isotopic species of C4H are not equivalent. The CCCCH/(13)CCCCH, CCCCH/C(13)CCCH, CCCCH/CC(13)CCH, and CCCCH/CCC(13)CH ratios are evaluated to be 141 ± 44, 97 ± 27, 82 ± 15, and 118 ± 23, respectively. Here the errors denote 3 times the standard deviation. These results will constrain the formation pathways of C3S and C4H, if the nonequivalence is caused during the formation processes of these molecules. The exchange reactions after the formation of these two molecules may also contribute to the nonequivalence. In addition, we have confirmed that the (12)C/(13)C ratio of some species are significantly higher than the interstellar elemental (12)C/(13)C ratio of 60-70. The observations of the (13)C isotopic species provide us with rich information on chemical processes in cold interstellar clouds.

  9. Plant family identity distinguishes patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in mycoheterotrophic plants associated with ectomycorrhizal fungi.

    PubMed

    Hynson, Nicole A; Schiebold, Julienne M-I; Gebauer, Gerhard

    2016-09-01

    Mycoheterotrophy entails plants meeting all or a portion of their carbon (C) demands via symbiotic interactions with root-inhabiting mycorrhizal fungi. Ecophysiological traits of mycoheterotrophs, such as their C stable isotope abundances, strongly correlate with the degree of species' dependency on fungal C gains relative to C gains via photosynthesis. Less explored is the relationship between plant evolutionary history and mycoheterotrophic plant ecophysiology. We hypothesized that the C and nitrogen (N) stable isotope compositions, and N concentrations of fully and partially mycoheterotrophic species differentiate them from autotrophs, and that plant family identity would be an additional and significant explanatory factor for differences in these traits among species. We focused on mycoheterotrophic species that associate with ectomycorrhizal fungi from plant families Ericaceae and Orchidaceae. Published and unpublished data were compiled on the N concentrations, C and N stable isotope abundances (δ(13)C and δ(15)N) of fully (n = 18) and partially (n = 22) mycoheterotrophic species from each plant family as well as corresponding autotrophic reference species (n = 156). These data were used to calculate site-independent C and N stable isotope enrichment factors (ε). Then we tested for differences in N concentration, (13)C and (15)N enrichment among plant families and trophic strategies. We found that in addition to differentiating partially and fully mycoheterotrophic species from each other and from autotrophs, C and N stable isotope enrichment also differentiates plant species based on familial identity. Differences in N concentrations clustered at the plant family level rather than the degree of dependency on mycoheterotrophy. We posit that differences in stable isotope composition and N concentrations are related to plant family-specific physiological interactions with fungi and their environments. © The Author 2016. Published by Oxford University Press

  10. Plant family identity distinguishes patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in mycoheterotrophic plants associated with ectomycorrhizal fungi

    PubMed Central

    Hynson, Nicole A.; Schiebold, Julienne M.-I.; Gebauer, Gerhard

    2016-01-01

    Background and Aims Mycoheterotrophy entails plants meeting all or a portion of their carbon (C) demands via symbiotic interactions with root-inhabiting mycorrhizal fungi. Ecophysiological traits of mycoheterotrophs, such as their C stable isotope abundances, strongly correlate with the degree of species’ dependency on fungal C gains relative to C gains via photosynthesis. Less explored is the relationship between plant evolutionary history and mycoheterotrophic plant ecophysiology. We hypothesized that the C and nitrogen (N) stable isotope compositions, and N concentrations of fully and partially mycoheterotrophic species differentiate them from autotrophs, and that plant family identity would be an additional and significant explanatory factor for differences in these traits among species. We focused on mycoheterotrophic species that associate with ectomycorrhizal fungi from plant families Ericaceae and Orchidaceae. Methods Published and unpublished data were compiled on the N concentrations, C and N stable isotope abundances (δ13C and δ15N) of fully (n = 18) and partially (n = 22) mycoheterotrophic species from each plant family as well as corresponding autotrophic reference species (n = 156). These data were used to calculate site-independent C and N stable isotope enrichment factors (ε). Then we tested for differences in N concentration, 13C and 15N enrichment among plant families and trophic strategies. Key Results We found that in addition to differentiating partially and fully mycoheterotrophic species from each other and from autotrophs, C and N stable isotope enrichment also differentiates plant species based on familial identity. Differences in N concentrations clustered at the plant family level rather than the degree of dependency on mycoheterotrophy. Conclusions We posit that differences in stable isotope composition and N concentrations are related to plant family-specific physiological interactions with fungi and their environments. PMID

  11. Calcium Isotope Analysis by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  12. Mercury (Hg) in meteorites: Variations in abundance, thermal release profile, mass-dependent and mass-independent isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M. M.; Cloquet, Christophe; Marty, Bernard

    2016-06-01

    We have measured the concentration, isotopic composition and thermal release profiles of Mercury (Hg) in a suite of meteorites, including both chondrites and achondrites. We find large variations in Hg concentration between different meteorites (ca. 10 ppb to 14,000 ppb), with the highest concentration orders of magnitude above the expected bulk solar system silicates value. From the presence of several different Hg carrier phases in thermal release profiles (150-650 °C), we argue that these variations are unlikely to be mainly due to terrestrial contamination. The Hg abundance of meteorites shows no correlation with petrographic type, or mass-dependent fractionation of Hg isotopes. Most carbonaceous chondrites show mass-independent enrichments in the odd-numbered isotopes 199Hg and 201Hg. We show that the enrichments are not nucleosynthetic, as we do not find corresponding nucleosynthetic deficits of 196Hg. Instead, they can partially be explained by Hg evaporation and redeposition during heating of asteroids from primordial radionuclides and late-stage impact heating. Non-carbonaceous chondrites, most achondrites and the Earth do not show these enrichments in vapor-phase Hg. All meteorites studied here have however isotopically light Hg (δ202Hg = ∼-7 to -1) relative to the Earth's average crustal values, which could suggest that the Earth has lost a significant fraction of its primordial Hg. However, the late accretion of carbonaceous chondritic material on the order of ∼2%, which has been suggested to account for the water, carbon, nitrogen and noble gas inventories of the Earth, can also contribute most or all of the Earth's current Hg budget. In this case, the isotopically heavy Hg of the Earth's crust would have to be the result of isotopic fractionation between surface and deep-Earth reservoirs.

  13. Isotopic compositions of the elements 2013 (IUPAC Technical Report)

    USGS Publications Warehouse

    Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna; Loss, Robert D.; Walczyk, Thomas; Prohaska, Thomas

    2016-01-01

    The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) of the International Union of Pure and Applied Chemistry (iupac.org) has revised the Table of Isotopic Compositions of the Elements (TICE). The update involved a critical evaluation of the recent published literature. The new TICE 2013 includes evaluated data from the “best measurement” of the isotopic abundances in a single sample, along with a set of representative isotopic abundances and uncertainties that accommodate known variations in normal terrestrial materials.

  14. Abundances in red giant stars - Nitrogen isotopes in carbon-rich molecular envelopes

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.; Andersson, B.-G.; Olofsson, H.; Ukita, N.; Young, K.

    1991-01-01

    Results are presented of millimeter- and submillimeter-wave observations of HCN and HCCCN that were made of the circmustellar envelopes of eight carbon stars, including the two protoplanetary nebulae CRL 618 and CRL 2688. The observations yield a measure of the double ratio (N-14)(C-13)/(N-15)(C-12). Measured C-12/C-13 ratios are used to estimate the N-14/N-15 abundance ratio, with the resulting lower limits in all eight envelopes and possible direct determinations in two envelopes. The two determinations and four of the remaining six lower limits are found to be in excess of the terrestrial value of N-14/N-15 = 272, indicating an evolution of the nitrogen isotope ratio, which is consistent with stellar CNO processing. Observations of thermal SiO (v = 0, J = 2-1) emission show that the Si-29/Si-28 ratio can be determined in carbon stars, and further observations are indicated.

  15. Absolute Isotopic Abundance Ratios and the Accuracy of Δ47 Measurements

    NASA Astrophysics Data System (ADS)

    Daeron, M.; Blamart, D.; Peral, M.; Affek, H. P.

    2016-12-01

    Conversion from raw IRMS data to clumped isotope anomalies in CO2 (Δ47) relies on four external parameters: the (13C/12C) ratio of VPDB, the (17O/16O) and (18O/16O) ratios of VSMOW (or VPDB-CO2), and the slope of the triple oxygen isotope line (λ). Here we investigate the influence that these isotopic parameters exert on measured Δ47 values, using real-world data corresponding to 7 months of measurements; simulations based on randomly generated data; precise comparisons between water-equilibrated CO2 samples and between carbonate standards believed to share quasi-identical Δ47 values; reprocessing of two carbonate calibration data sets with different slopes of Δ47 versus T. Using different sets of isotopic parameters generally produces systematic offsets as large as 0.04 ‰ in final Δ47 values. What's more, even using a single set of isotopic parameters can produce intra- and inter-laboratory discrepancies in final Δ47 values, if some of these parameters are inaccurate. Depending on the isotopic compositions of the standards used for conversion to "absolute" values, these errors should correlate strongly with either δ13C or δ18O, or more weakly with both. Based on measurements of samples expected to display identical Δ47 values, such as 25°C water-equilibrated CO2 with different carbon and oxygen isotope compositions, or high-temperature standards ETH-1 and ETH-2, we conclude that the isotopic parameters used so far in most clumped isotope studies produces large, systematic errors controlled by the relative bulk isotopic compositions of samples and standards, which should be one of the key factors responsible for current inter-laboratory discrepancies. By contrast, the isotopic parameters of Brand et al. [2010] appear to yield accurate Δ47 values regardless of bulk isotopic composition. References:Brand, Assonov and Coplen [2010] http://dx.doi.org/10.1351/PAC-REP-09-01-05

  16. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  17. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  18. The chlorine isotope fingerprint of the lunar magma ocean.

    PubMed

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  19. Coupled Mo-U abundances and isotopes in a small marine euxinic basin: Constraints on processes in euxinic basins

    NASA Astrophysics Data System (ADS)

    Bura-Nakić, Elvira; Andersen, Morten B.; Archer, Corey; de Souza, Gregory F.; Marguš, Marija; Vance, Derek

    2018-02-01

    Sedimentary molybdenum (Mo) and uranium (U) abundances, as well as their isotope systematics, are used to reconstruct the evolution of the oxygenation state of the surface Earth from the geological record. Their utility in this endeavour must be underpinned by a thorough understanding of their behaviour in modern settings. In this study, Mo-U concentrations and their isotope compositions were measured in the water column, sinking particles, sediments and pore waters of the marine euxinic Lake Rogoznica (Adriatic Sea, Croatia) over a two year period, with the aim of shedding light on the specific processes that control Mo-U accumulation and isotope fractionations in anoxic sediment. Lake Rogoznica is a 15 m deep stratified sea-lake that is anoxic and euxinic at depth. The deep euxinic part of the lake generally shows Mo depletions consistent with near-quantitative Mo removal and uptake into sediments, with Mo isotope compositions close to the oceanic composition. The data also, however, show evidence for periodic additions of isotopically light Mo to the lake waters, possibly released from authigenic precipitates formed in the upper oxic layer and subsequently processed through the euxinic layer. The data also show evidence for a small isotopic offset (∼0.3‰ on 98Mo/95Mo) between particulate and dissolved Mo, even at highest sulfide concentrations, suggesting minor Mo isotope fractionation during uptake into euxinic sediments. Uranium concentrations decrease towards the bottom of the lake, where it also becomes isotopically lighter. The U systematics in the lake show clear evidence for a dominant U removal mechanism via diffusion into, and precipitation in, euxinic sediments, though the diffusion profile is mixed away under conditions of increased density stratification between an upper oxic and lower anoxic layer. The U diffusion-driven precipitation is best described with an effective 238U/235U fractionation of +0.6‰, in line with other studied euxinic

  20. Abundances and isotopic compositions of rhenium and osmium in pyrite samples from the Huaibei coalfield, Anhui, China

    USGS Publications Warehouse

    Liu, Gaisheng; Chou, C.-L.; Peng, Z.; Yang, G.

    2008-01-01

    Two pyrite samples from the Shihezi Formation (Lower Permian), Huaibei coalfield, Anhui, China, have been analyzed for abundances and isotopic compositions of rhenium and osmium using negative thermal ion mass spectrometry. The Re-Os ages of the pyrites are 64.4 and 226 Ma, which are younger than the formation age of the coal seam. The pyrite samples may consist of pyrite formed at various stages during the history of coal formation. The ??Osvalues of the two pyrite samples are +17 and +18, respectively. Such high ??Osvalues are reported for the first time for recycles crustal materials from a sedimentary basin. ?? Springer-Verlag 2007.

  1. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  2. The chlorine isotope fingerprint of the lunar magma ocean

    PubMed Central

    Boyce, Jeremy W.; Treiman, Allan H.; Guan, Yunbin; Ma, Chi; Eiler, John M.; Gross, Juliane; Greenwood, James P.; Stolper, Edward M.

    2015-01-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free (“dry”) Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because 37Cl/35Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, 37Cl/35Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high 37Cl/35Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon’s history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets. PMID:26601265

  3. ANALYSIS OF RICIN TOXIN PREPARATIONS FOR CARBOHYDRATE AND FATTY ACID ABUNDANCE AND ISOTOPE RATIO INFORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.

    2009-12-01

    , one employing a quadrupole MS system for compound identification and an isotope ratio MS for measuring the stable isotope ratios of deuterium and hydrogen (D/H) in fatty acids. Finally, the method for analyzing the compound abundance data is included. This study indicates that removal of ricinoleic acid is a conserved consequence of each processing step we tested. Furthermore, the stable isotope D/H ratio of ricinoleic acid distinguished between two of the three castor seed sources. Concentrations of arabinose, xylose, mannose, glucosamine and myo-inositol differentiated between crude or acetone extracted samples and samples produced by protein precipitation. Taken together these data illustrate the ability to distinguish between processes used to purify a ricin sample as well as potentially the source seeds.« less

  4. Chlorine Isotopes: As a Possible Tracer of Fluid/Bio-Activities on Mars and a Progress Report on Chlorine Isotope Analysis by TIMs

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.

    2009-01-01

    Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.

  5. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    Observational data on CNO abundance ratios in red giants and the interstellar medium (ISM) are analyzed for the implications for the production and distribution of CNO nuclides. The data included isotope abundance measurements for the atmospheres and recent ejecta of cool giants, e.g., carbon stars, S-type stars, red supergiants and oxygen-rich giants beginning an ascent of the giant branch. The contribution of intermediate-mass stars to galactic nuclear evolution is discussed after comparing red giant abundances with ISM abundances, particularly the isotopes O-16, -17 and -18. The O-12/O-18 ratios of red giants are distinctly different from those in interstellar molecular clouds. The CNO values also vary widely from the values found in the solar system.

  6. Further analysis of the IRIS iron isotope experiment

    NASA Technical Reports Server (NTRS)

    Tarle, G.; Ahlen, S. P.; Cartwright, B. G.; Solarz, M.

    1980-01-01

    The IRIS Fe isotope experiment was extended to atomic charges of Z = 19, with isotopic distributions for 500 events ranging from 18 to 28. Normalization of the detector response functions at Fe-56 produced a single well resolved peak at Sc-45, establishing the resolution and mass scale of the device over the entire charge region. The abundance distributions for the predominantly primary isotopes Ca-40, Fe-54, Fe-56, Ni-58, and Ni-60 do not indicate a large admixture of material with distinctly nonsolar abundances.

  7. Solar abundances as derived from solar energetic particles

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1989-01-01

    Recent studies have shown that there are well defined average abundances of heavy (Z above 2) solar energetic particles (SEPs), with variations in the acceleration and propagation producing a systematic flare-to-flare fractionation that depends on the charge per unit mass of the ion. Correcting the average SEP abundances for this fractionation yields SEP-derived coronal abundances for 20 elements. High-resolution SEP studies have also provided isotopic abundances for five elements. SEP-derived abundances indicate that elements with high first ionization potentials (greater than 10 eV) are depleted in the corona relative to the photosphere and provide new information on the solar abundance of C and Ne-22.

  8. Extreme CO Isotopic Abundances in the ULIRG IRAS 13120-5453: An Extremely Young Starburst or Top-heavy Initial Mass Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sliwa, Kazimierz; Wilson, Christine D.; Aalto, Susanne

    We present ALMA {sup 12}CO (J = 1-0, 3-2 and 6-5), {sup 13}CO (J = 1-0), and C{sup 18}O (J = 1-0) observations of the local ultraluminous infrared galaxy (ULIRG) IRAS 13120-5453. The morphologies of the three isotopic species differ, as {sup 13}CO shows a hole in emission toward the center. We measure integrated brightness temperature line ratios of {sup 12}CO/{sup 13}CO ≥ 60 (exceeding 200) and {sup 13}CO/C{sup 18}O ≤ 1 in the central region. Assuming optical thin emission, C{sup 18}O is more abundant than {sup 13}CO in several regions. The abundances within the central 500 pc are consistentmore » with the enrichment of the interstellar medium via a young starburst (<7 Myr), a top-heavy initial mass function, or a combination of both.« less

  9. High Relative Abundance of Biofuel Sourced Ethanol in Precipitation in the US and Brazil Determined Using Compound Specific Stable Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Shimizu, M. S.; Felix, J. D. D.; Casas, M.; Avery, G. B., Jr.; Kieber, R. J.; Mead, R. N.; Willey, J. D.; Lane, C.

    2017-12-01

    Ethanol biofuel production and consumption have increased exponentially over the last two decades to help reduce greenhouse gas emissions. Currently, 85% of global ethanol production and consumption occurs in the US and Brazil. Increasing biofuel ethanol usage in these two countries enhances emissions of uncombusted ethanol to the atmosphere contributing to poor air quality. Although measurements of ethanol in the air and the precipitation reveal elevated ethanol concentrations in densely populated cities, other sources such as natural vegetation can contribute to emission to the atmosphere. Previous modeling studies indicated up to 12% of atmospheric ethanol is from anthropogenic emissions. Only one gas phase study in southern Florida attempted to constrain the two sources through direct isotopic measurements. The current study used a stable carbon isotope method to constrain sources of ethanol in rainwater from the US and Brazil. A method was developed using solid phase microextraction (SPME) with subsequent analysis by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Stable carbon isotope signatures (δ13C) of vehicle ethanol emission sources for both the US (-9.8‰) and Brazil (-12.7‰) represented C4 plants as feedstock (corn and sugarcane) for biofuel production. An isotope mixing model using biofuel from vehicles (C4 plants) and biogenic (C3 plants) end-members was implemented to estimate ethanol source apportionment in the rain. We found that stable carbon isotope ratio of ethanol in the rain ranged between -22.6‰ and -12.7‰. Our results suggest that the contribution of biofuel to atmospheric ethanol can be higher than previously estimated. As biofuel usage increasing globally, it is essential to determine the relative abundance of anthropogenic ethanol in other areas of the world.

  10. Abundance, stable isotopic composition, and export fluxes of DOC, POC, and DIC from the Lower Mississippi River during 2006–2008

    USGS Publications Warehouse

    Cai, Yihua; Guo, Laodong; Wang, Xuri; Aiken, George R.

    2015-01-01

    Sources, abundance, isotopic compositions, and export fluxes of dissolved inorganic carbon (DIC), dissolved and colloidal organic carbon (DOC and COC), and particulate organic carbon (POC), and their response to hydrologic regimes were examined through monthly sampling from the Lower Mississippi River during 2006–2008. DIC was the most abundant carbon species, followed by POC and DOC. Concentration and δ13C of DIC decreased with increasing river discharge, while those of DOC remained fairly stable. COC comprised 61 ± 3% of the bulk DOC with similar δ13C abundances but higher percentages of hydrophobic organic acids than DOC, suggesting its aromatic and diagenetically younger status. POC showed peak concentrations during medium flooding events and at the rising limb of large flooding events. While δ13C-POC increased, δ15N of particulate nitrogen decreased with increasing discharge. Overall, the differences in δ13C between DOC or DIC and POC show an inverse correlation with river discharge. The higher input of soil organic matter and respired CO2 during wet seasons was likely the main driver for the convergence of δ13C between DIC and DOC or POC, whereas enhanced in situ primary production and respiration during dry seasons might be responsible for their isotopic divergence. Carbon export fluxes from the Mississippi River were estimated to be 13.6 Tg C yr−1 for DIC, 1.88 Tg C yr−1 for DOC, and 2.30 Tg C yr−1 for POC during 2006–2008. The discharge-normalized DIC yield decreased during wet seasons, while those of POC and DOC increased and remained constant, respectively, implying variable responses in carbon export to the increasing discharge.

  11. Monsoon Variability In The Western Arabian Sea During Last 10,000 Years BP: A Planktic Foraminiferal Abundances And It's Stable Isotope Records

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Tiwari, M.; Sinha, D. K.; Ramesh, R.

    2007-12-01

    : The western Arabian Sea responds to the southwest monsoon winds by upwelling colder and nutrient rich waters from the deeper layers, causing a reduction in the sea surface temperature and enhanced biological productivity. A number of paleoclimatic studies have been carried out in this region to elucidate past monsoon variability (Sirocco et al., 1993; Gupta et al, 2003; Tiwari, 2005; Saher et.al.; 2007). Globigerina bulloides, a planktic foraminiferal species normally inhabiting surface ocean waters in temperate latitudes ( Be and Tolderlund , 1977) also becomes abundant at tropical latitudes upwelling occurs, and in these cases its abundance can exceed considerably. The conspicuous fluctuation in the abundance of Gg.bulloides during upwelling and non upwelling intervals is established through several studies ( Thiede and Junger, 1980, Gupta et al, 2003) This robust relation has been used as a proxy for wind velocity at several different times in the past in the Arabian Sea (Anderson et.al., 2002). A significant result from some of these centennially resolved Holocene records is declining abundance of Globigerina bulloides which is paralleled by reduced insolation record and this has been inferred as declining strength of Asian Monsoon. We are presenting here the data from the core SS4018 from near the Gulf of Aden, Western Arabian Sea taken at a water depth of 2830 m, precisely dated by the radiocarbon method using Accelerator Mass Spectrometry on planktonic foraminiferal separates. We have carried out the planktic foraminiferal census counts for each sample to know the relative abundance of key species. In addition to this, we have also employed multi- proxy approach such as oxygen and carbon isotopes of planktic foraminiferal tests, TOC, CaCO3 (%) to strengthen our interpretation and also to understand the relationships amongst the proxies themselves. Abundance of the key planktic foraminiferal species and other proxy records reveal at least 3 major climatic

  12. Abundant Solar Nebula Solids in Comets

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  13. Combustion influences on natural abundance nitrogen isotope ratio in soil and plants following a wildfire in a sub-alpine ecosystem.

    PubMed

    Huber, Edith; Bell, Tina L; Adams, Mark A

    2013-11-01

    This before-and-after-impact study uses the natural abundance N isotope ratio (δ(15)N) to investigate the effects of a wildfire on sub-alpine ecosystem properties and processes. We measured the (15)N signatures of soil, charred organic material, ash and foliage in three sub-alpine plant communities (grassland, heathland and woodland) in south-eastern Australia. Surface bulk soil was temporarily enriched in (15)N immediately after wildfire compared to charred organic material and ash in all plant communities. We associated the enrichment of bulk soil with fractionation of N during combustion and volatilization of N, a process that also explains the sequential enrichment of (15)N of unburnt leaves > ash > charred organic material in relation to duration and intensity of heating. The rapid decline in (15)N of bulk soil to pre-fire values indicates that depleted ash, containing considerable amounts of total N, was readily incorporated into the soil. Foliar δ(15)N also increased with values peaking 1 year post-fire. Foliar enrichment was foremost coupled with the release of enriched NH4(+) into the soil owing to isotopic discrimination during volatilization of soluble N and combustion of organic material. The mode of post-fire regeneration influenced foliar (15)N enrichment in two species indicating use of different sources of N following fire. The use of natural abundance of (15)N in soil, ash and foliage as a means of tracing transformation of N during wildfire has established the importance of combustion products as an important, albeit temporary source of inorganic N for plants regenerating after wildfire.

  14. Advances in Multicollector ICPMS for precise and accurate isotope ratio measurements of Uranium isotopes

    NASA Astrophysics Data System (ADS)

    Bouman, C.; Lloyd, N. S.; Schwieters, J.

    2011-12-01

    The accurate and precise determination of uranium isotopes is challenging, because of the large dynamic range posed by the U isotope abundances and the limited available sample material. Various mass spectrometric techniques are used for the measurement of U isotopes, where TIMS is the most accepted and accurate one. Multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) can offer higher productivity compared to TIMS, but is traditionally limited by low efficiency of sample utilisation. This contribution will discuss progress in MC-ICPMS for detecting 234U, 235U, 236U and 238U in various uranium reference materials from IRMM and NBL. The Thermo Scientific NEPTUNE Plus with Jet Interface offers a modified dry plasma ICP interface using a large interface pump combined with a special set of sample and skimmer cones giving ultimate sensitivity for all elements across the mass range. For uranium, an ion yield of > 3 % was reported previously [1]. The NEPTUNE Plus also offers Multi Ion Counting using discrete dynode electron multipliers as well as two high abundance-sensitivity filters to discriminate against peak tailing effects on 234U and 236U originating from the major uranium beams. These improvements in sensitivity and dynamic range allow accurate measurements of 234U, 235U and 236U abundances on very small samples and at low concentration. In our approach, minor U isotopes 234U and 236U were detected on ion counters with high abundance sensitivity filters, whereas 235U and 238U were detected on Faraday Cups using a high gain current amplifier (10e12 Ohm) for 235U. Precisions and accuracies for 234U and 236U were down to ~1%. For 235U, subpermil levels were reached.

  15. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon

    NASA Astrophysics Data System (ADS)

    Russe, K.; Valkiers, S.; Taylor, P. D. P.

    2004-07-01

    Synthetic isotope mixtures for the calibration of carbon isotope amount ratio measurements have been prepared by mixing carbon tetrafluoride highly enriched in 13C with carbon tetrafluoride depleted in 13C. Mixing procedures based on volumetry and gravimetry are described. The mixtures served as primary measurement standards for the calibration of isotope amount ratio measurements of the Isotopic Reference Materials PEF1, NBS22 and USGS24. Thus SI-traceable measurements of absolute carbon isotope amount ratios have been performed for the first time without any hypothesis needed for a correction of oxygen isotope abundances, such as is the case for measurements on carbon dioxide. As a result, "absolute" carbon isotope amount ratios determined via carbon tetrafluoride have smaller uncertainties than those published for carbon dioxide. From the measurements of the Reference Materials concerned, the absolute carbon isotope amount ratio of Vienna Pee Dee Belemnite (VPDB)--the hypothetical material upon which the scale for relative carbon isotope ratio measurements is based--was calculated to be R13(VPDB) = (11 101 +/- 16) × 10-6.

  16. Environmental and biomedical applications of natural metal stable isotope variations

    USGS Publications Warehouse

    Bullen, T.D.; Walczyk, T.

    2009-01-01

    etal stable isotopes are now being used to trace metal contaminants in the environment and as indicators of human systemic function where metals play a role. Stable isotope abundance variations provide information about metal sources and the processes affecting metals in complex natural systems, complementing information gained from surrogate tracers, such as metal abundance ratios or biochemical markers of metal metabolism. The science is still in its infancy, but the results of initial studies confirm that metal stable isotopes can provide a powerful tool for forensic and biomedical investigations.

  17. Helium and Carbon Isotope and Relative Abundance Relationships in Lau Basin Basalts: Resolving Mantle Source Composition from Degassing and Contamination Effects

    NASA Astrophysics Data System (ADS)

    Vukajlovich, D. J.; Hilton, D. R.; Castillo, P. R.; Hawkins, J. W.

    2005-12-01

    The Lau Basin has multiple mantle source components including contributions from the Indian and Pacific MORB sources, Tonga-Kermadec Arc and Samoan plume. In order to characterize the volatile systematics of these various sources and to map their spatial distribution, we have sampled basaltic glasses from over 50 dredge sites covering all known spreading centers in the basin as well as many off-axis seamounts. Here, we report He abundance and isotope results obtained by crushing, in addition to CO2 released through stepped heating, from sites at the Mangatolu Triple Junction (MTJ), Rochambeau Bank (RB), Peggy Ridge, and the Northern, Eastern and Central Lau Spreading Centers. High 3He/4He ratios from RB (up to 23 RA, where RA = air 3He/4He) confirm the presence of a plume component in the northwestern Lau Basin (Poreda, EPSL, 1985). Central and Eastern Lau Spreading Center basalts have 3He/4He ratios between 8.3 and 9.4 RA, consistent with a depleted, MORB-like mantle source with little influence from slab or crustal helium. In contrast, the large range in helium isotope ratios of MTJ samples (0.85 to 7.9 RA) and the correlation between low He abundances (~2 - 3 × 10-9 cm3/g) and low helium isotope ratios suggests the volatiles in this region have been severely affected by degassing and additions of radiogenic (crustal) He. CO2 abundances and carbon isotopes for samples from RB vary from 70 to 119 ppm ([CO2]total) with δ13Cvesicle falling between -12.3 to -14.8 ‰ and δ13Cdissolved lying between -9.3 to -10.7 ‰. In the MTJ, low helium concentration samples have δ13C as low as -27.4 ‰ and [CO2]total as low as 7.6ppm; interestingly, this region also has samples with the highest measured values (up to -6.3 ‰ and 132ppm total C). Combining the carbon and helium data, CO2/3He ratios in the MTJ range from arc-like values (~1010) to sediment or crustal values (~1013) showing the superimposition of degassing and/or contamination effects on a predominant slab

  18. Origin and abundance of water in carbonaceous asteroids

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Bekaert, David V.; Piani, Laurette

    2018-01-01

    The origin and abundance of water accreted by carbonaceous asteroids remains underconstrained, but would provide important information on the dynamic of the protoplanetary disk. Here we report the in situ oxygen isotopic compositions of aqueously formed fayalite grains in the Kaba and Mokoia CV chondrites. CV chondrite bulk, matrix and fayalite O-isotopic compositions define the mass-independent continuous trend (δ17O = 0.84 ± 0.03 × δ18O - 4.25 ± 0.1), which shows that the main process controlling the O-isotopic composition of the CV chondrite parent body is related to isotopic exchange between 16O-rich anhydrous silicates and 17O- and 18O-rich fluid. Similar isotopic behaviors observed in CM, CR and CO chondrites demonstrate the ubiquitous nature of O-isotopic exchange as the main physical process in establishing the O-isotopic features of carbonaceous chondrites, regardless of their alteration degree. Based on these results, we developed a new approach to estimate the abundance of water accreted by carbonaceous chondrites (quantified by the water/rock ratio) with CM (0.3-0.4) ≥ CR (0.1-0.4) ≥ CV (0.1-0.2) > CO (0.01-0.10). The low water/rock ratios and the O-isotopic characteristics of secondary minerals in carbonaceous chondrites indicate they (i) formed in the main asteroid belt and (ii) accreted a locally derived (inner Solar System) water formed near the snowline by condensation from the gas phase. Such results imply low influx of D- and 17O- and 18O-rich water ice grains from the outer part of the Solar System. The latter is likely due to the presence of a Jupiter-induced gap in the protoplanetary disk that limited the inward drift of outer Solar System material at the exception of particles with size lower than 150 μm such as presolar grains. Among carbonaceous chondrites, CV chondrites show O-isotopic features suggesting potential contribution of 17-18O-rich water that may be related to their older accretion relative to other hydrated

  19. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  20. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    The production and distribution of the CNO nuclides is discussed in light of observed abundance ratios in red giants and in the interstellar medium. Isotope abundances have been measured in the atmospheres and in the recent ejecta of cool giants, including carbon stars, S-type stars and red supergiants as well as in oxygen-rich giants making their first ascent of the giant branch. Several of the observations suggest revision of currently accepted nuclear cross-sections and of the mixing processes operating in giant envelopes. By comparing red giant abundances with high-quality observations of the interstellar medium, conclusions are reached about the contribution of intermediate-mass stars to galactic nuclear evolution. The three oxygen isotopes, O-16, -17 and -18, are particularly valuable for such comparison because they reflect three different stages of stellar nucleosynthesis. One remarkable result comes from observations of O-17/O-18 in several classes of red giant stars. The observed range of values for red giants excludes the entire range of values seen in interstellar molecular clouds. Furthermore, both the observations of stars and interstellar clouds exclude the isotopic ratio found in the solar system.

  1. Carbon isotope geochemistry and geobiology

    NASA Technical Reports Server (NTRS)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  2. Natural abundance N stable isotopes in plants and soils as an indicator of N deposition hotspots in urban environments

    NASA Astrophysics Data System (ADS)

    Trammell, T. L.

    2017-12-01

    The natural abundance of stable isotopes in plants and soils has been utilized to understand ecological phenomenon. Foliar δ15N is an integrator of soil δ15N, atmospheric N sources, and fractionation processes that occur during plant N uptake, plant N assimilation, and mycorrhizal associations. The amount of reactive N in the environment has greatly increased due to human activities, and urban ecosystems experience excess N deposition that can have cascading effects on plants and soils. Foliar δ15N has been shown to increase with increasing N deposition and nitrification rates suggesting increased foliar δ15N occurs with greater N inputs as a result of accelerated soil N cycling. Thus, foliar δ15N can be an indication of soil N availability for plant uptake and soil N cycling rates, since high N availability results in increased soil N cycling and subsequent loss of 14N. Limited research has utilized foliar and soil δ15N in urban forests to assess the importance of plant uptake of atmospheric N deposition and to gain insight about ecosystem processes. Previous investigations found foliar δ15N of mature trees in urban forests is not only related to elevated pollutant-derived N deposition, but also to soil N availability and soil N cycling rates. Similarly, enriched foliar δ15N of urban saplings was attributed to soil characteristics that indicated higher nitrification, thus, greater nitrate leaching and low N retention in the urban soils. These studies demonstrate the need for measuring the δ15N of various plant and soil N sources while simultaneously measuring soil N processes (e.g., net nitrification rates) in order to use natural abundance δ15N of plants and soils to assess N sources and cycling in urban forests. A conceptual framework that illustrates biogenic and anthropogenic controls on nitrogen isotope composition in urban plants and soils will be presented along with foliar and soil δ15N from urban forests across several cities as a proof of

  3. Partitioning nitrogen losses by natural abundance nitrogen isotope composition in a process-based statistical modelling framework

    NASA Astrophysics Data System (ADS)

    Dong, Ning; Wright, Ian; Prentice, Iain Colin

    2017-04-01

    Natural abundance of the stable isotope 15N is an under-utilized resource for research on the global terrestrial nitrogen cycle. Mass balance considerations suggest that if reactive N inputs have a roughly constant isotopic signature, soil δ15N should be mainly determined by the fraction of N losses by leaching - which barely discriminates against 15N - versus gaseous N losses, which discriminate strongly against 15N. We defined simple process-oriented functions of runoff (frunoff) and soil temperature (ftemp) and investigated the dependencies of soil and foliage δ15N (from global compilations of both types of measurement) on their ratio. Both plant and soil δ15N were found to systematically increase with ftemp/frunoff. Consistent with previous analyses, foliage δ15N was offset (more negative) with respect to soil δ15N, with significant differences in this offset between (from largest to smallest offset) ericoid, ectomycorrhizal, arbuscular mycorrhizal and non-mycorrhizal associated plants. δ15N values tend to be large and positive in the driest environments and to decline as frunoff increases, while also being lower in cold environments and increasing as ftemp increases. The fitted statistical model was used to estimate the gaseous fraction of total N losses from ecosystems (fgas) on a global grid basis. In common with earlier results, the largest values of fgas are predicted in the tropics and semi-arid subtropics. This analysis provides an indirectly estimated global mapping of fgas, which could be used as an improved benchmark for terrestrial nitrogen cycle models.

  4. Chemical and oxygen isotopic properties of ordinary chondrites (H5, L6) from Oman: Signs of isotopic equilibrium during thermal metamorphism

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Nasir, Sobhi J.; Jabeen, Iffat; Al Rawas, Ahmed; Banerjee, Neil R.; Osinski, Gordon R.

    2017-10-01

    Mean bulk chemical data of recently found H5 and L6 ordinary chondrites from the deserts of Oman generally reflect isochemical features which are consistent with the progressive thermal metamorphism of a common, unequilibrated starting material. Relative differences in abundances range from 0.5-10% in REE (Eu = 14%), 6-13% in siderophile elements (Co = 48%), and >10% in lithophile elements (exceptions are Ba, Sr, Zr, Hf, U = >30%) between H5 and L6 groups. These differences may have accounted for variable temperature conditions during metamorphism on their parent bodies. The CI/Mg-normalized mean abundances of refractory lithophile elements (Al, Ca, Sm, Yb, Lu, V) show no resolvable differences between H5 and L6 suggesting that both groups have experienced the same fractionation. The REE diagram shows subtle enrichment in LREE with a flat HREE pattern. Furthermore, overall mean REE abundances are 0.6 × CI with enriched La abundance ( 0.9 × CI) in both groups. Precise oxygen isotope compositions demonstrate the attainment of isotopic equilibrium by progressive thermal metamorphism following a mass-dependent isotope fractionation trend. Both groups show a slope-1/2 line on a three-isotope plot with subtle negative deviation in Δ17O associated with δ18O enrichment relative to δ17O. These deviations are interpreted as the result of liberation of water from phyllosilicates and evaporation of a fraction of the water during thermal metamorphism. The resultant isotope fractionations caused by the water loss are analogous to those occurring between silicate melt and gas phase during CAI and chondrule formation in chondrites and are controlled by cooling rates and exchange efficiency.

  5. Barium isotope abundances in meteorites and their implications for early Solar System evolution

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Mezger, K.; Scherer, E. E.; Horan, M. F.; Carlson, R. W.; Upadhyay, D.; Magna, T.; Pack, A.

    2016-02-01

    Several nucleosynthetic processes contributed material to the Solar System, but the relative contributions of each process, the timing of their input into the solar nebula, and how well these components were homogenized in the solar nebula remain only partially constrained. The Ba isotope system is particularly useful in addressing these issues because Ba isotopes are synthesized via three nucleosynthetic processes (s-, r-, p-process). In this study, high precision Ba isotope analyses of 22 different whole rock chondrites and achondrites (carbonaceous chondrites, ordinary chondrites, enstatite chondrites, Martian meteorites, and eucrites) were performed to constrain the distribution of Ba isotopes on the regional scale in the Solar System. A melting method using aerodynamic levitation and CO2-laser heating was used to oxidize SiC, a primary carrier of Ba among presolar grains in carbonaceous chondrites. Destruction of these grains during the fusion process enabled the complete digestion of these samples. The Ba isotope data presented here are thus the first for which complete dissolution of the bulk meteorite samples was certain. Enstatite chondrites, ordinary chondrites, and all achondrites measured here possess Ba isotope compositions that are not resolved from the terrestrial composition. Barium isotope anomalies are evident in most of the carbonaceous chondrites analyzed, but the 135Ba anomalies are generally smaller than previously reported for similarly sized splits of CM2 meteorites. Variation in the size of the 135Ba anomaly is also apparent in fused samples from the same parent body (e.g., CM2 meteorites) and in different pieces from the same meteorite (e.g., Orgueil, CI). Here, we investigate the potential causes of variability in 135Ba, including the contribution of radiogenic 135Ba from the decay of 135Cs and incomplete homogenization of the presolar components on the <0.8 g sample scale.

  6. Absolute measurements and certified reference material for iron isotopes using multiple-collector inductively coupled mass spectrometry.

    PubMed

    Zhou, Tao; Zhao, Motian; Wang, Jun; Lu, Hai

    2008-01-01

    Two enriched isotopes, 99.94 at.% 56Fe and 99.90 at.% 54Fe, were blended under gravimetric control to prepare ten synthetic isotope samples whose 56Fe isotope abundances ranged from 95% to 20%. For multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) measurements typical polyatomic interferences were removed by using Ar and H2 as collision gas and operating the MC-ICP-MS system in soft mode. Thus high-precision measurements of the Fe isotope abundance ratios were accomplished. Based on the measurement of the synthetic isotope abundance ratios by MC-ICP-MS, the correction factor for mass discrimination was calculated and the results were in agreement with results from IRMM014. The precision of all ten correction factors was 0.044%, indicating a good linearity of the MC-ICP-MS method for different isotope abundance ratio values. An isotopic reference material was certified under the same conditions as the instrument was calibrated. The uncertainties of ten correction factors K were calculated and the final extended uncertainties of the isotopic certified Fe reference material were 5.8363(37) at.% 54Fe, 91.7621(51) at.% 56Fe, 2.1219(23) at.% 57Fe, and 0.2797(32) at.% 58Fe.

  7. Efficient mixing of the solar nebula from uniform Mo isotopic composition of meteorites.

    PubMed

    Becker, Harry; Walker, Richard J

    2003-09-11

    The abundances of elements and their isotopes in our Galaxy show wide variations, reflecting different nucleosynthetic processes in stars and the effects of Galactic evolution. These variations contrast with the uniformity of stable isotope abundances for many elements in the Solar System, which implies that processes efficiently homogenized dust and gas from different stellar sources within the young solar nebula. However, isotopic heterogeneity has been recognized on the subcentimetre scale in primitive meteorites, indicating that these preserve a compositional memory of their stellar sources. Small differences in the abundance of stable molybdenum isotopes in bulk rocks of some primitive and differentiated meteorites, relative to terrestrial Mo, suggest large-scale Mo isotopic heterogeneity between some inner Solar System bodies, which implies physical conditions that did not permit efficient mixing of gas and dust. Here we report Mo isotopic data for bulk samples of primitive and differentiated meteorites that show no resolvable deviations from terrestrial Mo. This suggests efficient mixing of gas and dust in the solar nebula at least to 3 au from the Sun, possibly induced by magnetohydrodynamic instabilities. These mixing processes must have occurred before isotopic fractionation of gas-phase elements and volatility-controlled chemical fractionations were established.

  8. ICT: isotope correction toolbox.

    PubMed

    Jungreuthmayer, Christian; Neubauer, Stefan; Mairinger, Teresa; Zanghellini, Jürgen; Hann, Stephan

    2016-01-01

    Isotope tracer experiments are an invaluable technique to analyze and study the metabolism of biological systems. However, isotope labeling experiments are often affected by naturally abundant isotopes especially in cases where mass spectrometric methods make use of derivatization. The correction of these additive interferences--in particular for complex isotopic systems--is numerically challenging and still an emerging field of research. When positional information is generated via collision-induced dissociation, even more complex calculations for isotopic interference correction are necessary. So far, no freely available tools can handle tandem mass spectrometry data. We present isotope correction toolbox, a program that corrects tandem mass isotopomer data from tandem mass spectrometry experiments. Isotope correction toolbox is written in the multi-platform programming language Perl and, therefore, can be used on all commonly available computer platforms. Source code and documentation can be freely obtained under the Artistic License or the GNU General Public License from: https://github.com/jungreuc/isotope_correction_toolbox/ {christian.jungreuthmayer@boku.ac.at,juergen.zanghellini@boku.ac.at} Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Isotopic homogeneity of iron in the early solar nebula.

    PubMed

    Zhu, X K; Guo, Y; O'Nions, R K; Young, E D; Ash, R D

    2001-07-19

    The chemical and isotopic homogeneity of the early solar nebula, and the processes producing fractionation during its evolution, are central issues of cosmochemistry. Studies of the relative abundance variations of three or more isotopes of an element can in principle determine if the initial reservoir of material was a homogeneous mixture or if it contained several distinct sources of precursor material. For example, widespread anomalies observed in the oxygen isotopes of meteorites have been interpreted as resulting from the mixing of a solid phase that was enriched in 16O with a gas phase in which 16O was depleted, or as an isotopic 'memory' of Galactic evolution. In either case, these anomalies are regarded as strong evidence that the early solar nebula was not initially homogeneous. Here we present measurements of the relative abundances of three iron isotopes in meteoritic and terrestrial samples. We show that significant variations of iron isotopes exist in both terrestrial and extraterrestrial materials. But when plotted in a three-isotope diagram, all of the data for these Solar System materials fall on a single mass-fractionation line, showing that homogenization of iron isotopes occurred in the solar nebula before both planetesimal accretion and chondrule formation.

  10. The reduction and oxidation of ceria: A natural abundance triple oxygen isotope perspective

    NASA Astrophysics Data System (ADS)

    Hayles, Justin; Bao, Huiming

    2015-06-01

    Ceria (CeO2) is a heavily studied material in catalytic chemistry for use as an oxygen storage medium, oxygen partial pressure regulator, fuel additive, and for the production of syngas, among other applications. Ceria powders are readily reduced and lose structural oxygen when subjected to low pO2 and/or high temperature conditions. Such dis-stoichiometric ceria can then re-oxidize under higher pO2 and/or lower temperature by incorporating new oxygen into the previously formed oxygen site vacancies. Despite extensive studies on ceria, the mechanisms for oxygen adsorption-desorption, dissociation-association, and diffusion of oxygen species on ceria surface and within the crystal structure are not well known. We predict that a large kinetic oxygen isotope effect should accompany the release and incorporation of ceria oxygen. As the first attempt to determine the existence and the degree of the isotope effect, this study focuses on a set of simple room-temperature re-oxidation experiments that are also relevant to a laboratory procedure using ceria to measure the triple oxygen isotope composition of CO2. Triple-oxygen-isotope labeled ceria powders are heated at 700 °C and cooled under vacuum prior to exposure to air. By combining results from independent experimental sets with different initial oxygen isotope labels and using a combined mass-balance and triangulation approach, we have determined the isotope fractionation factors for both high temperature reduction in vacuum (⩽10-4 mbar) and room temperature re-oxidation in air. Results indicate that there is a 1.5‰ ± 0.8‰ increase in the δ18O value of ceria after being heated in vacuum at 700 °C for 1 h. When the vacuum is broken at room temperature, the previously heated ceria incorporates 3-19% of its final structural oxygen from air, with a δ18O value of 2.1-4.1+7.7 ‰ for the incorporated oxygen. The substantial incorporation of oxygen from air supports that oxygen mobility is high in vacancy

  11. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  12. Chlorine Isotope Ratios in M Giants and S Stars

    NASA Astrophysics Data System (ADS)

    Maas, Zachary; Pilachowski, C. A.

    2018-01-01

    Chlorine is an odd-Z, light element that has been poorly studied in stars. Recently, the first stellar abundance measurements of the isotopologue 35Cl were made and the 35Cl/37Cl ratio was derived in RZ Ari (Maas et al. 2016). Additional abundance measurements are necessary to understand the Galactic chemical evolution and complex nucleosynthesis of Cl. The Cl isotope ratio in particular is important in distinguishing contributions from different nucleosynthesis sites to the surface abundances of stars. For example, current nucloesynthesis models predict that both isotopes of Cl are produced primarily during core collapse supernovae (CCSNe) with the energy and progenitor mass impacting the isotopic ratio of the ejected material. In addition to CCSNe, 37Cl is formed by the s-process both in massive stars and in AGB stars, and 35Cl may be produced from neutrino spallation. Understanding the formation of the Cl isotopes is also important to studies of the interstellar medium (ISM). A range of Cl isotope ratios mainly between 2 - 3.5 have been measured in star forming regions, in the circumstellar envelopes of evolved stars, and in proto-stellar cores using Cl bearing molecules. Additional measurements of the Cl isotope ratio in nearby stars will test nucleosynthesis models and allow comparisons with the range of isotope ratios observed in the ISM.We build on the results of Maas et al. (2016) by measuring the Cl isotope ratio in six M giants and four S stars using R~50,000 resolution spectra from Phoenix on Gemini South. We find no significant difference between the average Cl isotope ratios in the M stars and S stars and our measurements are consistent with the range of values seen in the ISM. We also find the average Cl ratio to be larger than the predicted isotope ratio of 1.8 for the solar neighborhood. Finally, two S stars, GG Pup and WY Pyx, show anomalously strong HCl features with equivalent widths ~3-5 times larger than the HCl features of other stars of

  13. Elemental, isotopic and molecular abundances in comets

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1986-01-01

    The chemical composition of comet nuclei and the factors affecting it are discussed, summarizing the results of recent theoretical, experimental, and observational investigations. Consideration is given to the evidence supporting the view that the nucleus is radially differentiation (except for a thin outer layer), surface differentiation by heat processing and outgassing, and mantle buildup on an undifferentiated core. The nature of the refractory and volatile components is examined, and the elemental and isotopic compositions are given in tables and characterized. The uncertain (except for H2O) molecular composition of the volatile fraction is considered, and it is suggested that some oxides or aldehydes (such as CO, CO2, and H2CO), but no large amounts of fully hydrogenated compounds (such as CH4 and NH3) are included.

  14. Rare-earth abundances in chondritic meteorites

    NASA Technical Reports Server (NTRS)

    Evensen, N. M.; Hamilton, P. J.; Onions, R. K.

    1978-01-01

    Fifteen chondrites, including eight carbonaceous chondrites, were analyzed for rare earth element abundances by isotope dilution. Examination of REE for a large number of individual chondrites shows that only a small proportion of the analyses have flat unfractionated REE patterns within experimental error. While some of the remaining analyses are consistent with magmatic fractionation, many patterns, in particular those with positive Ce anomalies, can not be explained by known magmatic processes. Elemental abundance anomalies are found in all major chondrite classes. The persistence of anomalies in chondritic materials relatively removed from direct condensational processes implies that anomalous components are resistant to equilibrium or were introduced at a late stage of chondrite formation. Large-scale segregation of gas and condensate is implied, and bulk variations in REE abundances between planetary bodies is possible.

  15. The GENESIS Mission: Solar Wind Isotopic and Elemental Compositions and Their Implications

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Burnett, D. S.; McKeegan, K. D.; Kallio, A. P.; Mao, P. H.; Heber, V. S.; Wieler, R.; Meshik, A.; Hohenberg, C. M.; Mabry, J. C.; Gilmour, J.; Crowther, S. A.; Reisenfeld, D. B.; Jurewicz, A.; Marty, B.; Pepin, R. O.; Barraclough, B. L.; Nordholt, J. E.; Olinger, C. T.; Steinberg, J. T.

    2008-12-01

    The GENESIS mission was a novel NASA experiment to collect solar wind at the Earth's L1 point for two years and return it for analysis. The capsule crashed upon re-entry in 2004, but many of the solar-wind collectors were recovered, including separate samples of coronal hole, interstream, and CME material. Laboratory analyses of these materials have allowed higher isotopic precision than possible with current in-situ detectors. To date GENESIS results have been obtained on isotopes of O, He, Ne, Ar, Kr, and Xe on the order of 1% accuracy and precision, with poorer uncertainty on Xe isotopes and significantly better uncertainties on the lighter noble gases. Elemental abundances are available for the above elements as well as Mg, Si, and Fe. When elemental abundances are compared with other in situ solar wind measurements, agreement is generally quite good. One exception is the Ne elemental abundance, which agrees with Ulysses and Apollo SWC results, but not with ACE. Neon is of particular interest because of the uncertainty in the solar Ne abundance, which has significant implications for the standard solar model. Helium isotopic results of material from the different solar wind regimes collected by GENESIS is consistent with isotopic fractionation predictions of the Coulomb drag model, suggesting that isotopic fractionation corrections need to be applied to heavier elements as well when extrapolating solar wind to solar compositions. Noble gas isotopic compositions from GENESIS are consistent with those obtained for solar wind trapped in lunar grains, but have for the first time yielded a very precise Ar isotopic result. Most interesting for cosmochemistry is a preliminary oxygen isotopic result from GENESIS which indicates a solar enrichment of ~4% in 16O relative to the planets, consistent with a photolytic self-shielding phenomenon during solar system formation. Analyses of solar wind N and C isotopes may further elucidate this phenomenon. Preliminary results

  16. Light Nuclei and Isotope Abundances in Cosmic Rays. Results from AMS-01

    NASA Astrophysics Data System (ADS)

    Tomassetti, N.

    2011-06-01

    Observations of the chemical and isotopic composition of light cosmic-ray nuclei can be used to constrain the propagation models. Nearly 200,000 light nuclei (Z > 2) have been observed by AMS-01 during the 10-day flight STS-91 in June 1998. Using these data, we have measured Li, Be, B and C in the kinetic energy range 0.35 - 45 GeV/nucleon. In this proceeding, our charge and isotopic composition results are presented and discussed.

  17. MYCORRHIZAL VS. SAPROTROPHIC STATUS OF FUNGI: THE ISOTOPIC EVIDENCE

    EPA Science Inventory

    Relative abundance of carbon (C) and nitrogen (N) isotopes in fungal sporocarps may prove useful in unraveling fungal roles in ecosystems. Sporocarps of known mycorrhizal or saprotrophic genera were collected from a single site in Oregon and isotopically compared to foliage, litt...

  18. Water Table Depth Reconstruction in Ombrotrophic Peatlands Using Biomarker Abundance Ratios and Compound-Specific Hydrogen Isotope Composition

    NASA Astrophysics Data System (ADS)

    Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.

    2005-12-01

    Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate

  19. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates.

    PubMed

    Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S

    2015-07-15

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the

  20. Isotope pattern deconvolution as a tool to study iron metabolism in plants.

    PubMed

    Rodríguez-Castrillón, José Angel; Moldovan, Mariella; García Alonso, J Ignacio; Lucena, Juan José; García-Tomé, Maria Luisa; Hernández-Apaolaza, Lourdes

    2008-01-01

    Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP-MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using 57Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned 57Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP-MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low 57Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP-MS instrument, after addition of 57Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample.

  1. Quantifying dispersal rates and distances in North American martens: a test of enriched isotope labeling

    Treesearch

    Jonathan N. Pauli; Winston P. Smith; Merav Ben-David

    2012-01-01

    Advances in the application of stable isotopes have allowed the quantitative evaluation of previously cryptic ecological processes. In particular, researchers have utilized the predictable spatial patterning in natural abundance of isotopes to better understand animal dispersal and migration. However, quantifying dispersal via natural abundance alone has proven to be...

  2. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  3. Stable Carbon Isotope Ratios of Individual Pollen Grains as a Proxy for C3- Versus C4-Grass Abundance in Paleorecords: A Validation Study

    NASA Astrophysics Data System (ADS)

    Nelson, D. M.; Hu, F.; Pearson, A.

    2007-12-01

    C3 and C4 grasses have distinct influences on major biogeochemical processes and unique responses to important environmental controls. Difficulties in distinguishing between these two functional groups of grasses have hindered paleoecological studies of grass-dominated ecosystems. We recently developed a technique to analyze the stable carbon isotope composition of individual grass-pollen grains using a spooling- wire microcombustion device interfaced with an isotope-ratio mass spectrometer (Nelson et al. 2007). This technique holds promise for improving C3 and C4 grass reconstructions. It requires ~90% fewer grains than typical methods and avoids assumptions associated with mixing models. However, our previous work was based on known C3 and C4 grasses from herbarium specimens and field collections and the technique had not been test using geological samples. To test the ability of this technique to reproduce the abundance of C3 and C4 grasses on the landscape, we measured δ13C values of >1500 individual grains of grass pollen isolated from the surface sediments of 10 North American lakes that span a large gradient of C3 and C4 grass abundance. Results indicate a strong positive correlation (r=0.94) between % C4-grass pollen (derived from classifying δ13C values from single grains as C3 and C4) and the literature-reported abundance of C4 grasses on the landscape. However, the measured % C4-grass pollen shows some deviation from the actual abundance at sites with high proportions of C4 grasses. This is likely caused by uncertainty in the magnitude, composition, and variability of the analytical blank associated with these measurements. Correcting for this deviation using regression analysis improves the estimation of the abundance of C4 grasses on the landscape. Comparison of the % C4-grass pollen with C/N and δ13C measurements of total organic matter in the same lake-sediment samples illustrates the distinct advantage of grass-pollen δ13C as a proxy for

  4. 3He Abundances in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  5. Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: The role of assimilation at spreading centers

    USGS Publications Warehouse

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Wallace, P.J.; Grimes, Craig B.; Klein, E.M.

    2011-01-01

    Most geochemical variability in MOR basalts is consistent with low- to moderate-pressure fractional crystallization of various mantle-derived parental melts. However, our geochemical data from MOR high-silica glasses, including new volatile and oxygen isotope data, suggest that assimilation of altered crustal material plays a significant role in the petrogenesis of dacites and may be important in the formation of basaltic lavas at MOR in general. MOR high-silica andesites and dacites from diverse areas show remarkably similar major element trends, incompatible trace element enrichments, and isotopic signatures suggesting similar processes control their chemistry. In particular, very high Cl and elevated H2O concentrations and relatively light oxygen isotope ratios (~ 5.8‰ vs. expected values of ~ 6.8‰) in fresh dacite glasses can be explained by contamination of magmas from a component of ocean crust altered by hydrothermal fluids. Crystallization of silicate phases and Fe-oxides causes an increase in δ18O in residual magma, but assimilation of material initially altered at high temperatures results in lower δ18O values. The observed geochemical signatures can be explained by extreme fractional crystallization of a MOR basalt parent combined with partial melting and assimilation (AFC) of amphibole-bearing altered oceanic crust. The MOR dacitic lavas do not appear to be simply the extrusive equivalent of oceanic plagiogranites. The combination of partial melting and assimilation produces a distinct geochemical signature that includes higher incompatible trace element abundances and distinct trace element ratios relative to those observed in plagiogranites.

  6. DANCEing with the Stars: Measuring Neutron Capture on Unstable Isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.; Bond, E.; Bredeweg, T. A.

    2009-03-10

    Isotopes heavier than iron are known to be produced in stars through neutron capture processes. Two major processes, the slow (s) and rapid (r) processes are each responsible for 50% of the abundances of the heavy isotopes. The neutron capture cross sections of the isotopes on the s process path reveal information about the expected abundances of the elements as well as stellar conditions and dynamics. Until recently, measurements on unstable isotopes, which are most important for determining stellar temperatures and reaction flow, have not been experimentally feasible. The Detector for Advance Neutron Capture Experiments (DANCE) located at the Losmore » Alamos Neutron Science Center (LANSCE) was designed to perform time-of-flight neutron capture measurements on unstable isotopes for nuclear astrophysics, stockpile stewardship, and reactor development. DANCE is a 4-{pi}BaF{sub 2} scintillator array which can perform measurements on sub-milligram samples of isotopes with half-lives as short as a few hundred days. These cross sections are critical for advancing our understanding of the production of the heavy isotopes.« less

  7. The isotopic composition of cosmic-ray calcium

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; George, J. S.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; hide

    2001-01-01

    We find that the relative abundance of cosmic ray calcium isotopes in the cosmic-ray source are very similar to those found in solar-system material, in spite of the fact that different types of stars are thought to be responsible for producing these two isotopes. This observation is consistent with the view that cosmic rays are derived from a mixed sample of interstellar matter.

  8. s-Processing from MHD-induced mixing and isotopic abundances in presolar SiC grains

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Trippella, O.; Busso, M.; Vescovi, D.; Petrelli, M.; Zucchini, A.; Frondini, F.

    2018-01-01

    In the past years the observational evidence that s-process elements from Sr to Pb are produced by stars ascending the so-called Asymptotic Giant Branch (or "AGB") could not be explained by self-consistent models, forcing researchers to extensive parameterizations. The crucial point is to understand how protons can be injected from the envelope into the He-rich layers, yielding the formation of 13C and then the activation of the 13C (α,n)16O reaction. Only recently, attempts to solve this problem started to consider quantitatively physically-based mixing mechanisms. Among them, MHD processes in the plasma were suggested to yield mass transport through magnetic buoyancy. In this framework, we compare results of nucleosynthesis models for Low Mass AGB Stars (M≲ 3M⊙), developed from the MHD scenario, with the record of isotopic abundance ratios of s-elements in presolar SiC grains, which were shown to offer precise constraints on the 13C reservoir. We find that n-captures driven by magnetically-induced mixing can indeed account for the SiC data quite well and that this is due to the fact that our 13C distribution fulfils the above constraints rather accurately. We suggest that similar tests should be now performed using different physical models for mixing. Such comparisons would indeed improve decisively our understanding of the formation of the neutron source.

  9. The lack of potassium-isotopic fractionation in Bishunpur chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.; Wang, Jingyuan; Zanda, B.; Bourot-Denise, M.; Hewins, R.H.

    2000-01-01

    In a search for evidence of evaporation during chondrule formation, the mesostases of 11 Bishunpur chondrules and melt inclusions in olivine phenocrysts in 7 of them have been analyzed for their alkali element abundances and K-isotopic compositions. Except for six points, all areas of the chondrules that were analyzed had δ41K compositions that were normal within error (typically ±3%, 2s̀). The six “anomalous” points are probably all artifacts. Experiments have shown that free evaporation of K leads to large 41K enrichments in the evaporation residues, consistent with Rayleigh fractionation. Under Rayleigh conditions, a 3% enrichment in δ41K is produced by ∼12% loss of K. The range of L-chondrite-normalized K/Al ratios (a measure of the K-elemental fractionation) in the areas analyzed vary by almost three orders of magnitude. If all chondrules started out with L-chondrite-like K abundances and the K loss occurred via Rayleigh fractionation, the most K-depleted chondrules would have had compositions of up to δ41K ≅ 200%. Clearly, K fractionation did not occur by evaporation under Rayleigh conditions. Yet experiments and modeling indicate that K should have been lost during chondrule formation under currently accepted formation conditions (peak temperature, cooling rate, etc.). Invoking precursors with variable alkali abundances to produce the range of K/Al fractionation in chondrules does not explain the K-isotopic data because any K that was present should still have experienced sufficient loss during melting for there to have been a measurable isotopic fractionation. If K loss and isotopic fractionation was inevitable during chondrule formation, the absence of K-isotopic fractionation in Bishunpur chondrules requires that they exchanged K with an isotopically normal reservoir during or after formation. There is evidence for alkali exchange between chondrules and rim-matrix in all unequilibrated ordinary chondrites. However, melt inclusions can have

  10. Combinatorial effects on clumped isotopes and their significance in biogeochemistry

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence Y.

