Sample records for abundance patterns observed

  1. Chemical Abundance Measurements of Ultra-Faint Dwarf Galaxies Discovered by the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Nagasawa, Daniel; Marshall, Jennifer L.; Simon, Joshua D.; Hansen, Terese; Li, Ting; Bernstein, Rebecca; Balbinot, Eduardo; Drlica-Wagner, Alex; Pace, Andrew; Strigari, Louis; Pellegrino, Craig; DePoy, Darren L.; Suntzeff, Nicholas; Bechtol, Keith; Dark Energy Suvey

    2018-01-01

    We present chemical abundance analysis results derived from high-resolution spectroscopy of ultra-faint dwarfs discovered by the Dark Energy Survey. Ultra-faint dwarf galaxies preserve a fossil record of the chemical abundance patterns imprinted by the first stars in the Universe. High-resolution spectroscopic observations of member stars in several recently discovered Milky Way satellites reveal a range of abundance patterns among ultra-faint dwarfs suggesting that star formation processes in the early Universe were quite diverse. The chemical content provides a glimpse not only of the varied nucleosynthetic processes and chemical history of the dwarfs themselves, but also the environment in which they were formed. We present the chemical abundance analysis of these objects and discuss possible explanations for the observed abundance patterns.

  2. HOW MANY NUCLEOSYNTHESIS PROCESSES EXIST AT LOW METALLICITY?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, C. J.; Montes, F.; Arcones, A., E-mail: cjhansen@lsw.uni-heidelberg.de, E-mail: cjhansen@dark-cosmology.dk, E-mail: montes@nscl.msu.edu, E-mail: almudena.arcones@physik.tu-darmstadt.de

    Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to themore » production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.« less

  3. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    PubMed Central

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  4. Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds

    USGS Publications Warehouse

    Flather, C.H.; Sauer, J.R.

    1996-01-01

    The hypothesis that Neotropical migrant birds may be undergoing widespread declines due to land use activities on the breeding grounds has been examined primarily by synthesizing results from local studies. Growing concern for the cumulative influence of land use activities on ecological systems has heightened the need for large-scale studies to complement what has been observed at local scales. We investigated possible landscape effects on Neotropical migrant bird populations for the eastern United States by linking two large-scale inventories designed to monitor breeding-bird abundances and land use patterns. The null hypothesis of no relation between landscape structure and Neotropical migrant abundance was tested by correlating measures of landscape structure with bird abundance, while controlling for the geographic distance among samples. Neotropical migrants as a group were more 'sensitive' to landscape structure than either temperate migrants or permanent residents. Neotropical migrants tended to be more abundant in landscapes with a greater proportion of forest and wetland habitats, fewer edge habitats, large forest patches, and with forest habitats well dispersed throughout the scene. Permanent residents showed few correlations with landscape structure and temperate migrants were associated with habitat diversity and edge attributes rather than with the amount, size, and dispersion of forest habitats. The association between Neotropical migrant abundance and forest fragmentation differed among physiographic strata, suggesting that land-scape context affects observed relations between bird abundance and landscape structure. Finally, associations between landscape structure and temporal trends in Neotropical migrant abundance were negatively correlated with forest habitats. These results suggest that extrapolation of patterns observed in some landscapes is not likely to hold regionally, and that conservation policies must consider the variation in landscape structure associations observed among different types of bird species and in physiographic strata with varying land use histories.

  5. Effects of seasonality on drosophilids (Insecta, Diptera) in the northern part of the Atlantic Forest, Brazil.

    PubMed

    Coutinho-Silva, R D; Montes, M A; Oliveira, G F; de Carvalho-Neto, F G; Rohde, C; Garcia, A C L

    2017-10-01

    Seasonality is an important aspect associated with population dynamic and structure of tropical insect assemblages. This study evaluated the effects of seasonality on abundance, richness, diversity and composition of an insect group, drosophilids, including species native to the Neotropical region and exotic ones. Three preserved fragments of the northern Atlantic Forest were surveyed, where temperatures are above 20 °C throughout the year and rainfall regimes define two seasons (dry and rainy). As opposed to other studies about arthropods in tropical regions, we observed that abundance of drosophilids was significantly higher in the dry season, possibly due to biological aspects and the colonization strategy adopted by the exotic species in these environments. Contrarily to abundance, we did not observe a seasonal pattern for richness. As for other parts of the Atlantic Forest, the most representative Neotropical species (Drosophila willistoni, D. sturtevanti, D. paulistorum and D. prosaltans) were significantly more abundant in the rainy season. Among the most abundant exotic species, D. malerkotliana, Zaprionus indianus and Scaptodrosophila latifasciaeformis were more importantly represented the dry season, while D. simulans was more abundant in the rainy period. The seasonality patterns exhibited by the most abundant species were compared to findings published in other studies. Our results indicate that exotic species were significantly more abundant in the dry season, while native ones exhibited an opposite pattern.

  6. Diversity of abundance patterns of neutron-capture elements in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Aoki, Misa; Aoki, Wako; Ishimaru, Yuhri; Wanajo, Shinya

    2014-05-01

    Observations of Very Metal-Poor stars indicate that there are at least two sites to r-process; "weak r-process" and "main r-process". A question is whether these two are well separated or there exists a variation in the r-process. We present the results of abundance analysis of neutron-capture elements in the two Very Metal-Poor stars HD107752 and HD110184 in the Milky Way halo observed with the Subaru Telescope HDS. The abundance patterns show overabundace at light n-capture elements (e.g. Sr, Y), inferring the element yielding of weak r-process, while heavy neutron-capture elements (e.g. Ba, Eu) are deficient; however, the overabundance of light ones is not as significant as that previously found in stars representing the weak r-process (e.g. HD122563; Honda et al. 2006). Our study show diversity in the abundance patterns from light to heavy neutron-capture elements in VMP stars, suggesting a variation in r-process, which may depend on electron fraction of environment.

  7. Seasonal and species-specific patterns in abundance of freshwater mussel glochidia in stream drift

    Treesearch

    Jacob J. Culp; Wendell R. Haag; D. Albrey Arrington; Thomas B. Kennedy

    2011-01-01

    Abstract. We examined seasonal patterns of abundance of mussel larvae (glochidia) in stream drift in a diverse, large-stream mussel assemblage in the Sipsey River, Alabama, across 1 y. We used recently developed techniques for glochidial identification combined with information about mussel fecundity and benthic assemblages to evaluate how well observed glochidial...

  8. NUCLEOSYNTHESIS IN HIGH-ENTROPY HOT BUBBLES OF SUPERNOVAE AND ABUNDANCE PATTERNS OF EXTREMELY METAL-POOR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izutani, Natsuko; Umeda, Hideyuki, E-mail: izutani@astron.s.u-tokyo.ac.j, E-mail: umeda@astron.s.u-tokyo.ac.j

    2010-09-01

    There have been suggestions that the abundance of extremely metal-poor (EMP) stars can be reproduced by hypernovae (HNe), not by normal supernovae (SNe). However, recently it was also suggested that if the innermost neutron-rich or proton-rich matter is ejected, the abundance patterns of ejected matter are changed, and normal SNe may also reproduce the observations of EMP stars. In this Letter, we calculate explosive nucleosynthesis with various Y {sub e} and entropy, and investigate whether normal SNe with this innermost matter, which we call the 'hot-bubble' component, can reproduce the abundance of EMP stars. We find that neutron-rich (Y {submore » e} = 0.45-0.49) and proton-rich (Y {sub e} = 0.51-0.55) matter can increase Zn/Fe and Co/Fe ratios as observed, but tend to overproduce other Fe-peak elements. In addition, we find that if slightly proton-rich matter with 0.50 {<=} Y {sub e} < 0.501 with s/k {sub b} {approx} 15-40 is ejected as much as {approx}0.06 M {sub sun}, even normal SNe can reproduce the abundance of EMP stars, though it requires fine-tuning of Y {sub e}. On the other hand, HNe can more easily reproduce the observations of EMP stars without fine-tuning. Our results imply that HNe are the most likely origin of the abundance pattern of EMP stars.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaud, G.; Bergeron, P.; Wesemael, F.

    The abundance anomalies generated by diffusion in the envelopes of hot, hydrogen-rich subdwarfs are studied. It is shown that unimpeded diffusion cannot lead to the large silicon underabundance observed in those stars at effective temperatures above 30,000 K. Calculations of diffusion of heavy elements in the presence of mass loss are also performed. For a mass-loss rate of 2.5 x 10 to the -15th solar masses/year, the observed abundance patterns of C, N, and Si are reproduced on a time scale of about 100,000 yr. Lower mass-loss rates would necessitate longer time scales. The pattern of abundance anomalies may eventuallymore » be used to constrain both the mass-loss rate and the stellar lifetime in the sdB evolutionary phase. 12 references.« less

  10. Rb-Sr systematics and REE abundances in Shalka and several other diogenites

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Yabuki, S.; Kagi, H.; Masuda, A.

    1994-07-01

    The diogenites have been regarded as igneous products in the early solar system and they have been considered to have genetically close relationship with eucrites. Depsite their simple mineralogical compositions and narrow range for major-element compositions, diogenites have been known to show wide Rare Earth Elements (REE) variations in absolute concentration and in mutual abundance ratios. Furthermore, some diogenites have peculiar Rb-Sr isotope systematics (ages younger than 4.5 b.y.). The Shalka meteorite belongs to the diogenites, and a unique REE abundance pattern has been reported. We performed Rb-Sr isotopic analyses and measured REE abundances in the Shalka diogenite with several other diogenites to discuss their genesis. Roughly speaking, REE patterns in diogenites are characterized by the negative Eu anomaly and the depletion of light REE. For Shalka, some heterogeneity in REE abundance patterns have been observed. While one sample chip shows the REE pattern with a large negative Eu anomaly and depleted light REE, particularly characterized by the concave curvature for the La-Nd span, other samples show the pattern nearly flat or the pattern enriched in light REE. These variations could not be explained easily by the simple mixing process of LREE-depleted components and LREE-enriched melt, but they imply some metamorphism process. The Rb-Sr isotopic data for Shalka are shown with the data for other several diogenites. These observations indicate that Shalka would undergo a significant extent of metamorphism followed by redistribution of REE and the disturbance of the Rb-Sr systematics. We are going to do further studies on Shalka to discuss the metamorphic process and compare it with other diogenites.

  11. Decapod larvae distribution and species composition off the southern Portuguese coast

    NASA Astrophysics Data System (ADS)

    Pochelon, Patricia N.; Pires, Rita F. T.; Dubert, Jesús; Nolasco, Rita; Santos, A. Miguel P.; Queiroga, Henrique; dos Santos, Antonina

    2017-12-01

    For decapod crustaceans, the larval phase is the main responsible for dispersal, given the direct emission from adult habitats into the water column. Circulation patterns and behavioural mechanisms control the dispersal distance and connectivity between different areas. Information on larval distribution and abundance is required to predict the size and location of breeding populations, and correctly manage marine resources. Spatial distribution and abundance data of decapod larvae, and environmental parameters were assessed in winter surveys off the southern Portuguese coast. To better understand the oceanic structures driving larval distribution patterns, in situ physical parameters were measured and a hydrodynamical model used. Inter-annual, cross-shore and alongshore differences on decapod larvae distribution were found. Brachyuran crabs dominated the samples and similar taxa composition was observed in the most dynamic areas. Coastal taxa dominated the nearshore survey and were almost absent in the more offshore one, that registered much lower abundances. An upwelling front allowed a clear cross-shore species separation, also evident in the abundance values and number of taxa. Hydrodynamical conditions and adult habitats were the main factors explaining the observed patterns. Important missing information to understand the distribution patterns of decapod larval communities and the mechanisms behind them is given for the region.

  12. Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Trincado, J. G.; Geisler, D.; Tang, B.

    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] ≳ −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similarmore » metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.« less

  13. Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    NASA Astrophysics Data System (ADS)

    Fernández-Trincado, J. G.; Zamora, O.; García-Hernández, D. A.; Souto, Diogo; Dell'Agli, F.; Schiavon, R. P.; Geisler, D.; Tang, B.; Villanova, S.; Hasselquist, Sten; Mennickent, R. E.; Cunha, Katia; Shetrone, M.; Allende Prieto, Carlos; Vieira, K.; Zasowski, G.; Sobeck, J.; Hayes, C. R.; Majewski, S. R.; Placco, V. M.; Beers, T. C.; Schleicher, D. R. G.; Robin, A. C.; Mészáros, Sz.; Masseron, T.; García Pérez, Ana E.; Anders, F.; Meza, A.; Alves-Brito, A.; Carrera, R.; Minniti, D.; Lane, R. R.; Fernández-Alvar, E.; Moreno, E.; Pichardo, B.; Pérez-Villegas, A.; Schultheis, M.; Roman-Lopes, A.; Fuentes, C. E.; Nitschelm, C.; Harding, P.; Bizyaev, D.; Pan, K.; Oravetz, D.; Simmons, A.; Ivans, Inese I.; Blanco-Cuaresma, S.; Hernández, J.; Alonso-García, J.; Valenzuela, O.; Chanamé, J.

    2017-09-01

    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] ≳ -1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.

  14. Range contraction in large pelagic predators

    PubMed Central

    Worm, Boris; Tittensor, Derek P.

    2011-01-01

    Large reductions in the abundance of exploited land predators have led to significant range contractions for those species. This pattern can be formalized as the range–abundance relationship, a general macroecological pattern that has important implications for the conservation of threatened species. Here we ask whether similar responses may have occurred in highly mobile pelagic predators, specifically 13 species of tuna and billfish. We analyzed two multidecadal global data sets on the spatial distribution of catches and fishing effort targeting these species and compared these with available abundance time series from stock assessments. We calculated the effort needed to reliably detect the presence of a species and then computed observed range sizes in each decade from 1960 to 2000. Results suggest significant range contractions in 9 of the 13 species considered here (between 2% and 46% loss of observed range) and significant range expansions in two species (11–29% increase). Species that have undergone the largest declines in abundance and are of particular conservation concern tended to show the largest range contractions. These include all three species of bluefin tuna and several marlin species. In contrast, skipjack tuna, which may have increased its abundance in the Pacific, has also expanded its range size. These results mirror patterns described for many land predators, despite considerable differences in habitat, mobility, and dispersal, and imply ecological extirpation of heavily exploited species across parts of their range. PMID:21693644

  15. Use of abundance of one species as a surrogate for abundance of others

    Treesearch

    Samuel A. Cushman; Kevin S. McKelvey; Barry R. Noon; Kevin McGarigal

    2010-01-01

    Indicator species concepts have a long history in conservation biology. Arguments in favor of these approaches generally stress expediency and assume efficacy. We tested the premise that the abundance patterns of one species can be used to infer those of other species. Our data consisted of 72,495 bird observations on 55 species across 1046 plots distributed across 30...

  16. Predictions and retrodictions of the hierarchical representation of habitat in heterogeneous environments

    USGS Publications Warehouse

    Kolasa, Jurek; Allen, Craig R.; Sendzimir, Jan; Stow, Craig A.

    2012-01-01

    Interaction between habitat and species is central in ecology. Habitat structure may be conceived as being hierarchical, where larger, more diverse, portions or categories contain smaller, more homogeneous portions. When this conceptualization is combined with the observation that species have different abilities to relate to portions of the habitat that differ in their characteristics, a number of known patterns can be derived and new patterns hypothesized. We propose a quantitative form of this habitat–species relationship by considering species abundance to be a function of habitat specialization, habitat fragmentation, amount of habitat, and adult body mass. The model reproduces and explains patterns such as variation in rank–abundance curves, greater variation and extinction probabilities of habitat specialists, discontinuities in traits (abundance, ecological range, pattern of variation, body size) among species sharing a community or area, and triangular distribution of body sizes, among others. The model has affinities to Holling's textural discontinuity hypothesis and metacommunity theory but differs from both by offering a more general perspective. In support of the model, we illustrate its general potential to capture and explain several empirical observations that historically have been treated independently.

  17. Chemical composition of A and F dwarfs members of the Hyades open cluster

    NASA Astrophysics Data System (ADS)

    Gebran, M.; Vick, M.; Monier, R.; Fossati, L.

    2010-11-01

    Aims: Abundances of 15 chemical elements have been derived for 28 F and 16 A stars members of the Hyades open cluster in order to set constraints on self-consistent evolutionary models that include radiative and turbulent diffusion. Methods: A spectral synthesis, iterative procedure was applied to derive the abundances from selected high-quality lines in high-resolution, high-signal-to-noise spectra obtained with SOPHIE and AURELIE at the Observatoire de Haute Provence. Results: The abundance patterns found for A and F stars in the Hyades resemble those observed in Coma Berenices and Pleiades clusters. In graphs representing the abundances versus the effective temperature, A stars often display much more scattered abundances around their mean values than the coolest F stars do. Large star-to-star variations are detected in the Hyades A dwarfs in their abundances of C, Na, Sc, Fe, Ni, Sr, Y, and Zr, which we interpret as evidence of transport processes competing with radiative diffusion. In A and Am stars, the abundances of Cr, Ni, Sr, Y, and Zr are found to be correlated with that of Fe as in the Pleiades and in Coma Berenices. The ratios C/Fe and O/Fe are found to be anticorrelated with Fe/H as in Coma Berenices. All Am stars in the Hyades are deficient in C and O and overabundant in elements heavier than Fe but not all are deficient in Ca and/or Sc. The F stars have solar abundances for almost all elements except for Si. The overall shape of the abundance pattern of the slow rotator HD 30210 cannot be entirely reproduced by models including radiative diffusion and different amounts of turbulent diffusion. Conclusions: While part of the discrepancies between derived and predicted abundances could come from non-LTE effects, including competing processes such as rotational mixing and/or mass loss seems necessary in order to improve the agreement between the observed and predicted abundance patterns. Tables 5 to 8 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/523/A71Based on observations at the Observatoire de Haute-Provence, France.

  18. p-capture reaction cycles in rotating massive stars and their impact on elemental abundances in globular cluster stars: A case study of O, Na and Al

    NASA Astrophysics Data System (ADS)

    Mahanta, Upakul; Goswami, Aruna; Duorah, Hiralal; Duorah, Kalpana

    2017-08-01

    Elemental abundance patterns of globular cluster stars can provide important clues for understanding cluster formation and early chemical evolution. The origin of the abundance patterns, however, still remains poorly understood. We have studied the impact of p-capture reaction cycles on the abundances of oxygen, sodium and aluminium considering nuclear reaction cycles of carbon-nitrogen-oxygen-fluorine, neon-sodium and magnesium-aluminium in massive stars in stellar conditions of temperature range 2×107 to 10×107 K and typical density of 102 gm cc-1. We have estimated abundances of oxygen, sodium and aluminium with respect to Fe, which are then assumed to be ejected from those stars because of rotation reaching a critical limit. These ejected abundances of elements are then compared with their counterparts that have been observed in some metal-poor evolved stars, mainly giants and red giants, of globular clusters M3, M4, M13 and NGC 6752. We observe an excellent agreement with [O/Fe] between the estimated and observed abundance values for globular clusters M3 and M4 with a correlation coefficient above 0.9 and a strong linear correlation for the remaining two clusters with a correlation coefficient above 0.7. The estimated [Na/Fe] is found to have a correlation coefficient above 0.7, thus implying a strong correlation for all four globular clusters. As far as [Al/Fe] is concerned, it also shows a strong correlation between the estimated abundance and the observed abundance for globular clusters M13 and NGC 6752, since here also the correlation coefficient is above 0.7 whereas for globular cluster M4 there is a moderate correlation found with a correlation coefficient above 0.6. Possible sources of these discrepancies are discussed.

  19. Temperature and Gravity Dependence of Trace Element Abundances in Hot DA White Dwarfs (94-EUVE-094)

    NASA Technical Reports Server (NTRS)

    Finley, David S.

    1998-01-01

    EUV spectroscopy has shown that DA white dwarfs hotter than about 45,000 K may contain trace heavy elements, while those hotter than about 50,000 K almost always have significant abundances of trace heavy elements. One of our continuing challenges is to identify and determine the abundances of these trace constituents, and then to relate the observed abundance patterns to the present conditions and previous evolutionary histories of the hot DA white dwarfs.

  20. Nucleosynthesis: Stellar and Solar Abundances and Atomic Data

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Lawler, James E.; Sneden, Christopher; DenHartog, E. A.; Collier, Jason; Dodge, Homer L.

    2006-01-01

    Abundance observations indicate the presence of often surprisingly large amounts of neutron capture (i.e., s- and r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy the progenitors of the halo stars responsible for neutron-capture synthesis. Comparisons of abundance trends can be used to understand the chemical evolution of the Galaxy and the nature of heavy element nucleosynthesis. In addition age determinations, based upon long-lived radioactive nuclei abundances, can now be obtained. These stellar abundance determinations depend critically upon atomic data. Improved laboratory transition probabilities have been recently obtained for a number of elements. These new gf values have been used to greatly refine the abundances of neutron-capture elemental abundances in the solar photosphere and in very metal-poor Galactic halo stars. The newly determined stellar abundances are surprisingly consistent with a (relative) Solar System r-process pattern, and are also consistent with abundance predictions expected from such neutron-capture nucleosynthesis.

  1. Spatial pattern enhances ecosystem functioning in an African savanna.

    PubMed

    Pringle, Robert M; Doak, Daniel F; Brody, Alison K; Jocqué, Rudy; Palmer, Todd M

    2010-05-25

    The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.

  2. Controls of picophytoplankton abundance and composition in a highly dynamic marine system, the Northern Alboran Sea (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Amorim, Ana L.; León, Pablo; Mercado, Jesús M.; Cortés, Dolores; Gómez, Francisco; Putzeys, Sebastien; Salles, Soluna; Yebra, Lidia

    2016-06-01

    The Alboran Sea is a highly dynamic basin which exhibits a high spatio-temporal variability of hydrographic structures (e.g. fronts, gyres, coastal upwellings). This work compares the abundance and composition of picophytoplankton observed across the northern Alboran Sea among eleven cruises between 2008 and 2012 using flow cytometry. We evaluate the seasonal and longitudinal variability of picophytoplankton on the basis of the circulation regimes at a regional scale and explore the presence of cyanobacteria ecotypes in the basin. The maximal abundances obtained for Prochlorococcus, Synechococcus and picoeukaryotes (12.7 × 104, 13.9 × 104 and 8.6 × 104 cells mL- 1 respectively) were consistent with those reported for other adjacent marine areas. Seasonal changes in the abundance of the three picophytoplankton groups were highly significant although they did not match the patterns described for other coastal waters. Higher abundances of Prochlorococcus were obtained in autumn-winter while Synechococcus and picoeukaryotes exhibited a different seasonal abundance pattern depending on the sector (e.g. Synechococcus showed higher abundance in summer in the west sector and during winter in the eastern study area). Additionally, conspicuous longitudinal gradients were observed for Prochlorococcus and Synechococcus, with Prochlorococcus decreasing from west to east and Synechococcus following the opposite pattern. The analysis of environmental variables (i.e. temperature, salinity and inorganic nutrients) and cell abundances indicates that Prochlorococcus preferred high salinity and nitrate to phosphate ratio. On the contrary, temperature did not seem to play a role in Prochlorococcus distribution as it was numerically important during the whole seasonal cycle. Variability in Synechococcus abundance could not be explained by changes in any environmental variable suggesting that different ecotypes were sampled during the surveys. In particular, our data would indicate the presence of at least two ecotypes of Synechococcus: a summer ecotype widely distributed in the whole Alboran Sea and a winter ecotype adapted to lower temperature and higher nutrient concentration whose growth is favoured in the eastern sector.

  3. Galactic Abundance Patterns via Peimbert Types I & II Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Milingo, J. B.; Barnes, K. L.; Kwitter, K. B.; Souza, S. P.; Henry, R. B. C.; Skinner, J. N.

    2005-12-01

    Planetary Nebulae (PNe) are well known fonts of information about both stellar evolution and galactic chemical evolution. Abundance patterns in PNe are used to note signatures and constraints of nuclear processing, and as tracers of the distribution of metals throughout galaxies. In this poster abundance gradients and heavy element ratios are presented based upon newly acquired spectrophotometry of a sample of Galactic Peimbert Type I PNe. This new data set is extracted from spectra that extend from λ 3600 - 9600Å allowing the use of [S III] features at λ 9069 and 9532Å. Since a significant portion of S in PNe resides in S+2 and higher ionization stages, including these features improves the extrapolation from observed ion abundances to total element abundance. An alternate metallicity tracer, Sulfur is precluded from enhancement and depletion across the range of PNe progenitor masses. Its stability in intermediate mass stars makes it a useful tool to probe the natal conditions as well as the evolution of PNe progenitors. This is a continuation of our Type II PNe work, the impetus being to compile a relatively large set of line strengths and abundances with internally consistent observation, reduction, calibration, and abundance determination, minimizing systematic affects that come from compiling various data sets. This research is supported by the AAS Small Research Grants program, the Franklin & Marshall Committee on Grants, and NSF grant AST-0307118.

  4. A tale of two anomalies: Depletion, dispersion, and the connection between the stellar lithium spread and inflated radii on the pre-main sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somers, Garrett; Pinsonneault, Marc H., E-mail: somers@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu

    2014-07-20

    We investigate lithium depletion in standard stellar models (SSMs) and main sequence (MS) open clusters, and explore the origin of the Li dispersion in young, cool stars of equal mass, age, and composition. We first demonstrate that SSMs accurately predict the Li abundances of solar analogs at the zero-age main sequence (ZAMS) within theoretical uncertainties. We then measure the rate of MS Li depletion by removing the [Fe/H]-dependent ZAMS Li pattern from three well-studied clusters, and comparing the detrended data. MS depletion is found to be mass-dependent, in the sense of more depletion at low mass. A dispersion in Limore » abundance at fixed T{sub eff} is nearly universal, and sets in by ∼200 Myr. We discuss mass and age dispersion trends, and the pattern is mixed. We argue that metallicity impacts the ZAMS Li pattern, in agreement with theoretical expectations but contrary to the findings of some previous studies, and suggest Li as a test of cluster metallicity. Finally, we argue that a radius dispersion in stars of fixed mass and age, during the epoch of pre-MS Li destruction, is responsible for the spread in Li abundances and the correlation between rotation and Li in young cool stars, most well known in the Pleiades. We calculate stellar models, inflated to match observed radius anomalies in magnetically active systems, and the resulting range of Li abundances reproduces the observed patterns of young clusters. We discuss ramifications for pre-MS evolutionary tracks and age measurements of young clusters, and suggest an observational test.« less

  5. Pond bank access as an approach for managing toxic cyanobacteria in beef cattle pasture drinking water ponds.

    PubMed

    Wilson, Alan E; Chislock, Michael F; Yang, Zhen; Barros, Mário U G; Roberts, John F

    2018-03-25

    Forty-one livestock drinking water ponds in Alabama beef cattle pastures during were surveyed during the late summer to generally understand water quality patterns in these important water resources. Since livestock drinking water ponds are prone to excess nutrients that typically lead to eutrophication, which can promote blooms of toxigenic phytoplankton such as cyanobacteria, we also assessed the threat of exposure to the hepatotoxin, microcystin. Eighty percent of the ponds studied contained measurable microcystin, while three of these ponds had concentrations above human drinking water thresholds set by the US Environmental Protection Agency (i.e., 0.3 μg/L). Water quality patterns in the livestock drinking water ponds contrasted sharply with patterns typically observed for temperate freshwater lakes and reservoirs. Namely, we found several non-linear relationships between phytoplankton abundance (measured as chlorophyll) and nutrients or total suspended solids. Livestock had direct access to all the study ponds. Consequently, the proportion of inorganic suspended solids (e.g., sediment) increased with higher concentrations of total suspended solids, which underlies these patterns. Unimodal relationships were also observed between microcystin and phytoplankton abundance or nutrients. Euglenoids were abundant in the four ponds with chlorophyll concentrations > 250 μg/L (and dominated three of these ponds), which could explain why ponds with high chlorophyll concentrations would have low microcystin concentrations. Based on observations made during sampling events and available water quality data, livestock-mediated bioturbation is causing elevated total suspended solids that lead to reduced phytoplankton abundance and microcystin despite high concentrations of nutrients, such as phosphorus and nitrogen. Thus, livestock could be used to manage algal blooms, including toxic secondary metabolites, in their drinking water ponds by allowing them to walk in the ponds to increase turbidity.

  6. Product ion isotopologue pattern: A tool to improve the reliability of elemental composition elucidations of unknown compounds in complex matrices.

    PubMed

    Kaufmann, A; Walker, S; Mol, G

    2016-04-15

    Elucidation of the elemental compositions of unknown compounds (e.g., in metabolomics) generally relies on the availability of accurate masses and isotopic ratios. This study focuses on the information provided by the abundance ratio within a product ion pair (monoisotopic versus the first isotopic peak) when isolating and fragmenting the first isotopic ion (first isotopic mass spectrum) of the precursor. This process relies on the capability of the quadrupole within the Q Orbitrap instrument to isolate a very narrow mass window. Selecting only the first isotopic peak (first isotopic mass spectrum) leads to the observation of a unique product ion pair. The lighter ion within such an isotopologue pair is monoisotopic, while the heavier ion contains a single carbon isotope. The observed abundance ratio is governed by the percentage of carbon atoms lost during the fragmentation and can be described by a hypergeometric distribution. The observed carbon isotopologue abundance ratio (product ion isotopologue pattern) gives reliable information regarding the percentage of carbon atoms lost in the fragmentation process. It therefore facilitates the elucidation of the involved precursor and product ions. Unlike conventional isotopic abundances, the product ion isotopologue pattern is hardly affected by isobaric interferences. Furthermore, the appearance of these pairs greatly aids in cleaning up a 'matrix-contaminated' product ion spectrum. The product ion isotopologue pattern is a valuable tool for structural elucidation. It increases confidence in results and permits structural elucidations for heavier ions. This tool is also very useful in elucidating the elemental composition of product ions. Such information is highly valued in the field of multi-residue analysis, where the accurate mass of product ions is required for the confirmation process. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Meteoritic Constraints on Models of the Solar Nebula: The Abundances of Moderately Volatile Elements

    NASA Technical Reports Server (NTRS)

    Cassen, Patrick; Cuzzi, Jeff (Technical Monitor)

    1994-01-01

    The "moderately volatile" elements are those which condense (or evaporate) in the temperature range 650 - 1350 K, as a mix of material with solar abundances is cooled (or heated) tinder equilibrium conditions. Their relative abundances in chondritic meteorites are solar (or "cosmic", as defined by the composition of Cl meteorites) to within a factor of several, but vary within that range in a way that correlates remarkably well with condensation temperature, independent of chemical affinity. It has been argued that this correlation reflects a systematically selective process which favored the accretion of refractory material over volatile material from a cooling nebula. Wasson and Chou (Meteoritics 9, 69-94, 1974, and Wasson and co-authors in subsequent papers) suggested that condensation and settling of solids contemporaneously with the cooling and removal of nebular gas could produce the observed abundance patterns, but a quantitative model has been lacking. We show that the abundance patterns of the moderately volatile elements in chondritic meteorites can be produced, in some degree of quantitative detail, by models of the solar nebula that are designed to conform to observations of T Tauri stars and the global conservation laws. For example, even if the local surface density of the nebula is not decreasing, condensation and accretion of solids from radially inflowing gas in a cooling nebula can result in depletions of volatiles, relative to refractories, like those observed, The details of the calculated abundance patterns depend on (but are not especially sensitive to) model parameters, and can exhibit the variations that distinguish the meteorite classes. Thus it appears that nebula characteristics such as cooling rates, radial flow velocities, and particle accumulation rates can be quantitatively constrained by demanding that they conform to meteoritic data; and the models, in turn, can produce testable hypotheses regarding the time and location of the formation of the chondrite parent bodies and the planets.

  8. Global Clusters as Laboratories for Stellar Evolution

    NASA Technical Reports Server (NTRS)

    Catelan, Marcio; Valcarce, Aldo A. R.; Sweigart, Allen V.

    2010-01-01

    Globular clusters have long been considered the closest approximation to a physicist's laboratory in astrophysics, and as such a near-ideal laboratory for (low-mass) stellar evolution, However, recent observations have cast a shadow on this long-standing paradigm, suggesting the presence of multiple populations with widely different abundance patterns, and - crucially - with widely different helium abundances as welL In this review we discuss which features of the Hertzsprung-Russell diagram may be used as helium abundance indicators, and present an overview of available constraints on the helium abundance in globular clusters,

  9. Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau, E.; François, P.

    2018-03-01

    Aims: The abundance patterns of the neutron-capture elements in metal-poor stars provide a unique record of the nucleosynthesis products of the earlier massive primitive objects. Methods: We measured new abundances of so-called light neutron-capture of first peak elements using local thermodynamic equilibrium (LTE) 1D analysis; this analysis resulted in a sample of 11 very metal-poor stars, from [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037 with [Fe/H] = -4.0. The abundances were compared to those observed in two classical metal-poor stars: the typical r-rich star CS 31082-001 ([Eu/Fe] > +1.0) and the r-poor star HD 122563 ([Eu/Fe] < 0.0), which are known to present a strong enrichment of the first peak neutron-capture elements relative to the second peak. Results: Within the first peak, the abundances are well correlated in analogy to the well-known correlation inside the abundances of the second-peak elements. In contrast, there is no correlation between any first peak element with any second peak element. We show that the scatter of the ratio of the first peak abundance over second peak abundance increases when the mean abundance of the second peak elements decreases from r-rich to r-poor stars. We found two new r-poor stars that are very similar to HD 122563. A third r-poor star, CS 22897-008, is even more extreme; this star shows the most extreme example of first peak elements enrichment to date. On the contrary, another r-poor star (BD-18 5550) has a pattern of first peak elements that is similar to the typical r-rich stars CS 31082-001, however this star has some Mo enrichment. Conclusions: The distribution of the neutron-capture elements in our very metal-poor stars can be understood as the combination of at least two mechanisms: one that enriches the forming stars cloud homogeneously through the main r-process and leads to an element pattern similar to the r-rich stars, such as CS 31082-001; and another that forms mainly lighter, first peak elements. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 165.N-0276(A), (PI R.Cayrel).

  10. Pop III i-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars

    NASA Astrophysics Data System (ADS)

    Clarkson, O.; Herwig, F.; Pignatari, M.

    2018-02-01

    We have investigated a highly energetic H-ingestion event during shell He burning leading to H-burning luminosities of log (LH/L⊙) ˜ 13 in a 45 M⊙ Pop III massive stellar model. In order to track the nucleosynthesis which may occur in such an event, we run a series of single-zone nucleosynthesis models for typical conditions found in the stellar evolution model. Such nucleosynthesis conditions may lead to i-process neutron densities of up to ˜1013 cm-3. The resulting simulation abundance pattern, where Mg comes from He burning and Ca from the i process, agrees with the general observed pattern of the most iron-poor star currently known, SMSS J031300.36-670839.3. However, Na is also efficiently produced in these i-process conditions, and the prediction exceeds observations by ˜2.5 dex. While this probably rules out this model for SMSS J031300.36-670839.3, the typical i-process signature of combined He burning and i process of higher than solar [Na/Mg], [Mg/Al], and low [Ca/Mg] is reproducing abundance features of the two next most iron-poor stars HE 1017-5240 and HE 1327-2326 very well. The i process does not reach Fe which would have to come from a low level of additional enrichment. i process in hyper-metal-poor or Pop III massive stars may be able to explain certain abundance patterns observed in some of the most metal-poor CEMP-no stars.

  11. The epipelagic fish community of Beaufort Sea coastal waters, Alaska

    USGS Publications Warehouse

    Jarvela, L.E.; Thorsteinson, L.K.

    1999-01-01

    A three-year study of epipelagic fishes inhabiting Beaufort Sea coastal waters in Alaska documented spatial and temporal patterns in fish distribution and abundance and examined their relationships to thermohaline features during summer. Significant interannual, seasonal, and geographical differences in surface water temperatures and salinities were observed. In 1990, sea ice was absent and marine conditions prevailed, whereas in 1988 and 1991, heavy pack ice was present and the dissolution of the brackish water mass along the coast proceeded more slowly. Arctic cod, capelin, and liparids were the most abundant marine fishes in the catches, while arctic cisco was the only abundant diadromous freshwater species. Age-0 arctic cod were exceptionally abundant and large in 1990, while age-0 capelin dominated in the other years. The alternating numerical dominances of arctic cod and age-0 capelin may represent differing species' responses to wind-driven oceanographic processes affecting growth and survival. The only captures of age-0 arctic cisco occurred during 1990. Catch patterns indicate they use a broad coastal migratory corridor and tolerate high salinities. As in the oceanographic data, geographical anti temporal patterns were apparent in the fish catch data, but in most cases these patterns were not statistically testable because of excessive zero catches. The negative binomial distribution appeared to be a suitable statistical descriptor of the aggregated catch patterns for the more common species.

  12. The calculation and publication of a grid of line-blanketed model stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1972-01-01

    The luminosity, mass, and elemental abundances, as well as other properties of each star are studied in order to locate them in an evolutionary pattern. A method for determining the flux, gravity, and abundances at the stellar surface is the construction of theoretical stellar atmospheric models that predict the observed energy distribution and detailed stellar spectrum.

  13. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea

    PubMed Central

    He, Yaodong; Sen, Biswarup; Zhou, Shuangyan; Xie, Ningdong; Zhang, Yongfeng; Zhang, Jianle; Wang, Guangyi

    2017-01-01

    Qinhuangdao coastal waters in northern China are heavily impacted by anthropogenic and natural activities, and we anticipate a direct influence of the impact on the bacterioplankton abundance and diversity inhabiting the adjacent coastal areas. To ascertain the anthropogenic influences, we first evaluated the seasonal abundance patterns and diversity of bacterioplankton in the coastal areas with varied levels of natural and anthropogenic activities and then analyzed the environmental factors which influenced the abundance patterns. Results indicated distinct patterns in bacterioplankton abundance across the warm and cold seasons in all stations. Total bacterial abundance in the stations ranged from 8.67 × 104 to 2.08 × 106 cells/mL and had significant (p < 0.01) positive correlation with total phosphorus (TP), which indicated TP as the key monitoring parameter for anthropogenic impact on nutrients cycling. Proteobacteria and Cyanobacteria were the most abundant phyla in the Qinhuangdao coastal waters. Redundancy analysis revealed significant (p < 0.01) influence of temperature, dissolved oxygen and chlorophyll a on the spatiotemporal abundance pattern of α-Proteobacteria and Cyanobacteria groups. Among the 19 identified bacterioplankton subgroups, α-Proteobacteria (phylum Proteobacteria) was the dominant one followed by Family II (phylum Cyanobacteria), representing 19.1–55.2% and 2.3–54.2% of total sequences, respectively. An inverse relationship (r = -0.82) was observed between the two dominant subgroups, α-Proteobacteria and Family II. A wide range of inverse Simpson index (10.2 to 105) revealed spatial heterogeneity of bacterioplankton diversity likely resulting from the varied anthropogenic and natural influences. Overall, our results suggested that seasonal variations impose substantial influence on shaping bacterioplankton abundance patterns. In addition, the predominance of only a few cosmopolitan species in the Qinhuangdao coastal wasters was probably an indication of their competitive advantage over other bacterioplankton groups in the degradation of anthropogenic inputs. The results provided an evidence of their ecological significance in coastal waters impacted by seasonal inputs of the natural and anthropogenic matter. In conclusion, the findings anticipate future development of effective indicators of coastal health monitoring and subsequent management strategies to control the anthropogenic inputs in the Qinhuangdao coastal waters. PMID:28868051

  14. Seasonal patterns of horse fly richness and abundance in the Pampa biome of southern Brazil.

    PubMed

    Krüger, Rodrigo Ferreira; Krolow, Tiago Kütter

    2015-12-01

    Fluctuations in seasonal patterns of horse fly populations were examined in rainforests of tropical South America, where the climate is seasonal. These patterns were evaluated with robust analytical models rather than identifying the main factors that influenced the fluctuations. We examined the seasonality of populations of horse flies in fields and lowland areas of the Pampa biome of southern Brazil with generalized linear models. We also investigated the diversity of these flies and the sampling effort of Malaise traps in this biome over two years. All of the 29 species had clear seasonality with regard to occurrence and abundance, but only seven species were identified as being influenced by temperature and humidity. The sampling was sufficient and the estimated diversity was 10% more than observed. Seasonal trends were synchronized across species and the populations were most abundant between September and March and nearly zero in other months. While previous studies demonstrated that seasonal patterns in population fluctuations are correlated with climatic conditions in horse fly assemblages in South America rainforests, we show a clear effect of each factor on richness and abundance and the seasonality in the prevalence of horse fly assemblages in localities of the Pampa biome. © 2015 The Society for Vector Ecology.

  15. Commonly rare and rarely common: comparing population abundance of invasive and native aquatic species.

    PubMed

    Hansen, Gretchen J A; Vander Zanden, M Jake; Blum, Michael J; Clayton, Murray K; Hain, Ernie F; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S; McIntyre, Peter B; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies.

  16. Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic Species

    PubMed Central

    Hansen, Gretchen J. A.; Vander Zanden, M. Jake; Blum, Michael J.; Clayton, Murray K.; Hain, Ernie F.; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S.; McIntyre, Peter B.; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D.; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies. PMID:24194883

  17. Ichthyoplankton spatial pattern in the inner shelf off Bahía Blanca Estuary, SW Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Hoffmeyer, Mónica Susana; Clara, Menéndez María; Florencia, Biancalana; Mabel, Nizovoy Alicia; Ramón, Torres Eduardo

    2009-09-01

    This study focuses on the composition, abundance and distribution of ichthyoplankton in the inner shelf area off Bahía Blanca Estuary on the SW Atlantic Ocean during late spring. Eggs and larvae of Brevoortia aurea, Engraulis anchoita, Parona signata, Sciaenidae spp. - such as Cynoscion guatucupa and Micropogonias furnieri -, and Odontesthes argentinensis were found. Species richness was low probably as a result of season and shallow depths. Ichthyoplankton abundance reached values close to 10 000 per 10 m -3 (eggs) and 4000 per 10 m -3 (larvae) and displayed a spatial distribution pattern with maximum abundance values restricted to a band parallel to the coast. Differences between egg and larval patterns, probably derived from a different displacement and hydrodynamic behavior, were observed. Egg and larvae distribution patterns were found related with spawning areas and to directly depend on salinity and mesozooplankton. The larvae distribution pattern, in particular, was found to inversely depend on particulate organic carbon. In addition, the geographic location of egg and larvae maxima strongly coincided with a saline front reported for this area in springtime, thus suggesting a direct relationship with it.

  18. Lanthanide and actinide chemistry at high C/O ratios in the solar nebula

    NASA Technical Reports Server (NTRS)

    Lodders, Katharina; Fegley, Bruce, Jr.

    1993-01-01

    Chemical equilibrium calculations were performed to study the condensation chemistry of the REE and actinides under the highly reducing conditions which are necessary for the formation of the enstatite chondrites. Our calculations confirm that the REE and actinides condensed into oldhamite (CaS), the major REE and actinide host phase in enstatite chondrites, at a carbon-oxygen (C/O) ratio not less than 1 in an otherwise solar gas. Five basic types of REE abundance patterns, several of which are analogous to REE abundance patterns observed in the Ca, Al-rich inclusions in carbonaceous chondrites, are predicted to occur in meteoritic oldhamites. All of the reported REE patterns in oldhamites in enstatite chondrites can be interpreted in terms of our condensation calculations. The observed patterns fall into three of the five predicted categories. The reported Th and U enrichments and ratios in meteoritic oldhamites are also consistent with predictions of the condensation calculations. Pure REE sulfides are predicted to condense in the 10 exp -6 to 10 exp -9 bar range and may be found in enstatite chondrites if they formed in this pressure range.

  19. Meiofauna abundance and community patterns along a transatlantic transect in the Vema Fracture Zone and in the hadal zone of the Puerto Rico trench

    NASA Astrophysics Data System (ADS)

    Schmidt, Christina; Escobar Wolf, Kaibil; Lins, Lidia; Martínez Arbizu, Pedro; Brandt, Angelika

    2018-02-01

    Despite the increasing sampling effort that occurred in the deep-sea environment during the last decades, knowledge about meiofauna ecology in trenches and Fracture Zones is still scarce. Based on the lack of this information, a longitudinal transect across the Vema Fracture Zone in the North Atlantic was sampled to test whether meiofauna abundances differ between Northeast and Northwest Atlantic basins, separated by the Mid-Atlantic Ridge. Also, for examination of meiofauna depth pattern, the Puerto Rico trench floor, its upper trench slope and the Western North Atlantic abyssal were investigated. In this study, meiofauna communities were dominated by Nematoda (93%) and Copepoda (4%). The highest total abundance of meiofauna was found in the Puerto Rico trench and the lowest in the Western basin. We found significant differences between the Eastern and Western Atlantic basins, which were potentially caused by differences in current regimes. Stronger currents observed in the Western basin possibly led to the coarser sediment grain size observed in this region, and consequently to the lower abundances of the major groups found there. Besides grain size, the total abundance of meiofauna was significantly correlated with total nitrogen, total organic carbon, and water depth. Moreover, our study reveals a trend of increasing abundance of total meiofauna with increasing water depth in the Puerto Rico trench. Also, significant differences between the Western abyssal and the Puerto Rico trench were discovered. Generally, the meiofauna abundance in the investigated area decreased from East to West but increased with increasing water depth in the Puerto Rico trench. Due to funnelling of organic sediments increased food availability towards deeper regions in trenches could occur and promote higher abundance.

  20. Zooplankton time-series in the Balearic Sea (Western Mediterranean): Variability during the decade 1994 2003

    NASA Astrophysics Data System (ADS)

    Fernández de Puelles, Maria Luz; Alemany, Francisco; Jansá, Javier

    2007-08-01

    Studies of plankton time-series from the Balearic islands waters are presented for the past decade, with main emphasis on the variability of zooplankton and how it relates to the environment. The seasonal and interannual patterns of temperature, salinity, nutrients, chlorophyll concentration and zooplankton abundance are described with data obtained between 1994 and 2003. Samples were collected every 10 days at a monitoring station in the Mallorca channel, an area with marked hydrographic variability in the Western Mediterranean. Mesoscale variability was also assessed using data from monthly sampling survey carried out between 1994 and 1999 in a three station transect located in the same study area. The copepods were the most abundant group with three higher peaks (March, May and September) distinguished during the annual cycle and a clear coastal-offshore decreasing gradient. Analysis of the zooplankton community revealed two distinct periods: the mixing period during winter and early spring, where copepods, siphonophores and ostracods were most abundant and, the stratified period characterised by an increase of cladocerans and meroplankton abundances. Remarkable interannual zooplankton variability was observed in relation to hydrographic regime with higher abundances of main groups during cool years, when northern Mediterranean waters prevailed in the area. The warmer years showed the lowest zooplankton abundances, associated with the inflow of less saline and nutrient-depleted Atlantic Waters. Moreover, the correlation found between copepod abundance and large scale climatic factors (e.g., NAO) suggested that they act as main driver of the zooplankton variability. Therefore, the seasonal but particularly the interannual variation observed in plankton abundance and structure patterns of the Balearic Sea seems to be highly modulated by large-scale forcing and can be considered an ideal place where to investigate potential consequences of global climate change.

  1. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest.

    PubMed

    Mangan, Scott A; Schnitzer, Stefan A; Herre, Edward A; Mack, Keenan M L; Valencia, Mariana C; Sanchez, Evelyn I; Bever, James D

    2010-08-05

    The accumulation of species-specific enemies around adults is hypothesized to maintain plant diversity by limiting the recruitment of conspecific seedlings relative to heterospecific seedlings. Although previous studies in forested ecosystems have documented patterns consistent with the process of negative feedback, these studies are unable to address which classes of enemies (for example, pathogens, invertebrates, mammals) exhibit species-specific effects strong enough to generate negative feedback, and whether negative feedback at the level of the individual tree is sufficient to influence community-wide forest composition. Here we use fully reciprocal shade-house and field experiments to test whether the performance of conspecific tree seedlings (relative to heterospecific seedlings) is reduced when grown in the presence of enemies associated with adult trees. Both experiments provide strong evidence for negative plant-soil feedback mediated by soil biota. In contrast, above-ground enemies (mammals, foliar herbivores and foliar pathogens) contributed little to negative feedback observed in the field. In both experiments, we found that tree species that showed stronger negative feedback were less common as adults in the forest community, indicating that susceptibility to soil biota may determine species relative abundance in these tropical forests. Finally, our simulation models confirm that the strength of local negative feedback that we measured is sufficient to produce the observed community-wide patterns in tree-species relative abundance. Our findings indicate that plant-soil feedback is an important mechanism that can maintain species diversity and explain patterns of tree-species relative abundance in tropical forests.

  2. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions

    NASA Astrophysics Data System (ADS)

    Helin, Aku; Sietiö, Outi-Maaria; Heinonsalo, Jussi; Bäck, Jaana; Riekkola, Marja-Liisa; Parshintsev, Jevgeni

    2017-11-01

    Primary biological aerosol particles (PBAPs) are ubiquitous in the atmosphere and constitute ˜ 30 % of atmospheric aerosol particle mass in sizes > 1 µm. PBAP components, such as bacteria, fungi and pollen, may affect the climate by acting as cloud-active particles, thus having an effect on cloud and precipitation formation processes. In this study, size-segregated aerosol samples (< 1.0, 1-2.5, 2.5-10 and > 10 µm) were collected in boreal forest (Hyytiälä, Finland) during a 9-month period covering all seasons and analysed for free amino acids (FAAs), DNA concentration and microorganism (bacteria, Pseudomonas and fungi). Measurements were performed using tandem mass spectrometry, spectrophotometry and qPCR, respectively. Meteorological parameters and statistical analysis were used to study their atmospheric implication for results. Distinct annual patterns of PBAP components were observed, late spring and autumn being seasons of dominant occurrence. Elevated abundances of FAAs and bacteria were observed during the local pollen season, whereas fungi were observed at the highest level during autumn. Meteorological parameters such as air and soil temperature, radiation and rainfall were observed to possess a close relationship with PBAP abundances on an annual scale.

  3. Polychaete richness and abundance enhanced in anthropogenically modified estuaries despite high concentrations of toxic contaminants.

    PubMed

    Dafforn, Katherine A; Kelaher, Brendan P; Simpson, Stuart L; Coleman, Melinda A; Hutchings, Pat A; Clark, Graeme F; Knott, Nathan A; Doblin, Martina A; Johnston, Emma L

    2013-01-01

    Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a 'positive' response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively 'pristine' estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification.

  4. Polychaete Richness and Abundance Enhanced in Anthropogenically Modified Estuaries Despite High Concentrations of Toxic Contaminants

    PubMed Central

    Dafforn, Katherine A.; Kelaher, Brendan P.; Simpson, Stuart L.; Coleman, Melinda A.; Hutchings, Pat A.; Clark, Graeme F.; Knott, Nathan A.; Doblin, Martina A.; Johnston, Emma L.

    2013-01-01

    Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a ‘positive’ response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively ‘pristine’ estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification. PMID:24098816

  5. ICPD-a new peak detection algorithm for LC/MS.

    PubMed

    Zhang, Jianqiu; Haskins, William

    2010-12-01

    The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods.

  6. The Pattern of Change in the Abundances of Specific Bacterioplankton Groups Is Consistent across Different Nutrient-Enriched Habitats in Crete

    PubMed Central

    Fodelianakis, Stilianos; Papageorgiou, Nafsika; Pitta, Paraskevi; Kasapidis, Panagiotis; Karakassis, Ioannis

    2014-01-01

    A common source of disturbance for coastal aquatic habitats is nutrient enrichment through anthropogenic activities. Although the water column bacterioplankton communities in these environments have been characterized in some cases, changes in α-diversity and/or the abundances of specific taxonomic groups across enriched habitats remain unclear. Here, we investigated the bacterial community changes at three different nutrient-enriched and adjacent undisturbed habitats along the north coast of Crete, Greece: a fish farm, a closed bay within a town with low water renewal rates, and a city port where the level of nutrient enrichment and the trophic status of the habitat were different. Even though changes in α-diversity were different at each site, we observed across the sites a common change pattern accounting for most of the community variation for five of the most abundant bacterial groups: a decrease in the abundance of the Pelagibacteraceae and SAR86 and an increase in the abundance of the Alteromonadaceae, Rhodobacteraceae, and Cryomorphaceae in the impacted sites. The abundances of the groups that increased and decreased in the impacted sites were significantly correlated (positively and negatively, respectively) with the total heterotrophic bacterial counts and the concentrations of dissolved organic carbon and/or dissolved nitrogen and chlorophyll α, indicating that the common change pattern was associated with nutrient enrichment. Our results provide an in situ indication concerning the association of specific bacterioplankton groups with nutrient enrichment. These groups could potentially be used as indicators for nutrient enrichment if the pattern is confirmed over a broader spatial and temporal scale by future studies. PMID:24747897

  7. Application of Ecosystem Models to Assess Environmental Drivers of Mosquito Abundance and Virus Transmission Risk and Associated Public Health Implications of Climate and Land Use Change

    NASA Astrophysics Data System (ADS)

    Melton, F.; Barker, C.; Park, B.; Reisen, W.; Michaelis, A.; Wang, W.; Hashimoto, H.; Milesi, C.; Hiatt, S.; Nemani, R.

    2008-12-01

    The NASA Terrestrial Observation and Prediction System (TOPS) is a modeling framework that integrates satellite observations, meteorological observations, and ancillary data to support monitoring and modeling of ecosystem and land surface conditions in near real-time. TOPS provides spatially continuous gridded estimates of a suite of measurements describing environmental conditions, and these data products are currently being applied to support the development of new models capable of forecasting estimated mosquito abundance and transmission risk for mosquito-borne diseases such as West Nile virus. We present results from the modeling analyses, describe their incorporation into the California Vectorborne Disease Surveillance System, and describe possible implications of projected climate and land use change for patterns in mosquito abundance and transmission risk for West Nile virus in California.

  8. THE INTERMEDIATE NEUTRON-CAPTURE PROCESS AND CARBON-ENHANCED METAL-POOR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampel, Melanie; Stancliffe, Richard J.; Lugaro, Maria

    Carbon-enhanced metal-poor (CEMP) stars in the Galactic Halo display enrichments in heavy elements associated with either the s (slow) or the r (rapid) neutron-capture process (e.g., barium and europium, respectively), and in some cases they display evidence of both. The abundance patterns of these CEMP- s / r stars, which show both Ba and Eu enrichment, are particularly puzzling, since the s and the r processes require neutron densities that are more than ten orders of magnitude apart and, hence, are thought to occur in very different stellar sites with very different physical conditions. We investigate whether the abundance patternsmore » of CEMP- s / r stars can arise from the nucleosynthesis of the intermediate neutron-capture process (the i process), which is characterized by neutron densities between those of the s and the r processes. Using nuclear network calculations, we study neutron capture nucleosynthesis at different constant neutron densities n ranging from 10{sup 7}–10{sup 15} cm{sup -3}. With respect to the classical s process resulting from neutron densities on the lowest side of this range, neutron densities on the highest side result in abundance patterns, which show an increased production of heavy s -process and r -process elements, but similar abundances of the light s -process elements. Such high values of n may occur in the thermal pulses of asymptotic giant branch stars due to proton ingestion episodes. Comparison to the surface abundances of 20 CEMP- s / r stars shows that our modeled i -process abundances successfully reproduce observed abundance patterns, which could not be previously explained by s -process nucleosynthesis. Because the i -process models fit the abundances of CEMP- s / r stars so well, we propose that this class should be renamed as CEMP- i .« less

  9. Seasonal Diversity Patterns of a Coastal Synechococcus Population

    NASA Astrophysics Data System (ADS)

    Hunter-Cevera, K. R.; Sosik, H. M.; Neubert, M.; Hammar, K.; Post, A.

    2016-02-01

    Understanding how environmental and ecological factors determine phytoplankton species abundances requires knowledge of the diversity present within a population. For the important primary producer Synechococcus, clades demonstrate differences in temperature tolerance, light acclimation, grazer palatability, and more. Marine Synechococcus populations are often composed of more than one clade, and overall population dynamics will be governed by the types of cells present and by their individual physiological capabilities. We investigate the diversity of the Synechococcus assemblage at the Martha's Vineyard Coastal Observatory with high-throughput sequencing of the V6 hypervariable region of the 16S rRNA gene. Small nucleotide differences within this region allow for resolution of distinct phylotypes that can have a direct correspondence to the well-defined Synechococcus clades. From a three-year time series, we find that the Synechococcus population is dominated by 5 distinct phylotypes, and that each type exhibits a repeatable, seasonal pattern in relative abundance. We use compositional data analysis techniques to investigate the relationships between these patterns and environmental factors. We further interpret these patterns in the context of Synechococcus population dynamics assessed by automated, submersible flow cytometry (FlowCytobot). Observed diel changes in cell size distributions, coupled with a validated matrix population model, provide estimates of in situ population division rates. We find strong evidence that the main seasonal diversity patterns are governed by temperature, but that biological loss agents likely shape the diversity structure for certain times of year. For some phylotypes, relative abundance patterns are also related to light and nutrients. The composition of Synechococcus over the annual cycle appears to directly affect seasonal features of cell abundance patterns, such as the spring bloom.

  10. Relative abundance of small mammals in nest core areas and burned wintering areas of Mexican spotted owls in the Sacramento Mountains, New Mexico

    Treesearch

    Joseph L. Ganey; Sean C. Kyle; Todd A. Rawlinson; Darrell L. Apprill; James P Ward

    2014-01-01

    Mexican Spotted Owls (Strix occidentalis lucida) are common in older forests within their range but also persist in many areas burned by wildfire and may selectively forage in these areas. One hypothesis explaining this pattern postulates that prey abundance increases in burned areas following wildfire. We observed movement to wintering areas within areas burned by...

  11. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom.

    PubMed

    Xue, Yuanyuan; Chen, Huihuang; Yang, Jun R; Liu, Min; Huang, Bangqin; Yang, Jun

    2018-06-13

    Plankton communities normally consist of few abundant and many rare species, yet little is known about the ecological role of rare planktonic eukaryotes. Here we used a 18S ribosomal DNA sequencing approach to investigate the dynamics of rare planktonic eukaryotes, and to explore the co-occurrence patterns of abundant and rare eukaryotic plankton in a subtropical reservoir following a cyanobacterial bloom event. Our results showed that the bloom event significantly altered the eukaryotic plankton community composition and rare plankton diversity without affecting the diversity of abundant plankton. The similarities of both abundant and rare eukaryotic plankton subcommunities significantly declined with the increase in time-lag, but stronger temporal turnover was observed in rare taxa. Further, species turnover of both subcommunities explained a higher percentage of the community variation than species richness. Both deterministic and stochastic processes significantly influenced eukaryotic plankton community assembly, and the stochastic pattern (e.g., ecological drift) was particularly pronounced for rare taxa. Co-occurrence network analysis revealed that keystone taxa mainly belonged to rare species, which may play fundamental roles in network persistence. Importantly, covariations between rare and non-rare taxa were predominantly positive, implying multispecies cooperation might contribute to the stability and resilience of the microbial community. Overall, these findings expand current understanding of the ecological mechanisms and microbial interactions underlying plankton dynamics in changing aquatic ecosystems.

  12. Understanding relationships among abundance, extirpation, and climate at ecoregional scales.

    PubMed

    Beever, Erik A; Dobrowski, S Z; Long, J; Mynsberge, A R; Piekielek, N B

    2013-07-01

    Recent research on mountain-dwelling species has illustrated changes in species distributional patterns in response to climate change. Abundance of a species will likely provide an earlier warning indicator of change than will occupancy, yet relationships between abundance and climatic factors have received less attention. We tested whether predictors of counts of American pikas (Ochotona princeps) during surveys from the Great Basin region in 1994-1999 and 2003-2008 differed between the two periods. Additionally, we tested whether various modeled aspects of ecohydrology better predicted relative density than did average annual precipitation, and whether risk of site-wide extirpation predicted subsequent population counts of pikas. We observed several patterns of change in pika abundance at range edges that likely constitute early warnings of distributional shifts. Predictors of pika abundance differed strongly between the survey periods, as did pika extirpation patterns previously reported from this region. Additionally, maximum snowpack and growing-season precipitation resulted in better-supported models than those using average annual precipitation, and constituted two of the top three predictors of pika density in the 2000s surveys (affecting pikas perhaps via vegetation). Unexpectedly, we found that extirpation risk positively predicted subsequent population size. Our results emphasize the need to clarify mechanisms underlying biotic responses to recent climate change at organism-relevant scales, to inform management and conservation strategies for species of concern.

  13. Understanding relationships among abundance, extirpation,and climate at ecoregional scales

    USGS Publications Warehouse

    Beever, Erik A.; Solomon Dubrowski,; ,; ,; J. Long,; ,; A. Mysnberge,; Piekielek, N. B.

    2014-01-01

    Recent research on mountain-dwelling species has illustrated changes in species’ distributional patterns in response to climate change. Abundance of a species will likely provide an earlier warning indicator of change than will occupancy, yet relationships between abundance and climatic factors have received less attention. We tested whether predictors of counts of American pikas (Ochotona princeps) during surveys from the Great Basin region in 1994–1999 and 2003–2008 differed between the two periods. Additionally, we tested whether various modeled aspects of ecohydrology better predicted relative density than did average annual precipitation, and whether risk of site-wide extirpation predicted subsequent population counts of pikas. We observed several patterns of change in pika abundance at range edges that likely constitute early warnings of distributional shifts. Predictors of pika abundance differed strongly between the survey periods, as did pika extirpation patterns previously reported from this region. Additionally, maximum snowpack and growing-season precipitation resulted in better-supported models than those using average annual precipitation, and constituted two of the top three predictors of pika density in the 2000s surveys (affecting pikas perhaps via vegetation). Unexpectedly, we found that extirpation risk positively predicted subsequent population size. Our results emphasize the need to clarify mechanisms underlying biotic responses to recent climate change at organism-relevant scales, to inform management and conservation strategies for species of concern.

  14. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary.

    PubMed

    Wei, Guangshan; Li, Mingcong; Li, Fenge; Li, Han; Gao, Zheng

    2016-11-01

    There are close exchanges between sediment and water in estuaries; however, the patterns of prokaryotic community assembly in these two habitat types are still unclear. This study investigated the bacterial and archaeal abundance, diversity, and community composition in the sediment and the overlying water of the Yellow River estuary. Notably higher prokaryotic abundance and diversity were detected in the sediment than in the water, and bacterial abundance and diversity were remarkably higher than those of archaea. Furthermore, the ratio of bacterial to archaeal 16S rRNA gene abundance was significantly lower in the sediment than in the water. Bacterial communities at different taxonomic levels were apparently distinct between the sediment and water, but archaeal communities were not. The most dominant bacteria were affiliated with Deltaproteobacteria and Gammaproteobacteria in sediment and with Alphaproteobacteria and Betaproteobacteria in water. Euryarchaeota and Thaumarchaeota were the most abundant archaea in both habitats. Although distinct prokaryotic distribution patterns were observed, most of the dominant bacteria and archaea present were related to carbon, nitrogen, and sulfur cycling processes, such as methanogenesis, ammonia oxidation, and sulfate reduction. Unexpectedly, prokaryotes from the water showed a higher sensitivity to environmental factors, while only a few factors affected sediment communities. Additionally, some potential co-occurrence relationships between prokaryotes were also found in this study. These results suggested distinct distribution patterns of bacterial and archaeal communities between sediment and overlying water in this important temperate estuary, which may serve as a useful community model for the further ecological and evolutionary study of prokaryotes in estuarine ecosystems.

  15. Prospecting for Precious Metals in Ultra-Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    French, R. S.

    2000-05-01

    The chemical compositions of the most metal-poor halo stars are living records of the very early nucleosynthetic history of the Galaxy. Only a few prior generations, if not a single one, of element-donating supernovae could have been responsible for the heavy elements observed in ultra-metal-poor (UMP; [Fe/H] < --2.5) stars. Abundances of the heavy neutron-capture elements (Z > 30) can yield direct information about the supernova progenitors to UMP stars, and abundances of unstable thorium and uranium (Z = 90, 92) can potentially provide age estimates for the Galactic halo. Already, many studies have demonstrated that abundances of rare-earth elements (56 <= Z <= 72) in UMP stars are completely consistent with their production in rapid neutron-capture synthesis (r-process) events, usually believed to occur during supernovae explosions. Therefore, mapping the entire abundance pattern of UMP stars is of significant interest. In particular, abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) could provide crucial information about the so-called ``third r-process peak,'' and are critical to the radioactive-dating technique that uses unstable thorium as a chronometer. Until recently, abundance determinations for these elements have been virtually non-existent, as the strongest relevant transitions lay in the vacuum UV, inaccessible to ground-based observation. The availability of high-resolution space-based spectrometers has opened up new regions of spectral coverage, including precisely the range in wavelength needed to make these sensitive measurements. We have undertaken a study of about 10 metal-poor halo giants to determine the abundances of several of the heaviest neutron-capture elements including platinum, osmium, lead, and gold. Preliminary results indicate that the abundance pattern of heavy neutron-capture elements (56 <= Z <= 82) in UMP stars does mimic a scaled solar system r-process. Thus, the ability to estimate the initial abundances of thorium and uranium is greatly reinforced.

  16. Distribution of coccolithophores as a potential proxy in paleoceanography: The case of the Oman Sea monsoonal pattern

    NASA Astrophysics Data System (ADS)

    Mojtahedin, Elham; Hadavi, Fatemeh; Lak, Razyeh

    2015-02-01

    High abundances of coccoliths have been observed in surface sediment samples from near the coasts of the Oman Sea in February 2011. At the end of the NE monsoon, the locally observed high Gephyrocapsa oceanica production is hypothesized to respond to local injections of nutrient-rich deep water into the surface water due to sea-surface cooling leading to convection. The most abundant coccolithophore species are G. oceanica followed by Emiliania huxleyi, Helicosphaera carteri, Calcidiscus leptoporus. Some species, such as Gephyrocapsa muellerae, Gephyrocapsa ericsonii, Umbilicosphaera sibogae, Umbellosphaera tenuis and Florisphaera profunda, are rare. The G. oceanica suggested a prevalence of upwelling conditions or high supply of nutrients in the Oman Sea (especially West Jask) at the end of the NE monsoon. E. huxleyi showed low relative abundances at the end of the NE monsoon. Due to the location of the Oman Sea in low latitudes with high temperatures, we have observed low abundances of G. muellerae in the study area. Additionally, we have identified low abundances of G. ericsonii at the end of the NE monsoon. Helicosphaera carteri showed a clear negative response with decreasing amounts (relative abundances) at the end of the NE monsoon. C. leptoporus, U. sibogae and U. tenuis have very low relative abundances in the NE monsoon and declined extremely at the end of the NE monsoon. F. profunda, which is known to inhabit the lower photic zone (<100 m depht) was rarely observed in the samples.

  17. Host trait combinations drive abundance and canopy distribution of atmospheric bromeliad assemblages

    PubMed Central

    Chaves, Cleber Juliano Neves; Dyonisio, Júlio César; Rossatto, Davi Rodrigo

    2016-01-01

    Epiphytes are strongly dependent on the conditions created by their host's traits and a certain degree of specificity is expected between them, even if these species are largely abundant in a series of tree hosts of a given environment, as in the case of atmospheric bromeliads. Despite their considerable abundance in these environments, we hypothesize that stochasticity alone cannot explain the presence and abundance of atmospheric bromeliads on host trees, since host traits could have a greater influence on the establishment of these bromeliads. We used secondary and reforested seasonal forests and three distinct silvicultures to test whether species richness, phylogenetic diversity and functional diversity of trees can predict the differential presence, abundance and distribution of atmospheric bromeliads on hosts. We compared the observed parameters of their assemblage with null models and performed successive variance hierarchic partitions of abundance and distribution of the assemblage to detect the influence of multiple traits of the tree hosts. Our results do not indicate direct relationships between the abundance of atmospheric bromeliads and phylogenetic or functional diversity of trees, but instead indicate that bromeliads occurred on fewer tree species than expected by chance. We distinguished functional tree patterns that can improve or reduce the abundance of atmospheric bromeliads, and change their distribution on branches and trunk. While individual tree traits are related to increased abundance, species traits are related to the canopy distribution of atmospheric bromeliad assemblages. A balance among these tree functional patterns drives the atmospheric bromeliad assemblage of the forest patches. PMID:26888951

  18. Differentiation of regioisomeric aromatic ketocarboxylic acids by atmospheric pressure chemical ionization CAD tandem mass spectrometry in a linear quadrupole ion trap mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amundson, Lucas M.; Owen, Ben C.; Gallardo, Vanessa A.

    2011-01-01

    Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at differentmore » collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.« less

  19. Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning

    PubMed Central

    Wessén, Ella; Söderström, Mats; Stenberg, Maria; Bru, David; Hellman, Maria; Welsh, Allana; Thomsen, Frida; Klemedtson, Leif; Philippot, Laurent; Hallin, Sara

    2011-01-01

    Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers. PMID:21228891

  20. Impacts of urbanisation level and distance from potential natural mosquito breeding habitats on the abundance of canine dirofilariosis.

    PubMed

    Trájer, Attila; Rengei, Antal; Farkas-Iványi, Kinga; Bede-Fazekas, Ákos

    2016-09-01

    Dirofilariosis is an emerging mosquito-borne veterinary and medical problem in the Northern hemisphere. The ecological investigation of 56 canine dirofilariosis cases in new endemic locations was performed in Szeged, Hungary. The aim was to analyse the influence of the spatial patterns of dog abundance and the potential mosquito breeding habitats on the spatial occurrence patterns of dirofilariosis in the city of Szeged. The limnoecological characterisation was based on the fluvial habitat classification of Amoros of natural water bodies; the built environment was evaluated using the UrbanisationScore urbanisation intensity measuring software. Dirofilaria immitis accounted for 51% and D. repens for 34.3% of the dirofilariosis cases, and in 20% of the cases only the Knott's test was positive. It was concluded that most of the cases were related to locations with a medium to high urbanisation index, although the proximity of mosquito-bearing waters also played an important role in the observed spatial infection patterns. We found that the distance from potential mosquito habitats and the urbanisation intensity determine the abundance of dirofilariosis in urban environments.

  1. ICPD-A New Peak Detection Algorithm for LC/MS

    PubMed Central

    2010-01-01

    Background The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. Results In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. Conclusions The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods. PMID:21143790

  2. A new candidate for probing Population III nucleosynthesis with carbon-enhanced damped Lyα systems

    NASA Astrophysics Data System (ADS)

    Cooke, Ryan; Pettini, Max; Murphy, Michael T.

    2012-09-01

    We report the identification of a very metal poor damped Lyα system (DLA) at zabs = 3.067 295 that is modestly carbon enhanced, with an iron abundance of ˜1/700 solar ([Fe/H] =-2.84) and [C,O/Fe] ≃ +0.6. Such an abundance pattern is likely to be the result of nucleosynthesis by massive stars. On the basis of 17 metal absorption lines, we derive a 2σ upper limit on the DLA's kinetic temperature of TDLA ≤ 4700 K, which is broadly consistent with the range of spin temperature estimates for DLAs at this redshift and metallicity. While the best-fitting abundance pattern shows the expected hallmarks of Population III nucleosynthesis, models of high-mass Population II stars can match the abundance pattern almost as well. We discuss current limitations in distinguishing between these two scenarios and the marked improvement in identifying the remnants of Population III stars expected from the forthcoming generation of 30-m class telescopes. Based on observations collected at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  3. Microbial Characterization of Qatari Barchan Sand Dunes

    PubMed Central

    Chatziefthimiou, Aspassia D.; Nguyen, Hanh; Richer, Renee; Louge, Michel; Sultan, Ali A.; Schloss, Patrick; Hay, Anthony G.

    2016-01-01

    This study represents the first characterization of sand microbiota in migrating barchan sand dunes. Bacterial communities were studied through direct counts and cultivation, as well as 16S rRNA gene and metagenomic sequence analysis to gain an understanding of microbial abundance, diversity, and potential metabolic capabilities. Direct on-grain cell counts gave an average of 5.3 ± 0.4 x 105 cells g-1 of sand. Cultured isolates (N = 64) selected for 16S rRNA gene sequencing belonged to the phyla Actinobacteria (58%), Firmicutes (27%) and Proteobacteria (15%). Deep-sequencing of 16S rRNA gene amplicons from 18 dunes demonstrated a high relative abundance of Proteobacteria, particularly enteric bacteria, and a dune-specific-pattern of bacterial community composition that correlated with dune size. Shotgun metagenome sequences of two representative dunes were analyzed and found to have similar relative bacterial abundance, though the relative abundances of eukaryotic, viral and enterobacterial sequences were greater in sand from the dune closer to a camel-pen. Functional analysis revealed patterns similar to those observed in desert soils; however, the increased relative abundance of genes encoding sporulation and dormancy are consistent with the dune microbiome being well-adapted to the exceptionally hyper-arid Qatari desert. PMID:27655399

  4. Detailed abundance analysis of globular clusters in the Local Group. NGC 147, NGC 6822, and Messier 33

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.; Brodie, J. P.; Wasserman, A.; Strader, J.

    2018-06-01

    Context. Globular clusters (GCs) are emerging as powerful tracers of the chemical composition of extragalactic stellar populations. Aims: We present new abundance measurements for 11 GCs in the Local Group galaxies NGC 147, NGC 6822, and Messier 33. These are combined with previously published observations of four GCs in the Fornax and Wolf-Lundmark-Melotte (WLM) galaxies. Methods: The abundances were determined from analyses of integrated-light spectra obtained with the HIRES spectrograph on the Keck I telescope and with UVES on the Very Large Telescope (VLT). We used our analysis technique that was developed for this purpose and tested on Milky Way GCs. Results: We find that the clusters with [Fe/H] < -1.5 are all α-enhanced at about the same level as Milky Way GCs. Their Na abundances are also generally enhanced relative to Milky Way halo stars, suggesting that these extragalactic GCs resemble their Milky Way counterparts in containing large numbers of Na-rich stars. For [Fe/H] > -1.5, the GCs in M33 are also α-enhanced, while the GCs that belong to dwarfs (NGC 6822 SC7 and Fornax 4) have closer to solar-scaled α-element abundances. The abundance patterns in SC7 are remarkably similar to those in the Galactic GC Ruprecht 106, including significantly subsolar [Na/Fe] and [Ni/Fe] ratios. In NGC 147, the GCs with [Fe/H] < -2.0 account for about 6% of the total luminosity of stars in the same metallicity range, a lower fraction than those previously found in the Fornax and WLM galaxies, but substantially higher than in the Milky Way halo. Conclusions: At low metallicities, the abundance patterns suggest that GCs in the Milky Way, dwarf galaxies, and M33 experienced similar enrichment histories and/or processes. At higher metallicities, the lower levels of α-enhancement in the GCs found in dwarf galaxies resemble the abundance patterns observed in field stars in nearby dwarfs. Constraining the presence of multiple populations in these GCs is complicated by lack of information about detailed abundances in field stars of the corresponding metallicities. We suggest that correlations such as [Na/Fe] versus [Ni/Fe] may prove useful for this purpose if an accuracy of 0.1 dex or better can be reached for integrated-light measurements. Tables A.1-A.15 (individual abundance measurements) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A56

  5. SPECTROSCOPIC ANALYSIS OF METAL-POOR STARS FROM LAMOST: EARLY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hai-Ning; Zhao, Gang; Wang, Liang

    2015-01-10

    We report on early results from a pilot program searching for metal-poor stars with LAMOST and follow-up high-resolution observation acquired with the MIKE spectrograph attached to the Magellan II telescope. We performed detailed abundance analysis for eight objects with iron abundances [Fe/H] < -2.0, including five extremely metal-poor (EMP; [Fe/H] < -3.0) stars with two having [Fe/H] < -3.5. Among these objects, three are newly discovered EMP stars, one of which is confirmed for the first time with high-resolution spectral observations. Three program stars are regarded as carbon-enhanced metal-poor (CEMP) stars, including two stars with no enhancement in their neutron-capturemore » elements, which thus possibly belong to the class of CEMP-no stars; one of these objects also exhibits significant enhancement in nitrogen, and is thus a potential carbon and nitrogen-enhanced metal-poor star. The [X/Fe] ratios of the sample stars generally agree with those reported in the literature for other metal-poor stars in the same [Fe/H] range. We also compared the abundance patterns of individual program stars with the average abundance pattern of metal-poor stars and find only one chemically peculiar object with abundances of at least two elements (other than C and N) showing deviations larger than 0.5 dex. The distribution of [Sr/Ba] versus [Ba/H] agrees that an additional nucleosynthesis mechanism is needed aside from a single r-process. Two program stars with extremely low abundances of Sr and Ba support the prospect that both main and weak r-processes may have operated during the early phase of Galactic chemical evolution. The distribution of [C/N] shows that there are two groups of carbon-normal giants with different degrees of mixing. However, it is difficult to explain the observed behavior of the [C/N] of the nitrogen-enhanced unevolved stars based on current data.« less

  6. Abundances in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer Anne

    We measured the abundances of 35 elements in 22 field red giants and a red giant in the globular cluster M92. We found the [Zn/Fe] ratio increases with decreasing [Fe/H], reaching ~0.3 at [Fe/H] = -3.0. While this is a larger [Zn/Fe] than found by previous investigators, it is not sufficient to account for the [Zn/Fe] observed in the damped Lyα systems. We test different models for the production of the s-process elements by comparing our [Y/Zr] values, which have been produced by the r- process, to predictions of what the s-process does not produce. We find that the models of Arlandini et al. (1999), which calculate s-process production in a model AGB star, agree the best. We then look at the r-process abundances across a wide range in mass. The [Y/Ba] values for most of our stars cluster around -0.30, but there are three outliers with [Y/Ba] values up to 1 dex higher. Thus the heavy element abundances do not show the same pattern from Z = 39 to Z = 56. However, our abundances ratios from Pd (Z = 46) to Yb (Z = 70) are consistent with a scaled solar system r- process pattern, arguing that at least the heavy r- process elements are made in a universal pattern. If we assume that this same pattern hold through thorium, we can determine the ages of our stars from the present abundance of radioactive thorium and an initial thorium abundance based on the abundance of stable heavy elements. Our results for five stars are consistent with those stars being the same age. Our mean age is 10.8 +/- 2 Gyr. However that result depends critically on the assumed Th/stable ratio, which we adopt from models of the r-process. For an average age of 15 Gyrs, the initial Th/Eu ratio we would need is 0.590. Finally, the [element/Fe] ratios for elements in the iron group and lower do not show any dispersion, unlike for the r- process elements such as Y and Ba. Therefore the individual contributions of supernovae have been erased for the lighter elements.

  7. Evidence for competitive dominance of Pink salmon (Oncorhynchus gorbuscha) over other Salmonids in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.

    2004-01-01

    Relatively little is known about fish species interactions in offshore areas of the world's oceans because adequate experimental controls are typically unavailable in such vast areas. However, pink salmon (Oncorhynchus gorbuscha) are numerous and have an alternating-year pattern of abundance that provides a natural experimental control to test for interspecific competition in the North Pacific Ocean and Bering Sea. Since a number of studies have recently examined pink salmon interactions with other salmon, we reviewed them in an effort to describe patterns of interaction over broad regions of the ocean. Research consistently indicated that pink salmon significantly altered prey abundance of other salmon species (e.g., zooplankton, squid), leading to altered diet, reduced total prey consumption and growth, delayed maturation, and reduced survival, depending on species and locale. Reduced survival was observed in chum salmon (O. keta) and Chinook salmon (O. tshawytscha) originating from Puget Sound and in Bristol Bay sockeye salmon (O. nerka). Growth of pink salmon was not measurably affected by other salmon species, but their growth was sometimes inversely related to their own abundance. In all marine studies, pink salmon affected other species through exploitation of prey resources rather than interference. Interspecific competition was observed in nearshore and offshore waters of the North Pacific Ocean and Bering Sea, and one study documented competition between species originating from different continents. Climate change had variable effects on competition. In the North Pacific Ocean, competition was observed before and after the ocean regime shift in 1977 that significantly altered abundances of many marine species, whereas a study in the Pacific Northwest reported a shift from predation- to competition-based mortality in response to the 1982/1983 El Nino. Key traits of pink salmon that influenced competition with other salmonids included great abundance, high consumption rates and rapid growth, degree of diet overlap or consumption of lower trophic level prey, and early migration timing into the ocean. The consistent pattern of findings from multiple regions of the ocean provides evidence that interspecific competition can significantly influence salmon population dynamics and that pink salmon may be the dominant competitor among salmon in marine waters. ?? Springer 2005.

  8. Abundance models improve spatial and temporal prioritization of conservation resources.

    PubMed

    Johnston, Alison; Fink, Daniel; Reynolds, Mark D; Hochachka, Wesley M; Sullivan, Brian L; Bruns, Nicholas E; Hallstein, Eric; Merrifield, Matt S; Matsumoto, Sandi; Kelling, Steve

    2015-10-01

    Conservation prioritization requires knowledge about organism distribution and density. This information is often inferred from models that estimate the probability of species occurrence rather than from models that estimate species abundance, because abundance data are harder to obtain and model. However, occurrence and abundance may not display similar patterns and therefore development of robust, scalable, abundance models is critical to ensuring that scarce conservation resources are applied where they can have the greatest benefits. Motivated by a dynamic land conservation program, we develop and assess a general method for modeling relative abundance using citizen science monitoring data. Weekly estimates of relative abundance and occurrence were compared for prioritizing times and locations of conservation actions for migratory waterbird species in California, USA. We found that abundance estimates consistently provided better rankings of observed counts than occurrence estimates. Additionally, the relationship between abundance and occurrence was nonlinear and varied by species and season. Across species, locations prioritized by occurrence models had only 10-58% overlap with locations prioritized by abundance models, highlighting that occurrence models will not typically identify the locations of highest abundance that are vital for conservation of populations.

  9. Trace-element abundances in several new ureilites

    NASA Technical Reports Server (NTRS)

    Boynton, William V.; Hill, Dolores H.

    1993-01-01

    Four new ureilites are analyzed for trace-element abundances. Frontier Mountain (FRO) 90054 is an augite-rich ureilite and has high rare earth element (REE) abundances with a pattern expected of augite. FRO 90036 and Acfer 277 have REE patterns similar to the V-shape pattern of other ureilites. Nuevo Mercurio (b) has very high REE abundances, but they look like they are due to terrestrial alteration. The siderophile-element pattern of these ureilites are similar to those of known ureilites.

  10. Abundance profiling of extremely metal-poor stars and supernova properties in the early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tominaga, Nozomu; Iwamoto, Nobuyuki; Nomoto, Ken'ichi, E-mail: tominaga@konan-u.ac.jp, E-mail: iwamoto.nobuyuki@jaea.go.jp, E-mail: nomoto@astron.s.u-tokyo.ac.jp

    2014-04-20

    After the big bang nucleosynthesis, the first heavy element enrichment in the universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abundance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well reproduce, individually, the abundance patterns of 48 such metal-poor stars as [Fe/H] ≲ – 3.5. We then derivemore » relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C + N)/Fe] and [(C + N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: the distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the present day SNe but shows an extended tail down to ∼10{sup –2}-10{sup –5} M {sub ☉}, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present-day, stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early universe.« less

  11. Rare earth element abundances in presolar SiC

    NASA Astrophysics Data System (ADS)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  12. A uniform contribution of core-collapse and type Ia supernovae to the chemical enrichment pattern in the outskirts of the Virgo Cluster

    DOE PAGES

    Simionescu, A.; Werner, N.; Urban, O.; ...

    2015-09-24

    We present the first measurements of the abundances of α-elements (Mg, Si, and S) extending out beyond the virial radius of a cluster of galaxies. Our results, based on Suzaku Key Project observations of the Virgo Cluster, show that the chemical composition of the intracluster medium is consistent with being constant on large scales, with a flat distribution of the Si/Fe, S/Fe, and Mg/Fe ratios as a function of radius and azimuth out to 1.4 Mpc (1.3 r 200). Chemical enrichment of the intergalactic medium due solely to core-collapse supernovae (SNcc) is excluded with very high significance; instead, the measuredmore » metal abundance ratios are generally consistent with the solar value. The uniform metal abundance ratios observed today are likely the result of an early phase of enrichment and mixing, with both SNcc and SNe Ia contributing to the metal budget during the period of peak star formation activity at redshifts of 2–3. Furthermore, we estimate the ratio between the number of SNe Ia and the total number of supernovae enriching the intergalactic medium to be between 12% and 37%, broadly consistent with the metal abundance patterns in our own Galaxy or with the SN Ia contribution estimated for the cluster cores.« less

  13. A UNIFORM CONTRIBUTION OF CORE-COLLAPSE AND TYPE Ia SUPERNOVAE TO THE CHEMICAL ENRICHMENT PATTERN IN THE OUTSKIRTS OF THE VIRGO CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simionescu, A.; Ichinohe, Y.; Werner, N.

    2015-10-01

    We present the first measurements of the abundances of α-elements (Mg, Si, and S) extending out beyond the virial radius of a cluster of galaxies. Our results, based on Suzaku Key Project observations of the Virgo Cluster, show that the chemical composition of the intracluster medium is consistent with being constant on large scales, with a flat distribution of the Si/Fe, S/Fe, and Mg/Fe ratios as a function of radius and azimuth out to 1.4 Mpc (1.3 r{sub 200}). Chemical enrichment of the intergalactic medium due solely to core-collapse supernovae (SNcc) is excluded with very high significance; instead, the measuredmore » metal abundance ratios are generally consistent with the solar value. The uniform metal abundance ratios observed today are likely the result of an early phase of enrichment and mixing, with both SNcc and SNe Ia contributing to the metal budget during the period of peak star formation activity at redshifts of 2–3. We estimate the ratio between the number of SNe Ia and the total number of supernovae enriching the intergalactic medium to be between 12% and 37%, broadly consistent with the metal abundance patterns in our own Galaxy or with the SN Ia contribution estimated for the cluster cores.« less

  14. Stellar Abundance Observations and Heavy Element Formation

    NASA Astrophysics Data System (ADS)

    Cowan, J. J.

    2005-05-01

    Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy -- the progenitors of the halo stars -- responsible for neutron-capture synthesis of the heavy elements. Abundance comparisons among the r-process-rich halo stars show that the heaviest neutron-capture elements (i.e., Ba and above) are consistent with a scaled solar system r-process abundance distribution, while the lighter neutron-capture elements do not conform to the solar pattern. These comparisons suggest the possibility of two r-process sites in stars. The large star-to-star scatter observed in the abundances of neutron-capture element/iron ratios at low metallicities -- which disappears with increasing metallicity or [Fe/H] -- suggests the formation of these heavy elements (presumably from certain types of supernovae) was rare in the early Galaxy. The stellar abundances also indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy and provide insight into Galactic chemical evolution. Finally, the detection of thorium and uranium in halo and globular cluster stars offers an independent age-dating technique that can put lower limits on the age of the Galaxy, and hence the Universe. This work has been supported in part by NSF grant AST 03-07279 (J.J.C.) and by STScI grants GO-8111, GO-8342 and GO-9359.

  15. Host trait combinations drive abundance and canopy distribution of atmospheric bromeliad assemblages.

    PubMed

    Chaves, Cleber Juliano Neves; Dyonisio, Júlio César; Rossatto, Davi Rodrigo

    2016-01-01

    Epiphytes are strongly dependent on the conditions created by their host's traits and a certain degree of specificity is expected between them, even if these species are largely abundant in a series of tree hosts of a given environment, as in the case of atmospheric bromeliads. Despite their considerable abundance in these environments, we hypothesize that stochasticity alone cannot explain the presence and abundance of atmospheric bromeliads on host trees, since host traits could have a greater influence on the establishment of these bromeliads. We used secondary and reforested seasonal forests and three distinct silvicultures to test whether species richness, phylogenetic diversity and functional diversity of trees can predict the differential presence, abundance and distribution of atmospheric bromeliads on hosts. We compared the observed parameters of their assemblage with null models and performed successive variance hierarchic partitions of abundance and distribution of the assemblage to detect the influence of multiple traits of the tree hosts. Our results do not indicate direct relationships between the abundance of atmospheric bromeliads and phylogenetic or functional diversity of trees, but instead indicate that bromeliads occurred on fewer tree species than expected by chance. We distinguished functional tree patterns that can improve or reduce the abundance of atmospheric bromeliads, and change their distribution on branches and trunk. While individual tree traits are related to increased abundance, species traits are related to the canopy distribution of atmospheric bromeliad assemblages. A balance among these tree functional patterns drives the atmospheric bromeliad assemblage of the forest patches. Published by Oxford University Press on behalf of the Annals of Botany Company.

  16. Seasonal Patterns of Mixed Species Groups in Large East African Mammals

    PubMed Central

    Kiffner, Christian; Kioko, John; Leweri, Cecilia; Krause, Stefan

    2014-01-01

    Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease) of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups. PMID:25470495

  17. Seasonal patterns of mixed species groups in large East African mammals.

    PubMed

    Kiffner, Christian; Kioko, John; Leweri, Cecilia; Krause, Stefan

    2014-01-01

    Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease) of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups.

  18. Globally invasive, withdrawing at home: Aedes albopictus and Aedes japonicus facing the rise of Aedes flavopictus

    NASA Astrophysics Data System (ADS)

    Chaves, Luis Fernando

    2016-11-01

    It has been suggested that climate change may have facilitated the global expansion of invasive disease vectors, since several species have expanded their range as temperatures have warmed. Here, we present results from observations on two major global invasive mosquito vectors (Diptera: Culicidae), Aedes albopictus (Skuse) and Aedes japonicus (Theobald), across the altitudinal range of Mt. Konpira, Nagasaki, Japan, a location within their native range, where Aedes flavopictus Yamada, formerly a rare species, has now become dominant. Spatial abundance patterns of the three species suggest that temperature is an important factor influencing their adult distribution across the altitudinal range of Mt. Konpira. Temporal abundance patterns, by contrast, were associated with rainfall and showed signals of density-dependent regulation in the three species. The spatial and temporal analysis of abundance patterns showed that Ae. flavopictus and Ae. albopictus were negatively associated, even when accounting for differential impacts of weather and other environmental factors in their co-occurrence patterns. Our results highlight a contingency in the expansion of invasive vectors, the potential emergence of changes in their interactions with species in their native communities, and raise the question of whether these changes might be useful to predict the emergence of future invasive vectors.

  19. Assemblages of animals around urban structures: testing hypotheses of patterns in sediments under boat-mooring pontoons.

    PubMed

    Lindegarth, M

    2001-05-01

    Assemblages of animals in soft-sediments were studied in relation to pontoons for mooring private boats in two estuaries near Sydney, Australia. Based on previously observed patterns around other types of artificial structures, it was predicted that assemblages of animals under pontoons would be different from those in similar areas away from pontoons. Hypotheses about overall differences in average abundance and composition between sites with and without pontoons were tested, as were hypotheses about variable differences among and within estuaries. Analyses revealed that there were fewer crustaceans under pontoons in one estuary. The most conspicuous patterns related to pontoons were, however, differences in variability among sites with pontoons compared to sites without pontoons. Differences in spatial variability were found for the overall multivariate structure using Bray-Curtis dissimilarities and for abundances of most major taxa. Total abundance was approximately 60 times more variable among sites without pontoons and number of taxa were seven times more variable among sites with pontoons. Such patterns indicate that impacts of pontoons occur at some sites but not at others. This may be explained by intrinsic differences among sites or by differences in practices for maintenance. Predictions from these two contrasting models need to be tested in order to achieve efficient management of this type of structure.

  20. Why abundant tropical tree species are phylogenetically old.

    PubMed

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-10-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community.

  1. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear advantage of the smaller-seeded species over the larger-seeded species with increases in the grazing level.

  2. Long-term Records of Pacific Salmon Abundance From Sediment Core Analysis: Relationships to Past Climatic Change, and Implications for the Future

    NASA Astrophysics Data System (ADS)

    Finney, B.

    2002-12-01

    The response of Pacific salmon to future climatic change is uncertain, but will have large impacts on the economy, culture and ecology of the North Pacific Rim. Relationships between sockeye salmon populations and climatic change can be determined by analyzing sediment cores from lakes where sockeye return to spawn. Sockeye salmon return to their natal lake system to spawn and subsequently die following 2 - 3 years of feeding in the North Pacific Ocean. Sockeye salmon abundance can be reconstructed from stable nitrogen isotope analysis of lake sediment cores as returning sockeye transport significant quantities of N, relatively enriched in N-15, from the ocean to freshwater systems. Temporal changes in the input of salmon-derived N, and hence salmon abundance, can be quantified through downcore analysis of N isotopes. Reconstructions of sockeye salmon abundance from lakes in several regions of Alaska show similar temporal patterns, with variability occurring on decadal to millennial timescales. Over the past 2000 years, shifts in sockeye salmon abundance far exceed the historical decadal-scale variability. A decline occurred from about 100 BC - 800 AD, but salmon were consistently more abundant 1200 - 1900 AD. Declines since 1900 AD coincide with the period of extensive commercial fishing. Correspondence between these records and paleoclimatic data suggest that changes in salmon abundance are related to large scale climatic changes over the North Pacific. For example, the increase in salmon abundance c.a. 1200 AD corresponds to a period of glacial advance in southern Alaska, and a shift to drier conditions in western North America. Although the regionally coherent patterns in reconstructed salmon abundance are consistent with the hypothesis that climate is an important driver, the relationships do not always follow patterns observed in the 20th century. A main feature of recorded climate variability in this region is the alternation between multi-decade periods of above and below average strength of the Aleutian Low pressure system. During periods of stronger low pressure, sea surface temperature anomalies are warm in the northeast Pacific and cool in the central and northwest Pacific, a condition referred to as the positive phase of the Pacific Interdecadal Oscillation (PDO). Historically, during positive phases of the PDO Alaska salmon abundance is generally high. Consistent with this pattern, records of reconstructed sockeye salmon generally show higher abundance during warm periods over the past 300 years. However, the long-term trend suggests generally higher abundance during the cooler Little Ice Age, which southern Alaska glacial records suggest occurred between about 1200 - 1900 AD. The apparent complexity of salmon-climate relationships may be due to several factors. Long-term paleoclimate records from this region suggest additional modes of North Pacific climate variability, relative to the PDO. In addition, data on primary and secondary production in the Northeast Pacific Ocean indicates that climatic forcing has a direct impact on lower trophic levels, which subsequently affects salmon production. Thus records of ocean productivity, which are currently unavailable, may provide a mechanistic linkage between climate change and salmon abundance. The long-term perspective provided by the paleodata suggest that historical observations provide a limited understanding of how Pacific salmon respond to climatic change, and point to important areas of research necessary to better predict future responses.

  3. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from highmore » levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.« less

  4. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ~ –2.6 and are not α-enhanced ([α/Fe] ~ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility ofmore » a different mechanism for the enrichment of Hor I compared to other satellites. Here, we discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud.« less

  5. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    DOE PAGES

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; ...

    2018-01-11

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ~ –2.6 and are not α-enhanced ([α/Fe] ~ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility ofmore » a different mechanism for the enrichment of Hor I compared to other satellites. Here, we discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud.« less

  6. Abundance and fragmentation patterns of the ecosystem engineer Lithophyllum byssoides (Lamarck) Foslie along the Iberian Peninsula Atlantic coast. Conservation and management implications

    NASA Astrophysics Data System (ADS)

    Veiga, Puri; Rubal, Marcos; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel

    2013-10-01

    The crustose calcareous red macroalgae Lithophyllum byssoides (Lamarck) Foslie is a common ecosystem engineer along the Atlantic and Mediterranean coast of the Iberian Peninsula. This species is threatened by several anthropogenic impacts acting at different spatial scales, such as pollution or global warming. The aim of this study is to identify scales of spatial variation in the abundance and fragmentation patterns of L. byssoides along the Atlantic coast of the Iberian Peninsula. For this aim we used a hierarchical sampling design considering four spatial scales (from metres to 100s of kilometres). Results of the present study indicated no significant variability among regions investigated whereas significant variability was found at the scales of shore and site in spatial patterns of abundance and fragmentation of L. byssoides. Variance components were higher at the spatial scale of shore for abundance and fragmentation of L. byssoides with the only exception of percentage cover and thus, processes acting at the scale of 10s of kilometres seem to be more relevant in shaping the spatial variability both in abundance and fragmentation of L. byssoides. These results provided quantitative estimates of abundance and fragmentation of L. byssoides at the Atlantic coast of the Iberian Peninsula establishing the observational basis for future assessment, monitoring and experimental investigations to identify the processes and anthropogenic impacts affecting L. byssoides populations. Finally we have also identified percentage cover and patch density as the best variables for long-term monitoring programs aimed to detect future anthropogenic impacts on L. byssoides. Therefore, our results have important implications for conservation and management of this valuable ecosystem engineer along the Atlantic coast of the Iberian Peninsula.

  7. Towards Clinical Applications of Blood-Borne miRNA Signatures: The Influence of the Anticoagulant EDTA on miRNA Abundance.

    PubMed

    Leidinger, Petra; Backes, Christina; Rheinheimer, Stefanie; Keller, Andreas; Meese, Eckart

    2015-01-01

    Circulating microRNAs (miRNAs) from blood are increasingly recognized as biomarker candidates for human diseases. Clinical routine settings frequently include blood sampling in tubes with EDTA as anticoagulant without considering the influence of phlebotomy on the overall miRNA expression pattern. We collected blood samples from six healthy individuals each in an EDTA blood collection tube. Subsequently, the blood was transferred into PAXgeneTM tubes at three different time points, i.e. directly (0 min), 10 min, and 2 h after phlebotomy. As control blood was also directly collected in PAXgeneTM blood RNA tubes that contain a reagent to directly lyse blood cells and stabilize their content. For all six blood donors at the four conditions (24 samples) we analyzed the abundance of 1,205 miRNAs by human Agilent miRNA V16 microarrays. While we found generally a homogenous pattern of the miRNA abundance in all 24 samples, the duration of the EDTA treatment appears to influence the miRNA abundance of specific miRNAs. The most significant changes are observed after longer EDTA exposition. Overall, the impact of the different blood sample conditions on the miRNA pattern was substantially lower than intra-individual variations. While samples belonging to one of the six individuals mostly cluster together, there was no comparable clustering for any of the four tested blood sampling conditions. The most affected miRNA was miR-769-3p that was not detected in any of the six PAXgene blood samples, but in all EDTA 2h samples. Accordingly, hsa-miR-769-3p was also the only miRNA that showed a significantly different abundance between the 4 blood sample conditions by an ANOVA analysis (Benjamini-Hochberg adjusted p-value of 0.003). Validation by qRT-PCR confirmed this finding. The pattern of blood-borne miRNA abundance is rather homogenous between the four tested blood sample conditions of six blood donors. There was a clustering between the miRNA profiles that belong to a specific blood donor, but not between any of the four tested blood sampling conditions. The results show a limited overall impact of the blood sampling conditions on the miRNA pattern. Notwithstanding, the abundance of single miRNAs can be significantly altered by different blood sampling conditions.

  8. Impact of Environmental and Disturbance Variables on Avian Community Structure along a Gradient of Urbanization in Jamshedpur, India

    PubMed Central

    Verma, Sushant Kumar; Murmu, Thakur Das

    2015-01-01

    Gradient pattern analysis was used to investigate the impact of environmental and disturbance variables on species richness, species diversity, abundance and seasonal variation of birds in and around Jamshedpur, which is one of the fastest growing cities of India. It was observed that avian community structure is highly influenced by the vegetation habitat variables, food availability and human-related disturbance variables. A total of 61 species belonging to 33 families were recorded from the suburban area. 55 species belonging to 32 families were observed in nearby wildland habitat consisting of natural vegetation whereas only 26 species belonging to 18 families were observed in urban area. Results indicated that the suburban habitat had more complex bird community structure in terms of higher species richness, higher species diversity and higher evenness in comparison to urban and wildland habitat. Bird species richness and diversity varied across seasons. Maximum species richness and diversity was observed during spring season in all type of habitat. Most of the birds observed in urban areas were found to belong to either rare or irregular category on the basis of their abundance. The observed pattern of avian community structure is due to combined effect of both environmental and human related disturbance variables. PMID:26218583

  9. Changing abundance of Hexagenia mayfly nymphs in western Lake Erie of the Laurentian Great Lakes: Impediments to assessment of lake recovery?

    USGS Publications Warehouse

    Schloesser, D.W.; Nalepa, T.F.

    2001-01-01

    After an absence of 40 years, mayfly nymphs of the genus Hexagenia were found in sediments of western Lake Erie of the Laurentian Great Lakes in 1993 and, by 1997, were abundant enough to meet a mayfly-density management goal (ca. 350 nymphs m—2) based on pollution-abatement programs. We sampled nymphs in western Lake Erie and Lake St. Clair, located upstream of western Lake Erie, to determine the importance of seasonal abundance and life-history characteristics of nymphs (e.g., emergence and recruitment) on density estimates relative to the mayfly-density management goal. Two types of density patterns were observed: (1) densities were relatively high in spring and gradually decreased through late summer (observed in Lake Erie and Lake St. Clair in 1997 and Lake St. Clair in 1999) and (2) densities were relatively high in spring, gradually decreased to mid summer, abruptly decreased in mid summer, and then increased between summer and late fall (Lake Erie and Lake St. Clair in 1998 and Lake Erie in 1999). Length-frequency distributions of nymphs and observations of adults indicate that the primary cause for the two density patterns was attributed to failed (first pattern) and successful (second pattern) reproduction and emergence of nymphs into adults in mid summer. Gradual declines in densities were attributed to mortality of nymphs. Our results indicate that caution should be used when evaluating progress of pollution-abatement programs based on mayfly densities because recruitment success is variable both between and within years. Additionally, the interpretation of progress toward management goals, relative to the restoration of Hexagenia populations in the Great Lakes and possibly other water bodies throughout the world, is influenced by the number of years in which consequtive collections are made.

  10. Spatiotemporal patterns of phytoplankton composition and abundance in the Maryland Coastal Bays: The influence of freshwater discharge and anthropogenic activities

    NASA Astrophysics Data System (ADS)

    Oseji, Ozuem F.; Chigbu, Paulinus; Oghenekaro, Efeturi; Waguespack, Yan; Chen, Nianhong

    2018-07-01

    The spatial and temporal variations in phytoplankton abundance and community structure in the northern and southern parts of the Maryland Coastal Bays (MCBs) that differ in anthropogenic activities and hydrological characteristics were studied in 2012 and 2013 using photosynthetic pigments as biomarkers. Phytoplankton pigment biomass and diversity were generally higher in the northern bays that receive high nutrient input from St. Martin River, than in the southern bays where nutrient levels were comparatively low. Sites close to the mouths of tributaries in northern and southern bays had higher nutrient levels, which favored the development of dinoflagellates, and nano- and picophytoplankton, than sites closer to the inlets. The microplankton dominated the phytoplankton community in spring (>90%) and decreased in relative abundance into fall (<60%) whereas nanoplankton peaked in summer or fall. Picoplankton relative abundance increased from late spring (<10%, March 2012 & 2013) to summer (40%, July 2012 and August 2013) and was correlated positively with NH4+ and negatively with salinity. The observed spatial and seasonal patterns of phytoplankton relative abundance and diversity are likely due to changes in nutrient concentrations and ratios, driven by variations in freshwater discharge, and selective grazing of phytoplankton. Water quality management in the MCBs should continue to focus on reducing nutrient inputs into the bays.

  11. Large brown seaweeds of the British Isles: Evidence of changes in abundance over four decades

    NASA Astrophysics Data System (ADS)

    Yesson, Chris; Bush, Laura E.; Davies, Andrew J.; Maggs, Christine A.; Brodie, Juliet

    2015-03-01

    The large brown seaweeds (macroalgae) are keystone species in intertidal and shallow subtidal marine ecosystems and are harvested for food and other products. Recently, there have been sporadic, often anecdotal, reports of local abundance declines around the British Isles, but regional surveys have rarely revisited sites to determine possible changes. An assessment was undertaken of changes in the abundance of large brown seaweeds around the British Isles using historical survey data, and determination of whether any changes were linked with climate change. Data were analysed from multiple surveys for 14 habitat-forming and commercially important species of Phaeophyceae, covering orders Laminariales, Fucales and Tilopteridales. Changes in abundance were assessed for sites over the period 1974-2010. Trends in distribution were compared to summer and winter sea surface temperatures (SST). Results revealed regional patterns of both increase and decrease in abundance for multiple species, with significant declines in the south for kelp species and increases in northern and central areas for some kelp and wracks. Abundance patterns of 10 of the 14 species showed a significant association with SSTs, but there was a mixture of positive and negative responses. This is the first British Isles-wide observation of declining abundance of large brown seaweeds. Historical surveys provide useful data to examine trends in abundance, but the ad hoc nature of these studies limit the conclusions that can be drawn. Although the British Isles remains a stronghold for large brown algae, it is imperative that systematic surveys are undertaken to monitor changes.

  12. Seasonal and spatial distribution of bacterial biomass and the percentage of viable cells in a reservoir of Alabama

    USGS Publications Warehouse

    Tietjen, T.E.; Wetzel, R.G.

    2003-01-01

    Spatial community dynamics of bacterioplankton were evaluated along the length of the former stream channel of Elledge Lake, a small reservoir in western Alabama. The reservoir was strongly stratified from April to October with up to a 10??C temperature difference across the 1 m deep metalimnion. Bacterial biomass was highest during late summer, with a general pattern of increasing abundance from the inflowing river (???10 ??g C l-1) to the dam (???20-30 ??g C l-1). Bacterial numbers also increased following a >10-fold increase in turbidity associated with a major precipitation event, although only ???10% of these cells were viable. The percentage of viable cells generally increased through the stratified period with 50-70% viable cells in late summer. Overall, an average of 38% of bacterial cells were viable, with a range from <20 to 70%. Although these values were similar to those found by others, additional patterns were identified that have not been previously observed: a marked decline in viable cells was found following turbid storm inflows and increases in the percentage of viable cells occurred during spring warming and following autumnal mixing events. Although a modest increase in abundance occurred along the gradient from inflow down-reservoir to the dam, bacterial abundance did not increase near the dam in a pattern coincident with the commonly observed increased algal biomass in the lacustrine portion of reservoir ecosystems. The increases observed in bacterial viability moving from the inflowing rivers towards the dam and later in stratified periods stress the importance of differences in environmental conditions in time and space in regulating bacterial biomass and development, as well as of shifts that would be anticipated accompanying altered hydrological regimes under climatic change.

  13. Temporal patterns of phytoplankton abundance in the North Atlantic

    NASA Technical Reports Server (NTRS)

    Campbell, Janet W.

    1989-01-01

    A time series of CZCS images is being developed to study phytoplankton distribution patterns in the North Atlantic. The goal of this study is to observe temporal variability in phytoplankton pigments and other organic particulates, and to infer from these patterns the potential flux of biogenic materials from the euphotic layer to the deep ocean. Early results of this project are presented in this paper. Specifically, the satellite data used were 13 monthly composited images of CZCS data for the North Atlantic from January 1979 to January 1980. Results are presented for seasonal patterns along the 20 deg W meridian.

  14. Al-26, Pu-244, Ti-50, REE, and trace element abundances in hibonite grains from CM and CV meteorites

    NASA Technical Reports Server (NTRS)

    Fahey, A. J.; Mckeegan, K. D.; Zinner, E.; Goswami, J. N.

    1987-01-01

    Hibonites from the CM meteorites Murchison, Murray, and Cold Bokkeveld, and hibonites and Ti-rich pyroxene from the CV chondrite Allende are studied. Electron microprobe measurements of major element concentrations and track and ion probe measurements of Mg and Ti isotopic ratios, rare earth elements (REEs), and trace element abundances are analyzed. Correlations between isotopic anomalies in Ti, Al-26, Pu-244, and Mg-26(asterisk) are examined. Ti isotopic anomalies are compared with REE and trace element abundance patterns. Reasons for the lack of Al-26 in the hibonites are investigated and discussed. It is observed that there is no correlation between the Ti isotopic compositions, and the presence of Mg-26(asterisk), Pu-244, and REE and trace element patterns in individual hibonite samples. The data reveal that hibonites are not interstellar dust grains but formed on a short time scale and in localized regions of the early solar system.

  15. Nucleosynthesis in Primordial Hypernovae

    NASA Astrophysics Data System (ADS)

    Grimmett, J. J.; Heger, Alexander; Karakas, Amanda I.; Müller, Bernhard

    2018-06-01

    We investigate the relationship between explosion energy and nucleosynthesis in Population III supernovae and provide nucleosynthetic results for the explosions of stars with progenitor masses of 15 M⊙, 20 M⊙, 30 M⊙, 40 M⊙, 60 M⊙, and 80 M⊙, and explosion energies between approximately 1050 erg and 1053 erg. We find that the typical abundance pattern observed in metal-poor stars are best matched by supernovae with progenitor mass in the range 15 M⊙ - 30 M⊙, and explosion energy of ˜(5 - 10) × 1051 erg. In these models, a reverse shock caused by jumps in density between shells of different composition serves to decrease synthesis of chromium and manganese, which is favourable to matching the observed abundances in metal-poor stars. Spherically symmetric explosions of our models with progenitor mass ≥40 M⊙ do not provide yields that are compatible with the iron-peak abundances that are typically observed in metal-poor stars, however, by approximating the yields that we might expect from these models in highly aspherical explosions, we find indications that explosions of stars 40 M⊙ - 80 M⊙ with bipolar jets may be good candidates for the enrichment sources of metal-poor stars with enhanced carbon abundances.

  16. Behavior of Abundances in Chemically Peculiar Dwarf and Subgiant A-Type Stars: HD 23193 and HD 170920

    NASA Astrophysics Data System (ADS)

    Kılıçoğlu, Tolgahan; Çalışkan, Şeyma; Ünal, Kübraözge

    2018-01-01

    To understand the origin of the abundance peculiarities of non-magnetic A-type stars, we present the first detailed chemical abundance analysis of a metallic line star HD 23193 (A2m) and an A-type subgiant HD 170920 (A5), which could have been a HgMn star on the main sequence. Our analysis is based on medium (R ∼ 14,000) and high (R ∼ 40,000) resolution spectroscopic data of the stars. The abundances of 18 elements are derived: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, and Ba. The masses of HD 23193 and HD 170920 are estimated from evolutionary tracks as 2.3 ± 0.1 M ⊙ and 2.9 ± 0.1 M ⊙. The ages are found to be 635 ± 33 Myr for HD 23193 and 480 ± 50 Myr for HD 170920 using isochrones. The abundance pattern of HD 23193 shows deviations from solar values in the iron-peak elements and indicates remarkable overabundances of Sr (1.16), Y (1.03), and Ba (1.24) with respect to the solar abundances. We compare the derived abundances of this moderately rotating (v\\sin i =37.5 km s‑1) Am star to the theoretical chemical evolution models including rotational mixing. The theoretically predicted abundances resemble our derived abundance pattern, except for a few elements (Si and Cr). For HD 170920, we find nearly solar abundances, except for C (‑0.43), S (0.16), Ti (0.15), Ni (0.16), Zn (0.41), Y (0.57), and Ba (0.97). Its low rotational velocity (v\\sin i=14.5 km s‑1), reduced carbon abundance, and enhanced heavy element abundances suggest that the star is most likely an evolved HgMn star. Based on observations made at the TÜBITAK National Observatory (Program ID 14BRTT150–671), and the Ankara University Observatory, Turkey.

  17. Alexandrium minutum resting cyst distribution dynamics in a confined site

    NASA Astrophysics Data System (ADS)

    Anglès, Sílvia; Jordi, Antoni; Garcés, Esther; Basterretxea, Gotzon; Palanques, Albert

    2010-02-01

    The life cycle of the toxic dinoflagellate Alexandrium minutum consists of an asexual stage, characterized by motile vegetative cells, and a sexual stage, a resting cyst that once formed remains dormant in the sediment. Insight into the factors that determine the distribution and abundance of resting cysts is essential to understanding the dynamics of the vegetative phase. In investigations carried out between January 2005 and January 2008 in Arenys de Mar harbor (northwestern Mediterranean Sea), the spatial and temporal distribution patterns of A. minutum resting cysts and of the sediments were studied during different bloom stages of the vegetative population. Maximum cyst abundance was recorded mainly in the innermost part of the harbor while the lowest abundance always occurred near the harbor entrance, consistent with the distribution of silt-clay sediment fractions. The tendency of cysts in sediments to increase after bloom periods was clearly associated with new cyst formation, while cyst abundance decreased during non-bloom periods. Exceptions to this trend were observed in stations dominated by the deposition of coarse sediments. High correlation between the presence of cysts and clays during non-bloom periods indicates that cysts behave as passive sediment particles and are influenced by the same hydrodynamic processes as clays. In Arenys de Mar, the main physical forcing affecting sediment resuspension is the seiche, which was studied using in situ measurements and numerical models to interpret the observed distribution patterns. During non-bloom periods, cyst losses were smaller when the seiche was more active and at the station where the seiche-induced current was larger. Thus, seiche-forced resuspension appears to reduce cyst losses by reallocating cysts back to the sediment surface such that their burial in the sediment is avoided. The observed vertical profiles of the cysts were consistent with this process.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushchenko, Alexander V.; Kang, Young-Woon; Kim, Sungeun

    We investigated the chemical composition of ρ Pup using high-resolution spectral observations taken from the Very Large Telescope and the IUE archives and also spectra obtained at the 1.8 m telescope of the Bohyunsan observatory in Korea. The abundances of 56 chemical elements and the upper limits of Li and Be abundances were determined. The abundance pattern of ρ Pup was found to be similar to that of Am-type stars. The possibility of the influence of the accretion of interstellar gas and dust on the abundance patterns of B–F-type stars is discussed. The plots of the relative abundances of chemicalmore » elements in the atmospheres of ρ Pup and δ Sct versus the second ionization potentials of these elements show the correlations. The discontinuities at 13.6 and 24.6 eV—the ionization potentials of hydrogen and helium, respectively, are also exhibited in these plots. These discontinuities can be explained by interaction of the atoms of interstellar gas, mainly hydrogen and helium atoms, with the atoms of stellar photospheres (so-called charge-exchange reactions). Note that only the jumps near 13.6 and 24.6 eV were pointed out in previous investigations of relative abundances versus the second ionization potentials for Am-type stars. The dependencies of the relative abundances of chemical elements on the second ionization potentials of these elements were investigated using the published abundance patterns of B–F-type stars. The correlations of relative and absolute abundances of chemical elements, second ionization potentials, and projected rotational velocities are clearly detected for stars with effective temperatures between 7,000 and 12,000 K. If the correlation of relative abundances and second ionization potentials can be explained by the accretion of interstellar gas on the stellar surfaces, the investigation of these correlations can provide valuable information on the density and velocities of interstellar gas in different regions of the Galaxy and also on the influence of this phenomenon on stellar evolution. The dependencies of the relative abundances of chemical elements on the condensation temperatures of these elements were also found in the atmospheres of ρ Pup, δ Sct, and other B–F-type stars. Ten possible λ Boo-type stars were detected. The effective temperatures of these objects are between 10,900 and 14,000 K.« less

  19. Global patterns in the poleward expansion of mangrove forests

    NASA Astrophysics Data System (ADS)

    Cavanaugh, K. C.; Feller, I. C.

    2016-12-01

    Understanding the processes that limit the geographic ranges of species is one of the central goals of ecology and biogeography. This issue is particularly relevant for coastal wetlands given that climate change is expected to lead to a `tropicalization' of temperate coastal and marine ecosystems. In coastal wetlands around the world, there have already been observations of mangroves expanding into salt marshes near the current poleward range limits of mangroves. However, there is still uncertainty regarding regional variability in the factors that control mangrove range limits. Here we used time series of Landsat satellite imagery to characterize patterns of mangrove abundance near their poleward range limits around the world. We tested the commonly held assumption that temporal variation in abundance should increase towards the edge of the range. We also compared variability in mangrove abundance to climate factors thought to set mangrove range limits (air temperature, water temperature, and aridity). In general, variability in mangrove abundance at range edges was high relative to range centers and this variability was correlated to one or more climate factors. However, the strength of these relationships varied among poleward range limits, suggesting that some mangrove range limits are control by processes other than climate, such as dispersal limitation.

  20. [Mammals' camera-trapping in Sierra Nanchititla, Mexico: relative abundance and activity patterns].

    PubMed

    Monroy-Vilchis, Octavio; Zarco-González, Martha M; Rodríguez-Soto, Clarita; Soria-Díaz, Leroy; Urios, Vicente

    2011-03-01

    Species conservation and their management depend on the availability of their population behavior and changes in time. This way, population studies include aspects such as species abundance and activity pattern, among others, with the advantage that nowadays new technologies can be applied, in addition to common methods. In this study, we used camera-traps to obtain the index of relative abundance and to establish activity pattern of medium and large mammals in Sierra Nanchititla, Mexico. The study was conducted from December 2003 to May 2006, with a total sampling effort of 4 305 trap-days. We obtained 897 photographs of 19 different species. Nasua narica, Sylvilagus floridanus and Urocyon cinereoargenteus were the most abundant, in agreement with the relative abundance index (RAI, number of independent records/100 trap-days), and according to previous studies with indirect methods in the area. The activity patterns of the species showed that 67% of them are nocturnal, except Odocoileus virginianus, Nasua narica and others. Some species showed differences with previously reported patterns, which are related with seasonality, resources availability, organism sex, principally. The applied method contributed with reliable data about relative abundance and activity patterns.

  1. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  2. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placco, Vinicius M.; Rossi, Silvia; Frebel, Anna

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements inmore » each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.« less

  3. Patterns of Macrozooplankton and Fish Occurrence Beneath McMurdo Sound Fast Ice during Spring/Summer 2014/2015

    NASA Astrophysics Data System (ADS)

    Saenz, B. T.; Daly, K. L.; Kim, S.; Ainley, D. G.; Ballard, G.

    2016-02-01

    McMurdo Sound, Antarctica, represents a unique environment for study of trophic interactions, where a full complement of marine predators thrive. As part of a greater study of McMurdo Sound food web interactions, including ocean and ice physics, algal characterization, and predator behavior, macrozooplankton and fish were surveyed using bioacoustics and video using a specially-designed under-ice ROV. Acoustic returns from 82 under-ice surveys were divided into classes consisting of krill, silverfish, and weak scatters. Krill were scarce during surveys in late November, but increased in abundance in association with increasing chlorophyll a in December and early January when surveys ended. The greatest concentrations of krill were found near Ross Island in the eastern Sound, where southerly currents move high-productivity waters beneath the fast ice. Conversely, silverfish, especially schools of juveniles, were found in greater abundance toward the west where currents flow northward and platelet ice typically blocked light from surface waters. Silverfish were rare toward the end of the survey in late December/early January, but possibly had moved deeper than the acoustic instrument could detect. Overall, krill were less abundant and occurred deeper in the water column within 2 km of the fast ice edge, which was accessible by air-breathing predators, suggesting that predation pressure helped structure krill abundance or distribution. Acoustic returns from weak scatters, which included observed jellies, pteropods, detached ice algae and potentially other mesoplankton in high abundance such as copepods, also increased during the study period and co-occurred with chlorophyll a. The patterns of macrozooplankton and fish observed in McMurdo Sound raise important questions about source-sink dynamics, overwinter strategies of mid-trophic organisms, prey-predator dynamics, and sea-ice structuring of ecosystems.

  4. Influences of oceanographic features on the distribution and abundance of yellowfin tuna, Thunnus albacares, larvae in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Cornic, M.; Rooker, J. R.

    2016-02-01

    Summer ichthyoplankton surveys were conducted in the northern Gulf of Mexico (NGoM) from 2007-2010 to characterize patterns of distribution and abundance of yellowfin tuna (Thunnus albacares) larvae in this region. Yellowfin tuna larvae were moderately abundant representing 9% of the overall Thunnus larvae collected (18765) and had a percent occurrence ranging from 13 to 57% among surveys. Interannual variations were detected with highest mean densities observed in 2009 (2.2 larvae per 1000m3) and the lowest mean densities observed in 2008 (0.7 larvae per 1000 m3). Generalized additive models were used to investigate the influence of oceanographic conditions on abundance of yellowfin tuna larvae. Increased densities were associated with high sea surface temperatures, positive sea surface heights, and intermediate salinities, revealing that these physicochemical conditions may be favorable for yellowfin tuna larvae. These results indicate that the NGoM is an important spawning and/or nursery habitat for yellowfin tuna and suggest that mesoscale features and physicochemical characteristics of water masses may impact distribution and abundance of yellowfin tuna larvae in the NGoM.

  5. Contribution of Proton Capture Reactions to the Ascertained Abundance of Fluorine in the Evolved Stars of Globular Cluster M4, M22, 47 Tuc and NGC 6397

    NASA Astrophysics Data System (ADS)

    Mahanta, Upakul; Goswami, Aruna; Duorah, H. L.; Duorah, K.

    2017-12-01

    The origin of the abundance pattern and also the (anti)correlation present among the elements found in stars of globular clusters (GCs) remains unimproved until date. The proton-capture reactions are presently recognised in concert of the necessary candidates for that sort of observed behaviour in the second generation stars. We tend to propose a reaction network of a nuclear cycle namely carbon-nitrogen-oxygen-fluorine (CNOF) at evolved stellar condition since fluorine (^{19}F) is one such element which gets plagued by proton capture reactions. The stellar temperature thought about here ranges from 2× 107 to 10× 107 K and there has been an accretion occuring, with material density being 102 g/cm3 and 103 g/cm3. Such kind of temperature density conditions are probably going to be prevailing within the H-burning shell of evolved stars. The estimated abundances of ^{19}F are then matched with the info that has been determined for a few some metal-poor giants of GC M4, M22, 47 Tuc as well as NGC 6397. As far as the comparison between the observed and calculated abundances is concerned, it is found that the abundance of ^{19}F have shown an excellent agreement with the observed abundances with a correlation coefficent above 0.9, supporting the incidence of that nuclear cycle at the adopted temperature density conditions.

  6. Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change.

    PubMed

    Cunning, R; Vaughan, N; Gillette, P; Capo, T R; Matté, J L; Baker, A C

    2015-05-01

    Regulating partner abunclance may allow symmotic organisms to mediate interaction outcomes, facilitating adaptive responses to environmental change. To explore the capacity for-adaptive regulation in an ecologically important endosymbiosis, we studied the population dynamics of symbiotic algae in reef-building corals under different abiotic contexts. We found high natural variability in symbiont abundance in corals across reefs, but this variability converged to different symbiont-specific abundances when colonies were maintained under constant conditions. When conditions changed seasonally, symbiont abundance readjusted to new equilibria. We explain these patterns using an a priori model of symbiotic costs and benefits to the coral host, which shows that the observed changes in symbiont abundance are consistent with the maximization of interaction benefit under different environmental conditions. These results indicate that, while regulating symbiont abundance helps hosts sustain maximum benefit in a dynamic environment, spatiotemporal variation in abiotic factors creates a broad range of symbiont abundances (and interaction outcomes) among corals that may account for observed natural variability in performance (e.g., growth rate) and stress tolerance (e.g., bleaching susceptibility). This cost or benefit framework provides a new perspective on the dynamic regulation of reef coral symbioses and illustrates that the dependence of interaction outcomes on biotic and abiotic contexts may be important in understanding how diverse mutualisms respond to environmental change.

  7. Effect of Tillage and Planting Date on Seasonal Abundance and Diversity of Predacious Ground Beetles in Cotton

    PubMed Central

    Shrestha, R. B.; Parajulee, M. N.

    2010-01-01

    A 2-year field study was conducted in the southern High Plains region of Texas to evaluate the effect of tillage system and cotton planting date window on seasonal abundance and activity patterns of predacious ground beetles. The experiment was deployed in a split-plot randomized block design with tillage as the main-plot factor and planting date as the subplot factor. There were two levels for each factor. The two tillage systems were conservation tillage (30% or more of the soil surface is covered with crop residue) and conventional tillage. The two cotton planting date window treatments were early May (normal planting) and early June (late planting). Five prevailing predacious ground beetles, Cicindela sexguttata F., Calosoma scrutator Drees, Pasimachus spp., Pterostichus spp., and Megacephala Carolina L. (Coleoptera: Carabidae), were monitored using pitfall traps at 2-week intervals from June 2002 to October 2003. The highest total number of ground beetles (6/trap) was observed on 9 July 2003. Cicindela sexguttata was the dominant ground dwelling predacious beetle among the five species. A significant difference between the two tillage systems was observed in the abundances of Pterostichus spp. and C. sexguttata. In 2002. significantly more Pterostichus spp. were recorded from conventional plots (0.27/trap) than were recorded from conservation tillage plots (0.05/trap). Significantly more C. sexguttata were recorded in 2003 from conservation plots (3.77/trap) than were recorded from conventional tillage plots (1.04/trap). There was a significant interaction between year and tillage treatments. However, there was no significant difference in the abundances of M. Carolina and Pasimachus spp. between the two tillage practices in either of the two years. M. Carolina numbers were significantly higher in late-planted cotton compared with those observed in normal-planted cotton. However, planting date window had no significant influence on the activity patterns of the other species. Ground beetle species abundance, diversity, and species richness were significantly higher in conservation tillage plots. This suggests that field conditions arising from the practice of conservation tillage may support higher predacious ground beetle activity than might be observed under field conditions arising from conventional tillage practices. PMID:21062204

  8. Predicting species interactions from edge responses: mongoose predation on hawksbill sea turtle nests in fragmented beach habitat.

    PubMed

    Leighton, Patrick A; Horrocks, Julia A; Krueger, Barry H; Beggs, Jennifer A; Kramer, Donald L

    2008-11-07

    Because species respond differently to habitat boundaries and spatial overlap affects encounter rates, edge responses should be strong determinants of spatial patterns of species interactions. In the Caribbean, mongooses (Herpestes javanicus) prey on hawksbill sea turtle (Eretmochelys imbricata) eggs. Turtles nest in both open sand and vegetation patches, with a peak in nest abundance near the boundary between the two microhabitats; mongooses rarely leave vegetation. Using both artificial nests and hawksbill nesting data, we examined how the edge responses of these species predict the spatial patterns of nest mortality. Predation risk was strongly related to mongoose abundance but was not affected by nest density or habitat type. The product of predator and prey edge response functions accurately described the observed pattern of total prey mortality. Hawksbill preference for vegetation edge becomes an ecological trap in the presence of mongooses. This is the first study to predict patterns of predation directly from continuous edge response functions of interacting species, establishing a link between models of edge response and species interactions.