    2016-01-01

    The arrangement of isotopes within a collection of molecules records their physical and chemical histories. Clumped-isotope analysis interrogates these arrangements, i.e., how often rare isotopes are bound together, which in many cases can be explained by equilibrium and/or kinetic isotope fractionation. However, purely combinatorial effects, rooted in the statistics of pairing atoms in a closed system, are also relevant, and not well understood. Here, I show that combinatorial isotope effects are most important when two identical atoms are neighbors on the same molecule (e.g., O2, N2, and D-D clumping in CH4). When the two halves of an atom pair are either assembled with different isotopic preferences or drawn from different reservoirs, combinatorial effects cause depletions in clumped-isotope abundance that are most likely between zero and -1‰, although they could potentially be -10‰ or larger for D-D pairs. These depletions are of similar magnitude, but of opposite sign, to low-temperature equilibrium clumped-isotope effects for many small molecules. Enzymatic isotope-pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect, although it is not limited to biological reactions. Chemical-kinetic isotope effects, which are related to a bond-forming transition state, arise independently and express second-order combinatorial effects related to the abundance of the rare isotope. Heteronuclear moeties (e.g., Csbnd O and Csbnd H), are insensitive to direct combinatorial influences, but secondary combinatorial influences are evident. In general, both combinatorial and chemical-kinetic factors are important for calculating and interpreting clumped-isotope signatures of kinetically controlled reactions. I apply this analytical framework to isotope-pairing reactions relevant to geochemical oxygen, carbon, and nitrogen cycling that may be influenced by combinatorial

  11. In-Gel Stable-Isotope Labeling (ISIL): a strategy for mass spectrometry-based relative quantification.

    PubMed

    Asara, John M; Zhang, Xiang; Zheng, Bin; Christofk, Heather H; Wu, Ning; Cantley, Lewis C

    2006-01-01

    Most proteomics approaches for relative quantification of protein expression use a combination of stable-isotope labeling and mass spectrometry. Traditionally, researchers have used difference gel electrophoresis (DIGE) from stained 1D and 2D gels for relative quantification. While differences in protein staining intensity can often be visualized, abundant proteins can obscure less abundant proteins, and quantification of post-translational modifications is difficult. A method is presented for quantifying changes in the abundance of a specific protein or changes in specific modifications of a protein using In-gel Stable-Isotope Labeling (ISIL). Proteins extracted from any source (tissue, cell line, immunoprecipitate, etc.), treated under two experimental conditions, are resolved in separate lanes by gel electrophoresis. The regions of interest (visualized by staining) are reacted separately with light versus heavy isotope-labeled reagents, and the gel slices are then mixed and digested with proteases. The resulting peptides are then analyzed by LC-MS to determine relative abundance of light/heavy isotope pairs and analyzed by LC-MS/MS for identification of sequence and modifications. The strategy compares well with other relative quantification strategies, and in silico calculations reveal its effectiveness as a global relative quantification strategy. An advantage of ISIL is that visualization of gel differences can be used as a first quantification step followed by accurate and sensitive protein level stable-isotope labeling and mass spectrometry-based relative quantification.

  12. Stable isotope ratio mass spectrometry of nanogram quantities of boron and sulfur

    NASA Astrophysics Data System (ADS)

    Wieser, Michael Eugene

    1998-09-01

    Instrumentation and analytical techniques were developed to measure isotope abundances from nanograms of sulfur and boron. Sulfur isotope compositions were determined employing continuous flow isotope ratio mass spectroscopy (CF-IRMS) procedures and AsS+ thermal ionization mass spectrometry techniques (AsS+-TIMS). Boron isotope abundances were determined by BO2/sp--TIMS. CF-IRMS measurements realized δ34S values from 10 μg sulfur with precisions of ±0.3/perthous. To extend sulfur isotope measurements to much smaller samples, a TIMS procedure was developed to measure 75As32S+ and 75As34S+ at masses 108 and 109 from 200 ng S on a Finnigan MAT 262 with an ion counter. This is possibly the smallest amount of sulfur which has been successfully analyzed isotopically. The internal precision of 32S/34S ratios measured by AsS+-TIMS was better than ±0.15 percent. δ34S-values calculated relative to the measured 32S/34S value of an IAEA AG2S standard (S-1) agreed with those determined by CF-IRMS to within ±3/perthous. The increasing sensitivity of S-isotope analyses permits hiterto impossible investigations e.g. sulfur in tree rings and ice cores. Boron isotope abundances were measured as BO2/sp- from 50 ng B using an older thermal ionization mass spectrometer which had been extensively upgraded including the addition of computer control electronics, sensitive ion current amplification and fiber optic data bus. The internal precisions of the measured 11B/10B ratios were ±0.15 percent and the precisions of δ11B values calculated relative to the accepted international standard (SRM-951) were ±3/perthous. Two applications of boron isotope abundance variations were initiated (1) ground waters of Northern Alberta and (2) coffee beans in different regions of the world. In the first it was demonstrated that boron isotopes could be used to trace boron released during steam injection of oil sands into the surrounding environment. Data from the second study suggest that boron

  13. Silicon isotope amount ratios and molar masses for two silicon isotope reference materials: IRMM-018a and NBS28

    NASA Astrophysics Data System (ADS)

    Valkiers, S.; Ding, T.; Inkret, M.; Ruße, K.; Taylor, P.

    2005-04-01

    A new 2 kg batch of SiO2 crystals, IRMM-018a as well as the existing NBS28 silica sand (or RM 8546, obtained by I. Friedman from U.S. Geological Survey) have been characterised for their "absolute" silicon isotope composition and molar mass. The amount-of-substance measurements needed for that purpose were performed on the IRMM amount comparator (Avogadro II) on samples from these batches, which were converted to gaseous silicon tetra-fluoride (SiF4). The isotope amount ratio measurements were calibrated by means of synthesized isotope amount ratios realized in the form of synthetic Si isotope mixtures, the measurement procedure of which makes them SI-traceable. IRMM-018a is intended to be used as Isotope Reference Material for isotope amount measurements in geochemical and other isotope abundance studies of silicon. It is distributed in samples of about 0.1 mol and will replace IRMM-018 (exhausted).

  14. Stable Isotopes, Quantum Computing and Consciousness

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2000-10-01

    Recent proposals of quantum computing/computers (QC) based on nuclear spins suggest that consciousness (CON) activity may be related (assisted) to subset of C13 atoms incorporated randomly, or quasirandomly, in neural structures. Consider two DNA chains. Even if they are completely identical chemically (same sequence of codons), patterns of 12C and 13C isotopes in them are different (possible origin of personal individuality). Perhaps it is subsystem of nuclear spins of 13C "sublattice" which forms dynamical system capable of QC and on which CON is "spanned". Some issues related to this hypothesis are: (1) existence of CON-driven positional correlations among C13 atoms, (2) motion (hopping) of C13 via enhanced neutron tunneling, cf. quantum "anti Zeno-effect", (3) possible optimization of concentration of QC-active C13 atoms above their standard isotopic abundance, (4) characteristic time-scales for operation of C13-based QC (perrhaps, broad range of scales), (5) reflection of QC dynamics of C13 on CON, (6) possibility that C13-based QC operates "above" level of "regular" CON (perhaps, Jungian sub/super-CON), (7) isotopicity as connector to universal Library of Patterns ("Platonic World"), (8) self-stabilization of coherence in C13 (sub)system. Some of this questions are, in principle, experimentally addressable through shifting of isotopic abundances.

  15. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents

    USGS Publications Warehouse

    Coplen, T.B.; Hopple, J.A.; Böhlke, J.K.; Peiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D.; Revesz, K.M.; Lamberty, A.; Taylor, P.; De Bievre, P.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope abundance variations potentially are large enough to result in future expansion of their atomic weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope-abundance variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio. There are no internationally distributed isotopic reference materials for the elements zinc, selenium, molybdenum, palladium, and tellurium. Preparation of such materials will help to make isotope ratio measurements among

  16. Meteorites and their parent bodies: Evidence from oxygen isotopes

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.

    1978-01-01

    Isotopic abundance variations among meteorites are used to establish genetic associations between meteorite classes. Oxygen isotope distributions between group II E irons with H-group ordinary chondrites and enstatic meteorites indicate that the parent bodies were formed out of pre-solar material that was not fully mixed at the time condensation occurred within the solar nebula.

  17. Measurement of isotope ratio of Ca{sup +} ions in a linear Paul Trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Y.; Minamino, K.; Nagamoto, D.

    2009-03-17

    Measurement of isotope ratios of Calcium is very useful in many fields. So we demonstrated the measurement of isotope ratios of {sup 40}Ca{sup +}(abundance 96.4%) to {sup 44}Ca{sup +}(2.09%) ions in a linear Paul trap with several laser lights tuning to the isotope shifts. And we found that the experimental parameters had large influences on the measurement of the isotope ratios.

  18. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  19. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.; Trendel, J. M.; Albrecht, P.

    1990-01-01

    The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.

  20. Abundance and isotope systematics of carbon in subglacial basalts, geothermal gases and fluids from Iceland's rift zones

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Fueri, E.; Halldorsson, S. A.; Fischer, T. P.; Gronvold, K.

    2010-12-01

    P. H. BARRY1*, D. R. HILTON1, E. FÜRI1, S.A. HALLDÓRSON1, T.P. FISCHER2, K. GRONVOLD3 1 Scripps Institution of Oceanography, UCSD, La Jolla, California 92093, USA (*Correspondence: pbarry@ucsd.edu). 2University of New Mexico, Albuquerque, NM 87131, USA. 3University of Iceland, Askja, Sturlugata 7, IS-101, Reykjavik, Iceland Carbon dioxide (CO2) is the dominant non-aqueous volatile species found in oceanic basalts and geothermal fluids and serves as the carrier gas for trace volatiles such as He and other noble gases. The aim of this study is to identify the superimposed effects of degassing and crustal contamination on the CO2 systematics of the Icelandic hotspot in order to reveal and characterize the carbon abundance and isotopic features of the underlying mantle source. Our approach involves coupling CO2 with He, utilizing the sensitivity of 3He/4He ratios to reveal mantle and crustal inputs. We report new C-isotope (δ13C) and abundance characteristics for a suite of 47 subglacial basalts and 50 geothermal gases and fluids from Iceland. CO2 contents in hyaloclastite glasses are extremely low (10-100 ppm) and likely residual following extensive degassing whereas geothermal fluids are dominated by CO2 (>90 %). C-isotopes range from -27.2 to -3.6 ‰ (vs. PDB) for basalts and from -18.8 to 2.86 ‰ (vs. PDB) for geothermal samples (mean = -4.2 ± 3.6 ‰). CO2/3He ratios range from 108 to 1012 for basalts and from 105 to 1012 for geothermal samples: In both cases, our results extend He-CO2 relationships over a much broader range than reported previously [1]. Taken together, these data suggest that several processes including mixing, degassing, and/or syn- or post-eruptive crustal contamination may act to modify CO2 source characteristics. Equilibrium degassing models are compatible with ~75 % of the basalt data, and preliminary results indicate that initial Icelandic source characteristics are ~500 ppm CO2 and δ13C ~ -5 ‰ (vs. PDB). These values are high

  1. Platinum isotopes in iron meteorites: Galactic cosmic ray effects and nucleosynthetic homogeneity in the p-process isotope 190Pt and the other platinum isotopes

    NASA Astrophysics Data System (ADS)

    Hunt, Alison C.; Ek, Mattias; Schönbächler, Maria

    2017-11-01

    Platinum isotopes are sensitive to the effects of galactic cosmic rays (GCR), which can alter isotope ratios and mask nucleosynthetic isotope variations. Platinum also features one p-process isotope, 190Pt, which is very low abundance and therefore challenging to analyse. Platinum-190 is relevant for early solar-system chronology because of its decay to 186Os. Here, we present new Pt isotope data for five iron meteorite groups (IAB, IIAB, IID, IIIAB and IVA), including high-precision measurements of 190Pt for the IAB, IIAB and IIIAB irons, determined by multi-collector ICPMS. New data are in good agreement with previous studies and display correlations between different Pt isotopes. The slopes of these correlations are well-reproduced by the available GCR models. We report Pt isotope ratios for the IID meteorite Carbo that are consistently higher than the predicted effects from the GCR model. This suggests that the model predictions do not fully account for all the GCR effects on Pt isotopes, but also that the pre-atmospheric radii and exposure times calculated for Carbo may be incorrect. Despite this, the good agreement of relative effects in Pt isotopes with the predicted GCR trends confirms that Pt isotopes are a useful in-situ neutron dosimeter. Once GCR effects are accounted for, our new dataset reveals s- and r-process homogeneity between the iron meteorite groups studied here and the Earth. New 190Pt data for the IAB, IIAB and IIIAB iron meteorites indicate the absence of GCR effects and homogeneity in the p-process isotope between these groups and the Earth. This corresponds well with results from other heavy p-process isotopes and suggests their homogenous distribution in the inner solar system, although it does not exclude that potential p-process isotope variations are too diluted to be currently detectable.

  2. Zircon (Hf, O isotopes) as melt indicator: Melt infiltration and abundant new zircon growth within melt rich layers of granulite-facies lenses versus solid-state recrystallization in hosting amphibolite-facies gneisses (central Erzgebirge, Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Tichomirowa, Marion; Whitehouse, Martin; Gerdes, Axel; Schulz, Bernhard

    2018-03-01

    In the central Erzgebirge within the Bohemian Massif, lenses of high pressure and ultrahigh pressure felsic granulites occur within meta-sedimentary and meta-igneous amphibolite-facies felsic rocks. In the felsic granulite, melt rich parts and restite form alternating layers, and were identified by petrology and bulk rock geochemistry. Mineral assemblages representing the peak P-T conditions were best preserved in melanocratic restite layers. In contrast, in the melt rich leucocratic layers, garnet and related HP minerals as kyanite are almost completely resorbed. Both layers display differences in accessory minerals: melanosomes have frequent and large monazite and Fe-Ti-minerals but lack xenotime and apatite; leucosomes have abundant apatite and xenotime while monazite is rare. Here we present a detailed petrographic study of zircon grains (abundance, size, morphology, inclusions) in granulite-facies and amphibolite-facies felsic gneisses, along with their oxygen and hafnium isotope compositions. Our data complement earlier Usbnd Pb ages and trace element data (REE, Y, Hf, U) on zircons from the same rocks (Tichomirowa et al., 2005). Our results show that the degree of melting determines the behaviour of zircon in different layers of the granulites and associated amphibolite-facies rocks. In restite layers of the granulite lenses, small, inherited, and resorbed zircon grains are preserved and new zircon formation is very limited. In contrast, new zircons abundantly grew in the melt rich leucocratic layers. In these layers, the new zircons (Usbnd Pb age, trace elements, Hf, O isotopes) best preserve the information on peak metamorphic conditions due to intense corrosion of other metamorphic minerals. The new zircons often contain inherited cores. Compared to cores, the new zircons and rims show similar or slightly lower Hf isotope values, slightly higher Hf model ages, and decreased oxygen isotope ratios. The isotope compositions (Hf, O) of new zircons indicate

  3. Rb-Sr systematics and REE abundances in Shalka and several other diogenites

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Yabuki, S.; Kagi, H.; Masuda, A.

    1994-07-01

    The diogenites have been regarded as igneous products in the early solar system and they have been considered to have genetically close relationship with eucrites. Depsite their simple mineralogical compositions and narrow range for major-element compositions, diogenites have been known to show wide Rare Earth Elements (REE) variations in absolute concentration and in mutual abundance ratios. Furthermore, some diogenites have peculiar Rb-Sr isotope systematics (ages younger than 4.5 b.y.). The Shalka meteorite belongs to the diogenites, and a unique REE abundance pattern has been reported. We performed Rb-Sr isotopic analyses and measured REE abundances in the Shalka diogenite with several other diogenites to discuss their genesis. Roughly speaking, REE patterns in diogenites are characterized by the negative Eu anomaly and the depletion of light REE. For Shalka, some heterogeneity in REE abundance patterns have been observed. While one sample chip shows the REE pattern with a large negative Eu anomaly and depleted light REE, particularly characterized by the concave curvature for the La-Nd span, other samples show the pattern nearly flat or the pattern enriched in light REE. These variations could not be explained easily by the simple mixing process of LREE-depleted components and LREE-enriched melt, but they imply some metamorphism process. The Rb-Sr isotopic data for Shalka are shown with the data for other several diogenites. These observations indicate that Shalka would undergo a significant extent of metamorphism followed by redistribution of REE and the disturbance of the Rb-Sr systematics. We are going to do further studies on Shalka to discuss the metamorphic process and compare it with other diogenites.

  4. Paleobiological Implications of the Isotopic Signatures ( 13C, 15N) of Fossil Mammal Collagen in Scladina Cave (Sclayn, Belgium)

    NASA Astrophysics Data System (ADS)

    Bocherens, Hervé; Billiou, Daniel; Patou-Mathis, Marylène; Bonjean, Dominique; Otte, Marcel; Mariotti, André

    1997-11-01

    An isotopic investigation of upper Pleistocene mammal bones and teeth from Scladina cave (Sclayn, Belgium) demonstrated the very good quality of collagen preservation. A preliminary screening of the samples used the amount of nitrogen in whole bone and dentine in order to estimate the preserved amount of collagen before starting the extraction process. The isotopic abundances of fossil specimens from still-extant species are consistent with their trophic position. Moreover, the 15N isotopic abundance is higher in dentine than in bone in bears and hyenas, a phenomenon already observed in modern specimens. These results demonstrate that the isotopic compositions of samples from Scladina cave can be interpreted in ecological terms. Mammoths exhibit a high 15N isotopic abundance relative to other herbivores, as was the case in Siberian and Alaskan samples. These results suggest distinctive dietary adaptations in herbivores living in the mammoth steppe. Cave bears are clearly isotopically different from coeval brown bears, suggesting an ecological separation between species, with a pure vegetarian diet for cave bear and an omnivorous diet for brown bear.

  5. Long-term changes in solar wind elemental and isotopic ratios - A comparison of two lunar ilmenites of different antiquities

    NASA Technical Reports Server (NTRS)

    Becker, Richard H.; Pepin, Robert O.

    1989-01-01

    The solar wind components in two lunar ilmenites are examined. The noble gas and nitrogen elemental and isotopic abundances of lunar regolith breccia sample 79035, assumed to have been exposed to solar winds more than 2 Ga ago, are analyzed using stepwise oxidation and pyrolysis. This sample is compared with the data of Frick et al. (1988) for soil sample 71501, recently exposed to solar winds. It is observed that the two elements differ in terms of xenon abundance, helium and neon isotopic rates, and He/Ar elemental ratios. It is concluded that there have been isotopic and elemental abundance changes in solar wind composition over time.

  6. Carbon isotopic fractionation in heterotrophic microbial metabolism

    NASA Technical Reports Server (NTRS)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  7. IsoCor: correcting MS data in isotope labeling experiments.

    PubMed

    Millard, Pierre; Letisse, Fabien; Sokol, Serguei; Portais, Jean-Charles

    2012-05-01

    Mass spectrometry (MS) is widely used for isotopic labeling studies of metabolism and other biological processes. Quantitative applications-e.g. metabolic flux analysis-require tools to correct the raw MS data for the contribution of all naturally abundant isotopes. IsoCor is a software that allows such correction to be applied to any chemical species. Hence it can be used to exploit any isotopic tracer, from well-known ((13)C, (15)N, (18)O, etc) to unusual ((57)Fe, (77)Se, etc) isotopes. It also provides new features-e.g. correction for the isotopic purity of the tracer-to improve the accuracy of quantitative isotopic studies, and implements an efficient algorithm to process large datasets. Its user-friendly interface makes isotope labeling experiments more accessible to a wider biological community. IsoCor is distributed under OpenSource license at http://metasys.insa-toulouse.fr/software/isocor/

  8. Perchlorate in the Great Lakes: isotopic composition and origin.

    PubMed

    Poghosyan, Armen; Sturchio, Neil C; Morrison, Candice G; Beloso, Abelardo D; Guan, Yunbin; Eiler, John M; Jackson, W Andrew; Hatzinger, Paul B

    2014-10-07

    Perchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ(18)O, Δ(17)O) and chlorine (δ(37)Cl) along with the abundance of the radioactive isotope (36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition. Perchlorate concentrations in the Great Lakes range from 0.05 to 0.13 μg per liter. δ(37)Cl values of perchlorate from the Great Lakes range from +3.0‰ (Lake Ontario) to +4.0‰ (Lake Superior), whereas δ(18)O values range from -4.1‰ (Lake Superior) to +4.0‰ (Lake Erie). Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ(17)O values (+1.6‰ to +2.7‰) divided into two distinct groups: Lake Superior (+2.7‰) and the other four lakes (∼+1.7‰). The stable isotopic results indicate that perchlorate in the Great Lakes is dominantly of natural origin, having isotopic composition resembling that measured for indigenous perchlorate from preindustrial groundwaters of the western USA. The (36)Cl/Cl ratio of perchlorate varies widely from 7.4 × 10(-12) (Lake Ontario) to 6.7 × 10(-11) (Lake Superior). These (36)ClO4(-) abundances are consistent with an atmospheric origin of perchlorate in the Great Lakes. The relatively high (36)ClO4(-) abundances in the larger lakes (Lakes Superior and Michigan) could be explained by the presence of (36)Cl-enriched perchlorate deposited during the period of elevated atmospheric (36)Cl activity following thermonuclear bomb tests in the Pacific Ocean.

  9. Carbon Isotope Chemistry in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  10. Simulating Isotope Enrichment by Gaseous Diffusion

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2015-04-01

    A desktop-computer simulation of isotope enrichment by gaseous diffusion has been developed. The simulation incorporates two non-interacting point-mass species whose members pass through a cascade of cells containing porous membranes and retain constant speeds as they reflect off the walls of the cells and the spaces between holes in the membranes. A particular feature is periodic forward recycling of enriched material to cells further along the cascade along with simultaneous return of depleted material to preceding cells. The number of particles, the mass ratio, the initial fractional abundance of the lighter species, and the time between recycling operations can be chosen by the user. The simulation is simple enough to be understood on the basis of two-dimensional kinematics, and demonstrates that the fractional abundance of the lighter-isotope species increases along the cascade. The logic of the simulation will be described and results of some typical runs will be presented and discussed.

  11. Inter- and intraindividual correlations of background abundances of (2)H, (18)O and (17)O in human urine and implications for DLW measurements.

    PubMed

    Berman, E S F; Melanson, E L; Swibas, T; Snaith, S P; Speakman, J R

    2015-10-01

    The method of choice for measuring total energy expenditure in free-living individuals is the doubly labeled water (DLW) method. This experiment examined the behavior of natural background isotope abundance fluctuations within and between individuals over time to assess possible methods of accounting for variations in the background isotope abundances to potentially improve the precision of the DLW measurement. In this work, we measured natural background variations in (2)H, (18)O and (17)O in water from urine samples collected from 40 human subjects who resided in the same geographical area. Each subject provided a urine sample for 30 consecutive days. Isotopic abundances in the samples were measured using Off-Axis Integrated Cavity Output Spectroscopy. Autocorrelation analyses demonstrated that the background isotopes in a given individual were not temporally correlated over the time scales of typical DLW studies. Using samples obtained from different individuals on the same calendar day, cross-correlation analyses demonstrated that the background variations of different individuals were not correlated in time. However, the measured ratios of the three isotopes (2)H, (18)O and (17)O were highly correlated (R(2)=0.89-0.96). Although neither specific timing of DLW water studies nor intraindividual comparisons were found to be avenues for reducing the impact of background isotope abundance fluctuations on DLW studies, strong inter-isotope correlations within an individual confirm that use of a dosing ratio of 8‰:1‰ (0.6 p.p.m.: p.p.m.) optimizes DLW precision. Theoretical implications for the possible use of (17)O measurements within a DLW study require further study.

  12. Hyperfine Structure and Abundances of Heavy Elements in 68 Tauri (HD 27962)

    NASA Astrophysics Data System (ADS)

    Martinet, S.; Monier, R.

    2017-12-01

    HD 27962, also known as 68 Tauri, is a Chemically Peculiar Am star member of the Hyades Open Cluster in the local arm of the Galaxy. We have modeled the high resolution SOPHIE (R=75000) spectrum of 68 Tauri using updated model atmosphere and spectrum synthesis to derive chemical abundances in its atmosphere. In particular, we have studied the effect of the inclusion of Hyperfine Structure of various Baryum isotopes on the determination of the Baryum abundance in 68 Tauri. We have also derived new abundances using updated accurate atomic parameters retrieved from the NIST database.

  13. New approaches to the Moon's isotopic crisis

    PubMed Central

    Melosh, H. J.

    2014-01-01

    Recent comparisons of the isotopic compositions of the Earth and the Moon show that, unlike nearly every other body known in the Solar System, our satellite's isotopic ratios are nearly identical to the Earth's for nearly every isotopic system. The Moon's chemical make-up, however, differs from the Earth's in its low volatile content and perhaps in the elevated abundance of oxidized iron. This surprising situation is not readily explained by current impact models of the Moon's origin and offers a major clue to the Moon's formation, if we only could understand it properly. Current ideas to explain this similarity range from assuming an impactor with the same isotopic composition as the Earth to postulating a pure ice impactor that completely vaporized upon impact. Several recent proposals follow from the suggestion that the Earth–Moon system may have lost a great deal of angular momentum during early resonant interactions. The isotopic constraint may be the most stringent test yet for theories of the Moon's origin. PMID:25114301

  14. Isotopes as Tracers of the Hawaiian Coffee-Producing Regions

    PubMed Central

    2011-01-01

    Green coffee bean isotopes have been used to trace the effects of different climatic and geological characteristics associated with the Hawaii islands. Isotope ratio mass spectrometry (IRMS) and inductively coupled plasma mass spectrometry ((MC)-ICP-SFMS and ICP-QMS) were applied to determine the isotopic composition of carbon (δ13C), nitrogen (δ15N), sulfur (δ34S), and oxygen (δ18O), the isotope abundance of strontium (87Sr/86Sr), and the concentrations of 30 different elements in 47 green coffees. The coffees were produced in five Hawaii regions: Hawaii, Kauai, Maui, Molokai, and Oahu. Results indicate that coffee plant seed isotopes reflect interactions between the coffee plant and the local environment. Accordingly, the obtained analytical fingerprinting could be used to discriminate between the different Hawaii regions studied. PMID:21838232

  15. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  16. VizieR Online Data Catalog: C and O isotopic ratios in Arcturus and Aldebaran (Abia+ 2012)

    NASA Astrophysics Data System (ADS)

    Abia, C.; Palmerini, S.; Busso, M.; Cristallo, S.

    2012-10-01

    CNO abundances, C and O isotopic ratios and equivalent diffusive coefficients (D) are given for the calculated extra-mixing models. For Arcturus we used the electronic version of the Infrared Atlas Spectrum by Hinkle et al. (1995, Cat. J/PASP/107/1042; resolution 0.01cm-1), and for Aldebaran we used a spectrum obtained on February 6, 1980 at the KPNO 4m Coude telescope using a Fourier transform spectrometer, kindly provided by K. Hinkle (resolution 0.016cm-1) The first 2 rows of table4 report the CNO abundances and isotopic ratios resulting from the observations. The other rows give the CNO abundances and isotopic ratios accounted for by the FDU in the three stellar models considered of 1.3Mo, 1.2Mo and 1.08Mo (see the paper for more details). (1 data file).

  17. Understanding Survival And Abundance Of Overwintering Warblers: Does Rainfall Matter?

    Treesearch

    Katie M. Dugger; John G Faaborg; Wayne J. Arendt; Keith A. Hobson

    2004-01-01

    We investigated relationships between warbler abundance and survival rates measured on a Puerto Rican wintering site and rainfall patterns measured on the wintering site and in regions where these warblers breed, as estimated using stable-isotope analysis (δD) of feathers collected from wintering birds. We banded birds using constant-effort mist netting...

  18. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate

    PubMed Central

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO−3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO−3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO−3-use mechanisms. The concentration and natural isotopes of tissue NO−3 can offer insights into the plant NO−3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO−3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO−3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO−3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO−3 in plants, and discuss the implications of NO−3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO−3 and plant ecophysiological functions in interspecific and intra-plant NO−3 variations. We introduce N and O isotope systematics of NO−3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ18O and Δ17O); and isotope mass-balance calculations to constrain sources and reduction of NO−3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ18O-NO−3 variation, and summarize the uncertainties in using tissue NO−3 parameters to interpret plant NO−3 utilization

  19. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO(-) 3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO(-) 3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO(-) 3-use mechanisms. The concentration and natural isotopes of tissue NO(-) 3 can offer insights into the plant NO(-) 3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO(-) 3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO(-) 3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO(-) 3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO(-) 3 in plants, and discuss the implications of NO(-) 3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO(-) 3 and plant ecophysiological functions in interspecific and intra-plant NO(-) 3 variations. We introduce N and O isotope systematics of NO(-) 3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ(18)O and Δ(17)O); and isotope mass-balance calculations to constrain sources and reduction of NO(-) 3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ(18)O-NO(-) 3 variation, and summarize the uncertainties in using tissue NO(-) 3 parameters to interpret

  20. The isotopic composition of cosmic ray calcium

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1985-01-01

    Data from the high energy cosmic ray experiment on the international sun earth explorer 3 (ISEE-3) spacecraft have been used to study the isotopic composition of cosmic ray calcium at an energy of approx. 260 MeV/amu. The arriving calcium is found to consist of (32 + or - 6)%. A propagation model consistent with both the light and the subiron secondary element abundances was used for the interpretation of the observed calcium composition. The measured 42Ca+43Ca+44Ca abundance is consistent with the calculated secondary production, while the 40Ca abundance implies a source ratio of 40Ca/Fe = (7.0 + or - 1.7)%.

  1. [Humus composition and stable carbon isotope natural abundance in paddy soil under long-term fertilization].

    PubMed

    Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing

    2008-09-01

    Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P < 0.01). The organic carbon content in 10-30 cm soil layer under chemical fertilizations and in 20-40 cm soil layer under organic fertilizations was relatively stable. Soil delta 13C increased gradually with soil depth, its variation range being from -24% per thousand to -28 per thousand, and had a significantly negative linear correlation with soil organic carbon content (P < 0.05). In 0-20 cm soil layer, the delta 13C in treatments organic manure (M), M + NP, M + NPK, M + straw (R) + N, and R + N decreased significantly; while in 30-50 cm soil layer, the delta 13C in all organic fertilization treatments except R + N increased significantly. Tightly combined humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).

  2. An interlaboratory study to test instrument performance of hydrogen dual-inlet isotope-ratio mass spectrometers

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, T.B.

    2001-01-01

    An interlaboratory comparison of forty isotope-ratio mass spectrometers of different ages from several vendors has been performed to test 2H/1H performance with hydrogen gases of three different isotopic compositions. The isotope-ratio results (unsufficiently corrected for H3+ contribution to the m/z = 3 collector, uncorrected for valve leakage in the change-over valves, etc.) expressed relative to one of these three gases covered a wide range of values: -630??? to -790??? for the second gas and -368??? to -462??? for the third gas. After normalizing the isotopic abundances of these test gases (linearly adjusting the ?? values so that the gases with the lowest and highest 2H content were identical for all laboratories), the standard deviation of the 40 measurements of the intermediate gas was a remarkably low 0.85???. It is concluded that the use of scaling factors is mandatory for providing accurate internationally comparable isotope-abundance values. Linear scaling for the isotope-ratio scales of gaseous hydrogen mass spectrometers is completely adequate. ?? Springer-Verlag 2001.

  3. Uranium Isotopic Ratio Measurements of U3O8 Reference Materials by Atom Probe Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahey, Albert J.; Perea, Daniel E.; Bartrand, Jonah AG

    2016-01-01

    We report results of measurements of isotopic ratios obtained with atom probe tomography on U3O8 reference materials certified for their isotopic abundances of uranium. The results show good agreement with the certified values. High backgrounds due to tails from adjacent peaks complicate the measurement of the integrated peak areas as well as the fact that only oxides of uranium appear in the spectrum, the most intense of which is doubly charged. In addition, lack of knowledge of other instrumental parameters, such as the dead time, may bias the results. Isotopic ratio measurements can be performed at the nanometer-scale with themore » expectation of sensible results. The abundance sensitivity and mass resolving power of the mass spectrometer are not sufficient to compete with magnetic-sector instruments but are not far from measurements made by ToF-SIMS of other isotopic systems. The agreement of the major isotope ratios is more than sufficient to distinguish most anthropogenic compositions from natural.« less

  4. Isotopic determination of uranium in soil by laser induced breakdown spectroscopy

    DOE PAGES

    Chan, George C. -Y.; Choi, Inhee; Mao, Xianglei; ...

    2016-03-26

    Laser-induced breakdown spectroscopy (LIBS) operated under ambient pressure has been evaluated for isotopic analysis of uranium in real-world samples such as soil, with U concentrations in the single digit percentage levels. The study addresses the requirements for spectral decomposition of 235U and 238U atomic emission peaks that are only partially resolved. Although non-linear least-square fitting algorithms are typically able to locate the optimal combination of fitting parameters that best describes the experimental spectrum even when all fitting parameters are treated as free independent variables, the analytical results of such an unconstrained free-parameter approach are ambiguous. In this work, five spectralmore » decomposition algorithms were examined, with different known physical properties (e.g., isotopic splitting, hyperfine structure) of the spectral lines sequentially incorporated into the candidate algorithms as constraints. It was found that incorporation of such spectral-line constraints into the decomposition algorithm is essential for the best isotopic analysis. The isotopic abundance of 235U was determined from a simple two-component Lorentzian fit on the U II 424.437 nm spectral profile. For six replicate measurements, each with only fifteen laser shots, on a soil sample with U concentration at 1.1% w/w, the determined 235U isotopic abundance was (64.6 ± 4.8)%, and agreed well with the certified value of 64.4%. Another studied U line - U I 682.691 nm possesses hyperfine structure that is comparatively broad and at a significant fraction as the isotopic shift. Thus, 235U isotopic analysis with this U I line was performed with spectral decomposition involving individual hyperfine components. For the soil sample with 1.1% w/w U, the determined 235U isotopic abundance was (60.9 ± 2.0)%, which exhibited a relative bias about 6% from the certified value. The bias was attributed to the spectral resolution of our measurement system - the measured

  5. Cr Isotopes in Allende Ca-Al-rich Inclusions

    NASA Technical Reports Server (NTRS)

    Bogdanovski, O.; Papanastassiou, D. A.; Wasserburg, G. J.

    2002-01-01

    We have determined Cr isotope compositions in minerals from Allende CAI in order to address the initial 53Mn (half-life 3.7 Ma) abundance in the solar system. Additional information is contained in the original extended abstract.

  6. Accurate abundance determinations in S stars

    NASA Astrophysics Data System (ADS)

    Neyskens, P.; Van Eck, S.; Plez, B.; Goriely, S.; Siess, L.; Jorissen, A.

    2011-12-01

    S-type stars are thought to be the first objects, during their evolution on the asymptotic giant branch (AGB), to experience s-process nucleosynthesis and third dredge-ups, and therefore to exhibit s-process signatures in their atmospheres. Until present, the modeling of these processes is subject to large uncertainties. Precise abundance determinations in S stars are of extreme importance for constraining e.g., the depth and the formation of the 13C pocket. In this paper a large grid of MARCS model atmospheres for S stars is used to derive precise abundances of key s-process elements and iron. A first estimation of the atmospheric parameters is obtained using a set of well-chosen photometric and spectroscopic indices for selecting the best model atmosphere of each S star. Abundances are derived from spectral line synthesis, using the selected model atmosphere. Special interest is paid to technetium, an element without stable isotopes. Its detection in stars is considered as the best possible signature that the star effectively populates the thermally-pulsing AGB (TP-AGB) phase of evolution. The derived Tc/Zr abundances are compared, as a function of the derived [Zr/Fe] overabundances, with AGB stellar model predictions. The computed [Zr/Fe] overabundances are in good agreement with the AGB stellar evolution model predictions, while the Tc/Zr abundances are slightly over-predicted. This discrepancy can help to set stronger constraints on nucleosynthesis and mixing mechanisms in AGB stars.

  7. Abundance and isotopic composition of gases in the martian atmosphere from the Curiosity rover.

    PubMed

    Mahaffy, Paul R; Webster, Christopher R; Atreya, Sushil K; Franz, Heather; Wong, Michael; Conrad, Pamela G; Harpold, Dan; Jones, John J; Leshin, Laurie A; Manning, Heidi; Owen, Tobias; Pepin, Robert O; Squyres, Steven; Trainer, Melissa

    2013-07-19

    Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO2), 0.960(±0.007); argon-40 ((40)Ar), 0.0193(±0.0001); nitrogen (N2), 0.0189(±0.0003); oxygen, 1.45(±0.09) × 10(-3); carbon monoxide, < 1.0 × 10(-3); and (40)Ar/(36)Ar, 1.9(±0.3) × 10(3). The (40)Ar/N2 ratio is 1.7 times greater and the (40)Ar/(36)Ar ratio 1.6 times lower than values reported by the Viking Lander mass spectrometer in 1976, whereas other values are generally consistent with Viking and remote sensing observations. The (40)Ar/(36)Ar ratio is consistent with martian meteoritic values, which provides additional strong support for a martian origin of these rocks. The isotopic signature δ(13)C from CO2 of ~45 per mil is independently measured with two instruments. This heavy isotope enrichment in carbon supports the hypothesis of substantial atmospheric loss.

  8. The Application of Methane Clumped Isotope Measurements to Determine the Source of Large Methane Seeps in Alaskan Lakes

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Stolper, D. A.; Eiler, J. M.; Sessions, A. L.; Walter Anthony, K. M.

    2014-12-01

    Natural methane emissions from the Arctic present an important potential feedback to global warming. Arctic methane emissions may come from either active microbial sources or from deep fossil reservoirs released by the thawing of permafrost and melting of glaciers. It is often difficult to distinguish between and quantify contributions from these methane sources based on stable isotope data. Analyses of methane clumped isotopes (isotopologues with two or more rare isotopes such as 13CH3D) can complement traditional stable isotope-based classifications of methane sources. This is because clumped isotope abundances (for isotopically equilibrated systems) are a function of temperature and can be used to identify pathways of methane generation. Additionally, distinctive effects of mixing on clumped isotope abundances make this analysis valuable for determining the origins of mixed gasses. We find large variability in clumped isotope compositions of methane from seeps in several lakes, including thermokarst lakes, across Alaska. At Lake Sukok in northern Alaska we observe the emission of dominantly thermogenic methane, with a formation temperature of at least 100° C. At several other lakes we find evidence for mixing between thermogenic methane and biogenic methane that forms in low-temperature isotopic equilibrium. For example, at Eyak Lake in southeastern Alaska, analysis of three methane samples results in a distinctive isotopic mixing line between a high-temperature end-member that formed between 100-170° C, and a biogenic end-member that formed in isotopic equilibrium between 0-20° C. In this respect, biogenic methane in these lakes resembles observations from marine gas seeps, oil degradation, and sub-surface aquifers. Interestingly, at Goldstream Lake in interior Alaska, methane with strongly depleted clumped-isotope abundances, indicative of disequilibrium gas formation, is found, similar to observations from methanogen culture experiments.

  9. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  10. Al-26, Pu-244, Ti-50, REE, and trace element abundances in hibonite grains from CM and CV meteorites

    NASA Technical Reports Server (NTRS)

    Fahey, A. J.; Mckeegan, K. D.; Zinner, E.; Goswami, J. N.

    1987-01-01

    Hibonites from the CM meteorites Murchison, Murray, and Cold Bokkeveld, and hibonites and Ti-rich pyroxene from the CV chondrite Allende are studied. Electron microprobe measurements of major element concentrations and track and ion probe measurements of Mg and Ti isotopic ratios, rare earth elements (REEs), and trace element abundances are analyzed. Correlations between isotopic anomalies in Ti, Al-26, Pu-244, and Mg-26(asterisk) are examined. Ti isotopic anomalies are compared with REE and trace element abundance patterns. Reasons for the lack of Al-26 in the hibonites are investigated and discussed. It is observed that there is no correlation between the Ti isotopic compositions, and the presence of Mg-26(asterisk), Pu-244, and REE and trace element patterns in individual hibonite samples. The data reveal that hibonites are not interstellar dust grains but formed on a short time scale and in localized regions of the early solar system.

  11. Mid-IR enhanced laser ablation molecular isotopic spectrometry

    NASA Astrophysics Data System (ADS)

    Brown, Staci; Ford, Alan; Akpovo, Codjo A.; Johnson, Lewis

    2016-08-01

    A double-pulsed laser-induced breakdown spectroscopy (DP-LIBS) technique utilizing wavelengths in the mid-infrared (MIR) for the second pulse, referred to as double-pulse LAMIS (DP-LAMIS), was examined for its effect on detection limits compared to single-pulse laser ablation molecular isotopic spectrometry (LAMIS). A MIR carbon dioxide (CO2) laser pulse at 10.6 μm was employed to enhance spectral emissions from nanosecond-laser-induced plasma via mid-IR reheating and in turn, improve the determination of the relative abundance of isotopes in a sample. This technique was demonstrated on a collection of 10BO and 11BO molecular spectra created from enriched boric acid (H3BO3) isotopologues in varying concentrations. Effects on the overall ability of both LAMIS and DP-LAMIS to detect the relative abundance of boron isotopes in a starting sample were considered. Least-squares fitting to theoretical models was used to deduce plasma parameters and understand reproducibility of results. Furthermore, some optimization for conditions of the enhanced emission was achieved, along with a comparison of the overall emission intensity, plasma density, and plasma temperature generated by the two techniques.

  12. Martian carbon dioxide: Clues from isotopes in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Karlsson, H. R.; Clayton, R. N.; Mayeda, T. K.; Jull, A. J. T.; Gibson, E. K., Jr.

    1993-01-01

    Attempts to unravel the origin and evolution of the atmosphere and hydrosphere on Mars from isotopic data have been hampered by the impreciseness of the measurements made by the Viking Lander and by Earth-based telescopes. The SNC meteorites which are possibly pieces of the Martian surface offer a unique opportunity to obtain more precise estimates of the planet's volatile inventory and isotopic composition. Recently, we reported results on oxygen isotopes of water extracted by pyrolysis from samples of Shergotty, Zagami, Nakhla, Chassigny, Lafayette, and EETA-79001. Now we describe complementary results on the stable isotopic composition of carbon dioxide extracted simultaneously from those same samples. We will also report on C-14 abundances obtained by accelerator mass spectrometry (AMS) for some of these CO2 samples.

  13. Models of earth structure inferred from neodymium and strontium isotopic abundances

    PubMed Central

    Wasserburg, G. J.; DePaolo, D. J.

    1979-01-01

    A simplified model of earth structure based on the Nd and Sr isotopic characteristics of oceanic and continental tholeiitic flood basalts is presented, taking into account the motion of crustal plates and a chemical balance for trace elements. The resulting structure that is inferred consists of a lower mantle that is still essentially undifferentiated, overlain by an upper mantle that is the residue of the original source from which the continents were derived. PMID:16592688

  14. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    PubMed Central

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-01-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible. PMID:22652567

  15. Origin of isotopically light Zn in lunar samples through vaporization and the Zn isotope composition of the Moon

    NASA Astrophysics Data System (ADS)

    Kato, C.; Valdes, M. C.; Dhaliwal, J.; Day, J. M.; Moynier, F.

    2013-12-01

    The origin of the volatile element depletion of the Moon compared to Earth remains a key question in planetary science. It has recently been shown that both high-Ti and low-Ti lunar basalts are enriched in the heavier isotopes of Zn compared to Earth with an effect of ~1.3 permil on the 66Zn/64Zn ratio (Paniello et al., Nature, 2012). In order to obtain a better understanding of Zn behavior in and on the Moon, we present new measurements of lunar basalts, pyroclastic green glass 15426, highland anorthosites, cataclastic dunite 77215, cataclastic norite 72415 and some lunar soils. Samples were analyzed using a Thermo-Fisher Neptune Plus multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) at Washington University in St Louis. The data presented below are reported as the permil deviation of the 66Zn/64Zn ratio from the JMC-Lyon standard (δ66Zn). Four new high Ti basalts and three low Ti basalts confirm the observations of Paniello et al. (2012), that there is an enrichment in the heavier isotopes of Zn compared with chondrites and terrestrial samples. Combining these data together with Paniello et al. (2012) and Herzog et al. (GCA, 2009) we calculate a new average for lunar basalts of δ66Zn= 1.4×0.4 (1sd, n = 27). A few exceptions (5 samples out of 32) are isotopically light and probably represent addition of isotopically light Zn condensed onto the lunar surface from Zn isotopic fractionation during meteoritic impact, creating correspondingly isotopically heavy soils. In contrast to the homogeneity of mare basalts, highland samples show large Zn isotopic variability (δ66Zn -11.4 up to +4.24 permil) which encompasses the entire Zn isotopic variability measured so far in the Solar System. These δ66Zn variations are negatively correlated with the Zn abundance, with the isotopically light samples having the highest Zn concentrations. We interpret these results as the consequence of meteoritic bombardment and volatilization/condensation of Zn at

  16. Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status.

    PubMed

    Petzke, Klaus J; Fuller, Benjamin T; Metges, Cornelia C

    2010-09-01

    We review the literature on the use of stable isotope ratios at natural abundance to reveal information about dietary habits and specific nutrient intakes in human hair protein (keratin) and amino acids. In particular, we examine whether hair isotopic compositions can be used as unbiased biomarkers to provide information about nutritional status, metabolism, and diseases. Although the majority of research on the stable isotope ratio analysis of hair has focused on bulk protein, methods have been recently employed to examine amino acid-specific isotope ratios using gas chromatography or liquid chromatography coupled to an isotope ratio mass spectrometer. The isotopic measurement of amino acids has the potential to answer research questions on amino acid nutrition, metabolism, and disease processes and can contribute to a better understanding of the variations in bulk protein isotope ratio values. First results suggest that stable isotope ratios are promising as unbiased nutritional biomarkers in epidemiological research. However, variations in stable isotope ratios of human hair are also influenced by nutrition-dependent nitrogen balance, and more controlled clinical research is needed to examine these effects in human hair. Stable isotope ratio analysis at natural abundance in human hair protein offers a noninvasive method to reveal information about long-term nutritional exposure to specific nutrients, nutritional habits, and in the diagnostics of diseases leading to nutritional stress and impaired nitrogen balance.

  17. Isotopic Clues to Mars Crust-Atmosphere Interactions

    NASA Image and Video Library

    2016-09-29

    Chemistry that takes place in the surface material on Mars can explain why particular xenon (Xe) and krypton (Kr) isotopes are more abundant in the Martian atmosphere than expected. The isotopes -- variants that have different numbers of neutrons -- are formed in the loose rocks and material that make up the regolith -- the surface layer down to solid rock. The chemistry begins when cosmic rays penetrate into the surface material. If the cosmic rays strike an atom of barium (Ba), the barium can lose one or more of its neutrons (n0). Atoms of xenon can pick up some of those neutrons – a process called neutron capture – to form the isotopes xenon-124 and xenon-126. In the same way, atoms of bromine (Br) can lose some of their neutrons to krypton, leading to the formation of krypton-80 and krypton-82 isotopes. These isotopes can enter the atmosphere when the regolith is disturbed by impacts and abrasion, allowing gas to escape. http://photojournal.jpl.nasa.gov/catalog/PIA20847

  18. New approaches to the Moon's isotopic crisis.

    PubMed

    Melosh, H J

    2014-09-13

    Recent comparisons of the isotopic compositions of the Earth and the Moon show that, unlike nearly every other body known in the Solar System, our satellite's isotopic ratios are nearly identical to the Earth's for nearly every isotopic system. The Moon's chemical make-up, however, differs from the Earth's in its low volatile content and perhaps in the elevated abundance of oxidized iron. This surprising situation is not readily explained by current impact models of the Moon's origin and offers a major clue to the Moon's formation, if we only could understand it properly. Current ideas to explain this similarity range from assuming an impactor with the same isotopic composition as the Earth to postulating a pure ice impactor that completely vaporized upon impact. Several recent proposals follow from the suggestion that the Earth-Moon system may have lost a great deal of angular momentum during early resonant interactions. The isotopic constraint may be the most stringent test yet for theories of the Moon's origin. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Intramolecular stable isotope distributions detect plant metabolic responses on century time scales

    NASA Astrophysics Data System (ADS)

    Schleucher, Jürgen; Ehlers, Ina; Augusti, Angela; Betson, Tatiana

    2014-05-01

    Plants respond to environmental changes on a vast range of time scales, and plant gas exchanges constitute important feedback mechanisms in the global C cycle. Responses on time scales of decades to centuries are most important for climate models, for prediction of crop productivity, and for adaptation to climate change. Unfortunately, responses on these timescale are least understood. We argue that the knowledge gap on intermediate time scales is due to a lack of adequate methods that can bridge between short-term manipulative experiments (e.g. FACE) and paleo research. Manipulative experiments in plant ecophysiology give information on metabolism on time scales up to years. However, this information cannot be linked to results from retrospective studies in paleo research, because little metabolic information can be derived from paleo archives. Stable isotopes are prominent tools in plant ecophysiology, biogeochemistry and in paleo research, but in all applications to date, isotope ratios of whole molecules are measured. However, it is well established that stable isotope abundance varies among intramolecular groups of biochemical metabolites, that is each so-called "isotopomer" has a distinct abundance. This intramolecular variation carries information on metabolic regulation, which can even be traced to individual enzymes (Schleucher et al., Plant, Cell Environ 1999). Here, we apply intramolecular isotope distributions to study the metabolic response of plants to increasing atmospheric [CO2] during the past century. Greenhouse experiments show that the deuterium abundance among the two positions in the C6H2 group of photosynthetic glucose depends on [CO2] during growth. This is observed for all plants using C3 photosynthesis, and reflects the metabolic flux ratio between photorespiration and photosynthesis. Photorespiration is a major C flux that limits assimilation in C3 plants, which encompass the overwhelming fraction of terrestrial photosynthesis and the

  20. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE PAGES

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; ...

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore » 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  1. Stable Isotope Identification of Nitrogen Sources for United States (U.S.) Pacific Coast Estuaries

    EPA Science Inventory

    We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected δ15N of macroalgae data and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green m...

  2. Environmental isotope investigation of groundwater flow in the Honey Lake Basin, California and Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, T.P.; Davisson, M.L.; Hudson, G.B.

    The hydrology of Honey Lake Basin was studied using environmental isotope measurements of approximately 130 water samples collected during 1995 and 1996. The principal analytical methods included hydrogen, oxygen and carbon stable isotope ratio measurements, radiocarbon and tritium dating, and measurements of dissolved noble gas abundances.

  3. Ca-,Al-rich inclusions in the unique chondrite ALH85085 - Petrology, chemistry, and isotopic compositions

    NASA Technical Reports Server (NTRS)

    Kimura, Makoto; El-Goresy, Ahmed; Palme, Herbert; Zinner, Ernst

    1993-01-01

    A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.

  4. Constraints on Galactic Cosmic-Ray Origins from Elemental and Isotopic Composition Measurements

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Christian, E. R.; Cummings, A. C.; deNolfo, G. A.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A,; Stone, E. C.; vonRosevinge, T. T.; Wiedenbeck, M. E.

    2013-01-01

    The most recent measurements by the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE) satellite of ultra-heavy cosmic ray isotopic and elemental abundances will be presented. A range of isotope and element ratios, most importantly Ne-22/Ne-20, Fe-58/Fe-56, and Ga-31/Ge -32 show that the composition is consistent with source material that is a mix of approx 80% ISM (with Solar System abundances) and 20% outflow/ejecta from massive stars. In addition, our data show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to an approx 80%/20% mix rather than pure ISM, that the refractory and volatile elements have similar slopes, and that refractory elements are preferentially accelerated by a factor of approx 4. We conclude that these data are consistent with an OB association origin of GCRs.

  5. The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Wasserburg, G. J.

    1981-01-01

    The isotopic compositions of uranium and lead in Ca-Al-rich inclusions from the Allende chondrite and in whitlockite from the St. Severin chondrite and the Angra dos Reis achondrite are reported. Isoptopic analysis of acid soluble fractions of the Allende inclusions and the meteoritic whitlockite, which show isotopic anomalies in other elements, reveals U-235/U-238 ratios from 1/137.6 to 1/138.3, within 20 per mil of normal terrestrial U abundances. The Pb isotopic compositions of five coarse-grained Allende inclusions give a mean Pb-207/Pb-206 model age of 4.559 + or - 0.015 AE, in agreement with the U results. Pb isotope ratios of two fine-grained inclusions and a coarse-grained inclusion with strong mass fractionation and some nonlinear isotopic anomalies indicate that the U-Pb systems of these inclusions have evolved differently from the rest of Allende. Th/U abundance ratios in the Allende inclusions and meteoritic phosphate are found to range from 3.8 to 96, presumably indicating an optimal case for Cm/U fractionation, although the normal U concentrations do not support claims of abundant live Cm-247 or Cm-247/U-238 fractionation at the time of meteorite formation, in contrast to previous results. A limiting Cm-247/U-235 ratio of 0.004 at the time of meteorite formation is calculated which implies that the last major r process contribution at the protosolar nebula was approximately 100 million years prior to Al-26 formation and injection.

  6. Organic vs. conventional grassland management: do (15)N and (13)C isotopic signatures of hay and soil samples differ?

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ(15)N and δ(13)C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ(15)N (δ(15)N plant - δ(15)N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ(13)C in hay and δ(15)N in both soil and hay between management types, but showed that δ(13)C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ(15)N values implied that management types did not substantially differ in nitrogen cycling. Only δ(13)C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently

  7. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    PubMed Central

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N (δ15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  8. Laser spectrometer for CO2 clumped isotope analysis

    NASA Astrophysics Data System (ADS)

    Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof

    2017-04-01

    Carbon dioxide clumped isotope thermometry has proven to be a reliable method for biogeochemical and atmospheric research. We present a new laser spectroscopic instrument for doubly-substituted isotopologues analysis. In contrast to a conventional isotope ratio mass spectrometry (IRMS), tunable laser direct absorption spectroscopy (TLDAS) has the advantage of isotopologue-specific determination free of isobaric interferences. Tunable infrared laser based spectrometer for clumped isotope analysis is being developed in collaboration between Heidelberg University, Germany, and LERMA-IPSL, CNRS, France. The instrument employs two continuous intraband cascade lasers (ICL) tuned at 4439 and 4329 nm. The spectral windows covered by the lasers contain absorption lines of the six most abundant CO2 isotopologues, including the two doubly substituted species 16O13C18O and 16O13C17O, and all singly substituted isotopologues with 13C, 18O and 17O. A Herriott-type multi-pass cell provides two different absorption pathlengths to compensate the abundance difference between singly- and doubly-substituted isotopologues. We have reached the sub-permill precision required for clumped isotope measurements within the integration time of several seconds. The test version of the instrument demonstrates a performance comparable to state of the art IRMS. We highlight the following features of the instrument that are strong advantages compared to conventional mass spectrometry: measurement cycle in the minute range, simplified sample preparation routine, table-top layout with a potential for in-situ applications.

  9. Chromium isotopic anomalies in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.

    1986-01-01

    Abundances of the chromium isotopes in terrestrial and bulk meteorite samples are identical to 0.01 percent. However, Ca-Al-rich inclusions from the Allende meteorite show endemic isotopic anomalies in chromium which require at least three nucleosynthetic components. Large anomalies at Cr-54 in a special class of inclusions are correlated with large anomalies at Ca-48 and Ti-50 and provide strong support for a component reflecting neutron-rich nucleosynthesis at nuclear statistical equilibrium. This correlation suggests that materials from very near the core of an exploding massive star may be injected into the interstellar medium.

  10. Study of the isotopic features of Swan bands in comets

    NASA Technical Reports Server (NTRS)

    Krishna Swamy, K. S.

    1987-01-01

    It is shown from a detailed statistical equilibrium calculation of the (C-12)(C-13) molecule that the interpretation of the observed intensities of Swan bands of the normal and the isotopic molecule of C2 in terms of the abundance ratio of C-12 and C-13 is a reasonable one. The synthetic profile of some isotopic features in the (0.0) Swan band is compared with the observed profiles for comet West.

  11. Actinide abundances in ordinary chondrites

    USGS Publications Warehouse

    Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.

    1990-01-01

    Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.

  12. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results

    USGS Publications Warehouse

    Coplen, Tyler B.

    2011-01-01

    To minimize confusion in the expression of measurement results of stable isotope and gas-ratio measurements, recommendations based on publications of the Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) are presented. Whenever feasible, entries are consistent with the Système International d'Unités, the SI (known in English as the International System of Units), and the third edition of the International Vocabulary of Basic and General Terms in Metrology (VIM, 3rd edition). The recommendations presented herein are approved by the Commission on Isotopic Abundances and Atomic Weights and are designed to clarify expression of quantities related to measurement of isotope and gas ratios to ensure that quantity equations instead of numerical value equations are used for quantity definitions. Examples of column headings consistent with quantity calculus (also called the algebra of quantities) and examples of various deprecated usages connected with the terms recommended are presented.

  13. High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance

    PubMed Central

    Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.

    2009-01-01

    A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619

  14. Precision and long-term stability of clumped-isotope analysis of CO2 using a small-sector isotope ratio mass spectrometer.

    PubMed

    Yoshida, Naohiro; Vasilev, Mikhail; Ghosh, Prosenjit; Abe, Osamu; Yamada, Keita; Morimoto, Maki

    2013-01-15

    The ratio of the measured abundance of (13)C-(18)O bonding CO(2) to its stochastic abundance, prescribed by the δ(13)C and δ(18)O values from a carbonate mineral, is sensitive to its growth temperature. Recently, clumped-isotope thermometry, which uses this ratio, has been adopted as a new tool to elucidate paleotemperatures quantitatively. Clumped isotopes in CO(2) were measured with a small-sector isotope ratio mass spectrometer. CO(2) samples digested from several kinds of calcium carbonates by phosphoric acid at 25 °C were purified using both cryogenic and gas-chromatographic separations, and their isotopic composition (δ(13)C, δ(18)O, Δ(47), Δ(48) and Δ(49) values) were then determined using a dual-inlet Delta XP mass spectrometer. The internal precisions of the single gas Δ(47) measurements were 0.005 and 0.02‰ (1 SE) for the optimum and the routine analytical conditions, respectively, which are comparable with those obtained using a MAT 253 mass spectrometer. The long-term variations in the Δ(47) values for the in-house working standard and the heated CO(2) gases since 2007 were close to the routine, single gas uncertainty while showing seasonal-like periodicities with a decreasing trend. Unlike the MAT 253, the Delta XP did not show any significant relationship between the Δ(47) and δ(47) values. The Delta XP gave results that were approximately as precise as those of the MAT 253 for clumped-isotope analysis. The temporal stability of the Delta XP seemed to be lower, although an advantage of the Delta XP was that no dependency of δ(47) on Δ(47) was found. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Changes in carbon sources fueling benthic secondary production over depth and time: coupling Chironomidae stable carbon isotopes to larval abundance.

    PubMed

    Frossard, Victor; Verneaux, Valérie; Millet, Laurent; Magny, Michel; Perga, Marie-Elodie

    2015-06-01

    Stable C isotope ratio (δ(13)C) values of chironomid remains (head capsules; HC) were used to infer changes in benthic C sources over the last 150 years for two French sub-Alpine lakes. The HCs were retrieved from a series of sediment cores from different depths. The HC δ(13)C values started to decrease with the onset of eutrophication. The HC δ(13)C temporal patterns varied among depths, which revealed spatial differences in the contribution of methanotrophic bacteria to the benthic secondary production. The estimates of the methane (CH4)-derived C contribution to chironomid biomass ranged from a few percent prior to the 1930s to up to 30 % in recent times. The chironomid fluxes increased concomitantly with changes in HC δ(13)C values before a drastic decrease due to the development of hypoxic conditions. The hypoxia reinforced the implication for CH4-derived C transfer to chironomid production. In Lake Annecy, the HC δ(13)C values were negatively correlated to total organic C (TOC) content in the sediment (Corg), whereas no relationship was found in Lake Bourget. In Lake Bourget, chironomid abundances reached their maximum with TOC contents between 1 and 1.5 % Corg, which could constitute a threshold for change in chironomid abundance and consequently for the integration of CH4-derived C into the lake food webs. Our results indicated that the CH4-derived C contribution to the benthic food webs occurred at different depths in these two large, deep lakes (deep waters and sublittoral zone), and that the trophic transfer of this C was promoted in sublittoral zones where O2 gradients were dynamic.

  16. Segregation of isotopes of heavy metals due to light-induced drift: results and problems

    NASA Astrophysics Data System (ADS)

    Sapar, A.; Aret, A.; Poolamäe, R.; Sapar, L.

    2008-04-01

    Atutov and Shalagin (1988) proposed light-induced drift (LID) as a physically well understandable mechanism to explain the formation of isotopic anomalies observed in CP stars. We have generalized the theory of LID and applied it to diffusion of heavy elements and their isotopes in quiescent atmospheres of CP stars. Diffusional segregation of isotopes of chemical elements is described by the equations of continuity and diffusion velocity. Computations of evolutionary sequences for the abundances of mercury isotopes in several model atmospheres have been made, using the Fortran 90 program SMART composed by the authors. Results confirm predominant role of LID in separation of isotopes.

  17. Exploring the 13CO/C18O abundance ratio towards Galactic young stellar objects and HII regions

    NASA Astrophysics Data System (ADS)

    Areal, M. B.; Paron, S.; Celis Peña, M.; Ortega, M. E.

    2018-05-01

    Aims: Determining molecular abundance ratios is important not only for the study of Galactic chemistry, but also because they are useful to estimate physical parameters in a large variety of interstellar medium environments. One of the most important molecules for tracing the molecular gas in the interstellar medium is CO, and the 13CO/C18O abundance ratio is usually used to estimate molecular masses and densities of regions with moderate to high densities. Nowadays isotope ratios are in general indirectly derived from elemental abundances ratios. We present the first 13CO/C18O abundance ratio study performed from CO isotope observations towards a large sample of Galactic sources of different natures at different locations. Methods: To study the 13CO/C18O abundance ratio, we used 12CO J = 3 - 2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3 - 2 data from the 13CO/C18O (J = 3 - 2) Heterodyne Inner Milky Way Plane Survey, and some complementary data extracted from the James Clerk Maxwell Telescope database. We analyzed a sample of 198 sources composed of young stellar objects (YSOs), and HII and diffuse HII regions as catalogued in the Red MSX Source Survey in 27.°5 ≤ l ≤ 46.°5 and |b|0.°5. Results: Most of the analyzed sources are located in the galactocentric distance range 4.0-6.5 kpc. We found that YSOs have, on average, lower 13CO/C18O abundance ratios than HII and diffuse HII regions. Taking into account that the gas associated with YSOs should be less affected by the radiation than in the case of the others sources, selective far-UV photodissociation of C18O is confirmed. The 13CO/C18O abundance ratios obtained in this work are systematically lower than those predicted from the known elemental abundance relations. These results will be useful in future studies of molecular gas related to YSOs and HII regions based on the observation of these isotopes.

  18. Forward Modeling of Carbonate Proxy Data from Planktonic Foraminifera using Oxygen Isotope Tracers in a Global Ocean Model

    NASA Technical Reports Server (NTRS)

    Schmidt, Gavin A.