  9. Predicting species interactions from edge responses: mongoose predation on hawksbill sea turtle nests in fragmented beach habitat

    PubMed Central

    Leighton, Patrick A; Horrocks, Julia A; Krueger, Barry H; Beggs, Jennifer A; Kramer, Donald L

    2008-01-01

    Because species respond differently to habitat boundaries and spatial overlap affects encounter rates, edge responses should be strong determinants of spatial patterns of species interactions. In the Caribbean, mongooses (Herpestes javanicus) prey on hawksbill sea turtle (Eretmochelys imbricata) eggs. Turtles nest in both open sand and vegetation patches, with a peak in nest abundance near the boundary between the two microhabitats; mongooses rarely leave vegetation. Using both artificial nests and hawksbill nesting data, we examined how the edge responses of these species predict the spatial patterns of nest mortality. Predation risk was strongly related to mongoose abundance but was not affected by nest density or habitat type. The product of predator and prey edge response functions accurately described the observed pattern of total prey mortality. Hawksbill preference for vegetation edge becomes an ecological trap in the presence of mongooses. This is the first study to predict patterns of predation directly from continuous edge response functions of interacting species, establishing a link between models of edge response and species interactions. PMID:18647718

  10. Satellite-derived NDVI, LST, and climatic factors driving the distribution and abundance of Anopheles mosquitoes in a former malarious area in northwest Argentina.

    PubMed

    Dantur Juri, María Julia; Estallo, Elizabet; Almirón, Walter; Santana, Mirta; Sartor, Paolo; Lamfri, Mario; Zaidenberg, Mario

    2015-06-01

    Distribution and abundance of disease vectors are directly related to climatic conditions and environmental changes. Remote sensing data have been used for monitoring environmental conditions influencing spatial patterns of vector-borne diseases. The aim of this study was to analyze the effect of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic factors (temperature, humidity, wind velocity, and accumulated rainfall) on the distribution and abundance of Anopheles species in northwestern Argentina using Poisson regression analyses. Samples were collected from December, 2001 to December, 2005 at three localities, Aguas Blancas, El Oculto and San Ramón de la Nueva Orán. We collected 11,206 adult Anopheles species, with the major abundance observed at El Oculto (59.11%), followed by Aguas Blancas (22.10%) and San Ramón de la Nueva Orán (18.79%). Anopheles pseudopunctipennis was the most abundant species at El Oculto, Anopheles argyritarsis predominated in Aguas Blancas, and Anopheles strodei in San Ramón de la Nueva Orán. Samples were collected throughout the sampling period, with the highest peaks during the spring seasons. LST and mean temperature appear to be the most important variables determining the distribution patterns and major abundance of An. pseudopunctipennis and An. argyritarsis within malarious areas. © 2015 The Society for Vector Ecology.

  11. Low-mass ions observed in plasma desorption mass spectrometry of high explosives

    PubMed

    Hakansson; Coorey; Zubarev; Talrose; Hakansson

    2000-03-01

    The low-mass ions observed in both positive and negative plasma desorption mass spectrometry (PDMS) of the high explosives HMX, RDX, CL-20, NC, PETN and TNT are reported. Possible identities of the most abundant ions are suggested and their presence or absence in the different spectra is related to the properties of the explosives as matrices in PDMS. The detection of abundant NO+ and NO2- ions for HMX, RDX and CL-20, which are efficient matrices, indicates that explosive decomposition takes place in PDMS of these three substances and that a contribution from the corresponding chemical energy release is possible. The observation of abundant C2H4N+ and CH2N+ ions, which have high protonation properties, might also explain the higher protein charge states observed with these matrices. Also, the observation of NO2-, possibly formed by electron scavenging which increases the survival probability of positively charged protein molecular ions, completes the pattern. TNT does not give any of these ions and it is thereby possible to explain why it does not work as a PDMS matrix. For NC and PETN, decomposition does not seem to be as pronounced as for HMX, RDX and CL-20, and also no particularly abundant ions with high protonation properties are observed. The fact that NC works well as a matrix might be related to other properties of this compound, such as its high adsorption ability.

  12. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people

    PubMed Central

    Nelson, Matthew R.; Wegmann, Daniel; Ehm, Margaret G.; Kessner, Darren; St. Jean, Pamela; Verzilli, Claudio; Shen, Judong; Tang, Zhengzheng; Bacanu, Silviu-Alin; Fraser, Dana; Warren, Liling; Aponte, Jennifer; Zawistowski, Matthew; Liu, Xiao; Zhang, Hao; Zhang, Yong; Li, Jun; Li, Yun; Li, Li; Woollard, Peter; Topp, Simon; Hall, Matthew D.; Nangle, Keith; Wang, Jun; Abecasis, Gonçalo; Cardon, Lon R.; Zöllner, Sebastian; Whittaker, John C.; Chissoe, Stephanie L.; Novembre, John; Mooser, Vincent

    2015-01-01

    Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants in human populations remains unknown. We explored this spectrum of variation by sequencing 202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant (one every 17 bases) and geographically localized, such that even with large sample sizes, rare variant catalogs will be largely incomplete. We used the observed patterns of variation to estimate population growth parameters, the proportion of variants in a given frequency class that are putatively deleterious, and mutation rates for each gene. Overall we conclude that, due to rapid population growth and weak purifying selection, human populations harbor an abundance of rare variants, many of which are deleterious and have relevance to understanding disease risk. PMID:22604722

  13. Relationships between copepod community structure, rainfall regimes, and hydrological variables in a tropical mangrove estuary (Amazon coast, Brazil)

    NASA Astrophysics Data System (ADS)

    Magalhães, André; Pereira, Luci Cajueiro Carneiro; da Costa, Rauquírio Marinho

    2015-03-01

    The influence of rainfall and hydrological variables on the abundance and diversity of the copepod community was investigated on a monthly basis over an annual cycle in the Taperaçu mangrove estuary. In general, the results show that there were no clear spatial or tidal patterns in any biological variables during the study period, which was related to the reduced horizontal gradient in abiotic parameters, determined mainly by the morphological and morphodynamic features of the estuary. Nevertheless, seasonal and monthly trends were recorded in both the hydrological data and the abundance of the dominant copepod species. In particular, Pseudodiaptomus marshi (6,004.6 ± 22,231.6 ind m-3; F = 5.0, p < 0.05) and Acartia tonsa (905.6 ± 2,400.9 ind m-3; F = 14.6, p < 0.001) predominated during the rainy season, whereas Acartia lilljeborgii (750.8 ± 808.3 ind m-3; U = 413.0, p < 0.01) was the most abundant species in the dry season. A distinct process of succession was observed in the relative abundance of these species, driven by the shift in the rainfall regime, which affected hydrological, in particular salinity, and consequently the abundance of copepod species. We suggest that this may be a general pattern governing the dynamics of copepod populations in the estuaries of the Brazilian Amazonian region.

  14. AKARI observations of brown dwarfs. IV. Effect of elemental abundances on near-infrared spectra between 1.0 and 5.0 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorahana, S.; Yamamura, I.

    2014-09-20

    The detection of the CO{sub 2} absorption band at 4.2 μm in brown dwarf spectra by AKARI has made it possible to discuss CO{sub 2} molecular abundance in brown dwarf atmospheres. In our previous studies, we found an excess in the 4.2 μm CO{sub 2} absorption band of three brown dwarf spectra, and suggested that these deviations were caused by high C and O elemental abundances in their atmospheres. To validate this hypothesis, we have constructed a set of models of brown dwarf atmospheres with various elemental abundance patterns, and we investigate the variations of the molecular composition and themore » thermal structure, and how they affect the near-infrared spectra between 1.0 and 5.0 μm. The 4.2 μm CO{sub 2} absorption band in some late-L and T dwarfs taken by AKARI is stronger or weaker than predicted by corresponding models with solar abundance. By comparing the CO{sub 2} band in the model spectra to the observed near-infrared spectra, we confirm possible elemental abundance variations among brown dwarfs. We find that the band strength is especially sensitive to O abundance, but C is also needed to reproduce the entire near-infrared spectra. This result indicates that both the C and O abundances should increase and decrease simultaneously for brown dwarfs. We find that a weaker CO{sub 2} absorption band in a spectrum can also be explained by a model with lower 'C and O' abundances.« less

  15. Small mammal abundance in Mediterranean post-fire habitats: a role for predators?

    NASA Astrophysics Data System (ADS)

    Torre, I.; Díaz, M.

    2004-05-01

    We studied patterns of small mammal abundance and species richness in post-fire habitats by sampling 33 plots (225 m 2 each) representing different stages of vegetation recovery after fire. Small mammal abundance was estimated by live trapping during early spring 1999 and vegetation structure was sampled by visual estimation at the same plots. Recently-burnt areas were characterised by shrubby and herbaceous vegetation with low structural variability, and unburnt areas were characterised by well developed forest cover with high structural complexity. Small mammal abundance and species richness decreased with time elapsed since the last fire (from 5 to at least 50 years), and these differences were associated to the decreasing cover of short shrubs as the post-fire succession of plant communities advanced. However, relationships between vegetation structure and small mammals differed among areas burned in different times, with weak or negative relationship in recently burnt areas and positive and stronger relationship in unburnt areas. Furthermore, the abundance of small mammals was larger than expected from vegetation structure in plots burned recently whereas the contrary pattern was found in unburned areas. We hypothesised that the pattern observed could be related to the responses of small mammal predators to changes in vegetation and landscape structure promoted by fire. Fire-related fragmentation could have promoted the isolation of forest predators (owls and carnivores) in unburned forest patches, a fact that could have produced a higher predation pressure for small mammals. Conversely, small mammal populations would have been enhanced in early post-fire stages by lower predator numbers combined with better predator protection in areas covered by resprouting woody vegetation.

  16. Towards Clinical Applications of Blood-Borne miRNA Signatures: The Influence of the Anticoagulant EDTA on miRNA Abundance

    PubMed Central

    Leidinger, Petra; Backes, Christina; Rheinheimer, Stefanie; Keller, Andreas; Meese, Eckart

    2015-01-01

    Background Circulating microRNAs (miRNAs) from blood are increasingly recognized as biomarker candidates for human diseases. Clinical routine settings frequently include blood sampling in tubes with EDTA as anticoagulant without considering the influence of phlebotomy on the overall miRNA expression pattern. We collected blood samples from six healthy individuals each in an EDTA blood collection tube. Subsequently, the blood was transferred into PAXgeneTM tubes at three different time points, i.e. directly (0 min), 10 min, and 2 h after phlebotomy. As control blood was also directly collected in PAXgeneTM blood RNA tubes that contain a reagent to directly lyse blood cells and stabilize their content. For all six blood donors at the four conditions (24 samples) we analyzed the abundance of 1,205 miRNAs by human Agilent miRNA V16 microarrays. Results While we found generally a homogenous pattern of the miRNA abundance in all 24 samples, the duration of the EDTA treatment appears to influence the miRNA abundance of specific miRNAs. The most significant changes are observed after longer EDTA exposition. Overall, the impact of the different blood sample conditions on the miRNA pattern was substantially lower than intra-individual variations. While samples belonging to one of the six individuals mostly cluster together, there was no comparable clustering for any of the four tested blood sampling conditions. The most affected miRNA was miR-769-3p that was not detected in any of the six PAXgene blood samples, but in all EDTA 2h samples. Accordingly, hsa-miR-769-3p was also the only miRNA that showed a significantly different abundance between the 4 blood sample conditions by an ANOVA analysis (Benjamini-Hochberg adjusted p-value of 0.003). Validation by qRT-PCR confirmed this finding. Conclusion The pattern of blood-borne miRNA abundance is rather homogenous between the four tested blood sample conditions of six blood donors. There was a clustering between the miRNA profiles that belong to a specific blood donor, but not between any of the four tested blood sampling conditions. The results show a limited overall impact of the blood sampling conditions on the miRNA pattern. Notwithstanding, the abundance of single miRNAs can be significantly altered by different blood sampling conditions. PMID:26599228

  17. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    NASA Astrophysics Data System (ADS)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-01

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ∼ ‑2.6 and are not α-enhanced ([α/Fe] ∼ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility of a different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This paper also includes data based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 096.D-0967(B); PI: E. Balbinot).

  18. Abrupt Changes in the Marmara Pelagic Ecosystem during the recent jellyfish Liriope tetraphylla invasion and mucilage events

    NASA Astrophysics Data System (ADS)

    Erkan Kideys, Ahmet; Yüksek, Ahsen; Sur, Halil Ibrahim

    2013-04-01

    In this study, meteorological and hydrographical conditions as well as chemical and biological parameters have been examined for the period 2005-2009 to determine the impact and cause of the massive mucilage phenomenon observed in the Sea of Marmara in October 2007. Results showed that there is a decrease pattern in chl concentration as well as both phytoplankton and zooplankton abundances from August till October in 2007 whilst the jellyfish Liriope tetraphylla had bloom levels. This period coincided with the maximum intensity of pelagic fishing throughout the years. Nitrogen/phosphate ratio increased prior to the mucilage formation. Invasive Liriope tetraphylla abundance increased exponentially in August and died in masses as a result of starvation and meteorological / oceanographic conditions. In October, following the mucilage matter production another new species for the region Gonyaulax fragilis was observed in high abundance through the basin. It is worthy to note that during basin wide samplings conducted in the Sea of Marmara in both 2005 and 2006, high abundances of Liriope tetraphylla have been detected particularly at the northern parts where no mucilage event was observed. We suggest that overfishing in the Sea of Marmara provided a ground for the establishment of the invasive jellyfish and accompanying mucilage event was due to by synergic combinations of several factors.

  19. Do abundance distributions and species aggregation correctly predict macroecological biodiversity patterns in tropical forests?

    PubMed Central

    Wiegand, Thorsten; Lehmann, Sebastian; Huth, Andreas; Fortin, Marie‐Josée

    2016-01-01

    Abstract Aim It has been recently suggested that different ‘unified theories of biodiversity and biogeography’ can be characterized by three common ‘minimal sufficient rules’: (1) species abundance distributions follow a hollow curve, (2) species show intraspecific aggregation, and (3) species are independently placed with respect to other species. Here, we translate these qualitative rules into a quantitative framework and assess if these minimal rules are indeed sufficient to predict multiple macroecological biodiversity patterns simultaneously. Location Tropical forest plots in Barro Colorado Island (BCI), Panama, and in Sinharaja, Sri Lanka. Methods We assess the predictive power of the three rules using dynamic and spatial simulation models in combination with census data from the two forest plots. We use two different versions of the model: (1) a neutral model and (2) an extended model that allowed for species differences in dispersal distances. In a first step we derive model parameterizations that correctly represent the three minimal rules (i.e. the model quantitatively matches the observed species abundance distribution and the distribution of intraspecific aggregation). In a second step we applied the parameterized models to predict four additional spatial biodiversity patterns. Results Species‐specific dispersal was needed to quantitatively fulfil the three minimal rules. The model with species‐specific dispersal correctly predicted the species–area relationship, but failed to predict the distance decay, the relationship between species abundances and aggregations, and the distribution of a spatial co‐occurrence index of all abundant species pairs. These results were consistent over the two forest plots. Main conclusions The three ‘minimal sufficient’ rules only provide an incomplete approximation of the stochastic spatial geometry of biodiversity in tropical forests. The assumption of independent interspecific placements is most likely violated in many forests due to shared or distinct habitat preferences. Furthermore, our results highlight missing knowledge about the relationship between species abundances and their aggregation. PMID:27667967

  20. Ages and Heavy Element Abundances from Very Metal-poor Stars in the Sagittarius Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Hansen, Camilla Juul; El-Souri, Mariam; Monaco, Lorenzo; Villanova, Sandro; Bonifacio, Piercarlo; Caffau, Elisabetta; Sbordone, Luca

    2018-03-01

    Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H] \\gtrapprox -1) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H] =‑1 to ‑3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H] ∼ -3) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of 9+/- 2.5 {Gyr}. Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5 M ⊙. Sgr J190651.47–320147.23 shows a large overabundance of Pb (2.05 dex) and a peculiar abundance pattern best fit by a 3 M ⊙ AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15–25 M ⊙) is necessary to explain these patterns. The high level (0.29 ± 0.05 dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr. Based on data obtained UVES/VLT ID: 083.B-0774, 075.B-0127.

  1. Small-scale temporal and spatial variability in the abundance of plastic pellets on sandy beaches: Methodological considerations for estimating the input of microplastics.

    PubMed

    Moreira, Fabiana Tavares; Prantoni, Alessandro Lívio; Martini, Bruno; de Abreu, Michelle Alves; Stoiev, Sérgio Biato; Turra, Alexander

    2016-01-15

    Microplastics such as pellets have been reported for many years on sandy beaches around the globe. Nevertheless, high variability is observed in their estimates and distribution patterns across the beach environment are still to be unravelled. Here, we investigate the small-scale temporal and spatial variability in the abundance of pellets in the intertidal zone of a sandy beach and evaluate factors that can increase the variability in data sets. The abundance of pellets was estimated during twelve consecutive tidal cycles, identifying the position of the high tide between cycles and sampling drift-lines across the intertidal zone. We demonstrate that beach dynamic processes such as the overlap of strandlines and artefacts of the methods can increase the small-scale variability. The results obtained are discussed in terms of the methodological considerations needed to understand the distribution of pellets in the beach environment, with special implications for studies focused on patterns of input. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. U, Th, Pb and REE abundances and Pb 207/Pb 206 ages of individual minerals in returned lunar material by ion microprobe mass analysis.

    NASA Technical Reports Server (NTRS)

    Andersen, C. A.; Hinthorne, J. R.

    1972-01-01

    Results of ion microprobe analyses of Apollo 11, 12 and 14 material, showing that U, Th, Pb and REE are concentrated in accessory minerals such as apatite, whitlockite, zircon, baddeleyite, zirkelite, and tranquillityite. Th/U ratios are found to vary by over a factor of 40 in these minerals. K, Ba, Rb and Sr have been localized in a K rich, U and Th poor glass phase that is commonly associated with the U and Th bearing accessory minerals. Li is observed to be fairly evenly distributed between the various accessory phases. The phosphates have been found to have REE abundance patterns (normalized to the chondrite abundances) that are fairly flat, while the Zr bearing minerals have patterns that rise steeply, by factors of ten or more, from La to Gd. All the accessory minerals have large negative Eu anomalies. Radiometric age dates (Pb 207/Pb 206) of the individual U and Th bearing minerals compare favorably with the Pb 207/Pb 206 age of the bulk rocks.

  3. Abundance analysis of roAp stars. IV. HD24712

    NASA Astrophysics Data System (ADS)

    Ryabchikova, T. A.; Landstreet, J. D.; Gelbmann, M. J.; Bolgova, G. T.; Tsymbal, V. V.; Weiss, W. W.

    1997-11-01

    We present the first abundance analysis of the rapidly oscillating chemically peculiar star HD24712, and determine a T_eff,=7250K, log {g},=4.3, and xi_t ,=1kms(-1) . Microturbulence seems to be entirely simulated by a magnetic field with a polar field strength of 4.4kG and of dipolar structure, both of which are supported by our polarimetric observations. Rotation of HD24712 and a spotty surface distribution of the elements result in different mean abundances for different (magnetic) phases. Our results do not support the hypothesis of a monotonic correlation between the amplitude of abundance variations and the atomic number Z, and we present arguments in favour of one of the rotation periods (Prot=12\\fd 4610) discussed in the literature. Rare earth elements are the most overabundant elements relative to the sun, and they have the largest abundance amplitude during a rotation cycle; only Mg has a larger amplitude. For HD24712 we find a clear overabundance of Co while most of the other iron peak elements are underabundant. A comparison of the abundance pattern with the other three roAp stars analyzed so far by us concludes the paper. A systematic difference between surface gravities obtained from spectroscopy and from both asteroseismology and evolutionary tracks is found for the roAp stars HD 24712, alpha Cir, and gamma Equ. Based on observations obtained with the Canada-France-Hawaii telescope, operated by the National Research Council of Canada, the Centre Centre National de la Recherche Scientifique de France, and the University of Hawaii, and on observations obtained at CARSO, Las Campanas, Chile

  4. Biological communities in San Francisco Bay track large-scale climate forcing over the North Pacific

    NASA Astrophysics Data System (ADS)

    Cloern, James E.; Hieb, Kathryn A.; Jacobson, Teresa; Sansó, Bruno; Di Lorenzo, Emanuele; Stacey, Mark T.; Largier, John L.; Meiring, Wendy; Peterson, William T.; Powell, Thomas M.; Winder, Monika; Jassby, Alan D.

    2010-11-01

    Long-term observations show that fish and plankton populations in the ocean fluctuate in synchrony with large-scale climate patterns, but similar evidence is lacking for estuaries because of shorter observational records. Marine fish and invertebrates have been sampled in San Francisco Bay since 1980 and exhibit large, unexplained population changes including record-high abundances of common species after 1999. Our analysis shows that populations of demersal fish, crabs and shrimp covary with the Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation (NPGO), both of which reversed signs in 1999. A time series model forced by the atmospheric driver of NPGO accounts for two-thirds of the variability in the first principal component of species abundances, and generalized linear models forced by PDO and NPGO account for most of the annual variability of individual species. We infer that synchronous shifts in climate patterns and community variability in San Francisco Bay are related to changes in oceanic wind forcing that modify coastal currents, upwelling intensity, surface temperature, and their influence on recruitment of marine species that utilize estuaries as nursery habitat. Ecological forecasts of estuarine responses to climate change must therefore consider how altered patterns of atmospheric forcing across ocean basins influence coastal oceanography as well as watershed hydrology.

  5. Isotope pattern deconvolution as a tool to study iron metabolism in plants.

    PubMed

    Rodríguez-Castrillón, José Angel; Moldovan, Mariella; García Alonso, J Ignacio; Lucena, Juan José; García-Tomé, Maria Luisa; Hernández-Apaolaza, Lourdes

    2008-01-01

    Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP-MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using 57Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned 57Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP-MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low 57Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP-MS instrument, after addition of 57Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample.

  6. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages

    PubMed Central

    Lescot, Magali; Hingamp, Pascal; Kojima, Kenji K; Villar, Emilie; Romac, Sarah; Veluchamy, Alaguraj; Boccara, Martine; Jaillon, Olivier; Iudicone, Daniele; Bowler, Chris; Wincker, Patrick; Claverie, Jean-Michel; Ogata, Hiroyuki

    2016-01-01

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage. PMID:26613339

  7. Abundance Analysis of the Helium Weak Star 20-TAURI

    NASA Astrophysics Data System (ADS)

    Mon, M.; Hirata, R.; Sadakane, K.

    An abundance analysis of the helium-weak star 20 Tauri is performed with a fully line-blanketed model atmosphere. The adopted atmospheric parameters are Teff =12600 K and log g=3.2. These values are lower by about 1000 K in Teff and 0.3 in log g than those used in previous investigations, and 20 Tau is the coolest star among the group of helium-weak star. A value of log N(He)/N(H)=-1.7 is found from the average of six He I lines. Mg, Si, Ca, and Ni are underabundant, while P and Mn are overabundant. The abundances of C, Ti, Cr, and Fe coincide with the solar values within ±0.3 dex. Upper limits of the abundances of S, Sc, and Sr are estimated and these elements are not overabundant. The observed abundance pattern in 20 Tau is quite different from those in other helium-weak stars, while it shows a mild characteristic of Mn-Hg stars.

  8. Motif mismatches in microsatellites: insights from genome-wide investigation among 20 insect species.

    PubMed

    Behura, Susanta K; Severson, David W

    2015-02-01

    We present a detailed genome-wide comparative study of motif mismatches of microsatellites among 20 insect species representing five taxonomic orders. The results show that varying proportions (∼15-46%) of microsatellites identified in these species are imperfect in motif structure, and that they also vary in chromosomal distribution within genomes. It was observed that the genomic abundance of imperfect repeats is significantly associated with the length and number of motif mismatches of microsatellites. Furthermore, microsatellites with a higher number of mismatches tend to have lower abundance in the genome, suggesting that sequence heterogeneity of repeat motifs is a key determinant of genomic abundance of microsatellites. This relationship seems to be a general feature of microsatellites even in unrelated species such as yeast, roundworm, mouse and human. We provide a mechanistic explanation of the evolutionary link between motif heterogeneity and genomic abundance of microsatellites by examining the patterns of motif mismatches and allele sequences of single-nucleotide polymorphisms identified within microsatellite loci. Using Drosophila Reference Genetic Panel data, we further show that pattern of allelic variation modulates motif heterogeneity of microsatellites, and provide estimates of allele age of specific imperfect microsatellites found within protein-coding genes. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  9. Ecological studies of Eastern Australian fruit flies (Diptera: Tephritidae) in their endemic habitat : II. The spatial pattern of abundance.

    PubMed

    Zalucki, M P; Drew, R A I; Hooper, G H S

    1984-10-01

    11 fruit fly species captured at 47 sites in a natural forest area at Cooloola (south-east Queensland) revealed specific patterns of spatial abundance. Although all species were collected throughout the study area, D. bryoniae, D. mayi, D. neohumeralis and D. tryoni were more prevalent (average number caught per trap) in the open Eucalypt forest than the rainforest, whereas C. aequalis, D. absonifacies and D. endiandrae were more prevalent in the rainforest. D. cacuminatus, D. choristus, D. quadratus and D. signatifrons were equally prevalent throughout both forest types. Fly numbers were not distributed randomly throughout the trap sites. The clumped dispersion patterns seemed to be species specific as assessed and summarised by Taylor's Power Law. The exponent (b) relating mean spatial abundance to its variance ranged from 1.6-5.11 for the 11 species captured. Changing patterns of trap catches from one sampling period to another were analysed using correlograms for the 6 most abundant species (D. tryoni, D. neohumeralis, D. endiandrae, C. aequalis, D. cacuminatus and D. mayi). These revealed changing patterns of relative spatial abundance which can be related, in part, to changing population abundance levels. The various spatial patterns recognised are related to each species movement, breeding and feeding behaviour. It is proposed that flies migrate into the rainforest area from distant locations and that the rainforest habitat is an important adult feeding site.

  10. Tipping Points in Resource Abundance Drive Irreversible Changes in Community Structure.

    PubMed

    Haney, Seth D; Siepielski, Adam M

    2018-05-01

    Global climate change has made what were seemingly extraordinary environmental conditions, such as prolonged droughts, commonplace. One consequence of extreme environmental change is concomitant changes in resource abundance. How will such extreme resource changes impact biodiversity? We developed a trait-based consumer-resource model to examine how resource abundance affects the potential for adaptive evolution and coexistence among competitors. We found that moderate changes in resource abundance have little effect on trait evolution. However, when resource scarcities were sufficiently extreme, a critical transition-a tipping point-occurred, which caused consumer traits to diverge and restructured the community in a way that outlasted the scarcity. Therefore, even though traits can evolve in response to minor resource fluctuations, large environmental shifts may be necessary for producing long-lasting impacts on community structure. These results may also help to illuminate patterns of stasis frequently observed in nature, despite the considerable evidence demonstrating rapid evolutionary change.

  11. Abundance and Distribution Patterns of Thunnus albacares in Isla del Coco National Park through Predictive Habitat Suitability Models

    PubMed Central

    Gonzáles-Andrés, Cristina; F. M. Lopes, Priscila; Cortés, Jorge; Sánchez-Lizaso, José Luis; Pennino, Maria Grazia

    2016-01-01

    Information on the distribution and habitat preferences of ecologically and commercially important species is essential for their management and protection. This is especially important as climate change, pollution, and overfishing change the structure and functioning of pelagic ecosystems. In this study, we used Bayesian hierarchical spatial-temporal models to map the Essential Fish Habitats of the Yellowfin tuna (Thunnus albacares) in the waters around Isla del Coco National Park, Pacific Costa Rica, based on independent underwater observations from 1993 to 2013. We assessed if observed changes in the distribution and abundance of this species are related with habitat characteristics, fishing intensity or more extreme climatic events, including the El Niño Southern Oscillation, and changes on the average sea surface temperature. Yellowfin tuna showed a decreasing abundance trend in the sampled period, whereas higher abundances were found in shallow and warmer waters, with high concentration of chlorophyll-a, and in surrounding seamounts. In addition, El Niño Southern Oscillation events did not seem to affect Yellowfin tuna distribution and abundance. Understanding the habitat preferences of this species, using approaches as the one developed here, may help design integrated programs for more efficient management of vulnerable species. PMID:27973538

  12. Abundance and Distribution Patterns of Thunnus albacares in Isla del Coco National Park through Predictive Habitat Suitability Models.

    PubMed

    Gonzáles-Andrés, Cristina; F M Lopes, Priscila; Cortés, Jorge; Sánchez-Lizaso, José Luis; Pennino, Maria Grazia

    2016-01-01

    Information on the distribution and habitat preferences of ecologically and commercially important species is essential for their management and protection. This is especially important as climate change, pollution, and overfishing change the structure and functioning of pelagic ecosystems. In this study, we used Bayesian hierarchical spatial-temporal models to map the Essential Fish Habitats of the Yellowfin tuna (Thunnus albacares) in the waters around Isla del Coco National Park, Pacific Costa Rica, based on independent underwater observations from 1993 to 2013. We assessed if observed changes in the distribution and abundance of this species are related with habitat characteristics, fishing intensity or more extreme climatic events, including the El Niño Southern Oscillation, and changes on the average sea surface temperature. Yellowfin tuna showed a decreasing abundance trend in the sampled period, whereas higher abundances were found in shallow and warmer waters, with high concentration of chlorophyll-a, and in surrounding seamounts. In addition, El Niño Southern Oscillation events did not seem to affect Yellowfin tuna distribution and abundance. Understanding the habitat preferences of this species, using approaches as the one developed here, may help design integrated programs for more efficient management of vulnerable species.

  13. Identification of Specialists and Abundance-Occupancy Relationships among Intestinal Bacteria of Aves, Mammalia, and Actinopterygii.

    PubMed

    Green, Hyatt C; Fisher, Jenny C; McLellan, Sandra L; Sogin, Mitchell L; Shanks, Orin C

    2015-12-28

    The coalescence of next-generation DNA sequencing methods, ecological perspectives, and bioinformatics analysis tools is rapidly advancing our understanding of the evolution and function of vertebrate-associated bacterial communities. Delineation of host-microbe associations has applied benefits ranging from clinical treatments to protecting our natural waters. Microbial communities follow some broad-scale patterns observed for macroorganisms, but it remains unclear how the specialization of intestinal vertebrate-associated communities to a particular host environment influences broad-scale patterns in microbial abundance and distribution. We analyzed the V6 region of 16S rRNA genes amplified from 106 fecal samples spanning Aves, Mammalia, and Actinopterygii (ray-finned fish). We investigated the interspecific abundance-occupancy relationship, where widespread taxa tend to be more abundant than narrowly distributed taxa, among operational taxonomic units (OTUs) within and among host species. In a separate analysis, we identified specialist OTUs that were highly abundant in a single host and rare in all other hosts by using a multinomial model without excluding undersampled OTUs a priori. We show that intestinal microbes in humans and other vertebrates display abundance-occupancy relationships, but because intestinal host-associated communities have undergone intense specialization, this trend is violated by a disproportionately large number of specialist taxa. Although it is difficult to distinguish the effects of dispersal limitations, host selection, historical contingency, and stochastic processes on community assembly, results suggest that intestinal bacteria can be shared among diverse hosts in ways that resemble the distribution of "free-living" bacteria in the extraintestinal environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    NASA Astrophysics Data System (ADS)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the vegetation type. This suggests that overall patterns of fungal spore dynamics may be predictable across heterogeneous landscapes based on local weather patterns.

  15. Spatial and temporal variation in the abundance of Culicoides biting midges (Diptera: Ceratopogonidae) in nine European countries.

    PubMed

    Cuéllar, Ana Carolina; Kjær, Lene Jung; Kirkeby, Carsten; Skovgard, Henrik; Nielsen, Søren Achim; Stockmarr, Anders; Andersson, Gunnar; Lindstrom, Anders; Chirico, Jan; Lühken, Renke; Steinke, Sonja; Kiel, Ellen; Gethmann, Jörn; Conraths, Franz J; Larska, Magdalena; Hamnes, Inger; Sviland, Ståle; Hopp, Petter; Brugger, Katharina; Rubel, Franz; Balenghien, Thomas; Garros, Claire; Rakotoarivony, Ignace; Allène, Xavier; Lhoir, Jonathan; Chavernac, David; Delécolle, Jean-Claude; Mathieu, Bruno; Delécolle, Delphine; Setier-Rio, Marie-Laure; Venail, Roger; Scheid, Bethsabée; Chueca, Miguel Ángel Miranda; Barceló, Carlos; Lucientes, Javier; Estrada, Rosa; Mathis, Alexander; Tack, Wesley; Bødker, Rene

    2018-02-27

    Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are vectors of bluetongue virus (BTV), African horse sickness virus and Schmallenberg virus (SBV). Outbreaks of both BTV and SBV have affected large parts of Europe. The spread of these diseases depends largely on vector distribution and abundance. The aim of this analysis was to identify and quantify major spatial patterns and temporal trends in the distribution and seasonal variation of observed Culicoides abundance in nine countries in Europe. We gathered existing Culicoides data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. In total, 31,429 Culicoides trap collections were available from 904 ruminant farms across these countries between 2007 and 2013. The Obsoletus ensemble was distributed widely in Europe and accounted for 83% of all 8,842,998 Culicoides specimens in the dataset, with the highest mean monthly abundance recorded in France, Germany and southern Norway. The Pulicaris ensemble accounted for only 12% of the specimens and had a relatively southerly and easterly spatial distribution compared to the Obsoletus ensemble. Culicoides imicola Kieffer was only found in Spain and the southernmost part of France. There was a clear spatial trend in the accumulated annual abundance from southern to northern Europe, with the Obsoletus ensemble steadily increasing from 4000 per year in southern Europe to 500,000 in Scandinavia. The Pulicaris ensemble showed a very different pattern, with an increase in the accumulated annual abundance from 1600 in Spain, peaking at 41,000 in northern Germany and then decreasing again toward northern latitudes. For the two species ensembles and C. imicola, the season began between January and April, with later start dates and increasingly shorter vector seasons at more northerly latitudes. We present the first maps of seasonal Culicoides abundance in large parts of Europe covering a gradient from southern Spain to northern Scandinavia. The identified temporal trends and spatial patterns are useful for planning the allocation of resources for international prevention and surveillance programmes in the European Union.

  16. Element Abundances in Meteorites and the Earth: Implication for the Accretion of Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Mezger, K.; Vollstaedt, H.; Maltese, A.

    2017-12-01

    Essentially all known inner solar system materials show near chondritic relative abundances of refractory elements and depletion in volatile elements. To a first approximation volatile element depletion correlates with the respective condensation temperature (TC) of the elements. Possible mechanisms for this depletion are incomplete condensation and partial loss by evaporation caused by heating prior to or during the planetesimal accretion. The stable isotope compositions of almost all moderately volatile elements in different meteorite classes show only minor, or no evidence for a Rayleigh-type fractionation that could be attributed to partial condensation or evaporation. The different classes of meteorites also show that the degree of depletion in their parent bodies (i.e. mostly planetesimals) is quite variable, but nevertheless systematic. For primitive and least disturbed carbonaceous chondrites the element depletion pattern is a smooth function of TC. The accessible silicate Earth also shows this general depletion pattern, but in detail it is highly complex and requires differentiation processes that are not solely controlled by TC. If only highly lithophile elements are considered the depletion pattern of the silicate Earth reveals a step function that shows that moderately volatile lithophile elements have abundances that are ca. 0.1 times the chondritic value, irrespective of their TC. This element pattern observed for bulk silicate Earth can be modelled as a mixture of two distinct components: ca. 90% of a strongly reduced planetary body that is depleted in highly volatile elements and ca. 10% of a more volatile element rich and oxidized component. This mixture can account for the apparent Pb- paradox observed in melts derived from the silicate Earth and provides a time constraint for the mixing event, which is ca. 70 My after the beginning of the solar system. This event corresponds to the giant impact that also formed the Moon.

  17. An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin

    PubMed Central

    Hu, Chuli; Li, Jie; Lin, Xin

    2018-01-01

    Observation schedules depend upon the accurate understanding of a single sensor’s observation capability and the interrelated observation capability information on multiple sensors. The general ontologies for sensors and observations are abundant. However, few observation capability ontologies for satellite sensors are available, and no study has described the dynamic associations among the observation capabilities of multiple sensors used for integrated observational planning. This limitation results in a failure to realize effective sensor selection. This paper develops a sensor observation capability association (SOCA) ontology model that is resolved around the task-sensor-observation capability (TSOC) ontology pattern. The pattern is developed considering the stimulus-sensor-observation (SSO) ontology design pattern, which focuses on facilitating sensor selection for one observation task. The core aim of the SOCA ontology model is to achieve an observation capability semantic association. A prototype system called SemOCAssociation was developed, and an experiment was conducted for flood observations in the Jinsha River basin in China. The results of this experiment verified that the SOCA ontology based association method can help sensor planners intuitively and accurately make evidence-based sensor selection decisions for a given flood observation task, which facilitates efficient and effective observational planning for flood satellite sensors. PMID:29883425

  18. An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin.

    PubMed

    Hu, Chuli; Li, Jie; Lin, Xin; Chen, Nengcheng; Yang, Chao

    2018-05-21

    Observation schedules depend upon the accurate understanding of a single sensor’s observation capability and the interrelated observation capability information on multiple sensors. The general ontologies for sensors and observations are abundant. However, few observation capability ontologies for satellite sensors are available, and no study has described the dynamic associations among the observation capabilities of multiple sensors used for integrated observational planning. This limitation results in a failure to realize effective sensor selection. This paper develops a sensor observation capability association (SOCA) ontology model that is resolved around the task-sensor-observation capability (TSOC) ontology pattern. The pattern is developed considering the stimulus-sensor-observation (SSO) ontology design pattern, which focuses on facilitating sensor selection for one observation task. The core aim of the SOCA ontology model is to achieve an observation capability semantic association. A prototype system called SemOCAssociation was developed, and an experiment was conducted for flood observations in the Jinsha River basin in China. The results of this experiment verified that the SOCA ontology based association method can help sensor planners intuitively and accurately make evidence-based sensor selection decisions for a given flood observation task, which facilitates efficient and effective observational planning for flood satellite sensors.

  19. Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats.

    PubMed

    Jezbera, Jan; Jezberová, Jitka; Koll, Ulrike; Horňák, Karel; Šimek, Karel; Hahn, Martin W

    2012-08-01

    The distribution and abundance of Betaproteobacteria and three of its genera - Limnohabitans (R-BT065 lineage), Polynucleobacter (including subclusters Polynucleobacter necessarius and Polynucleobacter acidiphobus/Polynucleobacter difficilis), and Methylophilus - across the epilimnia of 72 limnologically diverse freshwater habitats were investigated using fluorescence in situ hybridization. Moreover, seasonal development of Betaproteobacteria subgroups along the longitudinal axis of a reservoir was followed. Betaproteobacteria comprised on average 29.1%, Polynucleobacter 11.6%, P. necessarius 10.1%, P. acidiphobus/difficilis 0.5%, Limnohabitans 8.9%, and Methylophilus 0.9% of total bacterioplankton cells in the investigated habitats. Polynucleobacter necessarius and Limnohabitans coexisted in the majority of habitats but showed contrasting abundance patterns along the pH gradient of habitats (pH, 3.8-8.5). The observed distribution patterns could theoretically be explained by different preferences for substrate sources, that is, substances of humic origin in acidic waters and algal-derived substances in alkaline waters. However, substrate utilization patterns observed in laboratory experiments indicate no coherent group-specific differences in substrate preferences. Interestingly, similar distribution patterns were revealed for Limnohabitans and P. acidiphobus/difficilis, suggesting similar ecological adaptations of these distantly related taxa. Our findings further emphasize that at least two taxa of freshwater Betaproteobacteria represent ecologically diversified groups. Investigations at higher phylogenetic resolution are required for obtaining further insights into their ecology. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Covariations in ecological scaling laws fostered by community dynamics.

    PubMed

    Zaoli, Silvia; Giometto, Andrea; Maritan, Amos; Rinaldo, Andrea

    2017-10-03

    Scaling laws in ecology, intended both as functional relationships among ecologically relevant quantities and the probability distributions that characterize their occurrence, have long attracted the interest of empiricists and theoreticians. Empirical evidence exists of power laws associated with the number of species inhabiting an ecosystem, their abundances, and traits. Although their functional form appears to be ubiquitous, empirical scaling exponents vary with ecosystem type and resource supply rate. The idea that ecological scaling laws are linked has been entertained before, but the full extent of macroecological pattern covariations, the role of the constraints imposed by finite resource supply, and a comprehensive empirical verification are still unexplored. Here, we propose a theoretical scaling framework that predicts the linkages of several macroecological patterns related to species' abundances and body sizes. We show that such a framework is consistent with the stationary-state statistics of a broad class of resource-limited community dynamics models, regardless of parameterization and model assumptions. We verify predicted theoretical covariations by contrasting empirical data and provide testable hypotheses for yet unexplored patterns. We thus place the observed variability of ecological scaling exponents into a coherent statistical framework where patterns in ecology embed constrained fluctuations.

  1. Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics.

    PubMed

    Sims, David W; Humphries, Nicolas E; Bradford, Russell W; Bruce, Barry D

    2012-03-01

    1. Search processes play an important role in physical, chemical and biological systems. In animal foraging, the search strategy predators should use to search optimally for prey is an enduring question. Some models demonstrate that when prey is sparsely distributed, an optimal search pattern is a specialised random walk known as a Lévy flight, whereas when prey is abundant, simple Brownian motion is sufficiently efficient. These predictions form part of what has been termed the Lévy flight foraging hypothesis (LFF) which states that as Lévy flights optimise random searches, movements approximated by optimal Lévy flights may have naturally evolved in organisms to enhance encounters with targets (e.g. prey) when knowledge of their locations is incomplete. 2. Whether free-ranging predators exhibit the movement patterns predicted in the LFF hypothesis in response to known prey types and distributions, however, has not been determined. We tested this using vertical and horizontal movement data from electronic tagging of an apex predator, the great white shark Carcharodon carcharias, across widely differing habitats reflecting different prey types. 3. Individual white sharks exhibited movement patterns that predicted well the prey types expected under the LFF hypothesis. Shark movements were best approximated by Brownian motion when hunting near abundant, predictable sources of prey (e.g. seal colonies, fish aggregations), whereas movements approximating truncated Lévy flights were present when searching for sparsely distributed or potentially difficult-to-detect prey in oceanic or shelf environments, respectively. 4. That movement patterns approximated by truncated Lévy flights and Brownian behaviour were present in the predicted prey fields indicates search strategies adopted by white sharks appear to be the most efficient ones for encountering prey in the habitats where such patterns are observed. This suggests that C. carcharias appears capable of exhibiting search patterns that are approximated as optimal in response to encountered changes in prey type and abundance, and across diverse marine habitats, from the surf zone to the deep ocean. 5. Our results provide some support for the LFF hypothesis. However, it is possible that the observed Lévy patterns of white sharks may not arise from an adaptive behaviour but could be an emergent property arising from simple, straight-line movements between complex (e.g. fractal) distributions of prey. Experimental studies are needed in vertebrates to test for the presence of Lévy behaviour patterns in the absence of complex prey distributions. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  2. Fragmentation Patterns and Mechanisms of Singly and Doubly Protonated Peptoids Studied by Collision Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Ren, Jianhua; Tian, Yuan; Hossain, Ekram; Connolly, Michael D.

    2016-04-01

    Peptoids are peptide-mimicking oligomers consisting of N-alkylated glycine units. The fragmentation patterns for six singly and doubly protonated model peptoids were studied via collision-induced dissociation tandem mass spectrometry. The experiments were carried out on a triple quadrupole mass spectrometer with an electrospray ionization source. Both singly and doubly protonated peptoids were found to fragment mainly at the backbone amide bonds to produce peptoid B-type N-terminal fragment ions and Y-type C-terminal fragment ions. However, the relative abundances of B- versus Y-ions were significantly different. The singly protonated peptoids fragmented by producing highly abundant Y-ions and lesser abundant B-ions. The Y-ion formation mechanism was studied through calculating the energetics of truncated peptoid fragment ions using density functional theory and by controlled experiments. The results indicated that Y-ions were likely formed by transferring a proton from the C-H bond of the N-terminal fragments to the secondary amine of the C-terminal fragments. This proton transfer is energetically favored, and is in accord with the observation of abundant Y-ions. The calculations also indicated that doubly protonated peptoids would fragment at an amide bond close to the N-terminus to yield a high abundance of low-mass B-ions and high-mass Y-ions. The results of this study provide further understanding of the mechanisms of peptoid fragmentation and, therefore, are a valuable guide for de novo sequencing of peptoid libraries synthesized via combinatorial chemistry.

  3. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales.

    PubMed

    Hendershot, John Nicholas; Read, Quentin D; Henning, Jeremiah A; Sanders, Nathan J; Classen, Aimée T

    2017-07-01

    Macroecology seeks to understand broad-scale patterns in the diversity and abundance of organisms, but macroecologists typically study aboveground macroorganisms. Belowground organisms regulate numerous ecosystem functions, yet we lack understanding of what drives their diversity. Here, we examine the controls on belowground diversity along latitudinal and elevational gradients. We performed a global meta-analysis of 325 soil communities across 20 studies conducted along temperature and soil pH gradients. Belowground taxa, whether bacterial or fungal, observed along a given gradient of temperature or soil pH were equally likely to show a linear increase, linear decrease, humped pattern, trough-shaped pattern, or no pattern in diversity along the gradient. Land-use intensity weakly affected the diversity-temperature relationship, but no other factor did so. Our study highlights disparities among diversity patterns of soil microbial communities. Belowground diversity may be controlled by the associated climatic and historical contexts of particular gradients, by factors not typically measured in community-level studies, or by processes operating at scales that do not match the temporal and spatial scales under study. Because these organisms are responsible for a suite of key processes, understanding the drivers of their distribution and diversity is fundamental to understanding the functioning of ecosystems. © 2017 by the Ecological Society of America.

  4. Gut microbiomes of Indian children of varying nutritional status.

    PubMed

    Ghosh, Tarini Shankar; Gupta, Sourav Sen; Bhattacharya, Tanudeep; Yadav, Deepak; Barik, Anamitra; Chowdhury, Abhijit; Das, Bhabatosh; Mande, Sharmila S; Nair, G Balakrish

    2014-01-01

    Malnutrition is a global health problem affecting more than 300 million pre-school children worldwide. It is one of the major health concerns in India since around 50% of children below the age of two suffer from various forms of malnutrition. The gut microbiome plays an important role in nutrient pre-processing, assimilation and energy harvest from food. Consequently, dysbiosis of the gut microbiota has been implicated in malnutrition. Metagenomics approach was adopted to investigate the gut microbiome sampled from 20 rural Indian children with varying nutritional status. The changes in the abundances of various taxonomic and functional groups were investigated across these gut microbiomes. A core set of 23 genera were observed across samples, with some showing differential abundances with varying nutritional status. One of the findings of the current study is the positive/negative associations of specific taxonomic and functional groups with the nutritional status of the children. Notable alterations in the architecture of the inter-microbial co-occurrence networks were also observed with changes in nutritional status. A key example is the clustering of potentially pathogenic groups into a distinct hub in severely malnourished gut. Our data does not demonstrate causality with the microbiome patterns that we observed, rather a description of some interesting patterns, whose underlying mechanism remains to be uncovered. The present study envisioned interrelationships between the pattern of gut microbiome and the nutritional status of children. The cause of this pattern needs to be explored. However, insights obtained from the present study form the basis for further metagenomic investigations on larger population of children. Results of such studies will be useful in identifying the key microbial groups that can be utilized for targeted therapeutic interventions for managing severe acute malnutrition.

  5. Gut Microbiomes of Indian Children of Varying Nutritional Status

    PubMed Central

    Bhattacharya, Tanudeep; Yadav, Deepak; Barik, Anamitra; Chowdhury, Abhijit; Das, Bhabatosh; Mande, Sharmila S.; Nair, G. Balakrish

    2014-01-01

    Background Malnutrition is a global health problem affecting more than 300 million pre-school children worldwide. It is one of the major health concerns in India since around 50% of children below the age of two suffer from various forms of malnutrition. The gut microbiome plays an important role in nutrient pre-processing, assimilation and energy harvest from food. Consequently, dysbiosis of the gut microbiota has been implicated in malnutrition. Methodology/Principal Findings Metagenomics approach was adopted to investigate the gut microbiome sampled from 20 rural Indian children with varying nutritional status. The changes in the abundances of various taxonomic and functional groups were investigated across these gut microbiomes. A core set of 23 genera were observed across samples, with some showing differential abundances with varying nutritional status. One of the findings of the current study is the positive/negative associations of specific taxonomic and functional groups with the nutritional status of the children. Notable alterations in the architecture of the inter-microbial co-occurrence networks were also observed with changes in nutritional status. A key example is the clustering of potentially pathogenic groups into a distinct hub in severely malnourished gut. Our data does not demonstrate causality with the microbiome patterns that we observed, rather a description of some interesting patterns, whose underlying mechanism remains to be uncovered. Conclusions The present study envisioned interrelationships between the pattern of gut microbiome and the nutritional status of children. The cause of this pattern needs to be explored. However, insights obtained from the present study form the basis for further metagenomic investigations on larger population of children. Results of such studies will be useful in identifying the key microbial groups that can be utilized for targeted therapeutic interventions for managing severe acute malnutrition. PMID:24763225

  6. Rarity in aquatic microbes: placing protists on the map.

    PubMed

    Logares, Ramiro; Mangot, Jean-François; Massana, Ramon

    2015-12-01

    Most microbial richness at any given time tends to be represented by low-abundance (rare) taxa, which are collectively referred to as the "rare biosphere". Here we review works on the rare biosphere using high-throughput sequencing (HTS), with a particular focus on unicellular eukaryotes or protists. Evidence thus far indicates that the rare biosphere encompasses dormant as well as metabolically active microbes that could potentially play key roles in ecosystem functioning. Rare microbes appear to have biogeography, and sometimes the observed patterns can be similar to what is observed among abundant taxa, suggesting similar community-structuring mechanisms. There is limited evidence indicating that the rare biosphere contains taxa that are phylogenetically distantly related to abundant counterparts; therefore, the rare biosphere may act as a reservoir of deep-branching phylogenetic diversity. The potential role of the rare biosphere as a bank of redundant functions that can help to maintain continuous ecosystem function following oscillations in taxonomic abundances is hypothesized as its main ecological role. Future studies focusing on rare microbes are crucial for advancing our knowledge of microbial ecology and evolution and unveiling their links with ecosystem function. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Understanding r-process Nucleosynthesis through Nuclear Data

    NASA Astrophysics Data System (ADS)

    Surman, Rebecca

    2018-06-01

    The electromagnetic counterpart of the GW170817 neutron star merger provided the first direct evidence of the astrophysical formation of nuclei via rapid neutron capture (r-process) nucleosynthesis. Full understanding of this event from first principles and its role in galactic chemical evolution requires progress in a number of areas. One key area is nuclear physics. A neutron star merger r-process involves thousands of exotic nuclear species, the majority of which have never been studied in the laboratory. Here we will discuss r-process nuclear data needs and how nuclear physics uncertainties influence our interpretation of observed abundance patterns and kilonova signals. We will explore the promise of experimental campaigns at rare isotope beam facilities to reduce these uncertainties, and describe recent efforts to directly connect nuclear data to astrophysical environments via the ‘reverse-engineering’ of unknown nuclear properties from the r-process abundance pattern.

  8. Effects of weather on the abundance and distribution on populations of 103 breeding bird species across the United States

    NASA Astrophysics Data System (ADS)

    Allstadt, A. J.; Gorzo, J.; Bateman, B. L.; Heglund, P. J.; Pidgeon, A. M.; Thogmartin, W.; Vavrus, S. J.; Radeloff, V.

    2016-12-01

    Often, fewer birds are often observed in an area experiencing extreme weather, as local populations tend to leave an area (via out-migration or concentration in refugia) or experience a change in population size (via mortality or reduced fecundity). Further, weather patterns are often coherent over large areas so unsuitable weather may threaten large portions of an entire species range simultaneously. However, beyond a few iconic irruptive species, rarely have studies applied both the necessary scale and sensitivity required to assess avian population responses over entire species range. Here, we examined the effects of pre-breeding season weather on the distribution and abundances of 103 North American bird species from the late 1966-2010 using observed abundance records from the Breeding Bird Survey. We compared abundances with measures of drought and temperature over each species' range, and with three atmospheric teleconnections that describe large-scale circulation patterns influencing conditions on the ground. More than 90% of the species responded to at least one of our five weather variables. Grassland bird species tended to be most responsive to weather conditions and forest birds the least, though we found relations among all habitat types. For most species, the response was movement rather than large effects on the overall population size. Maps of these responses indicate that concentration and out-migration are both common strategies for coping with challenging weather conditions across a species range. The dynamic distribution of many bird species makes clear the need to account for temporal variability in conservation planning, as areas that are less important for a species' breeding success in most years may be very important in years with abnormal weather conditions.

  9. THE ROLE OF THERMOHALINE MIXING IN INTERMEDIATE- AND LOW-METALLICITY GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelou, George C.; Stancliffe, Richard J.; Church, Ross P.

    It is now widely accepted that globular cluster red giant branch (RGB) stars owe their strange abundance patterns to a combination of pollution from progenitor stars and in situ extra mixing. In this hybrid theory a first generation of stars imprints abundance patterns into the gas from which a second generation forms. The hybrid theory suggests that extra mixing is operating in both populations and we use the variation of [C/Fe] with luminosity to examine how efficient this mixing is. We investigate the observed RGBs of M3, M13, M92, M15, and NGC 5466 as a means to test a theorymore » of thermohaline mixing. The second parameter pair M3 and M13 are of intermediate metallicity and our models are able to account for the evolution of carbon along the RGB in both clusters, although in order to fit the most carbon-depleted main-sequence stars in M13 we require a model whose initial [C/Fe] abundance leads to a carbon abundance lower than is observed. Furthermore, our results suggest that stars in M13 formed with some primary nitrogen (higher C+N+O than stars in M3). In the metal-poor regime only NGC 5466 can be tentatively explained by thermohaline mixing operating in multiple populations. We find thermohaline mixing unable to model the depletion of [C/Fe] with magnitude in M92 and M15. It appears as if extra mixing is occurring before the luminosity function bump in these clusters. To reconcile the data with the models would require first dredge-up to be deeper than found in extant models.« less

  10. Population-level analysis and validation of an individual-based cutthroat trout model

    Treesearch

    Steven F. Railsback; Bret C. Harvey; Roland H. Lamberson; Derek E. Lee; Claasen Nathan J.; Shuzo Yoshihara

    2002-01-01

    Abstract - An individual-based model of stream trout is analyzed by testing its ability to reproduce patterns of population-level behavior observed in real trout: (1) "self-thinning," a negative power relation between weight and abundance; (2) a "critical period" of density-dependent mortality in young-of-the-year; (3) high and age-speci...

  11. Climate change and the future of freshwater fisheries

    Treesearch

    Daniel J. Isaak

    2014-01-01

    My first awareness of the importance that climate has for fish came during my summer field seasons as a Ph.D. student at the University of Wyoming. While conducting electrofishing surveys in the climatically diverse Salt River basin along the mountainous border between Wyoming and Idaho, I observed spatial patterns in species distributions and abundance that strongly...

  12. Behaviour Patterns in Daily Mother-Child Separations: Possible Opportunities for Stress Reduction

    ERIC Educational Resources Information Center

    Klein, Pnina S.; Kraft, Ravit R.; Shohet, Cilly

    2010-01-01

    Despite the abundance of research on attachment and on the effects of separation, very little research examines the actual processes of separation occurring daily when mothers leave their children (age 6-18 months) in out-of-home group care. In the current study, this everyday process of separation was observed for three months…

  13. Seasonal and habitat-related distribution pattern of Synechococcus genotypes in Lake Constance.

    PubMed

    Becker, Sven; Richl, Petra; Ernst, Anneliese

    2007-10-01

    The abundance and distribution of Synechococcus spp. in the autotrophic picoplankton of Lake Constance, were followed in the pelagic and littoral habitat by qPCR over 2 years. One genotype, represented by isolated phycoerythrin-rich strain BO 8807, showed a seasonal distribution pattern in both habitats. Before a stable thermal stratification, the maximum of both the Synechococcus population and genotype BO 8807 occurred at 15 or 20 m water depth in the pelagic habitat. During the summer stratification, when the absolute abundance of all Synechococcus spp. was highest above 15 m, the absolute and relative abundance of genotype BO 8807 was maximal at 20 m. These results indicate that Synechococcus spp. or single genotypes are present in deep maxima in Lake Constance. The in situ dynamics of genotype BO 8807 is consistent with the observation that isolated strain BO 8807 requires higher phosphate concentrations for maximum growth rates than a strain from the same phylogenetic cluster that dominates the pelagic summer population. In contrast to these findings, low genome numbers of phycocyanin-rich genotype BO 8805 were found temporarily only in both the littoral and pelagic plankton. Microscopy revealed that PC-rich cells in general occurred preferentially in the littoral habitat. We discuss our results with respect to the versatility of picocyanobacteria of the evolutionary lineage VI of cyanobacteria, and a habitat-related distribution pattern of Synechococcus genotypes.

  14. From Actinides to Zinc: Using the Full Abundance Pattern of the Brightest Star in Reticulum II to Distinguish between Different r-process Sites

    NASA Astrophysics Data System (ADS)

    Ji, Alexander P.; Frebel, Anna

    2018-04-01

    The ultra-faint dwarf galaxy Reticulum II was enriched by a rare and prolific r-process event, such as a neutron star merger (NSM). To investigate the nature of this event, we present high-resolution Magellan/MIKE spectroscopy of the brightest star in this galaxy. The high signal-to-noise allows us to determine the abundances of 41 elements, including the radioactive actinide element Th and first ever detections of third r-process peak elements (Os and Ir) in a star outside the Milky Way. The observed neutron-capture element abundances closely match the solar r-process component, except for the first r-process peak, which is significantly lower than solar but matches other r-process enhanced stars. The ratio of the first peak to heavier r-process elements implies that the r-process site produces roughly equal masses of high and low electron fraction ejecta, within a factor of 2. We compare the detailed abundance pattern to predictions from nucleosynthesis calculations of NSMs and magnetorotationally driven jet supernovae, finding that nuclear physics uncertainties dominate over astrophysical uncertainties. We measure {log}{{Th/Eu}}=-0.84+/- 0.06 ({stat})+/- 0.22 ({sys}), somewhat lower than all previous Th/Eu observations. The youngest age we derive from this ratio is 21.7 ± 2.8 (stat) ± 10.3 (sys) Gyr, indicating that current initial production ratios do not describe the r-process event in Reticulum II. The abundances of light elements up to Zn are consistent with extremely metal-poor Milky Way halo stars. They may eventually provide a way to distinguish between NSMs and magnetorotationally driven jet supernovae, but this would require more detailed knowledge of the chemical evolution of Reticulum II. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  15. Spectroscopic abundance analyses of the 3He stars HD 185330 and 3 Cen A

    NASA Astrophysics Data System (ADS)

    Sadakane, Kozo; Nishimura, Masayoshi

    2018-06-01

    Abundances of 21 elements in two 3He stars, HD 185330 and 3 Cen A, have been analysed relative to the well-studied sharp-lined B3 V star ι Her. Six elements (P, Ti, Mn, Fe, Ni, and Br) are over-abundant in these two peculiar stars, while six elements (C, O, Mg, Al, S, and Cl) are under-abundant. Absorption lines of the two rarely observed heavy elements Br II and Kr II are detected in both stars and these elements are both over-abundant. The centroid wavelengths of the Ca II infrared triplet lines in these stars are redshifted relative to those lines in ι Her and the presence of heavy isotopes of Ca (mass number 44-46) in these two stars is confirmed. In spite of these similarities, there are several remarkable differences in abundance pattern between these two stars. N is under-abundant in HD 185330, as in many Hg-Mn stars, while it is significantly over-abundant in 3 Cen A. P and Ga are both over-abundant in 3 Cen A, while only P is over-abundant and no trace of absorption line of Ga II can be found in HD 185330. Large over-abundances of Kr and Xe are found in both stars, while the abundance ratio Kr/Xe is significantly different between them (-1.4 dex in HD 185330 and +1.2 dex in 3 Cen A). Some physical explanations are needed to account for these qualitative differences.

  16. Spectroscopic abundance analyses of the 3He stars HD 185330 and 3 Cen A

    NASA Astrophysics Data System (ADS)

    Sadakane, Kozo; Nishimura, Masayoshi

    2018-04-01

    Abundances of 21 elements in two 3He stars, HD 185330 and 3 Cen A, have been analysed relative to the well-studied sharp-lined B3 V star ι Her. Six elements (P, Ti, Mn, Fe, Ni, and Br) are over-abundant in these two peculiar stars, while six elements (C, O, Mg, Al, S, and Cl) are under-abundant. Absorption lines of the two rarely observed heavy elements Br II and Kr II are detected in both stars and these elements are both over-abundant. The centroid wavelengths of the Ca II infrared triplet lines in these stars are redshifted relative to those lines in ι Her and the presence of heavy isotopes of Ca (mass number 44-46) in these two stars is confirmed. In spite of these similarities, there are several remarkable differences in abundance pattern between these two stars. N is under-abundant in HD 185330, as in many Hg-Mn stars, while it is significantly over-abundant in 3 Cen A. P and Ga are both over-abundant in 3 Cen A, while only P is over-abundant and no trace of absorption line of Ga II can be found in HD 185330. Large over-abundances of Kr and Xe are found in both stars, while the abundance ratio Kr/Xe is significantly different between them (-1.4 dex in HD 185330 and +1.2 dex in 3 Cen A). Some physical explanations are needed to account for these qualitative differences.

  17. Spatial patterns of distribution and abundance of Harrisia portoricensis, an endangered Caribbean cactus

    Treesearch

    J. Rojas-Sandoval; E. J. Melendez-Ackerman; NO-VALUE

    2013-01-01

    Aims The spatial distribution of biotic and abiotic factors may play a dominant role in determining the distribution and abundance of plants in arid and semiarid environments. In this study, we evaluated how spatial patterns of microhabitat variables and the degree of spatial dependence of these variables influence the distribution and abundance of the endangered...

  18. Fish assemblage in a semi-arid Neotropical reservoir: composition, structure and patterns of diversity and abundance.

    PubMed

    Novaes, J L C; Moreira, S I L; Freire, C E C; Sousa, M M O; Costa, R S

    2014-05-01

    The aim of this study was to analyse the composition, structure and spatial and temporal patterns of diversity and abundance of the ichthyofauna of the Santa Cruz Reservoir in semi-arid Brazil. Data were collected quarterly at eight sampling locations on the reservoir between February 2010 and November 2011 using gillnets from 12- to 70-mm mesh that were left in the water for 12h00min during the night. We evaluated the composition, structure and assemblage descriptors (Shannon-Wiener diversity index and equitability, respectively) and catch per unit effort by the number (CPUEn) and biomass (CPUEb) of the ichthyofauna. The 6,047 individuals (399,211.6 g) captured represented three orders, ten families and 20 species, of which four belonged to introduced species. The family Characidae was the most abundant with a total of 2,772 (45.8%) individuals captured. The species-abundance curve fit the log-normal model. In the spatial analysis of diversity, there were significant differences between sampling sites in the lacustrine and fluvial regions, and the highest values were found in the lacustrine region. In the temporal analysis of diversity, significant differences were also observed between the rainy and dry seasons, and the higher values were found during the dry season. Equitability followed the same spatiotemporal pattern as diversity. The Spearman correlation was significantly negative between diversity and rainfall. A cluster analysis spatially separated the ichthyofauna into two groups: one group formed by sampling sites in the fluvial region and another group formed by the remainder of the points in the lacustrine region. Both the CPUEn and CPUEb values were higher at point 8 (fluvial region) and during the rainy season. A two-way ANOVA showed that the CPUEn and CPUEb values were spatially and temporally significant. We conclude that the spatial and temporal trends of diversity in the Santa Cruz reservoir differ from those of other Brazilian reservoirs but that the fish community composition and spatiotemporal patterns of abundance were similar.

  19. Using the urtA Gene to Profile Nitrogen Stress Adaptation and Spatio-Temporal Abundance of Synechococcus Clades in the California Current System

    NASA Astrophysics Data System (ADS)

    Chatterjee, T.; Shilova, I. N.; Zehr, J. P.

    2015-12-01

    Among the planet's most abundant photosynthetic groups, the picocyanobacteria Synechococcus contributes nearly a quarter of our global oxygen supply. Urea, from both natural and anthropogenic sources, is an important alternative to the preferred yet limited sources of reduced nitrogen for cyanobacteria in the marine environment. While urea uptake activity has been observed during nitrogen (N) limitation, this stress adaptation is not well-studied in natural habitats. We propose the urtAgene, which encodes the substrate-binding subunit of the urea-uptake ABC transporter, as a molecular marker to profile cell abundance and stress response in relation to N fluctuation. Strains prevalent in temperate waters of the California Current System - Synechococcus CC9311 (clade I), CC9605 (clade II) and CC9902/BL107 (clade IV) - were targeted by clade-specific qPCR assays to measure urtA gene copy abundance in samples from different geographical stations and a time-series. Spatial and seasonal patterns in clade abundance resembled those previously reported by studies using other Synechococcus marker genes, thus validating urtA as a strong marker. Synechococcus clades I and IV were most abundant in coastal and transitional stations, while the more oligotrophic clade II was detected near open waters. Synechococcus abundances were highest before and after the annual upwelling season, as supported by a non clade-specific rbcL-qPCR assay. A lack of correlation between abundance and nitrate availability indicated utilization of alternative nitrogen sources like urea, which was further evidenced by the detection of clade IV urtA transcripts at the station closest to shore. Urea concentrations tend to be highest in coastal environments due to fertilizer runoff, which can stimulate phytoplankton blooms including harmful algal blooms. This study adds to insight on how such environmental factors are related to N-cycling and patterns of urea-assimilating microbial populations like Synechococcus subgroups in the California Current waters of the Pacific Ocean.

  20. Decadal Changes in Zooplankton of the Northeast U.S. Continental Shelf

    PubMed Central

    Bi, Hongsheng; Ji, Rubao; Liu, Hui; Jo, Young-Heon; Hare, Jonathan A.

    2014-01-01

    The abundance of the subarctic copepod, Calanus finmarchicus, and temperate, shelf copepod, Centropages typicus, was estimated from samples collected bi-monthly over the Northeast U.S. continental shelf (NEUS) from 1977–2010. Latitudinal variation in long term trends and seasonal patterns for the two copepod species were examined for four sub-regions: the Gulf of Maine (GOM), Georges Bank (GB), Southern New England (SNE), and Mid-Atlantic Bight (MAB). Results suggested that there was significant difference in long term variation between northern region (GOM and GB), and the MAB for both species. C. finmarchicus generally peaked in May – June throughout the entire study region and Cen. typicus had a more complex seasonal pattern. Time series analysis revealed that the peak time for Cen. typicus switched from November – December to January - March after 1985 in the MAB. The long term abundance of C. finmarchicus showed more fluctuation in the MAB than the GOM and GB, whereas the long term abundance of Cen. typicus was more variable in the GB than other sub-regions. Alongshore transport was significantly correlated with the abundance of C. finmarchicus, i.e., more water from north, higher abundance for C. finmarchicus. The abundance of Cen. typicus showed positive relationship with the Gulf Stream north wall index (GSNWI) in the GOM and GB, but the GSNWI only explained 12–15% of variation in Cen. typicus abundance. In general, the alongshore current was negatively correlated with the GSNWI, suggesting that Cen. typicus is more abundant when advection from the north is less. However, the relationship between Cen. typicus and alongshore transport was not significant. The present study highlights the importance of spatial scales in the study of marine populations: observed long term changes in the northern region were different from the south for both species. PMID:24498177

  1. The influence of mistletoes on birds in an agricultural landscape of central Mexico

    NASA Astrophysics Data System (ADS)

    Zuria, Iriana; Castellanos, Ignacio; Gates, J. Edward

    2014-11-01

    Mistletoes are hemiparasitic flowering plants that function as keystone resources in forests and woodlands of temperate regions, where a positive relationship between mistletoe density and avian species richness has been observed. Mistletoes have been less studied in tropical regions and the relationship between birds and mistletoes has seldom been explored in tropical agricultural systems. Therefore, we studied the presence of infected trees and infection prevalence (i.e., number of parasitized trees/total number of trees) by Psittacanthus (Loranthaceae) mistletoes in 23 hedgerows located in an agricultural landscape of central Mexico during the dry and rainy seasons, and investigated the relationship between bird species richness and abundance and the abundance of mistletoes. We found a mean of 74 mistletoe plants per 100-m transect of only one species, Psittacanthus calyculatus. Thirty-one percent of the trees surveyed were infected and tree species differed in infection prevalence, mesquite (Prosopis laevigata) being the most infected species with 86% of the surveyed trees infected. For both seasons, we found a positive and significant association between bird species richness and number of mistletoe plants. The same pattern was observed for total bird abundance. Many resident and Neotropical migratory birds were observed foraging on mistletoes. Our results show that mistletoes are important in promoting a higher bird species richness and abundance in tropical agricultural landscapes.

  2. A Comparison of Spatial and Movement Patterns between Sympatric Predators: Bull Sharks (Carcharhinus leucas) and Atlantic Tarpon (Megalops atlanticus)

    PubMed Central

    Hammerschlag, Neil; Luo, Jiangang; Irschick, Duncan J.; Ault, Jerald S.

    2012-01-01

    Background Predators can impact ecosystems through trophic cascades such that differential patterns in habitat use can lead to spatiotemporal variation in top down forcing on community dynamics. Thus, improved understanding of predator movements is important for evaluating the potential ecosystem effects of their declines. Methodology/Principal Findings We satellite-tagged an apex predator (bull sharks, Carcharhinus leucas) and a sympatric mesopredator (Atlantic tarpon, Megalops atlanticus) in southern Florida waters to describe their habitat use, abundance and movement patterns. We asked four questions: (1) How do the seasonal abundance patterns of bull sharks and tarpon compare? (2) How do the movement patterns of bull sharks and tarpon compare, and what proportion of time do their respective primary ranges overlap? (3) Do tarpon movement patterns (e.g., straight versus convoluted paths) and/or their rates of movement (ROM) differ in areas of low versus high bull shark abundance? and (4) Can any general conclusions be reached concerning whether tarpon may mitigate risk of predation by sharks when they are in areas of high bull shark abundance? Conclusions/Significance Despite similarities in diet, bull sharks and tarpon showed little overlap in habitat use. Bull shark abundance was high year-round, but peaked in winter; while tarpon abundance and fishery catches were highest in late spring. However, presence of the largest sharks (>230 cm) coincided with peak tarpon abundance. When moving over deep open waters (areas of high shark abundance and high food availability) tarpon maintained relatively high ROM in directed lines until reaching shallow structurally-complex areas. At such locations, tarpon exhibited slow tortuous movements over relatively long time periods indicative of foraging. Tarpon periodically concentrated up rivers, where tracked bull sharks were absent. We propose that tarpon trade-off energetic costs of both food assimilation and osmoregulation to reduce predation risk by bull sharks. PMID:23049904

  3. [Habitat use patterns of the Black Brant Branta bernicla nigricans (Anseriformes: Anatidae) in natural and artificial areas of Guerrero Negro, Baja California Sur, Mexico].

    PubMed

    Cedillo, Israel Martínez; Carmona, Roberto; Ward, David H; Danemann, Gustavo D

    2013-06-01

    The Black Brant is a common inhabitant of the Western Artic American tundra, which migrates to Southern Pacific coasts during the winter season. Approximately, 31000 birds (31%) constitute the Mexican population of Brants at Guerrero Negro, Ojo de Liebre, and Exportadora de Sal lagoon complex; nevertheless, there is little information about the distribution patterns and zone usage. At Guerrero Negro Lagoon (GNL), Ojo de Liebre Lagoon (OLL, both natural sites), and at Exportadora de Sal (ESSA, artificial site) we determined by monthly censuses (from November 2006 to April 2007, 08:00-16:00h) and observed: (1) season and site effects on population structure (age groups), and (2) the tide level relationship with the abundance and proportion of feeding birds. Within a total of 150 observation hours and 98 birds, our results showed a general 0.68 proportion of adults, that was higher in winter than in spring. The statistics analysis showed no effects by site on the proportion of feeding birds, but we observed a temporal decrease at ESSA and at GNL. In contrast the proportion of feeding birds at OLL was constant. We observed an increase in the juveniles between winter and spring. This increase is related with the differential migration, which mentions that the juveniles are the last to leave the wintering area. In winter the relations of the tide level with the abundance of Brant were: direct at ESSA, inverse at OLL and no relation found at GNL. In spring, no relation was observed in the sites. The proportion of Brants feeding at OLL (the site with the higher abundance) was independent of the tide level. This is related with two possible behaviors of the geese: (1) they can move through the lagoon and take advantage of the tidal lag, which is up to four hours; and (2) they can modify their feeding strategies, more on floating eelgrass (Zostera marina).

  4. Hierarchical spatial models of abundance and occurrence from imperfect survey data

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, M.; Gautier, R.; Schmid, Hans

    2007-01-01

    Many estimation and inference problems arising from large-scale animal surveys are focused on developing an understanding of patterns in abundance or occurrence of a species based on spatially referenced count data. One fundamental challenge, then, is that it is generally not feasible to completely enumerate ('census') all individuals present in each sample unit. This observation bias may consist of several components, including spatial coverage bias (not all individuals in the Population are exposed to sampling) and detection bias (exposed individuals may go undetected). Thus, observations are biased for the state variable (abundance, occupancy) that is the object of inference. Moreover, data are often sparse for most observation locations, requiring consideration of methods for spatially aggregating or otherwise combining sparse data among sample units. The development of methods that unify spatial statistical models with models accommodating non-detection is necessary to resolve important spatial inference problems based on animal survey data. In this paper, we develop a novel hierarchical spatial model for estimation of abundance and occurrence from survey data wherein detection is imperfect. Our application is focused on spatial inference problems in the Swiss Survey of Common Breeding Birds. The observation model for the survey data is specified conditional on the unknown quadrat population size, N(s). We augment the observation model with a spatial process model for N(s), describing the spatial variation in abundance of the species. The model includes explicit sources of variation in habitat structure (forest, elevation) and latent variation in the form of a correlated spatial process. This provides a model-based framework for combining the spatially referenced samples while at the same time yielding a unified treatment of estimation problems involving both abundance and occurrence. We provide a Bayesian framework for analysis and prediction based on the integrated likelihood, and we use the model to obtain estimates of abundance and occurrence maps for the European Jay (Garrulus glandarius), a widespread, elusive, forest bird. The naive national abundance estimate ignoring imperfect detection and incomplete quadrat coverage was 77 766 territories. Accounting for imperfect detection added approximately 18 000 territories, and adjusting for coverage bias added another 131 000 territories to yield a fully corrected estimate of the national total of about 227 000 territories. This is approximately three times as high as previous estimates that assume every territory is detected in each quadrat.

  5. Far and Wide - Microbial Bebop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Larsen

    2012-10-01

    This musical composition was created from data of microbes (bacteria, algae and other microorganisms) sampled in the English Channel. Argonne National Laboratory biologist Peter Larsen created the songs as a unique way to present and comprehend large datasets. Microbial species of the Order Rickettsiales, such as the highly abundant, free-living planktonic species Pelagibacter ubique, are typical highly abundant taxa in L4 Station data. Its relative abundance in the microbial community at L4 Station follows a distinctive seasonal pattern. In this composition, there are two chords per measure, generated from photosynthetically active radiation measurements and temperature. The melody of each measuremore » is six notes that describe the relative abundance of the Order Rickettsiales. The first note of each measure is from the relative abundance at a time point. The next five notes of a measure follow one of the following patterns: a continuous rise in pitch, a continuous drop in pitch, a rise then drop in pitch, or a drop then rise in pitch. These patterns are matched to the relative abundance of Rickettsiales at the given time point, relative to the previous and subsequent time points. The pattern of notes in a measure is mapped to the relative abundance of Rickettsiales with fewer rests per measure indicating higher abundance. For time points at which Rickettsiales was the most abundant microbial taxa, the corresponding measure is highlighted with a cymbal crash. More information at http://www.anl.gov/articles/songs-key... Image: Diatoms under a microscope: These tiny phytoplankton are encased within a silicate cell wall. Credit: Prof. Gordon T. Taylor, Stony Brook University« less

  6. Differential Response of Acidobacteria Subgroups to Forest-to-Pasture Conversion and Their Biogeographic Patterns in the Western Brazilian Amazon

    PubMed Central

    Navarrete, Acacio A.; Venturini, Andressa M.; Meyer, Kyle M.; Klein, Ann M.; Tiedje, James M.; Bohannan, Brendan J. M.; Nüsslein, Klaus; Tsai, Siu M.; Rodrigues, Jorge L. M.

    2015-01-01

    Members of the phylum Acidobacteria are among the most abundant soil bacteria on Earth, but little is known about their response to environmental changes. We asked how the relative abundance and biogeographic patterning of this phylum and its subgroups responded to forest-to-pasture conversion in soils of the western Brazilian Amazon. Pyrosequencing of 16S rRNA genes was employed to assess the abundance and composition of the Acidobacteria community across 54 soil samples taken using a spatially nested sampling scheme at the landscape level. Numerically, Acidobacteria represented 20% of the total bacterial community in forest soils and 11% in pasture soils. Overall, 15 different Acidobacteria subgroups of the current 26 subgroups were detected, with Acidobacteria subgroups 1, 3, 5, and 6 accounting together for 87% of the total Acidobacteria community in forest soils and 75% in pasture soils. Concomitant with changes in soil chemistry after forest-to-pasture conversion—particularly an increase in properties linked to soil acidity and nutrient availability—we observed an increase in the relative abundances of Acidobacteria subgroups 4, 10, 17, and 18, and a decrease in the relative abundances of other Acidobacteria subgroups in pasture relative to forest soils. The composition of the total Acidobacteria community as well as the most abundant Acidobacteria subgroups (1, 3, 5, and 6) was significantly more similar in composition across space in pasture soils than in forest soils. These results suggest that preponderant responses of Acidobacteria subgroups, especially subgroups 1, 3, 4, 5, and 6, to forest-to-pasture conversion effects in soils could be used to define management-indicators of agricultural practices in the Amazon Basin. These acidobacterial responses are at least in part through alterations on acidity- and nutrient-related properties of the Amazon soils. PMID:26733981

  7. Benthic macrofaunal colonization patterns and preservation of laminated sediments: Observations in an extreme coastal basin environment in the lower Gulf of California

    NASA Astrophysics Data System (ADS)

    Herguera, J.; Paull, C. K.; Anderson, K.; Gwiazda, R.; Lundsten, E. M.; Kundz, L.; Edwards, B. D.; McGann, M. L.

    2012-12-01

    New observations and cores obtained with the ROV Doc Ricketts operated from the RV/Western Flyer provide a glimpse into a macrofauna barren sea-floor where laminated sediments are known to accumulate on the sea-floor of Alfonso Basin. This basin, located north of La Paz Bay, Baja California, is known to be an important repository of laminated sediments due to a combination of the relatively high input of terrigenous sediments brought in by summer rains, a moderate to high export productivity from its surface waters, and the very low oxygen concentrations at depth bathed by tropical subsurface waters. These laminated sediments are unique repositories of paleoceanographic and paleoclimatic information for its very high resolution records of past conditions comparable to ice core, tree ring, coral and cave records although spanning continuously much further back in time. However, the paleoceanographic community rarely has had the opportunity to visualize the seafloor surface where these sediments are accumulating and examine the biological abundance patterns in these extreme environments. Here we will show results from ROV Doc Ricketts quantitative video transects providing benthic faunal abundance patterns on the seafloor in these highly oxygen depleted bottom waters. These observations are further compared with the underlying stratigraphy. A coring system carried on the ROV allowed us to replicate cores and to collect a transect of 5 closely spaced cores to evaluate the horizontal extent of the observed variability down-core. We will also show some preliminary results from x-radiographs showing the nature of the laminations and its sediment composition based on elemental analysis on organic carbon, carbonate and biogenic opal analysis. New XRF results from a box core will be used to calibrate its terrigenous components with the historical rainfall record and evaluate its potential to reconstruct summer precipitation patterns in this region.

  8. Composition of breeding bird communities in Gulf Coast Chenier Plain marshes: Effects of winter burning

    USGS Publications Warehouse

    Gabrey, S.W.; Afton, A.D.

    2004-01-01

    Marsh managers along the Gulf Coast Chenier Plain frequently use winter burns to alter marsh vegetation and improve habitat quality for wintering waterfowl. However, effects of these burns on marsh avifauna are not well documented. We recorded abundances of breeding bird species and vegetation structure in burned and unburned control marshes during one breeding season before (1996) and two breeding seasons after (1997, 1998) experimental winter burns. We used non-metric multidimensional scaling analysis to assess the extent and direction of changes in bird community compositions of burned and unburned control marshes and to investigate the influence of vegetation structure on bird community composition. Overall, we found that Seaside Sparrows (Emberizidae: Ammodramus maritimus [Wilson]) and Red-winged Blackbirds and Boat-tailed Grackles (Icteridae: Agelaius phoeniceus [L.] and Quiscalus major Vieillot, respectively) comprised > 85% of observed birds. In burned marshes during the first breeding season following experimental burns (1997), icterid abundance increased while Seaside Sparrow abundance decreased relative to pre-burn (1996) conditions. This pattern was reversed during the second breeding season post-burn. No obvious patterns of change in avian abundance were detected in unburned control marshes over the 3-year period. Qualitative changes in breeding bird community composition were related to effects of winter burning on percent cover of dead vegetation and Spartina patens (Aiton) Muhl.

  9. High-resolution spectroscopic observations of the new CEMP-s star CD -50°776

    NASA Astrophysics Data System (ADS)

    Roriz, M.; Pereira, C. B.; Drake, N. A.; Roig, F.; Silva, J. V. Sales

    2017-11-01

    Carbon enhanced metal-poor (CEMP) stars are a particular class of low-metalicity halo stars whose chemical analysis may provide important contrains to the chemistry evolution of the Galaxy and to the models of mass-transfer and evolution of components in binary systems. Here, we present a detailed analysis of the CEMP star CD -50°776, using high resolution optical spectroscopy. We found that CD -50°776 has a metalicity [Fe/H] = -2.31 and a carbon abundance [C/Fe] = +1.21. Analysing the s-process elements and the europium abundances, we show that this star is actually a CEMP-s star, based on the criteria set in the literature to classify these chemically peculiar objects. We also show that CD -50°776 is a lead star, since it has a ratio [Pb/Ce] = +0.97. In addition, we show that CD -50°776 develops radial velocity variations that may be attributed to the orbital motion in a binary system. The abundance pattern of CD -50°776 is discussed and compared to other CEMP-s stars already reported in the literature to show that this star is a quite exceptional object among the CEMP stars, particularly due to its low nitrogen abundance. Explaining this pattern may require to improve the nucleosynthesis models, and the evolutionary models of mass transfer and binary interaction.

  10. Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia.

    PubMed

    Han, Xue-Mei; Hu, Hang-Wei; Shi, Xiu-Zhen; Wang, Jun-Tao; Han, Li-Li; Chen, Deli; He, Ji-Zheng

    2016-04-01

    The effluents from wastewater treatment plants have been recognized as a significant environmental reservoir of antibiotics and antibiotic resistance genes (ARGs). Reclaimed water irrigation (RWI) is increasingly used as a practical solution for combating water scarcity in arid and semiarid regions, however, impacts of RWI on the patterns of ARGs and the soil bacterial community remain unclear. Here, we used high-throughput quantitative PCR and terminal restriction fragment length polymorphism techniques to compare the diversity, abundance and composition of a broad-spectrum of ARGs and total bacteria in 12 urban parks with and without RWI in Victoria, Australia. A total of 40 unique ARGs were detected across all park soils, with genes conferring resistance to β-lactam being the most prevalent ARG type. The total numbers and the fold changes of the detected ARGs were significantly increased by RWI, and marked shifts in ARG patterns were also observed in urban parks with RWI compared to those without RWI. The changes in ARG patterns were paralleled by a significant effect of RWI on the bacterial community structure and a co-occurrence pattern of the detected ARG types. There were significant and positive correlations between the fold changes of the integrase intI1 gene and two β-lactam resistance genes (KPC and IMP-2 groups), but no significant impacts of RWI on the abundances of intI1 and the transposase tnpA gene were found, indicating that RWI did not improve the potential for horizontal gene transfer of soil ARGs. Taken together, our findings suggested that irrigation of urban parks with reclaimed water could influence the abundance, diversity, and compositions of a wide variety of soil ARGs of clinical relevance. Irrigation of urban parks with treated wastewater significantly increased the abundance and diversity of various antibiotic resistance genes, but did not significantly enhance their potential for horizontal gene transfer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Lesser snow goose helminths show recurring and positive parasite infection-diversity relations.

    PubMed

    Dargent, Felipe; Morrill, André; Alisauskas, Ray T; McLaughlin, J Daniel; Shutler, Dave; Forbes, Mark R

    2017-04-01

    The patterns and mechanisms by which biological diversity is associated with parasite infection risk are important to study because of their potential implications for wildlife population's conservation and management. Almost all research in this area has focused on host species diversity and has neglected parasite diversity, despite evidence that parasites are important drivers of community structure and ecosystem processes. Here, we assessed whether presence or abundance of each of nine helminth species parasitizing lesser snow geese ( Chen caerulescens ) was associated with indices of parasite diversity (i.e. species richness and Shannon's Diversity Index). We found repeated instances of focal parasite presence and abundance having significant positive co-variation with diversity measures of other parasites. These results occurred both within individual samples and for combinations of all samples. Whereas host condition and parasite facilitation could be drivers of the patterns we observed, other host- or parasite-level effects, such as age or sex class of host or taxon of parasite, were discounted as explanatory variables. Our findings of recurring and positive associations between focal parasite abundance and diversity underscore the importance of moving beyond pairwise species interactions and contexts, and of including the oft-neglected parasite species diversity in infection-diversity studies.

  12. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: LEO IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Joshua D.; McWilliam, Andrew; Thompson, Ian B.

    2010-06-10

    We present high-resolution Magellan/MIKE spectroscopy of the brightest star in the ultra-faint dwarf galaxy Leo IV. We measure an iron abundance of [Fe/H] = -3.2, adding to the rapidly growing sample of extremely metal-poor (EMP) stars being identified in Milky Way satellite galaxies. The star is enhanced in the {alpha} elements Mg, Ca, and Ti by {approx}0.3 dex, very similar to the typical Milky Way halo abundance pattern. All of the light and iron-peak elements follow the trends established by EMP halo stars, but the neutron-capture elements Ba and Sr are significantly underabundant. These results are quite similar to thosemore » found for stars in the ultra-faint dwarfs Ursa Major II, Coma Berenices, Booetes I, and Hercules, suggesting that the chemical evolution of the lowest-luminosity galaxies may be universal. The abundance pattern we observe is consistent with predictions for nucleosynthesis from a Population III supernova explosion. The extremely low metallicity of this star also supports the idea that a significant fraction ({approx}>10%) of the stars in the faintest dwarfs have metallicities below [Fe/H] = -3.0.« less

  13. Seasonal temperature and precipitation regulate brook trout young-of-the-year abundance and population dynamics

    USGS Publications Warehouse

    Kanno, Yoichiro; Pregler, Kasey C.; Hitt, Nathaniel P.; Letcher, Benjamin H.; Hocking, Daniel; Wofford, John E.B.

    2015-01-01

    Our results indicate that YOY abundance is a key driver of brook trout population dynamics that is mediated by seasonal weather patterns. A reliable assessment of climate change impacts on brook trout needs to account for how alternations in seasonal weather patterns impact YOY abundance and how such relationships may differ across the range of brook trout distribution.

  14. Variation in abundance of Pacific Blue Mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006-2015

    NASA Astrophysics Data System (ADS)

    Bodkin, James L.; Coletti, Heather A.; Ballachey, Brenda E.; Monson, Daniel H.; Esler, Daniel; Dean, Thomas A.

    2018-01-01

    Mussels are conspicuous and ecologically important components of nearshore marine communities around the globe. Pacific blue mussels (Mytilus trossulus) are common residents of intertidal habitats in protected waters of the North Pacific, serving as a conduit of primary production to a wide range of nearshore consumers including predatory invertebrates, sea ducks, shorebirds, sea otters, humans, and other terrestrial mammals. We monitored seven metrics of intertidal Pacific blue mussel abundance at five sites in each of three regions across the northern Gulf of Alaska: Katmai National Park and Preserve (Katmai) (2006-2015), Kenai Fjords National Park (Kenai Fjords) (2008-2015) and western Prince William Sound (WPWS) (2007-2015). Metrics included estimates of: % cover at two tide heights in randomly selected rocky intertidal habitat; and in selected mussel beds estimates of: the density of large mussels (≥ 20 mm); density of all mussels > 2 mm estimated from cores extracted from those mussel beds; bed size; and total abundance of large and all mussels, i.e. the product of density and bed size. We evaluated whether these measures of mussel abundance differed among sites or regions, whether mussel abundance varied over time, and whether temporal patterns in abundance were site specific, or synchronous at regional or Gulf-wide spatial scales. We found that, for all metrics, mussel abundance varied on a site-by-site basis. After accounting for site differences, we found similar temporal patterns in several measures of abundance (both % cover metrics, large mussel density, large mussel abundance, and mussel abundance estimated from cores), in which abundance was initially high, declined significantly over several years, and subsequently recovered. Averaged across all sites, we documented declines of 84% in large mussel abundance through 2013 with recovery to 41% of initial abundance by 2015. These findings suggest that factors operating across the northern Gulf of Alaska were affecting mussel survival and subsequently abundance. In contrast, density of primarily small mussels obtained from cores (as an index of recruitment), varied markedly by site, but did not show meaningful temporal trends. We interpret this to indicate that settlement was driven by site-specific features rather than Gulf wide factors. By extension, we hypothesize that temporal changes in mussel abundance observed was not a result of temporal variation in larval supply leading to variation in recruitment, but rather suggestive of mortality as a primary demographic factor driving mussel abundance. Our results highlight the need to better understand underlying mechanisms of change in mussels, as well as implications of that change to nearshore consumers.

  15. Variation in abundance of Pacific Blue Mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006–2015

    USGS Publications Warehouse

    Bodkin, James L.; Coletti, Heather A.; Ballachey, Brenda E.; Monson, Daniel; Esler, Daniel N.; Dean, Thomas A.

    2017-01-01

    Mussels are conspicuous and ecologically important components of nearshore marine communities around the globe. Pacific blue mussels (Mytilus trossulus) are common residents of intertidal habitats in protected waters of the North Pacific, serving as a conduit of primary production to a wide range of nearshore consumers including predatory invertebrates, sea ducks, shorebirds, sea otters, humans, and other terrestrial mammals. We monitored seven metrics of intertidal Pacific blue mussel abundance at five sites in each of three regions across the northern Gulf of Alaska: Katmai National Park and Preserve (Katmai) (2006–2015), Kenai Fjords National Park (Kenai Fjords) (2008–2015) and western Prince William Sound (WPWS) (2007–2015). Metrics included estimates of: % cover at two tide heights in randomly selected rocky intertidal habitat; and in selected mussel beds estimates of: the density of large mussels (≥ 20 mm); density of all mussels > 2 mm estimated from cores extracted from those mussel beds; bed size; and total abundance of large and all mussels, i.e. the product of density and bed size. We evaluated whether these measures of mussel abundance differed among sites or regions, whether mussel abundance varied over time, and whether temporal patterns in abundance were site specific, or synchronous at regional or Gulf-wide spatial scales. We found that, for all metrics, mussel abundance varied on a site-by-site basis. After accounting for site differences, we found similar temporal patterns in several measures of abundance (both % cover metrics, large mussel density, large mussel abundance, and mussel abundance estimated from cores), in which abundance was initially high, declined significantly over several years, and subsequently recovered. Averaged across all sites, we documented declines of 84% in large mussel abundance through 2013 with recovery to 41% of initial abundance by 2015. These findings suggest that factors operating across the northern Gulf of Alaska were affecting mussel survival and subsequently abundance. In contrast, density of primarily small mussels obtained from cores (as an index of recruitment), varied markedly by site, but did not show meaningful temporal trends. We interpret this to indicate that settlement was driven by site-specific features rather than Gulf wide factors. By extension, we hypothesize that temporal changes in mussel abundance observed was not a result of temporal variation in larval supply leading to variation in recruitment, but rather suggestive of mortality as a primary demographic factor driving mussel abundance. Our results highlight the need to better understand underlying mechanisms of change in mussels, as well as implications of that change to nearshore consumers.

  16. The metal-rich abundance pattern - spectroscopic properties and abundances for 107 main-sequence stars

    NASA Astrophysics Data System (ADS)

    Ivanyuk, O. M.; Jenkins, J. S.; Pavlenko, Ya. V.; Jones, H. R. A.; Pinfield, D. J.

    2017-07-01

    We report results from the high-resolution spectral analysis of the 107 metal-rich (mostly [Fe/H] ≥ 7.67 dex) target stars from the Calan-Hertfordshire Extrasolar Planet Search programme observed with HARPS. Using our procedure of finding the best fit to the absorption line profiles in the observed spectra, we measure the abundances of Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Ni, Cu and Zn, and then compare them with known results from different authors. Most of our abundances agree with these works at the level of ±0.05 dex or better for the stars we have in common. However, we do find systematic differences that make direct inferences difficult. Our analysis suggests that the selection of line lists and atomic line data along with the adopted continuum level influence these differences the most. At the same time, we confirm the positive trends of abundances versus metallicity for Na, Mn, Ni and, to a lesser degree, Al. A slight negative trend is observed for Ca, whereas Si and Cr tend to follow iron. Our analysis allows us to determine the positively skewed normal distribution of projected rotational velocities with a maximum peaking at 3 km s-1. Finally, we obtained a Gaussian distribution of microturbulent velocities that has a maximum at 1.2 km s-1 and a full width at half-maximum Δv1/2 = 0.35 km s-1, indicating that metal-rich dwarfs and subgiants in our sample have a very restricted range in microturbulent velocity.

  17. Abundance and reproductive patterns of the excavating sponge Cliona vermifera: a threat to Pacific coral reefs?

    NASA Astrophysics Data System (ADS)

    Bautista-Guerrero, Eric; Carballo, José Luis; Maldonado, Manuel

    2014-03-01

    Cliona vermifera is a common excavating sponge in coral reefs from the East Pacific. Abundance and reproductive patterns of the sponge in a Mexican Pacific coral reef over a 4-year period are herein described. Sponge abundance was estimated along three transects 50 m long which were randomly placed on the reef, and along each one, a piece of coral rubble and a branch of a live coral from the Pocillopora spp. coral colony closest to the transect were collected at random, approximately every 2 m, yielding 25 pieces of each category per transect (and 75 pieces total of each category). A 2-way ANOVA revealed that invasion was significantly higher in living coral colonies (34.8 %) than in rubble (13.7 %). It also indicated that the abundance in both coralline substrates showed a temporal variation without a clear pattern of increase over the years. It was estimated that 60-85 % of sponges in the population reproduced sexually every year. The sponge proved gonochoristic, with a sex ratio strongly departing from parity (1 male: 3 females). Over the 4-year study period, at least two cohorts of oocytes with densities of up to 3.5 oocytes per mm2 tissue were observed. Spermatogenesis lasted about a month, but often producing more than a pulse from July to November, coupled with peaks of oocyte maturation. Fertilization occurred internally to produce encapsulated zygotes that were released in one or more spawning events from July to November. In the following months (December to February), which were the periods of lowest temperature (~18.5-20 °C), no gametic activity occurred in the sponges. Because anomalous temperature rises that are detrimental to corals do not appear to negatively affect the reproduction and abundance of C. vermifera, it is likely that the excavating activity of this sponge may be compromising the health of those coral reefs that are recurrently affected by episodes of thermal stress.

  18. Temporal variations in the benthic communities at four intertidal sites in San Francisco Bay, California, 1983-85

    USGS Publications Warehouse

    Hopkins, D.R.

    1987-01-01

    Benthic core samples were collected monthly from January 1983 through January 1985 at four intertidal sites in San Francisco Bay, California, two in the northern part of the bay (North Bay) and two in the southern part of the bay (South Bay). Considerable variation was observed in numbers of species and individuals at the four sites, and abundances within species varied widely. Temporal changes in species abundances appeared to be related to freshwater inflow patterns and resultant salinity variations in the estuary. The 1982-83 winter season was extremely wet, with heavy freshwater inflow to the bay from January through March, whereas the 1983-84 winter was closer to a normal pattern, with most rainfall occurring from November through January. Species were grouped into four categories depending on their patterns of abundance during the 2-yr period. Species that showed an abundance peak in the North Bay in 1983 only were Corophium sp.B and a Chironomidae larva, apparently responding to the extended period of lowered salinity throughout spring and early summer. Species with an abundance peak only in 1984 included Corophium Acherusicum, Eteone californica, Nereis succinea, and Grandidierella japonica, typical estuarine species that might have been suppressed during the extended freshwater inflows in 1983. Species with peaks in both years were Gemma gemma and Ampelisca abdita in the South Bay; both showed strong seasonal variations. A number of species in both North and South Bays, including dominant members of the intertidal community such as Macoma balthical and Streblospio benedicti, did not show any consistent seasonal or year-to-year trends. Results of this study suggest that the intensity and timing of freshwater inflow to San Francisco Bay, particularly higher-than-normal inflow during late spring and early summer, may be an important factor in determining the composition of the intertidal benthic communities. (Author 's abstract)

  19. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    DOE PAGES

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; ...

    2017-11-03

    In this work, we derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 L s = 291° (March 30, 2013) to Mars Year 33 L s= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model,more » using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO 2 absorptions and the known CO 2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus they tend to support the hypothesis of substantial diurnal interactions of water vapor with the surface. Our preliminary aerosol results, meanwhile, show the expected seasonal pattern in dust particle size but also indicate a surprising interannual increase in water–ice cloud opacities.« less

  20. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.

    In this work, we derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 L s = 291° (March 30, 2013) to Mars Year 33 L s= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model,more » using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO 2 absorptions and the known CO 2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus they tend to support the hypothesis of substantial diurnal interactions of water vapor with the surface. Our preliminary aerosol results, meanwhile, show the expected seasonal pattern in dust particle size but also indicate a surprising interannual increase in water–ice cloud opacities.« less

  1. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    NASA Astrophysics Data System (ADS)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; Bender, Steve; Lemmon, Mark; Wiens, Roger C.; Maurice, Sylvestre; Gasnault, Olivier; Lasue, Jeremie; Meslin, Pierre-Yves; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Martínez, Germán M.; DeFlores, Lauren; Blaney, Diana; Johnson, Jeffrey R.; Bell, James F.

    2018-06-01

    We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 Ls = 291° (March 30, 2013) to Mars Year 33 Ls= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO2 absorptions and the known CO2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus they tend to support the hypothesis of substantial diurnal interactions of water vapor with the surface. Our preliminary aerosol results, meanwhile, show the expected seasonal pattern in dust particle size but also indicate a surprising interannual increase in water-ice cloud opacities.

  2. Vertical and temporal variation in phytoplankton assemblages correlated with environmental conditions in the Mundaú reservoir, semi-arid northeastern Brazil.

    PubMed

    Lira, G A S T; Moura, A N; Vilar, M C P; Cordeiro-Araújo, M K; Bittencourt-Oliveira, M C

    2014-08-01

    The goal of this study was to analyse the vertical structure of the phytoplankton community at the Mundaú reservoir, located in the semi-arid region of northeastern Brazil, and to correlate it to environmental conditions over two distinct seasons, dry and rainy. Samples were collected bimonthly at eight depths in the dry and rainy season for analyses of the physical and chemical variables of the water, as well as density, abundance, dominance, species diversity index and equitability of the community. Analysis of variance (ANOVA-two way) was used to analyse the vertical and seasonal differences, and Canonical Correspondence Analysis (CCA) was used to assess associations between phytoplankton and environmental variables Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju was the only dominant species and Geitlerinema amphibium (C. Agardh) Anagnostidis, Merismopedia punctata Meyen and Synedra rumpens Kützing. Others six taxa were abundant in at least one of the samples. Distinct vertical distribution patterns were observed for the abundant taxa between depths and seasons. The cyanobacteria, with the exception of C. raciborskii, showed similar seasonal patterns, with higher densities in the dry season. The CCA showed a strong correlation between the density of the phytoplanktonic species and abiotic variables. The vertical changes in abundant taxa revealed distinct patterns regulated by the variation in the environmental factors that were directly linked to seasonality, with the success of one or more species being dependent on their life strategies and ecological needs. The present study restates the importance of environmental and seasonal factors for phytoplankton composition and distribution in a freshwater tropical reservoir through a vertical gradient.

  3. Temporal variability (1997-2015) of trophic fish guilds and its relationships with El Niño events in a subtropical estuary

    NASA Astrophysics Data System (ADS)

    Possamai, Bianca; Vieira, João P.; Grimm, Alice M.; Garcia, Alexandre M.

    2018-03-01

    Global climatic phenomena like El Niño events are known to alter hydrological cycles and local abiotic conditions leading to changes in structure and dynamics of terrestrial and aquatic biological communities worldwide. Based on a long-term (19 years) standardized sampling of shallow water estuarine fishes, this study investigated the temporal variability in composition and dominance patterns of trophic guilds in a subtropical estuary (Patos Lagoon estuary, Southern Brazil) and their relationship with local and regional driving forces associated with moderate (2002-2003 and 2009-2010) and very strong (1997-1998 and 2015-2016) El Niño events. Fish species were classified into eight trophic guilds (DTV detritivore, HVP herbivore-phytoplankton, HVM macroalgae herbivore, ISV insectivore, OMN omnivore, PSV piscivore, ZBV zoobenthivore and ZPL zooplanktivore) and their abundances were correlated with environmental factors. Canonical correspondence analysis revealed that less dominant (those comprising < 10% of total abundance) trophic guilds, such as HVP, HVM, ISV, PSV, increased their relative abundance in the estuary during higher rainfall and lower salinity conditions associated with moderate and very strong El Niño events. An opposite pattern was observed for the dominant trophic fish guilds like OMN and, at lesser extent, DTV and ZPL, which had greater association with higher values of salinity and water transparency occurring mostly during non-El Niño conditions. In contrast, ZBV's abundance was not correlated with contrasting environmental conditions, but rather, had higher association with samples characterized by intermediate environmental values. Overall, these findings show that moderate and very strong El Niño events did not substantially disrupt the dominance patterns among trophic fish guilds in the estuary. Rather, they increased trophic estuarine diversity by flushing freshwater fishes with distinct feeding habits into the estuary.

  4. Abundance ratios of oxygen, neon, and magnesium in solar active regions and flares: The FIP effect

    NASA Technical Reports Server (NTRS)

    Widing, K. G.; Feldman, U.

    1995-01-01

    Relative abundances of oxygen, neon, and magnesium have been derived for a sample of nine solar active regions, flares, and an erupting prominance by combining plots of the ion differential emission measures. The observations were photographed in the 300-600 A range by the Naval Research Laboratory (NRL) spectroheliograph on Skylab. Methods for deriving the Mg/Ne abundance ratio-which measures the separation between the low- first ionization potential (FIP) and high-FIP abundnace plateaus-have been described in previous papers. In this paper we describe the spectroscopic methods for deriving the O/Ne abundance ratio, which gives the ratio between two high-FIP elements. The plot of the O/Ne ratio versus the Mg/Ne ratio in the sample of nine Skylab events is shown. The variation in the Mg/Ne ratio by a factor of 6 is associated with a much smaller range in the O/Ne ratio. This is broadly consistent with the presence of the standard FIP pattern of abundances in the outer atmosphere of the Sun. However, a real change in the relative abundances of oxygen and neon by a factor of 1.5 cannot be excluded.

  5. Patterns of rare and abundant marine microbial eukaryotes.

    PubMed

    Logares, Ramiro; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Gobet, Angélique; Kooistra, Wiebe H C F; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Romac, Sarah; Shalchian-Tabrizi, Kamran; Simon, Nathalie; Stoeck, Thorsten; Santini, Sébastien; Siano, Raffaele; Wincker, Patrick; Zingone, Adriana; Richards, Thomas A; de Vargas, Colomban; Massana, Ramon

    2014-04-14

    Biological communities are normally composed of a few abundant and many rare species. This pattern is particularly prominent in microbial communities, in which most constituent taxa are usually extremely rare. Although abundant and rare subcommunities may present intrinsic characteristics that could be crucial for understanding community dynamics and ecosystem functioning, microbiologists normally do not differentiate between them. Here, we investigate abundant and rare subcommunities of marine microbial eukaryotes, a crucial group of organisms that remains among the least-explored biodiversity components of the biosphere. We surveyed surface waters of six separate coastal locations in Europe, independently considering the picoplankton, nanoplankton, and microplankton/mesoplankton organismal size fractions. Deep Illumina sequencing of the 18S rRNA indicated that the abundant regional community was mostly structured by organismal size fraction, whereas the rare regional community was mainly structured by geographic origin. However, some abundant and rare taxa presented similar biogeography, pointing to spatiotemporal structure in the rare microeukaryote biosphere. Abundant and rare subcommunities presented regular proportions across samples, indicating similar species-abundance distributions despite taxonomic compositional variation. Several taxa were abundant in one location and rare in other locations, suggesting large oscillations in abundance. The substantial amount of metabolically active lineages found in the rare biosphere suggests that this subcommunity constitutes a diversity reservoir that can respond rapidly to environmental change. We propose that marine planktonic microeukaryote assemblages incorporate dynamic and metabolically active abundant and rare subcommunities, with contrasting structuring patterns but fairly regular proportions, across space and time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A critical time window for organismal interactions in a pelagic ecosystem.

    PubMed

    Benoit-Bird, Kelly J; McManus, Margaret A

    2014-01-01

    To measure organismal coherence in a pelagic ecosystem, we used moored sensors to describe the vertical dynamics of each step in the food chain in shelf waters off the west shore of Oahu, Hawaii. Horizontally extensive, intense aggregations of phytoplankton, zooplankton, and micronekton exhibited strong diel patterns in abundance and vertical distribution, resulting in a highly variable potential for interaction amongst trophic levels. Only around dusk did zooplankton layers overlap with phytoplankton layers. Shortly after sunset, micronekton ascended from the deep, aggregating on the island's shelf. Short-lived departures in migration patterns were detected in depth, vertical distribution, density, and total abundance of micronekton when zooplankton layers were present with typical patterns resuming within one hour. Layers of zooplankton began to disappear within 20 minutes of the arrival of micronekton with no layers present after 50 minutes. The effects of zooplankton layers cascaded even further up the food chain, affecting many behaviors of dolphins observed at dusk including their depth, group size, and inter-individual spacing. As a result of these changes in behavior, during a 30-minute window just after dusk, the number of feeding events observed for each dolphin and consequently the feeding time for each individual more than doubled when zooplankton layers were present. Dusk is a critical period for interactions amongst species in this system from phytoplankton to top predators. Our observations that short time windows can drive the structure and function of a complex suite of organisms highlight the importance of explicitly adding a temporal dimension at a scale relevant to individual organisms to our descriptions of heterogeneity in ocean ecosystems.

  7. Differential responses of Bolivian timber species to prescribed fire and other gap treatments

    Treesearch

    Debora K. Kennard; Francis E. Putz

    2005-01-01

    We followed the establishment and growth response of 13 commercial tree species to canopy opening, above-ground biomass removal, and experimental burns of low and high intensities in a lowland dry forest in Bolivia. Three patterns of response to treatments were observed among the most abundant commercial tree species. (1) Shade-intolerant species regenerated mostly...

  8. Stand-level bird response to experimental forest management in the Missouri Ozarks

    Treesearch

    Sarah W. Kendrick; Paul A. Porneluzi; Frank R. Thompson; Dana L. Morris; Janet M. Haslerig; John Faaborg

    2015-01-01

    Long-term landscape-scale experiments allow for the detection of effects of silviculture on bird abundance. Manipulative studies allow for strong inference on effects and confirmation of patterns from observational studies.We estimated bird-territory density within forest stands (2.89-62 ha) for 19 years of the Missouri Ozark Forest Ecosystem Project (MOFEP), a 100-...

  9. The density dilemma: limitations on juvenile production in threatened salmon populations

    USGS Publications Warehouse

    Walters, Annika W.; Copeland, Timothy; Venditti, David A.

    2013-01-01

    Density-dependent processes have repeatedly been shown to have a central role in salmonid population dynamics, but are often assumed to be negligible for populations at low abundances relative to historical records. Density dependence has been observed in overall spring/summer Snake River Chinook salmon Oncorhynchus tshawytscha production, but it is not clear how patterns observed at the aggregate level relate to individual populations within the basin. We used a Bayesian hierarchical modelling approach to explore the degree of density dependence in juvenile production for nine Idaho populations. Our results indicate that density dependence is ubiquitous, although its strength varies between populations. We also investigated the processes driving the population-level pattern and found density-dependent growth and mortality present for both common life-history strategies, but no evidence of density-dependent movement. Overwinter mortality, spatial clustering of redds and limited resource availability were identified as potentially important limiting factors contributing to density dependence. The ubiquity of density dependence for these threatened populations is alarming as stability at present low abundance levels suggests recovery may be difficult without major changes. We conclude that density dependence at the population level is common and must be considered in demographic analysis and management.

  10. Composition and Longitudinal Patterns of Aquatic Insect Emergence in Small Rivers of Palawan Island, the Philippines

    NASA Astrophysics Data System (ADS)

    Freitag, Hendrik

    2004-09-01

    This study presents the first emergence trap samples from streams in the Philippines and Greater Sunda. Aquatic insect emergence from two small rivers and longitudinal patterns including estuaries are compared. A decline of total emergence towards estuaries was observed, affecting all major orders. Diptera, namely Chironomidae, dominated all sites. High abundances in Ceratopogonidae, Odonata, and Coleoptera were found, compared to other emergence studies from tropical and temperate latitudes. Ephemeroptera displayed a highly variable contribution to the emergence from Palawan as well as in other comparative studies either supported by the appropriate conditions for certain functional groups or limited by environmental variables such as pH. Trichoptera are likely to tolerate a wider range of environmental conditions and they are consequently able to fill further niches where Ephemeroptera are under-represented. Except for scarce abundances of Plecoptera observed in this and other studies from the tropics, no substantial differences in emergence composition at order level existed between temperate and tropical rivers, however, with a remarkable local variation. Components of riparian and non-aquatic insects and non-emergent fauna contributing to the collections are discussed based on trap features. (

  11. Land cover variation and West Nile virus prevalence: Patterns, processes, and implications for disease control

    USGS Publications Warehouse

    Ezenwa, V.O.; Milheim, L.E.; Coffey, M.F.; Godsey, M.S.; King, R.J.; Guptill, S.C.

    2007-01-01

    Identifying links between environmental variables and infectious disease risk is essential to understanding how human-induced environmental changes will effect the dynamics of human and wildlife diseases. Although land cover change has often been tied to spatial variation in disease occurrence, the underlying factors driving the correlations are often unknown, limiting the applicability of these results for disease prevention and control. In this study, we described associations between land cover composition and West Nile virus (WNV) infection prevalence, and investigated three potential processes accounting for observed patterns: (1) variation in vector density; (2) variation in amplification host abundance; and (3) variation in host community composition. Interestingly, we found that WNV infection rates among Culex mosquitoes declined with increasing wetland cover, but wetland area was not significantly associated with either vector density or amplification host abundance. By contrast, wetland area was strongly correlated with host community composition, and model comparisons suggested that this factor accounted, at least partially, for the observed effect of wetland area on WNV infection risk. Our results suggest that preserving large wetland areas, and by extension, intact wetland bird communities, may represent a valuable ecosystem-based approach for controlling WNV outbreaks. ?? Mary Ann Liebert, Inc.

  12. Phlebotomine vector ecology in the domestic transmission of American cutaneous leishmaniasis in Chaparral, Colombia.

    PubMed

    Ferro, Cristina; Marín, Dairo; Góngora, Rafael; Carrasquilla, María C; Trujillo, Jorge E; Rueda, Norma K; Marín, Jaime; Valderrama-Ardila, Carlos; Alexander, Neal; Pérez, Mauricio; Munstermann, Leonard E; Ocampo, Clara B

    2011-11-01

    Phlebotomine vector ecology was studied in the largest recorded outbreak of American cutaneous leishmaniasis in Colombia in 2004. In two rural townships that had experienced contrasting patterns of case incidence, this study evaluated phlebotomine species composition, seasonal abundance, nocturnal activity, blood source, prevalence of Leishmania infection, and species identification. CDC miniature light traps were used to trap the phlebotomines. Traps were set indoors, peridomestically, and in woodlands. Natural infection was determined in pools by polymerase chain reaction-Southern blot, and blood sources and species identification were determined by sequencing. Large differences were observed in population abundance between the two townships evaluated. Lutzomyia longiflocosa was the most abundant species (83.1%). Abundance was higher during months with lower precipitation. Nocturnal activity was associated with human domestic activity. Blood sources identified were mainly human (85%). A high prevalence of infection was found in L. longiflocosa indoors (2.7%) and the peridomestic setting (2.5%). L. longiflocosa was responsible for domestic transmission in Chaparral.

  13. Phlebotomine Vector Ecology in the Domestic Transmission of American Cutaneous Leishmaniasis in Chaparral, Colombia

    PubMed Central

    Ferro, Cristina; Marín, Dairo; Góngora, Rafael; Carrasquilla, María C.; Trujillo, Jorge E.; Rueda, Norma K.; Marín, Jaime; Valderrama-Ardila, Carlos; Alexander, Neal; Pérez, Mauricio; Munstermann, Leonard E.; Ocampo, Clara B.

    2011-01-01

    Phlebotomine vector ecology was studied in the largest recorded outbreak of American cutaneous leishmaniasis in Colombia in 2004. In two rural townships that had experienced contrasting patterns of case incidence, this study evaluated phlebotomine species composition, seasonal abundance, nocturnal activity, blood source, prevalence of Leishmania infection, and species identification. CDC miniature light traps were used to trap the phlebotomines. Traps were set indoors, peridomestically, and in woodlands. Natural infection was determined in pools by polymerase chain reaction–Southern blot, and blood sources and species identification were determined by sequencing. Large differences were observed in population abundance between the two townships evaluated. Lutzomyia longiflocosa was the most abundant species (83.1%). Abundance was higher during months with lower precipitation. Nocturnal activity was associated with human domestic activity. Blood sources identified were mainly human (85%). A high prevalence of infection was found in L. longiflocosa indoors (2.7%) and the peridomestic setting (2.5%). L. longiflocosa was responsible for domestic transmission in Chaparral. PMID:22049038

  14. Spatio-temporal variation of anthropogenic marine debris on Chilean beaches.

    PubMed

    Hidalgo-Ruz, Valeria; Honorato-Zimmer, Daniela; Gatta-Rosemary, Magdalena; Nuñez, Paloma; Hinojosa, Iván A; Thiel, Martin

    2018-01-01

    We examined the hypothesis that in an emerging economy such as Chile the abundances of Anthropogenic Marine Debris (AMD) on beaches are increasing over time. The citizen science program Científicos de la Basura ("Litter Scientists") conducted three national surveys (2008, 2012 and 2016) to determine AMD composition, abundance, spatial patterns and temporal trends. AMD was found on all beaches along the entire Chilean coast. Highest percentages of AMD in all surveys were plastics and cigarette butts, which can be attributed to local sources (i.e. beach users). The Antofagasta region in northern Chile had the highest abundance of AMD compared with all other zones. Higher abundances of AMD were found at the upper stations from almost all zones. No significant tendency of increasing or decreasing AMD densities was observed during the 8years covered by our study, which suggests that economic development alone cannot explain temporal trends in AMD densities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Environmental correlates underlying elevational richness, abundance, and biomass patterns of multi-feeding guilds in litter invertebrates across the treeline.

    PubMed

    Xu, Guorui; Zhang, Shuang; Zhang, Yuxin; Ma, Keming

    2018-08-15

    Elevational richness patterns and underlying environmental correlates have contributed greatly to a range of general theories of biodiversity. However, the mechanisms underlying elevational abundance and biomass patterns across several trophic levels in belowground food webs remain largely unknown. In this study, we aimed to disentangle the relationships between the elevational patterns of different trophic levels of litter invertebrates and their underlying environmental correlates for two contrasting ecosystems separated by the treeline. We sampled 119 plots from 1020 to 1770 asl in forest and 21 plots from 1790 to 2280 asl in meadow on Dongling Mountain, northwest of Beijing, China. Four functional guilds were divided based on feeding regime: omnivores, herbivores, predators, and detritivores. We used eigenvector-based spatial filters to account for spatial autocorrelation and multi-model selection to determine the best environmental correlates for the community attributes of the different feeding guilds. The results showed that the richness, abundance and biomass of omnivores declined with increasing elevation in the meadow, whereas there was a hump-shaped richness pattern for detritivores. The richness and abundance of different feeding guilds were positively correlated in the forest, while not in the meadow. In the forest, the variances of richness in omnivores, predators, and detritivores were mostly correlated with litter thickness, with omnivores being best explained by mean annual temperature in the meadow. In conclusion, hump-shaped elevational richness, abundance and biomass patterns driven by the forest gradient below the treeline existed in all feeding guilds of litter invertebrates. Climate replaced productivity as the primary factor that drove the richness patterns of omnivores above the treeline, whereas heterogeneity replaced climate for herbivores. Our results highlight that the correlated elevational richness, abundance, and biomass patterns of feeding guilds are ecosystem-dependent and that the underlying environmental correlates shifted at the treeline for most feeding guilds. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Detecting mismatches of bird migration stopover and tree phenology in response to changing climate

    USGS Publications Warehouse

    Kellermann, Jherime L.; van Riper, Charles

    2015-01-01

    Migratory birds exploit seasonal variation in resources across latitudes, timing migration to coincide with the phenology of food at stopover sites. Differential responses to climate in phenology across trophic levels can result in phenological mismatch; however, detecting mismatch is sensitive to methodology. We examined patterns of migrant abundance and tree flowering, phenological mismatch, and the influence of climate during spring migration from 2009 to 2011 across five habitat types of the Madrean Sky Islands in southeastern Arizona, USA. We used two metrics to assess phenological mismatch: synchrony and overlap. We also examined whether phenological overlap declined with increasing difference in mean event date of phenophases. Migrant abundance and tree flowering generally increased with minimum spring temperature but depended on annual climate by habitat interactions. Migrant abundance was lowest and flowering was highest under cold, snowy conditions in high elevation montane conifer habitat while bird abundance was greatest and flowering was lowest in low elevation riparian habitat under the driest conditions. Phenological synchrony and overlap were unique and complementary metrics and should both be used when assessing mismatch. Overlap declined due to asynchronous phenologies but also due to reduced migrant abundance or flowering when synchrony was actually maintained. Overlap declined with increasing difference in event date and this trend was strongest in riparian areas. Montane habitat specialists may be at greatest risk of mismatch while riparian habitat could provide refugia during dry years for phenotypically plastic species. Interannual climate patterns that we observed match climate change projections for the arid southwest, altering stopover habitat condition.

  17. Plasma constraints on the cosmological abundance of magnetic monopoles and the origin of cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail V.; Loeb, Abraham

    2017-06-01

    Existing theoretical and observational constraints on the abundance of magnetic monopoles are limited. Here we demonstrate that an ensemble of monopoles forms a plasma whose properties are well determined and whose collective effects place new tight constraints on the cosmological abundance of monopoles. In particular, the existence of micro-Gauss magnetic fields in galaxy clusters and radio relics implies that the scales of these structures are below the Debye screening length, thus setting an upper limit on the cosmological density parameter of monopoles, ΩM lesssim 3 × 10-4, which precludes them from being the dark matter. Future detection of Gpc-scale coherent magnetic fields could improve this limit by a few orders of magnitude. In addition, we predict the existence of magnetic Langmuir waves and turbulence which may appear on the sky as ``zebra patterns'' of an alternating magnetic field with k·B ≠ 0. We also show that magnetic monopole Langmuir turbulence excited near the accretion shock of galaxy clusters may be an efficient mechanism for generating the observed intracluster magnetic fields.

  18. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Morisset, C.; Tovmassian, G.; Rauch, T.; Richer, M. G.; Peña, M.; Szczerba, R.; Decressin, T.; Charbonnel, C.; Yungelson, L.; Napiwotzki, R.; Simón-Díaz, S.; Jamet, L.

    2010-02-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A) with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h) is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling which takes into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Incidentally we find from the new observational constraints that both stellar components contribute to the ionization: the “cool” one provides the bulk of hydrogen ionization, while the “hot” one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are found to be 1/3.5, 1/4.2, 1/70, and 1/11 of the solar value respectively, with uncertainties of a factor 2. Thus the extreme O deficiency of this object is confirmed. The abundances of S and Ar are less than 1/30 of solar. The abundance of He relative to H is 0.089 ± 0.009. Standard models of stellar evolution and nucleosynthesis cannot explain the abundance pattern observed in the nebula. To obtain an extreme oxygen deficiency in a star whose progenitor has an initial mass of about 1 M⊙ requires an additional mixing process, which can be induced by stellar rotation and/or by the presence of the close companion. We have computed a stellar model with an initial mass of 1 M⊙, appropriate metallicity, and initial rotation of 100 km s-1, and find that rotation greatly improves the agreement between the predicted and observed abundances. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407.

  19. Distribution pattern of phthirapterans infesting certain common Indian birds.

    PubMed

    Saxena, A K; Kumar, Sandeep; Gupta, Nidhi; Mitra, J D; Ali, S A; Srivastava, Roshni

    2007-08-01

    The prevalence and frequency distribution patterns of 10 phthirapteran species infesting house sparrows, Indian parakeets, common mynas, and white breasted kingfishers were recorded in the district of Rampur, India, during 2004-05. The sample mean abundances, mean intensities, range of infestations, variance to mean ratios, values of the exponent of the negative binomial distribution, and the indices of discrepancy were also computed. Frequency distribution patterns of all phthirapteran species were skewed, but the observed frequencies did not correspond to the negative binomial distribution. Thus, adult-nymph ratios varied in different species from 1:0.53 to 1:1.25. Sex ratios of different phthirapteran species ranged from 1:1.10 to 1:1.65 and were female biased.

  20. Thermal effects on rare earth element and strontium isotope chemistry in single conodont elements

    NASA Astrophysics Data System (ADS)

    Armstrong, H. A.; Pearson, D. G.; Griselin, M.

    2001-02-01

    A low-blank, high sensitivity isotope dilution, ICP-MS analytical technique has been used to obtain REE abundance data from single conodont elements weighing as little as 5 μg. Sr isotopes can also be measured from the column eluants enabling Sr isotope ratios and REE abundance to be determined from the same dissolution. Results are comparable to published analyses comprising tens to hundreds of elements. To study the effects of thermal metamorphism on REE and strontium mobility in conodonts, samples were selected from a single bed adjacent to a basaltic dyke and from the internationally used colour alteration index (CAI) "standard set." Our analyses span the range of CAI 1 to 8. Homogeneous REE patterns, "bell-shaped" shale-normalised REE patterns are observed across the range of CAI 1 to 6 in both sample sets. This pattern is interpreted as the result of adsorption during early diagenesis and could reflect original seawater chemistry. Above CAI 6 REE patterns become less predictable and perturbations from the typical REE pattern are likely to be due to the onset of apatite recrystallisation. Samples outside the contact aureole of the dyke have a mean 87Sr/ 86Sr ratio of 0.708165, within the broad range of published mid-Carboniferous seawater values. Our analysis indicates conodonts up to CAI 6 record primary geochemical signals that may be a proxy for ancient seawater.

  1. Using Citizen Science Observations to Model Species Distributions Over Space, Through Time, and Across Scales

    NASA Astrophysics Data System (ADS)

    Kelling, S.

    2017-12-01

    The goal of Biodiversity research is to identify, explain, and predict why a species' distribution and abundance vary through time, space, and with features of the environment. Measuring these patterns and predicting their responses to change are not exercises in curiosity. Today, they are essential tasks for understanding the profound effects that humans have on earth's natural systems, and for developing science-based environmental policies. To gain insight about species' distribution patterns requires studying natural systems at appropriate scales, yet studies of ecological processes continue to be compromised by inadequate attention to scale issues. How spatial and temporal patterns in nature change with scale often reflects fundamental laws of physics, chemistry, or biology, and we can identify such basic, governing laws only by comparing patterns over a wide range of scales. This presentation will provide several examples that integrate bird observations made by volunteers, with NASA Earth Imagery using Big Data analysis techniques to analyze the temporal patterns of bird occurrence across scales—from hemisphere-wide views of bird distributions to the impact of powerful city lights on bird migration.

  2. Demersal ichthyofaunal shelf communities from the Dumont d’Urville Sea (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Causse, Romain; Ozouf-Costaz, Catherine; Koubbi, Philippe; Lamy, Dominique; Eléaume, Marc; Dettaï, Agnès; Duhamel, Guy; Busson, Frédéric; Pruvost, Patrice; Post, Alexandra; Beaman, Robin J.; Riddle, Martin J.

    2011-08-01

    The RSV Aurora Australis survey allowed the first comprehensive study of the demersal ichthyofaunal environment and of the diversity of the Dumont d’Urville Sea. We observed a high dominance of the Notothenioidei in both the number of species and in integrated abundances. The Nototheniidae was the most abundant family with 44.7% of the total integrated abundance, followed by Bathydraconidae (18.8%). Trematomus eulepidotus was the dominant species with 19.9% of the total individuals catch. Nevertheless, 43 of the 53 species caught could be considered as very rare. The Bathydraconidae was the most diversified family with 11 species caught. The highest integrated abundances of fish were found from 400 to 800 m. Well-structured species communities were observed, with high species richness from 570 to 681 m. The richest zones were located along the basins and along their upper-sides. Statistical analyses indicated large-scale spatial patterns in species composition, with clear differences in fish communities from the continental slopes, the basins and on the shelf. At a finer spatial scale, the current in the George V Basin and iceberg scouring on the banks and their sides tended to create locally heterogeneous small-scale habitats. We suggest that the glacial history and the structured habitats allowed successive colonisations of the seabed by demersal fish.

  3. Unexpected and novel putative viruses in the sediments of a deep-dark permanently anoxic freshwater habitat.

    PubMed

    Borrel, Guillaume; Colombet, Jonathan; Robin, Agnès; Lehours, Anne-Catherine; Prangishvili, David; Sime-Ngando, Télesphore

    2012-11-01

    Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0-10 cm) could be discriminated from those of the intermediate (11-27 cm) and deep (28-40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth.

  4. Unexpected and novel putative viruses in the sediments of a deep-dark permanently anoxic freshwater habitat

    PubMed Central

    Borrel, Guillaume; Colombet, Jonathan; Robin, Agnès; Lehours, Anne-Catherine; Prangishvili, David; Sime-Ngando, Télesphore

    2012-01-01

    Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0–10 cm) could be discriminated from those of the intermediate (11–27 cm) and deep (28–40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth. PMID:22648129

  5. Environmental context explains Lévy and Brownian movement patterns of marine predators.

    PubMed

    Humphries, Nicolas E; Queiroz, Nuno; Dyer, Jennifer R M; Pade, Nicolas G; Musyl, Michael K; Schaefer, Kurt M; Fuller, Daniel W; Brunnschweiler, Juerg M; Doyle, Thomas K; Houghton, Jonathan D R; Hays, Graeme C; Jones, Catherine S; Noble, Leslie R; Wearmouth, Victoria J; Southall, Emily J; Sims, David W

    2010-06-24

    An optimal search theory, the so-called Lévy-flight foraging hypothesis, predicts that predators should adopt search strategies known as Lévy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey. Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Lévy behaviour has recently been questioned. Consequently, whether foragers exhibit Lévy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Lévy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Lévy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Lévy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Lévy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Lévy-flight foraging hypothesis, supporting the contention that organism search strategies naturally evolved in such a way that they exploit optimal Lévy patterns.