    1999-01-01

    The distribution and variation of oxygen isotopes in seawater are calculated using the Goddard Institute for Space Studies global ocean model. Simple ecological models are used to estimate the planktonic foraminiferal abundance as a function of depth, column temperature, season, light intensity, and density stratification. These models are combined to forward model isotopic signals recorded in calcareous ocean sediment. The sensitivity of the results to the changes in foraminiferal ecology, secondary calcification, and dissolution are also examined. Simulated present-day isotopic values for ecology relevant for multiple species compare well with core-top data. Hindcasts of sea surface temperature and salinity are made from time series of the modeled carbonate isotope values as the model climate changes. Paleoclimatic inferences from these carbonate isotope records are strongly affected by erroneous assumptions concerning the covariations of temperature, salinity, and delta (sup 18)O(sub w). Habitat-imposed biases are less important, although errors due to temperature-dependent abundances can be significant.

  19. Isotopic tracing of perchlorate in the environment

    USGS Publications Warehouse

    Sturchio, Neil C.; Böhlke, John Karl; Gu, Baohua; Hatzinger, Paul B.; Jackson, W. Andrew; Baskaran, Mark

    2012-01-01

    Isotopic measurements can be used for tracing the sources and behavior of environmental contaminants. Perchlorate (ClO 4 − ) has been detected widely in groundwater, soils, fertilizers, plants, milk, and human urine since 1997, when improved analytical methods for analyzing ClO 4 −concentration became available for routine use. Perchlorate ingestion poses a risk to human health because of its interference with thyroidal hormone production. Consequently, methods for isotopic analysis of ClO 4 − have been developed and applied to assist evaluation of the origin and migration of this common contaminant. Isotopic data are now available for stable isotopes of oxygen and chlorine, as well as 36Cl isotopic abundances, in ClO 4 − samples from a variety of natural and synthetic sources. These isotopic data provide a basis for distinguishing sources of ClO 4 − found in the environment, and for understanding the origin of natural ClO 4 − . In addition, the isotope effects of microbial ClO 4 − reduction have been measured in laboratory and field experiments, providing a tool for assessing ClO 4 − attenuation in the environment. Isotopic data have been used successfully in some areas for identifying major sources of ClO 4 − contamination in drinking water supplies. Questions about the origin and global biogeochemical cycle of natural ClO 4 − remain to be addressed; such work would benefit from the development of methods for preparation and isotopic analysis of ClO 4 − in samples with low concentrations and complex matrices.

  20. The Chlorine Isotopic Composition Of Lunar UrKREEP

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.

    2016-01-01

    Since the long standing paradigm of an anhydrous Moon was challenged there has been a renewed focus on investigating volatiles in a variety of lunar samples. Numerous studies have examined the abundances and isotopic compositions of volatiles in lunar apatite, Ca5(PO4)3(F,Cl,OH). In particular, apatite has been used as a tool for assessing the sources of H2O in the lunar interior. However, current models for the Moon's formation have yet to fully account for its thermal evolution in the presence of H2O and other volatiles. For ex-ample, in the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs (Rare Earth Elements), and P, collectively called KREEP, and in its primitive form - urKREEP, given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO. When compared to chondritic meteorites and terrestrial rocks, lunar samples have exotic chlorine isotope compositions, which are difficult to explain in light of the abundance and isotopic composition of other volatile species, especially H, and the current estimates for chlorine and H2O in the bulk silicate Moon (BSM). In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed a comprehensive in situ high precision study of chlorine isotopes in lunar apatite from a suite of Apollo samples covering a range of geochemical characteristics and petrologic types.

  1. Mantle rare gas relative abundances in a steady-state mass transport model

    NASA Technical Reports Server (NTRS)

    Porcelli, D.; Wasserburg, G. J.

    1994-01-01

    A model for He and Xe was presented previously which incorporates mass transfer of rare gases from an undegassed lower mantle (P) and the atmosphere into a degassed upper mantle (D). We extend the model to include Ne and Ar. Model constraints on rare gas relative abundances within P are derived. Discussions of terrestrial volatile acquisition have focused on the rare gas abundance pattern of the atmosphere relative to meteoritic components, and the pattern of rare gases still trapped in the Ear,th is important in identifying volatile capture and loss processes operating during Earth formation. The assumptions and principles of the model are discussed in Wasserburg and Porcelli (this volume). For P, the concentrations in P of the decay/nuclear products 4 He, 21 Ne, 40 Ar, and 136 Xe can be calculated from the concentrations of the parent elements U, Th, K, and Pu. The total concentration of the daughter element in P is proportional to the isotopic shifts in P. For Ar, ((40)Ar/(36)Ar)p - ((40)Ar/(36)Ar)o =Delta (exp 40) p= 40 Cp/(exp 36)C where(i)C(sub j) the concentration of isotope i in j. In D, isotope compositions are the result of mixing rare gases from P, decay/nuclear products generated in the upper mantle, and subducted rare gases (for Ar and Xe).

  2. Magnesium Isotope Ratios in ω Centauri Red Giants

    NASA Astrophysics Data System (ADS)

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-05-01

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R ~ 100,000) and at Gemini-S with b-HROS (R ~ 150,000) to determine magnesium isotope ratios for seven ω Cen red giants that cover a range in iron abundance from [Fe/H] = -1.78 to -0.78 dex, and for two red giants in M4 (NGC 6121). The ω Cen stars sample both the "primordial" (i.e., O-rich, Na- and Al-poor) and the "extreme" (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both ω Cen and M4 show (25Mg, 26Mg)/24Mg isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the ω Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the 26Mg/24Mg ratio is highest at intermediate metallicities ([Fe/H] < -1.4 dex), and for the highest [Al/Fe] values. Further, the relative abundance of 26Mg in the extreme population stars is notably higher than that of 25Mg, in contrast to model predictions. The 25Mg/24Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.

  3. Isotopic Dichotomy among Meteorites and Its Bearing on the Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Scott, Edward R. D.; Krot, Alexander N.; Sanders, Ian S.

    2018-02-01

    Whole rock Δ17O and nucleosynthetic isotopic variations for chromium, titanium, nickel, and molybdenum in meteorites define two isotopically distinct populations: carbonaceous chondrites (CCs) and some achondrites, pallasites, and irons in one and all other chondrites and differentiated meteorites in the other. Since differentiated bodies accreted 1–3 Myr before the chondrites, the isotopic dichotomy cannot be attributed to temporal variations in the disk. Instead, the two populations were most likely separated in space, plausibly by proto-Jupiter. Formation of CCs outside Jupiter could account for their characteristic chemical and isotopic composition. The abundance of refractory inclusions in CCs can be explained if they were ejected by disk winds from near the Sun to the disk periphery where they spiraled inward due to gas drag. Once proto-Jupiter reached 10–20 M ⊕, its external pressure bump could have prevented millimeter- and centimeter-sized particles from reaching the inner disk. This scenario would account for the enrichment in CCs of refractory inclusions, refractory elements, and water. Chondrules in CCs show wide ranges in Δ17O as they formed in the presence of abundant 16O-rich refractory grains and 16O-poor ice particles. Chondrules in other chondrites (ordinary, E, R, and K groups) show relatively uniform, near-zero Δ17O values as refractory inclusions and ice were much less abundant in the inner solar system. The two populations were plausibly mixed together by the Grand Tack when Jupiter and Saturn migrated inward emptying and then repopulating the asteroid belt with roughly equal masses of planetesimals from inside and outside Jupiter’s orbit (S- and C-type asteroids).

  4. New isotopic clues to solar system formation

    NASA Technical Reports Server (NTRS)

    Lee, T.

    1979-01-01

    The presence of two new extinct nuclides Al-26 and Pd-107 with half lives of approximately one million years in the early solar system implies that there were nucleosynthetic activities involving a great many elements almost at the instant of solar system formation. Rate gas and oxygen isotopic abundance variations ('anomalies') relative to the 'cosmic' composition were observed in a variety of planetary objects, which indicates that isotopic heterogeneities caused by the incomplete mixing of distinct nucleosynthesis components permeate the entire solar system. These new results have major implications for cosmochronology, nucleosynthesis theory, star formation, planetary heating, and the genetic relationship between different planetary bodies

  5. The Chlorine Isotopic Composition Of Lunar UrKREEP

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.

    2016-01-01

    Since the long standing paradigm of an anhydrous Moon was challenged there has been a renewed focus on investigating volatiles in a variety of lunar samples. However, the current models for the Moon’s formation have yet to fully account for its thermal evolution in the presence of H2O and other volatiles. When compared to chondritic meteorites and terrestrial rocks, lunar samples have exotic chlorine isotope compositions, which are difficult to explain in light of the abundance and isotopic composition of other volatile species, especially H, and the current estimates for chlorine and H2O in the bulk silicate Moon. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed a comprehensive in situ high precision study of chlorine isotopes, using NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry) of lunar apatite from a suite of Apollo samples covering a range of geochemical characteristics and petrologic types.

  6. Stardust from Supernovae and Its Isotopes

    NASA Astrophysics Data System (ADS)

    Hoppe, Peter

    Primitive solar system materials, namely, meteorites, interplanetary dust particles, and cometary matter contain small quantities of nanometer- to micrometer-sized refractory dust grains that exhibit large isotopic abundance anomalies. These grains are older than our solar system and have been named "presolar grains." They formed in the winds of red giant and asymptotic giant stars and in the ejecta of stellar explosions, i.e., represent a sample of stardust that can be analyzed in terrestrial laboratories for isotopic compositions and other properties. The inventory of presolar grains is dominated by grains from red giant and asymptotic giant branch stars. Presolar grains from supernovae form a minor but important subpopulation. Supernova (SN) minerals identified to date include silicon carbide, graphite, silicon nitride, oxides, and silicates. Isotopic studies of major, minor, and trace elements in these dust grains have provided detailed insights into nucleosynthetic and mixing processes in supernovae and how dust forms in these violent environments.

  7. Determining the Local Abundance of Martian Methane and its 13-C/l2-C and D/H Isotopic Ratios for Comparison with Related Gas and Soil Analysis on the 2011 Mars Science Laboratory (MSL) Mission

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Mahaffy, Paul R.

    2011-01-01

    Understanding the origin of Martian methane will require numerous complementary measurements from both in situ and remote sensing investigations and laboratory work to correlate planetary surface geophysics with atmospheric dynamics and chemistry. Three instruments (Quadrupole Mass Spectrometer (QMS), Gas Chromatograph (GC) and Tunable Laser Spectrometer (TLS)) with sophisticated sample handling and processing capability make up the Sample Analysis at Mars (SAM) analytical chemistry suite on NASA s 2011 Mars Science Laboratory (MSL) Mission. Leveraging off the SAM sample and gas processing capability that includes methane enrichment, TLS has unprecedented sensitivity for measuring absolute methane (parts-per-trillion), water, and carbon dioxide abundances in both the Martian atmosphere and evolved from heated soil samples. In concert with a wide variety of associated trace gases (e.g. SO2, H2S, NH3, higher hydrocarbons, organics, etc.) and other isotope ratios measured by SAM, TLS will focus on determining the absolute abundances of methane, water and carbon dioxide, and their isotope ratios: 13C/12C and D/H in methane; 13C/12C and 18O/17O/16O in carbon dioxide; and 18O/17O/16O and D/H in water. Measurements near the MSL landing site will be correlated with satellite (Mars Express, Mars 2016) and ground-based observations.

  8. Oxygen isotopes and the moon-forming giant impact.

    PubMed

    Wiechert, U; Halliday, A N; Lee, D C; Snyder, G A; Taylor, L A; Rumble, D

    2001-10-12

    We have determined the abundances of 16O, 17O, and 18O in 31 lunar samples from Apollo missions 11, 12, 15, 16, and 17 using a high-precision laser fluorination technique. All oxygen isotope compositions plot within +/-0.016 per mil (2 standard deviations) on a single mass-dependent fractionation line that is identical to the terrestrial fractionation line within uncertainties. This observation is consistent with the Giant Impact model, provided that the proto-Earth and the smaller impactor planet (named Theia) formed from an identical mix of components. The similarity between the proto-Earth and Theia is consistent with formation at about the same heliocentric distance. The three oxygen isotopes (delta17O) provide no evidence that isotopic heterogeneity on the Moon was created by lunar impacts.

  9. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report)

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.; Vogl, Jochen; Rosner, Martin; Prohaska, Thomas

    2014-01-01

    Since the early 1950s, the number of international measurement standards for anchoring stable isotope delta scales has mushroomed from 3 to more than 30, expanding to more than 25 chemical elements. With the development of new instrumentation, along with new and improved measurement procedures for studying naturally occurring isotopic abundance variations in natural and technical samples, the number of internationally distributed, secondary isotopic reference materials with a specified delta value has blossomed in the last six decades to more than 150 materials. More than half of these isotopic reference materials were produced for isotope-delta measurements of seven elements: H, Li, B, C, N, O, and S. The number of isotopic reference materials for other, heavier elements has grown considerably over the last decade. Nevertheless, even primary international measurement standards for isotope-delta measurements are still needed for some elements, including Mg, Fe, Te, Sb, Mo, and Ge. It is recommended that authors publish the delta values of internationally distributed, secondary isotopic reference materials that were used for anchoring their measurement results to the respective primary stable isotope scale.

  10. Validation of chlorine and oxygen isotope ratio analysis to differentiate perchlorate sources and to document perchlorate biodegradation

    USGS Publications Warehouse

    Paul B. Hatzinger,; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua

    2013-01-01

    Increased health concerns about perchlorate (ClO4-) during the past decade and subsequent regulatory considerations have generated appreciable interest in source identification. The key objective of the isotopic techniques described in this guidance manual is to provide evidence concerning the origin of ClO4- in soils and groundwater and, more specifically, whether that ClO4- is synthetic or natural. Chlorine and oxygen isotopic analyses of ClO4- provide the primary direct approach whereby different sources of ClO4- can be distinguished from each other. These techniques measure the relative abundances of the stable isotopes of chlorine (37Cl and 35Cl) and oxygen (18O, 17O, and 16O) in ClO4- using isotope-ratio mass spectrometry (IRMS). In addition, the relative abundance of the radioactive chlorine isotope 36Cl is measured using accelerator mass spectrometry (AMS). Taken together, these measurements provide four independent quantities that can be used to distinguish natural and synthetic ClO4- sources, to discriminate different types of natural ClO4-, and to detect ClO4- biodegradation in the environment. Other isotopic, chemical, and geochemical techniques that can be applied in conjunction with isotopic analyses of ClO4- to provide supporting data in forensic studies are also described.

  11. Wildfire Activity Across the Triassic-Jurassic Boundary in the Polish Basin: Evidence from New Fossil Charcoal & Carbon-isotope Data

    NASA Astrophysics Data System (ADS)

    Pointer, R.; Belcher, C.; Hesselbo, S. P.; Hodbod, M.; Pieńkowski, G.

    2017-12-01

    New fossil charcoal abundance and carbon-isotope data from two sedimentary cores provide new evidence of extreme environmental conditions in the Polish Basin during the Latest Triassic to Earliest Jurassic. Sedimentary cores from the Polish Basin provide an excellent record of terrestrial environmental conditions across the Triassic-Jurassic Boundary, a time of climatic extremes. Previous work has shown that the marine realm was affected by a large perturbation to the carbon cycle across the Triassic-Jurassic Boundary (manifested by large negative and positive carbon-isotope excursions) and limited records of charcoal abundance and organic geochemistry have indicated important changes in fire regime in the coeval ecosystems. Here we present two new carbon-isotope records generated from fossil plant matter across the Triassic-Jurassic boundary, and present new charcoal records. The charcoal abundance data confirm that there was variation in wildfire activity during the Late Triassic-Early Jurassic in the Polish Basin. Peaks in the number of fossil charcoal fragments present occur in both sedimentary cores, and increases in fossil charcoal abundance are linked to wildfires, signalling a short-lived rise in wildfire activity. Fossil charcoal abundance does not appear to be fully controlled by total organic matter content, depositional environment or bioturbation. We argue that increased wildfire activity is likely caused by an increase in ignition of plant material as a result of an elevated number of lightning strikes. Global warming (caused by a massive input of carbon into the atmosphere, as indicated by carbon-isotope data) can increase storm activity, leading to increased numbers of lightning strikes. Previous Triassic-Jurassic Boundary wildfire studies have found fossil charcoal abundance peaks at other northern hemisphere sites (Denmark & Greenland), and concluded that they represent increases in wildfire activity in the earliest Jurassic. Our new charcoal and

  12. Methylhopane Biomarker and Carbon Isotopic Evidence for Late Archean Aerobic Ecosystems

    NASA Technical Reports Server (NTRS)

    Eigenbrode, Jennifer L.; Freeman, Katherine H.; Summons, Roger E.

    2007-01-01

    Molecular fossils are particularly valuable in early Earth studies because they provide information about microbial sources and ecology. Here we report on the distribution of 2- methyl and 3-methylhopanes preserved in a 2.72-2.56 billion-year-old section of shallow and deepwater sediments of the Hamersley Province [Eigenbrode et aI., submitted]. These biomarkers are mostly from cyanobacteria and oxygen-respiring methanotrophs, respectively. The relative abundance of 2-methylhopanes increases with carbonate abundance in shallow-water facies indicating cyanobacteria were key microbes in shallow ecosystems and suggesting they supplied both molecular oxygen and fixed carbon. The relative abundance of 3-methylhopane strongly correlates with kerogen-carbon isotopic values, and is more abundant in the samples with 13C-enriched signatures. Thus, molecular data provides evidence for cycling of methane in shallow settings, even though the anoxic deeper environments bear stronger 13C-depletion, which together suggests a more complex methane cycle than previously envisioned. Detailed facies analysis of the Hamersley carbon-isotope record reveals temporal changes suggesting continued oxidation of shallow settings favoring the expansion of aerobic ecosystems and respiring organisms [Eigenbrode et aI., 2006, PNAS, 103: 15759]. Similar analysis of published carbon-isotopic records suggests similar, but diachronous, expansion of oxygenated habitats in shallow then deep waters as anaerobic microbial communities gave way to respiring communities fueled by oxygenic photosynthesis before the post 2.45-Ga atmospheric oxygenation event [Eigenbrode et aI., 2006]. The robust relationships observed provide geochemical support for methanogenesis, aerobic methanotrophy, and oxygenic photosynthesis in the late Archean, as well as major ecological shifts linked to biogeochemical reorganization.

  13. Chronology of chrondrule and CAI formation: Mg-Al isotopic evidence

    NASA Technical Reports Server (NTRS)

    Macpherson, G. J.; Davis, A. M.

    1994-01-01

    Details of the chondrule and Ca-Al-rich inclusion (CAI) formation during the earliest history of the solar system are imperfectly known. Because CAI's are more 'refractory' than ferromagnesian chondrules and have the lowest recorded initial Sr-87/Sr-86 ratios of any solar system materials, the expectation is that CAI's formed earlier than chondrules. But it is not known, for example, if CAI formation had stopped by the time chondrule formation began. Conventional (absolute) age-dating techniques cannot adequately resolve small age differences (less than 10(exp 6) years) between objects of such antiquity. One approach has been to look at systematic differences in the daughter products of short-lived radionuclides such as Al-26 and I-129. Unfortunately, neither system appears to be 'well-behaved.' One possible reason for this circumstance is that later secondary events have partially reset the isotopic systems, but a viable alternative continues to be large-scale (nebular) heterogeneity in initial isotopic abundances, which would of course render the systems nearly useless as chronometers. In the past two years the nature of this problem has been redefined somewhat. Examination of the Al-Mg isotopic database for all CAI's suggests that the vast majority of inclusions originally had the same initial Al-26/Al-27 abundance ratio, and that the ill-behaved isotopic systematics now observed are the results of later partial reequilibration due to thermal processing. Isotopic heterogeneities did exist in the nebula, as demonstrated by the existence of so-called FUN inclusions in CV3 chondrites and isotopically anomalous hibonite grains in CM2 chondrites, which had little or no live Al-26 at the time of their formation. But, among the population of CV3 inclusions at least, FUN inclusions appear to have been a relatively minor nebular component.

  14. Following Carbon Isotopes from Methane to Molecules

    NASA Astrophysics Data System (ADS)

    Freeman, K. H.

    2017-12-01

    Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.

  15. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO/sub 2/ excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37/sup 0/C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water,more » local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O/sub 2/ and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO/sub 2/ production.« less

  16. Using Stable Isotopes to Assess Connectivity: the Importance of Oceanic and Watershed Nitrogen Sources for Estuarine Primary Producers

    EPA Science Inventory

    Estuaries located at the interface of terrestrial and oceanic ecosystems receive nutrients from both ecosystems. Stable isotopes of primary producers and consumers are often used as an indicator of nutrient sources. We assembled natural abundance nitrogen stable isotope (δ15N) d...

  17. Oxygen isotopic ratios of primordial water in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Fujiya, Wataru

    2018-01-01

    In this work, I estimate the δ18 O and δ17 O values of primordial water in CM chondrites to be 55 ± 13 and 35 ± 9‰, respectively, based on whole-rock O and H data. Also, I found that the O and/or H data of Antarctic meteorites are biased, which is attributed to terrestrial weathering. This characteristic O isotopic ratio of water together with corresponding water abundances in CM chondrites are consistent with the origin of water as ice processed by photochemical reactions at the outer regions of the solar nebula, where mass-independent O isotopic fractionation and water destruction may have occurred. Another possible mechanism to produce the inferred O isotopic ratio of water would be O isotopic fractionation between water vapor and ice, which likely occurred near the condensation front of H2O (snow line) in the solar nebula. The inferred O isotopic ratio of water suggests that carbonate in CM chondrites formed at low temperatures of <150 °C. The O isotopic ratios of primordial water in chondrites other than CM chondrites are not well constrained.

  18. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy.

    PubMed

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R

    2015-04-30

    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results

  19. Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).

  20. Carbon Isotopic Measurements of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here, we present the carbon isotopic ratios of glycine and e-aminocaproic acid (EACA), the two most abundant amino acids, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio mass spectrometry coupled with quadrupole mass spectrometry (GC-CAMS/IRMS).

  1. The Abundance and Isotopic Composition of Water in Howardite-Eucrite-Diogenite Meteorites

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Tartèse, R.; Anand, M.; Franchi, I. A.; Grady, M. M.; Greenwood, R. C.; Charlier, B. L. A.

    2014-09-01

    Using SIMs techniques we measure OH abundances and D/H ratios in apatite grains from two Eucrites (DaG 945, DaG 844).The average δD values of these two samples are also similar to carbonaceous chondrites, the Earth and the Moon.

  2. Origin of the eclogitic clasts with graphite-bearing and graphite-free lithologies in the Northwest Africa 801 (CR2) chondrite: Possible origin from a Moon-sized planetary body inferred from chemistry, oxygen isotopes and REE abundances

    NASA Astrophysics Data System (ADS)

    Hiyagon, H.; Sugiura, N.; Kita, N. T.; Kimura, M.; Morishita, Y.; Takehana, Y.

    2016-08-01

    In order to clarify the origin of the eclogitic clasts found in the NWA801 (CR2) chondrite (Kimura et al., 2013), especially, that of the high pressure and temperature (P-T) condition (∼3 GPa and ∼1000 °C), we conducted ion microprobe analyses of oxygen isotopes and rare earth element (REE) abundances in the clasts. Oxygen isotopic compositions of the graphite-bearing lithology (GBL) and graphite-free lithology (GFL) show a slope ∼0.6 correlation slightly below the CR-CH-CB chondrites field in the O three-isotope-diagram, with a large variation for the former and almost homogeneous composition for the latter. The average REE abundances of the two lithologies show almost unfractionated patterns. Based on these newly obtained data, as well as mineralogical observations, bulk chemistry, and considerations about diffusion timescales for various elements, we discuss in detail the formation history of the clasts. Consistency of the geothermobarometers used by Kimura et al. (2013), suggesting equilibration of various elements among different mineral pairs, provides a strong constraint for the duration of the high P-T condition. We suggest that the high P-T condition lasted 102-103 years. This clearly precludes a shock high pressure (HP) model, and hence, strongly supports a static HP model. A static HP model requires a Moon-sized planetary body of ∼1500 km in radius. Furthermore, it implies two successive violent collisions, first at the formation of the large planetary body, when the clasts were placed its deep interior, and second, at the disruption of the large planetary body, when the clasts were expelled out of the parent body and later on transported to the accretion region of the CR chondrites. We also discuss possible origin of O isotopic variations in GBL, and presence/absence of graphite in GBL/GFL, respectively, in relation to smelting possibly occurred during the igneous process(es) which formed the two lithologies. Finally we present a possible

  3. Pb isotope compositions of modern deep sea turbidites

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; McLennan, S. M.

    2001-01-01

    Modern deep sea turbidite muds and sands collected from Lamont piston cores represent a large range in age of detrital sources as well as a spectrum of tectonic settings. Pb isotope compositions of all but three of the 66 samples lie to the right of the 4.56 Ga Geochron, and most also lie along a slope consistent with a time-integrated κ ( 232Th/ 238U) between 3.8 and 4.2. Modern deep sea turbidites show a predictable negative correlation between both Pb and Sr isotope ratios and ɛNd and ɛHf, clearly related to the age of continental sources. However, the consistency between Pb and Nd isotopes breaks down for samples with very old provenance ( ɛNd<-20) that are far less radiogenic than predicted by the negative correlation. The correlations among Sr, Nd and Hf isotopes also become more scattered in samples with very old provenance. The unradiogenic Pb isotopic character of modern sediments with Archean Nd model ages is consistent with a model where Th and U abundances of the Archean upper crust are significantly lower than the post-Archean upper crust.

  4. Molecular and isotopic analyses of Tagish Lake alkyl dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Pizzarello, Sandra; Huang, Yongsong

    2002-05-01

    The Tagish Lake meteorite soluble organic suite has a general composition that differs from those of both CI- and CM chondrites. These differences suggest that distinct processes may have been involved in the formation of different groups of organics in meteorites. Tagish Lake alkyl dicarboxylic acids have a varied, abundant distribution and are, with carboxylated pyridines, the only compounds to have an occurrence comparable to that of the Murchison meteorite. This study has undertaken their molecular and isotopic characterization, with the aim to understand their origin and to gain insights into the evolutionary history of the meteorite parent body. Tagish Lake alkyl dicarboxylic acids are present as a homologous series of saturated and unsaturated species with three through ten-carbon atom chain length. Linear saturated acids are predominant and show decreasing amounts with increasing chain length. A total of forty-four of these compounds were detected with the most abundant, succinic acid, present at ~40 nmoles/g. met. Overall the molecular distribution of Tagish Lake dicarboxylic acids shows a remarkable compound to compound correspondence with those observed in the Murchison and Murray meteorites. In both Tagish Lake and Murchison, the imides of the more abundant dicarboxylic acids were also observed. The hydrogen and carbon isotopic compositions of individual Tagish Lake dicarboxylic acids were determined and compared to those of the corresponding acids in the Murchison meteorite. All delta D and delta 13C values for Tagish Lake acids are positive and show a substantial isotopic enrichment. Delta D values vary from, approximately, + 1120 deg for succinic acid to + 1530 deg for methyl glutaric acid. Delta 13C values ranged from + 12.6 deg for methyl glutaric acid to + 22.9 deg for glutaric acid, with adipic acid having a significantly lower value (+ 5.5 deg). Murchison dicarboxylic acid showed similar isotopic values: their delta 13C values were generally

  5. MAGNESIUM ISOTOPE RATIOS IN {omega} CENTAURI RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-05-20

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R {approx} 100,000) and at Gemini-S with b-HROS (R {approx} 150,000) to determine magnesium isotope ratios for seven {omega} Cen red giants that cover a range in iron abundance from [Fe/H] = -1.78 to -0.78 dex, and for two red giants in M4 (NGC 6121). The {omega} Cen stars sample both the ''primordial'' (i.e., O-rich, Na- and Al-poor) and the ''extreme'' (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both {omega} Cen and M4 show ({sup 25}Mg, {sup 26}Mg)/{sup 24}Mgmore » isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the {omega} Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the {sup 26}Mg/{sup 24}Mg ratio is highest at intermediate metallicities ([Fe/H] < -1.4 dex), and for the highest [Al/Fe] values. Further, the relative abundance of {sup 26}Mg in the extreme population stars is notably higher than that of {sup 25}Mg, in contrast to model predictions. The {sup 25}Mg/{sup 24}Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.« less

  6. Osmium isotopic homogeneity in the CK carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Goderis, Steven; Brandon, Alan D.; Mayer, Bernhard; Humayun, Munir

    2017-11-01

    Variable proportions of isotopically diverse presolar components are known to account for nucleosynthetic isotopic anomalies for a variety of elements (e.g., Ca, Ti, Cr, Ni, Sr, Zr, Mo, Ru, Pd, Ba, Nd, and Sm) in both bulk chondrites and achondrites. However, although large Os isotopic anomalies have been measured in acid leachates and residues of unequilibrated chondrites, bulk chondrites of various groups, iron meteorites, and pallasites exhibit Os isotopic compositions that are indistinguishable from terrestrial or bulk solar isotopic abundances. Since the magnitude of nucleosynthetic anomalies is typically largest in the carbonaceous chondrites, this study reports high-precision Os isotopic compositions and highly siderophile element (HSE) concentrations for ten CK chondrites. The isotope dilution concentration data for HSE and high-precision Os isotope ratios were determined on the same digestion aliquots, to precisely correct for radiogenic contributions to 186Os and 187Os. While acid leached bulk unequilibrated carbonaceous chondrites show deficits of s-process Os components to the same extent as revealed by unequilibrated enstatite, ordinary, and Rumuruti chondrites, equilibrated bulk CK chondrites exhibit no resolvable Os isotopic anomalies. These observations support the idea that acid-resistant, carbon-rich presolar grains, such as silicon carbide (SiC) or graphite, are major carriers for nucleosynthetic isotopic anomalies of Os. The destruction of these presolar grains, which are omnipresent in unequilibrated meteorites, must have occurred during aqueous alteration and thermal metamorphism, early in the CK chondrite parent body history. The dispersal of CK chondrites along the IIIAB iron meteorite isochron on a 187Os/188Os versus 187Re/188Os diagram, with Re/Os ratios from 0.032 to 0.083, in combination with the observed redistribution of other HSE (e.g., Pt, Pd), highlights the influence of parent body processes, overprinted by effects of recent

  7. The Abundance and Distribution of Presolar Materials in Cluster IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko; Ito, Motoo

    2007-01-01

    Presolar grains and remnants of interstellar organic compounds occur in a wide range of primitive solar system materials, including meteorites, interplanetary dust particles (IDPs), and comet Wild-2 samples. Among the most abundant presolar phases are silicate stardust grains and molecular cloud material. However, these materials have also been susceptible to destruction and alteration during parent body and nebular processing. In addition to their importance as direct samples of remote and ancient astrophysical environments, presolar materials thus provide a measure of how well different primitive bodies have preserved the original solar system starting materials. The matrix normalized abundances of presolar silicate grains in meteorites range from 20 ppm in Semarkona and Bishunpur to 170 ppm for Acfer 094. The lower abundances of presolar silicates in Bishunpur and Semarkona has been ascribed to the destruction of presolar silicates during aqueous processes. Presolar silicates appear to be significantly more abundant in anhydrous IDPs, possibly because these materials did not experience parent body hydrothermal alteration. Among IDPs the estimated abundances of presolar silicates vary by more than an order of magnitude, from 480 to 5500 ppm. The wide disparity in the abundances of presolar silicates of IDPs may be a consequence of the relatively small total area analyzed in those studies and the fine grain sizes of the IDPs. Alternatively, there may be a wide range in presolar silicate abundances between different IDPs. This view is supported by the observation that 15N-rich IDPs have higher presolar silicate abundances than those with isotopically normal N.

  8. Observations of hydrogen and helium isotopes in solar cosmic rays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hurford, G. J.

    1974-01-01

    The isotopic composition of hydrogen and helium in solar cosmic rays provides a means of studying solar flare particle acceleration mechanisms since the enhanced relative abundance of rare isotopes, such as H-2, H-3, and He-3, is due to their production by inelastic nuclear collisions in the solar atmosphere during the flare. Electron isotope spectrometer on an IMP spacecraft was used to measure this isotopic composition. The response of the dE/dx-E particle telescope is discussed, and alpha particle channeling in thin detectors is identified as an important background source affecting measurement of low values of (He-3/He-4). The flare-averaged results obtained for the period October, 1972 November, 1973 are given.

  9. Nucleosynthetic Heterogeneity Controls Vanadium Isotope Variations in Bulk Chondrites

    NASA Technical Reports Server (NTRS)

    Nielsen, S. G.; Righter, K.; Wu, F.; Owens, J. D.; Prytulak, J.; Burton, K.; Parkinson, I.; Davis, D.

    2018-01-01

    The vanadium (V) isotope composition of early solar system materials have been hypothesized to be sensitive to high energy irradiation that originated from the young Sun. Vanadium has two isotopes with masses 50 and 51 that have (51)V/(50)V ratio of approximately 410. High energy irradiation produces (50)V from various target isotopes of Ti, Cr and Fe, which would result in light V isotope compositions (expressed as delta (51)V in per mille = 1000 x (((51)V/(50)V(sub sample)/(51)V/(50)V(sub AlfaAesar)) - 1)) relative to a presumably chondritic starting composition. Recently published V isotope data for calcium aluminium inclusions (CAIs) has revealed some very negative values relative to chondrites (by almost -4 per mille) that were indeed interpreted to reflect irradiation processes despite the fact that the studied CAIs all exhibited significant initial abundances of (10)Be, while only a few CAIs displayed light V isotope compositions. It is difficult to relate V isotope variations directly to a singular process because V only possesses two isotopes. Therefore, V isotope variations can principally be produced both mass dependent and independent processes. Mass dependent kinetic stable isotope fractionation is common in CAIs for refractory elements due to partial condensation/evaporation processes. The element strontium (Sr) has an almost identical condensation temperature to V and studies of stable Sr isotope compositions in CAIs reveal both heavy and light values relative to chondrites of several permil. These variations are similar in magnitude to those reported for V isotopes in CAIs, which suggests it is possible that some of the V isotope variation in CAIs could be due to kinetic stable isotope fractionation during condensation/evaporation processes.

  10. Mass dependence of calcium isotope fractionations in crown-ether resin chromatography.

    PubMed

    Fujii, Yasuhiko; Nomura, Masao; Kaneshiki, Tositaka; Sakuma, Yoichi; Suzuki, Tatsuya; Umehara, Saori; Kishimoto, Tadahumi

    2010-06-01

    Benzo 18-crown-6-ether resin was synthesised by the phenol condensation polymerisation process in porous silica beads, of which particle diameter was ca 60micro Calcium adsorption chromatography was performed with the synthesised resin packed in a glass column. The effluent was sampled in fractions, and the isotopic abundance ratios of (42)Ca, (43)Ca, (44)Ca, and (48)Ca against (40)Ca were measured by a thermo-ionisation mass spectrometer. The enrichment of heavier calcium isotopes was observed at the front boundary of calcium adsorption chromatogram. The mass dependence of mutual separation of calcium isotopes was analysed by using the three-isotope-plots method. The slopes of three-isotope-plots indicate the relative values of mutual separation coefficients for concerned isotopic pairs. The results have shown the normal mass dependence; isotope fractionation is proportional to the reduced mass difference, (M - M')/MM', where M and M' are masses of heavy and light isotope, respectively. The mass dependence clarifies that the isotope fractionations are originated from molecular vibration. The observed separation coefficient epsilon is 3.1x10(-3) for the pair of (40)Ca and (48)Ca. Productivity of enriched (48)Ca by crown-ether-resin was discussed as the function of the separation coefficient and the height equivalent to the theoretical plate.

  11. Daily Variation of Isotope Ratios in Mars Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Kolasinski, John R.; Hewagama, Tilak; Henning, Wade G.; Sornig, Manuela; Stangier, Tobias; Krause, Pia; Sonnabend, Guido; Mahaffy, Paul R.

    2014-11-01

    The atmosphere of Mars has been shown by ground based high-resolution infrared spectroscopy and in situ measurements with the Phoenix lander and Mars Science Laboratory Curiosity rover to be enriched in C and O heavy isotopes, consistent with preferential loss of light isotopes in eroding Mars’ primordial atmosphere. The relative abundance of heavy isotopes, combined with contemporary measurements of loss rates to be obtained with MAVEN, will enable estimating the primordial atmospheric inventory on Mars. IR spectroscopy of Mars collected in May 2012 as well as in March and May of 2014 from the NASA IRTF has resolved transitions of all three singly-substituted minor isotopologues of carbon dioxide in addition to the normal isotope, enabling remote measurements of all the carbon and oxygen isotope ratios as a function of latitude, longitude, and time of day. Earlier measurements obtained in October 2007 demonstrated that the relative abundance of O-18 increased linearly with increasing surface temperature over a relatively warm early-afternoon temperature range, but did not extend far enough to inspect the effect of late-afternoon cooling. These results imply that isotopically enriched gas is sequestered overnight when surface temperature is minimum and desorbs through the course of the day as temperature increases. Current spectroscopic constants indicate that the peak isotopic enrichment could be significantly greater than what has been measured in situ, apparently due to sampling the atmosphere at different time of day and surface temperature. The observing runs in 2012 and 2014 measured O-18 enrichment at several local times in both morning and afternoon sectors as well as at the subsolar, equatorial, and anti-subsolar latitudes. The two runs in 2014 have additionally observed O-17 and C-13 transitions in the morning sector, from local dawn to noon. These observations include a limited sampling of measurements over Gale Crater, which can be compared with

  12. Oxygen and carbon isotopic growth record in a reef coral from the florida keys and a deep-sea coral from blake plateau

    USGS Publications Warehouse

    Emiliani, C.; Harold, Hudson J.; Shinn, E.A.; George, R.Y.

    1978-01-01

    Carbon and oxygen isotope analysis through a 30-year (1944 to 1974) growth of Montastrea annularis from Hen and Chickens Reef (Florida Keys) shows a strong yearly variation in the abundances of both carbon-13 and oxygen-18 and a broad inverse relationship between the two isotopes. Normal annual dense bands are formed during the summer and are characterized by heavy carbon and light oxygen. "Stress bands" are formed during particularly severe winters and are characterized by heavy carbon and heavy oxygen. The isotopic effect of Zooxanthellae metabolism dominates the temperature effect on the oxygen-18/oxygen-16 ratio. The isotopic results on the deep-sea solitary coral Bathypsammia tintinnabulum, where Zooxanthellae are nonexistent, indicates that the abundance of the heavy isotopes carbon-13 and oxygen-18 is inversely related to the growth rate, with both carbon and oxygen approaching equilibrium values with increasing skeletal age.

  13. The Carbon Isotope Ratio in Local Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Goto, Miwa; Usuda, Tomonori; Takato, Naruhisa; Masahiko, Hayashi; Sakamoto, Seiichi; Mitchell, George

    We report the carbon isotope ratio in nearby molecular clouds LkHα 101, AFGL 490, and Mon R2 IRS 3. The vibrational transition bands of 12CO ν = 2 ← 0 and 13CO ν = 1 ← 0 were observed with high resolution near-infrared spectroscopy (R = 23,000) to measure the relative abundance of 13CO to 12CO. The isotopic ratios are 12CO/13CO = 1379 (LkHα 101), 8649 (AFGL 490), and 158 (Mon R2 IRS 3), which is twice higher than in the solar neighborhood. The molecular clouds are with high visible extinction (AV = 10 70 mag), well shielded from destructive FUV field. It is questionable that the selective photo-destruction of 13CO plays a major role in biasing isotope ratio. Uncertainty in the Doppler parameters of the unresolved absorption lines, and possible emission filling of fundamental transitions are suspected to account for the high 12CO/13CO ratio. Higher resolution spectroscopy (R ~ 100,000) is the key to go for the accurate measurement of isotope ratio.

  14. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: Outlook of Mg isotopes as geothermometer and seawater proxy

    NASA Astrophysics Data System (ADS)

    Hu, Zhongya; Hu, Wenxuan; Wang, Xiaomin; Lu, Yizhou; Wang, Lichao; Liao, Zhiwei; Li, Weiqiang

    2017-07-01

    studies of carbonate rocks with thermal history. By contrast, Mg isotopes of dolomite are less prone to post-depositional resetting due to a number of properties including high Mg abundance and high thermodynamic stability, and Mg isotopes in dolomite may be a more robust recorder for original carbonate precipitates.

  15. Correlation between isotopic and meteorological parameters in Italian wines: a local-scale approach.

    PubMed

    Aghemo, Costanza; Albertino, Andrea; Gobetto, Roberto; Spanna, Federico

    2011-08-30

    Since the beginning of the 1980s deuterium nuclear magnetic resonance and carbon-13 mass spectrometry have proved to be reliable techniques for detecting adulteration and for classifying natural products by their geographic origin. Scientific literature has so far mainly focused on data acquired at regional level where isotopic parameters are correlated to climatic mean data relative to large territories. Nebbiolo and Barbera wine samples of various vintages and from different areas within the Piedmont region (northern Italy) were analysed using SNIF-NMR and GC-C-IRMS and a large set of meteorological parameters were recorded by means of weather stations placed in fields where the grapes were grown. Correlations between isotopic ((2)H and (13)C) data and several climatic parameters at a local level (mean temperature, total rainfall, mean humidity and thermal sums) were attempted and some linear correlations were found. Mean temperature and total rainfall were found to be correlated to isotopic ((2)H and (13)C) abundance in linear direct and inverse proportions respectively. Lower or no correlations between deuterium and carbon-13 abundances and other meteorological parameters such as mean humidity and thermal sums were found. Moreover, wines produced from different grape varieties in the same grape field showed significantly different isotopic values. Copyright © 2011 Society of Chemical Industry.

  16. Isotopic Discrimination During Leaf Litter Decomposition

    NASA Astrophysics Data System (ADS)

    Ngao, J.; Rubino, M.

    2006-12-01

    Methods involving stable isotopes have been successfully applied since decades in various research fields. Tracing 13C natural abundance in ecosystem compartments greatly enhanced the understanding of the C fluxes in the plant-soil-atmosphere C exchanges when compartments present different C isotopic signatures (i.e. atmospheric CO2 vs photosynthetic leaves, C3 vs C4; etc.). However, the assumption that no isotopic discrimination occurs during respiration is commonly made in numbers of C isotope-based ecological studies. Furthermore, verifications of such assumption are sparse and not enough reliable. The aim of our study is to assess the potential isotopic discrimination that may occur during litter decomposition. Leaf litter from an Arbutus unedo (L.) stand (Tolfa, Italy) was incubated in 1L jars, under constant laboratory conditions (i.e. 25 ° C and 135% WC). During the entire incubation period, gravimetric mass loss, litter respiration rates and the isotopic composition of respired CO2 are monitored at regular intervals. Data from 7 months of incubation will be presented and discussed. After two months, the litter mass loss averaged 16% of initial dry mass. During the same time-period, the respiration rate decreased significantly by 58% of the initial respiration rate. Isotopic compositions of respired CO2 ranged between -27.95‰ and - 25.69‰. Mean values did not differ significantly among the sampling days, in spite of an apparent enrichment in 13C of respired CO2 with time. The significance of these isotopic enrichment will be determined at a longer time scale. They may reveal both/either a direct microbial discrimination during respiration processes and/or a use of different litter compounds as C source along time. Further chemical and compound-specific isotopic analysis of dry matter will be performed in order to clarify these hypotheses. This work is part of the "ALICE" project, funded by the European Union's Marie Curie Fellowship Actions that aims to

  17. Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations

    USGS Publications Warehouse

    Morgan, J.W.; Walker, R.J.

    1989-01-01

    A stable isotope-dilution method using resonance ionization mass spectrometry is suitable for the determination of rhenium and osmium abundances and osmium isotopic composition in carbonaceous chondrites and iron meteorites. The chemical procedure involves sodium peroxide fusion, followed by distillation of osmium from sulfuric acid/hydrogen peroxide and subsequent anion-exchange separation of rhenium from the same solution. ?? 1989.

  18. Equilibrium lithium isotope fractionation in Li-rich minerals

    NASA Astrophysics Data System (ADS)

    Liu, S.; Li, Y.; Liu, J.

    2017-12-01

    Lithium is the lightest alkali metal, and only exhibits +1 valence state in minerals. It is widely distributed on the Earth, and usually substitutes for Mg in silicate minerals. Li has two stable isotopes, 6Li and 7Li, with the relative abundances of 7.52% and 92.48%, respectively. The large mass difference between 6Li and 7Li could induce significant isotope fractionation in minerals. Li isotopes can provide an important geochemical tracer for mantle processes. However, the fractionation factors for Li in most minerals remain poorly known, which makes the geochemical implications of Li isotope fractionations in minerals difficult to assess. Here, we try to use the vibrational frequencies obtained by the first-principles methods based on density-functional theory to calculate the Li isotope fractionation parameters for amblygonite (LiAlPO4F), bikitaite (LiSi2AlO7H2), eucryptite (LiAlSiO4), lithiophilite (LiMnPO4), lithiophosphate (Li3PO4), montebrasite (LiAlPO5H), and spodumene (LiAlSi2O6) in the temperature range of 0-1200 ºC. For forsterite (Mg2SiO4) and diopside (CaMgSi2O6) in which Li takes the place of Mg, the equilibrium Li isotope fractionation between them also be studied. Our preliminary calculations show that the coordination number of Li seems to play an important role in controlling Li isotope fractionation in these minerals, and concentration of Li in forsterite and diopside seems to have great effects on Li isotope fractionation factors of them.

  19. The ruthenium isotopic composition of the oceanic mantle

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Walker, R. J.

    2017-09-01

    The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.

  20. C-isotope composition of fossil sedges and grasses

    NASA Astrophysics Data System (ADS)

    Kurschner, Wolfram M.

    2010-05-01

    C4 plants differ from C3 plants regarding their anatomy and their C-isotope composition. Both features can be used in the geological record to determine the presence of C4 plants. Yet, the evolution of the C4 pathway in the fossil record is enigmatic as palaeobotanical and geological evidence for C4 plants is sparse. The oldest structural evidence for Kranz anatomy has been found in Late Miocene permineralized grass leaf remains. But studies on the C-isotope composition of sedimentary organic matter indicate that abundant C4 biomass was present in N-America and Asia throughout the Miocene in expanding savannahs and grasslands. The success of C4 plants appears to be related also to an increasing seasonal aridity in the tropical climate belts and the co-evolution of grazers. However, C- isotope composition of palaeosols or vertebrate teeth only allows to estimate the abundance of C4 plant biomass in the vegetation or in the diet without further taxonomical specification which plant groups would have had C4 metabolism. In this contribution the first extensive C-isotope analysis of fossil seeds of sedges and a few grasses are presented. The age of the carpological material ranges from Late Eocene to Pliocene and was collected from several central European brown coal deposits. The 52 different taxa studied include several species of Carex, Cladiocarya, Eriopherum, Eleocharis, Scirpus, Sparganium. Most of them representing herbaceous elements of a (sub)tropical vegetation growing near the edge of a lake. The C-isotope composition of the fossil seeds varies between -30 and -23 o/oo indicating C3 photosynthesis. This first systematic inventory shows that C4 plants were absent in the European (sub)tropical brown coal forming wetland vegetation during the Tertiary. These preliminary data are in agreement with phylogenetic studies which predict the origin of C4 plants outside the European realm.

  1. Re-Os isotopic systematics of primitive lavas from the Lassen region of the Cascade arc, California

    USGS Publications Warehouse

    Borg, L.E.; Brandon, A.D.; Clynne, M.A.; Walker, R.J.

    2000-01-01

    Rhenium-osmium isotopic systematics of primitive calc-alkaline lavas from the Lassen region appear to be controlled by mantle wedge processes. Lavas with a large proportion of slab component have relatively low Re and Os abundances, and have radiogenic Os and mid ocean ridge basalt-like Sr and Pb isotopic compositions. Lavas with a small proportion of slab component have higher Re and Os elemental abundances and display mantle-like Os, Sr, Nd, and Pb isotopic compositions. Assimilation with fractional crystallization can only generate the Re-Os systematics of the Lassen lavas from a common parent if the distribution coefficient for Re in sulfide is ~40-1100 times higher than most published estimates and if most incompatible element abundances decrease during differentiation. High Re/Os ratios in mid ocean ridge basalts makes subducted oceanic crust a potential source of radiogenic Os in volcanic arcs. The slab beneath the southernmost Cascades is estimated to have 187Os/188Os ratios as high as 1.4. Mixing between a slab component and mantle wedge peridotite can generate the Os isotopic systematics of the Lassen lavas provided the slab component has a Sr/Os ratio of ~7.5X105 and Os abundances that are 100-600 times higher than mid ocean ridge basalts. For this model to be correct, Os must be readily mobilized and concentrated in the slab component, perhaps as a result of high water and HCl fugacities in this subduction environment. Another possible mechanism to account for the correlation between the magnitude of the subduction geochemical signature and Os isotopic composition involves increasing the stability of an Os-bearing phase in mantle wedge peridotites as a result of fluxing with the slab component. Melting of such a source could yield low Os magmas that are more susceptible to crustal contamination, and hence have more radiogenic Os isotopic compositions, than magmas derived from sources with a smaller contribution from the slab. Thus, the addition of the

  2. The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Franchi, Ian A.; Connolly, Harold C., Jr.; Greenwood, Richard C.; Lauretta, Dante S.; Gibson, Jenny M.

    2011-01-01

    To better understand the role of aqueous alteration on the CR chondrite parent asteroid, a whole-rock oxygen isotopic study of 20 meteorites classified as Renazzo-like carbonaceous chondrites (CR) was conducted. The CR chondrites analyzed for their oxygen isotopes were Dhofar 1432, Elephant Moraine (EET) 87770, EET 92042, EET 96259, Gao-Guenie (b), Graves Nunataks (GRA) 95229, GRA 06100, Grosvenor Mountains (GRO) 95577, GRO 03116, LaPaz Ice Field (LAP) 02342, LAP 04720, Meteorite Hills (MET) 00426, North West Africa (NWA) 801, Pecora Escarpment (PCA) 91082, Queen Alexandra Range (QUE) 94603, QUE 99177, and Yamato-793495 (Y-793495). Three of the meteorites, Asuka-881595 (A-881595), GRA 98025, and MET 01017, were found not to be CR chondrites. The remaining samples concur petrographically and with the well-established oxygen-isotope mixing line for the CR chondrites. Their position along this mixing line is controlled both by the primary oxygen-isotopic composition of their individual components and their relative degree of aqueous alteration. Combined with literature data and that of this study, we recommend the slope for the CR-mixing line to be 0.70 ± 0.04 (2σ), with a δ 17O-intercept of -2.23 ± 0.14 (2σ). Thin sections of Al Rais, Shişr 033, Renazzo, and all but 3 samples analyzed for oxygen isotopes were studied petrographically. The abundance of individual components is heterogeneous among the CR chondrites, but FeO-poor chondrules and matrix are the most abundant constituents and therefore, dominate the whole-rock isotopic composition. The potential accreted ice abundance, physico-chemical conditions of aqueous alteration (e.g. temperature and composition of the fluid) and its duration control the degree of alteration of individual CR chondrites. Combined with literature data, we suggest that LAP 02342 was exposed to lower temperature fluid during alteration than GRA 95229. With only two falls, terrestrial alteration of the CR chondrites complicates the

  3. Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies.

    PubMed

    Fischer, Anko; Manefield, Mike; Bombach, Petra

    2016-10-01

    Stable isotope tools are increasingly applied for in-depth evaluation of biodegradation of organic pollutants at contaminated field sites. They can be divided into three methods i) determination of changes in natural abundance of stable isotopes using compound-specific stable isotope analysis (CSIA), ii) detection of incorporation of stable-isotope label from a stable-isotope labelled target compound into degradation and/or mineralisation products and iii) determination of stable-isotope label incorporation into biomarkers using stable isotope probing (SIP). Stable isotope tools have been applied as key monitoring tools for multiple-line-of-evidence-approaches (MLEA) for sensitive evaluation of pollutant biodegradation. This review highlights the application of CSIA, SIP and MLEA including stable isotope tools for assessing natural and stimulated biodegradation of organic pollutants in field studies dealing with soil and groundwater contaminations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A Formation Timescale of the Galactic Halo from Mg Isotopes in Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Carlos, Marília; Karakas, Amanda I.; Cohen, Judith G.; Kobayashi, Chiaki; Meléndez, Jorge

    2018-04-01

    We determine magnesium isotopic abundances of metal-poor dwarf stars from the galactic halo, to shed light on the onset of asymptotic giant branch (AGB) star nucleosynthesis in the galactic halo and constrain the timescale of its formation. We observed a sample of eight new halo K dwarfs in a metallicity range of ‑1.9 < [Fe/H] < ‑0.9 and 4200 < T eff(K) < 4950, using the HIRES spectrograph at the Keck Observatory (R ≈ 105 and 200 ≤ S/N ≤ 300). We obtain magnesium isotopic abundances by spectral synthesis on three MgH features and compare our results with galactic chemical evolution models. With the current sample, we almost double the number of metal-poor stars with Mg isotopes determined from the literature. The new data allow us to determine the metallicity when the 26Mg abundances start to become important, [Fe/H] ∼ ‑1.4 ± 0.1. The data with [Fe/H] > ‑1.4 are somewhat higher (1–3σ) than previous chemical evolution model predictions, indicating perhaps higher yields of the neutron-rich isotopes. Our results using only AGB star enrichment suggest a timescale for formation for the galactic halo of about 0.3 Gyr, but considering also supernova enrichment, the upper limit for the timescale formation is about 1.5 Gyr. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Stable isotope deltas: Tiny, yet robust signatures in nature

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  6. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isselhardt, Brett H.

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/ 238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser inmore » a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.« less

  7. Alpha-capture reaction rates for 22 Ne (α , n) via sub-Coulomb alpha-transfer and its effect on final abundances of s-process isotopes

    NASA Astrophysics Data System (ADS)

    Jayatissa, Heshani; Rogachev, Grigory; Koshchiy, Yevgeny; Goldberg, Vladilen; Hooker, Joshua; Hunt, Curtis; Magana, Cordero; Roeder, Brian; Saastamoinen, Antti; Spiridon, Alexandria; Upadhyayula, Sriteja; Trippella, Oscar

    2017-09-01

    The 22 Ne (α , n) reaction is a very important neutron source reaction for the slow neutron capture process (s-process) in asymptotic giant branch stars. These direct measurements are very difficult to carry out at the energy regimes of interest for astrophysics (Gamow energies) due to the extremely small reaction cross section. The large uncertainties introduced when extrapolating direct measurements at high energies down to the Gamow energies can be overcome by measuring the Asymptotic Normalization Coefficients (ANC) of the relevant states using α-transfer reactions at sub-Coulomb energies to reduce the optical model dependence. The study of the 22Ne(6Li,d) and 22Ne(7Li,t) reaction was carried out at the Cyclotron Institute at Texas A&M University. The α-ANC measurements for the near α-threshold resonances of 26Mg provide constraints for the 22Ne(α,n) reaction rate. The effect of this reaction rate on the final abundances of the s-process isotopes will be discussed.

  8. Calcium Isotope Systematics During Development of the Domestic Chicken (Gallus gallus)

    NASA Astrophysics Data System (ADS)

    Wheatley, P. V.

    2003-12-01

    Calcium isotope distributions have been recognized as showing systematic and predictable fractionation in nature. However, most of the observed calcium isotope fractionation to date is due to biological processes. The presence of abundant amounts of calcium in mineralized tissues makes the isotopic system of calcium particularly valuable in biological and paleobiological questions involving biomineralization. In order to apply calcium isotope systematics to paleobiological questions the changes in the calcium isotope signatures of mineralized tissue in modern animals should be studied. My study observed the domestic chicken (Gallus gallus) through embryologic ontogeny. This was accomplished by obtaining fertilized eggs staged in a growth series from day 12 to day 20. The eggs were dissected and shell, embryonic bone, albumen, and yolk were analyzed in order to characterize the calcium isotopic composition of the individual components over the course of the growth series. Several systematic changes in the isotopic signatures of various tissues were observed during the course of the development of the embryos. In general, mineralization in biological systems preferentially partitions the lighter isotopes of calcium into hard parts. As a result of this fractionation during mineralization, partitioning of light isotopes of calcium into the mineralized tissues may result in residual tissues being enriched in the heavier isotopes as ontogeny progresses. Better understanding of the behavior of calcium in modern biological systems will improve its application to fossils and expand the number of paleobiological and evolutionary questions that can be addressed using calcium isotopic data.

  9. High-coverage quantitative proteomics using amine-specific isotopic labeling.

    PubMed

    Melanson, Jeremy E; Avery, Steven L; Pinto, Devanand M

    2006-08-01

    Peptide dimethylation with isotopically coded formaldehydes was evaluated as a potential alternative to techniques such as the iTRAQ method for comparative proteomics. The isotopic labeling strategy and custom-designed protein quantitation software were tested using protein standards and then applied to measure proteins levels associated with Alzheimer's disease (AD). The method provided high accuracy (10% error), precision (14% RSD) and coverage (70%) when applied to the analysis of a standard solution of BSA by LC-MS/MS. The technique was then applied to measure protein abundance levels in brain tissue afflicted with AD relative to normal brain tissue. 2-D LC-MS analysis identified 548 unique proteins (p<0.05). Of these, 349 were quantified with two or more peptides that met the statistical criteria used in this study. Several classes of proteins exhibited significant changes in abundance. For example, elevated levels of antioxidant proteins and decreased levels of mitochondrial electron transport proteins were observed. The results demonstrate the utility of the labeling method for high-throughput quantitative analysis.

  10. Stable Isotope Identification of Nitrogen Sources for United States (U.S.) Pacific Coast Estuaries

    NASA Astrophysics Data System (ADS)

    Brown, C. A.; Kaldy, J. E.; Fong, P.; Fong, C.; Mochon Collura, T.; Clinton, P.

    2016-02-01

    Nutrients are the leading cause of water quality impairments in the United States, and as a result tools are needed to identify the sources of nutrients. We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected macroalgae and analyzed these samples for natural abundance of stable isotopes (δ15N) and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green macroalgae were compared to δ15N of dissolved inorganic nitrogen of oceanic and watershed end members. There was a latitudinal gradient in δ15N of macroalgae with southern estuaries being 7 per mil heavier than northern estuaries. Gradients in isotope data were compared to nitrogen sources estimated by the USGS using the SPARROW model. In California estuaries, the elevation of isotope data appeared to be related to anthropogenic nitrogen sources. In Oregon systems, the nitrogen levels of streams flowing into the estuaries are related to forest cover, rather than to developed land classes. In Oregon estuaries, the δ15N of macroalgae suggested that the ocean and nitrogen-fixing trees in the watersheds were the dominant nitrogen sources with heavier sites located near the estuary mouth. In California estuaries, the gradient was reversed with heavier sites located upriver. In some Oregon estuaries, there was an elevation an elevation of δ15N above marine end members in the vicinity of wastewater treatment facility discharge locations, suggesting isotopes may be useful for distinguishing inputs along an estuarine gradient.

  11. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks

    USGS Publications Warehouse

    Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, Charles N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.

    2012-01-01

    The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5‰) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2‰. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.

  12. The Chelyabinsk Fall Highly Siderophile Element Abundance and 187Os/188Os Composition and Comparison with Ordinary and Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Day, J. M. D.; Corder, C. A.; Dhaliwal, J. K.; Liu, Y.; Taylor, L. A.

    2014-09-01

    New osmium isotope and highly siderophile element abundance data are presented for the Chelyabinsk ordinary chondrite fall (February 2013) and placed into context with new data for ordinary and carbonaceous chondrites.

  13. Comparison of distributed reacceleration and leaky-box models of cosmic-ray abundances (Z = 3-28)

    NASA Technical Reports Server (NTRS)

    Letaw, John R.; Silberberg, Rein; Tsao, C. H.

    1993-01-01

    A large collection of elemental and isotopic cosmic-ray data has been analyzed using the leaky-box transport model with and without reacceleration in the interstellar medium. Abundances of isotopes and elements with charges Z = 3-28 and energies E = 10 MeV/nucleon-1 TeV/nucleon were explored. Our results demonstrate that reacceleration models make detailed and accurate predictions with the same number of parameters or fewer as standard leaky-box models. Ad hoc fitting parameters in the standard model are replaced by astrophysically significant reacceleration parameters. Distributed reacceleration models explain the peak in secondary-to-primary ratios around 1 GeV/nucleon. They diminish the discrepancy between rigidity-dependent leakage and energy-independent anisotropy. They also offer the possibility of understanding isotopic anomalies at low energy.

  14. Ultrahigh thermal conductivity of isotopically enriched silicon

    NASA Astrophysics Data System (ADS)

    Inyushkin, Alexander V.; Taldenkov, Alexander N.; Ager, Joel W.; Haller, Eugene E.; Riemann, Helge; Abrosimov, Nikolay V.; Pohl, Hans-Joachim; Becker, Peter

    2018-03-01

    Most of the stable elements have two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably strong isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1 K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately at low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (˜80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.

  15. Initial results from the Caltech/DRSI balloon-borne isotope experiment

    NASA Technical Reports Server (NTRS)

    Schindler, S. M.; Buffington, A.; Christian, E. C.; Grove, J. E.; Lau, K. H.; Stone, E. C.; Rasmussen, I. L.; Laursen, S.

    1985-01-01

    The Caltech/DSRI balloonborne High Energy Isotope Spectrometer Telescope (HEIST) was flown successfully from Palestine, Texas on 14 May, 1984. The experiment was designed to measure cosmic ray isotopic abundances from neon through iron, with incident particle energies from approx. 1.5 to 2.2 GeV/nucleon depending on the element. During approximately 38 hours at float altitude, 100,000 events were recorded with Z or = 6 and incident energies approx. 1.5 GeV/nucleon. We present results from the ongoing data analysis associated with both the preflight Bevalac calibration and the flight data.

  16. Initial results from the Caltech/DSRI balloon-borne isotope experiment

    NASA Technical Reports Server (NTRS)

    Schindler, S. M.; Buffington, A.; Christian, E. C.; Grove, J. E.; Lau, K. H.; Stone, E. C.; Rasmussen, I. L.; Laursen, S.

    1985-01-01

    The Caltech/DSRI balloon-borne High Energy Isotope Spectrometer Telescope (HEIST) was flown successfully from Palestine, Texas on 14 May 1984. The experiment was designed to measure cosmic ray isotopic abundances from neon through iron, with incident particle energies from approximately 1.5 to 2.2 GeV/nucleon, depending on the element. During approximately 38 hours at float altitude, 10 to the 5th events were recorded with Z or = 6 and incident energies 1.5 GeV/nucleon. We present results from the ongoing data analysis associated with both the pre-flight Bevalac calibration and the flight data.

  17. Highly Siderophile Elements, 187Re-187 Os and 182Hf-182W Isotopic Systematics of Early Solar System Materials: Constraining the Early Evolution of Chondritic and Achondritic Parent Bodies

    NASA Astrophysics Data System (ADS)

    Archer, Gregory J.