  6. Spatial scaling patterns and functional redundancies in a changing boreal lake landscape

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Uden, Daniel R.; Johnson, Richard K.

    2015-01-01

    Global transformations extend beyond local habitats; therefore, larger-scale approaches are needed to assess community-level responses and resilience to unfolding environmental changes. Using longterm data (1996–2011), we evaluated spatial patterns and functional redundancies in the littoral invertebrate communities of 85 Swedish lakes, with the objective of assessing their potential resilience to environmental change at regional scales (that is, spatial resilience). Multivariate spatial modeling was used to differentiate groups of invertebrate species exhibiting spatial patterns in composition and abundance (that is, deterministic species) from those lacking spatial patterns (that is, stochastic species). We then determined the functional feeding attributes of the deterministic and stochastic invertebrate species, to infer resilience. Between one and three distinct spatial patterns in invertebrate composition and abundance were identified in approximately one-third of the species; the remainder were stochastic. We observed substantial differences in metrics between deterministic and stochastic species. Functional richness and diversity decreased over time in the deterministic group, suggesting a loss of resilience in regional invertebrate communities. However, taxon richness and redundancy increased monotonically in the stochastic group, indicating the capacity of regional invertebrate communities to adapt to change. Our results suggest that a refined picture of spatial resilience emerges if patterns of both the deterministic and stochastic species are accounted for. Spatially extensive monitoring may help increase our mechanistic understanding of community-level responses and resilience to regional environmental change, insights that are critical for developing management and conservation agendas in this current period of rapid environmental transformation.

  7. Solar abundance ratios of the iron-peak elements in the Perseus cluster.

    PubMed

    2017-11-23

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature of type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, high-resolution spectroscopy is required for an accurate determination of the abundances of these elements. Here we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.

  8. Solar abundance ratios of the iron-peak elements in the Perseus cluster

    DOE PAGES

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; ...

    2017-11-13

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature ofmore » type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here in this paper we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.« less

  9. Solar abundance ratios of the iron-peak elements in the Perseus cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature ofmore » type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here in this paper we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.« less

  10. Fluorine Variations in the Globular Cluster NGC 6656 (M22): Implications for Internal Enrichment Timescales

    NASA Astrophysics Data System (ADS)

    D'Orazi, Valentina; Lucatello, Sara; Lugaro, Maria; Gratton, Raffaele G.; Angelou, George; Bragaglia, Angela; Carretta, Eugenio; Alves-Brito, Alan; Ivans, Inese I.; Masseron, Thomas; Mucciarelli, Alessio

    2013-01-01

    Observed chemical (anti)correlations in proton-capture elements among globular cluster stars are presently recognized as the signature of self-enrichment from now extinct, previous generations of stars. This defines the multiple population scenario. Since fluorine is also affected by proton captures, determining its abundance in globular clusters provides new and complementary clues regarding the nature of these previous generations and supplies strong observational constraints to the chemical enrichment timescales. In this paper, we present our results on near-infrared CRIRES spectroscopic observations of six cool giant stars in NGC 6656 (M22): the main objective is to derive the F content and its internal variation in this peculiar cluster, which exhibits significant changes in both light- and heavy-element abundances. Across our sample, we detected F variations beyond the measurement uncertainties and found that the F abundances are positively correlated with O and anticorrelated with Na, as expected according to the multiple population framework. Furthermore, our observations reveal an increase in the F content between the two different sub-groups, s-process rich and s-process poor, hosted within M22. The comparison with theoretical models suggests that asymptotic giant stars with masses between 4 and 5 M ⊙ are responsible for the observed chemical pattern, confirming evidence from previous works: the difference in age between the two sub-components in M22 must be not larger than a few hundred Myr. Based on observations taken with ESO telescopes under program 087.0319(A).

  11. Observed trends of soil fauna in the Antarctic Dry Valleys: early signs of shifts predicted under climate change.

    PubMed

    Andriuzzi, W S; Adams, B J; Barrett, J E; Virginia, R A; Wall, D H

    2018-02-01

    Long-term observations of ecological communities are necessary for generating and testing predictions of ecosystem responses to climate change. We investigated temporal trends and spatial patterns of soil fauna along similar environmental gradients in three sites of the McMurdo Dry Valleys, Antarctica, spanning two distinct climatic phases: a decadal cooling trend from the early 1990s through the austral summer of February 2001, followed by a shift to the current trend of warming summers and more frequent discrete warming events. After February 2001, we observed a decline in the dominant species (the nematode Scottnema lindsayae) and increased abundance and expanded distribution of less common taxa (rotifers, tardigrades, and other nematode species). Such diverging responses have resulted in slightly greater evenness and spatial homogeneity of taxa. However, total abundance of soil fauna appears to be declining, as positive trends of the less common species so far have not compensated for the declining numbers of the dominant species. Interannual variation in the proportion of juveniles in the dominant species was consistent across sites, whereas trends in abundance varied more. Structural equation modeling supports the hypothesis that the observed biological trends arose from dissimilar responses by dominant and less common species to pulses of water availability resulting from enhanced ice melt. No direct effects of mean summer temperature were found, but there is evidence of indirect effects via its weak but significant positive relationship with soil moisture. Our findings show that combining an understanding of species responses to environmental change with long-term observations in the field can provide a context for validating and refining predictions of ecological trends in the abundance and diversity of soil fauna. © 2018 by the Ecological Society of America.

  12. High variability of dung beetle diversity patterns at four mountains of the Trans-Mexican Volcanic Belt

    PubMed Central

    Arriaga-Jiménez, Alfonsina; Halffter, Gonzalo

    2018-01-01

    Insect diversity patterns of high mountain ecosystems remain poorly studied in the tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt (TMVB) in the Mexican transition zone at 2,700 and 3,400 MASL, and on the windward and leeward sides. Sampling units represented a forest–shrubland–pasture (FSP) mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung beetle species were collected. Diversity, abundance and compositional similarity (CS) displayed a high variability at all scales; elevation, cardinal direction, or FSP mosaics did not show any patterns of higher or lower values of those measures. The four mountains were different regarding dispersion patterns and taxonomic groups, both for species and individuals. Onthophagus chevrolati dominated all four mountains with an overall relative abundance of 63%. CS was not related to distance among mountains, but when O. chevrolati was excluded from the analysis, CS values based on species abundance decreased with increasing distance. Speciation, dispersion, and environmental instability are suggested as the main drivers of high mountain diversity patterns, acting together at different spatial and temporal scales. Three species new to science were collected (>10% of all species sampled). These discoveries may indicate that speciation rate is high among these volcanoes—a hypothesis that is also supported by the elevated number of collected species with a restricted montane distribution. Dispersion is an important factor in driving species composition, although naturally limited between high mountains; horizontal colonization events at different time scales may best explain the observed species composition in the TMVB, complemented by vertical colonization events to a lesser extent. Environmental instability may be the main factor causing the high variability of diversity and abundance patterns found during sampling. Together, we interpret these results as indicating that species richness and composition in the high mountains of the TMVB may be driven by biogeographical history while variability in diversity is determined by ecological factors. We argue that current conservation strategies do not focus sufficiently on protecting high mountain fauna, and that there is a need for developing and applying new conservation concepts that take into account the high spatial and temporal variability of this system. PMID:29507842

  13. Distributional patterns in an insect community inhabiting a sandy beach of Uruguay

    NASA Astrophysics Data System (ADS)

    Mourglia, Virginia; González-Vainer, Patricia; Defeo, Omar

    2015-12-01

    Most studies of sandy beach macrofauna have been restricted to semiterrestrial species and do not include insects when providing species richness and abundance estimates. Particularly, spatio-temporal patterns of community structure of the entomofauna inhabiting these ecosystems have been scarcely documented. This study assessed spatio-temporal distributional patterns of the night active entomofauna on a beach-dune system of Uruguay, including variations in species richness, abundance and diversity, and their relationship with environmental factors. A deconstructive taxonomic analysis was also performed, considering richness and abundance patterns separately for the most abundant insect Orders (Hymenoptera and Coleoptera) to better understand the factors which drive their patterns. We found clear temporal and across-shore patterns in the insect community inhabiting a land-ocean interface, which matched spatiotemporal variations in the environment. Abundance and species richness were highest in spring and summer, concurrently with high temperatures and low values of sediment moisture and compaction. Multivariate ordinations showed two well-defined species groups, which separated summer, autumn and spring samples from winter ones. Generalized Linear Models allowed us to describe a clear segregation in space of the most important orders of the insect community, with specific preferences for the terrestrial (Hymenoptera) and beach (Coleoptera) fringes. Hymenoptera preferred the dune zone, characterized by high elevation and low sand moisture and compaction levels, whereas Coleoptera preferred gentle slopes and fine and humid sands of the beach. Our results suggest that beach and dune ecosystems operate as two separate components in regard to their physical and biological features. The high values of species richness and abundance of insects reveal that this group has a more significant ecological role than that originally considered so far in sandy beach ecology.

  14. Effects of spatial habitat heterogeneity on habitat selection and annual fecundity for a migratory forest songbird

    USGS Publications Warehouse

    Cornell, K.L.; Donovan, T.M.

    2010-01-01

    Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales. ?? Springer Science+Business Media B.V. 2009.

  15. Perceptions of Species Abundance, Distribution, and Diversity:Lessons from Four Decades of Sampling on a Government-Managed Reserve

    PubMed

    Gibbons; Burke; Lovich; Semlitsch; Tuberville; Bodie; Greene; Niewiarowski; Whiteman; Scott; Pechmann; Harrison; Bennett; Krenz; Mills; Buhlmann; Lee; Seigel; Tucker; Mills; Lamb; Dorcas; Congdon; Smith; Nelson; Dietsch; Hanlin; Ott; Karapatakis

    1997-03-01

    / We examined data relative to species abundance, distribution, anddiversity patterns of reptiles and amphibians to determine how perceptionschange over time and with level of sampling effort. Location data werecompiled on more than one million individual captures or observations of 98species during a 44-year study period on the US Department of Energy's(DOE) Savannah River Site National Environmental Research Park (SRS-NERP) inSouth Carolina. We suggest that perceptions of herpetofaunal speciesdiversity are strongly dependent on level of effort and that land managementdecisions based on short-term data bases for some faunal groups could resultin serious errors in environmental management. We provide evidence thatacquiring information on biodiversity distribution patterns is compatiblewith multiyear spatially extensive research programs and also provide aperspective of what might be achieved if long-term, coordinated researchefforts were instituted nationwide.To conduct biotic surveys on government-managed lands, we recommend revisionsin the methods used by government agencies to acquire and report biodiversitydata. We suggest that government and industry employees engaged inbiodiversity survey efforts develop proficiency in field identification forone or more major taxonomic groups and be encouraged to measure the status ofpopulations quantitatively with consistent and reliable methodologies. Wealso suggest that widespread academic cooperation in the dissemination ofinformation on regional patterns of biodiversity could result byestablishment of a peer-reviewed, scientifically rigorous journal concernedwith status and trends of the biota of the United States. KEY WORDS: Abundance; Amphibian; Biodiversity; Distribution; Landmanagement; Reptile

  16. Trend estimation in populations with imperfect detection

    USGS Publications Warehouse

    Kery, Marc; Dorazio, Robert M.; Soldaat, Leo; Van Strien, Arco; Zuiderwijk, Annie; Royle, J. Andrew

    2009-01-01

    1. Trends of animal populations are of great interest in ecology but cannot be directly observed owing to imperfect detection. Binomial mixture models use replicated counts to estimate abundance, corrected for detection, in demographically closed populations. Here, we extend these models to open populations and illustrate them using sand lizard Lacerta agilis counts from the national Dutch reptile monitoring scheme. 2. Our model requires replicated counts from multiple sites in each of several periods, within which population closure is assumed. Counts are described by a hierarchical generalized linear model, where the state model deals with spatio-temporal patterns in true abundance and the observation model with imperfect counts, given that true state. We used WinBUGS to fit the model to lizard counts from 208 transects with 1–10 (mean 3) replicate surveys during each spring 1994–2005. 3. Our state model for abundance contained two independent log-linear Poisson regressions on year for coastal and inland sites, and random site effects to account for unexplained heterogeneity. The observation model for detection of an individual lizard contained effects of region, survey date, temperature, observer experience and random survey effects. 4. Lizard populations increased in both regions but more steeply on the coast. Detectability increased over the first few years of the study, was greater on the coast and for the most experienced observers, and highest around 1 June. Interestingly, the population increase inland was not detectable when the observed counts were analysed without account of detectability. The proportional increase between 1994 and 2005 in total lizard abundance across all sites was estimated at 86% (95% CRI 35–151). 5. Synthesis and applications. Open-population binomial mixture models are attractive for studying true population dynamics while explicitly accounting for the observation process, i.e. imperfect detection. We emphasize the important conceptual benefit provided by temporal replicate observations in terms of the interpretability of animal counts.

  17. Serendipitous discovery of the faint solar twin Inti 1

    NASA Astrophysics Data System (ADS)

    Galarza, Jhon Yana; Meléndez, Jorge; Cohen, Judith G.

    2016-05-01

    Context. Solar twins are increasingly the subject of many studies owing to their wide range of applications from testing stellar evolution models to the calibration of fundamental observables; these stars are also of interest because high precision abundances could be achieved that are key to investigating the chemical anomalies imprinted by planet formation. Furthermore, the advent of photometric surveys with large telescopes motivates the identification of faint solar twins in order to set the zero point of fundamental calibrations. Aims: We intend to perform a detailed line-by-line differential analysis to verify whether 2MASS J23263267-0239363 (designated here as Inti 1) is indeed a solar twin. Methods: We determine the atmospheric parameters and differential abundances using high-resolution (R ≈ 50 000), high signal-to-noise (S/N ≈ 110-240 per pixel) Keck/HIRES spectra for our solar twin candidate, the previously known solar twin HD 45184, and the Sun (using reflected light from the asteroid Vesta). Results: For the bright solar twin HD 45184, we found Teff = 5864 ± 9 K, log g = 4.45 ± 0.03 dex, vt = 1.11 ± 0.02 km s-1, and [Fe/H] = 0.04 ± 0.01 dex, which are in good agreement with previous works. Our abundances are in excellent agreement with a recent high-precision work, with an element-to-element scatter of only 0.01 dex. The star Inti 1 has atmospheric parameters Teff = 5837 ± 11 K, log g = 4.42 ± 0.03 dex, vt = 1.04 ± 0.02 km s-1, and [Fe/H] = 0.07 ± 0.01 dex that are higher than solar. The age and mass of the solar twin HD 45184 (3 Gyr and 1.05 M⊙) and the faint solar twin Inti 1 (4 Gyr and 1.04 M⊙) were estimated using isochrones. The differential analysis shows that HD 45184 presents an abundance pattern that is similar to typical nearby solar twins; this means this star has an enhanced refractory relative to volatile elements, while Inti 1 has an abundance pattern closer to solar, albeit somewhat enhanced in refractories. The abundance pattern of HD 45184 and Inti 1 could be reproduced by adding ≈3.5 M⊕ and ≈1.5 M⊕ of Earth-like material to the convective zone of the Sun. Conclusions: The star Inti 1 is a faint solar twin, therefore, it could be used to calibrate the zero points of different photometric systems. The distant solar twin Inti 1 has an abundance pattern similar to the Sun with only a minor enhancement in the refractory elements. It would be important to analyze other distant solar twins to verify whether they share the Sun's abundance pattern or if they are enhanced in refractories, as is the case in the majority of nearby solar twins. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  18. A unified model explains commonness and rarity on coral reefs.

    PubMed

    Connolly, Sean R; Hughes, Terry P; Bellwood, David R

    2017-04-01

    Abundance patterns in ecological communities have important implications for biodiversity maintenance and ecosystem functioning. However, ecological theory has been largely unsuccessful at capturing multiple macroecological abundance patterns simultaneously. Here, we propose a parsimonious model that unifies widespread ecological relationships involving local aggregation, species-abundance distributions, and species associations, and we test this model against the metacommunity structure of reef-building corals and coral reef fishes across the western and central Pacific. For both corals and fishes, the unified model simultaneously captures extremely well local species-abundance distributions, interspecific variation in the strength of spatial aggregation, patterns of community similarity, species accumulation, and regional species richness, performing far better than alternative models also examined here and in previous work on coral reefs. Our approach contributes to the development of synthetic theory for large-scale patterns of community structure in nature, and to addressing ongoing challenges in biodiversity conservation at macroecological scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  19. Cutaneous Leishmaniasis and Sand Fly Fluctuations Are Associated with El Niño in Panamá

    PubMed Central

    Chaves, Luis Fernando; Calzada, José E.; Valderrama, Anayansí; Saldaña, Azael

    2014-01-01

    Background Cutaneous Leishmaniasis (CL) is a neglected tropical vector-borne disease. Sand fly vectors (SF) and Leishmania spp parasites are sensitive to changes in weather conditions, rendering disease transmission susceptible to changes in local and global scale climatic patterns. Nevertheless, it is unclear how SF abundance is impacted by El Niño Southern Oscillation (ENSO) and how these changes might relate to changes in CL transmission. Methodology and Findings We studied association patterns between monthly time series, from January 2000 to December 2010, of: CL cases, rainfall and temperature from Panamá, and an ENSO index. We employed autoregressive models and cross wavelet coherence, to quantify the seasonal and interannual impact of local climate and ENSO on CL dynamics. We employed Poisson Rate Generalized Linear Mixed Models to study SF abundance patterns across ENSO phases, seasons and eco-epidemiological settings, employing records from 640 night-trap sampling collections spanning 2000–2011. We found that ENSO, rainfall and temperature were associated with CL cycles at interannual scales, while seasonal patterns were mainly associated with rainfall and temperature. Sand fly (SF) vector abundance, on average, decreased during the hot and cold ENSO phases, when compared with the normal ENSO phase, yet variability in vector abundance was largest during the cold ENSO phase. Our results showed a three month lagged association between SF vector abundance and CL cases. Conclusion Association patterns of CL with ENSO and local climatic factors in Panamá indicate that interannual CL cycles might be driven by ENSO, while the CL seasonality was mainly associated with temperature and rainfall variability. CL cases and SF abundance were associated in a fashion suggesting that sudden extraordinary changes in vector abundance might increase the potential for CL epidemic outbreaks, given that CL epidemics occur during the cold ENSO phase, a time when SF abundance shows its highest fluctuations. PMID:25275503

  20. High-order rogue waves in vector nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Guo, Boling; Zhao, Li-Chen

    2014-04-01

    We study the dynamics of high-order rogue waves (RWs) in two-component coupled nonlinear Schrödinger equations. We find that four fundamental rogue waves can emerge from second-order vector RWs in the coupled system, in contrast to the high-order ones in single-component systems. The distribution shape can be quadrilateral, triangle, and line structures by varying the proper initial excitations given by the exact analytical solutions. The distribution pattern for vector RWs is more abundant than that for scalar rogue waves. Possibilities to observe these new patterns for rogue waves are discussed for a nonlinear fiber.

  1. Trace elements in chondritic stratospheric particles - Zinc depletion as a possible indicator of atmospheric entry heating

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1992-01-01

    Major-element abundances in 11 C, C?, and TCA cosmic dust particles have been measured using SEM and TEM energy dispersive X-ray (EDX) systems. The Fe/Ni ratio, when coupled with major element abundances, appears to be a useful discriminator of cosmic particles. Three particles classified as C?, but having Fe/Ni peak height ratios similar to those measured on the powdered Allende meteorite sample in their HSC EDX spectra, exhibit chondritic minor-/trace-element abundance patterns, suggesting they are extraterrestrial. The one particle classified as C-type, but without detectable Ni in its JSC EDX spectrum, exhibits an apparently nonchondritic minor-/trace-element abundance pattern. A class of particles that are chondritic except for large depletions in the volatile elements Zn and S has been identified. It is likely that these particles condensed with a C1 abundance pattern and that Zn and S were removed by some subsequent process.

  2. How does abundance scale with body size in coupled size-structured food webs?

    PubMed

    Blanchard, Julia L; Jennings, Simon; Law, Richard; Castle, Matthew D; McCloghrie, Paul; Rochet, Marie-Joëlle; Benoît, Eric

    2009-01-01

    1. Widely observed macro-ecological patterns in log abundance vs. log body mass of organisms can be explained by simple scaling theory based on food (energy) availability across a spectrum of body sizes. The theory predicts that when food availability falls with body size (as in most aquatic food webs where larger predators eat smaller prey), the scaling between log N vs. log m is steeper than when organisms of different sizes compete for a shared unstructured resource (e.g. autotrophs, herbivores and detritivores; hereafter dubbed 'detritivores'). 2. In real communities, the mix of feeding characteristics gives rise to complex food webs. Such complexities make empirical tests of scaling predictions prone to error if: (i) the data are not disaggregated in accordance with the assumptions of the theory being tested, or (ii) the theory does not account for all of the trophic interactions within and across the communities sampled. 3. We disaggregated whole community data collected in the North Sea into predator and detritivore components and report slopes of log abundance vs. log body mass relationships. Observed slopes for fish and epifaunal predator communities (-1.2 to -2.25) were significantly steeper than those for infaunal detritivore communities (-0.56 to -0.87). 4. We present a model describing the dynamics of coupled size spectra, to explain how coupling of predator and detritivore communities affects the scaling of log N vs. log m. The model captures the trophic interactions and recycling of material that occur in many aquatic ecosystems. 5. Our simulations demonstrate that the biological processes underlying growth and mortality in the two distinct size spectra lead to patterns consistent with data. Slopes of log N vs. log m were steeper and growth rates faster for predators compared to detritivores. Size spectra were truncated when primary production was too low for predators and when detritivores experienced predation pressure. 6. The approach also allows us to assess the effects of external sources of mortality (e.g. harvesting). Removal of large predators resulted in steeper predator spectra and increases in their prey (small fish and detritivores). The model predictions are remarkably consistent with observed patterns of exploited ecosystems.

  3. Are Longitudinal Patterns of Bacterial Community Composition and Dissolved Organic Matter Composition Linked Across a River Continuum? (Invited)

    NASA Astrophysics Data System (ADS)

    Mosher, J.; Kaplan, L. A.; Kan, J.; Findlay, R. H.; Podgorski, D. C.; McKenna, A. M.; Branan, T. L.; Griffith, C.

    2013-12-01

    The River Continuum Concept (RCC), an early meta-ecosystem idea, was developed without the benefit of new frontiers in molecular microbial ecology and ultra-high resolution mass spectrometry. We have applied technical advances in these areas to address a hypothesis implicit in the RCC that the upstream legacy of DOM processing contributes to the structure and function of downstream bacterial communities. DOM molecular structure and microbial community structure were measured across river networks within three distinct forested catchments. High-throughput pyrosequencing of bacterial 16S rRNA amplicons and phospholipid fatty acid analysis were used to characterize bacterial communities, and ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry characterized the molecular composition of stream water DOM. Total microbial biomass varied among river networks but showed a trend of decreasing biomass in sediment with increasing stream order. There were distinct shifts in bacterial community structure and a trend of decreasing richness was observed traveling downstream in both sediment and epilithic habitats. The bacterial richness in the first order stream sediment habitats was 7728 genera which decreased to 6597 genera in the second order sites and 4867 genera in the third order streams. The richness in the epilithic biofilm habitats was 2830 genera in the first order, 2322 genera in the second order and 1629 genera in the third order sites. Over 45% of the sediment biofilm genera and 37% of the epilithic genera were found in all three orders. In addition to shifts in bacterial richness, we observed a longitudinal shift in bacterial functional-types. In the sediment biofilms, Rhodoplanes spp. (containing rhodopsin pigment) and Bradyrhizobium spp. (nitrogen fixing bacteria) were predominately found in the heavily forested first order streams, while the cyanobacteria Limnothrix spp. was dominant in the second order streams. The third order streams had higher abundances of Sphingomonadaceae spp. and Nordella spp. (both Alphaproteobacteria). The cyanobacteria Chamaesiphon spp. was observed in highest abundance in the first and second order streams of the rock biofilm samples and the cyanobacteria Oscillatoria spp. was in highest abundance in the third order streams. Stream water samples from all orders had high lignin/tannin content and were enriched with carboxylic-rich alicyclic molecules (CRAM). There was an observable shift in in the molecular weight and relative abundance of the CRAM molecules with the CRAM molecules becoming less abundant and having lower molecular weight following the downstream gradient. Multivariate statistical analyses correlated the longitudinal patterns of changes in bacterial community structure to the DOM molecular structure and geochemical parameters across the river continuum.

  4. Spatial and geographical changes in the mesozooplankton community in the Bering and Chukchi Seas during the summers of 2007 and 2008

    NASA Astrophysics Data System (ADS)

    Matsuno, Kohei; Landeira Sanchez, Jose M.; Yamaguchi, Atsushi; Hirawake, Toru; Kikuchi, Takashi

    2016-09-01

    From July to August 2007 and June to July 2008, the horizontal/geographical changes in the zooplankton community in the Bering and Chukchi Seas were studied. The geographical patterns, which were common for these two years, were observed for salinity, chlorophyll a (Chl. a), zooplankton chaetognaths, hydrozoans and the whole zooplankton community. Among them, the patterns of salinity and Chl. a were related with the horizontal distribution of the water masses. The distributions of the two carnivorous taxa were correlated with their prey (copepods or barnacle larvae). The analysis of the structural equation model (SEM) revealed that the horizontal distribution of the zooplankton abundance and biomass were governed by the different taxa. Thus, the zooplankton abundance was governed by the numerically dominant but smaller-bodied taxa, such as the barnacle larvae and copepod Pseudocalanus spp., while the zooplankton biomass was determined by the large-bodied copepods, such as Calanus glacialis/marshallae and Eucalanus bungii.

  5. Fish composition and assemblage in the anthropogenic-modified tidally-restricted Doñana (Spain) marshlands

    NASA Astrophysics Data System (ADS)

    Moreno-Valcárcel, Raquel; Oliva-Paterna, Francisco J.; Arribas, Carmen; Fernández-Delgado, Carlos

    2013-03-01

    The Guadalquivir estuary is the largest estuarine area on the southern Atlantic coast of Europe; its anthropogenic tidally-restricted marshes are partly within the boundary of the Doñana National Park, southern Spain. Our two-year study describes the spatial and temporal patterns of the fish assemblages in the Doñana marshlands in terms of species richness, abundance and biomass. The main families were Mugilidae and Cyprinidae, which accounted for 40.9% of the total species richness. Unlike the fish assemblages found in other European estuaries, Doñana was dominated in both biomass and abundance by freshwater species, mainly invasive exotic species. The spatial analysis of the assemblage showed four significant fish groups corresponding to different habitats established a priori and related to the salinity gradient. Assemblages did not show a seasonal pattern and the temporal fish groups observed were mainly related to the hydrological cycle and the extreme drought that occurred during the study period.

  6. Nocturnal activity by diurnal lizards (Sceloporus jarrovi, S. virgatus) eaten by small owls (Glaucidium gnoma, Otus trichopsis)

    USGS Publications Warehouse

    Duncan, W.W.; Gehlbach, F.R.; Middendorf, G. A.

    2003-01-01

    Whiskered screech-owls (Otus trichopsis) and northern pygmy-owls (Glaucidium gnoma) delivered freshly caught Yarrow's spiny lizards (Sceloporus jarrovi) and striped plateau lizards (S. virgatus) to nestlings from dusk to dark in southeastern Arizona. This observation stimulated studies of the prey deliveries by the owls and lizard activity patterns, because the lizards are not known to be nocturnal. Lizards were more frequent prey of both owls than endothermic vertebrates but infrequent compared to arthropods, a pattern in the pygmy-owl that differs from its northern populations. Yarrow's spiny lizard, the most abundant and frequently captured lizard, was most active in the morning but also active in the evening. Striped plateau lizard, the second most abundant and depredated species, had morning and evening peaks of activity. Few lizards, including S. clarki and Urosaurus ornatus, but not Cnemidophorus exsanguis and C. sonorae, were active at or after dark, when relatively few were captured by the owls.

  7. Distribution and abundance of host-seeking Culex species at three proximate locations with different levels of West Nile virus activity

    USGS Publications Warehouse

    Rochlin, I.; Ginsberg, H.S.; Campbell, S.R.

    2009-01-01

    Culex species were monitored at three proximate sites with historically different West Nile virus (WNV) activities. The site with human WNV transmission (epidemic) had the lowest abundance of the putative bridge vectors, Culex pipiens and Cx. salinarius. The site with horse cases but not human cases (epizootic) had the highest percent composition of Cx. salinarius, whereas the site with WNV-positive birds only (enzootic) had the highest Cx. pipiens abundance and percent composition. A total of 29 WNV-positive Culex pools were collected at the enzootic site, 17 at the epidemic site, and 14 at the epizootic site. Published models of human risk using Cx. pipiens and Cx. salinarius as the primary bridge vectors did not explain WNV activity at our sites. Other variables, such as additional vector species, environmental components, and socioeconomic factors, need to be examined to explain the observed patterns of WNV epidemic activity.

  8. Evaluating single-pass catch as a tool for identifying spatial pattern in fish distribution

    USGS Publications Warehouse

    Bateman, Douglas S.; Gresswell, Robert E.; Torgersen, Christian E.

    2005-01-01

    We evaluate the efficacy of single-pass electrofishing without blocknets as a tool for collecting spatially continuous fish distribution data in headwater streams. We compare spatial patterns in abundance, sampling effort, and length-frequency distributions from single-pass sampling of coastal cutthroat trout (Oncorhynchus clarki clarki) to data obtained from a more precise multiple-pass removal electrofishing method in two mid-sized (500–1000 ha) forested watersheds in western Oregon. Abundance estimates from single- and multiple-pass removal electrofishing were positively correlated in both watersheds, r = 0.99 and 0.86. There were no significant trends in capture probabilities at the watershed scale (P > 0.05). Moreover, among-sample variation in fish abundance was higher than within-sample error in both streams indicating that increased precision of unit-scale abundance estimates would provide less information on patterns of abundance than increasing the fraction of habitat units sampled. In the two watersheds, respectively, single-pass electrofishing captured 78 and 74% of the estimated population of cutthroat trout with 7 and 10% of the effort. At the scale of intermediate-sized watersheds, single-pass electrofishing exhibited a sufficient level of precision to be effective in detecting spatial patterns of cutthroat trout abundance and may be a useful tool for providing the context for investigating fish-habitat relationships at multiple scales.

  9. Advancing the use of local ecological knowledge for assessing data-poor species in coastal ecosystems.

    PubMed

    Beaudreau, Anne H; Levin, Phillip S

    2014-03-01

    Many of the world's most vulnerable and rapidly changing ecosystems are also among the most data-poor, leading to an increased interest in use of local ecological knowledge (LEK) to document long-term environmental change. The integration of multiple knowledge sources for assessing species abundance and distribution has gained traction over the past decade as a growing number of case studies show concordance between LEK and scientific data. This study advances the use of quantitative approaches for synthesizing LEK by presenting a novel application of bootstrapping and statistical modeling to evaluate variance in ecological observations of fisheries practitioners. We developed an historical record of abundance for 22 marine species in Puget Sound, Washington (USA), using LEK, and we quantified variation in perceptions of abundance trends among fishers, divers, and researchers. These individuals differed in aspects of their information environments, which are characterized by how, when, and where an individual has acquired ecological information. Abundance trends derived from interviews suggest that populations of long-lived rockfishes (Sebastes spp.) have been in decline since at least the 1960s and that three rockfishes protected under the Endangered Species Act were perceived as relatively less abundant than other species. Differences in perception of rockfish abundance trends among age groups were consistent with our hypothesis that the reported magnitude of decline in abundance would increase with age, with younger respondents more likely to report high abundance than older individuals across all periods. Temporal patterns in the mean and variance of reported rockfish abundance indices were qualitatively similar between fishers and researchers; however, fishers reported higher indices of abundance than researchers for all but one rockfish species. The two respondent groups reported similar changes in rockfish abundance from the 1940s to 2000s, except for two recreationally valuable species that fishers perceived as having undergone greater declines than perceived by researchers. When aggregated at appropriate spatial-temporal scales and in a culturally appropriate manner, observations of resource users are a valuable source of ecological information. Continued development of creative analytical tools for synthesizing multiple knowledge sources will be essential for advancing the formal use of LEK in assessments of marine species.

  10. Effects of habitat structure on the epifaunal community in Mussismilia corals: does coral morphology influence the richness and abundance of associated crustacean fauna?

    NASA Astrophysics Data System (ADS)

    Nogueira, Marcos M.; Neves, Elizabeth; Johnsson, Rodrigo

    2015-06-01

    Coral habitat structures increase abundance and richness of organisms by providing niches, easy access to resources and refuge from predators. Corals harbor a great variety of animals; the variation in coral species morphology contributes to the heterogeneity and complexity of habitat types. In this report, we studied the richness and abundance of crustaceans (Decapoda, Copepoda, Peracarida and Ostracoda) associated with three species of Mussismilia exhibiting different growth morphologies, in two different coral reefs of the Bahia state (Caramuanas and Boipeba-Moreré, Brazil). Mussismilia hispida is a massive coral; M. braziliensis also has a massive growth pattern, but forms a crevice in the basal area of the corallum; M. harttii has a meandroid pattern. PERMANOVA analysis suggests significant differences in associated fauna richness among Mussismilia species, with higher values for M. harttii, followed by M. braziliensis and later by M. hispida. The same trend was observed for density, except that the comparison of M. braziliensis and M. hispida did not show differences. Redundancy and canonical correspondence analysis indicated that almost all of the crustacean species were more associated with the M. harttii colonies that formed a group clearly separated from colonies of M. braziliensis and M. hispida. We also found that the internal volume of interpolyp space, only present in M. harttii, was the most important factor influencing richness and abundance of all analyzed orders of crustaceans.

  11. Bacterial 16S rRNA gene analysis revealed that bacteria related to Arcobacter spp. constitute an abundant and common component of the oyster microbiota (Tiostrea chilensis).

    PubMed

    Romero, J; García-Varela, M; Laclette, J P; Espejo, R T

    2002-11-01

    To explore the bacterial microbiota in Chilean oyster (Tiostrea chilensis), a molecular approach that permits detection of different bacteria, independently of their capacity to grow in culture media, was used. Bacterial diversity was assessed by analysis of both the 16S rDNA and the 16S-23S intergenic region, obtained by PCR amplifications of DNA extracted from depurated oysters. RFLP of the PCR amplified 16S rDNA showed a prevailing pattern in most of the individuals analyzed, indicating that a few bacterial species were relatively abundant and common in oysters. Cloning and sequencing of the 16S rDNA with the prevailing RFLP pattern indicated that this rRNA was most closely related to Arcobacter spp. However, analysis by the size of the amplified 16S-23S rRNA intergenic regions revealed not Arcobacter spp. but Staphylococcus spp. related bacteria as a major and common component in oyster. These different results may be caused by the absence of target for one of the primers employed for amplification of the intergenic region. Neither of the two bacteria species found in large abundance was recovered after culturing under aerobic, anaerobic, or microaerophilic conditions. This result, however, is expected because the number of bacteria recovered after cultivation was less than 0.01% of the total. All together, these observations suggest that Arcobacter-related strains are probably abundant and common in the Chilean oyster bacterial microbiota.

  12. Genetic diversity in aspen and its relation to arthropod abundance

    PubMed Central

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  13. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea.

    PubMed

    Parsons, Rachel J; Breitbart, Mya; Lomas, Michael W; Carlson, Craig A

    2012-02-01

    There are an estimated 10(30) virioplankton in the world oceans, the majority of which are phages (viruses that infect bacteria). Marine phages encompass enormous genetic diversity, affect biogeochemical cycling of elements, and partially control aspects of prokaryotic production and diversity. Despite their importance, there is a paucity of data describing virioplankton distributions over time and depth in oceanic systems. A decade of high-resolution time-series data collected from the upper 300 m in the northwestern Sargasso Sea revealed recurring temporal and vertical patterns of virioplankton abundance in unprecedented detail. An annual virioplankton maximum developed between 60 and 100 m during periods of summer stratification and eroded during winter convective mixing. The timing and vertical positioning of this seasonal pattern was related to variability in water column stability and the dynamics of specific picophytoplankton and heterotrophic bacterioplankton lineages. Between 60 and 100 m, virioplankton abundance was negatively correlated to the dominant heterotrophic bacterioplankton lineage SAR11, as well as the less abundant picophytoplankton, Synechococcus. In contrast, virioplankton abundance was positively correlated to the dominant picophytoplankton lineage Prochlorococcus, and the less abundant alpha-proteobacteria, Rhodobacteraceae. Seasonally, virioplankton abundances were highly synchronous with Prochlorococcus distributions and the virioplankton to Prochlorococcus ratio remained remarkably constant during periods of water column stratification. The data suggest that a significant fraction of viruses in the mid-euphotic zone of the subtropical gyres may be cyanophages and patterns in their abundance are largely determined by Prochlorococcus dynamics in response to water column stability. This high-resolution, decadal survey of virioplankton abundance provides insight into the possible controls of virioplankton dynamics in the open ocean.

  14. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea

    PubMed Central

    Parsons, Rachel J; Breitbart, Mya; Lomas, Michael W; Carlson, Craig A

    2012-01-01

    There are an estimated 1030 virioplankton in the world oceans, the majority of which are phages (viruses that infect bacteria). Marine phages encompass enormous genetic diversity, affect biogeochemical cycling of elements, and partially control aspects of prokaryotic production and diversity. Despite their importance, there is a paucity of data describing virioplankton distributions over time and depth in oceanic systems. A decade of high-resolution time-series data collected from the upper 300 m in the northwestern Sargasso Sea revealed recurring temporal and vertical patterns of virioplankton abundance in unprecedented detail. An annual virioplankton maximum developed between 60 and 100 m during periods of summer stratification and eroded during winter convective mixing. The timing and vertical positioning of this seasonal pattern was related to variability in water column stability and the dynamics of specific picophytoplankton and heterotrophic bacterioplankton lineages. Between 60 and 100 m, virioplankton abundance was negatively correlated to the dominant heterotrophic bacterioplankton lineage SAR11, as well as the less abundant picophytoplankton, Synechococcus. In contrast, virioplankton abundance was positively correlated to the dominant picophytoplankton lineage Prochlorococcus, and the less abundant alpha-proteobacteria, Rhodobacteraceae. Seasonally, virioplankton abundances were highly synchronous with Prochlorococcus distributions and the virioplankton to Prochlorococcus ratio remained remarkably constant during periods of water column stratification. The data suggest that a significant fraction of viruses in the mid-euphotic zone of the subtropical gyres may be cyanophages and patterns in their abundance are largely determined by Prochlorococcus dynamics in response to water column stability. This high-resolution, decadal survey of virioplankton abundance provides insight into the possible controls of virioplankton dynamics in the open ocean. PMID:21833038

  15. {sup 13}C ISOTOPIC FRACTIONATION OF HC{sub 3}N IN STAR-FORMING REGIONS: LOW-MASS STAR-FORMING REGION L1527 AND HIGH-MASS STAR-FORMING REGION G28.28-0.36

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Kotomi; Saito, Masao; Ozeki, Hiroyuki, E-mail: kotomi.taniguchi@nao.ac.jp

    2016-10-20

    We observed the J = 9–8 and 10–9 rotational lines of three {sup 13}C isotopologues of HC{sub 3}N in L1527 and G28.28-0.36, with the 45 m radio telescope of the Nobeyama Radio Observatory, in order to constrain the main formation mechanisms of HC{sub 3}N in each source. The abundance ratios of the three {sup 13}C isotopologues of HC{sub 3}N are found to be 0.9 (±0.2) : 1.00 : 1.29 (±0.19) (1 σ ), and 1.0 (±0.2) : 1.00 : 1.47 (±0.17) (1 σ ), for [H{sup 13}CCCN : HC{sup 13}CCN : HCC{sup 13}CN] in L1527 and G28.28-0.36, respectively. We recognize,more » from a similar {sup 13}C isotopic fractionation pattern, that the abundances of H{sup 13}CCCN and HC{sup 13}CCN are comparable, and HCC{sup 13}CN is more abundant than the others. Based on the results, we discuss the main formation pathway of HC{sub 3}N. The {sup 13}C isotopic fractionation pattern derived from our observations can be explained by the neutral-neutral reaction between C{sub 2}H{sub 2} and CN in both the low-mass (L1527) and high-mass (G28.28-0.36) star-forming regions.« less

  16. Changes in seasonal nearshore zooplankton abundance patterns in Lake Ontario following establishment of the exotic predator Cercopagis pengoi

    USGS Publications Warehouse

    Warner, David M.; Rudstam, Lars G.; Benoit, Hugues; Mills, Edward L.; Johannsson, Ora E.

    2006-01-01

    Cercopagis pengoi, a zooplanktivore first discovered in Lake Ontario in 1998, may reduce availability of prey for planktivorous fish. Cercoapgis pengoi is most abundant in late summer and fall. Therefore, we hypothesized that abundance of small zooplankton (bosminids and cyclopoids) species would decrease at that time. To determine if the establishment of C. pengoi was followed by changes in the zooplankton community, seasonal patterns in nearshore zooplankton collected from May to October 1995–2000 were examined. Early summer density of small zooplankton was similar in all years while late summer and fall densities were significantly lower in 1998–2000 than in 1995–1997. The declines of small zooplankton coincided seasonally with the peak in C. pengoidensity. Other possible causes for the observed changes in small zooplankton are less likely. High levels of fish predation should have resulted in smaller zooplankton in 1998–2000 than in 1995–1997 and larger declines in Daphnia than other groups. This was not observed. There was no significant decline in chlorophyll-a concentrations or changes in temperature between 1995–1997 and 1998–2000. Therefore, the declines in density of small zooplankton were most likely the result of C. pengoi predation. The effect of C. pengoi establishment on alewives is increased competition for zooplankton prey but C. pengoi has replaced a portion of the zooplankton biomass and adult alewife diet formerly dominated by Diacyclops thomasi and Bosmina longirostris.

  17. Short-range forecast of Shershnevskoie (South Ural) water-storage algal blooms: preliminary results of predictors' choosing and membership functions' construction

    NASA Astrophysics Data System (ADS)

    Gayazova, Anna; Abdullaev, Sanjar

    2014-05-01

    Short-range forecasting of algal blooms in drinking water reservoirs and other waterbodies is an actual element of water treatment system. Particularly, Shershnevskoie reservoir - the source of drinking water for Chelyabinsk city (South Ural region of Russia) - is exposed to interannual, seasonal and short-range fluctuations of blue-green alga Aphanizomenon flos-aquae and other dominant species abundance, which lead to technological problems and economic costs and adversely affect the water treatment quality. Whereas the composition, intensity and the period of blooms affected not only by meteorological seasonal conditions but also by ecological specificity of waterbody, that's important to develop object-oriented forecasting, particularly, search for an optimal number of predictors for such forecasting. Thereby, firstly fuzzy logic and fuzzy artificial neural network patterns for blue-green alga Microcystis aeruginosa (M. aeruginosa) blooms prediction in nearby undrained Smolino lake were developed. These results subsequently served as the base to derive membership functions for Shernevskoie reservoir forecasting patterns. Time series with the total lenght about 138-159 days of dominant species seasonal abundance, water temperature, cloud cover, wind speed, mineralization, phosphate and nitrate concentrations were obtained through field observations held at Lake Smolino (Chelyabinsk) in the warm season of 2009 and 2011 with time resolution of 2-7 days. The cross-correlation analysis of the data revealed the potential predictors of M. aeruginosa abundance quasi-periodic oscillations: green alga Pediastrum duplex (P. duplex) abundance and mineralization for 2009, P. duplex abundance, water temperature and concentration of nitrates for 2011. According to the results of cross-correlation analysis one membership function "P. duplex abundance" and one rule linking M. aeruginosa and P. duplex abundances were set up for database of 2009. Analogically, for database of 2011 three rules, linking membership functions of temperature, P. duplex abundance, nitrate concentration and M. aeruginosa abundance were set up. Developed fuzzy logic rules were good to predict M. aeruginosa intense outbreaks. For ANN method of forecasting specially written program was used to train the fuzzy artificial neural network on number of input selected predictors' values and output predicted factor's values to set up the predictive rules and membership functions automatically. As a result, two models based on mineralization and P. duplex abundance were developed for 2009. For 2011 four patterns were developed, the best result was obtained for model based on temperature and P. duplex abundance. Developed methods of forecasting were applied to predict outbreaks of Aphanizomenon flos-aquae and M. aeruginosa abundance in Shershnevskoie reservoir. For this purpose long-term data of chemical parameters, measured once in a month, data of dominant species abundance, measured fifth in a week and data of turbidity, water color, alkalinity, pH, obtained each day, were analyzed. Based on these empirical data significant factors were determined, membership functions were set up and preliminary models for Shershnevskoie reservoir were developed. As expected, these models differ significantly from developed for Smolino lake ones and should be tested on new data sets.

  18. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species.

    PubMed

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability.

  19. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species

    PubMed Central

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability. PMID:25352979

  20. Quantifying the past and future impact of climate on outbreak patterns of bank voles (Myodes glareolus).

    PubMed

    Imholt, Christian; Reil, Daniela; Eccard, Jana A; Jacob, Daniela; Hempelmann, Nils; Jacob, Jens

    2015-02-01

    Central European outbreak populations of the bank vole (Myodes glareolus Schreber) are known to cause damage in forestry and to transmit the most common type of Hantavirus (Puumala virus, PUUV) to humans. A sound estimation of potential effects of future climate scenarios on population dynamics is a prerequisite for long-term management strategies. Historic abundance time series were used to identify the key weather conditions associated with bank vole abundance, and were extrapolated to future climate scenarios to derive potential long-term changes in bank vole abundance dynamics. Classification and regression tree analysis revealed the most relevant weather parameters associated with high and low bank vole abundances. Summer temperatures 2 years prior to trapping had the highest impact on abundance fluctuation. Extrapolation of the identified parameters to future climate conditions revealed an increase in years with high vole abundance. Key weather patterns associated with vole abundance reflect the importance of superabundant food supply through masting to the occurrence of bank vole outbreaks. Owing to changing climate, these outbreaks are predicted potentially to increase in frequency 3-4-fold by the end of this century. This may negatively affect damage patterns in forestry and the risk of human PUUV infection in the long term. © 2014 Society of Chemical Industry.

  1. Variation in size frequency distribution of coral populations under different fishing pressures in two contrasting locations in the Indian Ocean.

    PubMed

    Grimsditch, G; Pisapia, C; Huck, M; Karisa, J; Obura, D; Sweet, M

    2017-10-01

    This study aimed to assess how the size-frequency distributions of coral genera varied between reefs under different fishing pressures in two contrasting Indian Ocean locations (the Maldives and East Africa). Using generalized linear mixed models, we were able to demonstrate that complex interactions occurred between coral genera, coral size class and fishing pressure. In both locations, we found Acropora coral species to be more abundant in non-fished compared to fished sites (a pattern which was consistent for nearly all the assessed size classes). Coral genera classified as 'stress tolerant' showed a contrasting pattern i.e. were higher in abundance in fished compared to non-fished sites. Site specific variations were also observed. For example, Maldivian reefs exhibited a significantly higher abundance in all size classes of 'competitive' corals compared to East Africa. This possibly indicates that East African reefs have already been subjected to higher levels of stress and are therefore less suitable environments for 'competitive' corals. This study also highlights the potential structure and composition of reefs under future degradation scenarios, for example with a loss of Acropora corals and an increase in dominance of 'stress tolerant' and 'generalist' coral genera. Copyright © 2017. Published by Elsevier Ltd.

  2. Thresholds in the response of free-floating plant abundance to variation in hydraulic connectivity, nutrients, and macrophyte abundance in a large floodplain river

    USGS Publications Warehouse

    Giblin, Shawn M.; Houser, Jeffrey N.; Sullivan, John F.; Langrehr, H.A.; Rogala, James T.; Campbell, Benjamin D.

    2014-01-01

    Duckweed and other free-floating plants (FFP) can form dense surface mats that affect ecosystem condition and processes, and can impair public use of aquatic resources. FFP obtain their nutrients from the water column, and the formation of dense FFP mats can be a consequence and indicator of river eutrophication. We conducted two complementary surveys of diverse aquatic areas of the Upper Mississippi River as an in situ approach for estimating thresholds in the response of FFP abundance to nutrient concentration and physical conditions in a large, floodplain river. Local regression analysis was used to estimate thresholds in the relations between FFP abundance and phosphorus (P) concentration (0.167 mg l−1L), nitrogen (N) concentration (0.808 mg l−1), water velocity (0.095 m s−1), and aquatic macrophyte abundance (65 % cover). FFP tissue concentrations suggested P limitation was more likely in spring, N limitation was more likely in late summer, and N limitation was most likely in backwaters with minimal hydraulic connection to the channel. The thresholds estimated here, along with observed patterns in nutrient limitation, provide river scientists and managers with criteria to consider when attempting to modify FFP abundance in off-channel areas of large river systems.

  3. Models of Experimentally Derived Competitive Effects Predict Biogeographical Differences in the Abundance of Invasive and Native Plant Species

    PubMed Central

    Xiao, Sa; Ni, Guangyan; Callaway, Ragan M.

    2013-01-01

    Mono-dominance by invasive species provides opportunities to explore determinants of plant distributions and abundance; however, linking mechanistic results from small scale experiments to patterns in nature is difficult. We used experimentally derived competitive effects of an invader in North America, Acroptilon repens, on species with which it co-occurs in its native range of Uzbekistan and on species with which it occurs in its non-native ranges in North America, in individual-based models. We found that competitive effects yielded relative abundances of Acroptilon and other species in models that were qualitatively similar to those observed in the field in the two ranges. In its non-native range, Acroptilon can occur in nearly pure monocultures at local scales, whereas such nearly pure stands of Acroptilon appear to be much less common in its native range. Experimentally derived competitive effects of Acroptilon on other species predicted Acroptilon to be 4–9 times more proportionally abundant than natives in the North American models, but proportionally equal to or less than the abundance of natives in the Eurasian models. Our results suggest a novel way to integrate complex combinations of interactions simultaneously, and that biogeographical differences in the competitive effects of an invader correspond well with biogeographical differences in abundance and impact. PMID:24265701

  4. Modeling the near-ultraviolet band of GK stars. III. Dependence on abundance pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, C. Ian; Campbell, Eamonn A., E-mail: ishort@ap.smu.ca

    2013-06-01

    We extend the grid of non-LTE (NLTE) models presented in Paper II to explore variations in abundance pattern in two ways: (1) the adoption of the Asplund et al. (GASS10) abundances, (2) for stars of metallicity, [M/H], of –0.5, the adoption of a non-solar enhancement of α-elements by +0.3 dex. Moreover, our grid of synthetic spectral energy distributions (SEDs) is interpolated to a finer numerical resolution in both T {sub eff} (ΔT {sub eff} = 25 K) and log g (Δlog g = 0.25). We compare the values of T {sub eff} and log g inferred from fitting LTE andmore » NLTE SEDs to observed SEDs throughout the entire visible band, and in an ad hoc 'blue' band. We compare our spectrophotometrically derived T {sub eff} values to a variety of T {sub eff} calibrations, including more empirical ones, drawn from the literature. For stars of solar metallicity, we find that the adoption of the GASS10 abundances lowers the inferred T {sub eff} value by 25-50 K for late-type giants, and NLTE models computed with the GASS10 abundances give T {sub eff} results that are marginally in better agreement with other T {sub eff} calibrations. For stars of [M/H] = –0.5 there is marginal evidence that adoption of α-enhancement further lowers the derived T {sub eff} value by 50 K. Stellar parameters inferred from fitting NLTE models to SEDs are more dependent than LTE models on the wavelength region being fitted, and we find that the effect depends on how heavily line blanketed the fitting region is, whether the fitting region is to the blue of the Wien peak of the star's SED, or both.« less

  5. Lake Sturgeon, Lake Whitefish, and Walleye egg deposition patterns with response to fish spawning substrate restoration in the St. Clair–Detroit River system

    USGS Publications Warehouse

    Fischer, Jason L.; Pritt, Jeremy J.; Roseman, Edward; Prichard, Carson G.; Craig, Jaquelyn M.; Kennedy, Gregory W.; Manny, Bruce A.

    2018-01-01

    Egg deposition and use of restored spawning substrates by lithophilic fishes (e.g., Lake Sturgeon Acipenser fulvescens, Lake Whitefish Coregonus clupeaformis, and Walleye Sander vitreus) were assessed throughout the St. Clair–Detroit River system from 2005 to 2016. Bayesian models were used to quantify egg abundance and presence/absence relative to site-specific variables (e.g., depth, velocity, and artificial spawning reef presence) and temperature to evaluate fish use of restored artificial spawning reefs and assess patterns in egg deposition. Lake Whitefish and Walleye egg abundance, probability of detection, and probability of occupancy were assessed with detection-adjusted methods; Lake Sturgeon egg abundance and probability of occurrence were assessed using delta-lognormal methods. The models indicated that the probability of Walleye eggs occupying a site increased with water velocity and that the rate of increase decreased with depth, whereas Lake Whitefish egg occupancy was not correlated with any of the attributes considered. Egg deposition by Lake Whitefish and Walleyes was greater at sites with high water velocities and was lower over artificial spawning reefs. Lake Sturgeon eggs were collected least frequently but were more likely to be collected over artificial spawning reefs and in greater abundances than elsewhere. Detection-adjusted egg abundances were not greater over artificial spawning reefs, indicating that these projects may not directly benefit spawning Walleyes and Lake Whitefish. However, 98% of the Lake Sturgeon eggs observed were collected over artificial spawning reefs, supporting the hypothesis that the reefs provided spawning sites for Lake Sturgeon and could mitigate historic losses of Lake Sturgeon spawning habitat.

  6. Wind-driven upwelling effects on cephalopod paralarvae: Octopus vulgaris and Loliginidae off the Galician coast (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Otero, Jaime; Álvarez-Salgado, X. Antón; González, Ángel F.; Souto, Carlos; Gilcoto, Miguel; Guerra, Ángel

    2016-02-01

    Circulation patterns of coastal upwelling areas may have central consequences for the abundance and cross-shelf transport of the larval stages of many species. Previous studies have provided evidences that larvae distribution results from a combination of subtidal circulation, species-specific behaviour and larval sources. However, most of these works were conducted on organisms characterised by small-sized and abundant early life phases. Here, we studied the influence of the hydrography and circulation of the Ría de Vigo and adjacent shelf (NW Iberian upwelling system) on the paralarval abundance of two contrasting cephalopods, the benthic common octopus (Octopus vulgaris) and the pelagic squids (Loliginidae). We sampled repeatedly a cross-shore transect during the years 2003-2005 and used zero inflated models to accommodate the scarcity and patchy distribution of cephalopod paralarvae. The probability of catching early stages of both cephalopods was higher at night. Octopus paralarvae were more abundant in the surface layer at night whereas loliginids preferred the bottom layer regardless of the sampling time. Abundance of both cephalopods increased when shelf currents flowed polewards, water temperature was high and water column stability was low. The probability of observing an excess of zero catches decreased during the year for octopus and at high current speed for loliginids. In addition, the circulation pattern conditioned the body size distribution of both paralarvae; while the average size of the captured octopuses increased (decreased) with poleward currents at daylight (nighttime), squids were smaller with poleward currents regardless of the sampling time. These results contribute to the understanding of the effects that the hydrography and subtidal circulation of a coastal upwelling have on the fate of cephalopod early life stages.

  7. Varying Land-Use Has an Influence on Wattled and Grey Crowned Cranes' Abundance and Distribution in Driefontein Grasslands Important Bird Area, Zimbabwe.

    PubMed

    Fakarayi, Togarasei; Mashapa, Clayton; Gandiwa, Edson; Kativu, Shakkie

    2016-01-01

    Three species of cranes are distributed widely throughout southern Africa, but little is known about how they respond to the changes in land-use that have occurred in this region. This study assessed habitat preference of the two crane species across land-use categories of the self contained small scale commercial farms of 30 to 40 ha per household (A1), large scale commercial agriculture farms of > 50 ha per household (A2) and Old Resettlement, farms of < 5 ha per household with communal grazing land in Driefontein Grasslands Important Bird Area (IBA), Zimbabwe. The study further explored how selected explanatory (environmental) habitat variables influence crane species abundance. Crane bird counts and data on influencing environmental variables were collected between June and August 2012. Our results show that varying land-use categories had an influence on the abundance and distribution of the Wattled Crane (Bugeranus carunculatus) and the Grey Crowned Crane (Belearica regulorum) across Driefontein Grasslands IBA. The Wattled Crane was widely distributed in the relatively undisturbed A2 farms while the Grey Crowned Crane was associated with the more disturbed land of A1 farms, Old Resettlement and its communal grazing land. Cyperus esculentus and percent (%) bare ground were strong environmental variables best explaining the observed patterns in Wattled Crane abundance across land-use categories. The pattern in Grey Crowned Crane abundance was best explained by soil penetrability, moisture and grass height variables. A holistic sustainable land-use management that takes into account conservation of essential habitats in Driefontein Grasslands IBA is desirable for crane populations and other wetland dependent species that include water birds.

  8. Varying Land-Use Has an Influence on Wattled and Grey Crowned Cranes’ Abundance and Distribution in Driefontein Grasslands Important Bird Area, Zimbabwe

    PubMed Central

    Fakarayi, Togarasei; Mashapa, Clayton; Gandiwa, Edson; Kativu, Shakkie

    2016-01-01

    Three species of cranes are distributed widely throughout southern Africa, but little is known about how they respond to the changes in land-use that have occurred in this region. This study assessed habitat preference of the two crane species across land-use categories of the self contained small scale commercial farms of 30 to 40 ha per household (A1), large scale commercial agriculture farms of > 50 ha per household (A2) and Old Resettlement, farms of < 5 ha per household with communal grazing land in Driefontein Grasslands Important Bird Area (IBA), Zimbabwe. The study further explored how selected explanatory (environmental) habitat variables influence crane species abundance. Crane bird counts and data on influencing environmental variables were collected between June and August 2012. Our results show that varying land-use categories had an influence on the abundance and distribution of the Wattled Crane (Bugeranus carunculatus) and the Grey Crowned Crane (Belearica regulorum) across Driefontein Grasslands IBA. The Wattled Crane was widely distributed in the relatively undisturbed A2 farms while the Grey Crowned Crane was associated with the more disturbed land of A1 farms, Old Resettlement and its communal grazing land. Cyperus esculentus and percent (%) bare ground were strong environmental variables best explaining the observed patterns in Wattled Crane abundance across land-use categories. The pattern in Grey Crowned Crane abundance was best explained by soil penetrability, moisture and grass height variables. A holistic sustainable land-use management that takes into account conservation of essential habitats in Driefontein Grasslands IBA is desirable for crane populations and other wetland dependent species that include water birds. PMID:27875552

  9. Identifying Type Ia Supernova Mechanisms in Dwarf Spheroidal Galaxies through Analysis of Iron-peak Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Guo, Rachel; Xie, Justin Long; Kirby, Evan N.

    2017-01-01

    Through the fusion of nucleons to produce elements heavier than hydrogen and helium, stellar nucleosynthesis produces most of the elements in the universe. Such is the case in a supernova explosion, which creates most of the elements on the periodic table—including iron-peak elements, atomic numbers 21 through 30—through nucleosynthesis and ejects them into the interstellar medium. In this study, we determine the best theoretical supernova model appropriate for the stars in the dwarf spheroidal galaxies Sculptor, Fornax, Ursa Minor, and Leo II by calculating the abundances of iron-peak elements in these stars. To determine iron-peak elemental abundances, we compare synthesized spectra with observed spectra from medium-resolution spectroscopy and determine the best-fitting spectrum by way of a chi-squared minimization. Through inspecting the relationship between the iron-peak element abundances and the abundance of iron itself and by comparing them to previously hypothesized supernova model theories, we discover that the near-Chandrasekhar mass “n1” model, as predicted by Seitenzahl et al., most accurately represents the trends and patterns within our data, presenting new insight into Type Ia supernovae mechanisms within the Milky Way and beyond.

  10. Chemical Composition of RR Lyn - an Eclipsing Binary System with Am and λ Boo Type Components

    NASA Astrophysics Data System (ADS)

    Jeong, Yeuncheol; Yushchenko, Alexander V.; Doikov, Dmytry N.; Gopka, Vira F.; Yushchenko, Volodymyr O.

    2017-06-01

    High-resolution spectroscopic observations of the eclipsing binary system RR Lyn were made using the 1.8 m telescope at the Bohuynsan Optical Astronomical Observatory in Korea. The spectral resolving power was R = 82,000, with a signal to noise ratio of S/N > 150. We found the effective temperatures and surface gravities of the primary and secondary components to be equal to Teff = 7,920 & 7,210 K and log(g) = 3.80 & 4.16, respectively. The abundances of 34 and 17 different chemical elements were found in the atmospheric components. Correlations between the derived abundances with condensation temperatures and the second ionization potentials of these elements are discussed. The primary component is a typical metallic line star with the abundances of light and iron group elements close to solar values, while elements with atomic numbers Z > 30 are overabundant by 0.5-1.5 dex with respect to solar values. The secondary component is a λ Boo type star. In this type of stars, CNO abundances are close to solar values, while the abundance pattern shows a negative correlation with condensation temperatures.

  11. Temporal and spatial host abundance and prevalence of Andes hantavirus in southern Argentina.

    PubMed

    Polop, Francisco J; Provensal, María C; Pini, Noemí; Levis, Silvana C; Priotto, José W; Enría, Delia; Calderón, Gladys E; Costa, Federico; Polop, Jaime J

    2010-06-01

    Andes virus (AND) is a hantavirus hosted by the sigmodontine rodent Oligoryzomys longicaudatus in southern Argentina, where it is responsible for most cases of hantavirus pulmonary syndrome (HPS). Our study provides data about the spatial variation in abundance of the rodent host of AND hantavirus. We report results of a longitudinal study performed in a locality of the Andean region of Chubut Province. From November 2003 (spring) to July 2006 (winter), O. longicaudatus was the most common species captured (63%) and it showed significant differences in abundance among habitats and seasons. Most antibody-positive rodents were O. longicaudatus (9.2%), followed by A. longipilis (3.6%) and A. olivaceus (1.5%). The highest number of antibody-positive animals was observed for males that belonged to the heaviest mass classes. Antibody-positive O. longicaudatus were more abundant in brush habitats. We found low richness of rodents and abundance of O. longicaudatus in areas affected by anthropogenic activity. The infection seems to be regionally persistent, but the risk to humans in a landscape would be localized. To develop accurate models for predicting HPS outbreaks, further research is needed to characterize rodent movement patterns across the landscape.

  12. Interplay between Diffusion, Accretion and Nuclear Reactions in the Atmospheres of Sirius and Przybylski's Star

    NASA Astrophysics Data System (ADS)

    Yushchenko, A.; Gopka, V.; Goriely, S.; Lambert, D.; Shavrina, A.; Kang, Y. W.; Rostopchin, S.; Valyavin, G.; Lee, B.-C.; Kim, C.

    2007-06-01

    The abundance anomalies in chemically peculiar B-F stars are usually explained by diffusion of chemical elements in the stable atmospheres of these stars. But it is well known that peculiar stars with similar temperatures and gravities show very different chemical compositions. We show that the abundance patterns of several stars can be influenced by accretion and (or) nuclear reactions in stellar atmospheres. The first case is one of the hottest Am stars - Sirius. We determined the abundances of more than 50 chemical elements in the atmosphere of Sirius A and show that Sirius A was contaminated by s-process enriched matter from Sirius B (now a white dwarf). The second case is the well known Przybylski's star. The abundance pattern of this star is the second most studied one after the Sun with abundances determined for about 60 chemical elements. Spectral lines of radioactive elements with short decay times were found in the spectrum of this star. We report the results of our investigation on the stratification of chemical elements in the atmosphere of Przybylski's star and the new identification of lines corresponding to short-lived actinides in its spectrum. Possible explanations of the abundances pattern of Przybylski's star (as well as HR465 and HD965) can be the natural radioactive decays of thorium and uranium, the explosion of a companion as a supernova or the spallation reactions. These three hypotheses and (or) diffusion can possibly explain the abundance pattern of Przybylski's star and several similar objects such as HR465 and HD965.

  13. Population-Level Transcriptomic Responses of the Southern Ocean Salp Salpa thompsoni to Environment Variability of the Western Antarctic Peninsula Region

    NASA Astrophysics Data System (ADS)

    Bucklin, A. C.; Batta Lona, P. G.; Maas, A. E.; O'Neill, R. J.; Wiebe, P. H.

    2015-12-01

    In response to the changing Antarctic climate, the Southern Ocean salp Salpa thompsoni has shown altered patterns of distribution and abundance that are anticipated to have profound impacts on pelagic food webs and ecosystem dynamics. The physiological and molecular processes that underlay ecological function and biogeographical distribution are key to understanding present-day dynamics and predicting future trajectories. This study examined transcriptome-wide patterns of gene expression in relation to biological and physical oceanographic conditions in coastal, shelf and offshore waters of the Western Antarctic Peninsula (WAP) region during austral spring and summer 2011. Based on field observations and collections, seasonal changes in the distribution and abundance of salps of different life stages were associated with differences in water mass structure of the WAP. Our observations are consistent with previous suggestions that bathymetry and currents in Bransfield Strait could generate a retentive cell for an overwintering population of S. thompsoni, which may generate the characteristic salp blooms found throughout the region later in summer. The statistical analysis of transcriptome-wide patterns of gene expression revealed differences among salps collected in different seasons and from different habitats (i.e., coastal versus offshore) in the WAP. Gene expression patterns also clustered by station in austral spring - but not summer - collections, suggesting stronger heterogeneity of environmental conditions. During the summer, differentially expressed genes covered a wider range of functions, including those associated with stress responses. Future research using novel molecular transcriptomic / genomic characterization of S. thompsoni will allow more complete understanding of individual-, population-, and species-level responses to environmental variability and prediction of future dynamics of Southern Ocean food webs and ecosystems.

  14. A mechanistic explanation for global patterns of liana abundance and distribution.

    PubMed

    Schnitzer, Stefan A

    2005-08-01

    One of the main goals in ecology is determining the mechanisms that control the abundance and distribution of organisms. Using data from 69 tropical forests worldwide, I demonstrate that liana (woody vine) abundance is correlated negatively with mean annual precipitation and positively with seasonality, a pattern precisely the opposite of most other plant types. I propose a general mechanistic hypothesis integrating both ecological and ecophysiological approaches to explain this pattern. Specifically, the deep root and efficient vascular systems of lianas enable them to suffer less water stress during seasonal droughts while many competitors are dormant, giving lianas a competitive advantage during the dry season. Testing this hypothesis in central Panama, I found that lianas grew approximately seven times more in height than did trees during the dry season but only twice as much during the wet season. Over time, this dry season advantage may allow lianas to increase in abundance in seasonal forests. In aseasonal wet forests, however, lianas gain no such advantage because competing plants are rarely limited by water. I extend this theory to account for the local, within-forest increase in liana abundance in response to disturbance as well as the conspicuous decrease in liana abundance at high latitudes.

  15. Tropical fish community does not recover 45 years after predator introduction.

    PubMed

    Sharpe, D M T; De León, L F; González, R; Torchin, M E

    2017-02-01

    Predation is considered to be an important factor structuring natural communities. However, it is often difficult to determine how it may influence long-term, broad-scale, diversity patterns, particularly in diverse tropical systems. Biological introductions can provide powerful insight to test the sustained consequences of predation in natural communities, if pre-introduction data are available. Half a century ago, Zaret and Paine demonstrated strong and immediate community-level effects following the introduction of a novel apex predator (peacock bass, Cichla monoculus) into Lake Gatun, Panama. To test for long-term changes associated with this predator introduction, we followed up on their classic study by replicating historical sampling methods and examining changes in the littoral fish community at two sites in Lake Gatun 45 years post-introduction. To broaden our inference, we complemented this temporal comparison with a spatial analysis, wherein we compared the fish communities from two lakes with and one lake without peacock bass. Comparisons with historical data revealed that the peacock bass remains the most abundant predator in Lake Gatun. Furthermore, the collapse of the littoral prey community observed immediately following the invasion has been sustained over the past 45 years. The mean abundance of native littoral fish is now 96% lower than it was prior to the introduction. Diversity (rarefied species richness) declined by 64% post-introduction, and some native species appear to have been locally extirpated. We observed a similar pattern across invaded and uninvaded lakes: the mean abundance of native fishes was 5-40 times lower in lakes with (Gatun, Alajuela) relative to the lake without peacock bass (Bayano). In particular, small-bodied native fishes (Characidae, Peociliidae), which are common prey of the peacock bass, were more than two orders of magnitude (307 times) less abundant in Gatun and one order of magnitude (28 times) less abundant in Alajuela than in Bayano. However, total native fish diversity did not differ significantly across lakes, suggesting that while many native species have declined in abundance, few have been completely extirpated. Introduced predators can have strong effects on community structure and functional diversity, even in highly diverse tropical communities, and these effects can persist over multiple decades. © 2016 by the Ecological Society of America.

  16. High-resolution Spectroscopic Observations of Single Red Giants in Three Open Clusters: NGC 2360, NGC 3680, and NGC 5822

    NASA Astrophysics Data System (ADS)

    Peña Suárez, V. J.; Sales Silva, J. V.; Katime Santrich, O. J.; Drake, N. A.; Pereira, C. B.

    2018-02-01

    Single stars in open clusters with known distances are important targets in constraining the nucleosynthesis process since their ages and luminosities are also known. In this work, we analyze a sample of 29 single red giants of the open clusters NGC 2360, NGC 3680, and NGC 5822 using high-resolution spectroscopy. We obtained atmospheric parameters, abundances of the elements C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd, as well as radial and rotational velocities. We employed the local thermodynamic equilibrium atmospheric models of Kurucz and the spectral analysis code MOOG. Rotational velocities and light-element abundances were derived using spectral synthesis. Based on our analysis of the single red giants in these three open clusters, we could compare, for the first time, their abundance pattern with that of the binary stars of the same clusters previously studied. Our results show that the abundances of both single and binary stars of the open clusters NGC 2360, NGC 3680, and NGC 5822 do not have significant differences. For the elements created by the s-process, we observed that the open clusters NGC 2360, NGC 3680, and NGC 5822 also follow the trend already raised in the literature that young clusters have higher s-process element abundances than older clusters. Finally, we observed that the three clusters of our sample exhibit a trend in the [Y/Mg]-age relation, which may indicate the ability of the [Y/Mg] ratio to be used as a clock for the giants. Based on the observations made with the 2.2 m telescope at the European Southern Observatory (La Silla, Chile) under an agreement with Observatório Nacional and under an agreement between Observatório Nacional and Max-Planck Institute für Astronomie.

  17. Spring evolution of Pseudocalanus spp. abundance on Georges Bank based on molecular discrimination of P. moultoni and P. newmani1

    NASA Astrophysics Data System (ADS)

    Bucklin, Ann; Guarnieri, Maria; McGillicuddy, Dennis J.; Sean Hill, R.

    The planktonic copepod sibling species Pseudocalanus moultoni and P. newmani (Crustacea, Copepoda) are abundant in waters over Georges Bank from late winter until mid-summer and are thought to reproduce throughout this period. The two species cannot be reliably distinguished using morphological characters, but are readily identified and distinguished by simple, rapid, and inexpensive molecular protocols based on sequence variation of mitochondrial DNA (mtDNA). DNA sequence variation of a portion of the mitochondrial cytochrome oxidase I (mtCOI) confirmed the presence of P. moultoni and P. newmani on Georges Bank; the mtCOI sequences were used to design species-specific oligonucleotide primers for use in a competitive multiplexed species-specific polymerase chain reaction (PCR). Species-specific PCR was used to determine the relative abundances of the two species in sub-samples of zooplankton collections from US GLOBEC Georges Bank Study Broadscale Surveys from February to June, 1997. Based on monthly visualizations, we inferred the spring evolution of the two species' distributions and abundances on Georges Bank. Both species' overall abundances increased from February to May or June: maximum abundance of P. moultoni was 38,061 m -2 in surface waters on the crest of Georges Bank in June; maximum abundance of P. newmani was 13,854 m -2 in subsurface waters on the Northeast Peak in April. The Peak in distribution of P. moultoni shifted from Georges Basin in April, to the northern edge of the Bank in May, to the center of the Bank in June. In contrast, P. newmani was more abundant to the south and east of the Bank. Beginning in April, P. newmani occurred on the Bank but was less abundant and less widely-distributed than P. moultoni; P. newmani abundance peaked in May and declined somewhat in June. Females of the species differed in their patterns of distribution and abundance, with P. moultoni always the more abundant species on the crest of the Bank. The spring increase of P. moultoni may result from the persistence of reproducing individuals over the Bank and/or from advective transport from adjacent regions. In contrast, P. newmani may be transported to Georges Bank from upstream populations on the Scotian Shelf and Browns Bank. The processes responsible for the observed patterns cannot be determined from this series of monthly snap-shots alone; ongoing studies use numerical models to examine the biological and physical dynamics causing these distributions.

  18. Grassland invaders and their mycorrhizal symbionts: a study across climate and invasion gradients

    PubMed Central

    Bunn, Rebecca A; Lekberg, Ylva; Gallagher, Christopher; Rosendahl, Søren; Ramsey, Philip W

    2014-01-01

    Controlled experiments show that arbuscular mycorrhizal fungi (AMF) can increase competitiveness of exotic plants, potentially increasing invasion success. We surveyed AMF abundance and community composition in Centaurea stoebe and Potentilla recta invasions in the western USA to assess whether patterns were consistent with mycorrhizal-mediated invasions. We asked whether (1) AMF abundance and community composition differ between native and exotic forbs, (2) associations between native plants and AMF shift with invading exotic plants, and (3) AMF abundance and/or community composition differ in areas where exotic plants are highly invasive and in areas where they are not. We collected soil and roots from invaded and native forb communities along invasion gradients and in regions with different invasion densities. We used AMF root colonization as a measure of AMF abundance and characterized AMF communities in roots using 454-sequencing of the LSU-rDNA region. All plants were highly colonized (>60%), but exotic forbs tended to be more colonized than natives (P < 0.001). We identified 30 AMF operational taxonomic units (OTUs) across sites, and community composition was best predicted by abiotic factors (soil texture, pH). Two OTUs in the genera Glomus and Rhizophagus dominated in most communities, and their dominance increased with invasion density (r = 0.57, P = 0.010), while overall OTU richness decreased with invasion density (r = −0.61, P = 0.006). Samples along P. recta invasion gradients revealed small and reciprocal shifts in AMF communities with >45% fungal OTUs shared between neighboring native and P. recta plants. Overall, we observed significant, but modest, differences in AMF colonization and communities between co-occurring exotic and native forbs and among exotic forbs across regions that differ in invasion pressure. While experimental manipulations are required to assess functional consequences, the observed patterns are not consistent with those expected from strong mycorrhizal-mediated invasions. PMID:24683461

  19. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient

    PubMed Central

    Fortunato, Caroline S.; Crump, Byron C.

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance from river to ocean, and 3) gene expression was highly variable and generally was independent of changes in salinity. PMID:26536246

  20. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    PubMed

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance from river to ocean, and 3) gene expression was highly variable and generally was independent of changes in salinity.

  1. Prevalence and seasonal incidence of nematode parasites and fluke infections of sheep and goats in eastern Ethiopia.

    PubMed

    Sissay, Menkir M; Uggla, Arvid; Waller, Peter J

    2007-10-01

    A 2-year abattoir survey was carried out to determine the prevalence, abundance and seasonal incidence of gastro-intestinal (GI) nematodes and trematodes (flukes) of sheep and goats in the semi-arid zone of eastern Ethiopia. During May 2003 to April 2005, viscera including liver, lungs and GI tracts were collected from 655 sheep and 632 goats slaughtered at 4 abattoirs located in the towns of Haramaya, Harar, Dire Dawa and Jijiga in eastern Ethiopia. All animals were raised in the farming areas located within the community boundaries for each town. Collected materials were transported within 24 h to the parasitology laboratory of Haramaya University for immediate processing. Thirteen species belonging to 9 genera of GI nematodes (Haemonchus contortus, Trichostrongylus axei, T. colubriformis, T. vitrinus, Nematodirus filicollis, N. spathiger Oesopha-gostomum columbianum, O. venulosum, Strongyloides papillosus, Bunostomum trigonocephalum, Trichuris ovis, Cooperia curticei and Chabertia ovina), and 4 species belonging to 3 genera of trematodes (Fasciola hepatica, F. gigantica, Paramphistomum {Calicohoron} microbothrium and Dicrocoelium dendriticum) were recorded in both sheep and goats. All animals in this investigation were infected with multiple species to varying degrees. The mean burdens of adult nematodes were generally moderate in both sheep and goats and showed patterns of seasonal abundance that corresponded with the bi-modal annual rainfall pattern, with highest burdens around the middle of the rainy season. In both sheep and goats there were significant differences in the mean worm burdens and abundance of the different nematode species between the four geographic locations, with worm burdens in the Haramaya and Harar areas greater than those observed in the Dire Dawa and Jijiga locations. Similar seasonal variations were also observed in the prevalence of flukes. But there were no significant differences in the prevalence of each fluke species between the four locations. Overall, the results showed that Haemonchus, Trichostrongylus, Nematodirus, Oesophagostomum, Fasciola and Paramphistomum species were the most abundant helminth parasites of sheep and goats in eastern Ethiopia.

  2. Temporal Dynamics of Abundance and Composition of Nitrogen-Fixing Communities across Agricultural Soils

    PubMed Central

    Pereira e Silva, Michele C.; Schloter-Hai, Brigitte; Schloter, Michael; van Elsas, Jan Dirk; Salles, Joana Falcão

    2013-01-01

    Background Despite the fact that the fixation of nitrogen is one of the most significant nutrient processes in the terrestrial ecosystem, a thorough study of the spatial and temporal patterns in the abundance and distribution of N-fixing communities has been missing so far. Methodology/Principal Findings In order to understand the dynamics of diazotrophic communities and their resilience to external changes, we quantified the abundance and characterized the bacterial community structures based on the nifH gene, using real-time PCR, PCR-DGGE and 454-pyrosequencing, across four representative Dutch soils during one growing season. In general, higher nifH gene copy numbers were observed in soils with higher pH than in those with lower pH, but lower numbers were related to increased nitrate and ammonium levels. Results from nifH gene pyrosequencing confirmed the observed PCR-DGGE patterns, which indicated that the N fixers are highly dynamic across time, shifting around 60%. Forward selection on CCA analysis identified N availability as the main driver of these variations, as well as of the evenness of the communities, leading to very unequal communities. Moreover, deep sequencing of the nifH gene revealed that sandy soils (B and D) had the lowest percentage of shared OTUs across time, compared with clayey soils (G and K), indicating the presence of a community under constant change. Cosmopolitan nifH species (present throughout the season) were affiliated with Bradyrhizobium , Azospirillum and Methylocistis, whereas other species increased their abundances progressively over time, when appropriate conditions were met, as was notably the case for Paenibacilus and Burkholderia. Conclusions Our study provides the first in-depth pyrosequencing analysis of the N-fixing community at both spatial and temporal scales, providing insights into the cosmopolitan and specific portions of the nitrogen fixing bacterial communities in soil. PMID:24058578

  3. Nematode Spatial and Ecological Patterns from Tropical and Temperate Rainforests

    PubMed Central

    Porazinska, Dorota L.; Giblin-Davis, Robin M.; Powers, Thomas O.; Thomas, W. Kelley

    2012-01-01

    Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates), but not for microscopic organisms (e.g. nematodes). Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy) of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica) using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1) nematode communities were unique without even a single common species between the two rainforests, 2) nematode communities were unique among habitats in both rainforests, 3) total species richness was 300% more in the tropical than in the temperate rainforest, 4) 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5) more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats) and large (rainforests) spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota. PMID:22984536

  4. Rare earth element compositions of core sediments from the shelf of the South Sea, Korea: Their controls and origins

    NASA Astrophysics Data System (ADS)

    Jung, Hoi-Soo; Lim, Dhongil; Choi, Jin-Yong; Yoo, Hae-Soo; Rho, Kyung-Chan; Lee, Hyun-Bok

    2012-10-01

    Rare earth elements (REEs) of bulk sediments and heavy mineral samples of core sediments from the South Sea shelf, Korea, were analyzed to determine the constraints on REE concentrations and distribution patterns as well as to investigate their potential applicability for discriminating sediment provenance. Bulk sediment REEs showed large variation in concentrations and distribution patterns primarily due to grain size and carbonate dilution effects, as well as due to an abundance of heavy minerals. In the fine sandy sediments (cores EZ02-15 and 19), in particular, heavy minerals (primarily monazite and titanite/sphene) largely influenced REE compositions. Upper continental crust-normalized REE patterns of these sand-dominated sediments are characterized by enriched light REEs (LREEs), because of inclusion of heavy minerals with very high concentrations in LREEs. Notably, such a strong LREE enrichment is also observed in Korean river sediments. So, a great care must be taken when using the REE concentrations and distribution patterns of sandy and coarse silty shelf sediments as a proxy for discriminating sediment provenance. In the fine-grained muddy sediments with low heavy mineral abundance, in contrast, REE fractionation ratios and their UCC-normalized patterns seem to be reliable proxies for assessing sediment provenance. The resultant sediment origin suggested a long lateral transportation of some fine-grained Chinese river sediments (probably the Changjiang River) to the South Sea of Korea across the shelf of the northern East China Sea.

  5. Flea species infesting dogs in Spain: updated spatial and seasonal distribution patterns.

    PubMed

    Gálvez, R; Montoya, A; Checa, R; Martín, O; Marino, V; Miró, G

    2017-03-01

    This entomological survey examines the spatial and seasonal distribution patterns of flea species infesting dogs in Spain. Bioclimatic zones covering broad climate and vegetation ranges were surveyed according to size. In a cross-sectional spatial survey carried out from late May 2013 to mid-July 2015, 1084 dogs from 42 different locations were examined. A total of 3032 fleas were collected and identified as belonging to the following species: Ctenocephalides felis (Siphonaptera: Pulicidae) (81.7%, 2476 fleas); Ctenocephalides canis (11.4%, 347 fleas); Pulex irritans (Siphonaptera: Pulicidae) (6.9%, 208 fleas), and Echidnophaga gallinacea (Siphonaptera: Pulicidae) (0.03%, one flea). Variables observed to have effects on flea abundance were animal weight, sex, length of hair and habitat. In the seasonal survey conducted from June 2014 to June 2015, 1014 fleas were collected from 239 dogs at 30 veterinary practices across Spain. Peaks in C. felis abundance were observed in early summer and late autumn, whereas high numbers of P. irritans and C. canis were recorded in autumn. Numbers of fleas detected in winter were low overall. Based on these findings, the present study updates the spatial and seasonal distributions of flea species in Spain and assesses the impacts of host and habitat variables on flea infestation. © 2016 The Royal Entomological Society.

  6. Are Temperate Canopy Spiders Tree-Species Specific?

    PubMed Central

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood. PMID:24586251

  7. Are temperate canopy spiders tree-species specific?

    PubMed

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

  8. Estimating wetland vegetation abundance from Landsat-8 operational land imager imagery: a comparison between linear spectral mixture analysis and multinomial logit modeling methods

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Gong, Zhaoning; Zhao, Wenji; Pu, Ruiliang; Liu, Ke

    2016-01-01

    Mapping vegetation abundance by using remote sensing data is an efficient means for detecting changes of an eco-environment. With Landsat-8 operational land imager (OLI) imagery acquired on July 31, 2013, both linear spectral mixture analysis (LSMA) and multinomial logit model (MNLM) methods were applied to estimate and assess the vegetation abundance in the Wild Duck Lake Wetland in Beijing, China. To improve mapping vegetation abundance and increase the number of endmembers in spectral mixture analysis, normalized difference vegetation index was extracted from OLI imagery along with the seven reflective bands of OLI data for estimating the vegetation abundance. Five endmembers were selected, which include terrestrial plants, aquatic plants, bare soil, high albedo, and low albedo. The vegetation abundance mapping results from Landsat OLI data were finally evaluated by utilizing a WorldView-2 multispectral imagery. Similar spatial patterns of vegetation abundance produced by both fully constrained LSMA algorithm and MNLM methods were observed: higher vegetation abundance levels were distributed in agricultural and riparian areas while lower levels in urban/built-up areas. The experimental results also indicate that the MNLM model outperformed the LSMA algorithm with smaller root mean square error (0.0152 versus 0.0252) and higher coefficient of determination (0.7856 versus 0.7214) as the MNLM model could handle the nonlinear reflection phenomenon better than the LSMA with mixed pixels.

  9. Determining the Diversity and Species Abundance Patterns in Arctic Soils using Rational Methods for Exploring Microbial Diversity

    NASA Astrophysics Data System (ADS)

    Ovreas, L.; Quince, C.; Sloan, W.; Lanzen, A.; Davenport, R.; Green, J.; Coulson, S.; Curtis, T.

    2012-12-01

    Arctic microbial soil communities are intrinsically interesting and poorly characterised. We have inferred the diversity and species abundance distribution of 6 Arctic soils: new and mature soil at the foot of a receding glacier, Arctic Semi Desert, the foot of bird cliffs and soil underlying Arctic Tundra Heath: all near Ny-Ålesund, Spitsbergen. Diversity, distribution and sample sizes were estimated using the rational method of Quince et al., (Isme Journal 2 2008:997-1006) to determine the most plausible underlying species abundance distribution. A log-normal species abundance curve was found to give a slightly better fit than an inverse Gaussian curve if, and only if, sequencing error was removed. The median estimates of diversity of operational taxonomic units (at the 3% level) were 3600-5600 (lognormal assumed) and 2825-4100 (inverse Gaussian assumed). The nature and origins of species abundance distributions are poorly understood but may yet be grasped by observing and analysing such distributions in the microbial world. The sample size required to observe the distribution (by sequencing 90% of the taxa) varied between ~ 106 and ~105 for the lognormal and inverse Gaussian respectively. We infer that between 5 and 50 GB of sequencing would be required to capture 90% or the metagenome. Though a principle components analysis clearly divided the sites into three groups there was a high (20-45%) degree of overlap in between locations irrespective of geographical proximity. Interestingly, the nearest relatives of the most abundant taxa at a number of most sites were of alpine or polar origin. Samples plotted on first two principal components together with arbitrary discriminatory OTUs

  10. Quantitative Differential Expression Analysis Reveals Mir-7 As Major Islet MicroRNA

    PubMed Central

    Bravo-Egana, Valia; Rosero, Samuel; Molano, R. Damaris; Pileggi, Antonello; Ricordi, Camillo; Domínguez-Bendala, Juan; Pastori, Ricardo L.

    2008-01-01

    MicroRNAs (miRNAs) are non-coding gene products that regulate gene expression through specific binding to target mRNAs. Cell-specific patterns of miRNAs are associated with the acquisition and maintenance of a given phenotype, such as endocrine pancreas (islets). We hypothesized that a subset of miRNAs could be differentially expressed in the islets. Using miRNA microarray technology and quantitative RT-PCR we identified a subset of miRNAs that are the most differentially expressed islet miRNAs (ratio islet/acinar >150-fold), mir-7 being the most abundant. A similarly high ratio for mir-7 was observed in human islets. The ratio islet/acinar for mir-375, a previously described islet miRNA, was <10, and is 2.5X more abundant in the islets than mir-7. Therefore, we conclude that mir-7 is the most abundant endocrine miRNA in islets while mir-375 is the most abundant intra-islet miRNA. Our results may offer new insights into regulatory pathways of islet gene expression. PMID:18086561

  11. Temporal turnover and the maintenance of diversity in ecological assemblages

    PubMed Central

    Magurran, Anne E.; Henderson, Peter A.

    2010-01-01

    Temporal variation in species abundances occurs in all ecological communities. Here, we explore the role that this temporal turnover plays in maintaining assemblage diversity. We investigate a three-decade time series of estuarine fishes and show that the abundances of the individual species fluctuate asynchronously around their mean levels. We then use a time-series modelling approach to examine the consequences of different patterns of turnover, by asking how the correlation between the abundance of a species in a given year and its abundance in the previous year influences the structure of the overall assemblage. Classical diversity measures that ignore species identities reveal that the observed assemblage structure will persist under all but the most extreme conditions. However, metrics that track species identities indicate a narrower set of turnover scenarios under which the predicted assemblage resembles the natural one. Our study suggests that species diversity metrics are insensitive to change and that measures that track species ranks may provide better early warning that an assemblage is being perturbed. It also highlights the need to incorporate temporal turnover in investigations of assemblage structure and function. PMID:20980310

  12. Different Sex-Based Responses of Gut Microbiota During the Development of Hepatocellular Carcinoma in Liver-Specific Tsc1-Knockout Mice.

    PubMed

    Huang, Rong; Li, Ting; Ni, Jiajia; Bai, Xiaochun; Gao, Yi; Li, Yang; Zhang, Peng; Gong, Yan

    2018-01-01

    Gut microbial dysbiosis is correlated with the development of hepatocellular carcinoma (HCC). Therefore, analyzing the changing patterns in gut microbiota during HCC development, especially before HCC occurrence, is essential for the diagnosis and prevention of HCC based on gut microbial composition. However, these changing patterns in HCC are poorly understood, especially considering the sex differences in HCC incidence and mortality. Here, with an aim to determine the relationship between gut microbiota and HCC development in both sexes, and to screen potential microbial biomarkers for HCC diagnosis, we studied the changing patterns in the gut microbiota from mice of both sexes with liver-specific knockout of Tsc1 ( LTsc1KO ) that spontaneously developed HCC by 9-10 months of age and compared them to the patterns observed in their wide-type Tsc1 fl/fl cohorts using high-throughput sequencing. Using the LTsc1KO model, we were able to successfully exclude the continuing influence of diet on the gut microbiota. Based on gut microbial composition, the female LTsc1KO mice exhibited gut microbial disorder earlier than male LTsc1KO mice during the development of HCC. Our findings also indicated that the decrease in the relative abundance of anaerobic bacteria and the increase in the relative abundance of facultative anaerobic bacteria can be used as risk indexes of female HCC, but would be invalid for male HCC. Most of the changes in the gut bacteria were different between female and male LTsc1KO mice. In particular, the increased abundances of Allobaculum , Erysipelotrichaceae, Neisseriaceae, Sutterella , Burkholderiales, and Prevotella species have potential for use as risk indicators of female HCC, and the increased abundances of Paraprevotella, Paraprevotellaceae, and Prevotella can probably be applied as risk indicators of male HCC. These relationships between the gut microbiota and HCC discovered in the present study may serve as a platform for the identification of potential targets for the diagnosis and prevention of HCC in the future.

  13. Global Diversity of Desert Hypolithic Cyanobacteria.

    PubMed

    Lacap-Bugler, Donnabella C; Lee, Kevin K; Archer, Stephen; Gillman, Len N; Lau, Maggie C Y; Leuzinger, Sebastian; Lee, Charles K; Maki, Teruya; McKay, Christopher P; Perrott, John K; de Los Rios-Murillo, Asunción; Warren-Rhodes, Kimberley A; Hopkins, David W; Pointing, Stephen B

    2017-01-01

    Global patterns in diversity were estimated for cyanobacteria-dominated hypolithic communities that colonize ventral surfaces of quartz stones and are common in desert environments. A total of 64 hypolithic communities were recovered from deserts on every continent plus a tropical moisture sufficient location. Community diversity was estimated using a combined t-RFLP fingerprinting and high throughput sequencing approach. The t-RFLP analysis revealed desert communities were different from the single non-desert location. A striking pattern also emerged where Antarctic desert communities were clearly distinct from all other deserts. Some overlap in community similarity occurred for hot, cold and tundra deserts. A further observation was that the producer-consumer ratio displayed a significant negative correlation with growing season, such that shorter growing seasons supported communities with greater abundance of producers, and this pattern was independent of macroclimate. High-throughput sequencing of 16S rRNA and nif H genes from four representative samples validated the t-RFLP study and revealed patterns of taxonomic and putative diazotrophic diversity for desert communities from the Taklimakan Desert, Tibetan Plateau, Canadian Arctic and Antarctic. All communities were dominated by cyanobacteria and among these 21 taxa were potentially endemic to any given desert location. Some others occurred in all but the most extreme hot and polar deserts suggesting they were relatively less well adapted to environmental stress. The t-RFLP and sequencing data revealed the two most abundant cyanobacterial taxa were Phormidium in Antarctic and Tibetan deserts and Chroococcidiopsis in hot and cold deserts. The Arctic tundra displayed a more heterogenous cyanobacterial assemblage and this was attributed to the maritime-influenced sampling location. The most abundant heterotrophic taxa were ubiquitous among samples and belonged to the Acidobacteria, Actinobacteria, Bacteroidetes, and Proteobacteria. Sequencing using nitrogenase gene-specific primers revealed all putative diazotrophs were Proteobacteria of the orders Burkholderiales, Rhizobiales, and Rhodospirillales. We envisage cyanobacterial carbon input to the system is accompanied by nitrogen fixation largely from non-cyanobacterial taxa. Overall the results indicate desert hypoliths worldwide are dominated by cyanobacteria and that growing season is a useful predictor of their abundance. Differences in cyanobacterial taxa encountered may reflect their adaptation to different moisture availability regimes in polar and non-polar deserts.

  14. Seasonal patterns of winter flounder Pseudopleuronectes americanus abundance and reproductive condition on the New York Bight continental shelf.

    PubMed

    Wuenschel, M J; Able, K W; Byrne, D

    2009-05-01

    To resolve varied and sometimes conflicting accounts of spawning and habitat characteristics for winter flounder Pseudopleuronectes americanus, seasonal patterns in abundance and reproductive condition were investigated in the New York Bight, near the southern edge of their current reproductive range. Fish were collected from trawl surveys on the inner continental shelf from October 2006 to October 2007. Pseudopleuronectes americanus were most abundant during January and April surveys, were rarely collected in August, with intermediate abundances in June and October. Measurements of fish condition [hepato-somatic index (I(H)), condition factor (K) and the per cent dry mass of muscle tissue (%M(D))] and reproductive condition [gonado-somatic index (I(G))] were determined to evaluate seasonal changes in energy accumulation and depletion and reproduction. Males and females had similar patterns in body and reproductive condition, although the magnitude of change was greater for females. I(H) values were highest during spring and early summer, suggesting increased feeding following spawning. K and %M(D) increased through spring and summer then declined in the autumn and winter concurrent with gonadal development. Gonads began developing in the autumn, and in January, I(G) values approached spawning levels, with many spent individuals collected in spring. Within these general patterns, however, there was a large degree of variability among individuals, and a few mature non-reproductive ('skipped spawning') females were observed. In the period after spawning, increased energy intake, indicated by increased I(H), may influence reproductive output since this energy is gradually transferred to the muscle and used for gonadal development in the forthcoming year. The occurrence of ripening individuals on the inner continental shelf in January suggests that these fish either rapidly move into estuaries to spawn by February-March or they remain on the inner shelf to spawn, or some combination of these. Future studies should evaluate these possibilities, as both estuarine and inner shelf habitats are potentially affected by activities such as dredging, sand dredging and wind energy development.

  15. Global Diversity of Desert Hypolithic Cyanobacteria

    PubMed Central

    Lacap-Bugler, Donnabella C.; Lee, Kevin K.; Archer, Stephen; Gillman, Len N.; Lau, Maggie C.Y.; Leuzinger, Sebastian; Lee, Charles K.; Maki, Teruya; McKay, Christopher P.; Perrott, John K.; de los Rios-Murillo, Asunción; Warren-Rhodes, Kimberley A.; Hopkins, David W.; Pointing, Stephen B.

    2017-01-01

    Global patterns in diversity were estimated for cyanobacteria-dominated hypolithic communities that colonize ventral surfaces of quartz stones and are common in desert environments. A total of 64 hypolithic communities were recovered from deserts on every continent plus a tropical moisture sufficient location. Community diversity was estimated using a combined t-RFLP fingerprinting and high throughput sequencing approach. The t-RFLP analysis revealed desert communities were different from the single non-desert location. A striking pattern also emerged where Antarctic desert communities were clearly distinct from all other deserts. Some overlap in community similarity occurred for hot, cold and tundra deserts. A further observation was that the producer-consumer ratio displayed a significant negative correlation with growing season, such that shorter growing seasons supported communities with greater abundance of producers, and this pattern was independent of macroclimate. High-throughput sequencing of 16S rRNA and nifH genes from four representative samples validated the t-RFLP study and revealed patterns of taxonomic and putative diazotrophic diversity for desert communities from the Taklimakan Desert, Tibetan Plateau, Canadian Arctic and Antarctic. All communities were dominated by cyanobacteria and among these 21 taxa were potentially endemic to any given desert location. Some others occurred in all but the most extreme hot and polar deserts suggesting they were relatively less well adapted to environmental stress. The t-RFLP and sequencing data revealed the two most abundant cyanobacterial taxa were Phormidium in Antarctic and Tibetan deserts and Chroococcidiopsis in hot and cold deserts. The Arctic tundra displayed a more heterogenous cyanobacterial assemblage and this was attributed to the maritime-influenced sampling location. The most abundant heterotrophic taxa were ubiquitous among samples and belonged to the Acidobacteria, Actinobacteria, Bacteroidetes, and Proteobacteria. Sequencing using nitrogenase gene-specific primers revealed all putative diazotrophs were Proteobacteria of the orders Burkholderiales, Rhizobiales, and Rhodospirillales. We envisage cyanobacterial carbon input to the system is accompanied by nitrogen fixation largely from non-cyanobacterial taxa. Overall the results indicate desert hypoliths worldwide are dominated by cyanobacteria and that growing season is a useful predictor of their abundance. Differences in cyanobacterial taxa encountered may reflect their adaptation to different moisture availability regimes in polar and non-polar deserts. PMID:28559886

  16. Patterns of tsetse abundance and trypanosome infection rates among habitats of surveyed villages in Maasai steppe of northern Tanzania.

    PubMed

    Ngonyoka, Anibariki; Gwakisa, Paul S; Estes, Anna B; Salekwa, Linda P; Nnko, Happiness J; Hudson, Peter J; Cattadori, Isabella M

    2017-09-04

    Changes of land cover modify the characteristics of habitat, host-vector interaction and consequently infection rates of disease causing agents. In this paper, we report variations in tsetse distribution patterns, abundance and infection rates in relation to habitat types and age in the Maasai Steppe of northern Tanzania. In Africa, Tsetse-transmitted trypanosomiasis negatively impacted human life where about 40 million people are at risk of contracting the disease with dramatic socio-economical consequences, for instance, loss of livestock, animal productivity, and manpower. We trapped tsetse flies in dry and wet seasons between October 2014 and May 2015 in selected habitats across four villages: Emboreet, Loiborsireet, Kimotorok and Oltukai adjacent to protected areas. Data collected include number and species of tsetse flies caught in baited traps, PCR identification of trypanosome species and extraction of monitored Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectrometer (MODIS). Our findings demonstrate the variation of tsetse fly species abundance and infection rates among habitats in surveyed villages in relation to NDVI and host abundance. Results have shown higher tsetse fly abundance in Acacia-swampy ecotone and riverine habitats for Emboreet and other villages, respectively. Tsetse abundance was inconsistent among habitats in different villages. Emboreet was highly infested with Glossina swynnertoni (68%) in ecotone and swampy habitats followed by G. morsitans (28%) and G. pallidipes (4%) in riverine habitat. In the remaining villages, the dominant tsetse fly species by 95% was G. pallidipes in all habitats. Trypanosoma vivax was the most prevalent species in all infected flies (95%) with few observations of co-infections (with T. congolense or T. brucei). The findings of this study provide a framework to mapping hotspots of tsetse infestation and trypanosomiasis infection and enhance the communities to plan for effective control of trypanosomiasis.

  17. Diet patterns of island foxes on San Nicolas Island relative to feral cat removal

    USGS Publications Warehouse

    Cypher, Brian L.; Kelly, Erica C.; Ferrara, Francesca J.; Drost, Charles A.; Westall, Tory L.; Hudgens, Brian

    2017-01-01

    Island foxes (Urocyon littoralis) are a species of conservation concern that occur on six of the Channel Islands off the coast of southern California. We analysed island fox diet on San Nicolas Island during 2006–12 to assess the influence of the removal of feral cats (Felis catus) on the food use by foxes. Our objective was to determine whether fox diet patterns shifted in response to the cat removal conducted during 2009–10, thus indicating that cats were competing with foxes for food items. We also examined the influence of annual precipitation patterns and fox abundance on fox diet. On the basis of an analysis of 1975 fox scats, use of vertebrate prey – deer mice (Peromyscus maniculatus), birds, and lizards – increased significantly during and after the complete removal of cats (n = 66) from the island. Deer mouse abundance increased markedly during and after cat removal and use of mice by foxes was significantly related to mouse abundance. The increase in mice and shift in item use by the foxes was consistent with a reduction in exploitative competition associated with the cat removal. However, fox abundance declined markedly coincident with the removal of cats and deer mouse abundance was negatively related to fox numbers. Also, annual precipitation increased markedly during and after cat removal and deer mouse abundance closely tracked precipitation. Thus, our results indicate that other confounding factors, particularly precipitation, may have had a greater influence on fox diet patterns.

  18. Patterns and drivers of bacterial α- and β-diversity across vertical profiles from surface to subsurface sediments.

    PubMed

    Luna, Gian Marco; Corinaldesi, Cinzia; Rastelli, Eugenio; Danovaro, Roberto

    2013-10-01

    We investigated the patterns and drivers of bacterial α- and β-diversity, along with viral and prokaryotic abundance and the carbon production rates, in marine surface and subsurface sediments (down to 1 m depth) in two habitats: vegetated sediments (seagrass meadow) and non-vegetated sediments. Prokaryotic abundance and production decreased with depth in the sediment, but cell-specific production rates and the virus-to-prokaryote ratio increased, highlighting unexpectedly high activity in the subsurface. The highest diversity was observed in vegetated sediments. Bacterial β-diversity between sediment horizons was high, and only a minor number of taxa was shared between surface and subsurface layers. Viruses significantly contributed to explain α- and β-diversity patterns. Despite potential limitations due to the only use of fingerprinting techniques, this study indicates that the coastal subsurface host highly active and diversified bacterial assemblages, that subsurface cells are more active than expected and that viruses promote β-diversity and stimulate bacterial metabolism in subsurface layers. The limited number of taxa shared between habitats, and between surface and subsurface sediment horizons, suggests that future investigations of the shallow subsurface will provide insights into the census of bacterial diversity, and the comprehension of the patterns and drivers of prokaryotic diversity in marine ecosystems. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Ecology of the parasitic endohelminth community of Pseudoplatystoma fasciatum (Linnaeus, 1776) (Siluriformes: Pimelodidae) from the Aquidauana River, Pantanal, State of Mato Grosso do Sul, Brazil.

    PubMed

    Campos, C M; Fonseca, V E; Takemoto, R M; Moraes, F R

    2009-02-01

    This study investigated the structure and diversity of the endohelminth community and its interactions with Pseudoplatystoma fasciatum, caught in the Aquidauana River, in the State of Mato Grosso do Sul, Brazil. Ten helminth species were represented in 1,228 specimens of parasites found in the intestine and mesentery of 33 specimens of P. fasciatum. Cestodes were observed in the intestine, while nematodes Cucullanus sp. in the mesentery. Contracaecum sp. Type 1, Spatulifer rugosa and Choanoscolex abscisus showed the highest mean intensity and mean abundance and Nomimoscolex sudobin showed the highest prevalence. Simpson's index indicated dominance in the endohelminth infracommunities (C = 1.0792) and Choanoscolex abscisus was considered the central species. A clumped pattern of dispersion according to Green's index was related. 69.69% of hosts analyzed had between 2 and 5 species of endohelminths. Mean diversity was H = 0.5517 (SD = 0.4209). Two pairs of species showed significant positive association and four pairs presented significant positive correlation among abundance data. Significant negative correlations between total length and prevalence and abundance of Peltydocotyle rugosa and Nomimoscolex sudobim were found. However, no significant correlation was observed between condition factor and abundance, as well as total length and diversity. There was significant prevalence of Harriscolex kaparari in male hosts.

  20. Plasma Constraints on the Cosmological Abundance of Magnetic Monopoles and the Origin of Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail; Loeb, Abraham

    2017-10-01

    Existing theoretical and observational constraints on the abundance of magnetic monopoles are limited. Here we demonstrate that an ensemble of monopoles forms a plasma whose properties are well determined and whose collective effects place new tight constraints on the cosmological abundance of monopoles. In particular, the existence of micro-Gauss magnetic fields in galaxy clusters and radio relics implies that the scales of these structures are below the Debye screening length, thus setting an upper limit on the cosmological density parameter of monopoles, ΩM <= 3 ×10-4 , which precludes them from being the dark matter. Future detection of Gpc-scale coherent magnetic fields could improve this limit by a few orders of magnitude. In addition, we predict the existence of magnetic Langmuir waves and turbulence which may appear on the sky as ``zebra patterns'' of an alternating magnetic field with k . B ≠ 0 . We also show that magnetic monopole Langmuir turbulence excited near the accretion shock of galaxy clusters may be an efficient mechanism for generating the observed intracluster magnetic fields. The authors acknowledge DOE partial support via Grant DE-SC0016368.

  1. Plasma constraints on the cosmological abundance of magnetic monopoles and the origin of cosmic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Mikhail V.; Loeb, Abraham, E-mail: mmedvedev@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    Existing theoretical and observational constraints on the abundance of magnetic monopoles are limited. Here we demonstrate that an ensemble of monopoles forms a plasma whose properties are well determined and whose collective effects place new tight constraints on the cosmological abundance of monopoles. In particular, the existence of micro-Gauss magnetic fields in galaxy clusters and radio relics implies that the scales of these structures are below the Debye screening length, thus setting an upper limit on the cosmological density parameter of monopoles, Ω {sub M} {sub ∼<} {sub 3} {sub ×} {sub 10}{sup −4}, which precludes them from being themore » dark matter. Future detection of Gpc-scale coherent magnetic fields could improve this limit by a few orders of magnitude. In addition, we predict the existence of magnetic Langmuir waves and turbulence which may appear on the sky as ''zebra patterns'' of an alternating magnetic field with k·B ≠ 0. We also show that magnetic monopole Langmuir turbulence excited near the accretion shock of galaxy clusters may be an efficient mechanism for generating the observed intracluster magnetic fields.« less

  2. Neutron capture reactions in astrophysics

    NASA Astrophysics Data System (ADS)

    Käppeler, F.

    1985-01-01

    About 2/3 of the chemical elements in nature were formed in neutron capture reactions. During the life of a star there are certain evolutionary stages where neutrons are available to build up the elements beyond iron which cannot be synthesized by charged particle reactions. The observed abundance pattern allows to distinguish a rapid and a slow neutron capture process (r- and s-process). The r-process taking place far from the valley of stability is difficult to investigate because of the required extrapolation of nuclear properties to extreme neutron rich nuclei. The s-process, on the other hand, proceeds along the valley of stability. Therefore, the involved isotopes are accessible to laboratory measurements. This information allows for quantitative calculation of s-process abundances and other parameters which represent constraints for stellar models. Two examples are outlined: (i) the s-process branching at A=147, 148 yields a rather accurate value for the neutron density. (ii) Comparison of s-process abundances with observations of stellar atmospheres are particularly interesting for the unstable isotopes 93Zr, 99Tc and 147Pm. Their deficiency with respect to stable neighbors may yield estimates for the transport time from the stellar interior to the surface.

  3. The Disposition of Pt, Pd, Ir, Os, and Ru in Marine Sediments and the K/T Boundary

    NASA Technical Reports Server (NTRS)

    Lee, Cin-Ty; Wasserburg, Gerald; Kyte, Frank

    2003-01-01

    The marine record of platinum group elements (PGEs) and Os isotopic compositions provides information on different inputs of PGEs into the oceans. Some studies based on a smaller subset of the PGEs suggest that the PGEs may suffer post-depositional mobility during diagenesis. In some K/T boundary clays, Kyte and others showed that the relative abundances of Pt, Pd, Ir, and Os can differ significantly from chondritic, which is the signature expected from fallout of the meteorite impact. In some K/T boundary sections, elevated Ir concentrations are observed as far as 1 meter from the cm-thick boundary clay containing the meteoritic ejecta. The purpose of this study was to characterize Pt, Pd, Ir, Os, and Ru abundances in zones including the K/T boundary. We determined PGE abundances of boundary clays at two hemipelagic sites (Stevns Klint, Denmark and Caravaca, Spain) in which previous studies by Kyte and others showed that the Ir anomaly is confined to within a few cm. We also analyzed two pelagic Pacific sites: a boundary clay from the north Pacific (Hole 465A) characterized by a 0.5 m thick Ir anomaly and a transect across the K/T boundary from the south Pacific (Hole 596) where the Ir anomaly spans 2 m. The Stevns Klint, Caravaca, and north Pacific sites are characterized by abundant marls and limestones in the section, whereas the south Pacific site is dominated by clays. Samples were spiked with isotopic tracers, mixed with a flux, S and Ni, and equilibrated by fusion. PGEs were extracted from the Ni and analyzed on a Finnigan Element ICP-MS. We find that the narrow Caravaca and Stevns Klint boundary clays have relative PGE abundance patterns indistinguishable from chondritic values. The two Pacific sites were found to have nearly identical PGE patterns but have ratios at the peak, which differ from chondritic values as found earlier by Evans et al. The Pacific sites were found to have nearly identical PGE patterns but are extremely depleted in OS (Os/Ir = 0.07-0.15) and slightly enriched in Pd and Pt relative to Ir.

  4. Patterns of Diversity and Abundance of Carrion Insect Assemblages in the Natural Park “Hoces del Río Riaza” (Central Spain)

    PubMed Central

    Baz, Arturo; Cifrián, Blanca; Martín-Vega, Daniel

    2014-01-01

    Abstract The patterns of diversity and abundance of the carrion insect species in the different habitats of the Natural Park “Hoces del Río Riaza” (central Spain) were studied with the use of carrion-baited traps. Representativeness of the inventories was assessed with the calculation of randomized species richness curves and nonparametric estimators. Coleoptera families, Silphidae and Dermestidae, and Diptera families, Calliphoridae and Muscidae, were dominant in every sampling habitat, but differences in the patterns of diversity and abundance were found. Lusitanian oakwood and riparian forest were the most diverse habitats with high abundance of saprophagous species, whereas more open (i.e., exposed to continuous sunlight during the day) habitats showed lower diversity values and a different species composition and distribution of species abundance, favoring thermophilous species and necrophagous species with high tolerance to different environmental conditions. Differences in the bioclimatical features of the sampled habitats are suggested to explain the composition and diversity of the carrion insect assemblages in different environments. PMID:25368080

  5. Spatial distribution patterns of soil mite communities and their relationships with edaphic factors in a 30-year tillage cornfield in northeast China.

    PubMed

    Liu, Jie; Gao, Meixiang; Liu, Jinwen; Guo, Yuxi; Liu, Dong; Zhu, Xinyu; Wu, Donghui

    2018-01-01

    Spatial distribution is an important topic in community ecology and a key to understanding the structure and dynamics of populations and communities. However, the available information related to the spatial patterns of soil mite communities in long-term tillage agroecosystems remains insufficient. In this study, we examined the spatial patterns of soil mite communities to explain the spatial relationships between soil mite communities and soil parameters. Soil fauna were sampled three times (August, September and October 2015) at 121 locations arranged regularly within a 400 m × 400 m monitoring plot. Additionally, we estimated the physical and chemical parameters of the same sampling locations. The distribution patterns of the soil mite community and the edaphic parameters were analyzed using a range of geostatistical tools. Moran's I coefficient showed that, during each sampling period, the total abundance of the soil mite communities and the abundance of the dominant mite populations were spatially autocorrelated. The soil mite communities demonstrated clear patchy distribution patterns within the study plot. These patterns were sampling period-specific. Cross-semivariograms showed both negative and positive cross-correlations between soil mite communities and environmental factors. Mantel tests showed a significant and positive relationship between soil mite community and soil organic matter and soil pH only in August. This study demonstrated that in the cornfield, the soil mite distribution exhibited strong or moderate spatial dependence, and the mites formed patches with sizes less than one hundred meters. In addition, in this long-term tillage agroecosystem, soil factors had less influence on the observed pattern of soil mite communities. Further experiments that take into account human activity and spatial factors should be performed to study the factors that drive the spatial distribution of soil microarthropods.

  6. BAC Recombineering of the Agouti Loci from Spotted Gar and Zebrafish Reveals the Evolutionary Ancestry of Dorsal-Ventral Pigment Asymmetry in Fish.

    PubMed

    Cal, Laura; MegÍas, Manuel; Cerdá-Reverter, José Miguel; Postlethwait, John H; Braasch, Ingo; Rotllant, Josep

    2017-11-01

    Dorsoventral pigment patterning, characterized by a light ventrum and a dark dorsum, is one of the most widespread chromatic adaptations in vertebrate body coloration. In mammals, this countershading depends on differential expression of agouti-signaling protein (ASIP), which drives a switch of synthesis of one type of melanin to another within melanocytes. Teleost fish share countershading, but the pattern results from a differential distribution of multiple types of chromatophores, with black-brown melanophores most abundant in the dorsal body and reflective iridophores most abundant in the ventral body. We previously showed that Asip1 (a fish ortholog of mammalian ASIP) plays a role in patterning melanophores. This observation leads to the surprising hypothesis that agouti may control an evolutionarily conserved pigment pattern by regulating different mechanisms in mammals and fish. To test this hypothesis, we compared two ray-finned fishes: the teleost zebrafish and the nonteleost spotted gar (Lepisosteus oculatus). By examining the endogenous pattern of asip1 expression in gar, we demonstrate a dorsoventral-graded distribution of asip1 expression that is highest ventrally, similar to teleosts. Additionally, in the first reported experiments to generate zebrafish transgenic lines carrying a bacterial artificial chromosome (BAC) from spotted gar, we show that both transgenic zebrafish lines embryos replicate the endogenous asip1 expression pattern in adult zebrafish, showing that BAC transgenes from both species contain all of the regulatory elements required for regular asip1 expression within adult ray-finned fishes. These experiments provide evidence that the mechanism leading to an environmentally important pigment pattern was likely in place before the origin of teleosts. © 2017 Wiley Periodicals, Inc.

  7. Long-term changes in the planktonic cnidarian community in a mesoscale area of the NW Mediterranean

    PubMed Central

    Gili, Josep-Maria; Grinyó, Jordi; Raya, Vanesa; Sabatés, Ana

    2018-01-01

    In the present work, possible long-term changes in the planktonic cnidarian community were investigated by analyzing (1) species and community spatial distribution patterns, (2) variations in abundance and (3) changes in species richness during three mesoscale surveys representative of the climatic and anthropogenic changes that have occurred during the last three decades (years: 1983, 2004 and 2011) in the NW Mediterranean. These surveys were conducted during the summer (June) along the Catalan coast. All surveys covered the same area, used the same sampling methodology, and taxonomic identification was conducted by the same team of experts. An increase in the abundance of total cnidaria was found from 1983 to 2011. The siphonophore Muggiaea atlantica and the hydromedusa Aglaura hemistoma were the most abundant species, while Muggiaea kochii presented the largest abundance increment over time. Temperature was the main environmental parameter driving significant differences in the cnidarian community composition, abundance and spatial distribution patterns among the surveys. Our results suggest that in the current climate change scenario, warm-water species abundances will be positively favored, and the community will suffer changes in their latitudinal distribution patterns. We consider it extremely important to study and monitor gelatinous zooplankton in mesoscale spatial areas to understand not only long-term changes in abundances but also changes in their spatial distributions since spatial changes are sensitive indicators of climate change. PMID:29715282

  8. Reproductive ecology of the seabob shrimp Xiphopenaeus kroyeri (Heller, 1862) in a coastal area of Southern Brazil

    NASA Astrophysics Data System (ADS)

    Grabowski, Raphael Cezar; Negreiros-Fransozo, Maria Lucia; Castilho, Antonio Leão

    2016-01-01

    The predictability of certain environmental factors that affect the life cycle of the seabob shrimp Xiphopenaeus kroyeri (Heller, 1862) was evaluated in a study of its reproductive biology in an area adjacent to Babitonga Bay, State of Santa Catarina, Brazil. Monthly sampling was conducted from July 2010 through June 2011 at depths of 5, 8, 11, 14, and 17 m. 76 004 individuals were obtained, with a pronounced peak in absolute abundance in austral autumn (34 208), coinciding with the annual closed season from March to May. Grain size composition of the sediment showed the closest relationship to the distribution of individuals (multiple linear regression, P <0.05), related to their burying habit. The observed correlations between the abundance of reproductive males (bearing spermatophores) and females with spent gonads (cross-correlation, P <0.05), and between reproductive males and reproductive females (with a 1-month lag) suggest that the peak of reproductive males preceded the peak of female ones. This result agrees with the pattern expected for females, which copulate in post-ecdysis (spent gonads). Spawning seemed to take place at greater depths, as evidenced by the concentration of reproductive females in these areas. The reproductive activities observed here confirm that this species follows a tropical/subtropical reproductive pattern, spawning continuously throughout the year, with the highest peaks in spring and autumn. The data indicate that the juvenile recruitment period observed in August-September resulted from the reproductive output noted in April-May. Additionally, the reproductive period recorded in November led to the juvenile peak observed in March-May.

  9. Abundance patterns of evolved stars with Hipparcos parallaxes and ages based on the APOGEE data base

    NASA Astrophysics Data System (ADS)

    Jia, Y. P.; Chen, Y. Q.; Zhao, G.; Bari, M. A.; Zhao, J. K.; Tan, K. F.

    2018-01-01

    We investigate the abundance patterns for four groups of stars at evolutionary phases from sub-giant to red clump (RC) and trace the chemical evolution of the disc by taking 21 individual elemental abundances from APOGEE and ages from evolutionary models with the aid of Hipparcos distances. We find that the abundances of six elements (Si, S, K, Ca, Mn and Ni) are similar from the sub-giant phase to the RC phase. In particular, we find that a group of stars with low [C/N] ratios, mainly from the second sequence of RC stars, show that there is a difference in the transfer efficiency of the C-N-O cycle between the main and the secondary RC sequences. We also compare the abundance patterns of C-N, Mg-Al and Na-O with giant stars in globular clusters from APOGEE and find that field stars follow similar patterns as M107, a metal-rich globular cluster with [M/H] ∼- 1.0, which shows that the self-enrichment mechanism represented by strong C-N, Mg-Al and Na-O anti-correlations may not be important as the metallicity reaches [M/H] > -1.0 dex. Based on the abundances of above-mentioned six elements and [Fe/H], we investigate age versus abundance relations and find some old super-metal-rich stars in our sample. Their properties of old age and being rich in metal are evidence for stellar migration. The age versus metallicity relations in low-[α/M] bins show unexpectedly positive slopes. We propose that the fresh metal-poor gas infalling on to the Galactic disc may be the precursor for this unexpected finding.

  10. Diel, Seasonal, and Interannual Variability in Abundance of Major Mesozooplankton Taxa in the Sargasso Sea as Related to Changing Environmental Parameters

    NASA Astrophysics Data System (ADS)

    Ivory, J.; Steinberg, D. K.; Latour, R. J.

    2016-02-01

    Temporal changes in mesozooplankton community structure affect planktonic food web interactions and biogeochemical cycling. Epipelagic mesozooplankton biomass in the Sargasso Sea has increased over the last two decades, with a related increase in zooplankton-mediated carbon export. Unknown, however, is what are the patterns and variability at different temporal scales (diel, seasonal, and interannual) in abundance of each major zooplankton taxon, and how do these patterns relate to physical and other environmental changes? We enumerated major taxa of mesozooplankton collected from monthly day and night net tows in the epipelagic zone at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea from 1999 to 2010. Abundances of each taxon were determined using a ZooScan optical imaging system and microscopy. Generalized Linear Models (GLMs) were used to determine what environmental parameters best explain abundance of major taxa. We used annual averages to consider broader patterns. Zooplankton taxa with the most pronounced diel vertical migration (i.e., night:day ratio, N:D, >>1) included Limacina spp. pteropods (N:D=2.02), euphausiids (1.93), calanoid copepods (1.34), and heteropods (1.34). Taxa with a pronounced spring abundance peak included chaetognaths, larvaceans, and Limacina spp. pteropods, while harpacticoid copepods peaked in late summer, and calanoid copepods in both spring and summer. Environmental variables affecting abundance differed amongst taxa. For example, calanoid copepod density was highly influenced by the abundance of a major predator- chaetognaths. Multi-year densities of calanoid copepods and ostracods both increased with increasing Water Column Stratification Index and the Atlantic Multidecadal Oscillation (AMO) index, indicating warmer sea surface temperatures are favorable for these taxa. We discuss how these temporal patterns at different scales help predict effects of global climate change on the zooplankton community.

  11. Siderophile-element Anomalies in CK Carbonaceous Chondrites: Implications for Parent-body Aqueous Alteration and Terrestrial Weathering of Sulfides

    NASA Technical Reports Server (NTRS)

    Huber, Heinz; Rubin, Alan E.; Kallemeyn, Gregory W.; Wasson, John T.

    2006-01-01

    CK chondrites constitute the most oxidized anhydrous carbonaceous chondrite group; most of the Fe occurs in magnetite and in FeO-rich mafic silicates. The two observed CK falls (Karoonda and Kobe), along with thirteen relatively unweathered CK finds, have unfractionated siderophile-element abundance patterns. In contrast, a sizable fraction of CK finds (9 of 24 investigated) shows fractionated siderophile abundance patterns including low abundances of Ni, Co, Se and Au; the most extreme depletions are in Ni (0.24 of normal CK) and Au (0.14 of normal CK). This depletion pattern has not been found in other chondrite groups. Out of the 74 CK chondrites listed in the Meteoritical Bulletin Database (2006; excluded considerably paired specimens; see http://tin.er.usgs.gov/meteor/ metbull.php) we analyzed 24 and subclassified the CK chondrites in terms of their chemical composition and sulfide mineralogy: sL (siderophiles low; six samples) for large depletions in Ni, Co, Se and Au (>50% of sulfides lost); sM (siderophiles medium; two CKs) for moderately low Ni and Co abundances (sulfides are highly altered or partly lost); sH (siderophiles high; one specimen) for enrichments in Ni, Co, Se and Au; 'normal' for unfractionated samples (13 samples). The sole sH sample may have obtained additional sulfide from impact redistribution in the parent asteroid. We infer that these elements became incorporated into sulfides after asteroidal aqueous processes oxidized nebular metal; thermal metamorphism probably also played a role in their mineral siting. The siderophile losses in the SL and sM samples are mainly the result of oxidation of pentlandite, pyrite and violarite by terrestrial alteration followed by leaching of the resulting phases. Some Antarctic CK chondrites have lost most of their sulfides but retained Ni, Co, Se and Au, presumably as insoluble weathering products.

  12. The Initial Mass Function of the First Stars Inferred from Extremely Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Ishigaki, Miho N.; Tominaga, Nozomu; Kobayashi, Chiaki; Nomoto, Ken’ichi

    2018-04-01

    We compare the elemental abundance patterns of ∼200 extremely metal-poor (EMP; [Fe/H] < ‑3) stars to the supernova yields of metal-free stars, in order to obtain insights into the characteristic masses of the first (Population III or Pop III) stars in the universe. The supernova yields are prepared with nucleosynthesis calculations of metal-free stars with various initial masses (M = 13, 15, 25, 40 and 100 M ⊙) and explosion energies (E 51 = E/1051[erg] = 0.5–60), to include low-energy, normal-energy, and high-energy explosions. We adopt the mixing-fallback model, to take into account possible asymmetry in the supernova explosions, and the yields that best fit the observed abundance patterns of the EMP stars are searched by varying the model parameters. We find that the abundance patterns of the EMP stars are predominantly best-fitted by the supernova yields with initial masses M < 40 M ⊙, and that more than than half of the stars are best-fitted by the M = 25 M ⊙ hypernova (E 51 = 10) models. The results also indicate that the majority of the primordial supernovae have ejected 10‑2–10‑1 M ⊙ of 56Ni, leaving behind a compact remnant (either a neutron star or a black hole), with a mass in the range of ∼1.5–5 M ⊙. These results suggest that the masses of the first stars responsible for the first metal enrichment are predominantly <40 M ⊙. This implies that the higher-mass first stars were either less abundant, directly collapsed into a black hole without ejecting heavy elements, or a supernova explosion of a higher-mass first star inhibits the formation of the next generation of low-mass stars at [Fe/H] < ‑3.

  13. Climate change likely to reduce orchid bee abundance even in climatic suitable sites.

    PubMed

    Faleiro, Frederico Valtuille; Nemésio, André; Loyola, Rafael

    2018-06-01

    Studies have tested whether model predictions based on species' occurrence can predict the spatial pattern of population abundance. The relationship between predicted environmental suitability and population abundance varies in shape, strength and predictive power. However, little attention has been paid to the congruence in predictions of different models fed with occurrence or abundance data, in particular when comparing metrics of climate change impact. Here, we used the ecological niche modeling fit with presence-absence and abundance data of orchid bees to predict the effect of climate change on species and assembly level distribution patterns. In addition, we assessed whether predictions of presence-absence models can be used as a proxy to abundance patterns. We obtained georeferenced abundance data of orchid bees (Hymenoptera: Apidae: Euglossina) in the Brazilian Atlantic Forest. Sampling method consisted in attracting male orchid bees to baits of at least five different aromatic compounds and collecting the individuals with entomological nets or bait traps. We limited abundance data to those obtained by similar standard sampling protocol to avoid bias in abundance estimation. We used boosted regression trees to model ecological niches and project them into six climate models and two Representative Concentration Pathways. We found that models based on species occurrences worked as a proxy for changes in population abundance when the output of the models were continuous; results were very different when outputs were discretized to binary predictions. We found an overall trend of diminishing abundance in the future, but a clear retention of climatically suitable sites too. Furthermore, geographic distance to gained climatic suitable areas can be very short, although it embraces great variation. Changes in species richness and turnover would be concentrated in western and southern Atlantic Forest. Our findings offer support to the ongoing debate of suitability-abundance models and can be used to support spatial conservation prioritization schemes and species triage in Atlantic Forest. © 2018 John Wiley & Sons Ltd.