    Highly siderophile element (HSE) abundances and 187Re- 187Os isotopic systematics for H chondrites and ungrouped achondrites, as well as 182Hf-182W isotopic systematics of H and CR chondrites are reported. Achondrite fractions with higher HSE abundances show little disturbance of 187Re-187Os isotopic systematics. By contrast, isotopic systematics for lower abundance fractions are consistent with minor Re mobilization. For magnetically separated H chondrite fractions, the magnitudes of disturbance for the 187Re-187Os isotopic system follow the trend coarse-metal isotopic system follow the trend coarse-metalabundances that are nearly chondritic and consistent with limited large-scale differentiation of its parent body. Most likely, this rock formed on a chondritic parent body, and crystallized from a melt from which little or no metal was removed. Modest variations in the relative HSE abundances among bulk pieces may have been the result of sulfide loss or evolving oxidation state during crystallization. The HSE abundances of ungrouped achondrite NWA 7325 are highly fractionated and depleted, relative to bulk chondrites. Therefore, its parent body must have undergone complex processing, including core formation, late accretion, and igneous processes. A negative thermal ionization mass spectrometry (N-TIMS) technique was developed to measure the W isotopic compositions of H chondrite metal fractions. This method is capable of measuring 182W/184W to an external precision of 5.7 ppm and 183W/184W to 6.7 ppm, which is ˜2-3x more precise than the most recently published technique capable of measuring 182W/184W and 183W/184W. The HSE abundances of H chondrite nonmagnetic fractions are too high to reflect equilibration between metals and silicates. There is also no correlation between metamorphic grade and apparent degree of equilibration. The 182Hf-182W isotopic systematics of H chondrite

  18. Non-CI refractory lithophile abundances in bulk planetary materials

    NASA Astrophysics Data System (ADS)

    Dauphas, N.

    2015-12-01

    Refractory inclusions in meteorites show evidence for fractionation of refractory lithophile elements relative to one another. For bulk planetary materials, it is most often assumed that refractory lithophile elements (e.g., Ca, Al, Ti, REEs) are in proportions similar to CI carbonaceous chondrites, which is taken to be a proxy for solar composition. A diagnostic feature of REE patterns in refractory inclusions in meteorites is the presence of thulium anomalies, arising from the fact that this heavy REE is more volatile than the highly refractory HREEs surrounding it (Tm/Tm* is defined relative to either Er-Yb or Er-Lu). Tm anomalies thus represent an excellent diagnostic tool to test the assumption that refractory lithophile elements have uniform relative abundances at a bulk planetary scale. Prior to this work, high precision Tm measurements were lacking because it is mono-isotopic and as such is not amenable to high-precision single spike measurements. We have developed a multi-collector REE abundance measurement technique to measure all REEs at high precision, including the mono-isotopic ones. This technique was used to revise the abundance of CI and PAAS REE abundances (Pourmand et al. 2012) and the CI composition agrees well with an independent study (Barrat et al. 2012). The same technique was applied to measure REE patterns in 41 chondrites as well as terrestrial rocks (Dauphas and Pourmand, 2015). Our results reveal the presence of Tm anomalies of about -4.5 % in terrestrial rocks, enstatite and ordinary chondrites, relative to carbonaceous chondrites including CIs. This demonstrates that the assumption that refractory lithophile elements are in constant proportions among planetary bodies is unwarranted. It also shows that carbonaceous chondrites cannot be a major constituent of the Earth. The presence of Tm anomalies in meteorites and terrestrial rocks suggests that either (i) the material in the inner part of the solar system was formed from a gas

  19. Human baby hair amino acid natural abundance 15N-isotope values are not related to the 15N-isotope values of amino acids in mother's breast milk protein.

    PubMed

    Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J

    2013-12-01

    Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P < 0.001; δ(13)C, P < 0.001). Furthermore, the δ(15)N (‰) of individual amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.

  20. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  1. Precise and accurate isotope ratio measurements by ICP-MS.

    PubMed

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  2. Rare earth element abundances in presolar SiC

    NASA Astrophysics Data System (ADS)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  3. Planetary Accretion, Oxygen Isotopes and the Central Limit Theorem

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Hill, Hugh G. M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The accumulation of presolar dust into increasingly larger aggregates (CAIs and Chondrules, Asteroids, Planets) should result in a very drastic reduction in the numerical spread in oxygen isotopic composition between bodies of similar size, in accord with the Central Limit Theorem. Observed variations in oxygen isotopic composition are many orders of magnitude larger than would be predicted by a simple, random accumulation model that begins in a well-mixed nebula - no matter which size-scale objects are used as the beginning or end points of the calculation. This discrepancy implies either that some as yet unspecified process acted on the solids in the Solar Nebula to increase the spread in oxygen isotopic composition during each and every stage of accumulation or that the nebula was heterogeneous and maintained this heterogeneity throughout most of nebular history. Large-scale nebular heterogeneity would have significant consequences for many areas of cosmochemistry, including the application of some well-known isotopic systems to the dating of nebular events or the prediction of bulk compositions of planetary bodies on the basis of a uniform cosmic abundance.

  4. High-Resolution Triple Resonance Autoionization of Uranium Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Philipp G.; Wendt, K; Bushaw, Bruce A.

    2005-11-01

    The near-threshold autoionization (AI) spectrum of uranium has been investigated by triple-resonance excitation with single-mode continuous lasers. Spectra were recorded over the first {approx}30 cm-1 above the first ionization limit at a resolution of 3x10-4 cm 1 using intermediate states with different J values (6, 7, 8) to assign AI level total angular momentum JAI = 5 to 9. Resonances with widths ranging from 8 MHz to 30 GHz were observed; the strongest ones have JAI = 9 and widths of {approx} 60 MHz. Hyperfine structures for 235U and isotope shifts for 234,235U have been measured in the two intermediatemore » levels and in the final AI level for the most favorable excitation path. These measurements were performed using aqueous samples containing sub-milligram quantities of uranium at natural isotopic abundances, indicating the potential of this approach for trace isotope ratio determinations.« less

  5. Lithium isotope constraints on crust-mantle interactions and surface processes on Mars

    NASA Astrophysics Data System (ADS)

    Magna, Tomáš; Day, James M. D.; Mezger, Klaus; Fehr, Manuela A.; Dohmen, Ralf; Aoudjehane, Hasnaa Chennaoui; Agee, Carl B.

    2015-08-01

    Lithium abundances and isotope compositions are reported for a suite of martian meteorites that span the range of petrological and geochemical types recognized to date for Mars. Samples include twenty-one bulk-rock enriched, intermediate and depleted shergottites, six nakhlites, two chassignites, the orthopyroxenite Allan Hills (ALH) 84001 and the polymict breccia Northwest Africa (NWA) 7034. Shergottites unaffected by terrestrial weathering exhibit a range in δ7Li from 2.1 to 6.2‰, similar to that reported for pristine terrestrial peridotites and unaltered mid-ocean ridge and ocean island basalts. Two chassignites have δ7Li values (4.0‰) intermediate to the shergottite range, and combined, these meteorites provide the most robust current constraints on δ7Li of the martian mantle. The polymict breccia NWA 7034 has the lowest δ7Li (-0.2‰) of all terrestrially unaltered martian meteorites measured to date and may represent an isotopically light surface end-member. The new data for NWA 7034 imply that martian crustal surface materials had both a lighter Li isotope composition and elevated Li abundance compared with their associated mantle. These findings are supported by Li data for olivine-phyric shergotitte NWA 1068, a black glass phase isolated from the Tissint meteorite fall, and some nakhlites, which all show evidence for assimilation of a low-δ7Li crustal component. The range in δ7Li for nakhlites (1.8 to 5.2‰), and co-variations with chlorine abundance, suggests crustal contamination by Cl-rich brines. The differences in Li isotope composition and abundance between the martian mantle and estimated crust are not as large as the fractionations observed for terrestrial continental crust and mantle, suggesting a difference in the styles of alteration and weathering between water-dominated processes on Earth versus possibly Cl-S-rich brines on Mars. Using high-MgO shergottites (>15 wt.% MgO) it is possible to estimate the δ7Li of Bulk Silicate Mars

  6. A Method to Determine 18O Kinetic Isotope Effects in the Hydrolysis of Nucleotide Triphosphates

    PubMed Central

    Du, Xinlin; Ferguson, Kurt; Sprang, Stephen R.

    2007-01-01

    A method to determine 18O kinetic isotope effects (KIE) in the hydrolysis of GTP is described that is generally applicable to reactions involving other nucleotide triphosphates. Internal competition, wherein the substrate of the reaction is a mixture of 18O-labeled and unlabeled nucleotides, is employed and the change in relative abundance of the two species in the course of the reaction is used to calculate KIE. The nucleotide labeled with 18O at sites of mechanistic interest also contains 13C at all carbon positions, while the 16O-nucleotide is depleted of 13C. The relative abundance of the labeled and unlabeled substrates or products is reflected in the carbon isotope ratio (13C/12C) in GTP or GDP, which is determined by use of a liquid chromatography-coupled isotope ratio mass spectrometer (LC-coupled IRMS). The LC is coupled to the IRMS by an Isolink™ interface (ThermoFinnigan). Carbon isotope ratios can be determined with accuracy and precision greater than 0.04%, and are consistent over an order of magnitude in sample amount. KIE values for Ras/NF1333-catalyzed hydrolysis of [β18O3,13C]GTP were determined by change in the isotope ratio of GTP or GDP or the ratio of the isotope ratio of GDP to that of GTP. KIE values computed in the three ways agree within 0.1%, although the method using the ratio of isotope ratios of GDP and GTP gives superior precision (< 0.1%). A single KIE measurement can be conducted in 25 minutes with less than 5 μg nucleotide reaction product. PMID:17963711

  7. Oceanic heterotrophic dinoflagellates: distribution, abundance, and role as microzooplankton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lessard, E.J.

    1984-01-01

    The primary objectives of this thesis were to determine the distribution and abundance of heterotrophic dinoflagellates across the Gulf Stream system off Cape Hatteras and to assess the potential grazing impact of these microheterotrophs in plankton communities. A list of species encountered in this study and their trophic status based on epifluorescence is presented, as well as observations on the presence of external or internal symbionts. The abundance of heterotrophic dinoflagellates across the Gulf Stream region off Cape Hatteras was determined from bimonthly net tow samples over a year and from whole water samples in March. Their average abundance wasmore » twice that of net ciliates in the net plankton and ten times that of ciliates in the nanoplankton. An isotope technique was developed to measure grazing rates of individual dinoflaggellates and other microzooplankton which cannot be separated in natural populations on the basis of size. /sup 3/H-thymidine and /sup 14/C-bicarbonate were used to label natural heterotrophic (bacteria and bacterivores) and autotrophic (phytoplankton and herbivores) food, respectively. Estimates of the grazing impact of heterotrophic kinoflagellates relative to other groups of heterotrophs on phytoplankton and bacteria were made by combining abundance data and clearance rates. Such calculations suggested that heterotrophic dinoflagellates may be an important group of grazers in oceanic waters.« less

  8. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples

    NASA Astrophysics Data System (ADS)

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; Spencer, Khalil J.

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10-6) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.

  9. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples.

    PubMed

    Stanley, F E; Byerly, Benjamin L; Thomas, Mariam R; Spencer, Khalil J

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10(-6)) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods. Graphical Abstract ᅟ.

  10. Spectroscopic abundance analyses of the 3He stars HD 185330 and 3 Cen A

    NASA Astrophysics Data System (ADS)

    Sadakane, Kozo; Nishimura, Masayoshi

    2018-04-01

    Abundances of 21 elements in two 3He stars, HD 185330 and 3 Cen A, have been analysed relative to the well-studied sharp-lined B3 V star ι Her. Six elements (P, Ti, Mn, Fe, Ni, and Br) are over-abundant in these two peculiar stars, while six elements (C, O, Mg, Al, S, and Cl) are under-abundant. Absorption lines of the two rarely observed heavy elements Br II and Kr II are detected in both stars and these elements are both over-abundant. The centroid wavelengths of the Ca II infrared triplet lines in these stars are redshifted relative to those lines in ι Her and the presence of heavy isotopes of Ca (mass number 44-46) in these two stars is confirmed. In spite of these similarities, there are several remarkable differences in abundance pattern between these two stars. N is under-abundant in HD 185330, as in many Hg-Mn stars, while it is significantly over-abundant in 3 Cen A. P and Ga are both over-abundant in 3 Cen A, while only P is over-abundant and no trace of absorption line of Ga II can be found in HD 185330. Large over-abundances of Kr and Xe are found in both stars, while the abundance ratio Kr/Xe is significantly different between them (-1.4 dex in HD 185330 and +1.2 dex in 3 Cen A). Some physical explanations are needed to account for these qualitative differences.

  11. Spectroscopic abundance analyses of the 3He stars HD 185330 and 3 Cen A

    NASA Astrophysics Data System (ADS)

    Sadakane, Kozo; Nishimura, Masayoshi

    2018-06-01

    Abundances of 21 elements in two 3He stars, HD 185330 and 3 Cen A, have been analysed relative to the well-studied sharp-lined B3 V star ι Her. Six elements (P, Ti, Mn, Fe, Ni, and Br) are over-abundant in these two peculiar stars, while six elements (C, O, Mg, Al, S, and Cl) are under-abundant. Absorption lines of the two rarely observed heavy elements Br II and Kr II are detected in both stars and these elements are both over-abundant. The centroid wavelengths of the Ca II infrared triplet lines in these stars are redshifted relative to those lines in ι Her and the presence of heavy isotopes of Ca (mass number 44-46) in these two stars is confirmed. In spite of these similarities, there are several remarkable differences in abundance pattern between these two stars. N is under-abundant in HD 185330, as in many Hg-Mn stars, while it is significantly over-abundant in 3 Cen A. P and Ga are both over-abundant in 3 Cen A, while only P is over-abundant and no trace of absorption line of Ga II can be found in HD 185330. Large over-abundances of Kr and Xe are found in both stars, while the abundance ratio Kr/Xe is significantly different between them (-1.4 dex in HD 185330 and +1.2 dex in 3 Cen A). Some physical explanations are needed to account for these qualitative differences.

  12. Isotopic evidence of early hominin diets

    NASA Astrophysics Data System (ADS)

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Kyalo Manthi, Fredrick; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-06-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  13. Isotopic evidence of early hominin diets

    PubMed Central

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Manthi, Fredrick Kyalo; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-01-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  14. The 13C-Pocket Structure In AGB Models: Constraints From Zirconium Isotope Abundances In Single Mainstream SiC Grains

    DOE PAGES

    Liu, Nan; Gallino, Roberto; Bisterzo, Sara; ...

    2014-06-04

    In this paper, we present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different 13C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar 92Zr/ 94Zr ratios can be predicted by adopting a 13C-pocket with a flat 13C profile, instead of the previous decreasing-with-depth 13C profile. Finally, the improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat 13C profile based on barium isotopes in mainstream SiC grains by Liu et al.

  15. THE NITROGEN ISOTOPIC COMPOSITION OF METEORITIC HCN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pizzarello, Sandra, E-mail: pizzar@asu.edu

    2014-12-01

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organicmore » compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.« less

  16. Nitrogen isotopic signatures in the Acapulco meteorite

    NASA Technical Reports Server (NTRS)

    Sturgeon, G.; Marti, K.

    1991-01-01

    N isotopic abundances are reported for a bulk sample of the unique meteorite Acapulco. Although the mineral chemistry indicates a high degree of recrystallization under redox conditions between those of H and E chondrites (Palme et al., 1981), the presence of two distinct N isotopic signatures shows that the carriers of these N components were not equilibrated. In stepwise pyrolysis, the larger (65 percent) N component is released mostly below 1000 C and reveals a signature of delta(N-15) = 8.9 + or - 1.2 per mil, which is within the range observed in chondrites. A second 'light' component appears above 1000 C and has a signature of delta(N-15) less than or equal to -110.5 + or - 4.0 per mil (uncorrected for spallation N-15).

  17. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism

    PubMed Central

    2016-01-01

    Over a century ago, Frederick Soddy provided the first evidence for the existence of isotopes; elements that occupy the same position in the periodic table are essentially chemically identical but differ in mass due to a different number of neutrons within the atomic nucleus. Allied to the discovery of isotopes was the development of some of the first forms of mass spectrometers, driven forward by the Nobel laureates JJ Thomson and FW Aston, enabling the accurate separation, identification, and quantification of the relative abundance of these isotopes. As a result, within a few years, the number of known isotopes both stable and radioactive had greatly increased and there are now over 300 stable or radioisotopes presently known. Unknown at the time, however, was the potential utility of these isotopes within biological disciplines, it was soon discovered that these stable isotopes, particularly those of carbon (13C), nitrogen (15N), oxygen (18O), and hydrogen (2H) could be chemically introduced into organic compounds, such as fatty acids, amino acids, and sugars, and used to “trace” the metabolic fate of these compounds within biological systems. From this important breakthrough, the age of the isotope tracer was born. Over the following 80 yrs, stable isotopes would become a vital tool in not only the biological sciences, but also areas as diverse as forensics, geology, and art. This progress has been almost exclusively driven through the development of new and innovative mass spectrometry equipment from IRMS to GC‐MS to LC‐MS, which has allowed for the accurate quantitation of isotopic abundance within samples of complex matrices. This historical review details the development of stable isotope tracers as metabolic tools, with particular reference to their use in monitoring protein metabolism, highlighting the unique array of tools that are now available for the investigation of protein metabolism in vivo at a whole body down to a single protein level

  18. Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1% (Units for delta are parts per thousand or per million (%).) for samples larger than 400 pmol and better than 0.5% for samples larger than 25 pmol (0.1% 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05%. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, delta values were within 0.25% of results obtained using conventional techniques and standard deviations were better than 0.35%. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23%, respectively, when 2 nmol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.

  19. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions

    PubMed Central

    Hin, Remco C.; Coath, Christopher D.; Carter, Philip J.; Nimmo, Francis; Lai, Yi-Jen; Pogge von Strandmann, Philip A.E.; Willbold, Matthias; Leinhardt, Zoë M.; Walter, Michael J.; Elliott, Tim

    2017-01-01

    It has long been recognised that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and by inference the primordial disk from which they formed. An important question has been whether the notable volatile depletions of planetary bodies are a consequence of accretion1, or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3–6. Using a new analytical approach to address key issues of accuracy inherent in conventional methods, we show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour followed by vapour escape during accretionary growth of planetesimals generates appropriate residual compositions. Our modelling implies that the isotopic compositions of Mg, Si and Fe and the relative abundances of the major elements of Earth, and other planetary bodies, are a natural consequence of substantial (~40% by mass) vapour loss from growing planetesimals by this mechanism. PMID:28959965

  20. Preliminary results of oxygen isotope ratio measurement with a particle-gamma coincidence method

    NASA Astrophysics Data System (ADS)

    Borysiuk, Maciek; Kristiansson, Per; Ros, Linus; Abdel, Nassem S.; Elfman, Mikael; Nilsson, Charlotta; Pallon, Jan

    2015-04-01

    The possibility to study variations in the oxygen isotopic ratio with photon tagged nuclear reaction analysis (pNRA) is evaluated in the current work. The experiment described in the article was performed at Lund Ion Beam Analysis Facility (LIBAF) with a 2 MeV deuteron beam. Isotopic fractionation of light elements such as carbon, oxygen and nitrogen is the basis of many analytical tools in hydrology, geology, paleobiology and paleogeology. IBA methods provide one possible tool for measurement of isotopic content. During this experimental run we focused on measurement of the oxygen isotopic ratio. The measurement of stable isotopes of oxygen has a number of applications; the particular one driving the current investigation belongs to the field of astrogeology and specifically evaluation of fossil extraterrestrial material. There are three stable isotopes of oxygen: 16O, 17O and 18O. We procured samples highly enriched with all three isotopes. Isotopes 16O and 18O were easily detected in the enriched samples, but no significant signal from 17O was detected in the same samples. The measured yield was too low to detect 18O in a sample with natural abundances of oxygen isotopes, at least in the current experimental setup, but the spectral line from the reaction with 16O was clearly visible.

  1. Isotope ratio mass spectrometry in nutrition research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke, A.H.

    Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then usedmore » as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.« less

  2. The Oxygen Isotopic Composition of the Sun

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.; Kallio, A.; Heber, V. S.; Jarzebinski, G.; Mao, P.; Coath, C.; Kunihiro, T.; Wiens, R. C.; Judith, A.; Burnett, D. S.

    2010-12-01

    An accurate and precise determination of the oxygen isotopic composition of the Sun is the highest priority scientific goal of the Genesis Mission [1] as such data would provide a baseline from which one could interpret the oxygen isotopic anomalies found at all spatial scales in inner solar system materials. We have measured oxygen isotope compositions of implanted solar wind in 40 spots along a radial traverse of the Genesis SiC target sample 60001 by depth profiling with the UCLA MegaSIMS [2]. Mass-dependent fractionation induced by the solar wind concentrator [3] ion optics was corrected by comparison of the concentrator 22Ne/20Ne with that measured in a bulk solar wind target (diamond-like carbon on Si, [4]). The solar wind captured at L1 has an isotopic composition of (δ18O, δ17O) ≈ (-99, -79)‰, a value which is far removed from the terrestrial mass fractionation line. Profiles from the central portion of the target, where solar concentrations are highest and background corrections minimal, yield a mean Δ17O = -28.3 ± 1.8 ‰ indicating that the Earth and other planetary materials from the inner solar system are highly depleted in 16O relative to the solar wind. A mass-dependent fractionation of ~ -20%/amu in the acceleration of solar wind is required if we hypothesize that the photospheric oxygen isotope value, which represents the bulk starting composition of the solar system, is on the 16O-mixing line characteristic of refractory phase in primitive meteorites [5]. With this assumption, our preferred value for the bulk solar oxygen isotope composition is δ18O ≈ δ17O ≈ -57‰. A mechanism is required to fractionate oxygen isotopes in a non-mass-dependent manner to deplete 16O by ~6 to 7% in the rocky materials of the solar nebula. As oxygen is the third most abundant element in the solar system, and the most abundant in the terrestrial planets, this mechanism must operate on a large scale. Isotope-selective photochemistry, for example as in

  3. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N

  4. Isotopic And Geochemical Investigations Of Meteorites

    NASA Technical Reports Server (NTRS)

    Walker, Richard J.

    2005-01-01

    The primary goals of our research over the past four years are to constrain the timing of certain early planetary accretion/differentiation events, and to constrain the proportions and provenance of materials involved in these processes. This work was achieved via the analysis and interpretation of long- and short-lived isotope systems, and the study of certain trace elements. Our research targeted these goals primarily via the application of the Re-187, Os-187, Pt-190 Os-186 Tc-98 Ru-99 and Tc-99 Ru-99 isotopic systems, and the determination/modeling of abundances of the highly siderophile elements (HSE; including Re, Os, Ir, Ru, Pd, Pt, and maybe Tc). The specific events we examined include the segregation and crystallization histories of asteroidal cores, the accretion and metamorphic histories of chondrites and chondrite components, and the accretionary and differentiation histories of Mars and the Moon.

  5. Potassium Isotopic Compositions of NIST Potassium Standards and 40Ar/39Ar Mineral Standards

    NASA Technical Reports Server (NTRS)

    Morgan, Leah; Tappa, Mike; Ellam, Rob; Mark, Darren; Higgins, John; Simon, Justin I.

    2013-01-01

    Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25per mille level (1s) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards.

  6. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater

    USGS Publications Warehouse

    Sigman, D.M.; Casciotti, K.L.; Andreani, M.; Barford, C.; Galanter, M.; Böhlke, J.K.

    2001-01-01

    We report a new method for measurement of the isotopic composition of nitrate (NO3-) at the natural-abundance level in both seawater and freshwater. The method is based on the isotopic analysis of nitrous oxide (N2O) generated from nitrate by denitrifying bacteria that lack N2O-reductase activity. The isotopic composition of both nitrogen and oxygen from nitrate are accessible in this way. In this first of two companion manuscripts, we describe the basic protocol and results for the nitrogen isotopes. The precision of the method is better than 0.2‰ (1 SD) at concentrations of nitrate down to 1 μM, and the nitrogen isotopic differences among various standards and samples are accurately reproduced. For samples with 1 μM nitrate or more, the blank of the method is less than 10% of the signal size, and various approaches may reduce it further.

  7. The origin of volatile element depletion in early solar system material: Clues from Zn isotopes in chondrules

    NASA Astrophysics Data System (ADS)

    Pringle, Emily A.; Moynier, Frédéric; Beck, Pierre; Paniello, Randal; Hezel, Dominik C.

    2017-06-01

    Volatile lithophile elements are depleted in the different planetary materials to various degrees, but the origin of these depletions is still debated. Stable isotopes of moderately volatile elements such as Zn can be used to understand the origin of volatile element depletions. Samples with significant volatile element depletions, including the Moon and terrestrial tektites, display heavy Zn isotope compositions (i.e. enrichment of 66Zn vs. 64Zn), consistent with kinetic Zn isotope fractionation during evaporation. However, Luck et al. (2005) found a negative correlation between δ66Zn and 1/[Zn] between CI, CM, CO, and CV chondrites, opposite to what would be expected if evaporation caused the Zn abundance variations among chondrite groups. We have analyzed the Zn isotope composition of multiple samples of the major carbonaceous chondrite classes: CI (1), CM (4), CV (2), CO (4), CB (2), CH (2), CK (4), and CK/CR (1). The bulk chondrites define a negative correlation in a plot of δ66Zn vs 1/[Zn], confirming earlier results that Zn abundance variations among carbonaceous chondrites cannot be explained by evaporation. Exceptions are CB and CH chondrites, which display Zn systematics consistent with a collisional formation mechanism that created enrichment in heavy Zn isotopes relative to the trend defined by CI-CK. We further report Zn isotope analyses of chondrite components, including chondrules from Allende (CV3) and Mokoia (CV3), as well as an aliquot of Allende matrix. All chondrules are enriched in light Zn isotopes (∼500 ppm on 66Zn/64Zn) relative to the bulk, contrary to what would be expected if Zn were depleted during evaporation, on the other hand the matrix has a complementary heavy isotope composition. We report sequential leaching experiments in un-equilibrated ordinary chondrites, which show sulfides are isotopically heavy compared to silicates and the bulk meteorite by ca. +0.65 per mil on 66Zn/64Zn. We suggest isotopically heavy sulfides were

  8. Nitrogen isotopic fractionation during plasma synthesis of Titan's aerosols analogues

    NASA Astrophysics Data System (ADS)

    Kuga, M.; Carrasco, N.; Marty, B.; Marrocchi, Y.; Bernard, S.; Rigaudier, T.

    2013-12-01

    The Cassini-Huygens mission recently provided measurements of the abundance of nitrogen isotopes in Titan's atmosphere. The 14N/15N ratio in the two most abundant N-bearing molecules in Titan's atmosphere was found to be 183×5 for N2 [1] and 56×8 for HCN [2]. Those two molecules are greatly enriched in the heavier isotope 15N compared to our terrestrial atmosphere and Titan's HCN is about three times richer in 15N than its potential photochemical precursor N2. This implies an important fractionation process in the HCN production chain, which is tentatively attributed to an isotopic selectivity of the photodissociation of N2 in Titan's ionosphere [3-4]. The organic aerosols, forming the Titan's orange characteristic haze layers, also contain large amounts of nitrogen [5], and thus represent a third important nitrogen reservoir in Titan's atmosphere. These organic aerosols are presumably produced in the upper atmosphere by chemical reactions between N2 and CH4 induced by solar radiation and electron bombardment from Saturn's magnetosphere. As HCN is a possible precursor for aerosol polymerization [6-7], the 15N enrichment observed in HCN may be linked to the polymerization process. Unfortunately, no data exists on the isotopic nitrogen abundance in Titan's aerosols, and this question remains open. To address this issue, laboratory aerosols analogues have been produced in a N2-CH4 plasma and their nitrogen isotopic composition have been investigated. In this study, the experimental aerosols, called " tholins ", have been synthetized in the PAMPRE reactor (LATMOS, France). This setup is dedicated to simulate chemical processes occurring in Titan's atmosphere and consists in an RF plasma discharge initiated in a N2-CH4 gas mixture at room temperature [8-9]. For our purpose, tholins were produced at different initial CH4 percentages (1, 2, 5, 10%), representative of the variation of the CH4 concentration in Titan's atmosphere. 15N/14N ratio of the N2 gas used in the

  9. Titanium Isotopes Provide Clues to Lunar Origin

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2012-05-01

    The idea that the Moon formed as the result of the giant impact of a Mars-sized impactor with the still-growing Earth explains two central facts about the Earth-Moon system: its total angular momentum (Earth's spin and the Moon's orbital motion), and the sizes of the metallic cores of the Earth (large) and Moon (tiny). This gives cosmochemists some confidence in the hypothesis, but they would greatly appreciate additional compositional tests. One undisputed point is the identical abundance of the three oxygen isotopes in Earth and Moon. Junjun Zhang and colleagues at the University of Chicago (USA) and the University of Bern (Switzerland) have added another isotopic system to the cosmochemical testing tool kit, titanium isotopes. They find that the ratio of titanium-50 to titanium-47 is identical in Earth and Moon to within four parts per million. In contrast, other solar system materials, such as carbonaceous chondrites, vary by considerably more than this-- up to 150 times as much. The identical oxygen and titanium isotopic compositions in Earth and Moon are surprising in light of what we think we know about planet formation and formation of the Moon after a giant impact. The variations in oxygen and titanium isotopes among meteorite types suggest that it is unlikely that the Moon-forming giant impactor would have had the same isotopic composition as the Earth. Simulations show that the Moon ends up constructed mostly (40-75%) from the impactor materials. Thus, the Moon ought to have different isotopic composition than does Earth. The isotopes might have exchanged in the complicated, messy proto-lunar disk (as has been suggested for oxygen isotopes), making them the same. However, Zhang and colleagues suggest that this exchange is unlikely for a refractory element like titanium. Could the impact simulations be greatly overestimating the contributions from the impactor? Was the mixing of building-block materials throughout the inner solar system much less than

  10. Static, mixed-array total evaporation for improved quantitation of plutonium minor isotopes in small samples

    DOE PAGES

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; ...

    2016-03-31

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics “toolbox”, especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10 -6) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Furthermore, results are presented for small sample (~20 ng) applications involving a well-knownmore » plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.« less

  11. Isotopic Ratios in Nitrile Species on Titan using ALMA

    NASA Astrophysics Data System (ADS)

    Molter, Edward; Nixon, Conor; Cordiner, Martin; Serigano, Joseph; Irwin, Patrick; Teanby, Nicholas; Charnley, Steven; Lindeberg, Johan

    2016-06-01

    The atmosphere of Titan is primarily composed of molecular nitrogen (N2, ˜98%) and methane (CH4, ˜2%), but also hosts a myriad of trace organic species. Two of the simplest and most abundant of these are hydrogen cyanide (HCN) and cyanoacetylene (HC3N). The advent of ALMA provides the opportunity to observe rotational transitions in these molecules and their isotopologues with unprecendented sensitivity and spatial resolution. We searched through the ALMA archive for publicly available high-resolution observations of Titan as a flux calibrator source taken between April and July 2014; each integration lasted around 160 seconds. Using spectra of HCN and HC3N isotopologues found in these data, we derive vertical abundance profiles and determine the isotopic ratios 14N/15N and 12C/13C in these molecules. We also report the detection of a new HCN isotopologue on Titan, H13C6 15N, and use a high signal-to-noise spectrum of DCN to determine the D/H ratio in HCN on Titan for the first time. These isotopic ratios are leveraged to constrain the physical and chemical processes occurring in Titan's atmosphere.

  12. Ion-molecule calculation of the abundance ratio of CCD to CCH in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Adams, Nigel G.; Smith, David; Defrees, D. J.

    1987-01-01

    Laboratory measurements and calculations have been performed to determine the abundance ratio of the deuterated ethynyl radical (CCD) to the normal radical (CCH) which can be achieved in dense interstellar clouds via isotopic fractionation in the C2H2(+) (HD)=C2HD(+)(H2) system of reactions. According to this limited treatment, the CCD/CCH abundance ratio which can be attained is in the range 0.02-0.03 for the Orion molecular cloud and 0.0l-0.02 for TMC-1. These ranges of numbers are in reasonable agreement with the observed values in Orion and TMC-1. However, the analysis of the CCD/CCH abundance ratio is complicated via the presence of competing fractionation mechanisms, especially in the low-temperature source TMC-1.

  13. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle

    NASA Astrophysics Data System (ADS)

    Marschall, Horst R.; Wanless, V. Dorsey; Shimizu, Nobumichi; Pogge von Strandmann, Philip A. E.; Elliott, Tim; Monteleone, Brian D.

    2017-06-01

    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([ Li ] = 1.39 ± 0.10 μg/g and [ B ] = 0.19 ± 0.02 μg/g) and depleted mantle abundances ([ Li ] = 1.20 ± 0.10 μg/g and [ B ] = 0.077 ± 0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl / K , causes significant elevation of MORB δ11 B and variable elevation in δ7 Li . The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than -6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low- Cl / K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11 B = - 7.1 ± 0.9 ‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11 B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7 Li = + 3.5 ± 1.0 ‰ (mean of five ridge segments; 2SD), excluding high- Cl / K samples. A significant variation of 1.0-1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this

  14. Diffusive Fractionation of Lithium Isotopes in Olivine Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Homolova, V.; Watson, E. B.

    2012-12-01

    Diffusive fractionation of isotopes has been documented in silicate melts, aqueous fluids, and single crystals. In polycrystalline rocks, the meeting place of two grains, or grain boundaries, may also be a site of diffusive fractionation of isotopes. We have undertaken an experimental and modeling approach to investigate diffusive fractionation of lithium (Li) isotopes by grain boundary diffusion. The experimental procedure consists of packing a Ni metal capsule with predominantly ground San Carlos olivine and subjecting the capsule to 1100C and 1GPa for two days in a piston cylinder apparatus to create a nominally dry, 'dunite rock'. After this synthesis step, the capsule is sectioned and polished. One of the polished faces of the 'dunite rock' is then juxtaposed to a source material of spodumene and this diffusion couple is subject to the same experimental conditions as the synthesis step. Li abundances and isotopic profiles (ratios of count rates) were analyzed using LA-ICP-MS. Li concentrations linearly decrease away from the source from 550ppm to the average concentration of the starting olivine (2.5ppm). As a function of distance from the source, the 7Li/6Li ratio decreases to a minimum before increasing to the background ratio of the 'dunite rock'. The 7Li/6Li ratio minimum coincides with the lowest Li concentrations above average 'dunite rock' abundances. The initial decrease in the 7Li/6Li ratio is similar to that seen in other studies of diffusive fractionation of isotopes and is thought to be caused by the higher diffusivity (D) of the lighter isotope relative to the heavier isotope. The relationship between D and mass (m) is given by (D1/D2) =(m2/m1)^β, where β is an empirical fractionation factor; 1 and 2 denote the lighter and heavier isotope, respectively. A fit to the Li isotopic data reveals an effective DLi of ~1.2x10^-12 m/s^2 and a β of 0.1. Numerical modelling was utilized to elucidate the relationship between diffusive fractionation

  15. Analysis of the low molecular weight fraction of serum by LC-dual ESI-FT-ICR mass spectrometry: precision of retention time, mass, and ion abundance.

    PubMed

    Johnson, Kenneth L; Mason, Christopher J; Muddiman, David C; Eckel, Jeanette E

    2004-09-01

    This study quantifies the experimental uncertainty for LC retention time, mass measurement precision, and ion abundance obtained from replicate nLC-dual ESI-FT-ICR analyses of the low molecular weight fraction of serum. We used ultrafiltration to enrich the < 10-kDa fraction of components from the high-abundance proteins in a pooled serum sample derived from ovarian cancer patients. The THRASH algorithm for isotope cluster detection was applied to five replicate nLC-dual ESI-FT-ICR chromatograms. A simple two-level grouping algorithm was applied to the more than 7000 isotope clusters found in each replicate and identified 497 molecular species that appeared in at least four of the replicates. In addition, a representative set of 231 isotope clusters, corresponding to 188 unique molecular species, were manually interpreted to verify the automated algorithm and to set its tolerances. For nLC retention time reproducibility, 95% of the 497 species had a 95% confidence interval of the mean of +/- 0.9 min or less without the use of chromatographic alignment procedures. Furthermore, 95% of the 497 species had a mass measurement precision of < or = 3.2 and < or = 6.3 ppm for internally and externally calibrated spectra, respectively. Moreover, 95% of replicate ion abundance measurements, covering an ion abundance range of approximately 3 orders of magnitude, had a coefficient of variation of less than 62% without using any normalization functions. The variability of ion abundance was independent of LC retention time, mass, and ion abundance quartile. These measures of analytical reproducibility establish a statistical rationale for differentiating healthy and disease patient populations for the elucidation of biomarkers in the low molecular fraction of serum. Copyright 2004 American Chemical Society

  16. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as

  17. Tracking the weathering of basalts on Mars using lithium isotope fractionation models

    PubMed Central

    Losa‐Adams, Elisabeth; Gil‐Lozano, Carolina; Gago‐Duport, Luis; Uceda, Esther R.; Squyres, Steven W.; Rodríguez, J. Alexis P.; Davila, Alfonso F.; McKay, Christopher P.

    2015-01-01

    Abstract Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt‐forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium—7Li and 6Li—have a large relative mass difference (∼15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary minerals—the source of Li—and on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history. PMID:27642264

  18. Modelling aspects regarding the control in 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, M. L.

    2016-08-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [9] A manufacturing control system manages the internal logistics in a production system and determines the routings of product instances, the assignment of workers and components, the starting of the processes on not-yet-finished product instances. Manufacturing control does not control the manufacturing processes themselves, but has to cope with the consequences of the processing results (e.g. the routing of products to a repair station). In this research it was fulfilled some UML (Unified Modelling Language) diagrams for modelling the C13 Isotope Separation column, implement in STARUML program. Being a critical process and needing a good control and supervising, the critical parameters in the column, temperature and pressure was control using some PLC (Programmable logic controller) and it was made some graphic analyze for this to observe some critical situation than can affect the separation process. The main parameters that need to be control are: -The liquid nitrogen (N2) level in the condenser. -The electrical power supplied to the boiler. -The vacuum pressure.

  19. Carbon and nitrogen isotopic compositions of alkyl porphyrins from the Triassic Serpiano oil shale

    NASA Technical Reports Server (NTRS)

    Chicarelli, M. I.; Hayes, J. M.; Popp, B. N.; Eckardt, C. B.; Maxwell, J. R.

    1993-01-01

    The carbon and nitrogen isotopic compositions of seven of the most abundant alkylporphyrins from the Serpiano oil shale (marine, Triassic) were determined. For the C31 and C32 butanoporphyrins, values of delta 13CPDB and delta 15NAIR averaged -24.0% and -3.1%. In contrast, the C31 and C32 methylpropanoporphyrins, DPEP, and a C30 13-nor etioporphyrin had delta 13C and delta 15N values averaging -27.5 and -3.3%, respectively. Carbon and nitrogen isotopic values for kerogen averaged -30.8 and -0.9, whereas those for total extract averaged -31.6, and -4.0%. The butanoporphyrins apparently derive from a biological source different from that giving rise to the other porphyrins, their 13C enrichment not being related to carbon isotopic fractionation accompanying diagenetic reactions. The delta 15N values for all the porphyrins indicate that the depletion of 15N observed in the kerogen is of primary origin. Consistent with the very high abundance of hopanoids and methyl hopanoids in the aliphatic hydrocarbon fraction, it is suggested that cyanobacterial fixation of N2 may have been the main cause of 15N depletion.

  20. DETERMINING THE ELEMENTAL AND ISOTOPIC COMPOSITION OF THE PRESOLAR NEBULA FROM GENESIS DATA ANALYSIS: THE CASE OF OXYGEN.

    PubMed

    Laming, J Martin; Heber, V S; Burnett, D S; Guan, Y; Hervig, R; Huss, G R; Jurewicz, A J G; Koeman-Shields, E C; McKeegan, K D; Nittler, L; Reisenfeld, D B; Rieck, K D; Wang, J; Wiens, R C; Woolum, D S

    2017-12-10

    We compare element and isotopic fractionations measured in solar wind samples collected by NASA's Genesis mission with those predicted from models incorporating both the ponderomotive force in the chromosphere and conservation of the first adiabatic invariant in the low corona. Generally good agreement is found, suggesting that these factors are consistent with the process of solar wind fractionation. Based on bulk wind measurements, we also consider in more detail the isotopic and elemental abundances of O. We find mild support for an O abundance in the range 8.75 - 8.83, with a value as low as 8.69 disfavored. A stronger conclusion must await solar wind regime specific measurements from the Genesis samples.

  1. Isotope Tracing of Long-Term Cadmium Fluxes in an Agricultural Soil.

    PubMed

    Salmanzadeh, Mahdiyeh; Hartland, Adam; Stirling, Claudine H; Balks, Megan R; Schipper, Louis A; Joshi, Chaitanya; George, Ejin

    2017-07-05

    Globally widespread phosphate fertilizer applications have resulted in long-term increases in the concentration of cadmium (Cd) in soils. The accumulation of this biotoxic, and bioaccumulative metal presents problems for the management of soil-plant-animal systems, because the magnitude and direction of removal fluxes (e.g., crop uptake, leaching) have been difficult to estimate. Here, Cd isotopic compositions (δ 114/110 Cd) of archived fertilizer and soil samples from a 66 year-long agricultural field trial in Winchmore, New Zealand, were used to constrain the Cd soil mass balance between 1959 and 2015 AD, informing future soil Cd accumulation trajectories. The isotopic partitioning of soil Cd sources in this system was aided by a change in phosphate source rocks in 1998 AD, and a corresponding shift in fertilizer isotope composition. The dominant influence of mixing between isotopically distinct Cd end-members was confirmed by a Bayesian modeling approach. Furthermore, isotope mass balance modeling revealed that Cd removal processes most likely increased in magnitude substantially between 2000 and 2015 AD, implying an increase in Cd bioaccumulation and/or leaching over that interval. Natural-abundance stable isotopes are introduced here as a powerful tool for tracing the fate of Cd in agricultural soils, and potentially the wider environment.

  2. Measurement of natural carbon isotopic composition of acetone in human urine.

    PubMed

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.

  3. Hydrogen Isotopic Systematics of Nominally Anhydrous Phases in Martian Meteorites

    NASA Astrophysics Data System (ADS)

    Tucker, Kera

    Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the Mars atmosphere is well constrained (~6 times that of terrestrial ocean water), that of its deep silicate interior (specifically, the mantle) is less so. In fact, the hydrogen isotope composition of the primordial martian mantle is of great interest since it has implications for the origin and abundance of water on that planet. Martian meteorites could provide key constraints in this regard, since they crystallized from melts originating from the martian mantle and contain phases that potentially record the evolution of the H 2O content and isotopic composition of the interior of the planet over time. Examined here are the hydrogen isotopic compositions of Nominally Anhydrous Phases (NAPs) in eight martian meteorites (five shergottites and three nakhlites) using Secondary Ion Mass Spectrometry (SIMS). This study presents a total of 113 individual analyses of H2O contents and hydrogen isotopic compositions of NAPs in the shergottites Zagami, Los Angeles, QUE 94201, SaU 005, and Tissint, and the nakhlites Nakhla, Lafayette, and Yamato 000593. The hydrogen isotopic variation between and within meteorites may be due to one or more processes including: interaction with the martian atmosphere, magmatic degassing, subsolidus alteration (including shock), and/or terrestrial contamination. Taking into consideration the effects of these processes, the hydrogen isotope composition of the martian mantle may be similar to that of the Earth. Additionally, this study calculated upper limits on the H2O contents of the shergottite and nakhlite parent melts based on the measured minimum H2O abundances in their maskelynites and pyroxenes, respectively. These calculations, along with some petrogenetic assumptions based on previous studies, were subsequently used

  4. Bulk Chemistry and Oxygen Isotopic Compositions of Lunar Meteorites Dhofar 025 and Dhofar 026

    NASA Astrophysics Data System (ADS)

    Taylor, L. A.; Nazarov, M. A.; Cohen, B. A.; Warren, P. H.; Barsukova, L. D.; Clayton, R. N.; Mayeda, T. K.

    2001-03-01

    The major- and trace-element composition of highlands meteorites Dh25 and Dh26 show that both are dominated by a FAN component. Incompatible element depletion and low Ti abundances suggest a farside origin. O-isotopes are typical for lunar meteorites.

  5. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schulze, Marie; Ziegerick, Marco; Horn, Ingo; Weyer, Stefan; Vogt, Carla

    2017-04-01

    In comparison to isotope analysis of dissolved samples femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS) enables precise isotope ratio analyses consuming much less sample material and with a minimum effort in sample preparation. This is especially important for the investigation of valuable historical objects for which visual traces of sampling are unwanted. The present study provides a basis for tin isotope ratio measurements using LA-MC-ICP-MS technique. For this, in house isotope standards had to be defined. Investigations on interferences and matrix effects illustrate that beside Sb only high Te contents (with values above those to be expected in cassiterite) result in a significant shift of the measured tin isotope ratios. This effect can partly be corrected for using natural isotope abundances. However, a natural isotope fractionation of Te cannot be excluded. Tin beads reduced from cassiterite were analysed by laser ablation and after dissolution. It was shown that tin isotope ratios can be determined accurately by using fs-LA-MC-ICP-MS. Furthermore the homogeneity of tin isotope ratios in cassiterite was proven.

  6. A novel method for collection of soil-emitted nitric oxide (NO) for natural abundance stable N isotope analysis

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Elliott, E. M.

    2016-12-01

    The global inventory of NO emissions is poorly constrained with a large portion of the uncertainty attributed to soil NO emissions that result from soil abiotic and microbial processes. While natural abundance stable N isotopes (δ15N) in various soil N-containing compounds have proven to be a robust tracer of soil N cycling, soil δ15N-NO is rarely quantified mainly due to the diffuse nature, low concentrations, and high reactivity of soil-emitted NO. Here, we present the development and application of a dynamic flux chamber system capable of simultaneously measuring soil NO fluxes and collecting NO for δ15N-NO measurements. The system couples a widely used flow-through soil chamber with a NO collection train, in which NO can be converted to NO2 through O3 titration in a Teflon reaction coil, followed by NO2 collection in a 20% triethanolamine (TEA) solution as nitrite and nitrate for δ15N analysis using the denitrifier method. The efficiency of NO-NO2 conversion in the reaction coil and the recovery of NO in the TEA solution were determined experimentally and found to be quantitative (>99%) over a 10 to 749 ppbv NO mixing ratio range. An analytical NO tank (δ15N-NO=71.0±0.4‰) was used to calibrate the method for δ15N-NO analysis. The resulting accuracy and precision (1σ) of the method across various environmental conditions were 1.6‰ and 1.2‰, respectively. Using this new method, controlled laboratory incubations have been conducted to characterize NO emissions induced by rewetting of air-dried surface soil sampled from an urban forest. Pulsed NO emissions, up to 30 times higher than maximum soil NO emissions under steady state, were triggered upon the rewetting and lasted for next 36 hours. While the measured δ15N-NO over the course of the NO pulsing ranged from -52.0‰ and -34.6‰, reinforcing the notion that soil δ15N-NO is lower than those of fossil-fuel combustion sources, a transient δ15N-NO shift was captured immediately after the

  7. Quinone-based stable isotope probing for assessment of 13C substrate-utilizing bacteria

    NASA Astrophysics Data System (ADS)

    Kunihiro, Tadao; Katayama, Arata; Demachi, Toyoko; Veuger, Bart; Boschker, Henricus T. S.; van Oevelen, Dick

    2015-04-01

    13C abundance in the quinone. In this study, we verified carbon stable isotope of quinone compared with bulk carbon stable isotope of bacterial culture. Results indicated a good correlation between carbon stable isotope of quinone compared with bulk carbon stable isotope. However, our measurement conditions for detection of quinone isotope-ions incurred underestimation of 13C abundance in the quinone. The quinone-SIP technique needs further optimization for measurement conditions of LC-MS/MS.

  8. High abundances of presolar grains and 15N-rich organic matter in CO3.0 chondrite Dominion Range 08006

    NASA Astrophysics Data System (ADS)

    Nittler, Larry R.; Alexander, Conel M. O'D.; Davidson, Jemma; Riebe, My E. I.; Stroud, Rhonda M.; Wang, Jianhua

    2018-04-01

    NanoSIMS C-, N-, and O-isotopic mapping of matrix in CO3.0 chondrite Dominion Range (DOM) 08006 revealed it to have in its matrix the highest abundance of presolar O-rich grains (257 +76/-96 ppm, 2σ) of any meteorite. It also has a matrix abundance of presolar SiC of 35 (+25/-17, 2σ) ppm, similar to that seen across primitive chondrite classes. This provides additional support to bulk isotopic and petrologic evidence that DOM 08006 is the most primitive known CO meteorite. Transmission electron microscopy of five presolar silicate grains revealed one to have a composite mineralogy similar to larger amoeboid olivine aggregates and consistent with equilibrium condensation, two non-stoichiometric amorphous grains, and two olivine grains, though one is identified as such solely based on its composition. We also found insoluble organic matter (IOM) to be present primarily as sub-micron inclusions with ranges of C- and N-isotopic anomalies similar to those seen in primitive CR chondrites and interplanetary dust particles. In contrast to other primitive extraterrestrial materials, H isotopic imaging showed normal and homogeneous D/H. Most likely, DOM 08006 and other CO chondrites accreted a similar complement of primitive and isotopically anomalous organic matter to that found in other chondrite classes and IDPs, but the very limited amount of thermal metamorphism experienced by DOM 08006 has caused loss of D-rich organic moieties, while not substantially affecting either the molecular carriers of C and N anomalies or most inorganic phases in the meteorite. One C-rich grain that was highly depleted in 13C and 15N was identified; we propose it originated in the Sun's parental molecular cloud.

  9. Nucleosynthesis of Mo and Ru isotopes in neutrino-driven winds

    NASA Astrophysics Data System (ADS)

    Bliss, Julia; Arcones, Almudena

    2018-01-01

    The solar system origin of the p-isotopes 92,94Mo and 96,98Ru is a long-lasting mystery. Several astrophysical scenarios failed to explain their formation. Moreover, SiC X grains show a different abundance ratio of 95,97Mo than in the solar system. We have investigated if neutrino-driven winds can offer a solution to those problems.

  10. web-based interactive data processing: application to stable isotope metrology.

    PubMed

    Verkouteren, R M; Lee, J N

    2001-08-01

    To address a fundamental need in stable isotope metrology, the National Institute of Standards and Technology (NIST) has established a web-based interactive data-processing system accessible through a common gateway interface (CGI) program on the internet site http://www. nist.gov/widps-co2. This is the first application of a web-based tool that improves the measurement traceability afforded by a series of NIST standard materials. Specifically, this tool promotes the proper usage of isotope reference materials (RMs) and improves the quality of reported data from extensive measurement networks. Through the International Atomic Energy Agency (IAEA), we have defined standard procedures for stable isotope measurement and data-processing, and have determined and applied consistent reference values for selected NIST and IAEA isotope RMs. Measurement data of samples and RMs are entered into specified fields on the web-based form. These data are submitted through the CGI program on a NIST Web server, where appropriate calculations are performed and results returned to the client. Several international laboratories have independently verified the accuracy of the procedures and algorithm for measurements of naturally occurring carbon-13 and oxygen-18 abundances and slightly enriched compositions up to approximately 150% relative to natural abundances. To conserve the use of the NIST RMs, users may determine value assignments for a secondary standard to be used in routine analysis. Users may also wish to validate proprietary algorithms embedded in their laboratory instrumentation, or specify the values of fundamental variables that are usually fixed in reduction algorithms to see the effect on the calculations. The results returned from the web-based tool are limited in quality only by the measurements themselves, and further value may be realized through the normalization function. When combined with stringent measurement protocols, two- to threefold improvements have been

  11. Variation in the terrestrial isotopic composition and atomic weight of argon

    USGS Publications Warehouse

    Böhlke, John Karl

    2014-01-01

    The isotopic composition and atomic weight of argon (Ar) are variable in terrestrial materials. Those variations are a source of uncertainty in the assignment of standard properties for Ar, but they provide useful information in many areas of science. Variations in the stable isotopic composition and atomic weight of Ar are caused by several different processes, including (1) isotope production from other elements by radioactive decay (radiogenic isotopes) or other nuclear transformations (e.g., nucleogenic isotopes), and (2) isotopic fractionation by physical-chemical processes such as diffusion or phase equilibria. Physical-chemical processes cause correlated mass-dependent variations in the Ar isotope-amount ratios (40Ar/36Ar, 38Ar/36Ar), whereas nuclear transformation processes cause non-mass-dependent variations. While atmospheric Ar can serve as an abundant and homogeneous isotopic reference, deviations from the atmospheric isotopic ratios in other Ar occurrences limit the precision with which a standard atomic weight can be given for Ar. Published data indicate variation of Ar atomic weights in normal terrestrial materials between about 39.7931 and 39.9624. The upper bound of this interval is given by the atomic mass of 40Ar, as some samples contain almost pure radiogenic 40Ar. The lower bound is derived from analyses of pitchblende (uranium mineral) containing large amounts of nucleogenic 36Ar and 38Ar. Within this interval, measurements of different isotope ratios (40Ar/36Ar or 38Ar/36Ar) at various levels of precision are widely used for studies in geochronology, water–rock interaction, atmospheric evolution, and other fields.

  12. Stable Isotope Identification of Nitrogen Sources for United ...

    EPA Pesticide Factsheets

    We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected δ15N of macroalgae data and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green macroalgae were compared to δ15N of dissolved inorganic nitrogen of oceanic and watershed end members. There was a latitudinal gradient in δ15N of macroalgae with southern estuaries being 7 per mil heavier than northern estuaries. Gradients in isotope data were compared to nitrogen sources estimated by the USGS using the SPARROW model. In California estuaries, the elevation of isotope data appeared to be related to anthropogenic nitrogen sources. In Oregon systems, the nitrogen levels of streams flowing into the estuaries are related to forest cover, rather than to developed land classes. In addition, the δ15N of macroalgae suggested that the ocean and nitrogen-fixing trees in the watersheds were the dominant nitrogen sources. There was also a strong gradient in δ15N of macroalgae with heavier sites located near the estuary mouth. In some Oregon estuaries, there was an elevation an elevation of δ15N above marine end members in the vicinity of wastewater treatment facility discharge locations, suggesting isotopes may be useful for distinguishing inputs along an estuarine gradient. Nutrients are the leading cause of water quality impairments in the United States, and as a result too

  13. Linking Carbonic Anhydrase Abundance and Diversity in Soils to Ecological Function

    NASA Astrophysics Data System (ADS)

    Pang, E.; Meredith, L. K.; Welander, P. V.

    2015-12-01

    Carbonic anhydrase (CA) is an ancient enzyme widespread among bacteria, archaea, and eukarya that catalyzes the following reaction: CO2 + H2O ⇌ HCO3- + H+. Its functions are critical for key cellular processes such as concentrating CO2 for autotrophic growth, pH regulation, and pathogen survival in hosts. Currently, there are six known CA classes (α, β, γ, δ, η, ζ) arising from several distinct evolutionary lineages. CA are widespread in sequenced genomes, with many organisms containing multiple classes of CA or multiple CA of the same class. Soils host rich microbial communities with diverse and important ecological functions, but the diversity and abundance of CA in soils has not been explored. CA appears to play an important, but poorly understood, role in some biogeochemical cycles such as those of CO2 and its oxygen isotope composition and also carbonyl sulfide (COS), which are potential tracers in predictive carbon cycle models. Recognizing the prevalence and functional significance of CA in soils, we used a combined bioinformatics and molecular biology approach to address fundamental questions regarding the abundance, diversity, and function of CA in soils. To characterize the abundance and diversity of the different CA classes in soils, we analyzed existing soil metagenomic and metatranscriptomic data from the DOE Joint Genome Institute databases. Out of the six classes of CA, we only found the α, β, and γ classes to be present in soils, with the β class being the most abundant. We also looked at genomes of sequenced soil microorganisms to learn what combination of CA classes they contain, from which we can begin to predict the physiological role of CA. To characterize the functional roles of the different CA classes in soils, we collected soil samples from a variety of biomes with diverse chemical and physical properties and quantified the rate of two CA-mediated processes: soil uptake of COS and acceleration of the oxygen isotope exchange

  14. Using stable isotope analysis to discriminate gasoline on the basis of its origin.

    PubMed

    Heo, Su-Young; Shin, Woo-Jin; Lee, Sin-Woo; Bong, Yeon-Sik; Lee, Kwang-Sik

    2012-03-15

    Leakage of gasoline and diesel from underground tanks has led to a severe environmental problem in many countries. Tracing the production origin of gasoline and diesel is required to enable the development of dispute resolution and appropriate remediation strategies for the oil-contaminated sites. We investigated the bulk and compound-specific isotopic compositions of gasoline produced by four oil companies in South Korea: S-Oil, SK, GS and Hyundai. The relative abundance of several compounds in gasoline was determined by the peak height of the major ion (m/z 44). The δ(13)C(Bulk) and δD(Bulk) values of gasoline produced by S-Oil were significantly different from those of SK, GS and Hyundai. In particular, the compound-specific isotopic value (δ(13)C(CSIA)) of methyl tert-butyl ether (MTBE) in S-Oil gasoline was significantly lower than that of gasoline produced by other oil companies. The abundance of several compounds in gasoline, such as n-pentane, MTBE, n-hexane, toluene, ethylbenzene and o-xylene, differed widely among gasoline from different oil companies. This study shows that gasoline can be forensically discriminated according to the oil company responsible for its manufacture using stable isotope analysis combined with multivariate statistical analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Application of Natural Isotopic Abundance ¹H-¹³C- and ¹H-¹⁵N-Correlated Two-Dimensional NMR for Evaluation of the Structure of Protein Therapeutics.

    PubMed

    Arbogast, Luke W; Brinson, Robert G; Marino, John P

    2016-01-01

    Methods for characterizing the higher-order structure of protein therapeutics are in great demand for establishing consistency in drug manufacturing, for detecting drug product variations resulting from modifications in the manufacturing process, and for comparing a biosimilar to an innovator reference product. In principle, solution NMR can provide a robust approach for characterization of the conformation(s) of protein therapeutics in formulation at atomic resolution. However, molecular weight limitations and the perceived need for stable isotope labeling have to date limited its practical applications in the biopharmaceutical industry. Advances in NMR magnet and console technologies, cryogenically cooled probes, and new rapid acquisition methodologies, particularly selective optimized flip-angle short transient pulse schemes and nonuniform sampling, have greatly ameliorated these limitations. Here, we describe experimental methods for the collection and analysis of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra applied to protein drug products at natural isotopic abundance, including representatives from the rapidly growing class of monoclonal antibody (mAb) therapeutics. Practical aspects of experimental setup and data acquisition for both standard and rapid acquisition NMR techniques are described. Furthermore, strategies for the statistical comparison of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra are detailed. 2016 Published by Elsevier Inc.

  16. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms

    USGS Publications Warehouse

    Shanks, Wayne C.; Böhlke, John Karl; Seal, Robert R.; Humphries, S.D.; Zierenberg, Robert A.; Mullineaux, Lauren S.; Thomson, Richard E.

    1995-01-01

    Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios (Nice, 1947]. Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro-analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.

  17. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms

    NASA Astrophysics Data System (ADS)

    Shanks, W. C., III; Böhlke, J. K.; Seal, R. R., II

    Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios [Nier, 1947] Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.

  18. Isotopic and Trace Element Compositions of Antarctic Micrometeorites and Comparison with IDPs

    NASA Astrophysics Data System (ADS)

    Stadermann, F. J.; Olinger, C. T.

    1992-07-01

    Antarctic micrometeorites (AMMs) show resemblances and differences to both stratospheric interplanetary dust particles (IDPs) and chondritic meteorites, but the exact nature of this relationship has yet to be established. We measured Ne, H, C, and N isotopic compositions, as well as trace element abundances in several AMMs in order to compare the results to similar measurements of IDPs (Stadermann, 1991). AMMs for this study were collected near Cap-Prudhomme (Maurette et al., 1989), and optically selected (Olinger et al., 1990). Noble gases of 23 selected AMMs were extracted through laser vaporization. Nine of these particles contained implanted solar Ne and one showed a clear signature from spallogenic Ne, confirming their extraterrestrial origin. We selected fragments from 6 of these particles, plus 2 containing apparent Ne excess and one with a roughly chondritic bulk chemistry but immeasurably low Ne, for further analyses. Secondary ion mass spectrometry (SIMS) was used to measure the H, C, and N isotopic compositions. These measurements turned out to be difficult, since the concentrations of H and C in the analyzed samples were significantly lower than in IDPs. The low concentration of C also affected the N isotopic measurements because N could only be measured as CN-. We were able to measure H in 9, as well as C and N in 3 AMMs. All measurements yielded isotopically normal results. Previous determinations of the O isotopic compositions of the same samples (Virag, pers. comm.) also gave no indication of isotopic anomalies. These results are significantly different from measurements of IDPs, where isotopic anomalies in H and N were found in roughly 1/2 and 1/3 of the particles, respectively. SIMS was also used to measure the rare earth and trace element abundances in up to 4 different fragments of 6 AMMs. Although most particles had roughly chondritic abundances, anomalous concentrations were found for Ca, Li, Co, Ni, and Ba. Significant Ca depletions up to 0

  19. Abundance and Isotopic Composition of Gases in the Martian Atmosphere: First Results from the Mars Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Chris R.; Atreya, Sushil K.; Franz, Heather; Wong, Michael; Conrad, Pamela G.; Harpold, Dan; Jones, John J.; Leshin, Laurie, A.; Manning, Heidi; hide

    2013-01-01

    Repeated measurements of the composition of the Mars atmosphere from Curiosity Rover yield a (40)Ar/N2 ratio 1.7 times greater and the (40)Ar/(36)Ar ratio 1.6 times smaller than the Viking Lander values in 1976. The unexpected change in (40)Ar/N2 ratio probably results from different instrument characteristics although we cannot yet rule out some unknown atmospheric process. The new (40)Ar/(36)Ar ratio is more aligned with Martian meteoritic values. Besides Ar and N2 the Sample Analysis at Mars instrument suite on the Curiosity Rover has measured the other principal components of the atmosphere and the isotopes. The resulting volume mixing ratios are: CO2 0.960(+/- 0.007); (40)Ar 0.0193(+/- 0.0001); N2 0.0189(+/- 0.0003); O2 1.45(+/- 0.09) x 10(exp -3); and CO 5.45(+/- 3.62) x 10(exp 4); and the isotopes (40)Ar/(36)Ar 1.9(+/- 0.3) x 10(exp 3), and delta (13)C and delta (18)O from CO2 that are both several tens of per mil more positive than the terrestrial averages. Heavy isotope enrichments support the hypothesis of large atmospheric loss. Moreover, the data are consistent with values measured in Martian meteorites, providing additional strong support for a Martian origin for these rocks.