  14. Variable coloration is associated with dampened population fluctuations in noctuid moths

    PubMed Central

    Forsman, Anders; Betzholtz, Per-Eric; Franzén, Markus

    2015-01-01

    Theory and recent reviews state that greater genetic and phenotypic variation should be beneficial for population abundance and stability. Experimental evaluations of this prediction are rare, of short duration and conducted under controlled environmental settings. The question whether greater diversity in functionally important traits stabilizes populations under more complex ecological conditions in the wild has not been systematically evaluated. Moths are mainly nocturnal, with a large variation in colour patterns among species, and constitute an important food source for many types of organisms. Here, we report the results of a long-term (2003–2013) monitoring study of 115 100 noctuid moths from 246 species. Analysis of time-series data provide rare evidence that species with higher levels of inter-individual variation in colour pattern have higher average abundances and undergo smaller between-year fluctuations compared with species having less variable colour patterns. The signature of interspecific temporal synchronization of abundance fluctuations was weak, suggesting that the dynamics were driven by species-specific biotic interactions rather than by some common, density-independent factor(s). We conclude that individual variation in colour patterns dampens population abundance fluctuations, and suggest that this may partly reflect that colour pattern polymorphism provides protection from visually oriented predators and parasitoids. PMID:25972462

  15. Evidence for seasonal patterns in the relative abundance of avian influenza virus subtypes in blue-winged teal (Anas discors)

    USGS Publications Warehouse

    Ramey, Andrew M.; Poulson, Rebecca L.; González-Reiche, Ana S.; Wilcox, Benjamin R.; Walther, Patrick; Link, Paul; Carter, Deborah L.; Newsome, George M.; Müller, Maria L.; Berghaus, Roy D.; Perez, Daniel R.; Hall, Jeffrey S.; Stallknecht, David E.

    2014-01-01

    Seasonal dynamics of influenza A viruses (IAVs) are driven by host density and population immunity. Through an analysis of subtypic data for IAVs isolated from Blue-winged Teal (Anas discors), we present evidence for seasonal patterns in the relative abundance of viral subtypes in spring and summer/autumn.

  16. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and transport processes. Seeds, which supply essential resources for embryo development, showed higher mRNA abundance of genes encoding phenylpropanoid biosynthetic enzymes, seed storage proteins, and late embryogenesis abundant proteins. Water-deficit stress affected the mRNA abundance of 13% of the genes with differential expression patterns occurring mainly in the pulp and skin. In pulp and seed tissues transcript abundance in most functional categories declined in water-deficit stressed vines relative to well-watered vines with transcripts for storage proteins and novel (no-hit) functional assignments being over represented. In the skin of berries from water-deficit stressed vines, however, transcripts from several functional categories including general phenypropanoid and ethylene metabolism, pathogenesis-related responses, energy, and interaction with the environment were significantly over-represented. Conclusion These results revealed novel insights into the tissue-specific expression mRNA expression patterns of an extensive repertoire of genes expressed in berry tissues. This work also establishes an extensive catalogue of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern tissue-specific expression patterns associated with tissue differentiation within berries. These results also confirmed that water-deficit stress has a profound effect on mRNA expression patterns particularly associated with the biosynthesis of aroma and color metabolites within skin and pulp tissues that ultimately impact wine quality. PMID:17584945

  17. [Spiders and predatory mites in the canopies of organically managed Montenegrina tangerine trees, in Montenegro County, RS].

    PubMed

    de Morais, Rosana M; Ott, Ricardo; Ott, Ana P; Redaelli, Luiza R

    2007-01-01

    A survey was conducted to study the spider and predatory mite fauna occurring in the canopies of tangerine trees (Citrus deliciosa Tenore, cultivar Montenegrina) of an organically managed orchard, at Montenegro County, RS. During a year, fortnightly, 24 randomly trees were selected and sampled in two canopies areas, by using a sheet of white cloth (1 m(2)). A total of 3,129 arachnids were collected, being 2,559 spiders and 570 mites. Based on the adults, 53 species of Araneae were recognized, belonging to eight families. Among those, the most abundant were Sphecozone sp. (Linyphiidae) (21.8%) and Chrysso pulcherrima (Mello-Leitão) (Theridiidae) (9.9%). Autumn exhibited the greatest abundance of young and adults of Araneae (29.2%) and spring was the season richest in species (40). Margalef and Shannon-Wiener diversity indexes also showed the highest values in spring. The latter index did not show differences among seasons. Simpson complementary index was equal among seasons, reflecting the same degree of species dominance. In Acari, eight species were identified in three families. The most abundant species were the mites Leptus sp.1 (Erythraeidae) (59.4%) and Amblyseius saopaulus Denmark & Muma (Phytoseiidae) (30%). Autumn was the season richest in mite species (eight). The highest abundance (47%) was observed on winter and the lowest (0.88%) on summer. Among mites, Phytoseiidae showed the highest richness. Among the spiders, Anyphaenidae was the most abundant and Theridiidae had the highest species richness, following the patterns observed for the group.

  18. Searching for the signatures of terrestrial planets in F-, G-type main-sequence stars

    NASA Astrophysics Data System (ADS)

    González Hernández, J. I.; Delgado-Mena, E.; Sousa, S. G.; Israelian, G.; Santos, N. C.; Adibekyan, V. Zh.; Udry, S.

    2013-04-01

    Context. Detailed chemical abundances of volatile and refractory elements have been discussed in the context of terrestrial-planet formation during in past years. Aims: The HARPS-GTO high-precision planet-search program has provided an extensive database of stellar spectra, which we have inspected in order to select the best-quality spectra available for late type stars. We study the volatile-to-refractory abundance ratios to investigate their possible relation with the low-mass planetary formation. Methods: We present a fully differential chemical abundance analysis using high-quality HARPS and UVES spectra of 61 late F- and early G-type main-sequence stars, where 29 are planet hosts and 32 are stars without detected planets. Results: As for the previous sample of solar analogs, these stars slightly hotter than the Sun also provide very accurate Galactic chemical abundance trends in the metallicity range -0.3 < [Fe/H] < 0.4. Stars with and without planets show similar mean abundance ratios. Moreover, when removing the Galactic chemical evolution effects, these mean abundance ratios, Δ [X/Fe] SUN - STARS, against condensation temperature, tend to exhibit less steep trends with nearly zero or slightly negative slopes. We have also analyzed a subsample of 26 metal-rich stars, 13 with and 13 without known planets, with spectra at S/N ~ 850, on average, in the narrow metallicity range 0.04 < [Fe/H] < 0.19. We find the similar, although not equal, abundance pattern with negative slopes for both samples of stars with and without planets. Using stars at S/N ≥ 550 provides equally steep abundance trends with negative slopes for stars both with and without planets. We revisit the sample of solar analogs to study the abundance patterns of these stars, in particular, 8 stars hosting super-Earth-like planets. Among these stars having very low-mass planets, only four of them reveal clear increasing abundance trends versus condensation temperature. Conclusions: Finally, we compared these observed slopes with those predicted using a simple model that enables us to compute the mass of rocks that have formed terrestrial planets in each planetary system. We do not find any evidence supporting the conclusion that the volatile-to-refractory abundance ratio is related to the presence of rocky planets. Based on observations collected with the HARPS spectrograph at the 3.6-m telescope (072.C-0488(E)), installed at the La Silla Observatory, ESO (Chile), with the UVES spectrograph at the 8-m Very Large Telescope (VLT) - program IDs: 67.C-0206(A), 074.C-0134(A), 075.D-0453(A) -, installed at the Cerro Paranal Observatory, ESO (Chile), and with the UES spectrograph at the 4.2-m William Herschel Telescope (WHT), installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma.Tables A.1-A.8 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/552/A6

  19. THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotov, Adi; Hogg, David W.; Willman, Beth

    2010-09-20

    Fully cosmological, high-resolution N-body+smooth particle hydrodynamic simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling, and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] andmore » [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [{alpha}/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way and other local L{sup *} galaxies.« less

  20. ORIGIN: Metal Creation and Evolution From The Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Piro, L.; den Herder, J. W.; Ohashi, T.; Hartmann, D. H.; Kouveliotou, C.

    2011-08-01

    ORIGIN is a mission designed to use Gamma-Ray Bursts as a unique probe to study the cosmic history of baryons and the metal enrichment from the first stars up to the present Universe. Reconstructing the cosmic history of metals, from the first population of stars to the processes involved in the formation of galaxies and clusters of galaxies, is a key observational challenge. Observing any single star in the early Universe is in fact beyond the reach of presently planned mission. By measuring GRB redshifts and abundances in the circumburst medium deep into the era of re-ionization (z>6), ORIGIN will discover when star formation started and how it evolved into the present day structures. ORIGIN will collect 400 GRBs per year covering the full redshift distribution. About twice per month a GRB from the re-ionization era will trigger the instruments. The resulting multi-element abundance patterns derived from high resolution X-ray and IR observations will map the evolving chemical composition of the early Universe, ``fingerprint'' the elusive PopIII stars, and constrain the shape of the Initial Mass Function (IMF) of the first stars. While not observing GRB afterglows, ORIGIN will map element abundances in local structures (z<2) by determining the properties of the hot IGM in clusters and groups of galaxies and the Warm-Hot Intergalactic Medium (WHIM). In this paper we focus on the use of GRB to track the earliest star populations.

  1. Amazonian Triatomine Biodiversity and the Transmission of Chagas Disease in French Guiana: In Medio Stat Sanitas

    PubMed Central

    Flores-Ferrer, Alheli; Blanchet, Denis; Gourbière, Sébastien

    2016-01-01

    The effects of biodiversity on the transmission of infectious diseases now stand as a cornerstone of many public health policies. The upper Amazonia and Guyana shield are hot-spots of biodiversity that offer genuine opportunities to explore the relationship between the risk of transmission of Chagas disease and the diversity of its triatomine vectors. Over 730 triatomines were light-trapped in four geomorphological landscapes shaping French-Guiana, and we determined their taxonomic status and infection by Trypanosoma cruzi. We used a model selection approach to unravel the spatial and temporal variations in species abundance, diversity and infection. The vector community in French-Guiana is typically made of one key species (Panstrongylus geniculatus) that is more abundant than three secondary species combined (Rhodnius pictipes, Panstrongylus lignarius and Eratyrus mucronatus), and four other species that complete the assemblage. Although the overall abundance of adult triatomines does not vary across French-Guiana, their diversity increases along a coastal-inland gradient. These variations unravelled a non-monotonic relationship between vector biodiversity and the risk of transmission of Chagas disease, so that intermediate biodiversity levels are associated with the lowest risks. We also observed biannual variations in triatomine abundance, representing the first report of a biannual pattern in the risk of Chagas disease transmission. Those variations were highly and negatively correlated with the average monthly rainfall. We discuss the implications of these patterns for the transmission of T. cruzi by assemblages of triatomine species, and for the dual challenge of controlling Amazonian vector communities that are made of both highly diverse and mostly intrusive species. PMID:26867025

  2. Contrasting Patterns in Solitary and Eusocial Bees While Responding to Landscape Features in the Brazilian Cerrado: a Multiscaled Perspective.

    PubMed

    Silva, D P; Nogueira, D S; De Marco, P

    2017-06-01

    Landscape structure is an important determinant of biological fluxes and species composition, but species do not respond equally to landscape features or spatial extents. Evaluating "multi-scale" responses of species to landscape structure is an important framework to be considered, allowing insights about habitat requirements for different groups. We evaluated the response of Brazilian Cerrado's bees (eusocial vs. solitary ones) to both the amount and isolation of remnant vegetation in eight nested multiple-local scales. Response variables included abundance, observed, and estimated species richness, and beta diversity (split into nestedness and turnover resultant dissimilarities). Eusocial species' abundance responded to landscape structure at narrow scales of fragment isolation (250 m of radius from sampling sites), while solitary species' abundance responded to broader scales to fragment area (2000 m). Eusocial species nestedness also responded to landscape features in broader scales (1500 m), especially to increasing fragment isolation. However, all the remaining response variables did not respond to any other landscape variables in any spatial scale considered. Such contrasting responses of the abundances of eusocial vs. solitary species are related to the inherent life-history traits of each group. Important attributes in this context are different requirements on food resources, population features, and flight abilities. Species-specific dispersal abilities may be the main determinants of the nested patterns found for eusocial species at 1500 m. Considering these results, we suggest that different bee groups are considered separately in further landscape analyses, especially in other Brazilian biomes, for a better understanding of landscape effects on these organisms.

  3. Additive effects of physical stress and herbivores on intertidal seaweed biodiversity.

    PubMed

    Williams, Susan L; Bracken, Matthew E S; Jones, Emily

    2013-05-01

    Patterns in rocky intertidal seaweed biodiversity influence the resilience and functioning of these important primary producer communities. In turn, seaweed biodiversity patterns are the result of many ecological factors. We determined the influences of thermal and desiccation stress, herbivory, and nutrients on seaweed biodiversity on a northern California rocky shoreline. In a fully crossed design at two tidal heights at wave-protected and exposed sites, we deployed screens to reduce stress, removed herbivores, and added nutrients for 18 months. The treatments reduced temperature, increased relative humidity, decreased herbivore abundances, and increased nitrogen in both seawater and seaweeds. Seaweed abundance and biodiversity (cover, biomass, species richness, diversity, evenness, and community composition) were influenced by tidal height, physical stress, and herbivores. Wave exposure affected all response variables except biomass and evenness. Stress and herbivores had independent additive effects on seaweed abundance and diversity. Physical stress did not make the community as a whole more susceptible to herbivores, and screens had overarching positive effects on seaweed biodiversity even though they also had positive effects on herbivore abundance. Nutrients had virtually no effect on seaweed biodiversity, and we observed no bottom-up effects of nutrient addition on herbivore density or biomass. Small green algae and diatoms were important contributors to overall algal cover and to changes in composition across treatments, but larger macroalgae dominated the species richness response. The striking absence of interactions between stress and herbivory highlights how seaweed communities can respond independently to important drivers of biodiversity. Thus, nonadditive, potentially synergistic effects do not necessarily complicate the understanding of how seaweed biodiversity responds to environmental change.

  4. The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx

    PubMed Central

    Stenseth, Nils Chr.; Ehrich, Dorothee; Rueness, Eli Knispel; Lingjærde, Ole Chr.; Chan, Kung-Sik; Boutin, Stan; O'Donoghue, Mark; Robinson, David A.; Viljugrein, Hildegunn; Jakobsen, Kjetill S.

    2004-01-01

    The abundance of Canadian lynx follows 10-year density fluctuations across the Canadian subcontinent. These cyclic fluctuations have earlier been shown to be geographically structured into three climatic regions: the Atlantic, Continental, and Pacific zones. Recent genetic evidence revealed an essentially similar spatial structuring. Introducing a new population model, the “climate forcing of ecological and evolutionary patterns” model, we link the observed ecological and evolutionary patterns. Specifically, we demonstrate that there is greater phase synchrony within climatic zones than between them and show that external climatic forcing may act as a synchronizer. We simulated genetic drift by using data on population dynamics generated by the climate forcing of ecological and evolutionary patterns model, and we demonstrate that the observed genetic structuring can be seen as an emerging property of the spatiotemporal ecological dynamics. PMID:15067131

  5. Accretion of chemically fractionated material on a wide binary with a blue straggler

    NASA Astrophysics Data System (ADS)

    Desidera, S.; Gratton, R. G.; Lucatello, S.; Endl, M.; Udry, S.

    2007-02-01

    Context: The components of the wide binary HIP 64030 = HD 113984 show a large (about 0.25 dex) iron content difference (Desidera et al. 2006). The positions of the components on the color magnitude diagram suggest that the primary is a blue straggler. Aims: We studied the abundance difference of several elements besides iron, and we searched for stellar and substellar companions around the components to unveil the origin of the observed iron difference. Methods: A line-by-line differential abundance analysis for several elements was performed for iron, while suitable spectral synthesis was performed for C, N, and Li. High precision radial velocities obtained with the iodine cell were combined with available literature data. Results: The analysis of additional elements shows that the abundance difference for the elements studied increases with increasing condensation temperature, suggesting that accretion of chemically fractionated material might have occurred in the system. Alteration of C and N likely due to CNO processing is also observed. We also show that the primary is a spectroscopic binary with a period of 445 days and moderate eccentricity. The minimum mass of the companion is 0.17~M⊙. Conclusions: .Two scenarios were explored to explain the observed abundance pattern. In the first, all abundance anomalies arise on the blue straggler. If this is the case, the dust-gas separation may have been occurred in a circumbinary disk around the blue straggler and its expected white dwarf companion, as observed in several RV Tauri and post AGB binaries. In the second scenario, accretion of dust-rich material occurred on the secondary. This would also explain the anomalous carbon isotopic ratio of the secondary. Such a scenario requires that a substantial amount of mass lost by the central binary has been accreted by the wide component. Further studies to compare the two scenarios are proposed. Based on observations collected at the European Southern Observatory, Chile, using FEROS spectrograph (proposal ID: 70.D-0081), on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and on observations made at McDonald Observatory.

  6. Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis.

    PubMed

    Zamudio-Ortega, C M; Contreras-Bulnes, R; Scougall-Vilchis, R J; Morales-Luckie, R A; Olea-Mejía, O F; Rodríguez-Vilchis, L E

    2014-09-01

    The purpose of this study was to characterise the enamel surface of sound deciduous teeth in terms of morphology, chemical composition, structure and crystalline phases. The enamel of 30 human deciduous teeth was examined by: Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). Chemical differences between incisors and canines were statistically evaluated using the Mann-Whitney U test (p ≤ 0.05). Three enamel patterns were observed by SEM: 'mostly smooth with some groves', 'abundant microporosities' and 'exposed prisms'. The average Ca/P molar ratios were 1.37 and 1.03 by EDS and XPS, respectively. The crystallite size determined by XRD was 210.82 ± 16.78 Å. The mean ratio between Ca bonded to phosphate and Ca bonded to hydroxyl was approximately 10:1. The enamel of sound deciduous teeth showed two main patterns: 'mostly smooth with some groves' and 'abundant microporosities'. 'Exposed prisms' was a secondary pattern. There were slight variations among the Ca/P molar ratios found by EDS and XPS, suggesting differences in the mineral content from the enamel surface to the interior. The crystalline phases found in enamel were hydroxyapatite and carbonate apatite, with major type B than type A carbonate incorporation.

  7. Seasonal and interannual variations in coccolithophore abundance off Terceira Island, Azores (Central North Atlantic)

    NASA Astrophysics Data System (ADS)

    Narciso, Áurea; Gallo, Francesca; Valente, André; Cachão, Mário; Cros, Lluïsa; Azevedo, Eduardo B.; e Ramos, Joana Barcelos

    2016-04-01

    In order to characterize the natural coccolithophore community occurring offshore Azores and to determine their annual and interannual patterns, monthly samples were collected, from September 2010 to December 2014, in the photic zone off Terceira Island. The present study revealed a clear seasonal distribution and a considerable interannual variability of the living coccolithophore community. The highest coccolithophore abundances were observed during spring and winter months, especially due to the smaller species Emiliania huxleyi and Gephyrocapsa ericsonii. In fact, the highest biomass period was registered during April 2011, associated with enhanced abundance of the overcalcified morphotype of E. huxleyi, which was possibly influenced by subpolar waters and subsequent upwelling conditions. The highest abundances of Gephyrocapsa muellerae were recorded during June 2011 and 2014, indicating that this species characterizes the transition between the period of maximum productivity and the subsequent smoother environmental conditions, the first and the later stages of the phytoplankton succession described by Margalef, respectively. During summer to early fall, a gradual decrease of the overall coccolithophore abundance was observed, while the species richness (Margalef diversity index) increased. A subtropical coccolithophore assemblage mainly composed by Umbellosphaera tenuis, Syracosphaera spp., Discosphaera tubifera, Rhabdosphaera clavigera and Coronosphaera mediterranea indicated the presence of surface warmer waters accompanied by reduced mixing and low nutrients concentration. During late fall to winter, the coccolithophore abundance increased again with a concomitant reduction in species diversity. This is potentially linked to low sea surface temperatures, moderate nutrients concentration and surface mixed layer deepening. During 2011, colder and productive waters led to an increase in the total coccolithophore abundances. On contrary, during 2012, characterized by milder environmental conditions, an increase in the diversity of the community was prevalent. The noticeably coccolithophore response to variations in the main physical variables and on main traditional nutrients corroborates the importance of this group as proxy of marine environmental conditions in the past.

  8. Temporal Changes Rather than Long-Term Repeated Burning Predominately Control the Shift in the Abundance of Soil Denitrifying Community in an Australian Sclerophyll Forest.

    PubMed

    Liu, Xian; Chen, C R; Hughes, J M; Wang, W J; Lewis, Tom

    2017-01-01

    To understand the temporal dynamics of soil bacterial denitrifying community in response to long-term prescribed burning and its resilience and recovery following a fire, a wet sclerophyll forest study site under two treatments (2 yearly burning (2YB) and no burning (NB)) and with 40-year-old burning history was used. Similar temporal patterns in the abundance of total (16S rRNA) and denitrifying (narG, nirK, nirS, nosZ) bacteria between two burning treatments revealed strong temporal influences. The magnitude of burning impacts on the abundance of 16S rRNA and denitrification genes was smaller compared with the impact of sampling time, but significant burning and temporal impacts were recorded for all (P < 0.001)-except for the nirS gene. Impacts of prescribed fire on the abundance of soil denitrifying community could be observed immediately after fire, and this impact diminished over a 24-month period prior to the next prescribed burning event. In conclusion, temporal changes govern the fluctuations of the abundance of soil denitrifying genes over the sampling period and the denitrifying community can recover after fire, suggesting that this community is resilient to the effects of prescribed burning. A combination of biotic and abiotic factors may account for the different temporal dynamics of denitrification gene abundance.

  9. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure.

    PubMed

    Henderson, Peter A; Magurran, Anne E

    2010-05-22

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance.

  10. HIGH PRECISION ABUNDANCES OF THE OLD SOLAR TWIN HIP 102152: INSIGHTS ON Li DEPLETION FROM THE OLDEST SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monroe, TalaWanda R.; Melendez, Jorge; Tucci Maia, Marcelo

    2013-09-10

    We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex ({approx}<1%), using ultra high-resolution (R = 110,000), high S/N UVES spectra obtained on the 8.2 m Very Large Telescope. Our determined metallicity of HIP 102152 is [Fe/H] = -0.013 {+-} 0.004. The atmospheric parameters of the star were determined to be 54 K cooler than the Sun, 0.09 dex lower in surface gravity, and a microturbulence identical to our derived solar value. Elemental abundance ratiosmore » examined versus dust condensation temperature reveal a solar abundance pattern for this star, in contrast to most solar twins. The abundance pattern of HIP 102152 appears to be the most similar to solar of any known solar twin. Abundances of the younger, 2.9 Gyr solar twin, 18 Sco, were also determined from UVES spectra to serve as a comparison for HIP 102152. The solar chemical pattern of HIP 102152 makes it a potential candidate to host terrestrial planets, which is reinforced by the lack of giant planets in its terrestrial planet region. The following non-local thermodynamic equilibrium Li abundances were obtained for HIP 102152, 18 Sco, and the Sun: log {epsilon} (Li) = 0.48 {+-} 0.07, 1.62 {+-} 0.02, and 1.07 {+-} 0.02, respectively. The Li abundance of HIP 102152 is the lowest reported to date for a solar twin, and allows us to consider an emerging, tightly constrained Li-age trend for solar twin stars.« less

  11. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure

    PubMed Central

    Henderson, Peter A.; Magurran, Anne E.

    2010-01-01

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance. PMID:20071388

  12. New determination of abundances and stellar parameters for a set of weak G-band stars

    NASA Astrophysics Data System (ADS)

    Palacios, A.; Jasniewicz, G.; Masseron, T.; Thévenin, F.; Itam-Pasquet, J.; Parthasarathy, M.

    2016-03-01

    Context. Weak G-band (wGb) stars are a very peculiar class of red giants; they are almost devoided of carbon and often present mild lithium enrichment. Despite their very puzzling abundance patterns, very few detailed spectroscopic studies existed up to a few years ago, which prevented any clear understanding of the wGb phenomenon. We recently proposed the first consistent analysis of published data for a sample of 28 wGb stars and were able to identify them as descendants of early A-type to late B-type stars, although we were not able to conclude on their evolutionary status or the origin of their peculiar abundance pattern. Aims: Using new high-resolution spectra, we present the study of a new sample of wGb stars with the aim of homogeneously deriving their fundamental parameters and surface abundances for a selected set of chemical species that we use to improve our insight on this peculiar class of objects. Methods: We obtained high-resolution and high signal-to-noise spectra for 19 wGb stars in the southern and northern hemisphere that we used to perform consistent spectral synthesis to derive their fundamental parameters and metallicities, as well as the spectroscopic abundances for Li, C, 12C/13C, N, O, Na, Sr, and Ba. We also computed dedicated stellar evolution models that we used to determine the masses and to investigate the evolutionary status and chemical history of the stars in our sample. Results: We confirm that the wGb stars are stars with initial masses in the range 3.2 to 4.2 M⊙. We suggest that a large fraction could be mildly evolved stars on the subgiant branch currently undergoing the first dredge-up, while a smaller number of stars are more probably in the core He burning phase at the clump. After analysing their abundance pattern, we confirm their strong nitrogen enrichment anti-correlated with large carbon depletion, characteristic of material fully processed through the CNO cycle to an extent not known in evolved intermediate-mass stars in the field and in open clusters. However, we demonstrate here that such a pattern is very unlikely owing to self-enrichment. Conclusions: In the light of the current observational constraints, no solid self-consistent pollution scenario can be presented either, leaving the wGb puzzle largely unsolved. Based on data collected at La Silla Observatory (ESO, Chile), program identifier ID 089.D-0189(A), and at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.

  13. Geographic patterns of fishes and jellyfish in Puget Sound surface waters

    USGS Publications Warehouse

    Rice, Casimir A.; Duda, Jeffrey J.; Greene, Correigh M.; Karr, James R.

    2012-01-01

    We explored patterns of small pelagic fish assemblages and biomass of gelatinous zooplankton (jellyfish) in surface waters across four oceanographic subbasins of greater Puget Sound. Our study is the first to collect data documenting biomass of small pelagic fishes and jellyfish throughout Puget Sound; sampling was conducted opportunistically as part of a juvenile salmon survey of daytime monthly surface trawls at 52 sites during May–August 2003. Biomass composition differed spatially and temporally, but spatial differences were more distinct. Fish dominated in the two northern basins of Puget Sound, whereas jellyfish dominated in the two southern basins. Absolute and relative abundance of jellyfish, hatchery Chinook salmon Oncorhynchus tshawytscha, and chum salmon O. keta decreased with increasing latitude, whereas the absolute and relative abundance of most fish species and the average fish species richness increased with latitude. The abiotic factors with the strongest relationship to biomass composition were latitude, water clarity, and sampling date. Further study is needed to understand the spatial and temporal heterogeneity in the taxonomic composition we observed in Puget Sound surface waters, especially as they relate to natural and anthropogenic influences.

  14. Earthworm abundance and distribution pattern in contrasting plant communities within a tropical wet forest in Puerto Rico

    Treesearch

    G. Gonzalez; X. Zou; A. Sabat; N. Fetcher

    1999-01-01

    Plant communities may impose strong control on soil fauna properties. We examined the abundance and distribution pattern of earthworms in two contrasting plant communities within a tropical wet forest in Puerto Rico. The Dacryodes community occurs in well-drained soils and is dominated by Dacryodes excels, Manilkara bidentata, Guarea guidonea, and Sloanea berteriana....

  15. Remote Sensing, Sampling and Simulation Applications in Analyses of Insect Dispersion and Abundance in Cotton

    Treesearch

    J. L. Willers; J. M. McKinion; J. N. Jenkins

    2006-01-01

    Simulation was employed to create stratified simple random samples of different sample unit sizes to represent tarnished plant bug abundance at different densities within various habitats of simulated cotton fields. These samples were used to investigate dispersion patterns of this cotton insect. It was found that the assessment of spatial pattern varied as a function...

  16. Conserved pattern of embryonic actin gene expression in several sea urchins and a sand dollar.

    PubMed

    Bushman, F D; Crain, W R

    1983-08-01

    An examination of the size and relative abundance of actin-coding RNA in embryos of four sea urchins (Strongylocentrotus purpuratus, Strongylocentrotus droebachiensis, Arbacia punctulata, Lytechinus variegatus) and one sand dollar (Echinarachnius parma) reveals a generally conserved program of expression. In each species the relative abundance of these sequences is low in early embryos and begins to rise during late cleavage or blastula stages. In the four sea urchins, actin-coding RNAs increase between approximately 9- and 35-fold by pluteus or an earlier stage, and in the sand dollar about 5.5-fold by blastula. A major actin-coding RNA class of 2.0-2.2 kilobases (kb) is found in each species. A smaller actin-coding RNA class, which accumulates during embryogenesis, is also present in S. purpuratus (1.8 kb), S. droebachiensis (1.9 kb), and A. punctulata (1.6 kb), but apparently absent in L. variegatus and E. parma. In S. droebachiensis, actin-coding RNA is relatively abundant in unfertilized eggs and drops sharply by the 16-cell stage. This is in contrast to the other sea urchins where the actin message content is relatively low in eggs and does not change substantially in the embryos throughout early cleavage. The observations in this study suggest that the pattern of embryonic expression of at least some members of this gene family is ancient and conserved.

  17. The risk of harmful algal blooms (HABs) in the oyster-growing estuaries of New South Wales, Australia.

    PubMed

    Ajani, Penelope; Brett, Steve; Krogh, Martin; Scanes, Peter; Webster, Grant; Armand, Leanne

    2013-06-01

    The spatial and temporal variability of potentially harmful phytoplankton was examined in the oyster-growing estuaries of New South Wales. Forty-five taxa from 31 estuaries were identified from 2005 to 2009. Harmful species richness was latitudinally graded for rivers, with increasing number of taxa southward. There were significant differences (within an estuary) in harmful species abundance and richness for 11 of 21 estuaries tested. Where differences were observed, these were predominately due to species belonging to the Pseudo-nitzschia delicatissima group, Dinophysis acuminata, Dictyocha octonaria and Prorocentrum cordatum with a consistent upstream versus downstream pattern emerging. Temporal (seasonal or interannual) patterns in harmful phytoplankton within and among estuaries were highly variable. Examination of harmful phytoplankton in relation to recognised estuary disturbance measures revealed species abundance correlated to estuary modification levels and flushing time, with modified, slow flushing estuaries having higher abundance. Harmful species richness correlated with bioregion, estuary modification levels and estuary class, with southern, unmodified lakes demonstrating greater species density. Predicting how these risk taxa and risk zones may change with further estuary disturbance and projected climate warming will require more focused, smaller scale studies aimed at a deeper understanding of species-specific ecology and bloom mechanisms. Coupled with this consideration, there is an imperative for further taxonomic, ecological and toxicological investigations into poorly understood taxa (e.g. Pseudo-nitzschia).

  18. Co-existence of freshwater and marine T4-like myoviruses in a typical subtropical estuary.

    PubMed

    Liu, Lu; Cai, Lanlan; Zhang, Rui

    2017-11-01

    Viruses are the most abundant biological entities on Earth and play an important role in microbial community dynamics and biogeochemical cycling, yet their ecological characteristics in estuarine ecosystems are unclear. Here, virioplankton communities in a typical subtropical estuary, the Jiulong River estuary (JRE) in China, were investigated. The abundance of virioplankton ranged from 1.01 ± 0.05 × 107 to 1.62 ± 0.09 × 107 particles mL-1 in JRE, and the population size of viruses was correlated with temperature and nutrient levels. Three tailed viral morphotypes (myovirus, siphovirus and podovirus) were observed. Phylogenetic analysis showed that most of the g23 sequences in the JRE fell into three previously established groups (Marine, Paddy and Lake Groups) and two potential Estuary Groups. This demonstrates the co-existence of typical freshwater and marine T4-like myoviruses in the estuarine ecosystem, suggesting the movement of viruses and their hosts among biomes. Additionally, the spatial variation of g23 sequences suggests a geographic distribution pattern of T4-like myoviruses in the JRE, which might be shaped by the environmental gradient and/or their host distribution. These results provide valuable insights into the abundance, diversity and distribution patterns of virioplankton, as well as the factors influencing them, in subtropical estuarine ecosystems. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Centennial-scale fluctuations and regional complexity characterize Pacific salmon population dynamics over the past five centuries.

    PubMed

    Rogers, Lauren A; Schindler, Daniel E; Lisi, Peter J; Holtgrieve, Gordon W; Leavitt, Peter R; Bunting, Lynda; Finney, Bruce P; Selbie, Daniel T; Chen, Guangjie; Gregory-Eaves, Irene; Lisac, Mark J; Walsh, Patrick B

    2013-01-29

    Observational data from the past century have highlighted the importance of interdecadal modes of variability in fish population dynamics, but how these patterns of variation fit into a broader temporal and spatial context remains largely unknown. We analyzed time series of stable nitrogen isotopes from the sediments of 20 sockeye salmon nursery lakes across western Alaska to characterize temporal and spatial patterns in salmon abundance over the past ∼500 y. Although some stocks varied on interdecadal time scales (30- to 80-y cycles), centennial-scale variation, undetectable in modern-day catch records and survey data, has dominated salmon population dynamics over the past 500 y. Before 1900, variation in abundance was clearly not synchronous among stocks, and the only temporal signal common to lake sediment records from this region was the onset of commercial fishing in the late 1800s. Thus, historical changes in climate did not synchronize stock dynamics over centennial time scales, emphasizing that ecosystem complexity can produce a diversity of ecological responses to regional climate forcing. Our results show that marine fish populations may alternate between naturally driven periods of high and low abundance over time scales of decades to centuries and suggest that management models that assume time-invariant productivity or carrying capacity parameters may be poor representations of the biological reality in these systems.

  20. Centennial-scale fluctuations and regional complexity characterize Pacific salmon population dynamics over the past five centuries

    PubMed Central

    Rogers, Lauren A.; Schindler, Daniel E.; Lisi, Peter J.; Holtgrieve, Gordon W.; Leavitt, Peter R.; Bunting, Lynda; Finney, Bruce P.; Selbie, Daniel T.; Chen, Guangjie; Gregory-Eaves, Irene; Lisac, Mark J.; Walsh, Patrick B.

    2013-01-01

    Observational data from the past century have highlighted the importance of interdecadal modes of variability in fish population dynamics, but how these patterns of variation fit into a broader temporal and spatial context remains largely unknown. We analyzed time series of stable nitrogen isotopes from the sediments of 20 sockeye salmon nursery lakes across western Alaska to characterize temporal and spatial patterns in salmon abundance over the past ∼500 y. Although some stocks varied on interdecadal time scales (30- to 80-y cycles), centennial-scale variation, undetectable in modern-day catch records and survey data, has dominated salmon population dynamics over the past 500 y. Before 1900, variation in abundance was clearly not synchronous among stocks, and the only temporal signal common to lake sediment records from this region was the onset of commercial fishing in the late 1800s. Thus, historical changes in climate did not synchronize stock dynamics over centennial time scales, emphasizing that ecosystem complexity can produce a diversity of ecological responses to regional climate forcing. Our results show that marine fish populations may alternate between naturally driven periods of high and low abundance over time scales of decades to centuries and suggest that management models that assume time-invariant productivity or carrying capacity parameters may be poor representations of the biological reality in these systems. PMID:23322737

  1. Complex foraging ecology of the red harvester ant and its effect on the soil seed bank

    NASA Astrophysics Data System (ADS)

    Luna, Pedro; García-Chávez, Juan Héctor; Dáttilo, Wesley

    2018-01-01

    Granivory is an important interaction in the arid and semi-arid zones of the world, since seeds form an abundant and nutritious resource in these areas. While species of the genus Pogonomyrmex have been studied in detail as seed predators, their impact on seed abundance in the soil has not yet been explored in sufficient depth. We studied the impact of the harvesting activities of the ant Pogonomyrmex barbatus on seed abundance in the soil of the Zapotitlán valley, Mexico. We found that P. barbatus activity significantly impacts the abundance of seeds in the soil, which is lower in the sites where P. barbatus forages than it is in sites with no recorded foraging. We also found that P. barbatus distributes intact seeds of three tree species, two of which are nurse plants, and could consequently be promoting the establishment of these species. Using tools derived from graph theory, we observed that the ant-seed interactions exhibit a nested pattern; where more depredated seed species seem to be the more spatially abundant in the environment. This study illustrates the complex foraging ecology of the harvester ant P. barbatus and elucidates its effect on the soil seed bank in a semi-arid environment.

  2. Sea Urchins Predation Facilitates Coral Invasion in a Marine Reserve

    PubMed Central

    Coma, Rafel; Serrano, Eduard; Linares, Cristina; Ribes, Marta; Díaz, David; Ballesteros, Enric

    2011-01-01

    Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem. PMID:21789204

  3. Temporal variation in bird and resource abundance across an elevational gradient in Hawaii

    USGS Publications Warehouse

    Hart, Patrick J.; Woodworth, Bethany L.; Camp, Richard J.; Turner, Kathryn; McClure, Katherine; Goodall, Katherine; Henneman, Carlene; Spiegel, Caleb; Lebrun, Jaymi; Tweed, Erik; Samuel, Michael

    2011-01-01

    We documented patterns of nectar availability and nectarivorous bird abundance over ~3 years at nine study sites across an 1,800-m elevational gradient on Hawaii Island to investigate the relationship between resource variation and bird abundance. Flower density (flowers ha-1) and nectar energy content were measured across the gradient for the monodominant 'Ōhi'a (Metrosideros polymorpha). Four nectarivorous bird species were captured monthly in mist nets and surveyed quarterly with point-transect distance sampling at each site to examine patterns of density and relative abundance. Flowering peaks were associated with season but not rainfall or elevation. Bird densities peaked in the winter and spring of each year at high elevations, but patterns were less clear at middle and low elevations. Variability in bird abundance was generally best modeled as a function of elevation, season, and flower density, but the strength of the latter effect varied with species. The low elevations had the greatest density of flowers but contained far fewer individuals of the two most strongly nectarivorous species. There is little evidence of large-scale altitudinal movement of birds in response to 'Ōhi'a flowering peaks. The loose relationship between nectar and bird abundance may be explained by a number of potential mechanisms, including (1) demographic constraints to movement; (2) nonlimiting nectar resources; and (3) the presence of an "ecological trap," whereby birds are attracted by the high resource abundance of, but suffer increased mortality at, middle and low elevations as a result of disease.

  4. Trophic diversity, size and biomass spectrum of Bay of Bengal nematodes: A study case on depth and latitudinal patterns

    NASA Astrophysics Data System (ADS)

    Ansari, Kapuli Gani Mohamed Thameemul; Lyla, Somasundharanair; Khan, Syed Ajmal; Bhadury, Punyasloke

    2017-09-01

    Depth and latitudinal patterns of nematode functional attributes were investigated from 35 stations of Bay of Bengal (BoB) continental shelf. We aim to address whether depth and latitudinal variations can modify nematode community structure and their functional attributes (trophic diversity, size and biomass spectra). Global trend of depth and latitudinal related variations have also been noticed from BoB shelf in terms of nematode abundance and species richness, albeit heterogeneity patterns were encountered in functional attributes. Index of trophic diversity values revealed higher trophic diversity across the BoB shelf and suggested variety of food resource availability. However, downstream analysis of trophic status showed depth and latitude specific patterns but not reflected in terms of size and biomass spectrum. The peaks at different positions clearly visualized heterogeneity in distribution patterns for both size and biomass spectrum and also there was evidence of availability of diversified food resources. Nematode biomass spectra (NBS) constructed for nematode communities showed shift in peak biomass values towards lower to moderate size classes particularly in shallower depth but did not get reflected in latitudes. However, Chennai and Parangipettai transects demonstrated shift in peak biomass values towards higher biomass classes explaining the representation of higher nematode abundance. Our findings concluded that depth and latitudes are physical variables; they may not directly affect nematode community structure and functional attributes but they might influence the other factors such as food availability, sediment deposition and settlement rate. Our observations suggest that the local factors (seasonal character) of phytodetrital food flux can be very important for shaping the nematode community structure and success of nematode functional heterogeneity patterns across the Bay of Bengal shelf.

  5. Age-Related Variations in Intestinal Microflora of Free-Range and Caged Hens.

    PubMed

    Cui, Yizhe; Wang, Qiuju; Liu, Shengjun; Sun, Rui; Zhou, Yaqiang; Li, Yue

    2017-01-01

    Free range feeding pattern puts the chicken in a mixture of growth materials and enteric bacteria excreted by nature, while it is typically unique condition materials and enteric bacteria in commercial caged hens production. Thus, the gastrointestinal microflora in two feeding patterns could be various. However, it remains poorly understood how feeding patterns affect development and composition of layer hens' intestinal microflora. In this study, the effect of feeding patterns on the bacteria community in layer hens' gut was investigated using free range and caged feeding form. Samples of whole small intestines and cecal digesta were collected from young hens (8-weeks) and mature laying hens (30-weeks). Based on analysis using polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing of bacterial 16S rDNA gene amplicons, the microflora of all intestinal contents were affected by both feeding patterns and age of hens. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria were the main components. Additionally, uncultured environmental samples were found too. There were large differences between young hens and adult laying hens, the latter had more Firmicutes and Bacteroidetes, and bacterial community is more abundant in 30-weeks laying hens of all six phyla than 8-weeks young hens of only two phyla. In addition, the differences were also observed between free range and caged hens. Free range hens had richer Actinobacteria, Bacteroidetes, and Proteobacteria. Most of strains found were detected more abundant in small intestines than in cecum. Also the selected Lactic acid bacteria from hens gut were applied in feed and they had beneficial effects on growth performance and jejunal villus growth of young broilers. This study suggested that feeding patterns have an importance effect on the microflora composition of hens, which may impact the host nutritional status and intestinal health.

  6. Compositional mapping of Saturn's satellite Dione with Cassini VIMS and implications of dark material in the Saturn system

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Jaumann, R.; Cruikshank, D.P.; Brown, R.H.; Hoefen, T.M.; Stephan, K.; Moore, Johnnie N.; Buratti, B.J.; Baines, K.H.; Nicholson, P.D.; Nelson, R.M.

    2008-01-01

    Cassini VIMS has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. A very close fly-by of Dione provided key information for solving the riddle of the origin of the dark material in the Saturn system. The Dione VIMS data show a pattern of bombardment of fine, sub-0.5-??m diameter particles impacting the satellite from the trailing side direction. Multiple lines of evidence point to an external origin for the dark material on Dione, including the global spatial pattern of dark material, local patterns including crater and cliff walls shielding implantation on slopes facing away from the trailing side, exposing clean ice, and slopes facing the trailing direction which show higher abundances of dark material. Multiple spectral features of the dark material match those seen on Phoebe, Iapetus, Hyperion, Epimetheus and the F-ring, implying the material has a common composition throughout the Saturn system. However, the exact composition of the dark material remains a mystery, except that bound water and, tentatively, ammonia are detected, and there is evidence both for and against cyanide compounds. Exact identification of composition requires additional laboratory work. A blue scattering peak with a strong UV-visible absorption is observed in spectra of all satellites which contain dark material, and the cause is Rayleigh scattering, again pointing to a common origin. The Rayleigh scattering effect is confirmed with laboratory experiments using ice and 0.2-??m diameter carbon grains when the carbon abundance is less than about 2% by weight. Rayleigh scattering in solids is also confirmed in naturally occurring terrestrial rocks, and in previously published reflectance studies. The spatial pattern, Rayleigh scattering effect, and spectral properties argue that the dark material is only a thin coating on Dione's surface, and by extension is only a thin coating on Phoebe, Hyperion, and Iapetus, although the dark material abundance appears higher on Iapetus, and may be locally thick. As previously concluded for Phoebe, the dark material appears to be external to the Saturn system and may be cometary in origin. We also report a possible detection of material around Dione which may indicate Dione is active and contributes material to the E-ring, but this observation must be confirmed.

  7. EFFECT OF RICE CULTIVATION PATTERNS ON MALARIA VECTOR ABUNDANCE IN RICE-GROWING VILLAGES IN MALI

    PubMed Central

    DIUK-WASSER, MARIA A.; TOURÉ, MAHAMOUDOU B.; DOLO, GUIMOGO; BAGAYOKO, MAGARAN; SOGOBA, NAFOMAN; SISSOKO, IBRAHIM; TRAORÉ, SÉKOU F.; TAYLOR, CHARLES E.

    2007-01-01

    Irrigation for rice cultivation increases the production of Anopheles gambiae, the main vector of malaria in Mali. Mosquito abundance is highly variable across villages and seasons. We examined whether rice cultivation patterns mapped using remotely sensed imagery can account for some of this variance. We collected entomologic data and mapped land use around 18 villages in the two cropping seasons during two years. Land use classification accuracy ranged between 70% and 86%. The area of young rice explained 86% of the inter-village variability in An. gambiae abundance in August before the peak in malaria transmission. Estimating rice in a 900-meter buffer area around the villages resulted in the best correlation with mosquito abundance, larger buffer areas were optimum in the October and dry season models. The quantification of the relationship between An. gambiae abundance and rice cultivation could have management applications that merit further study. PMID:17488907

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alanne, Tommi; Kainulainen, Kimmo; Helsinki Institute of Physics, University of Helsinki,P.O. Box 64, FI-00014 Helsinki

    We investigate an extension of the Standard Model containing two Higgs doublets and a singlet scalar field (2HDSM). We show that the model can have a strongly first-order phase transition and give rise to the observed baryon asymmetry of the Universe, consistent with all experimental constraints. In particular, the constraints from the electron and neutron electric dipole moments are less constraining here than in pure two-Higgs-doublet model (2HDM). The two-step, first-order transition in 2HDSM, induced by the singlet field, may lead to strong supercooling and low nucleation temperatures in comparison with the critical temperature, T{sub n}≪T{sub c}, which can significantlymore » alter the usual phase-transition pattern in 2HD models with T{sub n}≈T{sub c}. Furthermore, the singlet field can be the dark matter particle. However, in models with a strong first-order transition its abundance is typically but a thousandth of the observed dark matter abundance.« less

  9. Assessing sewage impact in a South-West Atlantic rocky shore intertidal algal community.

    PubMed

    Becherucci, Maria Eugenia; Santiago, Lucerito; Benavides, Hugo Rodolfo; Vallarino, Eduardo Alberto

    2016-05-15

    The spatial and seasonal variation of the specific composition and community parameters (abundance, diversity, richness and evenness) of the intertidal algal assemblages was studied at four coastal sampling sites, distributed along an environmental gradient from the sewage water outfall of Mar del Plata, Buenos Aires, Argentina. Two of them were located close to the sewage outfall (<800m) (impacted area) and the two other were 8 and 9km distant (non-impacted area). The algal abundance was monthly analyzed from October 2008 to May 2009. The algal assemblages varied according to the pollution gradient in spring, summer and autumn, being autumn the season when the highest difference was observed. Ceramium uruguayense was recognized as an indicator species for the non-impacted areas, while Berkeleya sp. represented an indicator species for the sewage outfall impact. Ulva spp. did not reflect the typical pattern observed for other sewage pollution areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nucleosynthesis in Hypernovae Associated with Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi

    We present nucleosynthesis in very energetic hypernovae, whose kinetic energy (KE) is more than 10 times the KE of normal core-collapse supernovae (SNe). The light curve and spectra fitting of individual SN are used to estimate the mass of the progenitor, explosion energy, and produced 56Ni mass. Comparison with the abundance patterns of extremely metal-poor (EMP) stars has made it possible to determine the model parameters of core-collapse SNe. Nucleosynthesis in hypernovae is characterized by larger abundance ratios (Zn, Co, V, Ti)/Fe and smaller (Mn, Cr)/Fe than normal SNe, which can explain the observed trends of these ratios in EMP stars. Hypernovae are also jet-induced explosions, so that their nucleosynthesis yields can well reproduce the large C/Fe ratio observed in carbon-enhanced metal-poor (CEMP) stars if a small fraction of Fe-peak elements is mixed into the C-rich ejecta in the form of a jet while the bulk of Fe undergoes fallback from equatorial direction (faint supernovae/hypernovae).

  11. Parasitism by Monogenoidea in Piaractus mesopotamicus (Characiformes, Characidae) cultivated in Paraná River (Brazil).

    PubMed

    Leão, M S L; Justo, M C N; Bueno, G W; Cohen, S C; São Clemente, S C

    2017-11-01

    This study investigated the occurrence, prevalence, mean abundance and mean intensity of monogenoidean parasites in Piaractus mesopotamicus farmed in cages in the reservoir of the Itaipu Hydroelectric Power Station, Paraná River, Brazil. The parasite distribution pattern and the correlation of prevalence and abundance with the total length of hosts were also investigated. Four monogenoidean species were collected: Anacanthorus penilabiatus, A. toledoensis, Mymarothecium ianwhitingtoni and M. viatorum. All the parasites collected in P. mesopotamicus showed the typical aggregated distribution pattern, and the abundance and the prevalence did not shown any correlation with the total length of hosts.

  12. Monitoring waterbird abundance in wetlands: The importance of controlling results for variation in water depth

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2008-01-01

    Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.

  13. Effects of food conditions on the development of the population of Temora stylifera: A modeling approach

    NASA Astrophysics Data System (ADS)

    Mazzocchi, M. G.; Buffoni, G.; Carotenuto, Y.; Pasquali, S.; Ribera d'Alcalà, M.

    2006-08-01

    We integrated field and laboratory data with modeling to determine the extent to which the temporal patterns in population abundance of a copepod species as observed at sea may be explained by differences in production and mortality rates due to diet. A Lagrangian individual-based model utilizing birth and mortality rates whose values and variance were derived from the effects of dietary composition was implemented to simulate the growth of the multi-staged population of Temora stylifera. The four diets considered were represented by unialgal cultures of the dinoflagellate Prorocentrum minimum or the diatom Thalassiosira rotula, a mixture of the two species, and natural particle assemblages < 50 μm. The aim of this work was to set up an exemplary study on a debated issue, i.e., whether the insidious effect of a diatom diet demonstrated in laboratory experiments plays a role in the time course of copepod populations in situ. Our numerical simulations showed that differences in life history parameters, as mainly dependent on diet, caused remarkably different population growth rates. However, our model reproduced the pattern of an average seasonal cycle of T. stylifera in Mediterranean coastal waters only when it utilized time-dependent field data, which evidently integrate all conditions the animals experience at sea. Proper tuning of the mortality term of developmental stages was crucial to reproduce the pattern of the time course of T. stylifera abundance in situ, which confirms that this term plays a major role in shaping the copepod population dynamics. The model also showed that, while dietary composition affects the population growth, it is far from being the only determinant of the cycle of abundance of T. stylifera at sea.

  14. [Relative abundance, population structure, habitat preferences and activity patterns of Tapirus bairdii (Perissodactyla: Tapiridae), in Chimalapas forest, Oaxaca, Mexico].

    PubMed

    Lira-Torres, Iván; Briones-Salas, Miguel; Sánchez-Rojas, Gerardo

    2014-12-01

    Baird's tapir (Tapirus bairdii) is endangered primarily because of habitat loss and fragmentation, and overhunting throughout its distribution range. One of the priority land areas for the conservation of this species is the Northern part of its range in the Chimalapas forest, Oaxaca. The aim of this research was to determine the relative abundance, population struc- ture, habitat preferences and activity patterns of Baird's tapir (Tapirus bairdii) in the Chimalapas forest, Oaxaca, Mexico, through the non-invasive technique of camera-trap sampling. A total of five sampling sessions were undertaken among 2009-2013, and used a total of 30 camera-traps in each period. The determinant factor of the sampling design was the hunting between two study areas. A total sampling effort of 9000 trap-days allowed to estimate an index of relative abundance (IRA) of 6.77 tapir photographs/1,000 trap-days (n = 61). IRA varied significantly between sampling stations (Mann-Whitney, p < 0.01). The frequency of Baird's tapir photos was higher in the dry season in tropical rain forest without hunting (χ2, p < 0.5). In the rainy season, the tropical rain forest and secondary vegetation habitats showed higher photo frequency than expected from random (χ2, p < 0.5). Considering population structure, a 95.08% of adult animals was obtained in photographic records (n = 58). Three types of activity pattern were observed, with more nocturnal records (88.33%; Kruskal-Wallis, p < 0.05). The Chimalapas forest appears to be the second most important terrestrial priority ecoregion, just after the Mayan Forest (Campeche, Chiapas, Quintana Roo), for the conservation of tapir populations, not only for Mexico but also for Central America.

  15. The effect of interspecific competition on the temporal dynamics of Aedes albopictus and Culex pipiens.

    PubMed

    Marini, Giovanni; Guzzetta, Giorgio; Baldacchino, Frederic; Arnoldi, Daniele; Montarsi, Fabrizio; Capelli, Gioia; Rizzoli, Annapaola; Merler, Stefano; Rosà, Roberto

    2017-02-23

    Aedes albopictus and Culex pipiens larvae reared in the same breeding site compete for resources, with an asymmetrical outcome that disadvantages only the latter species. The impact of these interactions on the overall ecology of these two species has not yet been assessed in the natural environment. In the present study, the temporal patterns of adult female mosquitoes from both species were analysed in north-eastern Italy, and substantial temporal shifts between abundance curves of Cx. pipiens and Ae. albopictus were observed in several sites. To understand which factors can drive the observed temporal shifts, we developed a mechanistic model that takes explicitly into account the effect of temperature on the development and survival of all mosquito stages. We also included into the model the effect of asymmetric interspecific competition, by adding a mortality term for Cx. pipiens larvae proportional to the larval abundance of Ae. albopictus within the same breeding site. Model calibration was performed through a Markov Chain Monte Carlo approach using weekly capture data collected in our study sites during 2014 and 2015. In almost half of observation sites, temporal shifts were due to competition, with an early decline of Cx. pipiens caused by the concurrent rise in abundance of its competitor, and this effect was enhanced by higher abundance of both species. We estimate that competition may reduce Cx. pipiens abundance in some sites by up to about 70%. However, in some cases temporal shifts can also be explained in the absence of competition between species resulting from a "temporal niche" effect, when the optimal fitness to environmental conditions for the two species are reached at different times of the year. Our findings demonstrate the importance of considering ecological interactions and, in particular, competition between mosquito species in temperate climates, with important implications for risk assessment of mosquito transmitted pathogens, as well as the implementation of effective control measures.

  16. Structure and Function of the Splice Variants of TMPRSS2-ERG, a Prevalent Genomic Alteration in Prostate Cancer

    DTIC Science & Technology

    2011-09-01

    the ETS family of transcription factors showing diverse expression patterns in human tissues (Turner and Watson, 2008). ERG, similar to other...and adult mouse tissues . Most striking of these observations was highly selective and abundant expression of erg protein in endothelial cells of...mouse tissues . We for the first time clarified that endogenous ERG was not expressed in normal mouse prostate epithelium (Mohamed et al., 2010

  17. New insights on Ba overabundance in open clusters. Evidence for the intermediate neutron-capture process at play?

    NASA Astrophysics Data System (ADS)

    Mishenina, T.; Pignatari, M.; Carraro, G.; Kovtyukh, V.; Monaco, L.; Korotin, S.; Shereta, E.; Yegorova, I.; Herwig, F.

    2015-02-01

    Recently, an increasing number of studies were devoted to measure the abundances of neutron-capture elements heavier than iron in stars belonging to Galactic Open Clusters (OCs). OCs span a sizeable range in metallicity (-0.6 ≤ [Fe/H] ≤ +0.4), and they show abundances of light elements similar to disc stars of the same age. A different pattern is observed for heavy elements. A large scatter is observed for Ba, with most OCs showing [Ba/Fe] and [Ba/La] overabundant with respect to the Sun. The origin of this overabundance is not clearly understood. With the goal of providing new observational insights, we determined radial velocities, atmospheric parameters and chemical composition of 27 giant stars members of five OCs: Cr 110, Cr 261, NGC 2477, NGC 2506 and NGC 5822. We used high-resolution spectra obtained with the UVES spectrograph at European Southern Observatory Paranal. We perform a detailed spectroscopic analysis of these stars to measure the abundance of up to 22 elements per star. We study the dependence of element abundance on metallicity and age with unprecedented detail, complementing our analysis with data culled from the literature. We confirm the trend of Ba overabundance in OCs, and show its large dispersion for clusters younger than ˜4 Gyr. Finally, the implications of our results for stellar nucleosynthesis are discussed. We show in this work that the Ba enrichment compared to other neutron-capture elements in OCs cannot be explained by the contributions from the slow neutron-capture process and the rapid neutron-capture process. Instead, we argue that this anomalous signature can be explained by assuming an additional contribution by the intermediate neutron-capture process.

  18. Relative humidity and activity patterns of Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Berger, K.A.; Ginsberg, Howard S.; Gonzalez, L.; Mather, T.N.

    2014-01-01

    Laboratory studies have shown clear relationships between relative humidity (RH) and the activity and survival of Ixodes scapularis Say (blacklegged tick). However, field studies have produced conflicting results. We examined this relationship using weekly tick count totals and hourly RH observations at three field sites, stratified by latitude, within the state of Rhode Island. Records of nymphal tick abundance were compared with several RH-related variables (e.g., RH at time of sampling and mean weekly daytime RH). In total, 825 nymphs were sampled in 2009, a year of greater precipitation, with a weighted average leaf litter RH recorded at time of sampling of 85.22%. Alternatively, 649 nymphs were collected in 2010, a year of relatively low precipitation, and a weighted average RH recorded at time of sampling was 75.51%. Negative binomial regression analysis of tick count totals identified cumulative hours <82% RH threshold as a significant factor observed in both years (2009: P = 0.0037; 2010: P < 0.0001). Mean weekly daytime RH did not significantly predict tick activity in either year. However, mean weekly daytime RH recorded with 1-wk lag before sample date was a significant variable (P = 0.0016) in 2010. These results suggest a lag effect between moisture availability and patterns of tick activity and abundance. Differences in the relative importance of each RH variable between years may have been due to abnormally wet summer conditions in 2009.

  19. HIP 13962 - The Possible Former Member of Binary System with Supernova

    NASA Astrophysics Data System (ADS)

    Yushchenko, V.; Yushchenko, A.; Gopka, V.; Shavrina, A.; Kovtyukh, V.; Hong, K. S.; Mkrtichian, D.; Thano, N. A.

    2016-12-01

    The runaway supergiant star HIP 13962 (spectral type G0Ia) was recently pointed as a possible former binary companion of young pulsar PSR J0826+2637. The spectra of HIP 13962 were obtained in Haute-Provence observatory (France), in Bohuynsan observatory (Korea), and also in NARIT (Thailand) with 1.9, 1.8, and 2.4 meter telescopes respectively. The spectra were obtained in 1995, 2003, 2005, 2014, and 2015. Significant variations of the spectrum are detected. The cores of strong lines show complicated structure, the brightness of the star is variable. The cycles of photometric variations have been changed. We analyzed the spectral observations and present the preliminary chemical composition for elements from iron to lead. The abundance pattern can not be fitted by solar system r- & s-process abundance distribution.

  20. Copernicus observations of interstellar matter toward the Orion OB1 association. I - Epsilon and Pi-5 Orionis

    NASA Technical Reports Server (NTRS)

    Shull, J. M.

    1979-01-01

    Copernicus UV data on interstellar lines toward Epsilon Ori and Pi-5 Ori are analyzed to study abundances and physical conditions in both low- and intermediate-velocity components. Clouds at -8 and +5 km/s (LSR) toward Epsilon Ori show typical depletions of Fe, Ti, Mg, and Si in dense (H number density about 100 per cu cm) gas. Low-column-density intermediate-velocity clouds toward both stars, with low densities (hydrogen number density less than 1 per cu cm) and near-cosmic Si abundances, are consistent with a widespread pattern of high-velocity gas over a 15-deg area surrounding the Orion region. Such activity may be attributed to the repeated action of supernovae in a patchy low-density region of interstellar gas.

  1. Patterns of food abundance for breeding waterbirds in the san luis valley of Colorado

    USGS Publications Warehouse

    Gammonley, J.H.; Laubhan, M.K.

    2002-01-01

    We measured the amount and distribution of macroinvertebrates and seeds in four wetland habitats (short emergent, seasonal open water, semipermanent/permanent open water, and saltgrass [Distichlis spicata]) used by breeding ducks and shorebirds at a wetland complex in the San Luis Valley, Colorado, USA. Density of macroinvertebrates did not differ among habitats or sampling periods (P = 0.45), but dry mass, crude protein, and gross energy production were greater (P < 0.05) in short emergent than in other habitats. These differences were largely due to the greater dry mass of gastropods in short emergent than in other habitats. Total seed density, dry mass, crude protein, and gross energy differed among habitats and periods with interaction effects (P <0.01). Although seed abundance varied among habitats and sampling periods, abundance was greatest in short emergent during all sampling periods. Breeding waterbirds consumed a variety of macroinvertebrates and seeds on the study area. Patterns of abundance among habitats of macroinvertebrates and seeds consumed by six waterbird species were not consistent with patterns of foraging habitat use by most ducks and shorebirds at this wetland complex. Our results indicate that estimates of food or nutrient abundance are useful in assessing the functional role of broad habitat types, but factors other than food abundance also influence avian selection of wetland foraging habitats. ?? 2002, The Society of Wetland Scientists.

  2. Chemical tagging of the Ursa Major moving group. A northern selection of FGK stars

    NASA Astrophysics Data System (ADS)

    Tabernero, H. M.; Montes, D.; González Hernández, J. I.; Ammler-von Eiff, M.

    2017-01-01

    Context. Stellar kinematic groups are kinematically coherent groups of stars that might have a common origin. These groups spread through the Galaxy over time owing to tidal effects caused by Galactic rotation and disk heating. However, the chemical information survives these processes. Aims: The information provided by analysis of chemical elements can reveal the origin of these kinematic groups. Here we investigate the origin of the stars that belong to the Ursa Major (UMa) moving group (MG). Methods: We present high-resolution spectroscopic observations obtained from three different spectrographs of kinematically selected FGK stars of the Ursa Major moving group. Stellar atmospheric parameters (Teff, log g, ξ, and [Fe/H]) were determined using our own automatic code (StePar), which makes use of the sensitivity of iron equivalent widths (EWs) measured in the spectra. We critically compared the StePar results with other methods (Teff values derived using the infrared flux method (IRFM) and log g values based on Hipparcos parallaxes). We derived the chemical abundances of 20 elements and their [X/Fe] ratios for all stars in the sample. We performed a differential abundance analysis with respect to a reference star of the UMa MG (HD 115043). We also carried out a systematic comparison of the abundance pattern of the Ursa Major MG and the Hyades SC with the thin disk stellar abundances. Results: Our chemical tagging analysis indicates that the Ursa Major MG is less affected by field star contamination than other moving groups (such as the Hyades SC). We find a roughly solar iron composition [Fe/H] = 0.03 ± 0.07 dex for the finally selected stars, whereas the [X/Fe] ratios are roughly subsolar except for super-solar Barium abundance. Conclusions: We conclude that 29 out of 44 (I.e., 66%) candidate stars have similar chemical compositions. In addition, we find that the abundance pattern of the Ursa Major MG might be marginally different from that of the Hyades SC. Based on observations obtained with the HERMES spectrograph at the Observatorio del Roque de los Muchachos (La Palma), the FOCES spectrograph at Calar Alto, and with the Coudé-Échelle spectrograph of the Alfred-Jensch-Teleskop at the Thüringer Landessternwarte Tautenburg.The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A33

  3. The community structure of over-wintering larval and small juvenile fish in a large estuary

    NASA Astrophysics Data System (ADS)

    Munk, Peter; Cardinale, Massimiliano; Casini, Michele; Rudolphi, Ann-Christin

    2014-02-01

    The Skagerrak and Kattegat are estuarine straits of high hydrographical and ecological diversity, situated between the saline waters of the North Sea and the brackish waters of the Baltic Sea. These sustain important nursery grounds of many fish species, of which several overwinter during the larval and early juvenile stages. In order to give more insight into the communities of the overwintering ichthyoplankton in estuarine areas, we examine an annual series of observations from a standard survey carried out 1992-2010. Species differences and annual variability in distributions and abundances are described, and linkages between ichthyoplankton abundances and corresponding hydrographical information are analysed by GAM methods. Communities were dominated by herring, gobies, butterfish, sprat, pipefishes, lemon sole and European eel (i.e. glass eel), and all the sampled species showed large annual fluctuations in abundances. The species showed quite specific patterns of distribution although species assemblages with common distributional characteristics were identified. Within these assemblages, the ichthyoplankton abundances showed linkage to environmental characteristics described by bottom-depth and surface temperature and salinity. Hence the study points to a significant structuring of overwintering ichthyoplankton communities in large estuaries, based on the species habitat choice and its response to physical gradients.