  20. MAST - A mass spectrometer telescope for studies of the isotopic composition of solar, anomalous, and galactic cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Von Rosenvinge, T. T.

    1993-01-01

    The Mass Spectrometer Telescope (MAST) on SAMPEX is designed to provide high resolution measurements of the isotopic composition of energetic nuclei from He to Ni (Z = 2 to 28) over the energy range from about 10 to several hundred MeV/nuc. During large solar flares MAST will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona, while during solar quiet times MAST will study the isotopic composition of galactic cosmic rays. In addition, MAST will measure the isotopic composition of both interplanetary and trapped fluxes of anomalous cosmic rays, believed to be a sample of the nearby interstellar medium.

  1. Reappraising Accretion to Vesta and the Angrite Parent Body Through Mineral-Scale Platinum Group Element and Os-Isotope Analyses

    NASA Astrophysics Data System (ADS)

    Riches, A. J. V.; Burton, K. W.; Nowell, G. M.; Dale, C. W.; Ottley, C. J.

    2016-08-01

    New methods presented here enable quantitative determination of mineral-scale PGE-abundances and Os-isotope compositions in meteorite materials thereby providing valuable new insight into planetary evolution.

  2. Light Isotope Abundances in Solar Energetic Particles Measured by the NINA-2 Instrument

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. V.; Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Mikhaylova, J.; Voronov, S.; Bidoli, V.; Casolino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Boezio, M.; Bonvicini, V.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.

    2003-07-01

    The instrument NINA-2 flew on board the satellite MITA between July 2000 and August 2001, in circular polar orbit. This paper reports about a set of Solar Energetic Particle events measured by the NINA-2 instrument. The detector has mass resolution of about 0.15 amu for light nuclei and gives the possibility to observe hydrogen and helium isotop es in the energy range 10-50 MeV/n. Data of 3 He and 4 He were used to determine the 3 He/4 He ratio. For each event the deuterium-to-proton ratio was also estimated. This ratio, averaged over all events, is less than 3×10-5 .

  3. Trace Element Abundances in an Unusual Hibonite-Perovskite Refractory Inclusion from Allende

    NASA Technical Reports Server (NTRS)

    Mane, Prajkta; Wadhwa, M.; Keller, L. P.

    2013-01-01

    Calcium-aluminum-rich refractory inclusions (CAIs) are thought to be the first-formed solids in the Solar protoplanetary disk and can provide information about the earliest Solar System processes (e.g., [1]). A hibonite-perovskitebearing CAI from the Allende CV3 chondrite (SHAL, [2]) contains a single of 500 micrometers hibonite grain and coarse-grained perovskite. The mineralogy and oxygen isotopic composition of this CAI shows similarities with FUN inclusions, especially HAL [2]. Here we present trace element abundances in SHAL.

  4. Nonequilibrium clumped isotope signals in microbial methane

    USGS Publications Warehouse

    Wang, David T.; Gruen, Danielle S.; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C.; Holden, James F.; Hristov, Alexander N.; Pohlman, John W.; Morrill, Penny L.; Könneke, Martin; Delwiche, Kyle B.; Reeves, Eoghan P.; Sutcliffe, Chelsea N.; Ritter, Daniel J.; Seewald, Jeffrey S.; McIntosh, Jennifer C.; Hemond, Harold F.; Kubo, Michael D.; Cardace, Dawn; Hoehler, Tori M.; Ono, Shuhei

    2015-01-01

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.

  5. Role of Core-collapse Supernovae in Explaining Solar System Abundances of p Nuclides

    NASA Astrophysics Data System (ADS)

    Travaglio, C.; Rauscher, T.; Heger, A.; Pignatari, M.; West, C.

    2018-02-01

    The production of the heavy stable proton-rich isotopes between 74Se and 196Hg—the p nuclides—is due to the contribution from different nucleosynthesis processes, activated in different types of stars. Whereas these processes have been subject to various studies, their relative contributions to Galactic chemical evolution (GCE) are still a matter of debate. Here we investigate for the first time the nucleosynthesis of p nuclides in GCE by including metallicity and progenitor mass-dependent yields of core-collapse supernovae (ccSNe) into a chemical evolution model. We used a grid of metallicities and progenitor masses from two different sets of stellar yields and followed the contribution of ccSNe to the Galactic abundances as a function of time. In combination with previous studies on p-nucleus production in thermonuclear supernovae (SNIa), and using the same GCE description, this allows us to compare the respective roles of SNeIa and ccSNe in the production of p-nuclei in the Galaxy. The γ process in ccSN is very efficient for a wide range of progenitor masses (13 M ⊙–25 M ⊙) at solar metallicity. Since it is a secondary process with its efficiency depending on the initial abundance of heavy elements, its contribution is strongly reduced below solar metallicity. This makes it challenging to explain the inventory of the p nuclides in the solar system by the contribution from ccSNe alone. In particular, we find that ccSNe contribute less than 10% of the solar p nuclide abundances, with only a few exceptions. Due to the uncertain contribution from other nucleosynthesis sites in ccSNe, such as neutrino winds or α-rich freeze out, we conclude that the light p-nuclides 74Se, 78Kr, 84Sr, and 92Mo may either still be completely or only partially produced in ccSNe. The γ-process accounts for up to twice the relative solar abundances for 74Se in one set of stellar models and 196Hg in the other set. The solar abundance of the heaviest p nucleus 196Hg is

  6. Isotopic analysis of individual refractory metal nuggets using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Daly, L.; Bland, P.; Schaefer, B. F.; Saxey, D. W.; Reddy, S.; Fougerouse, D.; William, R. D. A.; Forman, L. V.; Trimby, P.; La Fontaine, A.; Yang, L.; Cairney, J.; Ringer, S.

    2016-12-01

    Sub-micrometre metallic alloys of the highly siderophile elements, known as refractory metal nuggets (RMNs), can be found in primitive carbonaceous chondrites. There has been some suggestion that these grains may have a pre-solar origin, however their <1 µm size has meant that isotopic analysis of individual grains has not previously been possible. Atom probe microscopy has sufficient spatial resolution to quantify the isotopic compositions, across the entire mass range, of small sample volumes (<0.02 µm3) with high sensitivity and precision. We present analyses of four individual RMNs from the same refractory inclusion within the ALH 77307 meteorite. The results indicate that these RMNs have significant isotopic deviations from solar relative isotope abundances and therefore preserve a pre-solar isotopic signature. All RMNs exhibit large p-process enrichments in 98Ru and depletions in s-process 186Os. Two RMNs have a similar isotopic signature, suggesting formation in the same stellar environment. This similarity between two RMNs indicates that there may be a significant contribution of material to our solar system from a single source. The other two RMNs are isotopically dissimilar. Finally, three of the RMNs plot on a 187Re -187Os isochron from which we can derive a galactic age of 12.5 Ga ±1.8. To the best of our knowledge this is the first direct determination of the age of the Milky Way through physical analysis of non-solar material.

  7. New Constraints on the Abundance of 60Fe in the Early Solar System

    NASA Astrophysics Data System (ADS)

    Trappitsch, Reto; Boehnke, Patrick; Stephan, Thomas; Telus, Myriam; Savina, Michael R.; Pardo, Olivia; Davis, Andrew M.; Dauphas, Nicolas; Pellin, Michael J.; Huss, Gary R.

    2018-04-01

    Establishing the abundance of the extinct radionuclide 60Fe (half-life 2.62 Ma) in the early solar system is important for understanding the astrophysical context of solar system formation. While bulk measurements of early solar system phases show a low abundance consistent with galactic background, some in situ measurements by secondary ion mass spectrometry (SIMS) imply a higher abundance, which would require injection from a nearby supernova (SN). Here we present in situ nickel isotopic analyses by resonance ionization mass spectrometry (RIMS) in a chondrule from the primitive meteorite Semarkona (LL3.00). The same chondrule had been previously analyzed by SIMS. Despite improved precision compared to SIMS, the RIMS nickel isotopic data do not reveal any resolved excesses of 60Ni that could be unambiguously ascribed to in situ 60Fe decay. Linear regression of 60Ni/58Ni versus 56Fe/58Ni yields an initial 60Fe/56Fe ratio for this chondrule of (3.8 ± 6.9) × 10‑8, which is consistent with both the low initial value found by bulk measurements and the low end of the range of initial ratios inferred from some in situ work. The same regression also gives a solar initial 60Ni/58Ni ratio, which shows that this sample was not disturbed by nickel mobilization, thus agreeing with a low initial 60Fe/56Fe ratio. These findings agree with a re-evaluation of previous SIMS measurements of the same sample. Supernova injection of 60Fe into the solar system or its parental cloud material is therefore not necessary to account for the measured solar system’s initial amount of 60Fe.

  8. Ab initio calculations of the Fe(II) and Fe(III) isotopic effects in citrates, nicotianamine, and phytosiderophore, and new Fe isotopic measurements in higher plants

    NASA Astrophysics Data System (ADS)

    Moynier, Frédéric; Fujii, Toshiyuki; Wang, Kun; Foriel, Julien

    2013-05-01

    Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ˜3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ˜1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.

  9. Quantifying nitrous oxide production pathways in wastewater treatment systems using isotope technology - A critical review.

    PubMed

    Duan, Haoran; Ye, Liu; Erler, Dirk; Ni, Bing-Jie; Yuan, Zhiguo

    2017-10-01

    Nitrous oxide (N 2 O) is an important greenhouse gas and an ozone-depleting substance which can be emitted from wastewater treatment systems (WWTS) causing significant environmental impacts. Understanding the N 2 O production pathways and their contribution to total emissions is the key to effective mitigation. Isotope technology is a promising method that has been applied to WWTS for quantifying the N 2 O production pathways. Within the scope of WWTS, this article reviews the current status of different isotope approaches, including both natural abundance and labelled isotope approaches, to N 2 O production pathways quantification. It identifies the limitations and potential problems with these approaches, as well as improvement opportunities. We conclude that, while the capabilities of isotope technology have been largely recognized, the quantification of N 2 O production pathways with isotope technology in WWTS require further improvement, particularly in relation to its accuracy and reliability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Stable carbon and sulfur isotopes as records of the early biosphere

    NASA Technical Reports Server (NTRS)

    Desmarais, David J.

    1989-01-01

    The abundance ratios of the stable isotopes of light elements such as carbon and sulfur can differ between various naturally-occurring chemical compounds. If coexisting compounds have achieved mutual chemical and isotopic equilibrium, then the relative isotopic composition can record the conditions at which equilibrium was last maintained. If coexisting chemical compounds indeed formed simultaneously but had not achieved mutual equilibrium, then their relative isotopic compositions often reflect the conditions and mechanisms associated with the kinetically controlled reactions responsible for their production. In the context of Mars, the stable isotopic compositions of various minerals might record not only the earlier environmental conditions of the planet, but also whether or not the chemistry of life ever occurred there. Two major geochemical reservoirs occur in Earth's crust, both for carbon and sulfur. In rocks formed in low temperature sedimentary environments, the oxidized forms of these elements tend to be enriched in the isotope having the larger mass, relative to the reduced forms. In sediments where the organics and sulfides were formed by biological processes, these isotopic contrasts were caused by the processes of biological CO2 fixation and dissimilatory sulfate reduction. Such isotopic contrasts between oxidized and reduced forms of carbon and sulfur are permitted by thermodynamics at ambient temperatures. However, nonbiological chemical reactions associated with the production of organic matter and the reduction of organics and sulfides are extremely slow at ambient temperatures. Thus the synthesis of organics and sulfides under ambient conditions illustrates life's profound role as a chemical catalyst that has altered the chemistry of Earth's crust. Because the stable isotopes of carbon and sulfur can reflect their chemistry, they are useful probes of the Martian surface.

  11. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism

    NASA Technical Reports Server (NTRS)

    Kaufman, A. J.; Hayes, J. M.; Knoll, A. H.; Germs, G. J.

    1991-01-01

    The carbon isotope geochemistry of carbonates and organic carbon in the late Proterozoic Damara Supergroup of Namibia, including the Nama, Witvlei, and Gariep groups on the Kalahari Craton and the Mulden and Otavi groups on the Congo Craton, has been investigated as an extension of previous studies of secular variations in the isotopic composition of late Proterozoic seawater. Subsamples of microspar and dolomicrospar were determined, through petrographic and cathodoluminescence examination, to represent the "least-altered" portions of the rock. Carbon-isotopic abundances in these phases are nearly equal to those in total carbonate, suggesting that 13C abundances of late Proterozoic fine-grained carbonates have not been significantly altered by meteoric diagenesis, although 18O abundances often differ significantly. Reduced and variable carbon-isotopic differences between carbonates and organic carbon in these sediments indicate that isotopic compositions of organic carbon have been altered significantly by thermal and deformational processes, likely associated with the Pan-African Orogeny. Distinctive stratigraphic patterns of secular variation, similar to those noted in other, widely separated late Proterozoic basins, are found in carbon-isotopic compositions of carbonates from the Nama and Otavi groups. For example, in Nama Group carbonates delta 13C values rise dramatically from -4 to +5% within a short stratigraphic interval. This excursion suggests correlation with similar excursions noted in Ediacaran-aged successions of Siberia, India, and China. Enrichment of 13C (delta 13C> +5%) in Otavi Group carbonates reflects those in Upper Riphean successions of the Akademikerbreen Group, Svalbard, its correlatives in East Greenland, and the Shaler Group, northwest Canada. The widespread distribution of successions with comparable isotopic signatures supports hypotheses that variations in delta 13C reflect global changes in the isotopic composition of late

  12. Influence of methane addition on selenium isotope sensitivity and their spectral interferences.

    PubMed

    Floor, Geerke H; Millot, Romain; Iglesias, Mónica; Négrel, Philippe

    2011-02-01

    The measurements of stable selenium (Se) isotopic signatures by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) are very challenging, due to the presence of spectral interferences and the low abundance of Se in environmental samples. We systematically investigated the effect of methane addition on the signal of Se isotopes and their interferences. It is the first time that the effect of methane addition has been assessed for all Se isotopes and its potential interferences using hydride generator multi-collector inductively coupled plasma mass spectrometry (HG-MC-ICP-MS). Our results show that a small methane addition increases the sensitivity. However, the response differs between a hydride generator and a standard introduction system, which might be related to differences in the ionization processes. Both argon and hydrogen-based interferences, the most common spectral interferences on selenium isotopes in HG-MC-ICP-MS, decrease with increasing methane addition. Therefore, analyte-interference ratios and precision are improved. Methane addition has thus a high potential for the application to stable Se isotopes ratios by HG-MC-ICP-MS. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    PubMed

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation. © 2015 Wiley Periodicals, Inc.

  14. Low-temperature chemistry between water and hydroxyl radicals: H/D isotopic effects

    NASA Astrophysics Data System (ADS)

    Lamberts, T.; Fedoseev, G.; Puletti, F.; Ioppolo, S.; Cuppen, H. M.; Linnartz, H.

    2016-01-01

    Sets of systematic laboratory experiments are presented - combining Ultra High Vacuum cryogenic and plasma-line deposition techniques - that allow us to compare H/D isotopic effects in the reaction of H2O (D2O) ice with the hydroxyl radical OD (OH). The latter is known to play a key role as intermediate species in the solid-state formation of water on icy grains in space. The main finding of our work is that the reaction H2O + OD → OH + HDO occurs and that this may affect the HDO/H2O abundances in space. The opposite reaction D2O + OH → OD + HDO is much less effective, and also given the lower D2O abundances in space not expected to be of astronomical relevance. The experimental results are extended to the other four possible reactions between hydroxyl and water isotopes and are subsequently used as input for Kinetic Monte Carlo simulations. This way we interpret our findings in an astronomical context, qualitatively testing the influence of the reaction rates.

  15. The carbon isotope biogeochemistry of methane production in anoxic sediments. 1: Field observations

    NASA Technical Reports Server (NTRS)

    Blair, Neal E.; Boehme, Susan E.; Carter, W. Dale, Jr.

    1993-01-01

    The natural abundance C-13/C-12 ratio of methane from anoxic marine and freshwater sediments in temperate climates varies seasonally. Carbon isotopic measurements of the methanogenic precursors, acetate and dissolved inorganic carbon, from the marine sediments of Cape Lookout Bight, North Carolina were used to determine the sources of the seasonal variations at that site. Movement of the methanogenic zone over an isotopic gradient within the dissolved CO2 pool appears to be the dominant control of the methane C-13/C-12 ratio from February to June. The onset of acetoclastic methane-production is a second important controlling process during mid-summer. An apparent temperature dependence on the fractionation factor for CO2-reduction may have a significant influence on the isotopic composition of methane throughout the year.

  16. Penguin tissue as a proxy for relative krill abundance in East Antarctica during the Holocene.

    PubMed

    Huang, Tao; Sun, Liguang; Long, Nanye; Wang, Yuhong; Huang, Wen

    2013-09-30

    Antarctic krill (Euphausia superba) is a key component of the Southern Ocean food web. It supports a large number of upper trophic-level predators, and is also a major fishery resource. Understanding changes in krill abundance has long been a priority for research and conservation in the Southern Ocean. In this study, we performed stable isotope analyses on ancient Adélie penguin tissues and inferred relative krill abundance during the Holocene epoch from paleodiets of Adélie penguin (Pygoscelis adeliae), using inverse of δ¹⁵N (ratio of ¹⁵N/¹⁴N) value as a proxy. We find that variations in krill abundance during the Holocene are in accord with episodes of regional climate changes, showing greater krill abundance in cold periods. Moreover, the low δ¹⁵N values found in modern Adélie penguins indicate relatively high krill availability, which supports the hypothesis of krill surplus in modern ages due to recent hunt for krill-eating seals and whales by humans.

  17. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount

    NASA Astrophysics Data System (ADS)

    Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian

    2018-01-01

    Low-temperature hydrothermal vents, such as those encountered at Loihi Seamount, harbor abundant microbial communities and provide ideal systems to test hypotheses on biotic versus abiotic formation of hydrous ferric oxide (FeOx) deposits at the seafloor. Hydrothermal activity at Loihi Seamount produces abundant microbial mats associated with rust-colored FeOx deposits and variably encrusted with Mn-oxyhydroxides. Here, we applied Fe isotope systematics together with major and trace element geochemistry to study the formation mechanisms and preservation of such mineralized microbial mats. Iron isotope composition of warm (<60 °C), Fe-rich and H2S-depleted hydrothermal fluids yielded δ56Fe values near +0.1‰, indistinguishable from basalt values. Suspended particles in the vent fluids and FeOx deposits recovered nearby active vents yielded systematically positive δ56Fe values. The enrichment in heavy Fe isotopes between +1.05‰ and +1.43‰ relative to Fe(II) in vent fluids suggest partial oxidation of Fe(II) during mixing of the hydrothermal fluid with seawater. By comparing the results with experimentally determined Fe isotope fractionation factors, we determined that less than 20% of Fe(II) is oxidized within active microbial mats, although this number may reach 80% in aged or less active deposits. These results are consistent with Fe(II) oxidation mediated by microbial processes considering the expected slow kinetics of abiotic Fe oxidation in low oxygen bottom water at Loihi Seamount. In contrast, FeOx deposits recovered at extinct sites have distinctly negative Fe-isotope values down to -1.77‰ together with significant enrichment in Mn and occurrence of negative Ce anomalies. These results are best explained by the near-complete oxidation of an isotopically light Fe(II) source produced during the waning stage of hydrothermal activity under more oxidizing conditions. Light Fe isotope values of FeOx are therefore generated by subsurface precipitation of

  18. Variability in the carbon isotope composition of individual amino acids in plant proteins from different sources: 1 Leaves.

    PubMed

    Lynch, Anthony H; Kruger, Nicholas J; Hedges, Robert E M; McCullagh, James S O

    2016-05-01

    The natural carbon isotope composition of individual amino acids from plant leaf proteins has been measured to establish potential sources of variability. The plant leaves studied, taken from a range of plant groups (forbs, trees, grasses, and freshwater aquatic plants), showed no significant influence of either season or environment (water and light availability) on their Δδ(13)C values. Plant groups did, however, differ in carbon isotope composition, although no consistent differences were identified at the species level. A discriminant analysis model was constructed which allowed leaves from (1) nettles, (2) Pooideae, (3) other Poales, (4) trees and (5) freshwater higher plants to be distinguished from each other on the basis of their natural abundance (13)C/(12)C ratios of individual amino acids. Differences in carbon isotope composition are known to be retained, to some extent, in the tissues of their consumers, and hence an understanding of compound-specific variation in (13)C/(12)C fractional abundance in plants has the potential to provide dietary insights of value in archaeological and ecological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 13C-18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Eagle, Robert A.; Thiagarajan, Nivedita; Gagnon, Alexander C.; Bauch, Henning; Halloran, Paul R.; Eiler, John M.

    2010-10-01

    Accurate constraints on past ocean temperatures and compositions are critical for documenting climate change and resolving its causes. Most proxies for temperature are not thermodynamically based, appear to be subject to biological processes, require regional calibrations, and/or are influenced by fluid composition. As a result, their interpretation becomes uncertain when they are applied in settings not necessarily resembling those in which they were empirically calibrated. Independent proxies for past temperature could provide an important means of testing and/or expanding on existing reconstructions. Here we report measurements of abundances of stable isotopologues of calcitic and aragonitic benthic and planktic foraminifera and coccoliths, relate those abundances to independently estimated growth temperatures, and discuss the possible scope of equilibrium and kinetic isotope effects. The proportions of 13C- 18O bonds in these samples exhibits a temperature dependence that is generally similar to that previously been reported for inorganic calcite and other biologically precipitated carbonate-containing minerals (apatite from fish, reptile, and mammal teeth; calcitic brachiopods and molluscs; aragonitic coral and mollusks). Most species that exhibit non-equilibrium 18O/ 16O (δ 18O) and 13C/ 12C (δ 13C) ratios are characterized by 13C- 18O bond abundances that are similar to inorganic calcite and are generally indistinguishable from apparent equilibrium, with possible exceptions among benthic foraminiferal samples from the Arctic Ocean where temperatures are near-freezing. Observed isotope ratios in biogenic carbonates can be explained if carbonate minerals generally preserve a state of ordering that reflects the extent of isotopic equilibration of the dissolved inorganic carbon species.

  20. Determining the Elemental and Isotopic Composition of the Pre-solar Nebula from Genesis Data Analysis: The Case of Oxygen

    DOE PAGES

    Laming, J. Martin; Heber, Veronika S.; Burnett, Donald S.; ...

    2017-12-06

    Here, we compare element and isotopic fractionations measured in bulk solar wind samples collected by NASA's Genesis mission with those predicted from models incorporating both the ponderomotive force in the chromosphere and conservation of the first adiabatic invariant in the low corona. Generally good agreement is found, suggesting that these factors are consistent with the process of solar wind fractionation. Based on bulk wind measurements, we also consider in more detail the isotopic and elemental abundances of O. We also find mild support for an O abundance in the range 8.75–8.83, with a value as low as 8.69 disfavored. Amore » stronger conclusion must await solar wind regime-specific measurements from the Genesis samples.« less

  1. Determining the Elemental and Isotopic Composition of the Pre-solar Nebula from Genesis Data Analysis: The Case of Oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laming, J. Martin; Heber, Veronika S.; Burnett, Donald S.

    Here, we compare element and isotopic fractionations measured in bulk solar wind samples collected by NASA's Genesis mission with those predicted from models incorporating both the ponderomotive force in the chromosphere and conservation of the first adiabatic invariant in the low corona. Generally good agreement is found, suggesting that these factors are consistent with the process of solar wind fractionation. Based on bulk wind measurements, we also consider in more detail the isotopic and elemental abundances of O. We also find mild support for an O abundance in the range 8.75–8.83, with a value as low as 8.69 disfavored. Amore » stronger conclusion must await solar wind regime-specific measurements from the Genesis samples.« less

  2. Determination of the sulfur isotope ratio in carbonyl sulfide using gas chromatography/isotope ratio mass spectrometry on fragment ions 32S+, 33S+, and 34S+.

    PubMed

    Hattori, Shohei; Toyoda, Akari; Toyoda, Sakae; Ishino, Sakiko; Ueno, Yuichiro; Yoshida, Naohiro

    2015-01-06

    Little is known about the sulfur isotopic composition of carbonyl sulfide (OCS), the most abundant atmospheric sulfur species. We present a promising new analytical method for measuring the stable sulfur isotopic compositions (δ(33)S, δ(34)S, and Δ(33)S) of OCS using nanomole level samples. The direct isotopic analytical technique consists of two parts: a concentration line and online gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions (32)S(+), (33)S(+), and (34)S(+). The current levels of measurement precision for OCS samples greater than 8 nmol are 0.42‰, 0.62‰, and 0.23‰ for δ(33)S, δ(34)S, and Δ(33)S, respectively. These δ and Δ values show a slight dependence on the amount of injected OCS for volumes smaller than 8 nmol. The isotope values obtained from the GC-IRMS method were calibrated against those measured by a conventional SF6 method. We report the first measurement of the sulfur isotopic composition of OCS in air collected at Kawasaki, Kanagawa, Japan. The δ(34)S value obtained for OCS (4.9 ± 0.3‰) was lower than the previous estimate of 11‰. When the δ(34)S value for OCS from the atmospheric sample is postulated as the global signal, this finding, coupled with isotopic fractionation for OCS sink reactions in the stratosphere, explains the reported δ(34)S for background stratospheric sulfate. This suggests that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols.

  3. Carbon isotopic characterization of formaldehyde emitted by vehicles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Wen, Sheng; Liu, Yonglin; Bi, Xinhui; Chan, Lo Yin; Feng, Jialiang; Wang, Xinming; Sheng, Guoying; Fu, Jiamo

    2014-04-01

    Formaldehyde (HCHO) is the most abundant carbonyl compound in the atmosphere, and vehicle exhaust emission is one of its important anthropogenic sources. However, there is still uncertainty regarding HCHO flux from vehicle emission as well as from other sources. Herein, automobile source was characterized using HCHO carbon isotopic ratio to assess its contributions to atmospheric flux and demonstrate the complex production/consumption processes during combustion in engine cylinder and subsequent catalytic treatment of exhaust. Vehicle exhausts were sampled under different idling states and HCHO carbon isotopic ratios were measured by gas chromatograph-combustion-isotopic ratio mass spectrometry (GC-C-IRMS). The HCHO directly emitted from stand-alone engines (gasoline and diesel) running at different load was also sampled and measured. The HCHO carbon isotopic ratios were from -30.8 to -25.7‰ for gasoline engine, and from -26.2 to -20.7‰ for diesel engine, respectively. For diesel vehicle without catalytic converter, the HCHO carbon isotopic ratios were -22.1 ± 2.1‰, and for gasoline vehicle with catalytic converter, the ratios were -21.4 ± 0.7‰. Most of the HCHO carbon isotopic ratios were heavier than the fuel isotopic ratios (from -29 to -27‰). For gasoline vehicle, the isotopic fractionation (Δ13C) between HCHO and fuel isotopic ratios was 7.4 ± 0.7‰, which was higher than that of HCHO from stand-alone gasoline engine (Δ13Cmax = 2.7‰), suggesting additional consumption by the catalytic converter. For diesel vehicle without catalytic converter, Δ13C was 5.7 ± 2.0‰, similar to that of stand-alone diesel engine. In general, the carbon isotopic signatures of HCHO emitted from automobiles were not sensitive to idling states or to other vehicle parameters in our study condition. On comparing these HCHO carbon isotopic data with those of past studies, the atmospheric HCHO in a bus station in Guangzhou might mainly come from vehicle emission for

  4. Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures

    NASA Astrophysics Data System (ADS)

    van Zuilen, Kirsten; Müller, Thomas; Nägler, Thomas F.; Dietzel, Martin; Küsters, Tim

    2016-08-01

    Variations in barium (Ba) stable isotope abundances measured in low and high temperature environments have recently received increasing attention. The actual processes controlling Ba isotope fractionation, however, remain mostly elusive. In this study, we present the first experimental approach to quantify the contribution of diffusion and adsorption on mass-dependent Ba isotope fractionation during transport of aqueous Ba2+ ions through a porous medium. Experiments have been carried out in which a BaCl2 solution of known isotopic composition diffused through u-shaped glass tubes filled with silica hydrogel at 10 °C and 25 °C for up to 201 days. The diffused Ba was highly fractionated by up to -2.15‰ in δ137/134Ba, despite the low relative difference in atomic mass. The time-dependent isotope fractionation can be successfully reproduced by a diffusive transport model accounting for mass-dependent differences in the effective diffusivities of the Ba isotope species (D137Ba /D134Ba =(m134 /m137) β). Values of β extracted from the transport model were in the range of 0.010-0.011. Independently conducted batch experiments revealed that adsorption of Ba onto the surface of silica hydrogel favoured the heavier Ba isotopes (α = 1.00015 ± 0.00008). The contribution of adsorption on the overall isotope fractionation in the diffusion experiments, however, was found to be small. Our results contribute to the understanding of Ba isotope fractionation processes, which is crucial for interpreting natural isotope variations and the assessment of Ba isotope ratios as geochemical proxies.

  5. Glycan reductive isotope labeling for quantitative glycomics.

    PubMed

    Xia, Baoyun; Feasley, Christa L; Sachdev, Goverdhan P; Smith, David F; Cummings, Richard D

    2009-04-15

    Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed glycan reductive isotope labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [(12)C(6)]aniline and [(13)C(6)]aniline. These dual-labeled aniline-tagged glycans can be recovered by reverse-phase chromatography and can be quantified based on ultraviolet (UV) absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins, using this method. This technique allows linear relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of glycomics.

  6. Late-Quaternary Molecular Isotopic Paleohydrology of Lake Junin, Peru

    NASA Astrophysics Data System (ADS)

    Polissar, P. J.; Liu, C.; Rodbell, D. T.; Abbott, M. B.

    2013-12-01

    There is great potential for reconstructing past changes in the hydrologic cycle using the hydrogen isotopic composition of plant-wax biomarkers. At present, empirical relationships relating plant-wax hydrogen isotope compositions (δDwax) to source water are almost exclusively based upon modern plants, soils and sediments. Relatively little is known about how plant-wax hydrogen isotopes track source water through time. Here we take advantage of existing paleoisotopic information from Lake Junin in the central Peruvian Andes to evaluate the temporal fidelity of δDwax to source water δD. In Lake Junin and the nearby region, oxygen isotopic records from lacustrine carbonates, speleothems and ice-cores provide robust constraints on the isotopic composition of lake water and precipitation in the past. Combined with new measurements of δDwax in Lake Junin sediments, these data allow us to evaluate the isotopic, climatic and vegetation influences on δDwax over the past 20,000 years. The n-alkanoic acid δDwax values exhibit trends through time that are similar to those for precipitation and lakewater δD. Highly negative δDwax values during the Last Glacial Maximum mirror depleted lakewater and precipitation δD values, more positive δDwax values at the beginning of the Holocene correspond to more enriched water δD values, and decreasing δDwax values over the past 10,000 years parallel the decreasing δD of lakewater and precipitation. However, the magnitude of the δDwax shifts are much larger than can be explained by changing δD water values. For example, the enrichment of δDwax values at the beginning of the Holocene is +30‰ and +80‰ larger than those of lakewater or precipitation δD, respectively. These differences could reflect changes in vegetation type, shifting proportions of aquatic and terrestrial plant sources, or environmental factors such as aridity. Vegetation type is an unlikely explanation as pollen abundances indicate only minor

  7. Rhenium-osmium isotope systematics of ordinary chondrites and iron meteorites

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Morgan, J. W.; Horan, M. F.; Grossman, J. N.

    1993-01-01

    Using negative thermal ionization mass spectrometry, Re and Os abundances were determined by isotope dilution and Os-187/Os-186 measured in 11 ordinary chondrites, and also in 1 IIB and 3 IIIB irons. In addition, Os-186/Os-188 and Os-189/Os-188 ratios were precisely determined for 3 unspiked ordinary chondrites as a means of constraining the intensity of any neutron irradiation these meteorites may have experienced.

  8. UNiquant, a program for quantitative proteomics analysis using stable isotope labeling.

    PubMed

    Huang, Xin; Tolmachev, Aleksey V; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A; Smith, Richard D; Chan, Wing C; Hinrichs, Steven H; Fu, Kai; Ding, Shi-Jian

    2011-03-04

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for postmeasurement normalization of peptide ratios, which is required by the other programs.

  9. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    PubMed Central

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven H.; Fu, Kai; Ding, Shi-Jian

    2011-01-01

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for post-measurement normalization of peptide ratios, which is required by the other programs. PMID:21158445

  10. Melt migration and mantle chromatography, 2: a time-series Os isotope study of Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Hauri, Erik H.; Kurz, Mark D.

    1997-12-01

    We have determined the major element, trace element, and Os isotopic compositions of a stratigraphic suite of tholeiitic basalts spanning >30,000 years of the eruptive history of Mauna Loa volcano. Good correlations are observed between Os isotopes and the isotopes of Sr, Nd, Pb and He. In addition, the isotopes correlate with fractionation-corrected major element abundances within this single volcano, and provide a record of increased melting of mafic material with time at Mauna Loa. Chromatographic element fractionation during melt transport is shown to be negligible based on the good correlations of the isotopes of the compatible element Os with the other incompatible element tracers. The temporal variation at Mauna Loa is best described by the translation of the volcano over a Hawaiian plume which is radially zoned in composition. The radial zonation is a predicted consequence of thermal entrainment during flow in a mantle plume conduit.

  11. Stable isotope labeling tandem mass spectrometry (SILT) to quantify protein production and clearance rates

    PubMed Central

    Bateman, Randall J.; Munsell, Ling Y.; Chen, Xianghong; Holtzman, David M.; Yarasheski, Kevin E.

    2007-01-01

    In all biological systems, protein amount is a function of the rate of production and clearance. The speed of a response to a disturbance in protein homeostasis is determined by turnover rate. Quantifying alterations in protein synthesis and clearance rates is vital to understanding disease pathogenesis (e.g., aging, inflammation). No methods exist for quantifying production and clearance rates of low abundance (femtomole) proteins in vivo. We describe a novel, mass spectrometry-based method for quantitating low abundance protein synthesis and clearance rates in vitro and in vivo in animals and humans. The utility of this method is demonstrated with amyloid-beta (Aß), an important low abundance protein involved in Alzheimer's disease pathogenesis. We used in vivo stable isotope labeling, immunoprecipitation of Aß from cerebrospinal fluid, and quantitative liquid chromatography electrospray-ionization tandem mass spectrometry (LC-ESI-tandem MS) to quantify human Aß protein production and clearance rates. The method is sensitive and specific for stable isotope labeled amino acid incorporation into CNS (± 1% accuracy). This in vivo method can be used to identify pathophysiologic changes in protein metabolism; and may serve as a biomarker for monitoring disease risk, progression, or response to novel therapeutic agents. The technique is adaptable to other macromolecules, such as carbohydrates or lipids. PMID:17383190

  12. Hydrogen Isotope Geochemistry of Mariana Trough Lavas

    NASA Astrophysics Data System (ADS)

    Oleary, J.; Kitchen, N.; Eiler, J.

    2002-12-01

    Basaltic lavas from the Marianas trough vary in water content from values similar to mid-ocean ridge basalts (MORBs) to ten times those values. These variations plausibly reflect addition of subducted water to the mantle wedge, but must also reflect variations in extent of melting and crystallization-differentiation. We report hydrogen isotope data for 18 samples of lavas from the Mariana trough; these measurements, when combined with other geochemical data, constrain the relative proportions of subducted vs. 'primitive' water in their mantle sources. Previous measurements of the hydrogen isotope composition of Mariana trough lavas [1] found a correlation between dD and measured water content, consistent with two-component mixing between water in the ambient MORB source and water from the subducted slab, but include only four samples, only two of which have known major and minor element geochemistry. Our purpose is to confirm this result and expand it to include a more representative sampling. Our measurements made use of a recently developed technique for on-line stepped heating, water reduction and hydrogen isotope mass spectrometry [2]. This method is appropriate for relatively small samples of basaltic glass (ca. 100 μg to 1 mg) and up to 10 analyses can be performed per day. Its principle advantages for our purposes are that it can be applied to even small or glass-poor samples and it is fast enough to permit replication of all data and analysis of relatively large numbers of standards. Hydrogen isotope compositions of Mariana trough lavas vary between -74 per mil and -34 per mil (SMOW); this compares with a range of -46 to -32 per mil for related lavas in [1] and is similar to the previously observed range for back-arc-basin basalts generally (-70 to -32 per mil). Two-thirds of our sample suite span a small range in dD (-40+/-4 ). We suggest this average is the most representative value for back arc basin basalts measured to-date. Our data are inconsistent

  13. Isotopic ratios D/H and 15N/14N in giant planets

    NASA Astrophysics Data System (ADS)

    Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Benz, Willy

    2018-04-01

    The determination of isotopic ratios in planets is important since it allows us to investigate the origins and initial composition of materials. The present work aims to determine the possible range of values for isotopic ratios D/H and 15N/14N in giant planets. The main objective is to provide valuable theoretical assumptions on the isotopic composition of giant planets, their internal structure, and the main reservoirs of species. We use models of ice formation and planet formation that compute the composition of ices and gas accreted in the core and the envelope of planets. Assuming a single initial value for isotopic ratios in volatile species, and disruption of planetesimals in the envelope of gaseous planets, we obtain a wide variety of D/H and 15N/14N ratios in low-mass planets (≤100 Mearth) due to the migration pathway of planets, the accretion time of gas species whose relative abundance evolves with time, and isotope exchanges among species. If giant planets with mass greater than 100 Mearth have solar isotopic ratios such as Jupiter and Saturn due to their higher envelope mass, Neptune-type planets present values ranging between one and three times the solar value. It seems therefore difficult to use isotopic ratios in the envelope of these planets to get information about their formation in the disc. For giant planets, the ratios allow us to constrain the mass fraction of volatile species in the envelope needed to reproduce the observational data by assuming initial values for isotopic ratios in volatile species.

  14. Isotopic Evidence for Platform Exposure and Diagenesis in the Miocene: Implications for South-East Asian Platform Evolution.

    NASA Astrophysics Data System (ADS)

    Prince, K.; Laya, J. C.; Betzler, C.; Eberli, G. P.; Zarikian, C.; Swart, P. K.; Blättler, C. L.; Reolid, J.; Reijmer, J.

    2017-12-01

    The Maldives record nearly continuous carbonate deposition from the Eocene to the Holocene, and its stable tectonic regime and lack of clastic input make it an ideal example for understanding the depositional and diagenetic dynamics of isolated carbonate platforms. The Kardiva platform ultimately drowned, but the amplitude and frequency of sea-level changes in the Miocene make it likely that subaerial exposure occurred during its evolution. Abundant moldic porosity has been interpreted as meteoric diagenesis, but stable isotope evidence to support this has not been reported. Using bulk stable isotope analyses and petrographic methods, we sought to identify evidence of meteoric diagenesis by investigating the variations in grains, cements, porosity, δ13C, and δ18O at IODP Sites U1645, U1469, and U1470. Within the platform, grain distribution is variable with algae, benthic foraminifera, and corals representing the most abundant grain types. Cement abundance generally increases while porosity decreases with depth, with some variability. δ18O and δ13C range from -7.0‰ to 3.2‰ and -7‰ to 2.5‰, respectively. Petrography and isotope values show evidence for subaerial exposure and alteration by meteoric fluids, with a cross-plot of δ13C and δ18O showing the characteristic inverted "J" trend associated with dissolution and precipitation reactions mediated by meteoric fluids, resulting in more negative values. These results are compared to isotopic values for unaltered red algae and corals to account for the possibility of vital effects, but vital effects alone do not yield such low values. This evidence for meteoric diagenesis of the Kardiva Platform indicates variation between wet and dry periods, and also potential high-amplitude sea-level fluctuations during the Miocene in the Indo-Pacific region.

  15. Radiogenic Isotopes in Weathering and Hydrology

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Erel, Y.

    2003-12-01

    There are a small group of elements that display variations in their isotopic composition, resulting from radioactive decay within minerals over geological timescales. These isotopic variations provide natural fingerprints of rock-water interactions and have been widely utilized in studies of weathering and hydrology. The isotopic systems that have been applied in such studies are dictated by the limited number of radioactive parent-daughter nuclide pairs with half-lives and isotopic abundances that result in measurable differences in daughter isotope ratios among common rocks and minerals. Prior to their application to studies of weathering and hydrology, each of these isotopic systems was utilized in geochronology and petrology. As in the case of their original introduction into geochronology and petrology, isotopic systems with the highest concentrations of daughter isotopes in common rocks and minerals and systems with the largest observed isotopic variations were introduced first and have made the largest impact on our understanding of weathering and hydrologic processes. Although radiogenic isotopes have helped elucidate many important aspects of weathering and hydrology, it is important to note that in almost every case that will be discussed in this chapter, our fundamental understanding of these topics came from studies of variations in the concentrations of major cations and anions. This chapter is a "tools chapter" and thus it will highlight applications of radiogenic isotopes that have added additional insight into a wide spectrum of research areas that are summarized in almost all of the other chapters of this volume.The first applications of radiogenic isotopes to weathering processes were based on studies that sought to understand the effects of chemical weathering on the geochronology of whole-rock samples and geochronologically important minerals (Goldich and Gast, 1966; Dasch, 1969; Blaxland, 1974; Clauer, 1979, 1981; Clauer et al., 1982); as well

  16. Methane transport mechanisms and isotopic fractionation in emergent macrophytes of an Alaskan tundra lake

    NASA Technical Reports Server (NTRS)

    Chanton, Jeffrey P.; Martens, Christopher S.; Kelley, Cheryl A.; Crill, Patrick M.; Showers, William J.

    1992-01-01

    The stable carbon isotopic composition of methane associated with and emitted by the two dominant emergent macrophytes abundant in the many Alaskan tundra lakes, Carex rostrata and Arctophila fulva, is determined. The carbon isotopic composition of the methane was -58.6 +/- 0.5 (n=2) for Arctophila and -66.6 +/- 2.5 (n=6) for Carex. The methane emitted by these species is depleted in C-13 by 12 per mil for Arctophila and 18 per mil for Carex relative to methane withdrawn from plant stems 1-2 cm below the waterline. The results suggest more rapid transport of (C-12)H4 relative to (C-13)H4 through plants to the atmosphere. Plant stem methane concentrations ranged from 0.2 to 4.0 percent in Arctophila, with an isotopic composition of -46.1 +/- 4.3 percent (n=8). Carex stem methane concentrations ranged from 150 to 1200 ppm, with an isotopic composition of -48.3 +/- 1.4 per mil (n=3).

  17. The relative isotopic abundance (δ13C, δ15N) during composting of agricultural wastes in relation to compost quality and feedstock.

    PubMed

    Inácio, Caio T; Magalhães, Alberto M T; Souza, Paulo O; Chalk, Phillip M; Urquiaga, Segundo

    2018-05-01

    Variations in the relative isotopic abundance of C and N (δ 13 C and δ 15 N) were measured during the composting of different agricultural wastes using bench-scale bioreactors. Different mixtures of agricultural wastes (horse bedding manure + legume residues; dairy manure + jatropha mill cake; dairy manure + sugarcane residues; dairy manure alone) were used for aerobic-thermophilic composting. No significant differences were found between the δ 13 C values of the feedstock and the final compost, except for dairy manure + sugarcane residues (from initial ratio of -13.6 ± 0.2 ‰ to final ratio of -14.4 ± 0.2 ‰). δ 15 N values increased significantly in composts of horse bedding manure + legumes residues (from initial ratio of +5.9 ± 0.1 ‰ to final ratio of +8.2 ± 0.5 ‰) and dairy manure + jatropha mill cake (from initial ratio of +9.5 ± 0.2 ‰ to final ratio of +12.8 ± 0.7 ‰) and was related to the total N loss (mass balance). δ 13 C can be used to differentiate composts from different feedstock (e.g. C 3 or C 4 sources). The quantitative relationship between N loss and δ 15 N variation should be determined.

  18. The Submillimeter Wave Spectrum of Isotopic Methyl Cyanide

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Mueller, H. S. P.

    1996-01-01

    The laboratory submillimeter wave rotational spectrum of the 13CH3CN, CH3C13CN, and CH3C15N isotopomers of methyl cyanide has been observed in natural abundance in the 294 to 607 GHz region. The maximum J and K values are 34 and 14, respectively. Fifteen additional CH3CN transitions up to K = 21 were also measured. The transitions of all four species are fitted to a symmetric top Hamiltonian, and the rotation and distortion constants are determined. The 14N quadrupole and spin rotation coupling constants are also calculated and presented. Suggested values for many other parameters, which could not be directly determined from the isotope spectra, are calculated from the normal species values and isotope relationships. The determined and calculated constants should predict the spectrum of the three isotopomers to well over 1 THz accurately enough for astronomical assignments.

  19. New Constraints on the Abundance of 60Fe in the Early Solar System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trappitsch, Reto; Boehnke, Patrick; Stephan, Thomas

    Establishing the abundance of the extinct radionuclide 60Fe (half-life 2.62 Ma) in the early solar system is important for understanding the astrophysical context of solar system formation. While bulk measurements of early solar system phases show a low abundance consistent with galactic background, some in situ measurements by secondary ion mass spectrometry (SIMS) imply a higher abundance, which would require injection from a nearby supernova (SN). In this paper, we present in situ nickel isotopic analyses by resonance ionization mass spectrometry (RIMS) in a chondrule from the primitive meteorite Semarkona (LL3.00). The same chondrule had been previously analyzed by SIMS.more » Despite improved precision compared to SIMS, the RIMS nickel isotopic data do not reveal any resolved excesses of 60Ni that could be unambiguously ascribed to in situ 60Fe decay. Linear regression of 60Ni/ 58Ni versus 56Fe/ 58Ni yields an initial 60Fe/ 56Fe ratio for this chondrule of (3.8 ± 6.9) × 10 -8, which is consistent with both the low initial value found by bulk measurements and the low end of the range of initial ratios inferred from some in situ work. The same regression also gives a solar initial 60Ni/ 58Ni ratio, which shows that this sample was not disturbed by nickel mobilization, thus agreeing with a low initial 60Fe/ 56Fe ratio. These findings agree with a re-evaluation of previous SIMS measurements of the same sample. Finally, supernova injection of 60Fe into the solar system or its parental cloud material is therefore not necessary to account for the measured solar system's initial amount of 60Fe.« less

  20. New Constraints on the Abundance of 60Fe in the Early Solar System

    DOE PAGES

    Trappitsch, Reto; Boehnke, Patrick; Stephan, Thomas; ...

    2018-04-19

    Establishing the abundance of the extinct radionuclide 60Fe (half-life 2.62 Ma) in the early solar system is important for understanding the astrophysical context of solar system formation. While bulk measurements of early solar system phases show a low abundance consistent with galactic background, some in situ measurements by secondary ion mass spectrometry (SIMS) imply a higher abundance, which would require injection from a nearby supernova (SN). In this paper, we present in situ nickel isotopic analyses by resonance ionization mass spectrometry (RIMS) in a chondrule from the primitive meteorite Semarkona (LL3.00). The same chondrule had been previously analyzed by SIMS.more » Despite improved precision compared to SIMS, the RIMS nickel isotopic data do not reveal any resolved excesses of 60Ni that could be unambiguously ascribed to in situ 60Fe decay. Linear regression of 60Ni/ 58Ni versus 56Fe/ 58Ni yields an initial 60Fe/ 56Fe ratio for this chondrule of (3.8 ± 6.9) × 10 -8, which is consistent with both the low initial value found by bulk measurements and the low end of the range of initial ratios inferred from some in situ work. The same regression also gives a solar initial 60Ni/ 58Ni ratio, which shows that this sample was not disturbed by nickel mobilization, thus agreeing with a low initial 60Fe/ 56Fe ratio. These findings agree with a re-evaluation of previous SIMS measurements of the same sample. Finally, supernova injection of 60Fe into the solar system or its parental cloud material is therefore not necessary to account for the measured solar system's initial amount of 60Fe.« less

  1. Isotope chirality in long-armed multifunctional organosilicon ("Cephalopod") molecules.

    PubMed

    Barabás, Béla; Kurdi, Róbert; Zucchi, Claudia; Pályi, Gyula

    2018-07-01

    Long-armed multifunctional organosilicon molecules display self-replicating and self-perfecting behavior in asymmetric autocatalysis (Soai reaction). Two representatives of this class were studied by statistical methods aiming at determination of probabilities of natural abundance chiral isotopomers. The results, reported here, show an astonishing richness of possibilities of the formation of chiral isotopically substituted derivatives. This feature could serve as a model for the evolution of biological chirality in prebiotic and early biotic stereochemistry. © 2018 Wiley Periodicals, Inc.

  2. Breath carbon stable isotope ratios identify changes in energy balance and substrate utilization in humans

    USDA-ARS?s Scientific Manuscript database

    Rapid detection of shifts in substrate utilization and energy balance would provide a compelling biofeedback tool to enable individuals to lose weight. In a pilot study, we tested whether the natural abundance of exhaled carbon stable isotope ratios (breath d13C values) reflects shifts between negat...

  3. Chemical evolution of Mg isotopes versus the time variation of the fine structure constant.

    PubMed

    Ashenfelter, T; Mathews, Grant J; Olive, Keith A

    2004-01-30

    We show that the synthesis of (25,26)Mg at the base of the convective envelope in low-metallicity asymptotic giant branch stars can produce the isotopic ratios needed to explain the low-z subset (with z<1.8) of the many-multiplet data from quasar absorption systems without invoking a time variation of the fine structure constant. This is supported by observations of high abundances of the neutron-rich Mg isotopes in metal-poor globular-cluster stars. We conclude that the quasar absorption spectra may be providing interesting information on the nucleosynthetic history of such systems.

  4. Isotopic Measurements of Organic Sulfonates From The Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, G. W.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Organic sulfonates and phosphonates have been extracted from the Murchison meteorite for stable isotope measurements. Preliminary stable isotope measurements of individual alkyl sulfonates, R-SO3H (R=C(sub n)H(sub 2n+l)), are shown. These compounds were found in aqueous extracts of Murchison. Both groups show trends similar to other homologous series of organic compounds indigenous to Murchison. Molecular abundances decrease with increasing carbon number, and all possible isomers at each carbon number (through C-4) are present. Carbon isotope measurements of the sulfonates show a decrease in the C-13/C-12 ratio with increasing carbon number. The overall objectives of this project are to obtain dime element carbon, hydrogen, and sulfur - intramolecular isotopic analyses of individual sulfonates, and isotopic measurement of carbon and hydrogen of the phosphonates as a group. The Murchison meteorite is the best characterized carbonaceous chondrite with respect to organic chemistry. The finding of organic sulfonates and phosphonates in Murchison is of interest because they are the first well-characterized series of sulfur and phosphorus containing organic compounds found in meteorites. Also, meteorites, comets, and interplanetary dust particles may have been involved in chemical evolution on the early Earth. Because of the critical role of organic phosphorus and sulfur in all living systems, it is particularly interesting to see examples of abiotic syntheses of these classes of compounds. The study of the isotopic composition of the sulfonates and phosphonates can yield insight into their possible interstellar origin as well as their mechanisms of synthesis in the early solar system. Previous isotopic analyses of other classes of organic compounds indigenous to meteorites, e.g., amino acids, carboxylic acids, and hydrocarbons indicate the possibility that interstellar molecules were incorporated into meteorite parent bodies. In these compounds the ratios of heavy to

  5. The tungsten isotopic composition of the Earth's mantle before the terminal bombardment.

    PubMed

    Willbold, Matthias; Elliott, Tim; Moorbath, Stephen

    2011-09-07

    Many precious, 'iron-loving' metals, such as gold, are surprisingly abundant in the accessible parts of the Earth, given the efficiency with which core formation should have removed them to the planet's deep interior. One explanation of their over-abundance is a 'late veneer'--a flux of meteorites added to the Earth after core formation as a 'terminal' bombardment that culminated in the cratering of the Moon. Some 3.8 billion-year-old rocks from Isua, Greenland, are derived from sources that retain an isotopic memory of events pre-dating this cataclysmic meteorite shower. These Isua samples thus provide a window on the composition of the Earth before such a late veneer and allow a direct test of its importance in modifying the composition of the planet. Using high-precision (less than 6 parts per million, 2 standard deviations) tungsten isotope analyses of these rocks, here we show that they have a isotopic tungsten ratio (182)W/(184)W that is significantly higher (about 13 parts per million) than modern terrestrial samples. This finding is in good agreement with the expected influence of a late veneer. We also show that alternative interpretations, such as partial remixing of a deep-mantle reservoir formed in the Hadean eon (more than four billion years ago) or core-mantle interaction, do not explain the W isotope data well. The decrease in mantle (182)W/(184)W occurs during the Archean eon (about four to three billion years ago), potentially on the same timescale as a notable decrease in (142)Nd/(144)Nd (refs 3 and 6). We speculate that both observations can be explained if late meteorite bombardment triggered the onset of the current style of mantle convection.

  6. Calibration of Gephyrocapsa Coccolith Abundance in Holocene Sediments for Paleo-temperature Assessment

    NASA Astrophysics Data System (ADS)

    Bollmann, J.; Brabec, B.

    2001-12-01

    Abundance and assemblage compositions of microplankton, together with their chemical and stable isotopic composition, have been among the most successful methods in paleoceanography. One of the most frequently applied techniques for reconstruction of paleo-temperature is a transfer function using the relative abundance of planktic foraminifera in sediment samples. Here we present evidence, suggesting that absolute sea surface temperature for a given location can be also calculated from the relative abundance of Gephyrocapsa morphotypes in sediment samples with an accuracy comparable to foraminifera transfer functions. By extrapolating this finding, paleo-enviromental interpretations can be obtained for the Late Pleistocene and discrepancies between the different currently used methods (e.g., foraminifer, alkenone and Ca/Mg derived temperature estimates) might be resolved. Eighty-one Holocene sediment samples were selected from the Pacific, Indian and Atlantic Oceans covering a temperature gradient from 13.4° C to 29.4° C, a salinity gradient from 32.21 to 37.34 and a productivity gradient of 0.045 to 0.492μ g chlorophyll/L. Standard multiple linear regression analyses were applied to this data set, linking the relative abundance of Gephyrocapsa morphotypes to mean sea surface temperature. The best model revealed an r2 of 0.8 with a standard residual error of 1.8° C for calculation of the mean sea surface temperature.

  7. The Evolution of the Protoplanetary Disk Recorded by Nucleosynthetic Isotope Variations of Variable Stellar Origin in Refractory Inclusions

    NASA Astrophysics Data System (ADS)

    Schönbächler, M.; Lai, Y.-J.; Henshall, T.; Fehr, M. A.; Cook, D. L.; Bullock, E. S.

    2017-07-01

    New CAI data confirm the homogeneous distribution of the short-lived p-process isotope 92Nb in the early solar system with the exception of CAIs with group II REE pattern that show increased 92Nb abundances.

  8. A novel reductive amination method with isotopic formaldehydes for the preparation of internal standard and standards for determining organosulfur compounds in garlic.

    PubMed

    Tsai, De-Cheng; Liu, Meng-Chieh; Lin, Yi-Reng; Huang, Mei-Fang; Liang, Shih-Shin

    2016-04-15

    Garlic (Allium sativum) is a long-cultivated plant that is widely utilized in cooking and has been employed as a medicine for over 4000 years. In this study, we fabricated standards and internal standards (ISs) for absolute quantification via reductive amination with isotopic formaldehydes. Garlic has four abundant organosulfur compounds (OSCs): S-allylcysteine, S-allylcysteinine sulfoxide, S-methylcysteine, and S-ethylcysteine are abundant in garlic. OSCs with primary amine groups were reacted with isotopic formaldehydes to synthesize ISs and standards. Cooked and uncooked garlic samples were compared, and we utilized tandem mass spectrometry equipped with a selective reaction monitoring technique to absolutely quantify the four organosulfur compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Uranium Stable Isotopes: A Proxy For Productivity Or Ocean Oxygenation?

    NASA Astrophysics Data System (ADS)

    Severmann, S.

    2015-12-01

    Uranium elemental abundances in sediments have traditionally been used to reconstruct primary productivity and carbon flux in the ocean. 238U/235U isotope compositions, in contrast, are currently understood to reflect the extent of bottom water anoxia in the ocean. A review of our current understanding of authigenic U enrichment mechanism into reducing sediments suggests that a revision of this interpretation is warranted. Specifically, the current interpretation of U isotope effects in suboxic vs. anoxic deposits has not taken into account the well-documented linear relationship with organic C burial rates. Although organic C rain rates (i.e., surface productivity) and bottom water oxygenation are clearly related, distinction between these two environmental controls is conceptually important as it relates to the mechanism of enhanced C burial and ultimately the strength of the biological pump. Here we will review new and existing data to test the hypothesis that the isotope composition of authigenic U in reducing sediments are best described by their relationship with parameters related to organic carbon delivery and burial, rather than bottom water oxygen concentration.

  10. Isotopic Recorders of Pollution in Heterogeneous Urban Areas

    NASA Astrophysics Data System (ADS)

    Pataki, D. E.; Cobley, L.; Smith, R. M.; Ehleringer, J. R.; Chritz, K.

    2017-12-01

    A significant difficulty in quantifying urban pollution lies in the extreme spatial and temporal heterogeneity of cities. Dense sources of both point and non-point source pollution as well as the dynamic role of human activities, which vary over very short time scales and small spatial scales, complicate efforts to establish long-term urban monitoring networks that are relevant at neighborhood, municipal, and regional scales. Fortunately, the natural abundance of isotopes of carbon, nitrogen, and other elements provides a wealth of information about the sources and fate of urban atmospheric pollution. In particular, soils and plant material integrate pollution sources and cycling over space and time, and have the potential to provide long-term records of pollution dynamics that extend back before atmospheric monitoring data are available. Similarly, sampling organic material at high spatial resolution can provide "isoscapes" that shed light on the spatial heterogeneity of pollutants in different urban parcels and neighborhoods, along roads of varying traffic density, and across neighborhoods of varying affluence and sociodemographic composition. We have compiled numerous datasets of the isotopic composition of urban organic matter that illustrate the potential for isotopic monitoring of urban areas as a means of understanding hot spots and hot moments in urban atmospheric biogeochemistry. Findings to date already reveal the critical role of affluence, economic activity, demographic change, and land management practices in influencing urban pollution sources and sinks, and suggest an important role of stable isotope and radioisotope measurements in urban atmospheric and biogeochemical monitoring.

  11. Using Stable Isotopes to Assess Connectivity: the Importance ...

    EPA Pesticide Factsheets

    Estuaries located at the interface of terrestrial and oceanic ecosystems receive nutrients from both ecosystems. Stable isotopes of primary producers and consumers are often used as an indicator of nutrient sources. We assembled natural abundance nitrogen stable isotope (δ15N) data for dissolved inorganic nitrate, green macroalgae, seagrass (Zostera marina) and mussels in the nearshore and in estuaries along the west coast of North America to assess the relative importance of terrestrial and oceanic nutrient sources in these systems. We found a latitudinal gradient in nearshore δ15N of nitrate of -0.2 ‰ per degree latitude from Mexico to British Columbia with more depleted isotope ratio to the north. Primary producers (green macroalgae and Zostera marina) located in the nearshore and the marine dominated portion of Pacific Coast estuaries exhibited a similar latitudinal gradient in δ15N of -0.3 ‰ per degree latitude. This latitudinal gradient is similar to δ15N observed for intertidal mussels (Mytilus californianus), which are known to reflect the isotope ratio of the phytoplankton they feed on. The consistent latitudinal gradient for multiple primary producers and a consumer, and the agreement with the gradient in nearshore δ15N of nitrate, suggests that it is a result of oceanic source waters. On the watershed side, there is a gradient in the δ15N of nitrate with southern California systems receiving nitrate with a δ15N-NO3 of about +12 ‰,

  12. Rhenium-osmium concentration and isotope systematics in group IIAB iron meteorites

    USGS Publications Warehouse

    Morgan, J.W.; Horan, M.F.; Walker, R.J.; Grossman, J.N.

    1995-01-01

    Rhenium and osmium abundances, and osmium isotopic compositions were measured by negative thermal ionization mass spectrometry in thirty samples, including replicates, of five IIA and eight IIB iron meteorites. Log plots of Os vs. Re abundances for IIA and IIB irons describe straight lines that approximately converge on Lombard, which has the lowest Re and Os abundances and highest 187Re/188Os measured in a IIA iron to date. The linear IIA trend may be exactly reproduced by fractional crystallization, but is not well fitted using variable partition coefficients. The IIB iron trend, however, cannot be entirely explained by simple fractional crystallization. One explanation is that small amounts of Re and Os were added to the asteroid core during the final stages of crystallization. Another possibility is that diffusional enrichment of Os may have occurred in samples most depleted in Re and Os. -from Authors

  13. Lithium abundance and 6Li/7Li ratio in the active giant HD 123351. I. A comparative analysis of 3D and 1D NLTE line-profile fits

    NASA Astrophysics Data System (ADS)

    Mott, A.; Steffen, M.; Caffau, E.; Spada, F.; Strassmeier, K. G.

    2017-08-01

    Context. Current three-dimensional (3D) hydrodynamical model atmospheres together with detailed spectrum synthesis, accounting for departures from local thermodynamic equilibrium (LTE), permit to derive reliable atomic and isotopic chemical abundances from high-resolution stellar spectra. Not much is known about the presence of the fragile 6Li isotope in evolved solar-metallicity red giant branch (RGB) stars, not to mention its production in magnetically active targets like HD 123351. Aims: A detailed spectroscopic investigation of the lithium resonance doublet in HD 123351 in terms of both abundance and isotopic ratio is presented. From fits of the observed spectrum, taken at the Canada-France-Hawaii telescope, with synthetic line profiles based on 1D and 3D model atmospheres, we seek to estimate the abundance of the 6Li isotope and to place constraints on its origin. Methods: We derive the lithium abundance A(Li) and the 6Li/7Li isotopic ratio by fitting different synthetic spectra to the Li-line region of a high-resolution CFHT spectrum (R = 120 000, S/N = 400). The synthetic spectra are computed with four different line lists, using in parallel 3D hydrodynamical CO5BOLD and 1D LHD model atmospheres and treating the line formation of the lithium components in non-LTE (NLTE). The fitting procedure is repeated with different assumptions and wavelength ranges to obtain a reasonable estimate of the involved uncertainties. Results: We find A(Li) = 1.69 ± 0.11 dex and 6Li/7Li = 8.0 ± 4.4% in 3D-NLTE, using the line list of Meléndez et al. (2012, A&A, 543, A29), updated with new atomic data for V I, which results in the best fit of the lithium line profile of HD 123351. Two other line lists lead to similar results but with inferior fit qualities. Conclusions: Our 2σ detection of the 6Li isotope is the result of a careful statistical analysis and the visual inspection of each achieved fit. Since the presence of a significant amount of 6Li in the atmosphere of a cool

  14. Determination of 13C isotopic enrichment of valine and threonine by GC-C-IRMS after formation of the N(O,S)-ethoxycarbonyl ethyl ester derivatives of the amino acids.

    PubMed

    Godin, Jean-Philippe; Faure, Magali; Breuille, Denis; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2007-06-01

    We describe a new method of assessing, in a single run, (13)C isotopic enrichment of both Val and Thr by gas chromatography-combustion-isotope-ratio mass spectrometry (GC-C-IRMS). This method characterised by a rapid one-step derivatisation procedure performed at room temperature to form the N(O,S)-ethoxycarbonyl ethyl ester derivatives, and a polar column for GC. The suitability of this method for Val and Thr in in-vivo samples (mucosal hydrolysate) was demonstrated by studying protein metabolism with two tracers ((13)C-valine or (13)C-threonine). The intra-day and inter-day repeatability were both assessed either with standards or with in-vivo samples at natural abundance and at low (13)C isotopic enrichment. For inter-day repeatability CVs were between 0.8 and 1.5% at natural abundance and lower than 5.5% at 0.112 and 0.190 atom% enrichment for Val and Thr, respectively. Overall isotopic precision was studied for eleven standard amino acid derivatives (those of Val, Ala, Leu, Iso, Gly, Pro, Asp, Thr, Ser, Met, and Phe) and was assessed at 0.32 per thousand. The (13)C isotopic measurement was then extended to the other amino acids (Ala, Val, Leu, Iso, Gly, Pro, Thr, and Phe) at natural abundance for in-vivo samples. The isotopic precision was better than 0.002 atom% per amino acid (for n = 4 rats). This analytical method was finally applied to an animal study to measure Thr utilization in protein synthesis.

  15. Iron physiological requirements in Chinese adults assessed by the stable isotope labeling technique.

    PubMed

    Cai, Jie; Ren, Tongxiang; Zhang, Yuhui; Wang, Zhilin; Gou, Lingyan; Huang, Zhengwu; Wang, Jun; Piao, Jianhua; Yang, Xiaoguang; Yang, Lichen

    2018-01-01

    Iron is a kind of essential trace mineral in the human body, while the studies on its physiological requirement are very limited recently, especially in China. And most studies were performed with the radioisotope tracer technique, which was harmful to health. This study aimed to first get the value of iron physiological requirements in Chinese adults assessed by the stable isotope labeling technique. Forty-four eligible young Chinese healthy adults were randomly recruited from the Bethune Military Medical College (Shijiazhuang, Hebei, China) between January 2010 and March 2011, and 19 subjects were included in the final data analysis. After adaptive diets and observation, subjects received 58 Fe intravenously. The baseline venous blood sample and general information were collected on day 0. Venous blood samples were also collected on day 14, 30, 60, 100, 120, 150, 240, 330, 425, 515, 605, 767, 1155, respectively. The blood samples were acid digested by a Microwave Digestion System and then analyzed by the MC-ICP-MS and Atomic Absorption Spectroscopy to get the abundance of Fe isotopes and the total iron concentration respectively. The circulation rate (the proportion of blood iron to whole body iron) could be calculated by the intake amount, background content and the peak isotope content. When the abundance changed stably, the iron physiological requirement could be calculated by the iron loss in a period of time. The abundance of 58 Fe reached its peak on day 14, and changed stably from day 425. The average circulation rate was 84%, with no significance difference between the 2 genders. The mean iron requirement in females was 1101.68 μg/d, and the mean requirement adjusted by body weight was 20.69 μg/kg.d. For males, the mean iron requirement was 959.9 μg/d, and the requirement adjusted by body weight was 14.04 μg/kg.d. Our study has obtained the data about the iron physiological requirements of Chinese adults using stable isotope labeling technique

  16. Thermal effects on rare earth element and strontium isotope chemistry in single conodont elements

    NASA Astrophysics Data System (ADS)

    Armstrong, H. A.; Pearson, D. G.; Griselin, M.

    2001-02-01

    A low-blank, high sensitivity isotope dilution, ICP-MS analytical technique has been used to obtain REE abundance data from single conodont elements weighing as little as 5 μg. Sr isotopes can also be measured from the column eluants enabling Sr isotope ratios and REE abundance to be determined from the same dissolution. Results are comparable to published analyses comprising tens to hundreds of elements. To study the effects of thermal metamorphism on REE and strontium mobility in conodonts, samples were selected from a single bed adjacent to a basaltic dyke and from the internationally used colour alteration index (CAI) "standard set." Our analyses span the range of CAI 1 to 8. Homogeneous REE patterns, "bell-shaped" shale-normalised REE patterns are observed across the range of CAI 1 to 6 in both sample sets. This pattern is interpreted as the result of adsorption during early diagenesis and could reflect original seawater chemistry. Above CAI 6 REE patterns become less predictable and perturbations from the typical REE pattern are likely to be due to the onset of apatite recrystallisation. Samples outside the contact aureole of the dyke have a mean 87Sr/ 86Sr ratio of 0.708165, within the broad range of published mid-Carboniferous seawater values. Our analysis indicates conodonts up to CAI 6 record primary geochemical signals that may be a proxy for ancient seawater.

  17. Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite

    PubMed Central

    Eagle, Robert A.; Schauble, Edwin A.; Tripati, Aradhna K.; Tütken, Thomas; Hulbert, Richard C.; Eiler, John M.

    2010-01-01

    The stable isotope compositions of biologically precipitated apatite in bone, teeth, and scales are widely used to obtain information on the diet, behavior, and physiology of extinct organisms and to reconstruct past climate. Here we report the application of a new type of geochemical measurement to bioapatite, a “clumped-isotope” paleothermometer, based on the thermodynamically driven preference for 13C and 18O to bond with each other within carbonate ions in the bioapatite crystal lattice. This effect is dependent on temperature but, unlike conventional stable isotope paleothermometers, is independent from the isotopic composition of water from which the mineral formed. We show that the abundance of 13C-18O bonds in the carbonate component of tooth bioapatite from modern specimens decreases with increasing body temperature of the animal, following a relationship between isotope “clumping” and temperature that is statistically indistinguishable from inorganic calcite. This result is in agreement with a theoretical model of isotopic ordering in carbonate ion groups in apatite and calcite. This thermometer constrains body temperatures of bioapatite-producing organisms with an accuracy of 1–2 °C. Analyses of fossilized tooth enamel of both Pleistocene and Miocene age yielded temperatures within error of those derived from similar modern taxa. Clumped-isotope analysis of bioapatite represents a new approach in the study of the thermophysiology of extinct species, allowing the first direct measurement of their body temperatures. It will also open new avenues in the study of paleoclimate, as the measurement of clumped isotopes in phosphorites and fossils has the potential to reconstruct environmental temperatures. PMID:20498092

  18. Isotope Variations in Terrestrial Carbonates and Thermal Springs as Biomarkers: Analogs for Martian Processes

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Gibson, Everett K., Jr.; Bissada, K. K.

    2006-01-01

    Stable isotope measurements of carbonate minerals contained within ALH84001 [1] suggest that fluids were present at 3.9 Gy on Mars [2, 3, 4, 5]. Both oxygen and carbon isotopes provide independent means of deciphering paleoenvironmental conditions at the time of carbonate mineral precipitation. In terrestrial carbonate rocks oxygen isotopes not only indicate the paleotemperature of the precipitating fluid, but also provide clues to environmental conditions that affected the fluid chemistry. Carbon isotopes, on the other hand, can indicate the presence or absence of organic compounds during precipitation (i.e. biogenically vs. thermogenically-generated methane), thus serving as a potential biomarker. We have undertaken a study of micro scale stable isotope variations measured in some terrestrial carbonates and the influence of organic compounds associated with the formation of these carbonates. Preliminary results indicate that isotope variations occur within narrow and discrete intervals, providing clues to paleoenvironmental conditions that include both biological and non-biological activity. These results carry implications for deciphering Martian isotope data and therefore potential biological prospecting on the planet Mars. Recently, Fourier Transform Spectrometer observations have detected methane occurring in the Martian atmosphere [6] that could be attributed to a possible biogenic source. Indeed, Mars Express has detected the presence of methane in the Martian atmosphere [7], with evidence indicating that methane abundances are greatest above those basins with high water concentrations.

  19. Radium isotope quartet in groundwater as a proxy for identification of aquifer rocks and mechanisms of water-rock interactions: examples from the Negev, Israel

    NASA Astrophysics Data System (ADS)

    Vengosh, A.; Pery, N.; Paytan, A.; Haquin, G.; Elhanani, S.; Pankratov, I.

    2006-05-01

    Many aquifer systems are composed of multiple rock types. Previous attempts to evaluate the specific aquifer rocks that control the groundwater chemistry and possible flow paths within these multiple lithological systems have used major ion chemistry and isotopic tracers (e.g., strontium isotopes). Here we propose an additional isotopic proxy that is based on the distribution of radium isotopes in groundwater. Radium has four radioactive isotopes that are part of the decay chains of uranium-238, thorium-232, and uranium-235. The abundance of radium isotope quartet (226Ra-half life 1600 y; 228Ra-5.6 y; 224Ra-3.6 d; 223Ra-11.4 d) in groundwater reflects the Th/U ratios in the rocks. Investigation of groundwater from the Negev, Israel, enabled us to discriminate between groundwaters flowing in the Lower Cretaceous Nubian Sandstone and the Upper Cretaceous Judea Group carbonate aquifers. Groundwater flowing in the sandstone aquifer has distinguishably high 228Ra/226Ra and 224Ra/223Ra ratios due to the high Th/U ratio in sandstone. In contrast, the predominance of uranium in carbonate rocks results in low 228Ra/226Ra and 224Ra/223Ra ratios in the associated groundwater. We show that the radium activity in groundwater in the two-aquifer systems is correlated with temperature, dissolved oxygen, and salinity. The increase of radium activity is also associated with changes in the isotopic ratios; 228Ra/226Ra ratios increase and decrease in the sandstone and carbonate aquifers, respectively. Given that the dissolution of radium isotopes depends on their decay constants, the use of the four radium isotopes with different decay constants enabled us to distinguish between dissolution (higher abundance of the long-lived isotopes) and recoil (predominance of the short-lived isotopes) processes. In spite of these isotopic fractionations, the radium isotopic discrimination between carbonate and sandstone aquifers is significant.

  20. Measurement of plutonium isotope ratios in nuclear fuel samples by HPLC-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Günther-Leopold, I.; Waldis, J. Kobler; Wernli, B.; Kopajtic, Z.

    2005-04-01

    Radioactive isotopes are traditionally quantified by means of radioactivity counting techniques ([alpha], [beta], [gamma]). However, these methods often require extensive matrix separation and sample purification before the identification of specific isotopes and their relative abundance is possible as it is necessary in the frame of post-irradiation examinations on nuclear fuel samples. The technique of multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is attracting much attention because it permits the precise measurement of the isotope compositions for a wide range of elements combined with excellent limits of detection due to high ionization efficiencies. The present paper describes one of the first applications of an online high-performance liquid chromatographic separation system coupled to a MC-ICP-MS in order to overcome isobaric interferences for the determination of the plutonium isotope composition and concentrations in irradiated nuclear fuels. The described chromatographic separation is sufficient to prevent any isobaric interference between 238Pu present at trace concentrations and 238U present as the main component of the fuel samples. The external reproducibility of the uncorrected plutonium isotope ratios was determined to be between 0.04 and 0.2% (2 s) resulting in a precision in the [per mille sign] range for the isotopic vectors of the irradiated fuel samples.

  1. Isotopic Ratios of Carbon and Oxygen in Titan’s CO using ALMA

    NASA Astrophysics Data System (ADS)

    Serigano, Joseph; Nixon, C. A.; Cordiner, M. A.; Irwin, P. G. J.; Teanby, N. A.; Charnley, S. B.; Lindberg, J. E.

    2016-04-01

    We report interferometric observations of carbon monoxide (CO) and its isotopologues in Titan’s atmosphere using the Atacama Large Millimeter/submillimeter Array (ALMA). The following transitions were detected: CO (J = 1-0, 2-1, 3-2, 6-5), 13CO (J = 2-1, 3-2, 6-5), C18O (J = 2-1, 3-2), and C17O (J = 3-2). Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code. We present the first spectroscopic detection of 17O in the outer solar system with C17O detected at >8σ confidence. The abundance of CO was determined to be 49.6 +/- 1.8 ppm, assumed to be constant with altitude, with isotopic ratios 12C/13C = 89.9 +/- 3.4, 16O/18O = 486 +/- 22, and 16O/17O = 2917 +/- 359. The measurements of 12C/13C and 16O/18O ratios are the most precise values obtained in Titan’s atmospheric CO to date. Our results are in good agreement with previous studies and suggest no significant deviations from standard terrestrial isotopic ratios.

  2. Determination of kinetic isotopic fractionation of water during bare soil evaporation

    NASA Astrophysics Data System (ADS)

    Quade, Maria; Brüggemann, Nicolas; Graf, Alexander; Rothfuss, Youri

    2017-04-01

    A process-based understanding of the water cycle in the atmosphere is important for improving meteorological and hydrological forecasting models. Usually only net fluxes of evapotranspiration - ET are measured, while land-surface models compute their raw components evaporation -E and transpiration -T. Isotopologues can be used as tracers to partition ET, but this requires knowledge of the isotopic kinetic fractionation factor (αK) which impacts the stable isotopic composition of water pools (e.g., soil and plant waters) during phase change and vapor transport by soil evaporation and plant transpiration. It is defined as a function of the ratio of the transport resistances in air of the less to the most abundant isotopologue. Previous studies determined αK for free evaporating water (Merlivat, 1978) or bare soil evaporation (Braud et al. 2009) at only low temporal resolution. The goal of this study is to provide estimates at higher temporal resolution. We performed a soil evaporation laboratory experiment to determine the αK by applying the Craig and Gordon (1965) model. A 0.7 m high column (0.48 m i.d.) was filled with silt loam (20.1 % sand, 14.9 % loam, 65 % silt) and saturated with water of known isotopic composition. Soil volumetric water content, temperature and the isotopic composition (δ) of the soil water vapor were measured at six different depths. At each depth microporous polypropylene tubing allowed the sampling of soil water vapor and the measurement of its δ in a non-destructive manner with high precision and accuracy as detailed in Rothfuss et al. (2013). In addition, atmospheric water vapor was sampled at seven different heights up to one meter above the surface for isotopic analysis. Results showed that soil and atmospheric δ profiles could be monitored at high temporal and vertical resolutions during the course of the experiment. αK could be calculated by using an inverse modeling approach and the Keeling (1958) plot method at high temporal

  3. Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes

    NASA Astrophysics Data System (ADS)

    Amsellem, Elsa; Moynier, Frédéric; Pringle, Emily A.; Bouvier, Audrey; Chen, Heng; Day, James M. D.

    2017-07-01

    Understanding the composition of raw materials that formed the Earth is a crucial step towards understanding the formation of terrestrial planets and their bulk composition. Calcium is the fifth most abundant element in terrestrial planets and, therefore, is a key element with which to trace planetary composition. However, in order to use Ca isotopes as a tracer of Earth's accretion history, it is first necessary to understand the isotopic behavior of Ca during the earliest stages of planetary formation. Chondrites are some of the oldest materials of the Solar System, and the study of their isotopic composition enables understanding of how and in what conditions the Solar System formed. Here we present Ca isotope data for a suite of bulk chondrites as well as Allende (CV) chondrules. We show that most groups of carbonaceous chondrites (CV, CI, CR and CM) are significantly enriched in the lighter Ca isotopes (δ 44 / 40 Ca = + 0.1 to + 0.93 ‰) compared with bulk silicate Earth (δ 44 / 40 Ca = + 1.05 ± 0.04 ‰, Huang et al., 2010) or Mars, while enstatite chondrites are indistinguishable from Earth in Ca isotope composition (δ 44 / 40 Ca = + 0.91 to + 1.06 ‰). Chondrules from Allende are enriched in the heavier isotopes of Ca compared to the bulk and the matrix of the meteorite (δ 44 / 40 Ca = + 1.00 to + 1.21 ‰). This implies that Earth and Mars have Ca isotope compositions that are distinct from most carbonaceous chondrites but that may be like chondrules. This Ca isotopic similarity between Earth, Mars, and chondrules is permissive of recent dynamical models of planetary formation that propose a chondrule-rich accretion model for planetary embryos.

  4. Spacecraft measurements of the elemental and isotopic composition of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1980-01-01

    Within the past few years, instruments flown on satellites and space probes have made significant progress in measuring the elemental and isotopic composition of energetic heavy nuclei accelerated in solar flares. These new observations are discussed, focusing on: (1) the energy dependence of the elemental composition at energies not greater than 1 MeV/nucleon; (2) flare to flare variations in the composition; and (3) comparisons of the average solar particle abundances (Z not less than 2 and not greater than 28) with other measures of the solar composition, including photospheric, coronal, and solar wind observations. These comparisons have led to the suggestion that solar flares sample the composition of the corona. Isotopic measurements of heavy solar flare nuclei have recently added a new dimension to these studies. In particular, the isotopic composition of solar flare neon has been found to be significantly different from that measured in the solar wind, but consistent with the meteoritic component neon-A.

  5. Novel and non-traditional use of stable isotope tracers to study metal bioavailability from natural particles

    USGS Publications Warehouse

    Croteau, Marie-Noële; Cain, Daniel J.; Fuller, Christopher C.

    2013-01-01

    We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails (Lymnaea stagnalis) to synthetic water spiked with Cu that was 99.4% 65Cu to increase the relative abundance of 65Cu in the snail’s tissues from 32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe–Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used 63Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes.

  6. Limits and possibilities in the geolocation of humans using multiple isotope ratios (H, O, N, C) of hair from east coast cities of the USA.

    PubMed

    Reynard, Linda M; Burt, Nicole; Koon, Hannah E C; Tuross, Noreen

    2016-01-01

    We examined multiple natural abundance isotope ratios of human hair to assess biological variability within and between geographic locations and, further, to determine how well these isotope values predict location of origin. Sampling locations feature differing seasonality and mobile populations as a robust test of the method. Serially-sampled hair from Cambridge, MA, USA, shows lower δ(2)H and δ(18)O variability over a one-year time course than model-predicted precipitation isotope ratios, but exhibits considerable differences between individuals. Along a ∼13° north-south transect in the eastern USA (Brookline, MA, 42.3 ° N, College Park, MD, 39.0 ° N, and Gainesville, FL, 29.7 ° N) δ(18)O in human hair shows relatively greater differences and tracks changes in drinking water isotope ratios more sensitively than δ(2)H. Determining the domicile of humans using isotope ratios of hair can be confounded by differing variability in hair δ(18)O and δ(2)H between locations, differential incorporation of H and O into this protein and, in some cases, by tap water δ(18)O and δ(2)H that differ significantly from predicted precipitation values. With these caveats, randomly chosen people in Florida are separated from those in the two more northerly sites on the basis of the natural abundance isotopes of carbon, nitrogen, hydrogen, and oxygen.

  7. GLYCAN REDUCTIVE ISOTOPE LABELING (GRIL) FOR QUANTITATIVE GLYCOMICS

    PubMed Central

    Xia, Baoyun; Feasley, Christa L.; Sachdev, Goverdhan P.; Smith, David F.; Cummings, Richard D.

    2009-01-01

    Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed Glycan Reductive Isotope Labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [12C6]-aniline and [13C6]-aniline. These dual-labeled aniline-tagged glycans can be recovered by reversed-phase chromatography and quantified based on UV-absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins using this method. This technique allows for linear, relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of Glycomics. PMID:19454239

  8. Nitrogen isotope and mass balance approach in the Elbe Estuary

    NASA Astrophysics Data System (ADS)

    Sanders, Tina; Wankel, Scott D.; Dähnke, Kirstin

    2017-04-01

    The supply of bioavailable nitrogen is crucial to primary production in the world's oceans. Especially in estuaries, which act as a nutrient filter for coastal waters, microbial nitrogen turnover and removal has a particular significance. Nitrification as well as other nitrogen-based processes changes the natural abundance of the stable isotope, which can be used as proxies for sources and sinks as well as for process identification. The eutrophic Elbe estuary in northern Germany is loaded with fertilizer-derived nitrogen, but management efforts have started to reduce this load effectively. However, an internal nitrate source in turn gained in importance and the estuary changed from a sink to a source of dissolved inorganic nitrogen: Nitrification is responsible for significant estuarine nutrient regeneration, especially in the Hamburg Port. In our study, we aimed to quantify sources and sinks of nitrogen based on a mass and stable isotope budget in the Elbe estuary. A model was developed reproduce internal N-cycling and associated isotope changes. For that approach we measured dissolved inorganic nitrogen (DIN), particulate nitrogen and their stable isotopes in a case study in July 2013. We found an almost closed mass balance of nitrogen, with only low lost or gains which we attribute to sediment resuspension. The isotope values of different DIN components and the model approach both support a high fractionation of up to -25‰ during nitrification. However, the nitrogen balance and nitrogen stable isotopes suggest that most important processes are remineralization of organic matter to ammonium and further on the oxidation to nitrate. Denitrification and nitrate assimilation play a subordinate role in the Elbe Estuary.

  9. Trophic niche of squids: Insights from isotopic data in marine systems worldwide

    NASA Astrophysics Data System (ADS)

    Navarro, Joan; Coll, Marta; Somes, Christoper J.; Olson, Robert J.

    2013-10-01

    Cephalopods are an important prey resource for fishes, seabirds, and marine mammals, and are also voracious predators on crustaceans, fishes, squid and zooplankton. Because of their high feeding rates and abundance, squids have the potential to exert control on the recruitment of commercially important fishes. In this review, we synthesize the available information for two intrinsic markers (δ15N and δ13C isotopic values) in squids for all oceans and several types of ecosystems to obtain a global view of the trophic niches of squids in marine ecosystems. In particular, we aimed to examine whether the trophic positions and trophic widths of squid species vary among oceans and ecosystem types. To correctly compare across systems, we adjusted squid δ15N values for the isotopic variability of phytoplankton at the base of the food web provided by an ocean circulation-biogeochemistry-isotope model. Studies that focused on the trophic ecology of squids using isotopic techniques were few, and most of the information on squids was from studies on their predators. Our results showed that squids occupy a large range of trophic positions and exploit a large range of trophic resources, reflecting the versatility of their feeding behavior and confirming conclusions from food-web models. Clear differences in both trophic position and trophic width were found among oceans and ecosystem types. The study also reinforces the importance of considering the natural variation in isotopic values when comparing the isotopic values of consumers inhabiting different ecosystems.

  10. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle

    PubMed Central

    Canfield, Donald E.

    2013-01-01

    Sulfate is the second most abundant anion (behind chloride) in modern seawater, and its cycling is intimately coupled to the cycling of organic matter and oxygen at the Earth’s surface. For example, the reduction of sulfide by microbes oxidizes vast amounts of organic carbon and the subsequent reaction of sulfide with iron produces pyrite whose burial in sediments is an important oxygen source to the atmosphere. The concentrations of seawater sulfate and the operation of sulfur cycle have experienced dynamic changes through Earth’s history, and our understanding of this history is based mainly on interpretations of the isotope record of seawater sulfates and sedimentary pyrites. The isotope record, however, does not give a complete picture of the ancient sulfur cycle. This is because, in standard isotope mass balance models, there are more variables than constraints. Typically, in interpretations of the isotope record and in the absence of better information, one assumes that the isotopic composition of the input sulfate to the oceans has remained constant through time. It is argued here that this assumption has a constraint over the last 390 Ma from the isotopic composition of sulfur in coal. Indeed, these compositions do not deviate substantially from the modern surface-water input to the oceans. When applied to mass balance models, these results support previous interpretations of sulfur cycle operation and counter recent suggestions that sulfate has been a minor player in sulfur cycling through the Phanerozoic Eon. PMID:23650346

  11. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses.

    PubMed

    Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of 29 Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O 2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO + and SiO 2 + ion species was performed, and we found that SiO + ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO 3 ). For SiO 2 + , no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. 28 Si 16 O 18 O + , 30 Si 16 O 16 O + ). The developed method was validated by measuring a series of reference solutions with different 29 Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be <0

  12. Late-type giants with infrared excess. I. Lithium abundances

    NASA Astrophysics Data System (ADS)

    Jasniewicz, G.; Parthasarathy, M.; de Laverny, P.; Thévenin, F.

    1999-02-01

    de la Reza et al. (1997) suggested that all K giants become Li-rich for a short time. During this period the giants are associated with an expanding thin circumstellar shell supposedly triggered by an abrupt internal mixing mechanism resulting in the surface Li enrichment. In order to test this hypothesis twenty nine late-type giants with far-infrared excess from the list of Zuckerman et al. (1995) were observed in the Li-region to study the connection between the circumstellar shells and Li abundance. Eight giants have been found to have log epsilon (Li) > 1.0. In the remaining giants the Li abundance is found to be much lower. HD 219025 is found to be a rapidly rotating (projected rotational velocity of 23 +/-3 km s(-1) ), dusty and Li-rich (log epsilon (Li) = 3.0+/-0.2) K giant. Absolute magnitude derived from the Hipparcos parallax reveals that it is a giant and not a pre-main-sequence star. The evolutionary status of HD 219025 seems to be similar to that of HDE 233517 which is also a rapidly rotating, dusty and Li-rich K giant. The Hipparcos parallaxes of all the well studied Li-rich K giants show that most of them are brighter than the ``clump" giants. Their position in the H-R diagram indicates that they have gone through mixing and the initial abundance of Li is not preserved. There seems to be no correlations between Li abundances, rotational velocities and carbon isotope ratios. The only satisfactory explanation for the overabundance of lithium in these giants is the creation of Li by the extra deep mixing and the associated ``cool bottom processing". Based on observations obtained at the European Southern Observatory, La Silla, Chile, and at the Observatoire de Haute Provence, France.

  13. Measurement of the J = 0-1 rotational transitions of three isotopes of ArD(+)

    NASA Technical Reports Server (NTRS)

    Bowman, W. C.; Plummer, G. M.; Herbst, E.; De Lucia, F. C.

    1983-01-01

    The rotational transitions of all three isotopic species of ArD(+) in samples containing the Ar isotopes in their natural abundances have been measured by means of millimeter and submillimeter techniques that employ a magnetically enhanced abnormal glow discharge. All three transition frequency measurements were made from digitally averaged signals detected through a lock-in amplifier with a 10-msec time constant. The Ar-4OD(+) transition was easily visible in real time on an oscilloscope with SNR of about 15. It is noted that the observed transition of Ar-38D(+) is more than five orders of magnitude weaker than that due to HCO(+).

  14. Isotopic Ratios of Carbon and Oxygen in Titan's CO Using Alma

    NASA Technical Reports Server (NTRS)

    Serigano, Joseph; Nixon, C. A.; Cordiner, M. A.; Irwin, P. G. J.; Teanby, N. A.; Charnley, S. B.; Lindberg, J. E.

    2016-01-01

    We report interferometric observations of carbon monoxide (CO) and its isotopologues in Titan's atmosphere using the Atacama Large Millimeter/submillimeter Array (ALMA). The following transitions were detected: CO (J = 1-0, 2-1, 3-2, 6-5), C-13 O (J = 2-1, 3-2, 6-5), C-18 O (J = 2-1, 3-2), and C-17 O (J = 3-2). Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code. We present the first spectroscopic detection of O-17 in the outer solar system with C-17 O detected at greater than 8 sigma confidence. The abundance of CO was determined to be 49.6 +/- 1.8 ppm, assumed to be constant with altitude, with isotopic ratios C-12/C-13 = 89.9 +/- 3.4, O-16/O-18 = 486 +/- 22, and O-16/O-17 = 2917 +/- 359. The measurements of C-12/C-13 and O-16/O-18 ratios are the most precise values obtained in Titan's atmospheric CO to date. Our results are in good agreement with previous studies and suggest no significant deviations from standard terrestrial isotopic ratios.

  15. Isotopically exchangeable organic hydrogen in coal relates to thermal maturity and maceral composition

    USGS Publications Warehouse

    Mastalerz, Maria; Schimmelmann, A.

    2002-01-01

    Hydrogen isotopic exchangeability (Hex) and ??Dn values of non-exchangeable organic hydrogen were investigated in coal kerogens ranging in rank from lignite to graphite. The relative abundance of Hex is highest in lignite with about 18% of total hydrogen being exchangeable, and decreases to around 2.5% in coals with Ro of 1.7 to ca. 5.7%. At Still higher rank (Ro > 6%), Hex increases slightly, although the abundance of total hydrogen decreases. ??Dn is influenced by original biochemical D/H ratios and by thermal maturation in contact with water. Therefore, ??Dn does not show an overall consistent trend with maturity. ?? 2002 Elsevier Science Ltd. All rights reserved.

  16. Stable Isotopes of Nitrogen in Fossil Cladoceran Exoskeletons: Implications for Nitrogen Sources in the Central Baltic Sea During the Past Century

    NASA Astrophysics Data System (ADS)

    Struck, Ulrich; Voss, Maren; von Bodungen, Bodo; Mumm, Nicolai

    The ratios of stable nitrogen isotopes were analysed in zooplankton exoskeletons extracted from dated sediment cores from the Gotland Basin of the central Baltic Sea. Combined with results on δ15N of bulk sediment, organic carbon concentrations, and abundances of exoskeletons of Bosminalongispinamaritima in the sediment, the data are used to evaluate significant sources of nitrogen in the food web over the past century. Nitrogen isotopic composition of bulk sediments ranges from 2.5 to 4.5ö, that of exokeletons varies between 0.4 and 6.2ö. The two are positively correlated. A marked increase in the abundance of Bosmina since 1965 (from less than 500 specimen to more than 5000 specimencm3 of sediment) is correlated with a significant increase in sedimentary organic carbon concentrations (from 4% to more than 10%). The isotopic data do not identify increased land-derived nitrate as the dominant nitrogen source fuelling the increase. Instead, we postulate that nitrogen fixation by diazotrophic bacteria has been one of the larger sources of nitrogen in the Baltic Sea, as it is today.

  17. Rotational spectroscopy of isotopic vinyl cyanide, H2CCHCN, in the laboratory and in space

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Belloche, Arnaud; Menten, Karl M.; Comito, Claudia; Schilke, Peter

    2008-09-01

    The rotational spectra of singly substituted 13C and 15N isotopic species of vinyl cyanide have been studied in natural abundances between 64 and 351 GHz. In combination with previous results, greatly improved spectroscopic parameters have been obtained which in turn helped to identify transitions of the 13C species for the first time in space through a molecular line survey of the extremely line-rich interstellar source Sagittarius B2(N) in the 3 mm region with some additional observations at 2 mm. The 13C species are detected in two compact (˜2.3″), hot (170 K) cores with a column density of ˜3.8×10 and 1.1×10cm, respectively. In the main source, the so-called “Large Molecule Heimat”, we derive an abundance of 2.9×10 for each 13C species relative to H2. An isotopic ratio 12C/13C of 21 has been measured. Based on a comparison to the column densities measured for the 13C species of ethyl cyanide also detected in this survey, it is suggested that the two hot cores of Sgr B2(N) are in different evolutionary stages. Supplementary laboratory data for the main isotopic species recorded between 92 and 342 GHz permitted an improvement of its spectroscopic parameters as well.

  18. Isotopically Enriched C-13 Diamond Anvil as a Stress Sensor in High Pressure Experiments

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Qiu, Wei; Kondratyev, Andreiy; Velisavljevic, Nenad; Baker, Paul

    2004-03-01

    The conventional high pressure diamond anvils were modified by growing an isotopically pure C-13 diamond layer by microwave plasma chemical vapor deposition using methane/hydrogen/oxygen chemistry. The isotopically pure C-13 nature of the culet of the diamond anvil was confirmed by the Raman spectroscopy measurements. This isotopically engineered diamond anvil was used against a natural abundance diamond anvil for high pressure experiments in a diamond anvil cell. Spatial resolved Raman spectroscopy was used to measure the stress induced shift in the C-13 layer as well as the undelying C-12 layer to ultra high pressures. The observed shift and splitiing of the diamond first order Raman spectrum was correlated with the stress distribution in the diamond anvil cell. The experimental results will be compared with the finite element modeling results using NIKE-2D software in order to create a mathematical relationship between sets of the following parameters: vertical (z axis) distance; horizontal (r axis) distance; max shear stress, and pressure. The isotopically enriched diamond anvils offer unique opportunities to measure stress distribution in the diamond anvil cell devices.

  19. Long-term variations of fluxes of solar protons and helium isotopes

    NASA Astrophysics Data System (ADS)

    Anufriev, G. S.

    2012-11-01

    The fluxes of hydrogen and helium isotopes in the solar wind are reconstructed over a long time scale since the present time up to 600 million years back. Abundances of helium isotopes, obtained in the helium isotopic analysis made for 8 lunar soil samples, were used as initial data in the reconstruction procedure. Samples were taken off from various levels of the 1.6-m core of lunar soil delivered by the automatic Luna-24 station in 1976. The data on modern hydrogen and helium fluxes were used as well. The developed reconstruction procedure allowed one to select various solar wind components in a "gross" composition. Proton flux variations over the interval of 600 million years do not exceed a value of 40 %. Helium flux variations reach a value of 1.5-2 relative to the average value. Most likely, this circumstance is caused by considerable variations of a number of coronal mass ejections ( CME) enriched by helium. The arguments in favor of solar activity polycyclicity on a long time scale are discussed.

  20. Large Calcium Isotopic Variation in Peridotitic Xenoliths from North China Craton

    NASA Astrophysics Data System (ADS)

    Huang, S.; Zhao, X.; Zhang, Z.

    2016-12-01

    Calcium is the fifth most abundant element in the Earth. The Ca isotopic composition of the Earth is important in many aspects, ranging from tracing the Ca cycle on the Earth to comparing the Earth to other terrestrial planets. There is large mass-dependent Ca isotopic variation, measured as δ44/40Ca relative to a standard sample, in terrestrial igneous rocks: about 2 per mil in silicate rocks, compared to 3 per mil in carbonates. Therefore, a good understanding of the Ca isotopic variation in igneous rocks is necessary. Here we report Ca isotopic data on a series of peridotitic xenoliths from North China Craton (NCC). There is about 1 per mil δ44/40Ca variation in these NCC peridotites: The highest δ44/40Ca is close to typical mantle values, and the lowest δ44/40Ca is found in an Fe-rich peridotite, -1.13 relative to normal mantle (or -0.08 on the SRM 915a scale). This represents the lowest δ44/40Ca value ever reported for igneous rocks. Combined with published Fe isotopic data on the same samples, our data show a positive linear correlation between δ44/40Ca and δ57/54Fe in NCC peridotites. This trend is inconsistent with mixing a low-δ44/40Ca and -δ57/54Fe sedimentary component with a normal mantle component. Rather, it is best explained as the result of kinetic isotopic effect caused by melt-peridotite reaction on a time scale of several hundreds of years. In detail, basaltic melt reacts with peridotite, replaces orthopyroxene with clinopyroxene, and increases the Fo number of olivine. Consistent with this interpretation, our on-going Mg isotopic study shows that low-δ44/40Ca and -δ57/54Fe NCC peridotites also have heavier Mg isotopes compared to normal mantle. Our study shows that mantle metasomatism plays an important role generating stable isotopic variations within the Earth's mantle.

  1. Understanding Sulfur Systematics in Large Igneous Provinces Using Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Novikova, S.; Edmonds, M.; Turchyn, A. V.; Maclennan, J.; Svensen, H.; Frost, D. J.; Yallup, C.

    2013-12-01

    The eruption of the Siberian Traps coincided with perhaps the greatest environmental catastrophe in Earth's history, at the Permo-Triassic boundary. The source and magnitude of the volatile emissions, including sulfur, associated with the eruption remain poorly understood yet were critical in forcing environmental change. Two of the primary questions are how much sulfur gases were emitted during the eruptions and from where they were sourced. Primary melts carry dissolved sulfur from the mantle. Magmas ponding in sills and ascending through dykes may also assimilate sulfur from country rocks, as well as heat the country rocks and generate fluids through contact metamorphism. If the magmas interacted thermally, for prolonged periods, with sulfur-rich country rocks then it is probable that the sulfur budget of these eruptions might have been augmented considerably. This is exactly what we have shown recently for a basaltic sill emplaced in oil shale that fed eruptions of the British Tertiary Province, where surrounding sediments showed extensive desulfurization (Yallup et al. Geoch. Cosmochim. Acta, online, 2013). In the current study sulfur isotopes and trace element abundances are used to discriminate sulfur sources and to model magmatic processes for a suite of Siberian Traps sill and lava samples. Our bulk rock and pyrite geochemical analyses illustrate clearly their high abundance of 34S over 32S. The high 34S/32S has been noted previously and linked to assimilation of sulfur from sediments but may alternatively be inherited from the mantle plume source. With the aim of investigating the sulfur isotopic signature in the melt prior to devolatilization, we use secondary ion mass spectrometry (SIMS), for which a specific set of glass standards was synthesised. In order to understand how sulfur isotopes fractionate during degassing we have also conducted a parallel study of well-characterized tephras from Kilauea Volcano, where sulfur degassing behavior is well

  2. The evolution of CNO isotopes: a new window on cosmic star formation history and the stellar IMF in the age of ALMA

    NASA Astrophysics Data System (ADS)

    Romano, D.; Matteucci, F.; Zhang, Z.-Y.; Papadopoulos, P. P.; Ivison, R. J.

    2017-09-01

    We use state-of-the-art chemical models to track the cosmic evolution of the CNO isotopes in the interstellar medium of galaxies, yielding powerful constraints on their stellar initial mass function (IMF). We re-assess the relative roles of massive stars, asymptotic giant branch (AGB) stars and novae in the production of rare isotopes such as 13C, 15N, 17O and 18O, along with 12C, 14N and 16O. The CNO isotope yields of super-AGB stars, novae and fast-rotating massive stars are included. Having reproduced the available isotope enrichment data in the solar neighbourhood, and across the Galaxy, and having assessed the sensitivity of our models to the remaining uncertainties, e.g. nova yields and star formation history, we show that we can meaningfully constrain the stellar IMF in galaxies using C, O and N isotope abundance ratios. In starburst galaxies, where data for multiple isotopologue lines are available, we find compelling new evidence for a top-heavy stellar IMF, with profound implications for their star formation rates and efficiencies, perhaps also their stellar masses. Neither chemical fractionation nor selective photodissociation can significantly perturb globally averaged isotopologue abundance ratios away from the corresponding isotope ones, as both these processes will typically affect only small mass fractions of molecular clouds in galaxies. Thus, the Atacama Large Millimeter Array now stands ready to probe the stellar IMF, and even the ages of specific starburst events in star-forming galaxies across cosmic time unaffected by the dust obscuration effects that plague optical/near-infrared studies.

  3. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGES

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H– 17O cross-polarization greatly improves the sensitivity and enables the facilemore » measurement of undistorted line shapes and two-dimensional 1H– 17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  4. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    PubMed Central

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant 236U/238U isotope ratios (i.e. 10−5). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for 234U/238U and 235U/238U ratios. Experimental results obtained for 236U/238U isotope ratios deviated by less than −2.5% from the certified values. Expanded relative total combined standard uncertainties Uc (k = 2) of 2.6%, 1.4% and 5.8% were calculated for 234U/238U, 235U/238U and 236U/238U, respectively. PMID:22595724

  5. Direct uranium isotope ratio analysis of single micrometer-sized glass particles.

    PubMed

    Kappel, Stefanie; Boulyga, Sergei F; Prohaska, Thomas

    2012-11-01

    We present the application of nanosecond laser ablation (LA) coupled to a 'Nu Plasma HR' multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10-20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant (236)U/(238)U isotope ratios (i.e. 10(-5)). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for (234)U/(238)U and (235)U/(238)U ratios. Experimental results obtained for (236)U/(238)U isotope ratios deviated by less than -2.5% from the certified values. Expanded relative total combined standard uncertainties U(c) (k = 2) of 2.6%, 1.4% and 5.8% were calculated for (234)U/(238)U, (235)U/(238)U and (236)U/(238)U, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Feeding ecology and niche overlap of Lake Ontario offshore forage fish assessed with stable isotopes

    USGS Publications Warehouse

    Mumby, James; Johson, Timothy; Stewart, Thomas; Halfyard, Edward; Walsh, Maureen; Weidel, Brian C.; Lantry, Jana; Fisk, Aarron

    2017-01-01

    The forage fish communities of the Laurentian Great Lakes continue to experience changes that have altered ecosystem structure, yet little is known about how they partition resources. Seasonal, spatial and body size variation in δ13C and δ15N was used to assess isotopic niche overlap and resource and habitat partitioning among the five common offshore Lake Ontario forage fish species (n = 2037) [Alewife (Alosa pseudoharengus), Rainbow Smelt (Osmerus mordax), Round Goby (Neogobius melanostomus), and Deepwater (Myoxocephalus thompsonii) and Slimy (Cottus cognatus) Sculpin]. Round Goby had the largest isotopic niche (6.1‰2, standard ellipse area (SEAC)), followed by Alewife (3.4‰2) while Rainbow Smelt, Slimy Sculpin and Deepwater Sculpin had the smallest and similar niche size (1.7-1.8‰2), with only the Sculpin species showing significant isotopic niche overlap (>63%). Stable isotopes in Alewife, Round Goby and Rainbow Smelt varied with location, season and size, but did not in the Sculpin spp. Lake Ontario forage fish species have partitioned food and habitat resources, and non-native Alewife and Round Goby have the largest isotopic niche, suggestive of a boarder ecological niche, and may contribute to their current high abundance.

  7. A Zn isotope perspective on the rise of continents.

    PubMed

    Pons, M-L; Fujii, T; Rosing, M; Quitté, G; Télouk, P; Albarède, F

    2013-05-01

    Zinc isotope abundances are fairly constant in igneous rocks and shales and are left unfractionated by hydrothermal processes at pH < 5.5. For that reason, Zn isotopes in sediments can be used to trace the changing chemistry of the hydrosphere. Here, we report Zn isotope compositions in Fe oxides from banded iron formations (BIFs) and iron formations of different ages. Zinc from early Archean samples is isotopically indistinguishable from the igneous average (δ(66) Zn ~0.3‰). At 2.9-2.7 Ga, δ(66) Zn becomes isotopically light (δ(66) Zn < 0‰) and then bounces back to values >1‰ during the ~2.35 Ga Great Oxygenation Event. By 1.8 Ga, BIF δ(66) Zn has settled to the modern value of FeMn nodules and encrustations (~0.9‰). The Zn cycle is largely controlled by two different mechanisms: Zn makes strong complexes with phosphates, and phosphates in turn are strongly adsorbed by Fe hydroxides. We therefore review the evidence that the surface geochemical cycles of Zn and P are closely related. The Zn isotope record echoes Sr isotope evidence, suggesting that erosion starts with the very large continental masses appearing at ~2.7 Ga. The lack of Zn fractionation in pre-2.9 Ga BIFs is argued to reflect the paucity of permanent subaerial continental exposure and consequently the insignificant phosphate input to the oceans and the small output of biochemical sediments. We link the early decline of δ(66) Zn between 3.0 and 2.7 Ga with the low solubility of phosphate in alkaline groundwater. The development of photosynthetic activity at the surface of the newly exposed continents increased the oxygen level in the atmosphere, which in turn triggered acid drainage and stepped up P dissolution and liberation of heavy Zn into the runoff. Zinc isotopes provide a new perspective on the rise of continents, the volume of carbonates on continents, changing weathering conditions, and compositions of the ocean through time. © 2013 Blackwell Publishing Ltd.

  8. Mass-independent isotope fractionation of Mo, Ru, Cd, and Te

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Moynier, F.; Albarède, F.

    2006-12-01

    The variation of the mean charge distribution in the nucleus with the neutron number of different isotopes induces a tenuous shift of the nuclear field. The mass fractionation induced during phase changes is irregular, notably with 'staggering' between odd and even masses, and becomes increasingly non-linear for neutron-rich isotopes. A strong correlation is observed between the deviation of the isotopic effects from the linear dependence with mass and the corresponding nuclear charge radii. We first demonstrated on a number of elements the existence of such mass-independent isotope fractionation in laboratory experiments of solvent extraction with a macrocyclic compound. The isotope ratios were analyzed by multiple-collector inductively coupled plasma mass spectrometry with a typical precision of <100 ppm. The isotopes of odd and even atomic masses are enriched in the solvent to an extent that closely follows the variation of their nuclear charge radii. The present results fit Bigeleisen's (1996) model, which is the standard mass-dependent theory modified to include a correction term named the nuclear field shift effect. For heavy elements like uranium, the mass-independent effect is important enough to dominate the mass-dependent effect. We subsequently set out to compare the predictions of Bigeleisen's theory with the isotopic anomalies found in meteorites. Some of these anomalies are clearly inconsistent with nucleosynthetic effects (either s- or r-processes). Isotopic variations of Mo and Ru in meteorites, especially in Allende (CV3), show a clear indication of nucleosynthetic components. However, the mass-independent anomaly of Ru observed in Murchison (CM2) is a remarkable exception which cannot be explained by the nucleosynthetic model, but fits the nuclear field shift theory extremely well. The abundances of the even atomic mass Te isotopes in the leachates of carbonaceous chondrites, Allende, Murchison, and Orgueil, fit a mass-dependent law well, but the

  9. Stable Nickel Isotopes in Fusion Crusts from Iron Meteorites and from Metallic Particles in a Black Wabar Impact Glass

    NASA Astrophysics Data System (ADS)

    Xue, S.; Herzog, G. F.; Hall, G. S.

    1993-07-01

    Iron and nickel isotopes may undergo mass fractionation in systems subjected to high-temperature vaporization [1-3]. We report here a search for nickel fractionation in fusion crusts from iron meteorites and in metal-rich material separated from Wabar impact glasses. Fusion-crust bearing samples of Bogou (IA), N'Goureyma (I-an), and Pitts (IB) were potted in epoxy and were "shaved" with a milling machine. Microscopic examination of the shavings showed the presence of some material from the interior of the meteorites as well as from the fusion crust. A fourth meteorite, Cape of Good Hope (IVB), was prepared for use as a reference standard. About 1.4 mg of magnetic material was collected from a 2-g sample of black Wabar impact glass ground in a Spex mill; microscopic examination indicated that adhering silicates comprised ~5% of the sample. These (terrestrial) silicates contain relatively little Ni [4] so their presence does not interfere with the nickel analysis. Nickel was separated from all samples and its isotopic composition determined as in [2]. Results and Discussion: Nickel isotopic abundances are given in Table 1 both as delta values and as an average fractionation, PHI, where PHI is the slope of a plot of delta vs. mass for each sample. Within the precision of our measurements (from 0.3 to 1.5%, depending on the isotope) all the samples had normal (i.e., terrestrial) isotopic abundances of Ni. Clayton et al. [5] reported that delta-18O in fusion crust is lower than in the atmosphere, probably as a result of a kinetic isotope effect, while in metallic deep-sea spheres, heavy oxygen isotopes are enriched. They inferred that the metallic spheres are not the ablation products of larger meteorites. Similarly, the Ni isotopic abundances in fusion crust are normal, while those in deep-sea metallic spheres are enriched in the heavier isotopes [1]. We note, however, that material ablated from the surface of an iron could have undergone fractionation after separation

  10. Single Species Dinoflagellate Cyst Carbon Isotope Ecology across the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Sluijs, A.; Roij, L. V.; Frieling, J.; Laks, J.; Reichart, G. J.

    2017-12-01

    We present the first ever species-specific records of fossil dinoflagellate cyst stable carbon isotope ratios (δ13C). These records across a Paleocene-Eocene Thermal Maximum section in New Jersey were established using a novel coupled laser ablation - isotope ratio mass spectrometer setup. The overall good correspondence with carbonate δ13C records across the characteristic PETM carbon isotope excursion indicates that the δ13C of dissolved inorganic carbon exerts a major control on dinocysts δ13C. Pronounced and consistent differences between species, however, reflect the differential physiological response to changing seawater carbonate chemistry following PETM carbon injection. Moreover, they reflect different habitats or life cycle processes, notably related to bloom intensity. Intriguingly, decreased inter-specimen variability during the PETM in a species that also drops in abundance suggests a more limited niche, either in time (seasonal) or space. This opens a new approach for ecological and evolutionary reconstructions based on organic microfossils.

  11. Individual-specific transgenerational marking of fish populations based on a barium dual-isotope procedure.

    PubMed

    Huelga-Suarez, Gonzalo; Moldovan, Mariella; Garcia-Valiente, America; Garcia-Vazquez, Eva; Alonso, J Ignacio Garcia

    2012-01-03

    The present study focuses on the development and evaluation of an individual-specific transgenerational marking procedure using two enriched barium isotopes, (135)Ba and (137)Ba, mixed at a given and selectable molar ratio. The method is based on the deconvolution of the isotope patterns found in the sample into four molar contribution factors: natural xenon (Xe nat), natural barium (Ba nat), Ba135, and Ba137. The ratio of molar contributions between Ba137 and Ba135 is constant and independent of the contribution of natural barium in the sample. This procedure was tested in brown trout ( Salmo trutta ) kept in captivity. Trout were injected with three different Ba137/Ba135 isotopic signatures ca. 7 months and 7 days before spawning to compare the efficiency of the marking procedure at long and short term, respectively. The barium isotopic profiles were measured in the offspring by means of inductively coupled plasma mass spectrometry. Each of the three different isotopic signatures was unequivocally identified in the offspring in both whole eggs and larvae. For 9 month old offspring, the characteristic barium isotope signatures could also be detected in the otoliths even in the presence of a high and variable amount of barium of natural isotope abundance. In conclusion, it can be stated that the proposed dual-isotope marking is inheritable and can be detected after both long-term and short-term marking. Furthermore, the dual-isotope marking can be made individual-specific, so that it allows identification of offspring from a single individual or a group of individuals within a given fish group. © 2011 American Chemical Society

  12. Assessing the role of clay authigenesis in the seawater potassium cycle: A paired K and Mg isotope study of deep-sea pore fluids

    NASA Astrophysics Data System (ADS)

    Santiago Ramos, D. P.; Higgins, J. A.

    2017-12-01

    In situ formation of clays (clay authigenesis) in marine sediments and altered oceanic crust is an important sink of a number of seawater cations. In particular, clay authigenesis is a major, and yet unconstrained, flux in the global seawater potassium cycle. Potassium is the fourth most abundant cation in the ocean, which constitutes an isotopically enriched K reservoir (δ41K 0‰) compared to the solid Earth (δ41K -0.5‰). Understanding what processes control this isotopic offset is the main goal of this study. Here we use a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) to measure the K and Mg isotope ratios (41K/39K and 26Mg/24Mg) of deep-sea pore fluids in order to assess the effects of clay formation in the K isotope composition of seawater. Mg isotopes are used as an independent proxy for clay formation, since marine authigenic clays are isotopically distinct from their detrital counterpart, an abundant component of marine sediments. Our study sites (ODP/IODP 1052, U1378, U1395, U1403) vary in location, lithology, age and sedimentation rates; however, pore-fluids from all sites show decreasing K concentrations with depth, suggesting potassium uptake into the sediments. We find that although K concentration trends are similar across all sites, measured δ41K values vary significantly. Results from 1-D diffusion-advection-reaction models suggest that these differences in isotopic profiles arise from a complex interplay between sedimentation rate and K isotopic fractionation during clay formation, aqueous K diffusion and ion exchange reactions. Further, model simulations yield fractionation factors between 0.9980 and 1.0000 for clay formation in deep-sea sediments. Despite the minor contribution of these deep-sea pore-fluids as sinks of seawater K, the processes responsible for K isotope fractionation in our study sites (clay formation and aqueous K diffusion) are also observed at shallow marine systems (major K sinks) and are thus

  13. Evaluation of stable isotope fingerprinting techniques for the assessment of the predominant methanogenic pathways in anaerobic digesters.

    PubMed

    Nikolausz, M; Walter, R F H; Sträuber, H; Liebetrau, J; Schmidt, T; Kleinsteuber, S; Bratfisch, F; Günther, U; Richnow, H H

    2013-03-01

    Laboratory biogas reactors were operated under various conditions using maize silage, chicken manure, or distillers grains as substrate. In addition to the standard process parameters, the hydrogen and carbon stable isotopic composition of biogas was analyzed to estimate the predominant methanogenic pathways as a potential process control tool. The isotopic fingerprinting technique was evaluated by parallel analysis of mcrA genes and their transcripts to study the diversity and activity of methanogens. The dominant hydrogenotrophs were Methanomicrobiales, while aceticlastic methanogens were represented by Methanosaeta and Methanosarcina at low and high organic loading rates, respectively. Major changes in the relative abundance of mcrA transcripts were observed compared to the results obtained from DNA level. In agreement with the molecular results, the isotope data suggested the predominance of the hydrogenotrophic pathway in one reactor fed with chicken manure, while both pathways were important in the other reactors. Short-term changes in the isotopic composition were followed, and a significant change in isotope values was observed after feeding a reactor digesting maize silage. This ability of stable isotope fingerprinting to follow short-term activity changes shows potential for indicating process failures and makes it a promising technology for process control.

  14. Volatile Concentrations and H-Isotope Composition of Unequilibrated Eucrites

    NASA Technical Reports Server (NTRS)

    Sarafian, Adam R.; Nielsen, Sune G.; Marschall, Horst R.; Gaetani, Glenn A.; Hauri, Erik H.; Righter, Kevin; Berger, Eve L.

    2017-01-01

    Eucrites are among the oldest and best studied asteroidal basalts (1). They represent magmatism that occurred on their parent asteroid, likely 4-Vesta, starting at 4563 Ma and continuing for approx. 30 Myr. Two hypotheses are debated for the genesis of eucrites, a magma ocean model (2), and a mantle partial melting model. In general, volatiles (H, C, F, Cl) have been ignored for eucrites and 4-Vesta, but solubility of wt% levels of H2O are possible at Vestan interior PT conditions. Targeted measurements on samples could aid our understanding considerably. Recent studies have found evidence of volatile elements in eucrites, but quantifying the abundance of volatiles remains problematic (6). Volatile elements have a disproportionately large effect on melt properties and phase stability, relative to their low abundance. The source of volatile elements can be elucidated by examining the hydrogen isotope ratio (D/H), as different H reservoirs have drastically different H isotope compositions. Recent studies of apatite in eucrites have shown that the D/H of 4-Vesta matches that of Earth and carbonaceous chondrites, however, the D/H of apatites may not represent the D/H of a primitive 4-Vesta melt due to the possibility of degassing prior to the crystallization of apatite. Therefore, the D/H of early crystallizing phases must be measured to determine if the D/H of 4-Vesta is equal to that of the Earth and carbonaceous chondrites.

  15. Constraints on the origin of Os-isotope disequilibrium in included and interstitial sulfides in mantle peridotites: Implications for the interpretation of Os-isotope signatures in MORB and Abyssal Peridotites

    NASA Astrophysics Data System (ADS)

    Lassiter, J. C.

    2016-12-01

    The use of isotope variations in basalts to probe the composition and evolution of the mantle is predicated on the assumption of local (i.e., grain-scale) isotopic equilibrium during mantle melting (Hofmann & Hart, 1978). However, several studies report Os-isotope disequilibrium in distinct populations of sulfides in some peridotites. In principle, grain-scale isotopic heterogeneity could reflect variable radiogenic ingrowth in ancient sulfides with variable Re/Os, or partial re-equilibration of low-Re/Os sulfides with high-Re/Os silicate phases along grain boundaries during mantle melting (e.g., Alard et al., 2005). Both cases require that sulfides fail to maintain isotopic equilibrium with neighboring phases over geologically long ( Ga) time scales. The preservation of Os-isotope disequilibrium in peridotites has been ascribed to the armoring effect of low-[Os] silicates, which limit diffusive exchange between isolated Os-rich phases. This raises the prospect that peridotite-derived melts may not inherit the Os-isotope composition of their source. The timescale required for diffusive equilibration between separate sulfide grains or between Os-rich sulfides and Os-poor silicates is a function of average sulfide size and spacing, Os diffusivity in armoring silicate minerals, and Os partitioning between silicate and sulfide phases. For typical sulfide abundances and sizes in mantle peridotites, neighboring sulfides are expected to re-equilibrate in less than a few 10s of m.y. at adiabatic mantle temperatures, even for very high (>106) sulfide/silicate KD values. Maintenance of disequilibrium requires very large sulfides (>100 um) separated by several mm and diffusion rates (D < 10-20 m2/s) slower than for most other elements in olivine. Equilibration timescales between sulfides and surrounding silicates are similar, so that large-scale isotopic disequilibrium between sulfides and silicates is also unlikely within the convecting mantle. Instead, observed grain

  16. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining

    USGS Publications Warehouse

    Borrok, D.M.; Nimick, D.A.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Zinc and Cu play important roles in the biogeochemistry of natural systems, and it is likely that these interactions result in mass-dependent fractionations of their stable isotopes. In this study, we examine the relative abundances of dissolved Zn and Cu isotopes in a variety of stream waters draining six historical mining districts located in the United States and Europe. Our goals were to (1) determine whether streams from different geologic settings have unique or similar Zn and Cu isotopic signatures and (2) to determine whether Zn and Cu isotopic signatures change in response to changes in dissolved metal concentrations over well-defined diel (24-h) cycles. Average ??66Zn and ??65Cu values for streams varied from +0.02??? to +0.46??? and -0.7??? to +1.4???, respectively, demonstrating that Zn and Cu isotopes are heterogeneous among the measured streams. Zinc or Cu isotopic changes were not detected within the resolution of our measurements over diel cycles for most streams. However, diel changes in Zn isotopes were recorded in one stream where the fluctuations of dissolved Zn were the largest. We calculate an apparent separation factor of ???0.3??? (66/64Zn) between the dissolved and solid Zn reservoirs in this stream with the solid taking up the lighter Zn isotope. The preference of the lighter isotope in the solid reservoir may reflect metabolic uptake of Zn by microorganisms. Additional field investigations must evaluate the contributions of soils, rocks, minerals, and anthropogenic components to Cu and Zn isotopic fluxes in natural waters. Moreover, rigorous experimental work is necessary to quantify fractionation factors for the biogeochemical reactions that are likely to impact Cu and Zn isotopes in hydrologic systems. This initial investigation of Cu and Zn isotopes in stream waters suggests that these isotopes may be powerful tools for probing biogeochemical processes in surface waters on a variety of temporal and spatial scales.

  17. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    NASA Astrophysics Data System (ADS)

    Magdas, D. A.; Cristea, G.; Cordea, D. V.; Bot, A.; Puscas, R.; Radu, S.; Mirel, V.; Mihaiu, M.

    2013-11-01

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ18O and δ2H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ18O and δ2H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.

  18. Isotopic excesses of proton-rich nuclei related to space weathering observed in a gas-rich meteorite Kapoeta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidaka, Hiroshi; Yoneda, Shigekazu, E-mail: hidaka@hiroshima-u.ac.jp, E-mail: s-yoneda@kahaku.go.jp

    2014-05-10

    The idea that solar system materials were irradiated by solar cosmic rays from the early Sun has long been suggested, but is still questionable. In this study, Sr, Ba, Ce, Nd, Sm, and Gd isotopic compositions of sequential acid leachates from the Kapoeta meteorite (howardite) were determined to find systematic and correlated variations in their isotopic abundances of proton-rich nuclei, leading to an understanding of the irradiation condition by cosmic rays. Significantly large excesses of proton-rich isotopes (p-isotopes), {sup 84}Sr, {sup 130}Ba, {sup 132}Ba, {sup 136}Ce, {sup 138}Ce, and {sup 144}Sm, were observed, particularly in the first chemical separate, whichmore » possibly leached out of the very shallow layer within a few μm from the surface of regolith grains in the sample. The results reveal the production of p-isotopes through the interaction of solar cosmic rays with the superficial region of the regolith grains before the formation of the Kapoeta meteorite parent body, suggesting strong activity in the early Sun.« less

  19. Nucleosynthetic osmium isotope anomalies in acid leachates of the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Reisberg, L.; Dauphas, N.; Luguet, A.; Pearson, D. G.; Gallino, R.; Zimmermann, C.

    2009-01-01

    abundances in the Murchison meteorite. A steep anti-correlation is observed between ɛ 184Os and ɛ 188Os. Since 184Os is formed uniquely by the p-process, this anti-correlation cannot be explained by variable addition or subtraction of s-process Os to average solar system material. Instead, this suggests that p-process rich presolar grains (e.g., supernova condensates) may be present in meteorites in sufficient quantities to influence the Os isotopic compositions of the leachates. Nevertheless, 184Os is a low abundance isotope and we cannot exclude the possibility that the measured anomalies for this isotope reflect unappreciated analytical artifacts.

  20. Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere.

    PubMed

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Gao, Meng; Gao, Jian; Michalski, Greg; Wang, Yuesi

    2018-07-01

    The sources of aerosol ammonium (NH 4 + ) are of interest because of the potential of NH 4 + to impact the Earth's radiative balance, as well as human health and biological diversity. Isotopic source apportionment of aerosol NH 4 + is challenging in the urban atmosphere, which has excess ammonia (NH 3 ) and where nitrogen isotopic fractionation commonly occurs. Based on year-round isotopic measurements in urban Beijing, we show the source dependence of the isotopic abundance of aerosol NH 4 + , with isotopically light (-33.8‰) and heavy (0 to +12.0‰) NH 4 + associated with strong northerly winds and sustained southerly winds, respectively. On an annual basis, 37-52% of the initial NH 3 concentrations in urban Beijing arises from fossil fuel emissions, which are episodically enhanced by air mass stagnation preceding the passage of cold fronts. These results provide strong evidence for the contribution of non-agricultural sources to NH 3 in urban regions and suggest that priority should be given to controlling these emissions for haze regulation. This study presents a carefully executed application of existing stable nitrogen isotope measurement and mass-balance techniques to a very important problem: understanding source contributions to atmospheric NH 3 in Beijing. This question is crucial to informing environmental policy on reducing particulate matter concentrations, which are some of the highest in the world. However, the isotopic source attribution results presented here still involve a number of uncertain assumptions and they are limited by the incomplete set of chemical and isotopic measurements of gas NH 3 and aerosol NH 4 + . Further field work and lab experiments are required to adequately characterize endmember isotopic signatures and the subsequent isotopic fractionation process under different air pollution and meteorological conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  2. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes

    USGS Publications Warehouse

    Shanks, Wayne C.

    2001-01-01

    The recognition of abundant and widespread hydrothermal activity and associated unique life-forms on the ocean floor is one of the great scientific discoveries of the latter half of the twentieth century. Studies of seafloor hydrothermal processes have led to revolutions in understanding fluid convection and the cooling of the ocean crust, the chemical and isotopic mass balance of the oceans, the origin of stratiform and statabound massive-sulfide ore-deposits, the origin of greenstones and serpentinites, and the potential importance of the subseafloor biosphere. Stable isotope geochemistry has been a critical and definitive tool from the very beginning of the modern era of seafloor exploration.

  3. The Chlorine Isotope Composition of the Solar Nebula & Implications to the Sources of Volatiles to the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Gargano, A. M.; Sharp, Z. D.

    2017-12-01

    It was originally proposed by Sharp et al., 2016 that the solar nebula was isotopically light based on limited sampling of the Ol-phyric shergottites and two ordinary chondrites (Parnallee LL3.00, and NWA 8276 L3.00). Iron meteorites are remnants of early planetesimals which segregated cores <1Ma after CAI's and have δ37Cl values as low as -7‰, consistent with a light nebular source. Chondrules are relatively younger than iron meteorite parent bodies (2-3Ma after CAI's) and exhibit evidence for mixing with & recycling numerous isotopically distinct precursors as observed by Cl rich chondrules in Semarkona, and Qingzhen. The average δ37Cl values of chondrites are around 0‰, independent of petrologic type or [Cl], suggesting that chondrule forming regions have similar chlorine isotope sources. The average δ37Cl values of chondrites are consistent with a +3 to +6‰ isotopic fractionation of HCl clathrate from HCl gas, which occurred beyond the snow-line at 150K. The recycling of chondritic precursors mixed with HCl clathrate can account for pristine type 3.00 chondrites with δ37Cl values at approximately 0‰ independent of [Cl], or petrologic type. The source of volatiles to the terrestrial planets is commonly assumed to be chondritic in origin. These preliminary chlorine isotope data suggest that early planetesimals and planetary embryos had a solar Cl component at -7‰ or less, and secondary processes has since increased the δ37Cl values of Earth, Mars, and most chondrites. The chlorine isotope system therefore provides a new constraint regarding the sources of volatiles to the terrestrial planets. The δ37Cl value of the bulk Earth is around 0‰, inconsistent with a nebular source as measured in the Martian mantle but similar to that of chondrites with HCl clathrate precursors. The prolonged accretion of heavy chondritic material to Earth can account for the chlorine isotope discrepancy between the Earth and Mars, but is unconstrained by HSE abundances

  4. Pre-Whaling Genetic Diversity and Population Ecology in Eastern Pacific Gray Whales: Insights from Ancient DNA and Stable Isotopes

    PubMed Central

    Alter, S. Elizabeth; Newsome, Seth D.; Palumbi, Stephen R.

    2012-01-01

    Commercial whaling decimated many whale populations, including the eastern Pacific gray whale, but little is known about how population dynamics or ecology differed prior to these removals. Of particular interest is the possibility of a large population decline prior to whaling, as such a decline could explain the ∼5-fold difference between genetic estimates of prior abundance and estimates based on historical records. We analyzed genetic (mitochondrial control region) and isotopic information from modern and prehistoric gray whales using serial coalescent simulations and Bayesian skyline analyses to test for a pre-whaling decline and to examine prehistoric genetic diversity, population dynamics and ecology. Simulations demonstrate that significant genetic differences observed between ancient and modern samples could be caused by a large, recent population bottleneck, roughly concurrent with commercial whaling. Stable isotopes show minimal differences between modern and ancient gray whale foraging ecology. Using rejection-based Approximate Bayesian Computation, we estimate the size of the population bottleneck at its minimum abundance and the pre-bottleneck abundance. Our results agree with previous genetic studies suggesting the historical size of the eastern gray whale population was roughly three to five times its current size. PMID:22590499

  5. PATTERNS OF NITROGEN AND CARBON STABLE ISOTOPE RATIOS IN MACROFUNGI, PLANTS AND SOILS IN TWO OLD-GROWTH CONIFER FORESTS

    EPA Science Inventory

    Natural abundance stable isotope ratios represent a potentially valuable tool for studying fungal ecology. We measured 15N and 13C in ectomycorrhizal and saprotrophic macrofungi from two old-growth conifer forests, and in plants, woody debris, and soils. Fungi, plants, and so...

  6. Abundance Patterns in S-type AGB Stars: Setting Constraints on Nucleosynthesis and Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Neyskens, P.; van Eck, S.; Plez, B.; Goriely, S.; Siess, L.; Jorissen, A.

    2011-09-01

    During evolution on the AGB, stars of type S are the first to experience s-process nucleosynthesis and the third dredge-up, and therefore to exhibit s-process signatures in their atmospheres. Their high mass-loss rates (10-7 to 10-6 M⊙/year) make them major contributors to the AGB nucleosynthesis yields at solar metallicity. Precise abundance determinations in S stars are of the utmost importance for constraining e.g. the third dredge-up luminosity and efficiency (which has been only crudely parameterized in current nucleosynthetic models so far). Here, dedicated S-star model atmospheres are used to determine precise abundances of key s-process elements, and to set constraints on nucleosynthesis and stellar evolution models. Special interest is paid to technetium, an element with no stable isotopes. Its detection is considered the best signature that the star effectively populates the thermally-pulsing AGB phase of evolution. The derived Tc/Zr abundances are compared, as a function of the derived [Zr/Fe] overabundances, with AGB stellar model predictions. The [Zr/Fe] overabundances are in good agreement with model predictions, while the Tc/Zr abundances are slightly overpredicted. This discrepancy can help to set better constraints on nucleosynthesis and stellar evolution models of AGB stars.

  7. Methane cycling. Nonequilibrium clumped isotope signals in microbial methane.

    PubMed

    Wang, David T; Gruen, Danielle S; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C; Holden, James F; Hristov, Alexander N; Pohlman, John W; Morrill, Penny L; Könneke, Martin; Delwiche, Kyle B; Reeves, Eoghan P; Sutcliffe, Chelsea N; Ritter, Daniel J; Seewald, Jeffrey S; McIntosh, Jennifer C; Hemond, Harold F; Kubo, Michael D; Cardace, Dawn; Hoehler, Tori M; Ono, Shuhei

    2015-04-24

    Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (13)CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (13)CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters. Copyright © 2015, American Association for the Advancement of Science.

  8. Origins of mass-dependent and mass-independent Ca isotope variations in meteoritic components and meteorites

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Gussone, N.; Mezger, K.; Krause, J.

    2018-04-01

    The Ca isotope composition of meteorites and their components may vary due to mass-dependent and/or -independent isotope effects. In order to evaluate the origin of these effects, five amoeboid olivine aggregates (AOAs), three calcium aluminum inclusions (CAIs), five chondrules (C), a dark inclusion from Allende (CV3), two dark fragments from North West Africa 753 (NWA 753; R3.9), and a whole rock sample of Orgueil (CI1) were analyzed. This is the first coupled mass-dependent and -independent Ca isotope dataset to include AOAs, a dark inclusion, and dark fragments. Where sample masses permit, Ca isotope data are reported with corresponding petrographic analyses and rare earth element (REE) relative abundance patterns. The CAIs and AOAs are enriched in light Ca isotopes (δ44/40Ca -5.32 to +0.72, where δ44/40Ca is reported relative to SRM 915a). Samples CAI 5 and AOA 1 have anomalous Group II REE patterns. These REE and δ44/40Ca data suggest that the CAI 5 and AOA 1 compositions were set via kinetic isotope fractionation during condensation and evaporation. The remaining samples show mass-dependent Ca isotope variations which cluster between δ44/40Ca +0.53 and +1.59, some of which are coupled with unfractionated REE abundance patterns. These meteoritic components likely formed through the coaccretion of the evaporative residue and condensate following Group II CAI formation or their chemical and isotopic signatures were decoupled (e.g., via nebular or parent-body alteration). The whole rock sample of Orgueil has a δ44/40Ca +0.67 ± 0.18 which is in agreement with most published data. Parent-body alteration, terrestrial alteration, and variable sampling of Ca-rich meteoritic components can have an effect on δ44/40Ca compositions in whole rock meteorites. Samples AOA 1, CAI 5, C 2, and C 4 display mass-independent 48/44Ca anomalies (ε48/44Ca +6 to +12) which are resolved from the standard composition. Other samples measured for these effects (AOA 5, CAI 1, CAI 2

  9. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-01-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e. equivalent to ~ 8 ng of amino sugar carbon. Our results obtained from δ13C analysis of amino sugars in selected marine sediment samples showed that muramic acid had isotopic imprints from indigenous bacterial activities, whereas glucosamine and galactosamine were mainly derived from organic detritus. The analysis of stable carbon isotopic compositions of amino sugars opens a promising window for the investigation of microbial metabolisms in marine sediments and the deep marine biosphere.

  10. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  11. Monthly Atmospheric 13C/12C Isotopic Ratios for 11 SIO Stations (1977-2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeling, R. F.; Piper, S. C.; Bollenbacher, A. F.

    Stable isotopic measurements for atmospheric 13C/12C and 18O/16O at global sampling sites were initiated by Dr. C.D. Keeling and co-workers at Scripps Institution of Oceanography (SIO) in 1977. These isotopic measurements complement the continuing global atmospheric and oceanic CO2 measurements initiated by Keeling in 1957. This work is currently being continued under the direction of R.F. Keeling, who also runs a parallel program at SIO to measure changes in atmospheric O2 and Ar abundances (Scripps O2 Program). A more complete set of 13CO2 data is found online at http://scrippsco2.ucsd.edu/data/atmospheric_co2.html

  12. Bringing organic carbon isotopes and phytoliths to the table as additional constraints on paleoelevation

    NASA Astrophysics Data System (ADS)

    Sheldon, N. D.; Cotton, J. M.; Hren, M. T.; Hyland, E. G.; Smith, S. Y.; Strömberg, C. A. E.

    2015-12-01

    A commonly used tool in paleotectonic and paleoaltimetry studies is the oxygen isotopic composition of authigenic carbonates formed that formed in lakes or soils, with both spatial (e.g., shoreline to mountain top) or temporally resolved records potentially providing constraints. However, in many cases there is a substantial spread in the oxygen isotope data for a given time period, often to the point of allowing for essentially any interpretation of the data depending upon how they have been used by the investigator. One potential way of distinguishing between different potential paleotectonic or paleoaltimetric interpretations is to use carbon isotope and plant microfossil (phytolith) analyses from the same paleosols to screen the oxygen isotope data by looking for evidence of evaporative enrichment. For example, if both inorganic (carbonate) and organic carbon isotopes are measured from the same paleosol, then in it possible to determine if the two isotope record equilibrium conditions or if they record disequilibrium driven by kinetic effects. In the former case, the oxygen isotope results can be considered reliable whereas in the latter case, the oxygen isotope results can be considered unreliable and could be culled from the interpretation. Similarly, because the distribution of C4 plants varies as a function of temperature and elevation, the presence/absence or abundance of C4 plant phytoliths, or of carbon isotope compositions that require a component of C4 vegetation can also be used to constrain paleoelevation by providing a maximum elevation constraint. Worked examples will include the late Miocene-Pliocene of Catamarca, Argentina, where phytoliths and organic carbon isotopes provide a maximum elevation constraint and can be used to demonstrate that oxygen isotopes do not provide a locally useful constraint on paleoelevation, and Eocene-Miocene of southwestern Montana where organic matter and phytoliths can be used to select between different potential

  13. Nuclear Reaction Rates and the Production of Light P-Process Isotopes in Fast Expansions of Proton-Rich Matter

    NASA Astrophysics Data System (ADS)

    Jordan, G. C., IV; Meyer, B. S.

    2004-09-01

    We study nucleosynthesis in rapid expansions of proton-rich matter such as might occur in winds from newly-born neutron stars. For rapid enough expansion, the system fails to maintain an equilibrium between neutrons and protons and the abundant 4He nuclei. This leads to production of quite heavy nuclei early in the expansion. As the temperature falls, the system attempts to re-establish the equilibrium between free nucleons and 4He. This causes the abundance of free neutrons to drop and the heavy nuclei to disintegrate. If the disintegration flows quench before the nuclei reach the iron group, a distribution of p-process nuclei remains. We briefly discuss the possibility of this process as the mechanism of production of light p-process isotopes (specifically 92Mo, 94Mo, 96Ru, and 98Ru), and we provide a qualitative assessment of the impact of nuclear reaction rates of heavy, proton rich isotopes on the production of these astrophysically important nuclides.

  14. A non-terrestrial 16O-rich isotopic composition for the protosolar nebula.

    PubMed

    Hashizume, Ko; Chaussidon, Marc

    2005-03-31

    The discovery in primitive components of meteorites of large oxygen isotopic variations that could not be attributed to mass-dependent fractionation effects has raised a fundamental question: what is the composition of the protosolar gas from which the host grains formed? This composition is probably preserved in the outer layers of the Sun, but the resolution of astronomical spectroscopic measurements is still too poor to be useful for comparison with planetary material. Here we report a precise determination of the oxygen isotopic composition of the solar wind from particles implanted in the outer hundreds of nanometres of metallic grains in the lunar regolith. These layers of the grains are enriched in 16O by >20 +/- 4 per thousand relative to the Earth, Mars and bulk meteorites, which implies the existence in the solar accretion disk of reactions--as yet unknown--that were able to change the 17O/16O and 18O/16O ratios in a way that was not dependent strictly on the mass of the isotope. Photochemical self-shielding of the CO gas irradiated by ultraviolet light may be one of these key processes, because it depends on the abundance of the isotopes, rather than their masses.

  15. Estimates of lake trout (Salvelinus namaycush) diet in Lake Ontario using two and three isotope mixing models

    USGS Publications Warehouse

    Colborne, Scott F.; Rush, Scott A.; Paterson, Gordon; Johnson, Timothy B.; Lantry, Brian F.; Fisk, Aaron T.

    2016-01-01

    Recent development of multi-dimensional stable isotope models for estimating both foraging patterns and niches have presented the analytical tools to further assess the food webs of freshwater populations. One approach to refine predictions from these analyses is to include a third isotope to the more common two-isotope carbon and nitrogen mixing models to increase the power to resolve different prey sources. We compared predictions made with two-isotope carbon and nitrogen mixing models and three-isotope models that also included sulphur (δ34S) for the diets of Lake Ontario lake trout (Salvelinus namaycush). We determined the isotopic compositions of lake trout and potential prey fishes sampled from Lake Ontario and then used quantitative estimates of resource use generated by two- and three-isotope Bayesian mixing models (SIAR) to infer feeding patterns of lake trout. Both two- and three-isotope models indicated that alewife (Alosa pseudoharengus) and round goby (Neogobius melanostomus) were the primary prey items, but the three-isotope models were more consistent with recent measures of prey fish abundances and lake trout diets. The lake trout sampled directly from the hatcheries had isotopic compositions derived from the hatchery food which were distinctively different from those derived from the natural prey sources. Those hatchery signals were retained for months after release, raising the possibility to distinguish hatchery-reared yearlings and similarly sized naturally reproduced lake trout based on isotopic compositions. Addition of a third-isotope resulted in mixing model results that confirmed round goby have become an important component of lake trout diet and may be overtaking alewife as a prey resource.

  16. Abundance of introduced species at home predicts abundance away in herbaceous communities

    USGS Publications Warehouse

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  17. Rhenium-osmium isotope systematics in meteorites. I - Magmatic iron meteorite groups IIAB and IIIAB

    NASA Technical Reports Server (NTRS)

    Morgan, John W.; Walker, Richard J.; Grossman, Jeffery N.

    1992-01-01

    Resonance ionization mass spectrometry is used to determine the Re and Os abundances by isotope dilution (ID) and to measure Os-187/Os-186 ratios from 19 iron meteorites. Abundances range from 1.4 to 4800 ppb Re, and from 13 to 65,000 ppb Os, and generally agree well with previous ID and neutron activation results. The Re and Os data suggest that abundance trends in these iron groups may be entirely explained by fractional crystallization. Whole-rock isochrons for the IIAB and IIIAB groups are statistically indistinguishable. Pooled data yield an initial Os-187/Os-186 of 0.794 +/- 0.010 Ga. Given the errors in the slope and half life, this age does not differ significantly from the canonical chondrite age of 4.56 Ga, but could be as young as 4.46 Ga.

  18. A retro-biosynthetic approach to the prediction of biosynthetic pathways from position-specific isotope analysis as shown for tramadol

    PubMed Central

    Romek, Katarzyna M.; Nun, Pierrick; Remaud, Gérald S.; Silvestre, Virginie; Taïwe, Germain Sotoing; Lecerf-Schmidt, Florine; Boumendjel, Ahcène; De Waard, Michel; Robins, Richard J.

    2015-01-01

    Tramadol, previously only known as a synthetic analgesic, has now been found in the bark and wood of roots of the African medicinal tree Nauclea latifolia. At present, no direct evidence is available as to the biosynthetic pathway of its unusual skeleton. To provide guidance as to possible biosynthetic precursors, we have adopted a novel approach of retro-biosynthesis based on the position-specific distribution of isotopes in the extracted compound. Relatively recent developments in isotope ratio monitoring by 13C NMR spectrometry make possible the measurement of the nonstatistical position-specific natural abundance distribution of 13C (δ13Ci) within the molecule with better than 1‰ precision. Very substantial variation in the 13C positional distribution is found: between δ13Ci = −11 and −53‰. Distribution is not random and it is argued that the pattern observed can substantially be interpreted in relation to known causes of isotope fractionation in natural products. Thus, a plausible biosynthetic scheme based on sound biosynthetic principals of precursor–substrate relationships can be proposed. In addition, data obtained from the 18O/16O ratios in the oxygen atoms of the compound add support to the deductions made from the carbon isotope analysis. This paper shows how the use of 13C NMR at natural abundance can help with proposing a biosynthetic route to compounds newly found in nature or those difficult to tackle by conventional means. PMID:26106160

  19. Results of chemical and isotopic analyses of sediment and water from alluvium of the Canadian River near a closed municipal landfill, Norman, Oklahoma

    USGS Publications Warehouse

    Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Christenson, Scott C.; Jaeschke, Jeanne B.; Fey, David L.; Berry, Cyrus J.

    2005-01-01

    Results of physical and chemical analyses of sediment and water collected near a closed municipal landfill at Norman, Oklahoma are presented in this report. Sediment analyses are from 40 samples obtained by freeze-shoe coring at 5 sites, and 14 shallow (depth <1.3 m) sediment samples. The sediment was analyzed to determine grain size, the abundance of extractable iron species and the abundances and isotopic compositions of forms of sulfur. Water samples included pore water from the freeze-shoe core, ground water, and surface water. Pore water from 23 intervals of the core was collected and analyzed for major and trace dissolved species. Thirteen ground-water samples obtained from wells within a few meters of the freeze-shoe core sites and one from the landfill were analyzed for major and trace elements as well as the sulfur and oxygen isotope composition of dissolved sulfate. Samples of surface water were collected at 10 sites along the Canadian River from New Mexico to central Oklahoma. These river-water samples were analyzed for major elements, trace elements, and the isotopic composition of dissolved sulfate.

  20. Oxygen and nitrogen isotope effects duing nitrification and denitrification occuring in Midwesern soils

    NASA Astrophysics Data System (ADS)

    Michalski, G. M.; Wilkens, B.; Sanchez, A. V.; Yount, J.

    2017-12-01

    The processes of nitrification and denitrification are key steps in the biogeochemical cycling of N and are a main control on ecosystem productivity. These processes are ephemeral and often difficult to assess across wide spatial and temporal scales. Natural abundance stable isotopes are a way of potentially assessing these two processes across multiple scales. We have conducted incubation experiments to assess the N and O isotope effects occurring during denitrification in soils typical of the Midwestern United States. Nitrification was examined by incubating soils amended with ammonium (with a known δ15N) mixed with H2O and O2 that had different δ18O values and then measured the δ15N and δ18O of the product nitrate. The fraction of nitrate oxygen arising from H2O and O2 was determined along with the N and O kinetic isotope effect (KIE). For denitrification, nitrate with a known δ15N, δ17O, and δ18O, was incubated in anaerobic soils from 12-48 hours. The residual nitrate was analyzed for isotope change and the KIE for O and N as well as exchange with H2O was determined. These data can be useful for interpreting nitrate isotopes in agricultural fields as a way off assessing nitrification and denitrification is agricultural ecosystems such as the IML-CZO.

  1. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS.

    PubMed

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-11-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation. Graphical Abstract ᅟ.

  2. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-07-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation.

  3. Preparative chromatography for specific δ13C isotopic analysis of individual carbohydrates in environmental samples

    NASA Astrophysics Data System (ADS)

    Nouara, Amel; Panagiotopoulos, Christos; Balesdent, Jérôme; Sempéré, Richard

    2017-04-01

    Carbohydrates are among the most abundant organic molecules on the Earth and are present in all geochemical systems. Despite their high abundance in the environment, very few studies assessed their origin using molecular carbohydrate isotopic analyses. In contrast with bulk stable isotope analysis (BSIA), which gives the isotopic signature of the entire sample without any specification about its chemical composition, compound specific 13C isotopic analysis of individual sugars (CSIA) offers valuable information about the origin of single molecules. Previous investigations used gas or liquid chromatography coupled with isotope ratio mass spectroscopy (GC-IRMS; HPLC-IRMS) for CSIA of sugars however the former requires δ13C corrections due to the carbon added to the sugar (derivatization) while the later does not provide always adequate separations among monosaccharides. Here we used cation preparative chromatography (Ca2+, Pb2+ and Na+) with refractive index detection in order to produce pure monosaccharide targets for subsequent EA-IRMS analyses. Milli-Q water was used as eluant at a flow rate 0.6 ml min-1. In general, three successive purifications (Ca2+, Pb2+, Ca2+) were sufficient to produce pure compounds. Pure monosaccharides were compared with authentic monosaccharide standards using 1H NMR and/or mass spectroscopy. The detection limit of our technique was about 1µM/sugar with a precision of 10% (n=6). Blanks run with Milli-Q water after three successive purifications resulted in carbon content of 0.13 to 2.77 µgC per collected sugar. These values are much lower than the minimum required amount (5 µgC) of the EA-IRSMS system with a precision of ± 0.35 ‰. Application of our method to environmental samples resulted in δ13C values of glucose, fructose, and levoglucosan in the range of -24 to -26 ‰ (PM10 atmospheric particles), and -15‰ to -22 ‰ for arabinose, glucose, and xylose (marine high molecular dissolved organic matter). These results fall in

  4. Surface oceanographic fronts influencing deep-sea biological activity: Using fish stable isotopes as ecological tracers

    NASA Astrophysics Data System (ADS)

    Louzao, Maite; Navarro, Joan; Delgado-Huertas, Antonio; de Sola, Luis Gil; Forero, Manuela G.

    2017-06-01

    Ecotones can be described as transition zones between neighbouring ecological systems that can be shaped by environmental gradients over a range of space and time scales. In the marine environment, the detection of ecotones is complex given the highly dynamic nature of marine systems and the paucity of empirical data over ocean-basin scales. One approach to overcome these limitations is to use stable isotopes from animal tissues since they can track spatial oceanographic variability across marine systems and, in turn, can be used as ecological tracers. Here, we analysed stable isotopes of deep-sea fishes to assess the presence of ecological discontinuities across the western Mediterranean. We were specifically interested in exploring the connection between deep-sea biological activity and particular oceanographic features (i.e., surface fronts) occurring in the pelagic domain. We collected samples for three different abundant deep-sea species in May 2004 from an experimental oceanographic trawling cruise (MEDITS): the Mictophydae jewel lanternfish Lampanyctus crocodilus and two species of the Gadidae family, the silvery pout Gadiculus argenteus and the blue whiting Micromesistius poutassou. The experimental survey occurred along the Iberian continental shelf and the upper and middle slopes, from the Strait of Gibraltar in the SW to the Cape Creus in the NE. The three deep-sea species were highly abundant throughout the study area and they showed geographic variation in their isotopic values, with decreasing values from north to south disrupted by an important change point around the Vera Gulf. Isotopic latitudinal gradients were explained by pelagic oceanographic conditions along the study area and confirm the existence of an ecotone at the Vera Gulf. This area could be considered as an oceanographic boundary where waters of Atlantic origin meet Mediterranean surface waters forming important frontal structures such as the Almeria-Oran front. In fact, our results

  5. Abundances, Ionization States, Temperatures, and FIP in Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Reames, Donald V.

    2018-04-01

    The relative abundances of chemical elements and isotopes have been our most effective tool in identifying and understanding the physical processes that control populations of energetic particles. The early surprise in solar energetic particles (SEPs) was 1000-fold enhancements in {}3He/{}4He from resonant wave-particle interactions in the small "impulsive" SEP events that emit electron beams that produce type III radio bursts. Further studies found enhancements in Fe/O, then extreme enhancements in element abundances that increase with mass-to-charge ratio A/Q, rising by a factor of 1000 from He to Au or Pb arising in magnetic reconnection regions on open field lines in solar jets. In contrast, in the largest SEP events, the "gradual" events, acceleration occurs at shock waves driven out from the Sun by fast, wide coronal mass ejections (CMEs). Averaging many events provides a measure of solar coronal abundances, but A/Q-dependent scattering during transport causes variations with time; thus if Fe scatters less than O, Fe/O is enhanced early and depleted later. To complicate matters, shock waves often reaccelerate impulsive suprathermal ions left over or trapped above active regions that have spawned many impulsive events. Direct measurements of ionization states Q show coronal temperatures of 1-2 MK for most gradual events, but impulsive events often show stripping by matter traversal after acceleration. Direct measurements of Q are difficult and often unavailable. Since both impulsive and gradual SEP events have abundance enhancements that vary as powers of A/Q, we can use abundances to deduce the probable Q-values and the source plasma temperatures during acceleration, ≈3 MK for impulsive SEPs. This new technique also allows multiple spacecraft to measure temperature variations across the face of a shock wave, measurements otherwise unavailable and provides a new understanding of abundance variations in the element He. Comparing coronal abundances from SEPs

  6. NanoSIMS Determination of Carbon and Oxygen Isotopic Compositions of Presolar Graphites from the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Stadermann, F. J.; Croat, T. K.; Bernatowicz, T.

    2004-01-01

    Graphite from the Murchison density separate KFC1 (2.15 - 2.20 g/cu cm) has previously been studied by combined SEM/EDX and ion microprobe analysis. These studies found several distinct morphological types of graphites and C isotopic compositions that vary over more than 3 orders of magnitude, clearly establishing their presolar origin. Subsequent TEM measurements of a subset of these particles found abundant embedded crystals of metal (Zr, Mo, Ti, Ru) carbides which were incorporated during the growth of the graphites. A new TEM study of a large set of KFC1 graphites led to the discovery of another type of presolar material, Ru-Fe metal. Here we report results of the C and O isotopic measurements in the same graphite sections, which makes it possible for the first time to directly correlate isotopic and TEM data of KFC1 grains.

  7. ISOTOPIC COMPOSITION OF THE COMMON LEAD OF JAPAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, H.; Sato, K.

    1958-11-01

    Lead tetramethyl was synthesized from lead iodide isolated from 14 galenas, 2 anglesites, and 6 pyromorphites of Japan. The mass spectrometric analysis was carried out for the peaks of lead and lead hydride ions. The isotopic compositions of leads from these minerais lie wiyhn a narrow range. The average values for gnlanas are 18.51 O 0.05 for Pb/sup 238//Pb/sup 204/ 15.60 plus or minus 0.05 for Pb/sup 207//Pb/sup 204/8.76 plus or minus 0.15 forPb/ sup 208//Pb/sup 204/ For lead of secondary minerals they are 18.52 plus or minus 0.05, 15.62 plus or minus 0.05, and 38.78 plus or minus 0.15,more » respectively. No detectabla difference was observed between the isotopic compositions of primary and secondary lead ores. The ratios, U/sub 238/Pb/sup 204, and Th/sup 232/ U/sup 238/, in the source magma are estimated from the lead abundances. They are« less

  8. Osmium Stable Isotope Composition of Chondrites and Iron Meteorites: Implications for Planetary Core Formation

    NASA Astrophysics Data System (ADS)

    Nanne, J. A. M.; Millet, M. A.; Burton, K. W.; Dale, C. W.; Nowell, G. M.; Williams, H. M.

    2016-12-01

    Mass-dependent Os stable isotope fractionation is expected to occur during metal-silicate segregation as well as during crystallization of metal alloys due to the different bonding environment between silicate and metals. As such, Os stable isotopes have the potential to resolve questions pertaining to planetary accretion and differentiation. Here, we present stable Os isotope data for a set of chondrites and iron meteorites to examine the processes associated with core solidification. Carbonaceous, ordinary, and enstatite chondrites show no detectable stable isotope variation with a δ190Os weighted average of +0.12±0.04 (n=37). The uniform composition observed for chondrites implies Os stable isotope homogeneity of the bulk solar nebula. Contrary to chondrites, iron meteorites display a large range in Os stable isotope compositions from δ190Os of +0.05 up to +0.49‰. Variation is only observed in the IIAB and IIIAB irons. Type IVB irons display values similar to chondrites (+0.107±0.047 [n=3]) and IVA compositions are slightly different +0.187±0.004 (n=2). The type IIAB and IIIAB groups show values both within the chondritic range and up to heavier values extending up to +0.49‰. Since core formation in small planetary bodies is expected to quantitatively sequester Os in metal phases, bulk planetary cores are expected to display chondritic δ190Os values. Conversely, samples of the IIAB and IIIAB group display significant variation, possibly indicating that stable isotope fractionation occurred during solidification of the parent-body core. However, no covariation is observed between δ190Os and either Os abundance or radiogenic Os isotope ratios. Instead, liquid immiscibility during core crystallization, where the liquid metal splits into separate S- and P-rich liquids, may be a source of Os stable isotope fractionation.

  9. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  10. Isotopica: a tool for the calculation and viewing of complex isotopic envelopes.

    PubMed

    Fernandez-de-Cossio, Jorge; Gonzalez, Luis Javier; Satomi, Yoshinori; Betancourt, Lazaro; Ramos, Yassel; Huerta, Vivian; Amaro, Abel; Besada, Vladimir; Padron, Gabriel; Minamino, Naoto; Takao, Toshifumi

    2004-07-01

    The web application Isotopica has been developed as an aid to the interpretation of ions that contain naturally occurring isotopes in a mass spectrum. It allows the calculation of mass values and isotopic distributions based on molecular formulas, peptides/proteins, DNA/RNA, carbohydrate sequences or combinations thereof. In addition, Isotopica takes modifications of the input molecule into consideration using a simple and flexible language as a straightforward extension of the molecular formula syntax. This function is especially useful for biomolecules, which are often subjected to additional modifications other than normal constituents, such as the frequently occurring post-translational modification in proteins. The isotopic distribution of any molecule thus defined can be calculated by considering full widths at half maximum or mass resolution. The combined envelope of several overlapping isotopic distributions of a mixture of molecules can be determined after specifying each molecule's relative abundance. The results can be displayed graphically on a local PC using the Isotopica viewer, a standalone application that is downloadable from the sites below, as a complement to the client browser. The m/z and intensity values can also be obtained in the form of a plain ASCII text file. The software has proved to be useful for peptide mass fingerprinting and validating an observed isotopic ion distribution with reference to the theoretical one, even from a multi-component sample. The web server can be accessed at http://bioinformatica.cigb.edu.cu/isotopica and http://coco.protein.osaka-u.ac.jp/isotopica [correction].

  11. Stable isotopes in collagen and Late Quaternary carnivore palaeoecology

    NASA Astrophysics Data System (ADS)

    Bocherens, Hervé

    2010-05-01

    Several taxa of large carnivores co-occurred during the late Pleistocene in the steppe-tundra ecosystem, such as wolf Canis lupus, cave lion Panthera leo spelaea, cave hyaena Crocuta crocuta spelaea, brown bear Ursus arctos and cave bear Ursus spelaeus and Ursus ingressus. This abundance of taxa belonging to the same guild raises questions about niche partitioning, especially in terms of dietary specialization and prey selection. Observations of the dietary ecology of the extant relatives of these late Pleistocene carnivores does not provide unambiguous answers as these populations live under very different environmental conditions where other potential prey species are present, but it appears that most of these modern large carnivores are relatively flexible in their prey selection. Palaeontological investigations dealing with faunal associations and activity marks on fossil bones also have their limitations, such as taphonomic biases (palimpsests rather than biological associations) and do not allow the quantification of consumption of various preys. In contrast, carbon and nitrogen isotopic signatures of bone collagen depend directly on those of the average diet. Since different potential prey species occurring in the steppe-tundra exhibit consistent isotopic differences for these chemical elements, it is possible to relate the carbon and nitrogen isotopic signatures measured in fossil carnivores with the preferential consumption of some prey species. Some amount of quantification can be provided using modified versions of mixing models developed for modern ecosystems. In addition, this isotopic approach is individual-based and it is therefore possible to investigate intra- and inter-population differences in prey selection, as well as possible chronological trends and differences linked to genetic differences by combining isotopic and ancient DNA studies on the same material. The isotopic approach has already shown that among the tested large carnivores, cave

  12. Isotopic niche partitioning between two apex predators over time.

    PubMed

    Drago, Massimiliano; Cardona, Luis; Franco-Trecu, Valentina; Crespo, Enrique A; Vales, Damián G; Borella, Florencia; Zenteno, Lisette; Gonzáles, Enrique M; Inchausti, Pablo

    2017-07-01

    Stable isotope analyses have become an important tool in reconstructing diets, analysing resource use patterns, elucidating trophic relations among predators and understanding the structure of food webs. Here, we use stable carbon and nitrogen isotope ratios in bone collagen to reconstruct and compare the isotopic niches of adult South American fur seals (Arctocephalus australis; n = 86) and sea lions (Otaria flavescens; n = 49) - two otariid species with marked morphological differences - in the Río de la Plata estuary (Argentina - Uruguay) and the adjacent Atlantic Ocean during the second half of the 20th century and the beginning of the 21st century. Samples from the middle Holocene (n = 7 fur seals and n = 5 sea lions) are also included in order to provide a reference point for characterizing resource partitioning before major anthropogenic modifications of the environment. We found that the South American fur seals and South American sea lions had distinct isotopic niches during the middle Holocene. Isotopic niche segregation was similar at the beginning of the second half of the 20th century, but has diminished over time. The progressive convergence of the isotopic niches of these two otariids during the second half of the 20th century and the beginning of the 21st century is most likely due to the increased reliance of South American fur seals on demersal prey. This recent dietary change in South American fur seals can be explained by at least two non-mutually exclusive mechanisms: (i) the decrease in the abundance of sympatric South American sea lions as a consequence of small colony size and high pup mortality resulting from commercial sealing; and (ii) the decrease in the average size of demersal fishes due to intense fishing of the larger class sizes, which may have increased their accessibility to those eared seals with a smaller mouth gape, that is, South American fur seals of both sexes and female South American sea lions. © 2017 The Authors

  13. Strong Coupling of Shoot Assimilation and Soil Respiration during Drought and Recovery Periods in Beech As Indicated by Natural Abundance δ13C Measurements.

    PubMed

    Blessing, Carola H; Barthel, Matti; Gentsch, Lydia; Buchmann, Nina

    2016-01-01

    Drought down-regulates above- and belowground carbon fluxes, however, the resilience of trees to drought will also depend on the speed and magnitude of recovery of these above- and belowground fluxes after re-wetting. Carbon isotope composition of above- and belowground carbon fluxes at natural abundance provides a methodological approach to study the coupling between photosynthesis and soil respiration (SR) under conditions (such as drought) that influence photosynthetic carbon isotope discrimination. In turn, the direct supply of root respiration with recent photoassimilates will impact on the carbon isotope composition of soil-respired CO 2 . We independently measured shoot and soil CO 2 fluxes of beech saplings ( Fagus sylvatica L.) and their respective δ 13 C continuously with laser spectroscopy at natural abundance. We quantified the speed of recovery of drought stressed trees after re-watering and traced photosynthetic carbon isotope signal in the carbon isotope composition of soil-respired CO 2 . Stomatal conductance responded strongly to the moderate drought (-65%), induced by reduced soil moisture content as well as increased vapor pressure deficit. Simultaneously, carbon isotope discrimination decreased by 8‰, which in turn caused a significant increase in δ 13 C of recent metabolites (1.5-2.5‰) and in δ 13 C of SR (1-1.5‰). Generally, shoot and soil CO 2 fluxes and their δ 13 C were in alignment during drought and subsequent stress release, clearly demonstrating a permanent dependence of root respiration on recently fixed photoassimilates, rather than on older reserves. After re-watering, the drought signal persisted longer in δ 13 C of the water soluble fraction that integrates multiple metabolites (soluble sugars, amino acids, organic acids) than in the neutral fraction which represents most recently assimilated sugars or in the δ 13 C of SR. Nevertheless, full recovery of all aboveground physiological variables was reached within 4 days

  14. Late Pleistocene C4 plant dominance and summer rainfall in the southwestern United States from isotopic study of herbivore teeth

    USGS Publications Warehouse

    Connin, S.L.; Betancourt, J.; Quade, Jay

    1998-01-01

    Patterns of climate and C4 plant abundance in the southwestern United States during the last glaciation were evaluated from isotopic study of herbivore tooth enamel. Enamel ??13C values revealed a substantial eastward increase in C4 plant consumption for Mammuthus spp., Bison spp., Equus spp., and Camelops spp. The ??13C values were greatest in Bison spp. (-6.9 to + 1.7???) and Mammuthus spp. (-9.0 to +0.3???), and in some locales indicated C4-dominated grazing. The ??13C values of Antilocaprids were lowest among taxa (-12.5 to -7.9???) and indicated C3 feeding at all sites. On the basis of modern correlations between climate and C4 grass abundance, the enamel data imply significant summer rain in parts of southern Arizona and New Mexico throughout the last glaciation. Enamel ??18O values range from +19.0 to +31.0??? and generally increase to the east. This pattern could point to a tropical or subtropical source of summer rainfall. At a synoptic scale, the isotope data indicate that interactions of seasonal moisture, temperature, and lowered atmospheric pCO2 determined glacial-age C4 abundance patterns.

  15. Lu-Hf and Sm-Nd isotope systematics of Korean spinel peridotites: A case for metasomatically induced Nd-Hf decoupling

    NASA Astrophysics Data System (ADS)

    Choi, Sung Hi; Mukasa, Samuel B.

    2012-12-01

    We determined the Lu-Hf and Sm-Nd isotope compositions of spinel peridotite xenoliths in alkali basalts from Baengnyeong and Jeju islands, South Korea, to constrain the timing of melt-depletion events and stabilization of the lithospheric mantle beneath the region. Equilibration temperatures estimated by two-pyroxene thermometry range from 780 to 950 °C, and from 960 to 1010 °C for Baengnyeong and Jeju peridotites, respectively. The Baengnyeong peridotite clinopyroxenes are characterized by extremely radiogenic Hf in association with isotopically less extreme Nd, resulting in strong Nd-Hf decoupling referenced to the mantle array. This is in stark contrast to the well-correlated isotopic compositions of Hf and Nd in the Jeju peridotite clinopyroxenes, which plot along the Nd-Hf mantle array. The Hf abundances and isotopic compositions of the Baengnyeong clinopyroxenes were less affected by relatively recent secondary enrichments that overprinted the light rare earth element abundances and Nd isotopes, causing the decoupling of the Nd-Hf isotopes. The Nd-Hf isotopic compositions of the Jeju peridotites appear to have been re-equilibrated, probably as a result of efficient diffusion at the relatively higher temperatures of the Jeju peridotites. Lu-Hf tie lines for clinopyroxene and orthopyroxene from four of the Korean peridotites have negative slopes on a Lu-Hf isochron diagram, yielding negative ages. This is interpreted to indicate recent isotopic exchange in orthopyroxene by reaction with metasomatic agents having low 176Hf/177Hf components. Secondary overprinting in orthopyroxene was facilitated by the considerably lower Hf concentrations than in co-located clinopyroxene. Baengnyeong lherzolite clinopyroxenes yield a Lu-Hf errorchron age of 1.9 ± 0.1 Ga, which is independently supported by a model Os age (based on Re depletion or TRD) of 1.8 Ga on a refractory Baengnyeong peridotite. We interpret this age range to mark the time of stabilization of the mantle

  16. Lu-Hf and Sm-Nd isotope systematics of Korean spinel peridotites: A case for metasomatically induced Nd-Hf decoupling

    NASA Astrophysics Data System (ADS)

    Choi, S.; Mukasa, S. B.

    2012-12-01

    We determined the Lu-Hf and Sm-Nd isotope compositions of spinel peridotite xenoliths in alkali basalts from Baengnyeong and Jeju islands, South Korea, to constrain the timing of melt-depletion events and stabilization of the lithospheric mantle beneath the region. Equilibration temperatures estimated by two-pyroxene thermometry range from 780 to 950°C, and from 960 to 1010°C for Baengnyeong and Jeju peridotites, respectively. The Baengnyeong peridotite clinopyroxenes are characterized by extremely radiogenic Hf in association with isotopically less extreme Nd, resulting in strong Nd-Hf decoupling referenced to the mantle array. This is in stark contrast to the well-correlated isotopic compositions of Hf and Nd in the Jeju peridotite clinopyroxenes, which plot along the Nd-Hf mantle array. The Hf abundances and isotopic compositions of the Baengnyeong clinopyroxenes were less affected by relatively recent secondary enrichments that overprinted the light rare earth element abundances and Nd isotopes, causing the decoupling of the Nd-Hf isotopes. The Nd-Hf isotopic compositions of the Jeju peridotites appear to have been re-equilibrated, probably as a result of efficient diffusion at the relatively higher temperatures of the Jeju peridotites. Lu-Hf tie lines for clinopyroxene and orthopyroxene from four of the Korean peridotites have negative slopes on a Lu-Hf isochron diagram, yielding negative ages. This is interpreted to indicate recent isotopic exchange in orthopyroxene by reaction with metasomatic agents having low 176Hf/177Hf components. Secondary overprinting in orthopyroxene was facilitated by the considerably lower Hf concentrations than in co-located clinopyroxene. Baengnyeong lherzolite clinopyroxenes yield a Lu-Hf errorchron age of 1.9 ± 0.1 Ga, which is independently supported by a model Os age (based on Re depletion or TRD) of 1.8 Ga on a refractory Baengnyeong peridotite. We interpret this age range to mark the time of stabilization of the mantle

  17. Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean

    USGS Publications Warehouse

    Chan, L.-H.; Hein, J.R.

    2007-01-01

    To test the feasibility of using lithium isotopes in marine ferromanganese deposits as an indicator of paleoceanographic conditions and seawater composition, we analyzed samples from a variety of tectonic environments in the global ocean. Hydrogenetic, hydrothermal, mixed hydrogenetic–hydrothermal, and hydrogenetic–diagenetic samples were subjected to a two-step leaching and dissolution procedure to extract first the loosely bound Li and then the more tightly bound Li in the Mn oxide and Fe oxyhydroxide. Total leachable Li contents vary from 2 by coulombic force. Hence, the abundant Li in hydrothermal deposits is mainly associated with the dominant phase, MnO2. The surface of amorphous FeOOH holds a slightly positive charge and attracts little Li, as demonstrated by data for hydrothermal Fe oxyhydroxide. Loosely sorbed Li in both hydrogenetic crusts and hydrothermal deposits exhibit Li isotopic compositions that resemble that of modern seawater. We infer that the hydrothermally derived Li scavenged onto the surface of MnO2 freely exchanged with ambient seawater, thereby losing its original isotopic signature. Li in the tightly bound sites is always isotopically lighter than that in the loosely bound fraction, suggesting that the isotopic fractionation occurred during formation of chemical bonds in the oxide and oxyhydroxide structures. Sr isotopes also show evidence of re-equilibration with seawater after deposition. Because of their mobility, Li and Sr in the ferromanganese crusts do not faithfully record secular variations in the isotopic compositions of seawater. However, Li content can be a useful proxy for the hydrothermal history of ocean basins. Based on the Li concentrations of the globally distributed hydrogenetic and hydrothermal samples, we estimate a scavenging flux of Li that is insignificant compared to the hydrothermal flux and river input to the ocean.

  18. Estimating abundance

    USGS Publications Warehouse

    Sutherland, Chris; Royle, Andy

    2016-01-01

    This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).

  19. ATTA - A New Method of Ultrasensitive Trace-Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Lu, Z.-T.; Bailey, K.; Chen, C. Y.; Du, X.; Li, Y. M.; O'Connor, T. P.; Young, L.; Winkler, G.

    2000-10-01

    We have developed a new method of ultrasensitive trace-isotope analysis based upon the technique of laser manipulation of neutral atoms [1]. This new method allows us to count individual 85Kr and 81Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10-11 and 10-13, respectively. Isotope analysis of 81Kr can be used to date polar ice, and 85Kr is a tracer used in monitoring nuclear wastes. In this experiment metastable Kr atoms were produced in a discharge, decelerated via the Zeeman slowing technique, and captured by a Magneto-Optical Trap where the atoms were counted by measuring their fluorescence. At present our system is capable of counting, in average, one 81Kr atom for about 12 minutes with a total efficiency of 2x10-7. We are currently working to improve our system efficiency by applying cryogenic cooling to the Kr atoms in the discharge region and by recirculating the gas in the vacuum system. This method can be used to analyze many other isotope tracers for a wide range of applications including measuring solar neutrino flux, searching for exotic particles, tracing atmospheric and oceanic currents, archeological and geological dating, medical diagnostics, monitoring fission products in the environment for nuclear waste management, etc. This work is supported by the U.S. Department of Energy, Nuclear Physics Division; L.Young is supported by the Office of Basic Energy Sciences, Division of Chemical Sciences (Contract W-31-109-ENG-38). [1] C.Y. Chen et. al., Science 286, 1139 (1999).

  20. Interpreting the Marine Calcium Isotope Record: Influence of Reef Builders

    NASA Astrophysics Data System (ADS)

    Boehm, F.; Eisenhauer, A.; Farkas, J.; Kiessling, W.; Veizer, J.; Wallmann, K.

    2008-12-01

    The calcium isotopic composition of seawater as recorded in brachiopod shells varied substantially during the Paleozoic (Farkas et al. 2007, Geochim. Cosmochim. Acta, 71, 5117-5134). The most prominent feature of the record is an excursion to higher 44Ca/40Ca values that started during the Early Carboniferous and lasted until the Permian. The shift occurred shortly after the transition from a calcite-sea to an aragonite-sea (Sandberg 1983, Nature 305, 19-22; Stanley and Hardie 1998, Pal3, 144, 3-19). It therefore has been interpreted to reflect a change in the average calcium isotope fractionation of carbonates produced in the oceans. Aragonite is depleted by about 0.6 permil in 44Ca/40Ca compared to calcite (Gussone et al. 2005, Geochim. Cosmochim. Acta, 69, 4485-4494). Consequently a transient shift from calcite dominated to an aragonite dominated calcium carbonate sedimentation could have caused the observed 0.5 permil isotope shift. We compare the marine calcium isotope record with a new compilation of the Phanerozoic trends in the skeletal mineralogy of marine invertebrates (Kiessling et al. 2008, Nature Geoscience, 1, 527-530). The compilation is based on data collected in the PaleoReef database and the Paleobiology Database, which include information on Phanerozoic reef complexes and taxonomic collection data of Phanerozoic biota, respectively. We find a strong positive correlation between the calcium isotope ratios and the abundance of aragonitic reef builders from the Silurian until the Permian at a sample resolution of about 10 million years. The two records, however, diverge in the Triassic, when reefs were dominated by aragonite but the calcium isotope values remained at a relatively low level. We also find a good correlation between calcium isotopes and the proportion of aragonite in the general record of Phanerozoic biota. However, in this case the records start to diverge already in the latest Carboniferous. The observations suggest that the

  1. Tungsten Abundances in Hawaiian Picrites: Implications for the Mantle Sources of Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Ireland, T. J.; Arevalo, R. D.; Walker, R. J.; McDonough, W. F.

    2008-12-01

    Tungsten abundances have been measured in a suite of Hawaiian picrites (MgO >13 wt.%) from nine Hawaiian shield volcanoes (Mauna Kea, Mauna Loa, Hualalai, Loihi, Koolau, Kilauea, Kohala, Lanai and Molokai). Tungsten concentrations in the parental melts for these volcanoes have been estimated via the intersection of linear W-MgO trends with the putative MgO content of the parental melt (~16 wt.%). Tungsten behaves as a highly incompatible trace element in mafic to ultramafic systems; thus, given an independent assessment of the degree of partial melting for each volcanic center, the W abundances in their mantle sources can be determined. The mantle sources for Hualalai, Kilauea, Kohala and Loihi have non- uniform estimated W abundances of 11, 13, 16 and 27 ng/g, respectively, giving an average source abundance of 17±5 ng/g. This average source abundance is nearly six times more enriched than Depleted MORB Mantle (DMM: 3.0±2.3 ng/g) and slightly elevated relative to the Bulk Silicate Earth (BSE: 13±10 ng/g). The relatively high abundances of W in the Hawaiian sources relative to the DMM can potentially be explained as a consequence of crustal recycling. For example, incorporation of 30% oceanic crust (30 ng/g W), including 3% sediment (1500 ng/g W), into a DMM source could create the W enrichment observed in the Loihi source, consistent with estimates from earlier models based on other trace elements and isotope systems. The Hualalai source, however, has also been suggested to contain a substantial recycled component, as implied by similarly radiogenic 187Os/188Os, yet this source has the lowest estimated W abundance among the volcanic centers studied. The conflict between these results may: 1) reflect chemical differences among recycled components, 2) indicate a more complex history for Hualalai samples, e.g. involvement of a melt percolation component, or 3) implicate other sources of W.

  2. Variability in Abundances of Meteorites in the Ordovician

    NASA Astrophysics Data System (ADS)

    Heck, P. R.; Schmitz, B.; Kita, N.

    2017-12-01

    The knowledge of the flux of extraterrestrial material throughout Earth's history is of great interest to reconstruct the collisional evolution of the asteroid belt. Here, we present a review of our investigations of the nature of the meteorite flux to Earth in the Ordovician, one of the best-studied time periods for extraterrestrial matter in the geological record [1]. We base our studies on compositions of extraterrestrial chromite and chrome-spinel extracted by acid dissolution from condensed marine limestone from Sweden and Russia [1-3]. By analyzing major and minor elements with EDS and WDS, and three oxygen isotopes with SIMS we classify the recovered meteoritic materials. Today, the L and H chondrites dominate the meteorite and coarse micrometeorite flux. Together with the rarer LL chondrites they have a type abundance of 80%. In the Ordovician it was very different: starting from 466 Ma ago 99% of the flux was comprised of L chondrites [2]. This was a result of the collisional breakup of the parent asteroid. This event occurred close to an orbital resonance in the asteroid belt and showered Earth with >100x more L chondritic material than today during more than 1 Ma. Although the flux is much lower at present, L chondrites are still the dominant type of meteorites that fall today. Before the asteroid breakup event 467 Ma ago the three groups of ordinary chondrites had about similar abundances. Surprisingly, they were possibly surpassed in abundance by achondrites, materials from partially and fully differentiated asteroids [3]. These achondrites include HED meteorites, which are presumably fragments released during the formation of the Rheasilvia impact structure 1 Ga ago on asteroid 4 Vesta. The enhanced abundance of LL chondrites is possibly a result of the Flora asteroid family forming event at 1 Ga ago. The higher abundance of primitive achondrites was likely due to smaller asteroid family forming events that have not been identified yet but that did

  3. An isotopic biogeochemical study of the Green River oil shale

    NASA Technical Reports Server (NTRS)

    Collister, J. W.; Summons, R. E.; Lichtfouse, E.; Hayes, J. M.

    1992-01-01

    Thirty-five different samples from three different sulfur cycles were examined in this stratigraphically oriented study of the Shell 22x-l well (U.S.G.S. C177 core) in the Piceance Basin, Colorado. Carbon isotopic compositions of constituents of Green River bitumens indicate mixing of three main components: products of primary photoautotrophs and their immediate consumers (delta approximately -30% vs PDB), products of methanotrophic bacteria (delta approximately -85%), and products of unknown bacteria (delta approximately -40%). For individual compounds synthesized by primary producers, delta-values ranged from -28 to -32%. 13C contents of individual primary products (beta-carotane, steranes, acyclic isoprenoids, tricyclic triterpenoids) were not closely correlated, suggesting diverse origins for these materials. 13C contents of numerous hopanoids were inversely related to sulfur abundance, indicating that they derived both from methanotrophs and from other bacteria, with abundances of methanotrophs depressed when sulfur was plentiful in the paleoenvironment. gamma-Cerane coeluted with 3 beta(CH3),17 alpha(H),21 beta(H)-hopane, but delta-values could be determined after deconvolution. gamma-Cerane (delta approximately -25%) probably derives from a eukaryotic heterotroph grazing on primary materials, the latter compound (delta approximately -90%) must derive from methanotrophic organisms. 13C contents of n-alkanes in bitumen differed markedly from those of paraffins generated pyrolytically. Isotopic and quantitative relationships suggest that alkanes released by pyrolysis derived from a resistant biopolymer of eukaryotic origin and that this was a dominant constituent of total organic carbon.

  4. Isotopic measurements of the cosmic ray nuclei at 1.7 GeV/n and 0.5 GeV/n

    NASA Technical Reports Server (NTRS)

    Juliusson, E.

    1975-01-01

    Results are presented on the mean isotopic composition of cosmic ray nuclei, or the average neutron excess for the elements Be to Si. At 1.7 GeV/nucleon they have been obtained by comparing the abundances measured above a rigidity threshold at Palestine, Texas, with abundances measured above an equivalent velocity threshold at Cape Girardeau Missouri. At 0.5 GeV/nucleon the results are obtained by analysing the variation in the chemical composition with energy in the energy region around the geomagnetic cut-off.

  5. The effects of serpentinization on Mg isotopes in Mid-Atlantic ridge peridotite

    NASA Astrophysics Data System (ADS)

    Wimpenny, J.; Harvey, J.; Yin, Q.

    2012-12-01

    The magnesium isotope composition of the Earth's mantle [1], and bulk estimates for upper crustal rocks [2] overlap with values obtained from chondritic meteorites [1], suggesting broad scale homogeneity of δ26Mg on Earth. By way of contrast, weathering of continental crust results in significant fractionation of Mg isotopes [3]. Negative δ26Mg in riverine and groundwater fluxes suggest that the lighter isotopes of Mg are preferentially removed in fluid during partial weathering, leaving a heavy δ26Mg residuum [4]. Thus, riverine fluxes to the ocean result in a marine reservoir with a δ26Mg = -0.82 ± 0.01 [5], significantly lighter than that of fresh mantle material and its derivatives [1]. Abyssal peridotites recovered from Ocean Drilling Program Leg 209 display a wide range of bulk-rock compositions and have been demonstrated to have interacted with a number of low and high temperature fluids [6]. Peridotite from Hole 1274a has been variably serpentinized at low (c. 200 oC) temperatures. Serpentinized samples from Hole 1268a, have also interacted with a higher temperature fluid (c. 350 oC) with a low Mg/Si ratio resulting in abundant talc formation [6]. Serpentinites contain high concentrations of Mg and are abundantly exposed at the seafloor at slow and ultra-slow oceanic ridges [7,8]. Because peridotites are thought to be a source of Mg to seawater [9] any fractionation of Mg isotopes that accompanies serpentinization will have implications for the composition of Mg in seawater. The δ26Mg of samples from 1274a are similar to primary upper crustal rocks, (UCC δ26Mg = -0.22 ± 0.04 [2]). However, samples from 1268a have fractionated δ26Mg values that are generally enriched in isotopically heavy Mg relative to the UCC, ranging from -0.25 to -0.02‰. These results suggest that serpentinization itself does not cause fractionation of Mg, but that later formation of talc is associated with the preferential retention of isotopically heavy Mg, consistent with

  6. Is the Sun Lighter than the Earth? Isotopic CO in the Photosphere, Viewed through the Lens of Three-dimensional Spectrum Synthesis

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.; Lyons, J. R.; Ludwig, H.-G.; Caffau, E.; Wedemeyer-Böhm, S.

    2013-03-01

    We consider the formation of solar infrared (2-6 μm) rovibrational bands of carbon monoxide (CO) in CO5BOLD 3D convection models, with the aim of refining abundances of the heavy isotopes of carbon (13C) and oxygen (18O, 17O), to compare with direct capture measurements of solar wind light ions by the Genesis Discovery Mission. We find that previous, mainly 1D, analyses were systematically biased toward lower isotopic ratios (e.g., R 23 ≡ 12C/13C), suggesting an isotopically "heavy" Sun contrary to accepted fractionation processes that were thought to have operated in the primitive solar nebula. The new 3D ratios for 13C and 18O are R 23 = 91.4 ± 1.3 (R ⊕ = 89.2) and R 68 = 511 ± 10 (R ⊕ = 499), where the uncertainties are 1σ and "optimistic." We also obtained R 67 = 2738 ± 118 (R ⊕ = 2632), but we caution that the observed 12C17O features are extremely weak. The new solar ratios for the oxygen isotopes fall between the terrestrial values and those reported by Genesis (R 68 = 530, R 67 = 2798), although including both within 2σ error flags, and go in the direction favoring recent theories for the oxygen isotope composition of Ca-Al inclusions in primitive meteorites. While not a major focus of this work, we derive an oxygen abundance, epsilonO ~ 603 ± 9 ppm (relative to hydrogen; log epsilon ~ 8.78 on the H = 12 scale). The fact that the Sun is likely lighter than the Earth, isotopically speaking, removes the necessity of invoking exotic fractionation processes during the early construction of the inner solar system.

  7. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A.

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ{sup 18}O and δ{sup 2}H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also verymore » important: in summer, milk water contains higher δ{sup 18}O and δ{sup 2}H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.« less

  8. Intramolecular isotope distributions reveal lower than expected increases in photosynthesis over the past 200 years

    NASA Astrophysics Data System (ADS)

    Ehlers, Ina; Augusti, Angela; Köhler, Iris; Zuidema, Pieter; Robertson, Iain; Nilsson, Mats; Schleucher, Jürgen

    2015-04-01

    The ability of the biosphere to act as CO2 sink through photosynthesis strongly influences future atmospheric CO2 concentrations and crop productivity. However, plant responses to increasing atmospheric CO2 are poorly understood, in particular on time scales of decades that are most relevant for the global carbon cycle. Most plants in the global terrestrial vegetation and most crops use the C3 photosynthetic pathway. Photorespiration is a side reaction of C3 photosynthesis that reduces CO2 assimilation in all C3 plants. By studying intramolecular isotope distributions (isotopomer abundances) in century-long archives of plant material, we reconstruct how the atmospheric CO2 increase since industrialization has changed the ratio of photorespiration to photosynthesis. For 12 tree species from five continents, we observe that the CO2 increase has reduced the photorespiration / photosynthesis ratio. However, the observed reduction is on average 50 % smaller than expected from CO2 manipulation experiments. This apparent discrepancy is explained by results from a factorial CO2 / temperature manipulation experiment, which shows that isotopomers reflect the integrated effect of CO2 and temperature on the photorespiration / photosynthesis ratio. Thus, the 50 % smaller suppression of photorespiration in trees is explained by increases in leaf temperature of 2 ° C, due to global warming and a possible contribution of reduced transpirational cooling due to stomatal closure. Previous studies of long-term effects of increasing CO2 on trees have measured 13C fractionation of leaf gas exchange (Δ13C) in tree-ring series. In several studies a discrepancy was observed: strong historic increases in photosynthesis are estimated, but increases in biomass are not observed. The temperature influence revealed by our isotopomer data resolves this discrepancy; the lower estimate of CO2 fertilization has major implications for the future role of forests as CO2 sink and for vegetation

  9. Assessment of marine-derived nutrients in the Copper River Delta, Alaska, using natural abundance of the stable isotopes of nitrogen, sulfur, and carbon

    USGS Publications Warehouse

    Kline, Thomas C.; Woody, Carol Ann; Bishop, Mary Anne; Powers, Sean P.; Knudsen, E. Eric

    2007-01-01

    We performed nitrogen, sulfur, and carbon stable isotope analysis (SIA) on maturing and juvenile anadromous sockeye and coho salmon, and periphyton in two Copper River delta watersheds of Alaska to trace salmonderived nutrients during 2003–2004. Maturing salmon were isotopically enriched relative to alternate freshwater N, S, and C sources as expected, with differences consistent with species trophic level differences, and minor system, sex, and year-to-year differences, enabling use of SIA to trace these salmon-derived nutrients. Periphyton naturally colonized, incubated, and collected using Wildco Periphtyon Samplers in and near spawning sites was 34S- and 15N-enriched, as expected, and at all freshwater sites was 13C-depleted. At nonspawning and coho-only sites, periphyton 34S and 15N was generally low. However, 34S was low enough at some sites to be suggestive of sulfate reduction, complicating the use of S isotopes. Juvenile salmon SIA ranged in values consistent with using production derived from re-mineralization as well as direct utilization, but only by a minority fraction of coho salmon. Dependency on salmon-derived nutrients ranged from relatively high to relatively low, suggesting a space-limited system. No one particular isotope was found to be superior for determining the relative importance of salmon-derived nutrients.

  10. Mantle metasomatism above subduction zones: Trace-element and radiogenic isotope characteristics of peridotite xenoliths from Batan Island (Philippines)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal, Ph.; Dupuy, C.; Maury, R.

    1989-12-01

    Trace-element abundances and radiogenic isotope ratios have been determined for a suite of upper mantle-derived xenoliths collected from Pliocene-Quaternary andesitic lavas on Batan Island, northernmost Philippines. The xenoliths exhibit mineralogical changes and large ion lithophile enrichment indicative of metasomatism involving H{sub 2}O-rich fluids. Strontium and neodymium isotopes in the xenoliths are not totally consistent with those in host lavas, but a common signature is indicated by the fact that all samples plot below the mantle array. The flux of fluids in the mantle wedge probably occurred over a long period of time. The flux induced large but variable changes inmore » mineral and trace and isotopic compositions, and ultimately resulted in the melting of the peridotites and production of island-arc lavas.« less

  11. Cadmium isotope fractionation during adsorption to Mn-oxyhydroxide

    NASA Astrophysics Data System (ADS)

    Wasylenki, L. E.; Swihart, J. W.

    2013-12-01

    The heavy metal cadmium is of interest both as a toxic contaminant in groundwater and as a critical nutrient for some marine diatoms [1], yet little is known about the biogeochemistry of this element. Horner et al. [2] suggested that Cd stable isotopes could potentially enable reconstruction of biological use of Cd in the marine realm: since cultured diatoms fractionate Cd isotopes [3], and ferromanganese crusts appear to incorporate a faithful record of deepwater Cd isotopes [2], depth profiles in such crusts may yield information about the extent of Cd assimilation of isotopically light Cd by diatoms over time. Although no work has yet been published regarding the use of stable isotopes to track reactive transport of Cd in contaminated aquifers, others have recently demonstrated the potential of isotopes to track reactions affecting the mobility of other toxic metals (e.g., [4]). With both of these potential applications in mind, we conducted two sets of experiments, at low and high ionic strength, in which Cd partially adsorbed to potassium birnessite. Our goals are to quantify the fractionations and to constrain the mechanisms governing Cd isotope behavior during adsorption to an environmentally abundant scavenger of Cd. Suspensions of synthetic birnessite were doped with various amounts of dissolved Cd2+ at pH ~8.3. Following reaction, the dissolved and adsorbed pools of Cd were separated by filtration, purified by anion exchange chromatography, and analyzed by multicollector ICP-MS using a double-spike routine. In all cases, lighter isotopes preferentially adsorbed to the birnessite particles. At low ionic strength (I<0.01m), we observed a small fractionation of 0.15‰×0.05 (Δ114/112) that was constant as a function of the fraction of Cd adsorbed. This indicates a small equilibrium isotope effect, likely driven by a subtle shift in coordination geometry for Cd during adsorption. In a groundwater system with continuous flow of dissolved Cd, this

  12. Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.

    2011-01-01

    Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.

  13. Testing the Late-Veneer hypothesis with selenium isotopes

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Koenig, S.; Bennett, N.; Kurzawa, T.; Aierken, E.; Shahar, A.; Schoenberg, R.

    2016-12-01

    Selenium (Se) is a siderophile element displaying an excess abundance in Earth's mantle compared to experimental predictions [1], which may be attributed to the Late-Veneer. As Se is also volatile, testing the late-veneer addition of Se can constrain the origin of other volatile elements on Earth. Here we combine high-precision Se isotope measurements of metal-silicate partitioning experiments and chondrites to assess whether planetary differentiation could leave a measurable Se isotopic signature on planetary mantles. We performed Se isotopic measurements of 5 metal-silicate partitioning experiments and 20 chondrites of all major classes. Experiments were conducted at 1 GPa and 1650 C for 1 to 4 hours using the piston-cylinder apparatus at Carnegie's Geophysical Laboratory. After wet chemistry, data were obtained on a ThermoFisher Scientific™ NeptunePlus MC-ICP-MS at the University of Tübingen with a 74Se/77Se double spike technique. δ82/76Se values are given relative to NIST SRM-3149 and the external reproducibility calculated from duplicate meteorite analyses is ≤ 0.1‰ (2 s.d.). Chondrites vary over a 0.8‰ range of δ82/76Se values. CIs and CMs show evidence for heavier 82Se/76Se ratios, likely due to mixing processes in the proto-planetary nebula. When these isotopically heavier meteorites are excluded, remaining chondrites have δ82/76Se values varying over a 0.3‰ range, within uncertainty of previous results [2]. We suggest that these chondrites may be used to estimate a δ82/76Se value of bulk planets. At the conditions of our experiments, the partition coefficients for Se log Dmetal-silicate range from 0.7±0.1 to 1.9±0.1, consistent with previous work [1]. A small but resolvable Se isotopic fractionation was observed: 82Se/76Se ratios were enriched by ≤ 0.5‰ in the silicates relative to the metals. Thus, given current uncertainties for Se isotopic measurements, marginal differences between planetary mantles and chondrites may be resolved

  14. Probing soil nitrogen transformations using triple nitrate isotopes

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Elliott, E. M.

    2017-12-01

    Models of soil nitrogen (N) transformations are essential for understanding biogeochemical N cycling and its environmental implications. While natural abundance stable N isotopes (δ15N) of the soil N pool are widely used to infer soil N dynamics, its quantitative use is limited by uncertainties in the relevant isotopic fractionations. Oxygen-17 isotope anomalies in nitrate (Δ17O-NO3-), originating from mass-independent fractionation during photochemical NO3- formation, are a conservative tracer of atmospherically deposited NO3- in terrestrial ecosystems. Therefore, measurement of soil Δ17O-NO3- may provide additional tracing power for δ15N-based process models, in that Δ17O-NO3- is not altered by mass-dependent isotopic fractionations. In this study, we conducted both laboratory and field experiments to assess the effectiveness of using triple NO3- isotopes (Δ17O, δ15N, δ18O) for modeling soil N transformations. Surface soil (0-7 cm) was sampled from an urban riparian area and temperate, upland forests in rural and urban settings for batch incubations and amendments with Δ17O-enriched NO3-. After amendment, the soils were extracted on six occasions over a 4-day period to measure concentrations and isotopic composition of NO3- and ammonium. A Δ17O-based numerical model was developed and used to derive gross N fluxes. In situ field soil and lysimeter sampling was also conducted at the rural forest site on five consecutive days immediately following snowmelt input of Δ17O-enriched NO3-. The results show that the temporal dynamics of Δ17O-NO3- can provide quantitative information on soil N turnover. In the laboratory incubations, modeled gross nitrification and denitrification rates were significantly higher for the urban forest and riparian soils, consistent with results from inhibitor-based potential measurements. Non-zero Δ17O-NO3- values, up to 4.3‰, were measured in the rural forest soil following the snowmelt event. A numerical model of the

  15. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean.

    PubMed

    Prasanna, K; Ghosh, Prosenjit; Bhattacharya, S K; Mohan, K; Anilkumar, N

    2016-02-23

    Oxygen and carbon isotope ratios in planktonic foraminifera Globigerina bulloides collected from tow samples along a transect from the equatorial Indian ocean to the Southern Ocean (45°E and 80°E and 10°N to 53°S) were analysed and compared with the equilibrium δ(18)O and δ(13)C values of calcite calculated using the temperature and isotopic composition of the water column. The results agree within ~0.25‰ for the region between 10°N and 40°S and 75-200 m water depth which is considered to be the habitat of Globigerina bulloides. Further south (from 40°S to 55°S), however, the measured δ(18)O and δ(13)C values are higher than the expected values by ~2‰ and ~1‰ respectively. These enrichments can be attributed to either a 'vital effect' or a higher calcification rate. An interesting pattern of increase in the δ(13)C(DIC) value of the surface water with latitude is observed between 35°S and~ 60°S, with a peak at~ 42°S. This can be caused by increased organic matter production and associated removal. A simple model accounting for the increase in the δ(13)C(DIC) values is proposed which fits well with the observed chlorophyll abundance as a function of latitude.

  16. VARIATIONS IN ISOTOPIC ABUNDANCES OF STRONTIUM, CALCIUM, AND ARGON AND RELATED TOPICS. Eleventh Annual Progress Report for 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-12-01

    Separate abstracts were prepared for twenty-eight of the thirty-three papers. The other papers deal with whole-rock Rb- Sr ages of Ontario norite and micropegmatite and the Southern Rhodesia Great Dyke, Sr isotopes in vein type mineral deposits, whole-rock Rb-- Sr studies of volcanics, and accuracy in Sr / sup 87//Sr/sup 86/ measurements. (D.C.W.)

  17. Textural and stable isotope studies of the Big Mike cupriferous volcanogenic massive sulfide deposit, Pershing County, Nevada.

    USGS Publications Warehouse

    Rye, R.O.; Roberts, R.J.; Snyder, W.S.; Lahusen, G.L.; Motica, J.E.

    1984-01-01

    The Big Mike deposit is a massive sulphide lens entirely within a carbonaceous argillite of the Palaeozoic Havallah pelagic sequence. The massive ore contains two generations of pyrite, a fine- and a coarse-grained variety; framboidal pyrite occurs in the surrounding carbonaceous argillite. Coarse grained pyrite is largely recrystallized fine-grained pyrite and is proportionately more abundant toward the margins of the lens. Chalcopyrite and sphalerite replace fine-grained pyrite and vein-fragmented coarse-grained pyrite. Quartz fills openings in the sulphide fabric. S-isotope data are related to sulphide mineralogy and textures. Isotopically light S in the early fine-grained pyrite was probably derived from framboidal biogenic pyrite. The S-isotope values of the later coarse-grained pyrite and chalcopyrite probably reflect a combination of reduced sea-water sulphate and igneous S. Combined S- and O-isotope and textural data accord with precipitation of fine-grained pyrite from a hydrothermal plume like those at the East Pacific Rise spreading centre at lat. 21oN. The primary material was recystallized and mineralized by later fluids of distinctly different S-isotope composition. -G.J.N.

  18. Aerosol carbon isotope composition over Baltic Sea

    NASA Astrophysics Data System (ADS)

    Garbaras, Andrius; Pabedinskas, Algirdas; Masalaite, Agne; Petelski, Tomasz; Gorokhova, Elena; Sapolaite, Justina; Ezerinskis, Zilvinas; Remeikis, Vidmantas

    2017-04-01

    Particulate carbonaceous matter is significant contributor to ambient particulate matter originating from intervening sources which contribution is difficult to quantify due to source diversity, chemical complexity and processes during atmospheric transport. Carbon isotope analysis can be extremely useful in source apportionment of organic matter due to the unique isotopic signatures associated with anthropocentric (fossil fuel), continental (terrestrial plants) and marine sources, and is particularly effective when these sources are mixed (Ceburnis et al., 2011;Ceburnis et al., 2016). We will present the isotope ratio measurement results of aerosol collected during the cruise in the Baltic Sea. Sampling campaign of PM10 and size segregated aerosol particles was performed on the R/V "Oceania" in October 2015. Air mass back trajectories were prevailing both from the continental and marine areas during the sampling period. The total carbon concentration varied from 1 µg/m3 to 8 µg/m3. Two end members (δ13C = -25‰ and δ13C = -28 ‰ ) were established from the total stable carbon isotope analysis in PM10 fraction. δ13C analysis in size segregated aerosol particles revealed δ13C values being highest in the 1 - 2.5 µm range (δ13C = -24.9 ‰ ) during continental transport, while lowest TC δ13C values (δ13C ≈ -27 ‰ ) were detected in the size range D50 <1 µm during stormy weather when air mass trajectory prevailed from the western direction. These measurements revealed that simplified isotope mixing model can not be applied for the aerosol source apportionment (Masalaite et al., 2015) in the perturbed marine environment. Additionally, concentration of bacteria and fungi were measured in size segregated and PM10 aerosol fraction. We were able to relate aerosol source δ13C end members with the abundance of bacteria and fungi over Baltic Sea combining air mass trajectories, stable isotope data, fungi and bacteria concentrations. Ceburnis, D., Garbaras, A

  19. Quantification of Labile Soil Mercury by Stable Isotope Dilution Techniques

    NASA Astrophysics Data System (ADS)

    Shetaya, Waleed; Huang, Jen-How; Osterwalder, Stefan; Alewell, Christine

    2016-04-01

    Mercury (Hg) is a toxic element that can cause severe health problems to humans. Mercury is emitted to the atmosphere from both natural and anthropogenic sources and can be transported over long distances before it is deposited to aquatic and terrestrial environments. Aside from accumulation in soil solid phases, Hg deposited in soils may migrate to surface- and ground-water or enter the food chain, depending on its lability. There are many operationally-defined extraction methods proposed to quantify soil labile metals. However, these methods are by definition prone to inaccuracies such as non-selectivity, underestimation or overestimation of the labile metal pool. The isotopic dilution technique (ID) is currently the most promising method for discrimination between labile and non-labile metal fractions in soil with a minimum disturbance to soil-solid phases. ID assesses the reactive metal pool in soil by defining the fraction of metal both in solid and solution phases that is isotopically-exchangeable known as the 'E-value'. The 'E-value' represents the metal fraction in a dynamic equilibrium with the solution phase and is potentially accessible to plants. This is carried out by addition of an enriched metal isotope to soil suspensions and quantifying the fraction of metal that is able to freely exchange with the added isotope by measuring the equilibrium isotopic ratio by ICP-MS. E-value (mg kg-1) is then calculated as follows: E-Value = (Msoil/ W) (CspikeVspike/ Mspike) (Iso1IAspike -Iso2IAspikeRss / Iso2IAsoil Rss - Iso1IAsoil) where M is the average atomic mass of the metal in the soil or the spike, W is the mass of soil (kg), Cspike is the concentration of the metal in the spike (mg L-1), Vspike is the volume of spike (L), IA is isotopic abundance, and Rss is the equilibrium ratio of isotopic abundances (Iso1:Iso2). Isotopic dilution has been successfully applied to determine E-values for several elements. However, to our knowledge, this method has not yet

  20. Water vapor isotopes measurements at Mauna Loa, Hawaii: Comparison of laser spectroscopy and remote sensing with traditional methods, and the need for ongoing monitoring

    NASA Astrophysics Data System (ADS)

    Noone, D.; Galewsky, J.; Sharp, Z.; Worden, J.

    2008-12-01

    The isotopic composition of water vapor (2H/1H and 18O/16 ratios) provides unique information on the transport pathways that link the water sources to regional sinks, and thus proves useful in understanding the large scale humidity budgets. Recent advances in measurement technology allow the monitoring of water vapor isotope composition in ways which has can revolutionize investigations of atmospheric hydrology. Traditional measurement of isotopic composition requires trapping of samples with either large volume vacuum flasks or by trapping liquid samples with cryogens for later analyses using mass spectrometry, and are laborious and seldom span more than just short dedicated observational periods. On the other hand, laser absorption spectroscopy can provide almost continuous and autonomous in situ measurements of isotope abundances with precision almost that of traditional mass spectrometry, and observations from spacecraft can make almost daily maps of the global isotope distributions. In October of 2008 three laser based spectrometers were deployed at the Mauna Loa Laboratory in Hawaii to make continuous measurement of the 2H and 18O abundance of free tropospheric water vapor. These results are compared with traditional measurements and with measurements from two satellite platforms. While providing field validation of the new methodologies, the data show variability which captures the transport processes in the region. The data are used to characterize the role of large scale mixing of dry air, the influence of the boundary layer and the importance of moist convection in controlling the low humidity of subtropical air near Hawaii. Although the record is short, it demonstrates the usefulness of using robust isotope measurements to understand the budgets of the most important greenhouse gas. This work motivates establishing a continuous record of isotopes measurement at baseline sites, like Mauna Loa, such that the changes in water cycle can be understood and

  1. Water vapor isotopes measurements at Mauna Loa, Hawaii: Comparison of laser spectroscopy and remote sensing with traditional methods, and the need for ongoing monitoring

    NASA Astrophysics Data System (ADS)

    Galewsky, J.; Noone, D.; Sharp, Z.; Worden, J.

    2009-04-01

    The isotopic composition of water vapor (2H/1H and 18O/16 ratios) provides unique information on the transport pathways that link water sources to regional sinks, and thus proves useful in understanding large scale atmospheric humidity budgets. Recent advances in measurement technology allow the monitoring of water vapor isotope composition in ways which has can revolutionize investigations of atmospheric hydrology. Traditional measurement of isotopic composition requires trapping of samples with either large volume vacuum flasks or by trapping liquid samples with cryogens for later analyses using mass spectrometry, and are laborious and seldom span more than just short dedicated observational periods. On the other hand, laser absorption spectroscopy can provide almost continuous and autonomous in situ measurements of isotope abundances with precision almost that of traditional mass spectrometry, and observations from spacecraft can make almost daily maps of the global isotope distributions. In October of 2008 three laser based spectrometers were deployed at the Mauna Loa Laboratory in Hawaii to make continuous measurement of the 2H and 18O abundance of free tropospheric water vapor. These results are compared with traditional measurements and with measurements from two satellite platforms. While providing field validation of the new methodologies, the data show variability which captures the transport processes in the region. The data are used to characterize the role of large scale mixing of dry air, the influence of the boundary layer and the importance of moist convection in controlling the low humidity of subtropical air near Hawaii. Although the record is short, it demonstrates the usefulness of using robust isotope measurements to understand the budgets of the most important greenhouse gas. This work motivates establishing a continuous record of isotopes measurement at baseline sites, like Mauna Loa, such that the changes in water cycle can be understood and

  2. Noble gas isotopic composition, cosmic ray exposure history, and terrestrial age of the meteorite Allan Hills A81005 from the moon

    NASA Astrophysics Data System (ADS)

    Eugster, O.; Geiss, J.; Kraehenbuehl, U.; Niedermann, S.

    1986-06-01

    A comprehensive study of the elemental and isotopic abundances of the noble gases He, Ne, Ar, Kr, and Xe in the meteorite Allan Hills A81005 from the moon is presented. In addition to a bulk sample, five grain-size fractions were analyzed. Chemical abundances relevant to the interpretation of the cosmic-ray-produced noble gases were determined and indicate that the grain size fractions are chemically uniform. Except for the fact that the trapped noble gas concentrations appear to be grain size correlated, the isotopic and elemental pattern of the trapped solar wind noble gases in A81005 are very similar to those observed in lunar soils and breccias. The A81005 material resided during (580 + or - 180) Myr in the nuclear active zone of the lunar regolith at an average shielding depth of about 40 g/sq cm. From literature data, it is concluded that the moon-earth transit time lasted less than a few million years. Finally, A81005 was captured by the earth more than 140,000 years ago, as indicated by the abundance of cosmic-ray-produced Kr-81.

  3. Observations of the Li, Be, and B Isotopes and Constraints on Cosmic-ray Propagation

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Moskalenko, I. V.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink, P. L.; Israel, M. H.; Leske, R. A.; hide

    2007-01-01

    The abundance of Li, Be, and B isotopes in galactic cosmic rays (GCR) between E=50-200 MeV/nucleon has been observed by the Cosmic Ray Isotope Spectrometer (CRIS) on NASA's ACE mission since 1997 with high statistical accuracy. Precise observations of Li, Be, B can be used to constrain GCR propagation models. We find that a diffusive reacceleration model with parameters that best match CRIS results (e.g. B/C, Li/C, etc) are also consistent with other GCR observations. A approx. 15-20% overproduction of Li and Be in the model predictions is attributed to uncertainties in the production cross-section data. The latter becomes a significant limitation to the study of rare GCR species that are generated predominantly via spallation.

  4. Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde

    NASA Technical Reports Server (NTRS)

    Wirstrom, E. S.; Charnley, S. B.; Geppert, W. D.; Persson, C. M.

    2012-01-01

    Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes

  5. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here wemore » present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.« less

  6. Ferropericlase inclusions in ultradeep diamonds from Sao Luiz (Brazil): high Li abundances and diverse Li-isotope and trace element compositions suggest an origin from a subduction mélange

    NASA Astrophysics Data System (ADS)

    Seitz, Hans-Michael; Brey, Gerhard P.; Harris, Jeffrey W.; Durali-Müller, Soodabeh; Ludwig, Thomas; Höfer, Heidi E.

    2018-05-01

    The most remarkable feature of the inclusion suite in ultradeep alluvial and kimberlitic diamonds from Sao Luiz (Juina area in Brazil) is the enormous range in Mg# [100xMg/(Mg + Fe)] of the ferropericlases (fper). The Mg-richer ferropericlases are from the boundary to the lower mantle or from the lower mantle itself when they coexist with ringwoodite or Mg- perovskite (bridgmanite). This, however, is not an explanation for the more Fe-rich members and a lowermost mantle or a "D" layer origin has been proposed for them. Such a suggested ultra-deep origin separates the Fe-rich fper-bearing diamonds from the rest of the Sao Luiz ultradeep diamond inclusion suite, which also contains Ca-rich phases. These are now thought to have an origin in the uppermost lower mantle and in the transition zone and to belong either to a peridotitic or mafic (subducted oceanic crust) protolith lithology. We analysed a new set of more Fe-rich ferropericlase inclusions from 10 Sao Luiz ultradeep alluvial diamonds for their Li isotope composition by solution MC-ICP-MS (multi collector inductively coupled plasma mass spectrometry), their major and minor elements by EPMA (electron probe micro-analyser) and their Li-contents by SIMS (secondary ion mass spectrometry), with the aim to understand the origin of the ferropericlase protoliths. Our new data confirm the wide range of ferropericlase Mg# that were reported before and augment the known lack of correlation between major and minor elements. Four pooled ferropericlase inclusions from four diamonds provided sufficient material to determine for the first time their Li isotope composition, which ranges from δ7Li + 9.6 ‰ to -3.9 ‰. This wide Li isotopic range encompasses that of serpentinized ocean floor peridotites including rodingites and ophicarbonates, fresh and altered MORB (mid ocean ridge basalt), seafloor sediments and of eclogites. This large range in Li isotopic composition, up to 5 times higher than `primitive upper mantle' Li-abundances

  7. Constraining late stage melt-peridotite interaction in the lithospheric mantle of southern Ethiopia: evidence from lithium elemental and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Alemayehu, Melesse; Zhang, Hong-Fu; Seitz, Hans-Michael

    2017-10-01

    Lithium (Li) elemental and isotopic compositions for mineral separates of coexisting olivine, orthopyroxene and clinopyroxene of mantle xenoliths from the Quaternary volcanic rocks of southern Ethiopian rift (Dillo and Megado) reveal the influence of late stage melt-peridotite interaction on the early depleted and variably metasomatized lithospheric mantle. Two types of lherzolites are reported (LREE-depleted La/Sm(N) = 0.11-0.37 × Cl and LREE-enriched, La/Sm(N) = 1.88-15.72 × Cl). The depleted lherzolites have variable range in Li concentration (olivine: 2.1-5.4 ppm; opx: 1.1-2.3 ppm; cpx: 1.0-1.8 ppm) and in Li isotopic composition (δ7Li in olivine: -9.4 to 1.5‰; in opx: -4.5 to 3.6‰; in cpx: -17.0 to 4.8‰), indicating strong disequilibrium in Li partitioning and Li isotope fractionation between samples. The enriched lherzolites have limited range in both Li abundances (olivine: 2.7-3.0 ppm; opx: 1.1-3.1 ppm; cpx: 1.1-2.3 ppm) and Li isotopic compositions (δ7Li in olivine: -1.3 to +1.3‰; in opx: -2.0 to +5.0‰; in cpx: -7.5 to +4.8‰), suggest that the earlier metasomatic event which lead to LREE enrichment could also homogenize the Li contents and its isotopes. The enriched harzburgite and clinopyroxenite minerals show limited variation in Li abundances and variable Li isotopic compositions. The Li enrichments of olivine and clinopyroxene correlate neither with the incompatible trace element enrichment nor with the Sr-Nd isotopic compositions of clinopyroxene. These observations indicate that the metasomatic events which are responsible for the LREE enrichment and for the Li addition are distinct, whereby the LREE-enrichment pre-dates the influx of Li. The presence of large Li isotopic disequilibria within and between minerals of depleted and enriched peridotites suggest that the lithospheric mantle beneath the southern Ethiopian rift has experienced recent melt-peridotite interaction. Thus, the Li data set reported in this study offer new

  8. Isotopes as tracers of the sources of the lunar material and processes of lunar origin.

    PubMed

    Pahlevan, Kaveh

    2014-09-13

    Ever since the Apollo programme, isotopic abundances have been used as tracers to study lunar formation, in particular to study the sources of the lunar material. In the past decade, increasingly precise isotopic data have been reported that give strong indications that the Moon and the Earth's mantle have a common heritage. To reconcile these observations with the origin of the Moon via the collision of two distinct planetary bodies, it has been proposed (i) that the Earth-Moon system underwent convective mixing into a single isotopic reservoir during the approximately 10(3) year molten disc epoch after the giant impact but before lunar accretion, or (ii) that a high angular momentum impact injected a silicate disc into orbit sourced directly from the mantle of the proto-Earth and the impacting planet in the right proportions to match the isotopic observations. Recently, it has also become recognized that liquid-vapour fractionation in the energetic aftermath of the giant impact is capable of generating measurable mass-dependent isotopic offsets between the silicate Earth and Moon, rendering isotopic measurements sensitive not only to the sources of the lunar material, but also to the processes accompanying lunar origin. Here, we review the isotopic evidence that the silicate-Earth-Moon system represents a single planetary reservoir. We then discuss the development of new isotopic tracers sensitive to processes in the melt-vapour lunar disc and how theoretical calculations of their behaviour and sample observations can constrain scenarios of post-impact evolution in the earliest history of the Earth-Moon system. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Evaluating microbial carbon sources in Athabasca oil sands tailings ponds using natural abundance stable and radiocarbon isotopes

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Pakdel, H.

    2013-12-01

    Natural abundance stable (δ13C) and radiocarbon (Δ14C) isotopes of phospholipid fatty acids (PLFAs) were used to evaluate the carbon sources utilized by the active microbial populations in surface sediments from Athabasca oil sands tailings ponds. The absence of algal-specific PLFAs at three of the four sites investigated, in conjunction with δ13C signatures for PLFAs that were generally within ~3‰ of that reported for oil sands bitumen (~ -30‰), indicated that the microbial communities growing on petroleum constituents were dominated by aerobic heterotrophs. The Δ14C values of PLFAs ranged from -906 to -586‰ and pointed to a significant uptake of fossil carbon (up to ~90% of microbial carbon derived from petroleum), particularly in PLFAs (e.g., cy17:0 and cy19:0) often associated with petroleum hydrocarbon degrading bacteria. The comparatively higher levels of 14C in other, less specific PLFAs (e.g., 16:0) indicated the preferential uptake of younger organic matter by the general microbial population (~50-80% of microbial carbon derived from petroleum). Since the main carbon pools in tailings sediment were essentially 'radiocarbon dead' (i.e., no detectable 14C), the principal source for this modern carbon is considered to be the Athabasca River, which provides the bulk of the water used in the bitumen extraction process. The preferential uptake of the minor amount of young and presumably more biodegradable material present in systems otherwise dominated by recalcitrant petroleum constituents has important implications for remediation strategies. On the one hand, it implies that mining-related organic contaminants could persist in the environment long after tailings pond reclamation has begun. Alternatively, it may be that the young, labile organic matter provided by the Athabasca River plays an important role in stimulating or supporting the microbial utilization of petroleum carbon in oil sands tailings ponds via co-metabolism or priming processes

  10. Abundances of carbon-enhanced metal-poor stars as constraints on their formation

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Nordström, B.; Hansen, T. T.; Kennedy, C. R.; Placco, V. M.; Beers, T. C.; Andersen, J.; Cescutti, G.; Chiappini, C.

    2016-04-01

    Context. An increasing fraction of carbon-enhanced metal-poor (CEMP) stars is found as their iron abundance, [Fe/H], decreases below [Fe/H] =-2.0. The CEMP-s stars have the highest absolute carbon abundances, [C/H], and are thought to owe their enrichment in carbon and the slow neutron-capture (s-process) elements to mass transfer from a former asymptotic giant branch (AGB) binary companion. The most Fe-poor CEMP stars are normally single, exhibit somewhat lower [C/H] than CEMP-s stars, but show no s-process element enhancement (CEMP-no stars). Abundance determinations of CNO offer clues to their formation sites. Aims: Our aim is to use the medium-resolution spectrograph X-Shooter/VLT to determine stellar parameters and abundances for C, N, Sr, and Ba in several classes of CEMP stars in order to further classify and constrain the astrophysical formation sites of these stars. Methods: Atmospheric parameters for our programme stars were estimated from a combination of V-K photometry, model isochrone fits, and estimates from a modified version of the SDSS/SEGUE spectroscopic pipeline. We then used X-Shooter spectra in conjunction with the 1D local thermodynamic equilibrium spectrum synthesis code MOOG, 1D ATLAS9 atmosphere models to derive stellar abundances, and, where possible, isotopic 12C/13C ratios. Results: Abundances (or limits) of C, N, Sr, and Ba are derived for a sample of 27 faint metal-poor stars for which the X-Shooter spectra have sufficient signal-to-noise ratios (S/N). These moderate resolution, low S/N (~10-40) spectra prove sufficient to perform limited chemical tagging and enable assignment of these stars into the CEMP subclasses (CEMP-s and CEMP-no). According to the derived abundances, 17 of our sample stars are CEMP-s and 3 are CEMP-no, while the remaining 7 are carbon-normal. For four CEMP stars, the subclassification remains uncertain, and two of them may be pulsating AGB stars. Conclusions: The derived stellar abundances trace the formation

  11. Progress in the analysis and interpretation of N2O isotopes: Potential and future challenges

    NASA Astrophysics Data System (ADS)

    Mohn, Joachim; Tuzson, Béla; Zellweger, Christoph; Harris, Eliza; Ibraim, Erkan; Yu, Longfei; Emmenegger, Lukas

    2017-04-01

    In recent years, research on nitrous oxide (N2O) stable isotopes has significantly advanced, addressing an increasing number of research questions in biogeochemical and atmospheric sciences [1]. An important milestone was the development of quantum cascade laser based spectroscopic devices [2], which are inherently specific for structural isomers (15N14N16O vs. 14N15N16O) and capable to collect real-time data with high temporal resolution, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. In combination with automated preconcentration, optical isotope ratio spectroscopy (OIRS) has been applied to disentangle source processes in suburban, rural and pristine environments [e.g. 3, 4]. Within the European Metrology Research Programme (EMRP) ENV52 project "Metrology for high-impact greenhouse gases (HIGHGAS)", the quality of N2O stable isotope analysis by OIRS, the comparability between laboratories, and the traceability to the international isotope ratio scales have been addressed. An inter-laboratory comparison between eleven IRMS and OIRS laboratories, organised within HIGHGAS, indicated limited comparability for 15N site preference, i.e. the difference between 15N abundance in central (N*NO) and end (*NNO) position [5]. In addition, the accuracy of the NH4NO3 decomposition reaction, which provides the link between 15N site preference and the international 15N/14N scale, was found to be limited by non-quantitative NH4NO3 decomposition in combination with substantially different isotope enrichment factors for both nitrogen atoms [6]. Results of the HIGHGAS project indicate that the following research tasks have to be completed to foster research on N2O isotopes: 1) develop improved techniques to link the 15N and 18O abundance and the 15N site preference in N2O to the international stable isotope ratio scales; 2) provide N2O reference materials, pure and diluted in an air matrix, to improve inter-laboratory compatibility. These tasks

  12. Mechanisms controlling the silicon isotopic compositions of river waters

    NASA Astrophysics Data System (ADS)

    Georg, R. B.; Reynolds, B. C.; Frank, M.; Halliday, A. N.

    2006-09-01

    It has been proposed that silicon (Si) isotopes are fractionated during weathering and biological activity leading to heavy dissolved riverine compositions. In this study, the first seasonal variations of stable isotope compositions of dissolved riverine Si are reported and compared with concomitant changes in water chemistry. Four different rivers in Switzerland were sampled between March 2004 and July 2005. The unique high-resolution multi-collector ICP-MS Nu1700, has been used to provide simultaneous interference-free measurements of 28Si, 29Si and 30Si abundances with an average limiting precision of ± 0.04‰ on δ 30Si. This precision facilitates the clarification of small temporal variations in isotope composition. The average of all the data for the 40 samples is δ 30Si = + 0.84 ± 0.19‰ (± 1σ SD). Despite significant differences in catchment lithologies, biomass, climate, total dissolved solids and weathering fluxes the averaged isotopic composition of dissolved Si in each river is strikingly similar with means of + 0.70 ± 0.12‰ for the Birs,+ 0.95 ± 0.22‰ for the Saane,+ 0.93 ± 0.12‰ for the Ticino and + 0.79 ± 0.19‰ for the Verzasca. However, the δ 30Si undergoes seasonal variations of up to 0.6‰. Comparisons between δ 30Si and physico-chemical parameters, such as the concentration of dissolved Si and other cations, the discharge of the rivers, and the resulting weathering fluxes, permits an understanding of the processes that control the Si budget and the fate of dissolved Si within these rivers. The main mechanism controlling the Si isotope composition of the mountainous Verzasca River appears to be a two component mixing between the seepage of soil/ground waters, with heavier Si produced by clay formation and superficial runoff associated with lighter Si during high discharge events. A biologically-mediated fractionation can be excluded in this particular river system. The other rivers display increasing complexity with increases

  13. The 12C/13C Isotopic Ratio in Planetary Nebulae as Deduced from IUE Data

    NASA Astrophysics Data System (ADS)

    Miskey, C. L.; Feibelman, W. A.; Bruhweiler, F. C.

    2000-05-01

    The relative abundances of C, N, and O and the isotopic ratio of 12C/13C represent tracers of nucleosynthesis in intermediate stars with main-sequence masses between 0.6 and 8.0 solar masses in our Galaxy. Determining these abundances and the isotopic 12C/13C ratio in planetary nebulae (PNe) represent perhaps the best means to discern exactly how the ISM is enriched by CNO stellar nucleosynthesis. Walsh et al. (1996) and Clegg et al. (1997), using the Hubble Space Telescope, have derived the isotopic 12C/13C abundance ratio in the galactic carbon-rich PN, NGC 3918, and placed marginal constraints on it for the Magellanic PNe, N2 (SMC) and N122 (LMC). This was done using the well-known 12C 3P-1S (J=1-0 and J=2-0) transitions of C+2 at 1906.68 Angstroms and 1908.77 Angstroms and a J=0-0 transition at 1909.6 Angstroms, which is strictly forbidden in 12C. The finite nuclear spin of 13C (I=1/2) permits a corresponding F=1/2-1/2 electric dipole transition not seen in 12C. Since the 1909.6 Angstroms line is well separated from the other two 12C transitions, it provides an important means of determining 12C/13C in planetary nebulae. We have just completed a search of archival International Ultraviolet Explorer (IUE) high-dispersion spectra of approximately three dozen PNe, and derived 12C/13C ratios of 39 and 23 for the galactic PNe, NGC 2440 and NGC 6302, respectively. These are values much lower than the solar value of 89. In the other objects, the limited S/N of the IUE data indicate 12C/13C ratio upper limits much higher than 50. The implications of these results and their pertinence to stellar evolution are discussed.

  14. Sulphur isotopic compositions of deep-sea hydrothermal vent animals

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1983-01-01

    The S-34/S-32 ratios of tissues from vestimentiferan worms, brachyuran crabs, and giant clams living around deep hydrothermal vents are reported. Clean tissues were dried, ground, suspended in 0.1 M LiCl, shaken twice at 37 C to remove seawater sulfates, dried at 60 C, combusted in O2 in a Parr bomb. Sulfur was recovered as BaSO4, and the isotopic abundances in SO2 generated by thermal decomposition of 5-30-mg samples were determined using an isotope-ratio mass spectrometer. The results are expressed as delta S-34 and compared with values measured in seawater sulfates and in normal marine fauna. The values ranged from -4.7 to 4.7 per thousand, comparable to vent sulfide minerals (1.3-4.1 per thousand) and distinct from seawater sulfates (20.1 per thousand) and normal marine fauna (about 13-20 per thousand). These results indicate that vent sulfur rather than seawater sulfur is utilized by these animals, a process probably mediated by chemoautotrophic bacteria which can use inorganic sulfur compounds as energy sources.

  15. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  16. Influence of water on clumped-isotope bond reordering kinetics in calcite

    NASA Astrophysics Data System (ADS)

    Brenner, Dana C.; Passey, Benjamin H.; Stolper, Daniel A.

    2018-03-01

    Oxygen self-diffusion in calcite and many other minerals is considerably faster under wet conditions relative to dry conditions. Here we investigate whether this "water effect" also holds true for solid-state isotope exchange reactions that alter the abundance of carbonate groups with multiple rare isotopes ('clumped' isotope groups) via the process of solid-state bond reordering. We present clumped-isotope reordering rates for optical calcite heated under wet, high-pressure (100 MPa) conditions. We observe only modest increases in reordering rates under such conditions compared with rates for the same material reacted in dry CO2 under low-pressure conditions. Activation energies under wet, high-pressure conditions are indistinguishable from those for dry, low-pressure conditions, while rate constants are resolvably higher (up to ∼3 times) for wet, high-pressure relative to dry, low-pressure conditions in most of our interpretations of experimental results. This contrasts with the water effect for oxygen self-diffusion in calcite, which is associated with lower activation energies, and diffusion coefficients that are ≥103 times higher compared with dry (pure CO2) conditions in the temperature range of this study (385-450 °C). The water effect for clumped-isotopes leads to calculated apparent equilibrium temperatures ("blocking temperatures") for typical geological cooling rates that are only a few degrees higher than those for dry conditions, while O self-diffusion blocking temperatures in calcite grains are ∼150-200 °C lower in wet conditions compared with dry conditions. Since clumped-isotope reordering is a distributed process that occurs throughout the mineral volume, our clumped-isotope results support the suggestion of Labotka et al. (2011) that the water effect in calcite does not involve major changes in bulk (volume) diffusivity, but rather is primarily a surface phenomenon that facilitates oxygen exchange between the calcite surface and external

  17. When isotope signals in tree rings contradict our concepts and interpretations

    NASA Astrophysics Data System (ADS)

    Siegwolf, R. T. W.; Sarris, D.; Saurer, M.; Sidorova, O. V.

    2012-04-01

    The use of stable C and O isotopes in tree rings for retrospective climatic and environmental analyses and reconstructions is well established. The 13C/12C ratio in wood reflects largely the isotopic signal of the leaves, which is an expression of the balance between the CO2 supply (stomatal conductance) and the Carbon sink strength (photosynthetic rate or demand function). When the stomatal conductance is reduced (usually under drought conditions) the leaf intercellular CO2 concentration (ci) is reduced relative to the ambient carbon dioxide concentration. Thus the conclusion was established the 13C/12C isotope ratio in the leaf is an indicator for water availability or air humidity. Under dry conditions the 13C/12C isotope ratio is higher than for conditions when soil water is abundant and the air humidity is high. The oxygen isotope ratio is usually considered as a proxy for temperature, since the condensation temperature of the precipitation water determines the 18O/16O ratio, i.e. the warmer the condensation temperature of the precipitation water the higher the 18O/16O ratio. When plants absorb this water the signal is transferred via photosynthesis to the wood, as the source water from the soil is used during photosynthesis for the sugar synthesis. Transpiration via leaves either amplifies or reduces this 18O/16O signal. Thus the conclusion that the oxygen isotope ratio can serve as a paleoclimatic thermometer is plausible and justified. Besides numerous successful applications often our concepts and assumptions do not match the data. E.g. when a tree ring oxygen isotope chronology shows a decrease within the last fifty years, even though other proxies confirm a continuously increasing temperature. Or a severe drought period is not reflected in the isotope signals as expected. The same paradox can be found in air pollution studies, when trees seemingly do not respond even the heavy pollution loads. At times the explanations for such phenomena are very

  18. Experimental Assessment of Carbon Isotopes of Light Hydrocarbons under Different Redox Conditions

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Chen, X.

    2017-12-01

    Hydrocarbons can be derived from a variety of carbon sources, by different processes, and under a wide range of physicochemical conditions. Other than bacterial activities facilitating biogenic hydrocarbon formation at low temperatures, decomposition of complex organic matter in sedimentary rocks at elevated temperatures produce thermogenic hydrocarbons, whereas abiogenic hydrocarbons are mainly generated through Fischer-Tropsch type synthesis with mineral catalysts. The carbon isotope has been used extensively to distinguish hydrocarbons of different origins and their formation conditions. For each type of hydrocarbons, however, environmental conditions may change reaction pathways and corresponding isotope fractionations. To better understand the variation of carbon isotopes caused by environmental variables, mineral constraints in particular, a series of laboratory experiments are conducted. In experiments where thermogenic hydrocarbons are formed, oil shale is the source material with different gypsum contents (0, 0.3, 0.5, and 1 wt.%). The abundance of generated light straight chain hydrocarbons decreases with increasing gypsum content, but their carbon isotopes become heavier. For example, the δ13C value of methane increases from -55.1‰ to -41.4‰ with gypsum varying between 0 and 1 wt.%. In similar experiments with the presence of MnO2, carbon isotope values of light alkanes are also higher, but with limited magnitudes (e.g., 3 to 4‰ for methane). In another experiment with dissolved H2 gas of 100 mmol/kg, light alkanes become depleted in 13C than experiments without H2. For example, there is a depletion of 2.7‰ for methane. The variation of carbon isotope values of light alkanes suggests the redox condition, constrained by mineral assemblage, fluid composition, and physical environment, play an important role in isotope fractionation. The pathway of hydrocarbon generation may be different under oxidized or reducing conditions. A set of experiments

  19. Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects

    NASA Technical Reports Server (NTRS)

    Neumann, K.; DesMarais, D. J.

    1998-01-01

    We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low sigma CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work has shown that algal mats in these streams have delta C-13 values averaging -7.01%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C(13) signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C(13) geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars.

  20. High-precision Ru isotopic measurements by multi-collector ICP-MS.

    PubMed

    Becker, Harry; Dalpe, Claude; Walker, Richard J

    2002-06-01

    Ruthenium isotopic data for a pure Aldrich ruthenium nitrate solution obtained using a Nu Plasma multi collector inductively coupled plasma-mass spectrometer (MC-ICP-MS) shows excellent agreement (better than 1 epsilon unit = 1 part in 10(4)) with data obtained by other techniques for the mass range between 96 and 101 amu. External precisions are at the 0.5-1.7 epsilon level (2sigma). Higher sensitivity for MC ICP-MS compared to negative thermal ionization mass spectrometry (N-TIMS) is offset by the uncertainties introduced by relatively large mass discrimination and instabilities in the plasma source-ion extraction region that affect the long-term reproducibility. Large mass bias correction in ICP mass spectrometry demands particular attention to be paid to the choice of normalizing isotopes. Because of its position in the mass spectrum and the large mass bias correction, obtaining precise and accurate abundance data for 104Ru by MC-ICP-MS remains difficult. Internal and external mass bias correction schemes in this mass range may show similar shortcomings if the isotope of interest does not lie within the mass range covered by the masses used for normalization. Analyses of meteorite samples show that if isobaric interferences from Mo are sufficiently large (Ru/Mo < 10(4)), uncertainties on the Mo interference correction propagate through the mass bias correction and yield inaccurate results for Ru isotopic compositions. Second-order linear corrections may be used to correct for these inaccuracies, but such results are generally less precise than N-TIMS data.

  1. A balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon and nitrogen. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen were measured at energies near 300 MeV amu, using a balloon-borne instrument at an atmospheric depth of approximately 5 g/sq cm. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approximately 0.3 amu at boron to approximately 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere the results are B-10/B=0.33 (+0.17, -0.11), C-13/C=0.06 (+0.13, -0.11), and N-15/N=0.42 (+0.19, -0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near Earth consistent with the measurements.

  2. Space-based measurements of elemental abundances and their relation to solar abundances

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Ogilvie, K. W.; Bochsler, P.; Geiss, J.

    1990-01-01

    The Ion Composition Instrument (ICI) aboard the ISEE-3/ICE spacecraft was in the solar wind continuously from August 1978 to December 1982. The results made it possible to establish long-term average solar wind abundance values for helium, oxygen, neon, silicon, and iron. The Charge-Energy-Mass instrument aboard the CCE spacecraft of the AMPTE mission has measured the abundance of these elements in the magnetosheath and has also added carbon, nitrogen, magnesium, and sulfur to the list. There is strong evidence that these magnetosheath abundances are representative of the solar wind. Other sources of solar wind abundances are Solar Energetic Particle experiments and Apollo lunar foils. When comparing the abundances from all of these sources with photospheric abundances, it is clear that helium is depleted in the solar wind while silicon and iron are enhanced. Solar wind abundances for carbon, nitrogen, oxygen, and neon correlate well with the photospheric values. The incorporation of minor ions into the solar wind appears to depend upon both the ionization times for the elements and the Coulomb drag exerted by the outflowing proton flux.

  3. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  4. Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol.

    PubMed

    Silvestre, Virginie; Mboula, Vanessa Maroga; Jouitteau, Catherine; Akoka, Serge; Robins, Richard J; Remaud, Gérald S

    2009-10-15

    Isotope profiling is a well-established technique to obtain information about the chemical history of a given compound. However, the current methodology using IRMS can only determine the global (13)C content, leading to the loss of much valuable data. The development of quantitative isotopic (13)C NMR spectrometry at natural abundance enables the measurement of the (13)C content of each carbon within a molecule, thus giving simultaneous access to a number of isotopic parameters. When it is applied to active pharmaceutical ingredients, each manufactured batch can be characterized better than by IRMS. Here, quantitative isotopic (13)C NMR is shown to be a very promising and effective tool for assessing the counterfeiting of medicines, as exemplified by an analysis of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) samples collected from pharmacies in different countries. It is proposed as an essential complement to (2)H NMR and IRMS.

  5. Oxygen isotope variations at the margin of a CAI records circulation within the solar nebula.

    PubMed

    Simon, Justin I; Hutcheon, Ian D; Simon, Steven B; Matzel, Jennifer E P; Ramon, Erick C; Weber, Peter K; Grossman, Lawrence; DePaolo, Donald J

    2011-03-04

    Micrometer-scale analyses of a calcium-, aluminum-rich inclusion (CAI) and the characteristic mineral bands mantling the CAI reveal that the outer parts of this primitive object have a large range of oxygen isotope compositions. The variations are systematic; the relative abundance of (16)O first decreases toward the CAI margin, approaching a planetary-like isotopic composition, then shifts to extremely (16)O-rich compositions through the surrounding rim. The variability implies that CAIs probably formed from several oxygen reservoirs. The observations support early and short-lived fluctuations of the environment in which CAIs formed, either because of transport of the CAIs themselves to distinct regions of the solar nebula or because of varying gas composition near the proto-Sun.

  6. Isotopic Ag–Cu–Pb record of silver circulation through 16th–18th century Spain

    PubMed Central

    Desaulty, Anne-Marie; Telouk, Philippe; Albalat, Emmanuelle; Albarède, Francis

    2011-01-01

    Estimating global fluxes of precious metals is key to understanding early monetary systems. This work adds silver (Ag) to the metals (Pb and Cu) used so far to trace the provenance of coinage through variations in isotopic abundances. Silver, copper, and lead isotopes were measured in 91 coins from the East Mediterranean Antiquity and Roman world, medieval western Europe, 16th–18th century Spain, Mexico, and the Andes and show a great potential for provenance studies. Pre-1492 European silver can be distinguished from Mexican and Andean metal. European silver dominated Spanish coinage until Philip III, but had, 80 y later after the reign of Philip V, been flushed from the monetary mass and replaced by Mexican silver. PMID:21606351

  7. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  8. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape

    PubMed Central

    2009-01-01

    Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides), taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains. PMID:19930701

  9. Mn-Cr isotopic systematics of Chainpur chondrules and bulk ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Nyquist, L.; Lindstrom, D.; Wiesmann, H.; Bansal, B.; Shih, C.-Y.; Mittlefehldt, D.; Martinez, R.; Wentworth, S.

    1994-01-01

    We report on ongoing study of the Mn-Cr systematics of individual Chainpur (LL3.4) chondrules and compare the results to those for bulk ordinary chondrites. Twenty-eight chondrules were surveyed for abundances of Mn, Cr, Na, Fe, Sc, Hf, Ir, and Zn by INAA. Twelve were chosen for SEM/EDX and high-precision Cr-isotopic studies on the basis of LL-chondrite-normalized Mn(LL), Sc(LL), (Mn/Fe)(LL), and (Sc/Fe)(LL) as well as their Mn/Cr ratios. Classification into textural types follows from SEM/EDX examination of interior surfaces.

  10. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    NASA Astrophysics Data System (ADS)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  11. Precipitation regime influence on oxygen triple-isotope distributions in Antarctic precipitation and ice cores

    NASA Astrophysics Data System (ADS)

    Miller, Martin F.

    2018-01-01

    The relative abundance of 17O in meteoric precipitation is usually reported in terms of the 17O-excess parameter. Variations of 17O-excess in Antarctic precipitation and ice cores have hitherto been attributed to normalised relative humidity changes at the moisture source region, or to the influence of a temperature-dependent supersaturation-controlled kinetic isotope effect during in-cloud ice formation below -20 °C. Neither mechanism, however, satisfactorily explains the large range of 17O-excess values reported from measurements. A different approach, based on the regression characteristics of 103 ln (1 +δ17 O) versus 103 ln (1 +δ18 O), is applied here to previously published isotopic data sets. The analysis indicates that clear-sky precipitation ('diamond dust'), which occurs widely in inland Antarctica, is characterised by an unusual relative abundance of 17O, distinct from that associated with cloud-derived, synoptic snowfall. Furthermore, this distinction appears to be largely preserved in the ice core record. The respective mass contributions to snowfall accumulation - on both temporal and spatial scales - provides the basis of a simple, first-order explanation for the observed oxygen triple-isotope ratio variations in Antarctic precipitation, surface snow and ice cores. Using this approach, it is shown that precipitation during the last major deglaciation, both in western Antarctica at the West Antarctic Ice Sheet (WAIS) Divide and at Vostok on the eastern Antarctic plateau, consisted essentially of diamond dust only, despite a large temperature differential (and thus different water vapour supersaturation conditions) at the two locations. In contrast, synoptic snowfall events dominate the accumulation record throughout the Holocene at both sites.

  12. Interaction of Solar-Flare-Accelerated Nuclei with the Solar Photosphere and the Isotopic Composition of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Vasil'ev, G. I.; Ostryakov, V. M.; Pavlov, A. K.; Chakchurina, M. E.

    2017-12-01

    The nuclear interactions of solar-flare-accelerated protons and ions with the solar atmosphere and the deeper layers of the Sun lead to the formation of several stable and radioactive isotopes. This article examines the GEANT4 depth profiles of 2H, 3H, 3He, 6Li, 7Li, 10Be, and 14C. When accelerated particles pass through a layer of 0.1-2 g cm-2, 6Li, 7Li, 10Be, and 14C isotopes form in sufficient amounts to explain their anomalous abundances in lunar soil samples. It is assumed that they escape into interplanetary space with coronal mass ejections immediately after the flare.

  13. Hercynian Pb-Zn mineralization types in the Alcudia Valley mining district (Spain) and their reflect in Pb isotopic signatures

    NASA Astrophysics Data System (ADS)

    García de Madinabeitia, S.; Santos Zalduegui, J. F.; Palero, F.; Gil Ibarguchi, J. I.; Carracedo, M.

    2003-04-01

    More than 450 ore deposits indexed within the Alcudia Valley of the Central-Iberian Zone (Spain) may be grouped by their tectonic and lithologic characteristics (1,2) as follows: type A of rare stratabound mineralizations, and types B, C, D and E represented by abundant Hercynian veins (post-Namurian). 86 new Pb isotope analyses of galenas from the four vein types reveal that types B and C have similar isotopic ratios with values of μ_2 = 10.07, ω_2 = 40.6 and a mean model age of 564 Ma. Types D and E have μ_2 and ω_2 values of 9.79 and 38.5, respectively, but differ each other with respect to their model ages, 600 Ma (type D) and 335 Ma (type E). The observed variations appear to be related to the geochemical features of the metasedimentary host-rocks of the mineralizations where two distinct types of Pb isotopic ratios have been reported (3): one with μ_2 and ω_2 comparable to those of the D and E types and another with a more radiogenic composition, close to those of the B and C types of galenas. Nägler et al. have suggested partial rehomogeneization of Pb isotopic composition within the metasediments at ca. 330 Ma, that is, prior to the mineralization events, but the extent of this process and its effects on the ore bodies isotopic features is not evident. The origin of the more abundant E type ore bodies has been related to the Hercynian granitic rocks in the area (2, and references therein). Other plutons within this sector of the Central Iberian Zone (e.g., Linares, etc.; cf. accompanying Abstract) associate ore bodies whose Pb isotopic composition is very similar to that of the E type galenas from the Alcudia Valley. The isotopic data obtained thus point to a related or common source material for the various types of granites within the area studied. Yet, the Pb isotopic composition of other mineralizations (B, C, D), likewise located in Hercynian veins, allow to consider different types of Pb-Zn ore bodies and point therefore to different sources of

  14. Silicon Isotopes doping experiments to measure quartz dissolution and precipitation rates at equilibrium and test the principle of detailed balance

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Rimstidt, J. D.; Liu, Z.; Yuan, H.

    2016-12-01

    The principle of detailed balance (PDB) has been a cornerstone for irreversible thermodynamics and chemical kinetics for a long time, and its wide application in geochemistry has mostly been implicit and without experimental testing of its applicability. Nevertheless, many extrapolations based on PDB without experimental validation have far reaching impacts on society's mega environmental enterprises. Here we report an isotope doping method that independently measures simultaneous dissolution and precipitation rates and can test this principle. The technique reacts a solution enriched in a rare isotope of an element with a solid having natural isotopic abundances (Beck et al., 1992; Gaillardet, 2008; Gruber et al., 2013). Dissolution and precipitation rates are found from the changing isotopic ratios. Our quartz experiment doped with 29Si showed that the equilibrium dissolution rate remains unchanged at all degrees of undersaturation. We recommend this approach to test the validity of using the detailed balance relationship in rate equations for other substances.

  15. Global patterns of the isotopic composition of soil and plant nitrogen

    USGS Publications Warehouse

    Amundson, Ronald; Austin, A.T.; Schuur, E.A.G.; Yoo, K.; Matzek, V.; Kendall, C.; Uebersax, A.; Brenner, D.; Baisden, W.T.

    2003-01-01

    We compiled new and published data on the natural abundance N isotope composition (??15N values) of soil and plant organic matter from around the world. Across a broad range of climate and ecosystem types, we found that soil and plant ??15N values systematically decreased with increasing mean annual precipitation (MAP) and decreasing mean annual temperature (MAT). Because most undisturbed soils are near N steady state, the observations suggest that an increasing fraction of ecosystem N losses are 15N-depleted forms (NO3, N2O, etc.) with decreasing MAP and increasing MAT. Wetter and colder ecosystems appear to be more efficient in conserving and recycling mineral N. Globally, plant ??15N values are more negative than soils, but the difference Nitrogen isotopes reflect time integrated measures of the controls on N storage that are critical for predictions of how these ecosystems will respond to human-mediated disturbances of the global N cycle.

  16. The chemical composition of red giants in 47 Tucanae. II. Magnesium isotopes and pollution scenarios

    NASA Astrophysics Data System (ADS)

    Thygesen, A. O.; Sbordone, L.; Ludwig, H.-G.; Ventura, P.; Yong, D.; Collet, R.; Christlieb, N.; Melendez, J.; Zaggia, S.

    2016-04-01

    Context. The phenomenon of multiple populations in globular clusters is still far from understood, with several proposed mechanisms to explain the observed behaviour. The study of elemental and isotopic abundance patterns are crucial for investigating the differences among candidate pollution mechanisms. Aims: We derive magnesium isotopic ratios for 13 stars in the globular cluster 47 Tucanae (NGC 104) to provide new, detailed information about the nucleosynthesis that has occurred within the cluster. For the first time, the impact of 3D model stellar atmospheres on the derived Mg isotopic ratios is investigated. Methods: Using both tailored 1D atmospheric models and 3D hydrodynamical models, we derive magnesium isotopic ratios from four features of MgH near 5135 Å in 13 giants near the tip of the red giant branch, using high signal-to-noise, high-resolution spectra. Results: We derive the magnesium isotopic ratios for all stars and find no significant offset of the isotopic distribution between the pristine and the polluted populations. Furthermore, we do not detect any statistically significant differences in the spread in the Mg isotopes in either population. No trends were found between the Mg isotopes and [Al/Fe]. The inclusion of 3D atmospheres has a significant impact on the derived 25Mg/24Mg ratio, increasing it by a factor of up to 2.5, compared to 1D. The 26Mg/24Mg ratio, on the other hand, essentially remains unchanged. Conclusions: We confirm the results seen from other globular clusters, where no strong variation in the isotopic ratios is observed between stellar populations, for observed ranges in [Al/Fe]. We see no evidence for any significant activation of the Mg-Al burning chain. The use of 3D atmospheres causes an increase of a factor of up to 2.5 in the fraction of 25Mg, resolving part of the discrepancy between the observed isotopic fraction and the predictions from pollution models. Based on observations made with the ESO Very Large Telescope

  17. Quantitative Mass Spectrometry by Isotope Dilution and Multiple Reaction Monitoring (MRM).

    PubMed

    Russo, Paul; Hood, Brian L; Bateman, Nicholas W; Conrads, Thomas P

    2017-01-01

    Selected reaction monitoring (SRM) is used in molecular profiling to detect and quantify specific known proteins in complex mixtures. Using isotope dilution (Barnidge et al., Anal Chem 75(3):445-451, 2003) methodologies, peptides can be quantified without the need for an antibody-based method. Selected reaction monitoring assays employ electrospray ionization mass spectrometry (ESI-MS) followed by two stages of mass selection: a first stage where the mass of the peptide ion is selected and, after fragmentation by collision-induced dissociation (CID), a second stage (tandem MS) where either a single (e.g., SRM) or multiple (multiple reaction monitoring, MRM) specific peptide fragment ions are transmitted for detection. The MRM experiment is accomplished by specifying the parent masses of the selected endogenous and isotope-labeled peptides for MS/MS fragmentation and then monitoring fragment ions of interest, using their intensities/abundances and relative ratios to quantify the parent protein of interest. In this example protocol, we will utilize isotope dilution MRM-MS to quantify in absolute terms the total levels of the protein of interest, ataxia telangiectasia mutated (ATM) serine/threonine protein kinase. Ataxia telangiectasia mutated (ATM) phosphorylates several key proteins that initiate activation of the DNA damage checkpoint leading to cell cycle arrest.

  18. Metrology for stable isotope reference materials: 13C/12C and 18O/16O isotope ratio value assignment of pure carbon dioxide gas samples on the Vienna PeeDee Belemnite-CO2 scale using dual-inlet mass spectrometry.

    PubMed

    Srivastava, Abneesh; Michael Verkouteren, R

    2018-07-01

    Isotope ratio measurements have been conducted on a series of isotopically distinct pure CO 2 gas samples using the technique of dual-inlet isotope ratio mass spectrometry (DI-IRMS). The influence of instrumental parameters, data normalization schemes on the metrological traceability and uncertainty of the sample isotope composition have been characterized. Traceability to the Vienna PeeDee Belemnite(VPDB)-CO 2 scale was realized using the pure CO 2 isotope reference materials(IRMs) 8562, 8563, and 8564. The uncertainty analyses include contributions associated with the values of iRMs and the repeatability and reproducibility of our measurements. Our DI-IRMS measurement system is demonstrated to have high long-term stability, approaching a precision of 0.001 parts-per-thousand for the 45/44 and 46/44 ion signal ratios. The single- and two-point normalization bias for the iRMs were found to be within their published standard uncertainty values. The values of 13 C/ 12 C and 18 O/ 16 O isotope ratios are expressed relative to VPDB-CO 2 using the [Formula: see text] and [Formula: see text] notation, respectively, in parts-per-thousand (‰ or per mil). For the samples, value assignments between (-25 to +2) ‰ and (-33 to -1) ‰ with nominal combined standard uncertainties of (0.05, 0.3) ‰ for [Formula: see text] and [Formula: see text], respectively were obtained. These samples are used as laboratory reference to provide anchor points for value assignment of isotope ratios (with VPDB traceability) to pure CO 2 samples. Additionally, they serve as potential parent isotopic source material required for the development of gravimetric based iRMs of CO 2 in CO 2 -free dry air in high pressure gas cylinder packages at desired abundance levels and isotopic composition values. Graphical abstract CO 2 gas isotope ratio metrology.

  19. Stable isotopes in juvenile marine fishes and their invertebrate prey from the Thames Estuary, UK, and adjacent coastal regions

    NASA Astrophysics Data System (ADS)

    Leakey, Chris D. B.; Attrill, Martin J.; Jennings, Simon; Fitzsimons, Mark F.

    2008-04-01

    Estuaries are regarded as valuable nursery habitats for many commercially important marine fishes, potentially providing a thermal resource, refuge from predators and a source of abundant prey. Stable isotope analysis may be used to assess relative resource use from isotopically distinct sources. This study comprised two major components: (1) development of a spatial map and discriminant function model of stable isotope variation in selected invertebrate groups inhabiting the Thames Estuary and adjacent coastal regions; and (2) analysis of stable isotope signatures of juvenile bass ( Dicentrarchus labrax), sole ( Solea solea) and whiting ( Merlangius merlangus) for assessment of resource use and feeding strategies. The data were also used to consider anthropogenic enrichment of the estuary and potential energetic benefits of feeding in estuarine nursery habitat. Analysis of carbon (δ 13C), nitrogen (δ 15N) and sulphur (δ 34S) isotope data identified significant differences in the 'baseline' isotopic signatures between estuarine and coastal invertebrates, and discriminant function analysis allowed samples to be re-classified to estuarine and coastal regions with 98.8% accuracy. Using invertebrate signatures as source indicators, stable isotope data classified juvenile fishes to the region in which they fed. Feeding signals appear to reflect physiological (freshwater tolerance) and functional (mobility) differences between species. Juvenile sole were found to exist as two isotopically-discrete sub-populations, with no evidence of mixing between the two. An apparent energetic benefit of estuarine feeding was only found for sole.

  20. Evaluating climate model performance in the tropics with retrievals of water isotopic composition from Aura TES

    NASA Astrophysics Data System (ADS)

    Field, Robert; Kim, Daehyun; Kelley, Max; LeGrande, Allegra; Worden, John; Schmidt, Gavin

    2014-05-01

    Observational and theoretical arguments suggest that satellite retrievals of the stable isotope composition of water vapor could be useful for climate model evaluation. The isotopic composition of water vapor is controlled by the same processes that control water vapor amount, but the observed distribution of isotopic composition is distinct from amount itself . This is due to the fractionation that occurs between the abundant H216O isotopes (isotopologues) and the rare and heavy H218O and HDO isotopes during evaporation and condensation. The fractionation physics are much simpler than the underlying moist physics; discrepancies between observed and modeled isotopic fields are more likely due to problems in the latter. Isotopic measurements therefore have the potential for identifying problems that might not be apparent from more conventional measurements. Isotopic tracers have existed in climate models since the 1980s but it is only since the mid 2000s that there have been enough data for meaningful model evaluation in this sense, in the troposphere at least. We have evaluated the NASA GISS ModelE2 general circulation model over the tropics against water isotope (HDO/H2O) retrievals from the Aura Tropospheric Emission Spectrometer (TES), alongside more conventional measurements. A small ensemble of experiments was performed with physics perturbations to the cumulus and planetary boundary layer schemes, done in the context of the normal model development process. We examined the degree to which model-data agreement could be used to constrain a select group of internal processes in the model, namely condensate evaporation, entrainment strength, and moist convective air mass flux. All are difficult to parameterize, but exert strong influence over model performance. We found that the water isotope composition was significantly more sensitive to physics changes than precipitation, temperature or relative humidity through the depth of the tropical troposphere. Among the