  4. Chemical Composition of RM_1-390 - Large Magellanic Cloud Red Supergiant

    NASA Astrophysics Data System (ADS)

    Yushchenko, Alexander V.; Jeong, Yeuncheol; Gopka, Vira F.; Vasil`eva, Svetlana V.; Andrievsky, Sergey M.; Yushchenko, Volodymyr O.

    2017-09-01

    A high resolution spectroscopic observation of the red supergiant star RM_1-390 in the Large Magellanic Cloud was made from a 3.6 m telescope at the European Southern Observatory. Spectral resolving power was R=20,000, with a signal-to-noise ratio S/N > 100. We found the atmospheric parameters of RM_1-390 to be as follows: the effective temperature Teff = 4,250 ± 50 K, the surface gravity log g = 0.16 ± 0.1, the microturbulent velocity vmicro = 2.5 km/s, the macroturbulence velocity vmacro = 9 km/s and the iron abundance [Fe/H] = -0.73 ± 0.11. The abundances of 18 chemical elements from silicon to thorium in the atmosphere of RM_1-390 were found using the spectrum synthesis method. The relative deficiencies of all elements are close to that of iron. The fit of abundance pattern by the solar system distribution of r- and s-element isotopes shows the importance of the s-process. The plot of relative abundances as a function of second ionization potentials of corresponding chemical elements allows us to find a possibility of convective energy transport in the photosphere of RM_1-390.

  5. Classifying rarity and abundance at a regional scale: Implementation within a new ecoinformatics tool

    EPA Science Inventory

    One factor that determines a species vulnerability to extinction is its rarity in the environment and a goal of many species analyses is to evaluate geographic patterns of abundance. In an attempt to assess vulnerability to climate change, we evaluated relative species abundance...

  6. Spatial variations in mortality in pelagic early life stages of a marine fish (Gadus morhua)

    NASA Astrophysics Data System (ADS)

    Langangen, Øystein; Stige, Leif C.; Yaragina, Natalia A.; Ottersen, Geir; Vikebø, Frode B.; Stenseth, Nils Chr.

    2014-09-01

    Mortality of pelagic eggs and larvae of marine fish is often assumed to be constant both in space and time due to lacking information. This may, however, be a gross oversimplification, as early life stages are likely to experience large variations in mortality both in time and space. In this paper we develop a method for estimating the spatial variability in mortality of eggs and larvae. The method relies on survey data and physical-biological particle-drift models to predict the drift of ichthyoplankton. Furthermore, the method was used to estimate the spatially resolved mortality field in the egg and larval stages of Barents Sea cod (Gadus morhua). We analyzed data from the Barents Sea for the period between 1959 and 1993 when there are two surveys available: a spring and a summer survey. An individual-based physical-biological particle-drift model, tailored to the egg and larval stages of Barents Sea cod, was used to predict the drift trajectories from the observed stage-specific distributions in spring to the time of observation in the summer, a drift time of approximately 45 days. We interpreted the spatial patterns in the differences between the predicted and observed abundance distributions in summer as reflecting the spatial patterns in mortality over the drift period. Using the estimated mortality fields, we show that the spatial variations in mortality might have a significant impact on survival to later life stages and we suggest that there may be trade-offs between increased early survival in off shore regions and reduced probability of ending up in the favorable nursing grounds in the Barents Sea. In addition, we show that accounting for the estimated mortality field, improves the correlation between a simulated recruitment index and observation-based indices of juvenile abundance.

  7. Temporal variation in the organization of a Neotropical assemblage of leaf-nosed bats (Chiroptera: Phyllostomidae)

    NASA Astrophysics Data System (ADS)

    Ribeiro Mello, Marco Aurelio

    2009-03-01

    In the present study, I described the organization of a Neotropical bat assemblage, and tested whether this organization was variable in time. In an Atlantic Forest reserve in southeastern Brazil bats were captured monthly with mist nets over 4 years, and individuals were classified into guilds. I analyzed only leaf-nosed bats, and observed that guilds of fruit-eating bats dominated the assemblage. This pattern was repeated across months and years. However, among frugivores, canopy and understory guilds peaked during different months, but in both cases during the rainy season, while variation among habitat-opportunistic species was not explained by rainfall. The most reliable ecological service delivered by phyllostomid bats in the area is seed dispersal, although other services may be also important in particular seasons. My results suggest that the observed patterns of temporal species turnover are related to the abundance of preferred food items.

  8. Phytoplankton community structure in local water types at a coastal site in north-western Bay of Bengal.

    PubMed

    Baliarsingh, S K; Srichandan, Suchismita; Lotliker, Aneesh A; Sahu, K C; Srinivasa Kumar, T

    2016-07-01

    A comprehensive analysis on seasonal distribution of phytoplankton community structure and their interaction with environmental variables was carried out in two local water types (type 1 < 30 m isobath and Type 2 > 30 m isobath) at a coastal site in north-western Bay of Bengal. Phytoplankton community was represented by 211 taxa (146 marine, 37 fresh, 2 brackish, 20 marine-fresh, and 6 marine-brackish-fresh) belonging to seven major groups including 45 potential bloom forming and 22 potential toxin producing species. The seasonal variability depicted enrichment of phytoplankton during pre-monsoon in both water types. Total phytoplankton abundance pattern observed with inter-annual shift during monsoon and post-monsoon period at both water types. In both water types, diatom predominance was observed in terms of species richness and abundance comprising of centric (82 sp.) and pennate (58 sp.) forms. Pennate diatoms, Thalassiothrix longissima and Skeletonema costatum preponderated in both the water types. The diatom abundance was higher in type 1 in comparison to type 2. In general, SiO4 found to fuel growth of the dominant phytoplankton group, diatom in both the water types despite comparative lower concentration of other macronutrients in type 2.

  9. Mussel biofiltration effects on attached bacteria and unicellular eukaryotes in fish-rearing seawater

    PubMed Central

    Voudanta, Eleni; Monchy, Sebastién; Delegrange, Alice; Vincent, Dorothée; Genitsaris, Savvas; Christaki, Urania

    2016-01-01

    Mussel biofiltration is a widely used approach for the mitigation of aquaculture water. In this study, we investigated the effect of mussel biofiltration on the communities of particle-associated bacteria and unicellular eukaryotes in a sea bass aquaculture in southern North Sea. We assessed the planktonic community changes before and after biofiltration based on the diversity of the 16S and 18S rRNA genes by using next generation sequencing technologies. Although there was no overall reduction in the operational taxonomic units (OTU) numbers between the control (no mussels) and the test (with mussels) tanks, a clear reduction in the relative abundance of the top three most dominant OTUs in every sampling time was observed, ranging between 2–28% and 16–82% for Bacteria and Eukarya, respectively. The bacterial community was dominated by OTUs related to phytoplankton blooms and/or high concentrations of detritus. Among the eukaryotes, several fungal and parasitic groups were found. Their relative abundance in most cases was also reduced from the control to the test tanks; a similar decreasing pattern was also observed for both major higher taxa and functional (trophic) groups. Overall, this study showed the effectiveness of mussel biofiltration on the decrease of microbiota abundance and diversity in seawater fueling fish farms. PMID:27069786

  10. Mussel biofiltration effects on attached bacteria and unicellular eukaryotes in fish-rearing seawater.

    PubMed

    Voudanta, Eleni; Kormas, Konstantinos Ar; Monchy, Sebastién; Delegrange, Alice; Vincent, Dorothée; Genitsaris, Savvas; Christaki, Urania

    2016-01-01

    Mussel biofiltration is a widely used approach for the mitigation of aquaculture water. In this study, we investigated the effect of mussel biofiltration on the communities of particle-associated bacteria and unicellular eukaryotes in a sea bass aquaculture in southern North Sea. We assessed the planktonic community changes before and after biofiltration based on the diversity of the 16S and 18S rRNA genes by using next generation sequencing technologies. Although there was no overall reduction in the operational taxonomic units (OTU) numbers between the control (no mussels) and the test (with mussels) tanks, a clear reduction in the relative abundance of the top three most dominant OTUs in every sampling time was observed, ranging between 2-28% and 16-82% for Bacteria and Eukarya, respectively. The bacterial community was dominated by OTUs related to phytoplankton blooms and/or high concentrations of detritus. Among the eukaryotes, several fungal and parasitic groups were found. Their relative abundance in most cases was also reduced from the control to the test tanks; a similar decreasing pattern was also observed for both major higher taxa and functional (trophic) groups. Overall, this study showed the effectiveness of mussel biofiltration on the decrease of microbiota abundance and diversity in seawater fueling fish farms.

  11. The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure.

    PubMed

    Sandaa, Ruth-Anne; Pree, Bernadette; Larsen, Aud; Våge, Selina; Töpper, Birte; Töpper, Joachim P; Thyrhaug, Runar; Thingstad, Tron Frede

    2017-08-23

    Factors controlling the community composition of marine heterotrophic prokaryotes include organic-C, mineral nutrients, predation, and viral lysis. Two mesocosm experiments, performed at an Arctic location and bottom-up manipulated with organic-C, had very different results in community composition for both prokaryotes and viruses. Previously, we showed how a simple mathematical model could reproduce food web level dynamics observed in these mesocosms, demonstrating strong top-down control through the predator chain from copepods via ciliates and heterotrophic nanoflagellates. Here, we use a steady-state analysis to connect ciliate biomass to bacterial carbon demand. This gives a coupling of top-down and bottom-up factors whereby low initial densities of ciliates are associated with mineral nutrient-limited heterotrophic prokaryotes that do not respond to external supply of labile organic-C. In contrast, high initial densities of ciliates give carbon-limited growth and high responsiveness to organic-C. The differences observed in ciliate abundance, and in prokaryote abundance and community composition in the two experiments were in accordance with these predictions. Responsiveness in the viral community followed a pattern similar to that of prokaryotes. Our study provides a unique link between the structure of the predator chain in the microbial food web and viral abundance and diversity.

  12. Variable depth distribution of Trichodesmium clades in the North Pacific Ocean.

    PubMed

    Rouco, Mónica; Haley, Sheean T; Alexander, Harriet; Wilson, Samuel T; Karl, David M; Dyhrman, Sonya T

    2016-12-01

    Populations of nitrogen-fixing cyanobacteria in the genus Trichodesmium are critical to ocean ecosystems, yet predicting patterns of Trichodesmium distribution and their role in ocean biogeochemistry is an ongoing challenge. This may, in part, be due to differences in the physiological ecology of Trichodesmium species, which are not typically considered independently in field studies. In this study, the abundance of the two dominant Trichodesmium clades (Clade I and Clade III) was investigated during a survey at Station ALOHA in the North Pacific Subtropical Gyre (NPSG) using a clade-specific qPCR approach. While Clade I dominated the Trichodesmium community, Clade III abundance was >50% in some NPSG samples, in contrast to the western North Atlantic where Clade III abundance was always <10%. Clade I populations were distributed down to depths >80 m, while Clade III populations were only observed in the mixed layer and found to be significantly correlated with depth and temperature. These data suggest active niche partitioning of Trichodesmium species from different clades, as has been observed in other cyanobacteria. Tracking the distribution and physiology of Trichodesmium spp. would contribute to better predictions of the physiological ecology of this biogeochemically important genus in the present and future ocean. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Quantifying Shark Distribution Patterns and Species-Habitat Associations: Implications of Marine Park Zoning

    PubMed Central

    Espinoza, Mario; Cappo, Mike; Heupel, Michelle R.; Tobin, Andrew J.; Simpfendorfer, Colin A.

    2014-01-01

    Quantifying shark distribution patterns and species-specific habitat associations in response to geographic and environmental drivers is critical to assessing risk of exposure to fishing, habitat degradation, and the effects of climate change. The present study examined shark distribution patterns, species-habitat associations, and marine reserve use with baited remote underwater video stations (BRUVS) along the entire Great Barrier Reef Marine Park (GBRMP) over a ten year period. Overall, 21 species of sharks from five families and two orders were recorded. Grey reef Carcharhinus amblyrhynchos, silvertip C. albimarginatus, tiger Galeocerdo cuvier, and sliteye Loxodon macrorhinus sharks were the most abundant species (>64% of shark abundances). Multivariate regression trees showed that hard coral cover produced the primary split separating shark assemblages. Four indicator species had consistently higher abundances and contributed to explaining most of the differences in shark assemblages: C. amblyrhynchos, C. albimarginatus, G. cuvier, and whitetip reef Triaenodon obesus sharks. Relative distance along the GBRMP had the greatest influence on shark occurrence and species richness, which increased at both ends of the sampling range (southern and northern sites) relative to intermediate latitudes. Hard coral cover and distance across the shelf were also important predictors of shark distribution. The relative abundance of sharks was significantly higher in non-fished sites, highlighting the conservation value and benefits of the GBRMP zoning. However, our results also showed that hard coral cover had a large effect on the abundance of reef-associated shark species, indicating that coral reef health may be important for the success of marine protected areas. Therefore, understanding shark distribution patterns, species-habitat associations, and the drivers responsible for those patterns is essential for developing sound management and conservation approaches. PMID:25207545

  14. Quantifying shark distribution patterns and species-habitat associations: implications of marine park zoning.

    PubMed

    Espinoza, Mario; Cappo, Mike; Heupel, Michelle R; Tobin, Andrew J; Simpfendorfer, Colin A

    2014-01-01

    Quantifying shark distribution patterns and species-specific habitat associations in response to geographic and environmental drivers is critical to assessing risk of exposure to fishing, habitat degradation, and the effects of climate change. The present study examined shark distribution patterns, species-habitat associations, and marine reserve use with baited remote underwater video stations (BRUVS) along the entire Great Barrier Reef Marine Park (GBRMP) over a ten year period. Overall, 21 species of sharks from five families and two orders were recorded. Grey reef Carcharhinus amblyrhynchos, silvertip C. albimarginatus, tiger Galeocerdo cuvier, and sliteye Loxodon macrorhinus sharks were the most abundant species (>64% of shark abundances). Multivariate regression trees showed that hard coral cover produced the primary split separating shark assemblages. Four indicator species had consistently higher abundances and contributed to explaining most of the differences in shark assemblages: C. amblyrhynchos, C. albimarginatus, G. cuvier, and whitetip reef Triaenodon obesus sharks. Relative distance along the GBRMP had the greatest influence on shark occurrence and species richness, which increased at both ends of the sampling range (southern and northern sites) relative to intermediate latitudes. Hard coral cover and distance across the shelf were also important predictors of shark distribution. The relative abundance of sharks was significantly higher in non-fished sites, highlighting the conservation value and benefits of the GBRMP zoning. However, our results also showed that hard coral cover had a large effect on the abundance of reef-associated shark species, indicating that coral reef health may be important for the success of marine protected areas. Therefore, understanding shark distribution patterns, species-habitat associations, and the drivers responsible for those patterns is essential for developing sound management and conservation approaches.

  15. The Kapteyn Moving Group Is Not Tidal Debris From ω Centauri

    NASA Astrophysics Data System (ADS)

    Navarrete, Camila; Chanamé, Julio; Ramírez, Iván; Meza, Andrés; Anglada-Escudé, Guillem; Shkolnik, Evgenya

    2015-07-01

    The Kapteyn moving group has been postulated as tidal debris from ω Centauri. If true, members of the group should show some of the chemical abundance patterns known for stars in the cluster. We present an optical and near-infrared high-resolution, high-signal-to-noise ratio spectroscopic study of 14 stars of the Kapteyn group, plus 10 additional stars (the ω Cen group) that, while not listed as members of the Kapteyn group as originally defined, have nevertheless been associated dynamically with ω Centauri. Abundances for Na, O, Mg, Al, Ca, and Ba were derived from the optical spectra, while the strength of the chromospheric He i 10830 Å line is studied as a possible helium abundance indicator. The resulting Na-O and Mg-Al patterns for stars of the combined Kapteyn and ω Cen group samples do not resemble those of ω Centauri, and are not different from those of field stars of the Galactic halo. The distribution of equivalent widths of the He i 10830 Å line is consistent with that found among non-active field stars. Therefore, no evidence is found for second-generation stars within our samples, which most likely rules out a globular-cluster origin. Moreover, no hint of the unique barium overabundance at the metal-rich end, well established for ω Centauri stars, is seen among stars of the combined samples. Because this specific Ba pattern is present in ω Centauri irrespective of stellar generation, this would rule out the possibility that our entire sample might be composed of only first-generation stars from the cluster. Finally, for the stars of the Kapteyn group, the possibility of an origin in the hypothetical parent galaxy of ω Centauri is disfavored by the different run of α-elements with metallicity between our targets and stars from present-day dwarf galaxies. Based on observations collected at the European Southern Observatory, Chile (ESO Program 090.B-0605) and observations gathered with the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile.

  16. Evidence for a trophic cascade on rocky reefs following sea star mass mortality in British Columbia

    PubMed Central

    Cloutier, Ryan N.; Côté, Isabelle M.

    2016-01-01

    Echinoderm population collapses, driven by disease outbreaks and climatic events, may be important drivers of population dynamics, ecological shifts and biodiversity. The northeast Pacific recently experienced a mass mortality of sea stars. In Howe Sound, British Columbia, the sunflower star Pycnopodia helianthoides—a previously abundant predator of bottom-dwelling invertebrates—began to show signs of a wasting syndrome in early September 2013, and dense aggregations disappeared from many sites in a matter of weeks. Here, we assess changes in subtidal community composition by comparing the abundance of fish, invertebrates and macroalgae at 20 sites in Howe Sound before and after the 2013 sea star mortality to evaluate evidence for a trophic cascade. We observed changes in the abundance of several species after the sea star mortality, most notably a four-fold increase in the number of green sea urchins, Strongylocentrotus droebachiensis, and a significant decline in kelp cover, which are together consistent with a trophic cascade. Qualitative data on the abundance of sunflower stars and green urchins from a citizen science database show that the patterns of echinoderm abundance detected at our study sites reflected wider local trends. The trophic cascade evident at the scale of Howe Sound was observed at half of the study sites. It remains unclear whether the urchin response was triggered directly, via a reduction in urchin mortality, or indirectly, via a shift in urchin distribution into areas previously occupied by the predatory sea stars. Understanding the ecological implications of sudden and extreme population declines may further elucidate the role of echinoderms in temperate seas, and provide insight into the resilience of marine ecosystems to biological disturbances. PMID:27168988

  17. Rare-earth abundances in chondritic meteorites

    NASA Technical Reports Server (NTRS)

    Evensen, N. M.; Hamilton, P. J.; Onions, R. K.

    1978-01-01

    Fifteen chondrites, including eight carbonaceous chondrites, were analyzed for rare earth element abundances by isotope dilution. Examination of REE for a large number of individual chondrites shows that only a small proportion of the analyses have flat unfractionated REE patterns within experimental error. While some of the remaining analyses are consistent with magmatic fractionation, many patterns, in particular those with positive Ce anomalies, can not be explained by known magmatic processes. Elemental abundance anomalies are found in all major chondrite classes. The persistence of anomalies in chondritic materials relatively removed from direct condensational processes implies that anomalous components are resistant to equilibrium or were introduced at a late stage of chondrite formation. Large-scale segregation of gas and condensate is implied, and bulk variations in REE abundances between planetary bodies is possible.

  18. COMPLETE ELEMENT ABUNDANCES OF NINE STARS IN THE r -PROCESS GALAXY RETICULUM II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Alexander P.; Frebel, Anna; Chiti, Anirudh

    We present chemical abundances derived from high-resolution Magellan /Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (−3.5 < [Fe/H] < −2). Seven of the nine stars have extremely high levels of r -process material ([Eu/Fe] ∼ 1.7), in contrast to the extremely low neutron-capture element abundances found in every other ultra-faint dwarf galaxy studied to date. The other two stars are the most metal-poor stars in the system ([Fe/H] < −3), and they have neutron-capture elementmore » abundance limits similar to those in other ultra-faint dwarf galaxies. We confirm that the relative abundances of Sr, Y, and Zr in these stars are similar to those found in r -process halo stars, but they are ∼0.5 dex lower than the solar r -process pattern. If the universal r -process pattern extends to those elements, the stars in Ret II display the least contaminated known r -process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r -process sites besides the source of r -process elements in Ret II. Galaxies like Ret II may be the original birth sites of r -process enhanced stars now found in the halo.« less

  19. Community level patterns in diverse systems: A case study of litter fauna in a Mexican pine-oak forest using higher taxa surrogates and re-sampling methods

    NASA Astrophysics Data System (ADS)

    Moreno, Claudia E.; Guevara, Roger; Sánchez-Rojas, Gerardo; Téllez, Dianeis; Verdú, José R.

    2008-01-01

    Environmental assessment at the community level in highly diverse ecosystems is limited by taxonomic constraints and statistical methods requiring true replicates. Our objective was to show how diverse systems can be studied at the community level using higher taxa as biodiversity surrogates, and re-sampling methods to allow comparisons. To illustrate this we compared the abundance, richness, evenness and diversity of the litter fauna in a pine-oak forest in central Mexico among seasons, sites and collecting methods. We also assessed changes in the abundance of trophic guilds and evaluated the relationships between community parameters and litter attributes. With the direct search method we observed differences in the rate of taxa accumulation between sites. Bootstrap analysis showed that abundance varied significantly between seasons and sampling methods, but not between sites. In contrast, diversity and evenness were significantly higher at the managed than at the non-managed site. Tree regression models show that abundance varied mainly between seasons, whereas taxa richness was affected by litter attributes (composition and moisture content). The abundance of trophic guilds varied among methods and seasons, but overall we found that parasitoids, predators and detrivores decreased under management. Therefore, although our results suggest that management has positive effects on the richness and diversity of litter fauna, the analysis of trophic guilds revealed a contrasting story. Our results indicate that functional groups and re-sampling methods may be used as tools for describing community patterns in highly diverse systems. Also, the higher taxa surrogacy could be seen as a preliminary approach when it is not possible to identify the specimens at a low taxonomic level in a reasonable period of time and in a context of limited financial resources, but further studies are needed to test whether the results are specific to a system or whether they are general with regards to land management.

  20. MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase.

    PubMed

    Clokie, Samuel J H; Lau, Pierre; Kim, Hyun Hee; Coon, Steven L; Klein, David C

    2012-07-20

    MicroRNAs (miRNAs) play a broad range of roles in biological regulation. In this study, rat pineal miRNAs were profiled for the first time, and their importance was evaluated by focusing on the main function of the pineal gland, melatonin synthesis. Massively parallel sequencing and related methods revealed the miRNA population is dominated by a small group of miRNAs as follows: ~75% is accounted for by 15 miRNAs; miR-182 represents 28%. In addition to miR-182, miR-183 and miR-96 are also highly enriched in the pineal gland, a distinctive pattern also found in the retina. This effort also identified previously unrecognized miRNAs and other small noncoding RNAs. Pineal miRNAs do not exhibit a marked night/day difference in abundance with few exceptions (e.g. 2-fold night/day differences in the abundance of miR-96 and miR-182); this contrasts sharply with the dynamic 24-h pattern that characterizes the pineal transcriptome. During development, the abundance of most pineal gland-enriched miRNAs increases; however, there is a marked decrease in at least one, miR-483. miR-483 is a likely regulator of melatonin synthesis, based on the following. It inhibits melatonin synthesis by pinealocytes in culture; it acts via predicted binding sites in the 3"-UTR of arylalkylamine N-acetyltransferase (Aanat) mRNA, the penultimate enzyme in melatonin synthesis, and it exhibits a developmental profile opposite to that of Aanat transcripts. Additionally, a miR-483 targeted antagonist increased melatonin synthesis in neonatal pinealocytes. These observations support the hypothesis that miR-483 suppresses Aanat mRNA levels during development and that the developmental decrease in miR-483 abundance promotes melatonin synthesis.

  1. MicroRNAs in the Pineal Gland

    PubMed Central

    Clokie, Samuel J. H.; Lau, Pierre; Kim, Hyun Hee; Coon, Steven L.; Klein, David C.

    2012-01-01

    MicroRNAs (miRNAs) play a broad range of roles in biological regulation. In this study, rat pineal miRNAs were profiled for the first time, and their importance was evaluated by focusing on the main function of the pineal gland, melatonin synthesis. Massively parallel sequencing and related methods revealed the miRNA population is dominated by a small group of miRNAs as follows: ∼75% is accounted for by 15 miRNAs; miR-182 represents 28%. In addition to miR-182, miR-183 and miR-96 are also highly enriched in the pineal gland, a distinctive pattern also found in the retina. This effort also identified previously unrecognized miRNAs and other small noncoding RNAs. Pineal miRNAs do not exhibit a marked night/day difference in abundance with few exceptions (e.g. 2-fold night/day differences in the abundance of miR-96 and miR-182); this contrasts sharply with the dynamic 24-h pattern that characterizes the pineal transcriptome. During development, the abundance of most pineal gland-enriched miRNAs increases; however, there is a marked decrease in at least one, miR-483. miR-483 is a likely regulator of melatonin synthesis, based on the following. It inhibits melatonin synthesis by pinealocytes in culture; it acts via predicted binding sites in the 3′-UTR of arylalkylamine N-acetyltransferase (Aanat) mRNA, the penultimate enzyme in melatonin synthesis, and it exhibits a developmental profile opposite to that of Aanat transcripts. Additionally, a miR-483 targeted antagonist increased melatonin synthesis in neonatal pinealocytes. These observations support the hypothesis that miR-483 suppresses Aanat mRNA levels during development and that the developmental decrease in miR-483 abundance promotes melatonin synthesis. PMID:22908386

  2. Stream microbial diversity in response to environmental changes: review and synthesis of existing research

    PubMed Central

    Zeglin, Lydia H.

    2015-01-01

    The importance of microbial activity to ecosystem function in aquatic ecosystems is well established, but microbial diversity has been less frequently addressed. This review and synthesis of 100s of published studies on stream microbial diversity shows that factors known to drive ecosystem processes, such as nutrient availability, hydrology, metal contamination, contrasting land-use and temperature, also cause heterogeneity in bacterial diversity. Temporal heterogeneity in stream bacterial diversity was frequently observed, reflecting the dynamic nature of both stream ecosystems and microbial community composition. However, within-stream spatial differences in stream bacterial diversity were more commonly observed, driven specifically by different organic matter (OM) compartments. Bacterial phyla showed similar patterns in relative abundance with regard to compartment type across different streams. For example, surface water contained the highest relative abundance of Actinobacteria, while epilithon contained the highest relative abundance of Cyanobacteria and Bacteroidetes. This suggests that contrasting physical and/or nutritional habitats characterized by different stream OM compartment types may select for certain bacterial lineages. When comparing the prevalence of physicochemical effects on stream bacterial diversity, effects of changing metal concentrations were most, while effects of differences in nutrient concentrations were least frequently observed. This may indicate that although changing nutrient concentrations do tend to affect microbial diversity, other environmental factors are more likely to alter stream microbial diversity and function. The common observation of connections between ecosystem process drivers and microbial diversity suggests that microbial taxonomic turnover could mediate ecosystem-scale responses to changing environmental conditions, including both microbial habitat distribution and physicochemical factors. PMID:26042102

  3. The Interplay among Acorn Abundance and Rodent Behavior Drives the Spatial Pattern of Seedling Recruitment in Mature Mediterranean Oak Forests.

    PubMed

    Sunyer, Pau; Boixadera, Ester; Muñoz, Alberto; Bonal, Raúl; Espelta, Josep Maria

    2015-01-01

    The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitation effect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent's behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests.

  4. The Interplay among Acorn Abundance and Rodent Behavior Drives the Spatial Pattern of Seedling Recruitment in Mature Mediterranean Oak Forests

    PubMed Central

    Boixadera, Ester; Bonal, Raúl

    2015-01-01

    The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitationeffect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent’s behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests. PMID:26070129

  5. Thinning and prescribed fire effects on snag abundance and spatial pattern in an eastern Cascade Range dry forest, Washington, USA

    Treesearch

    Paul F. Hessburg; Nicholas A. Povak; R. Brion. Salter

    2010-01-01

    Mechanical thinning and prescribed burning practices are commonly used to address tree stocking, spacing, composition, and canopy and surface fuel conditions in western US mixed conifer forests. We examined the effects of these fuel treatments alone and combined on snag abundance and spatial pattern across 12 10-ha treatment units in central Washington State. A snag...

  6. Vegetation patterns and abundances of amphibians and small mammals along small streams in a northwestern California watershed

    Treesearch

    Jeffrey R. Waters; Cynthia J. Zabel; Kevin S. McKelvey; Hartwell H. Welsh

    2001-01-01

    Our goal was to describe and evaluate patterns of association between stream size and abundances of amphibians and small mammals in a northwestern California watershed. We sampled populations at 42 stream sites and eight upland sites within a 100- watershed in 1995 and 1996. Stream reaches sampled ranged from poorly defined channels that rarely flowed to 10-m-wide...

  7. Trace element studies of silicate-rich inclusions in the Guin (UNGR) and Kodaikanal (IIE) iron meteorites

    NASA Astrophysics Data System (ADS)

    Kurat, Gero; Zinner, Ernst; Varela, Maria Eugenia

    2007-08-01

    A devitrified glass inclusion from the Guin (UNGR) iron consists of cryptocrystalline feldspars, pyroxenes, and silica and is rich in SiO2, Al2O3, and Na2O. It contains a rutile grain and is in contact with a large Cl apatite. The latter is very rich in rare earth elements (REEs) (˜80 × CI), which display a flat abundance pattern, except for Eu and Yb, which are underabundant. The devitrified glass is very poor in REEs (<0.1 × CI), except for Eu and Yb, which have positive abundance anomalies. Devitrified glass and Cl apatite are out of chemical equilibrium and their complementary REE patterns indicate a genesis via condensation under reducing conditions. Inclusion 1 in the Kodaikanal (IIE) iron consists of glass only, whereas inclusion 2 consists of clinopyroxene, which is partly overgrown by low-Ca pyroxene, and apatite embedded in devitrified glass. All minerals are euhedral or have skeletal habits indicating crystallization from the liquid precursor of the glass. Pyroxenes and the apatite are rich in trace elements, indicating crystallization from a liquid that had 10-50 × CI abundances of REEs and refractory lithophile elements (RLEs). The co-existing glass is poor in REEs (˜0.1-1 × CI) and, consequently, a liquid of such chemical composition cannot have crystallized the phenocrysts. Glasses have variable chemical compositions but are rich in SiO2, Al2O3, Na2O, and K2O as well as in HFSEs, Be, B, and Rb. The REE abundance patterns are mostly flat, except for the glass-only inclusion, which has heavy rare earth elements (HREEs) > light rare earth elements (LREEs) and deficits in Eu and Yb—an ultrarefractory pattern. The genetic models suggested so far cannot explain what is observed and, consequently, we offer a new model for silicate inclusion formation in IIE and related irons. Nebular processes and a relationship with E meteorites (Guin) or Ca-Al-rich inclusions (CAIs) (Kodaikanal) are indicated. A sequence of condensation (CaS, TiN or refractory pyroxene-rich liquids) and vapor-solid elemental exchange can be identified that took place beginning under reducing and ending at oxidizing conditions (phosphate, rutile formation, alkali and Fe2+ metasomatism, metasomatic loss of REEs from glass).

  8. Unprecedented Proliferation of Novel Pelagic Sargassum Form has Implications for Ecosystem Function and Regional Diversity in the Caribbean

    NASA Astrophysics Data System (ADS)

    Siuda, A. N.; Schell, J. M.; Goodwin, D. S.

    2016-02-01

    Pelagic Sargassum is a planktonic macroalgae comprised of two species, S. fluitans and S. natans, each exhibiting a variety of morphological forms; it is found throughout the North Atlantic, Caribbean Sea, and Gulf of Mexico. Drifting open ocean Sargassum provides essential habitat and food resources to organisms across multiple trophic levels, from resident shrimp to migratory sea turtles. Historic observations, including Sea Education Association's (SEA) 22-year field sampling dataset, indicate that S. natans-I and S. fluitans-III are most common and that S. natans-VIII is rare. Furthermore, SEA's long-term record shows very low pelagic Sargassum abundance in the Eastern Caribbean in contrast to the Sargasso Sea. During April 2014, Sargassum began washing ashore along Caribbean coastlines in unprecedented quantities. Shipboard observations of the recent inundation event occurred November 2014 to May 2015. In total, 30.5 kg of pelagic Sargassum was collected in 92.6% of surface neuston tows, sorted and weighed by morphological form. Notably, the predominant Sargassum form observed during the 2014/15 event is S. natans-VIII, a documented change in Sargassum diversity. Strong spatial patterns were also observed, with S. natans-VIII dominant in the Western Tropical Atlantic (87.3% wet weight) and Eastern Caribbean (95.3% wet weight) and S. natans-I most common in the South Sargasso Sea (87.5% wet weight). S. fluitans-III was observed in low abundance across all regions. These sudden assemblage and abundance changes, the biophysical mechanisms of which are not yet understood, have significant ecological consequences at multiple scales. Impacts to associated mobile fauna diversity and community structure, dependent fisheries and iconic species, and coastal ecosystem function will echo throughout the Caribbean, and should comprise focal areas of future research efforts across the region.

  9. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    PubMed

    Hollander, Franck A; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  10. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird

    PubMed Central

    Hollander, Franck A.; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments. PMID:26624619

  11. Assessment of Habitat Suitability Is Affected by Plant-Soil Feedback: Comparison of Field and Garden Experiment.

    PubMed

    Hemrová, Lucie; Knappová, Jana; Münzbergová, Zuzana

    2016-01-01

    Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities) are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern. In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment. In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly correlated between the two experiments, suggesting that plant-soil feedback is a likely explanation of the patterns observed in the field. All of the results indicate that intraspecific negative plant-soil feedback, either biotic or abiotic, may be a key factor determining the performance of the plants in our field translocation experiment. The possible effects of negative feedback should thus be considered when evaluating results of translocation experiments in future studies.

  12. Assessment of Habitat Suitability Is Affected by Plant-Soil Feedback: Comparison of Field and Garden Experiment

    PubMed Central

    Hemrová, Lucie; Knappová, Jana; Münzbergová, Zuzana

    2016-01-01

    Background Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities) are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern. Aims and Methods In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment. Key Results In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly correlated between the two experiments, suggesting that plant-soil feedback is a likely explanation of the patterns observed in the field. Conclusions All of the results indicate that intraspecific negative plant-soil feedback, either biotic or abiotic, may be a key factor determining the performance of the plants in our field translocation experiment. The possible effects of negative feedback should thus be considered when evaluating results of translocation experiments in future studies. PMID:27336400

  13. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

    PubMed

    Paterson, Gordon; Ryder, Mark; Drouillard, Ken G; Haffner, G Douglas

    2016-01-01

    This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems. © 2015 SETAC.

  14. Prey Patch Patterns Predict Habitat Use by Top Marine Predators with Diverse Foraging Strategies

    PubMed Central

    Benoit-Bird, Kelly J.; Battaile, Brian C.; Heppell, Scott A.; Hoover, Brian; Irons, David; Jones, Nathan; Kuletz, Kathy J.; Nordstrom, Chad A.; Paredes, Rosana; Suryan, Robert M.; Waluk, Chad M.; Trites, Andrew W.

    2013-01-01

    Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested using movement patterns obtained from satellite-tracked individual animals. With the most commonly used measures to quantify prey distributions - areal biomass, density, and numerical abundance - we were unable to find a spatial relationship between predators and their prey. We instead found that habitat use by all three predators was predicted most strongly by prey patch characteristics such as depth and local density within spatial aggregations. Additional prey patch characteristics and physical habitat also contributed significantly to characterizing predator patterns. Our results indicate that the small-scale prey patch characteristics are critical to how predators perceive the quality of their food supply and the mechanisms they use to exploit it, regardless of time of day, sampling year, or source colony. The three focal predator species had different constraints and employed different foraging strategies – a shallow diver that makes trips of moderate distance (kittiwakes), a deep diver that makes trip of short distances (murres), and a deep diver that makes extensive trips (fur seals). However, all three were similarly linked by patchiness of prey rather than by the distribution of overall biomass. This supports the hypothesis that patchiness may be critical for understanding predator-prey relationships in pelagic marine systems more generally. PMID:23301063

  15. Benefits of the Mediterranean diet beyond the Mediterranean Sea and beyond food patterns.

    PubMed

    Martínez-González, Miguel A

    2016-10-14

    Abundant and growing evidence has accrued to demonstrate that the traditional Mediterranean diet is likely to be the ideal dietary pattern for the prevention of cardiovascular disease. A landmark randomized trial (PREDIMED) together with many well-conducted long-term observational prospective cohort studies support this causal effect.A new, large British cohort study by Tong et al. assessing the association between adherence to the Mediterranean diet and cardiovascular disease was recently published in BMC Medicine. Using a superb methodology, they followed-up 23,902 participants for 12.2 years on average and observed several thousand incident cases.The results of this cohort study showed a significant beneficial effect of the Mediterranean diet on cardiovascular events. These findings support the transferability of this dietary pattern beyond the shores of the Mediterranean Sea. The authors provided measures of population impact in cardiovascular prevention and estimated that 19,375 cases of cardiovascular death would be prevented each year in the UK by promoting the Mediterranean Diet.Please see related article: http://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0677-4 .

  16. Evaluating abundance and trends in a Hawaiian avian community using state-space analysis

    USGS Publications Warehouse

    Camp, Richard J.; Brinck, Kevin W.; Gorresen, P.M.; Paxton, Eben H.

    2016-01-01

    Estimating population abundances and patterns of change over time are important in both ecology and conservation. Trend assessment typically entails fitting a regression to a time series of abundances to estimate population trajectory. However, changes in abundance estimates from year-to-year across time are due to both true variation in population size (process variation) and variation due to imperfect sampling and model fit. State-space models are a relatively new method that can be used to partition the error components and quantify trends based only on process variation. We compare a state-space modelling approach with a more traditional linear regression approach to assess trends in uncorrected raw counts and detection-corrected abundance estimates of forest birds at Hakalau Forest National Wildlife Refuge, Hawai‘i. Most species demonstrated similar trends using either method. In general, evidence for trends using state-space models was less strong than for linear regression, as measured by estimates of precision. However, while the state-space models may sacrifice precision, the expectation is that these estimates provide a better representation of the real world biological processes of interest because they are partitioning process variation (environmental and demographic variation) and observation variation (sampling and model variation). The state-space approach also provides annual estimates of abundance which can be used by managers to set conservation strategies, and can be linked to factors that vary by year, such as climate, to better understand processes that drive population trends.

  17. Utilizing individual fish biomass and relative abundance models to map environmental niche associations of adult and juvenile targeted fishes.

    PubMed

    Galaiduk, Ronen; Radford, Ben T; Harvey, Euan S

    2018-06-21

    Many fishes undergo ontogenetic habitat shifts to meet their energy and resource needs as they grow. Habitat resource partitioning and patterns of habitat connectivity between conspecific fishes at different life-history stages is a significant knowledge gap. Species distribution models were used to examine patterns in the relative abundance, individual biomass estimates and environmental niche associations of different life stages of three iconic West Australian fishes. Continuous predictive maps describing the spatial distribution of abundance and individual biomass of the study species were created as well predictive hotspot maps that identify possible areas for aggregation of individuals of similar life stages of multiple species (i.e. spawning grounds, fisheries refugia or nursery areas). The models and maps indicate that processes driving the abundance patterns could be different from the body size associated demographic processes throughout an individual's life cycle. Incorporating life-history in the spatially explicit management plans can ensure that critical habitat of the vulnerable stages (e.g. juvenile fish, spawning stock) is included within proposed protected areas and can enhance connectivity between various functional areas (e.g. nursery areas and adult populations) which, in turn, can improve the abundance of targeted species as well as other fish species relying on healthy ecosystem functioning.

  18. Patterns of acoustical activity of bats prior to and following White-nose Syndrome occurrence

    USGS Publications Warehouse

    Ford, W. Mark; Britzke, Eric R.; Dobony, Christopher A.; Rodrigue, Jane L.; Johnson, Joshua B.

    2011-01-01

    White-nose Syndrome (WNS), a wildlife health concern that has decimated cave-hibernating bat populations in eastern North America since 2006, began affecting source-caves for summer bat populations at Fort Drum, a U.S. Army installation in New York in the winter of 2007–2008. As regional die-offs of bats became evident, and Fort Drum's known populations began showing declines, we examined whether WNS-induced change in abundance patterns and seasonal timing of bat activity could be quantified using acoustical surveys, 2003–2010, at structurally uncluttered riparian–water habitats (i.e., streams, ponds, and wet meadows). As predicted, we observed significant declines in overall summer activity between pre-WNS and post-WNS years for little brown bats Myotis lucifugus, northern bats M. septentrionalis, and Indiana bats M. sodalis. We did not observe any significant change in activity patterns between pre-WNS and post-WNS years for big brown bats Eptesicus fuscus, eastern red bats Lasiurus borealis, or the small number of tri-colored bats Perimyotis subflavus. Activity of silver-haired bats Lasionycteris noctivagans increased from pre-WNS to post-WNS years. Activity levels of hoary bats Lasiurus cinereus significantly declined between pre- and post-WNS years. As a nonhibernating, migratory species, hoary bat declines might be correlated with wind-energy development impacts occurring in the same time frame rather than WNS. Intraseason activity patterns also were affected by WNS, though the results were highly variable among species. Little brown bats showed an overall increase in activity from early to late summer pre-WNS, presumably due to detections of newly volant young added to the local population. However, the opposite occurred post-WNS, indicating that reproduction among surviving little brown bats may be declining. Our data suggest that acoustical monitoring during the summer season can provide insights into species' relative abundance on the landscape as affected by the occurrence of WNS.

  19. Linking the response of bacterial populations to plant development through analysis of rhizosphere-competence traits of soil bacteria

    NASA Astrophysics Data System (ADS)

    Cho, H. J.; Karaoz, U.; Zhalnina, K.; Firestone, M. K.; Brodie, E.

    2016-12-01

    A growing plant root exudes changing combinations of compounds including root litter and other detritus throughout its developmental stages, providing a major source of organic C for rhizosphere bacteria. Clear patterns of microbial succession have been observed in the rhizosphere of a number of plants. These patterns of microbial succession are likely key to the processing of soil organic carbon and nutrient recycling. What is less well understood are the microbial traits, or combinations of traits, selected for during plant development. Are these traits or trait-combinations conserved, and is phylogeny a useful integrator of traits? Understanding the mechanisms underlying ecological succession would enable improved prediction of future rhizosphere states and consequences for C and nutrient cycles. In this study, we resolve the responses of rhizosphere bacteria at strain-level during plant (Avena fatua) developmental stages using both isolation and metagenomic approaches. Metagenome reads from bulk and rhizosphere soils were mapped to the genomes of thirty nine bacterial isolates numerically abundant ( 0.5% in relative abundance) and phylogenetically representative of these soils, and also to ninety six metagenome-derived genome bins. Analysis of temporal coverage patterns demonstrate that bacteria can be classified as positive and negative rhizosphere responders, with traits associated with root exudate utilization being important. Significant strain level diversity was observed and variance in the temporal coverage patterns further distinguished closely related strains of the same genera. For example, while a number of strains from the Bradyrhizobia, Mesorhizobia and Mycobacteria all increased in coverage with root growth, suggesting that recently acquired traits are selected for. Candidate traits distinguishing closely related strains included those related to xylose and other plant cell-wall derived sugar utilization, motility and aromatic organic acid utilization. These combinations of traits act together to influence rhizosphere bacterial succession, and developing linkages to other traits related to carbon and nutrient cycling will be key to understanding the feedbacks between plant response to environmental change and soil biogeochemical cycles.

  20. A hierarchical model combining distance sampling and time removal to estimate detection probability during avian point counts

    USGS Publications Warehouse

    Amundson, Courtney L.; Royle, J. Andrew; Handel, Colleen M.

    2014-01-01

    Imperfect detection during animal surveys biases estimates of abundance and can lead to improper conclusions regarding distribution and population trends. Farnsworth et al. (2005) developed a combined distance-sampling and time-removal model for point-transect surveys that addresses both availability (the probability that an animal is available for detection; e.g., that a bird sings) and perceptibility (the probability that an observer detects an animal, given that it is available for detection). We developed a hierarchical extension of the combined model that provides an integrated analysis framework for a collection of survey points at which both distance from the observer and time of initial detection are recorded. Implemented in a Bayesian framework, this extension facilitates evaluating covariates on abundance and detection probability, incorporating excess zero counts (i.e. zero-inflation), accounting for spatial autocorrelation, and estimating population density. Species-specific characteristics, such as behavioral displays and territorial dispersion, may lead to different patterns of availability and perceptibility, which may, in turn, influence the performance of such hierarchical models. Therefore, we first test our proposed model using simulated data under different scenarios of availability and perceptibility. We then illustrate its performance with empirical point-transect data for a songbird that consistently produces loud, frequent, primarily auditory signals, the Golden-crowned Sparrow (Zonotrichia atricapilla); and for 2 ptarmigan species (Lagopus spp.) that produce more intermittent, subtle, and primarily visual cues. Data were collected by multiple observers along point transects across a broad landscape in southwest Alaska, so we evaluated point-level covariates on perceptibility (observer and habitat), availability (date within season and time of day), and abundance (habitat, elevation, and slope), and included a nested point-within-transect and park-level effect. Our results suggest that this model can provide insight into the detection process during avian surveys and reduce bias in estimates of relative abundance but is best applied to surveys of species with greater availability (e.g., breeding songbirds).

  1. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification

    NASA Astrophysics Data System (ADS)

    Vianello, A.; Boldrin, A.; Guerriero, P.; Moschino, V.; Rella, R.; Sturaro, A.; Da Ros, L.

    2013-09-01

    In order to improve knowledge of the identification, distribution and abundances of microplastic particles of 1 mm or less (S-MPPs) in the coastal area of the Mediterranean region, a preliminary monitoring survey was carried out in a transitional environment along the north-eastern Italian coasts, the Lagoon of Venice. S-MPPs were evaluated in sediments collected from 10 sites chosen in shallow areas variously affected by natural conditions and anthropogenic influences (i.e., landward stations influenced by freshwater inputs, seaward areas near sea inlets, and sites influenced by the presence of aquaculture farms, industry and city centers). S-MPPs, extracted from bulk sediments by density separation, were counted and identified by Fourier-Transform Infrared Micro-spectroscopy (μFT-IR). The μFT-IR process included automatic surface chemical mapping and references to an infrared library database to identify the compositional spectra of particles. S-MPPs were recovered from all samples - a fact which emphasizes their extensive distribution throughout the Lagoon. Total abundances varied from 2175 to 672 S-MPPs kg-1 d.w., higher concentrations generally being observed in landward sites. Of the ten polymer types identified, the most abundant, accounting for more than 82% of total S-MPPs, were polyethylene and polypropylene. The most frequent size (93% of observed microplastics) was in the range 30-500 μm. Total S-MPP values were significantly correlated with the finer sediment fraction and with the metal pollution index.

  2. An upper limit on the sulphur abundance in HE 1327-2326

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Caffau, E.; Venn, K. A.; Lambert, D. L.

    2012-08-01

    Context. Star HE 1327-2326 is a unique object, with the lowest measured iron abundance ([Fe/H] ~ -6) and a peculiar chemical composition that includes large overabundances of C, N, and O with respect to iron. One important question is whether the chemical abundances in this star reflect the chemical composition of the gas cloud from which it was formed or if they have been severely affected by other processes, such as dust-gas winnowing. Aims: We measure or provide an upper limit to the abundance of the volatile element sulphur, which can help to discriminate between the two scenarios. Methods: We observed HE 1327-2326 with the high resolution infra-red spectrograph CRIRES at the VLT to observe the S i lines of Multiplet 3 at 1045 nm. Results: We do not detect the S i line. A 3σ upper limit on the equivalent width (EW) of any line in our spectrum is EW < 0.66 pm. Using either one-dimensional static or three-dimensional hydrodynamical model-atmospheres, this translates into a robust upper limit of [S/H] < -2.6. Conclusions: This upper limit does not provide conclusive evidence for or against dust-gas winnowing, and the evidence coming from other elements (e.g., Na and Ti) is also inconclusive or contradictory. The formation of dust in the atmosphere versus an origin of the metals in a metal-poor supernova with extensive "fall-back" are not mutually exclusive. It is possible that dust formation distorts the peculiar abundance pattern created by a supernova with fall-back, thus the abundance ratios in HE 1327-2326 may be used to constrain the properties of the supernova(e) that produced its metals, but with some caution. Based on spectra obtained with CRIRES at the 8.2 m Antu ESO telescope, programme 386.D-0095.

  3. Hot spots in the microwave sky

    NASA Technical Reports Server (NTRS)

    Vittorio, Nicola; Juszkiewicz, Roman

    1987-01-01

    Tha assumption that the cosmic background fluctuations can be approximated as a random Gaussian field implies specific predictions for the radiation temperature pattern. Using this assumption, the abundances and angular sizes are calculated for regions of various levels of brightness expected to appear in the sky. Different observational strategies are assessed in the context of these results. Calculations for both large-angle and small-angle anisotropy generated by scale-invariant fluctuations in a flat universe are presented. Also discussed are simple generalizations to open cosmological models.

  4. Assemblage organization in stream fishes: effects of environmental variation and interspecific interactions

    USGS Publications Warehouse

    Grossman, G.D.; Ratajczak, R.E.; Crawford, M. M.; Freeman, Mary C.

    1998-01-01

    We assessed the relative importance of environmental variation, interspecific competition for space, and predator abundance on assemblage structure and microhabitat use in a stream fish assemblage inhabiting Coweeta Creek, North Carolina, USA. Our study encompassed a ten year time span (1983-1992) and included some of the highest and lowest flows in the last 58 years. We collected 16 seasonal samples which included data on: 1) habitat availability (total and microhabitat) and microhabitat diversity, 2) assemblage structure (i.e., the number and abundances of species comprising a subset of the community), and 3) microhabitat use and overlap. We classified habitat availability data on the basis of year, season, and hydrologic period. Hydrologic period (i.e., pre-drought [PR], drought [D], and post-drought [PO]) represented the temporal location of a sample with respect to a four-year drought that occurred during the study. Hydrologic period explained a greater amount of variance in habitat availability data than either season or year. Total habitat availability was significantly greater during PO than in PR or D, although microhabitat diversity did not differ among either seasons or hydrologic periods. There were significantly fewer high-flow events (i.e., > 2.1 m3/s) during D than in either PR or PO periods. We observed a total of 16 species during our investigation, and the total number of species was significantly higher in D than in PR samples. Correlation analyses between the number of species present (total and abundant species) and environmental data yielded limited results, although the total number of species was inversely correlated with total habitat availability. A cluster analysis grouped assemblage structure samples by hydrologic period rather than season or year, supporting the contention that variation in annual flow had a strong impact on this assemblage. The drought had little effect on the numerical abundance of benthic species in this assemblage; however, a majority of water-column species increased in abundance. The increased abundances or water-column species may have been related to the decrease in high flow events observed during the D. Such high flow events are known to cause mortality in stream fishes. Microhabitat use data showed that species belonged to one of three microhabitat guilds: benthic, lower water-column, and mid-water-column. In general, species within the same guild did not exhibit statistically distinguishable patterns of microhabitat use, and most significant differences occurred between members of different guilds. However, lower water-column guild species frequently were not separable from all members of either benthic or mid-water-column guilds. Variations in the abundance of potential competitors or predators did not produce strong shifts in microhabitat use by assemblage members. Predators were present in the site in only 9 of 16 seasonal samples and never were abundant (maximum number observed per day was 2). In conclusion, our results demonstrate that variability in both mean and peak flows had a much stronger effect on the structure and use of spatial resources within this assemblage than either interspecific competition for space or predation. Consequently, we suspect that the patterns in both assemblage structure and resource use displayed by fishes in Coweeta Creek arose from the interaction between environmental variation and species-specific evolutionary constraints on behavior, morphology and physiology.

  5. Sub-micron lines patterning into silica using water developable chitosan bioresist films for eco-friendly positive tone e-beam and UV lithography

    NASA Astrophysics Data System (ADS)

    Caillau, Mathieu; Chevalier, Céline; Crémillieu, Pierre; Delair, Thierry; Soppera, Olivier; Leuschel, Benjamin; Ray, Cédric; Moulin, Christophe; Jonin, Christian; Benichou, Emmanuel; Brevet, Pierre-François; Yeromonahos, Christelle; Laurenceau, Emmanuelle; Chevolot, Yann; Leclercq, Jean-Louis

    2018-03-01

    Biopolymers represent natural, renewable and abundant materials. Their use is steadily growing in various areas (food, health, building …) but, in lithography, despite some works, resists, solvents and developers are still oil-based and hazardous chemicals. In this work, we replaced synthetic resist by chitosan, a natural, abundant and hydrophilic polysaccharide. High resolution sub-micron patterns were obtained through chitosan films as water developable, chemically unmodified, positive tone mask resist for an eco-friendly electron beam and deep-UV (193 nm) lithography process. Sub-micron patterns were also successfully obtained using a 248 nm photomasker thanks to the addition of biosourced photoactivator, riboflavin. Patterns were then transferred by plasma etching into silica even for high resolution patterns.

  6. Contrasting microbial functional genes in two distinct saline-alkali and slightly acidic oil-contaminated sites.

    PubMed

    Liang, Yuting; Zhao, Huihui; Zhang, Xu; Zhou, Jizhong; Li, Guanghe

    2014-07-15

    To compare the functional gene structure and diversity of microbial communities in saline-alkali and slightly acidic oil-contaminated sites, 40 soil samples were collected from two typical oil exploration sites in North and South China and analyzed with a comprehensive functional gene array (GeoChip 3.0). The overall microbial pattern was significantly different between the two sites, and a more divergent pattern was observed in slightly acidic soils. Response ratio was calculated to compare the microbial functional genes involved in organic contaminant degradation and carbon, nitrogen, phosphorus, and sulfur cycling. The results indicated a significantly low abundance of most genes involved in organic contaminant degradation and in the cycling of nitrogen and phosphorus in saline-alkali soils. By contrast, most carbon degradation genes and all carbon fixation genes had similar abundance at both sites. Based on the relationship between the environmental variables and microbial functional structure, pH was the major factor influencing the microbial distribution pattern in the two sites. This study demonstrated that microbial functional diversity and heterogeneity in oil-contaminated environments can vary significantly in relation to local environmental conditions. The limitation of nitrogen and phosphorus and the low degradation capacity of organic contaminant should be carefully considered, particularly in most oil-exploration sites with saline-alkali soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Parasitism by Nycteribiidae and Streblidae Flies (Diptera) of a Malagasy Fruit Bat (Pteropodidae): Effects of Body Size and Throat Gland Development on Parasite Abundance.

    PubMed

    Rajemison, Faneva I; Noroalintseheno Lalarivoniaina, Oliva S; Goodman, Steven M

    2017-07-01

    We examined the possible effects of host body size and throat gland development on the abundance of blood-feeding nycteribiid and streblid flies parasitizing a Malagasy fruit bat, Rousettus madagascariensis G. Grandidier, 1928. Data were collected in the Parc National d'Ankarana in northern Madagascar during four visits: September 2014, 2015 (dry season), and January 2015, 2016 (wet season). Two bat fly species were identified, Eucampsipoda madagascarensis Theodor, 1955 (Nycteribiidae) and Megastrebla wenzeli (Jobling, 1952) (Streblidae). A positive correlation was found between host body size and abundance of E. madagascarensis during the four visits, suggesting that larger hosts have more parasites, and for M. wenzeli, this relationship was identified only during the wet season visits. In male hosts, body size and throat gland development are correlated with variation in E. madagascarensis abundance during the two seasons; this relationship was not found for M. wenzeli. We present some explanations for the observed patterns of bat fly abundance associated with throat gland development: increased vascularization and easier access to bloodmeals, chemical properties of gland secretions acting as attractants or perhaps being consumed, and modification of hair around the gland providing protection from bat grooming. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Mars atmospheric water vapor abundance: 1996-1997

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  9. Phylogenetic relatedness and leaf functional traits, not introduced status, influence community assembly.

    PubMed

    Lemoine, Nathan P; Shue, Jessica; Verrico, Brittany; Erickson, David; Kress, W John; Parker, John D

    2015-10-01

    Considerable debate focuses on whether invasive species establish and become abundant by being functionally and phylogenetically distinct from native species, leading to a host of invasion-specific hypotheses of community assembly. Few studies, however, have quantitatively assessed whether similar patterns of phylogenetic and functional similarity explain local abundance of both native and introduced species, which would suggest similar assembly mechanisms regardless of origin. Using a chronosequence of invaded temperate forest stands, we tested whether the occurrence and abundance of both introduced and native species were predicted by phylogenetic relatedness, functional overlap, and key environmental characteristics including forest age. Environmental filtering against functionally and phylogenetically distinct species strongly dictated the occurrence and abundance of both introduced and native species, with slight modifications of these patterns according to forest age. Thus, once functional and evolutionary novelty were quantified, introduced status provided little information about species' presence or abundance, indicating largely similar sorting mechanisms for both native and introduced species.

  10. Species-area relationships in coral communities: evaluating mechanisms for a commonly observed pattern

    NASA Astrophysics Data System (ADS)

    Huntington, B. E.; Lirman, D.

    2012-12-01

    Landscape-scale attributes of patch size, spatial isolation, and topographic complexity are known to influence diversity and abundance in terrestrial and marine systems, but remain collectively untested for reef-building corals. To investigate the relationship between the coral assemblage and seascape variation in reef habitats, we took advantage of the distinct boundaries, spatial configurations, and topographic complexities among artificial reef patches to overcome the difficulties of manipulating natural reefs. Reef size (m2) was found to be the foremost predictor of coral richness in accordance with species-area relationship predictions. Larger reefs were also found to support significantly higher colony densities, enabling us to reject the null hypothesis of random placement (a sampling artifact) in favor of target area predictions that suggest greater rates of immigration on larger reefs. Unlike the pattern previously documented for reef fishes, topographic complexity was not a significant predictor of any coral assemblage response variable, despite the range of complexity values sampled. Lastly, coral colony density was best explained by both increasing reef size and decreasing reef spatial isolation, a pattern found exclusively among brooding species with shorter larval dispersal distances. We conclude that seascape attributes of reef size and spatial configuration within the seascape can influence the species richness and abundance of the coral community at relatively small spatial scales (<1 km). Specifically, we demonstrate how patterns in the coral communities that have naturally established on these manipulated reefs agree with the target area and island biogeography mechanisms to drive species-area relationships in reef-building corals. Based on the patterns documented in artificial reefs, habitat degradation that results in smaller, more isolated natural reefs may compromise coral diversity.

  11. Nuclear Reactions and the ν p-Process

    NASA Astrophysics Data System (ADS)

    Fröhlich, Carla; Hatcher, Daniel; Perdikakis, Georgios; Nikas, Stylianos

    In understanding the origin of the heavy elements, the "light heavy elements" pose a particular challenge: The two neutron-capture processes, r- and s-process, cannot explain the abundances patterns seen in very old galactic halo stars. A proposed solution to this problem is the ν p-process, which takes place in the strong neutrino-driven winds of core-collapse supernovae. In the ν p-process, a sequence of (n, p) and (p, γ ) reactions allows for the synthesis of elements with atomic numbers A > 64, which includes Sr, Y, Zr, and others possibly up to Sn. The relevant reaction rates are all based on statistical model predictions and carry some uncertainty. Here, the sensitivity of the final ν p-process abundance pattern on modifications of (n, p), (p, γ ), and (n, γ ) reactions are characterized. Only few reactions affect the final abundance pattern and hence warrant a more detailed study of the reaction rate.

  12. Indigenous and Invasive Fruit Fly Diversity along an Altitudinal Transect in Eastern Central Tanzania

    PubMed Central

    Geurts, Katrien; Mwatawala, Maulid; De Meyer, Marc

    2012-01-01

    The relative abundance of indigenous and invasive frugivorous fruit flies (Diptera: Tephritidae) was evaluated spatially and temporally along an altitudinal transect between 581–1650 m in the Uluguru Mountains near Morogoro, Tanzania. The polyphagous invasive fruit fly Bactrocera invadens Drew, Tsuruta, and White and the indigenous fruit fly Ceratitis rosa Karsch show a similar temporal pattern, but are largely separated spatially, with B. invadens being abundant at lower elevation and C. rosa predominant at higher elevation. The polyphagous indigenous C. cosyra (Walker) coincides with B. invadens but shows an inverse temporal pattern. The cucurbit feeders B. cucurbitae (Coquillett) and Dacus bivittatus (Bigot) show a similar temporal pattern, but the former is restricted to lower elevations. Host availability and climatic differences seem to be the determining factors to explain the differences in occurrence and abundance in time and space. PMID:22935017

  13. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra).

    PubMed

    Amato, Katherine R; Leigh, Steven R; Kent, Angela; Mackie, Roderick I; Yeoman, Carl J; Stumpf, Rebecca M; Wilson, Brenda A; Nelson, Karen E; White, Bryan A; Garber, Paul A

    2015-02-01

    For most mammals, including nonhuman primates, diet composition varies temporally in response to differences in food availability. Because diet influences gut microbiota composition, it is likely that the gut microbiota of wild mammals varies in response to seasonal changes in feeding patterns. Such variation may affect host digestive efficiency and, ultimately, host nutrition. In this study, we investigate the temporal variation in diet and gut microbiota composition and function in two groups (N = 13 individuals) of wild Mexican black howler monkeys (Alouatta pigra) over a 10-month period in Palenque National Park, Mexico. Temporal changes in the relative abundances of individual bacterial taxa were strongly correlated with changes in host diet. For example, the relative abundance of Ruminococcaceae was highest during periods when energy intake was lowest, and the relative abundance of Butyricicoccus was highest when young leaves and unripe fruit accounted for 68 % of the diet. Additionally, the howlers exhibited increased microbial production of energy during periods of reduced energy intake from food sources. Because we observed few changes in howler activity and ranging patterns during the course of our study, we propose that shifts in the composition and activity of the gut microbiota provided additional energy and nutrients to compensate for changes in diet. Energy and nutrient production by the gut microbiota appears to provide an effective buffer against seasonal fluctuations in energy and nutrient intake for these primates and is likely to have a similar function in other mammal species.

  14. Main factors determining bioerosion patterns on rocky cliffs in a drowned valley estuary in the Colombian Pacific (Eastern Tropical Pacific)

    NASA Astrophysics Data System (ADS)

    Cobo-Viveros, Alba Marina; Cantera-Kintz, Jaime Ricardo

    2015-10-01

    Bioerosion is an important process that destroys coastal rocks in the tropics. However, the rates at which this process occurs, the organisms involved, and the dynamics of rocky cliffs in tropical latitudes have been less studied than in temperate and subtropical latitudes. To contribute to the knowledge of the bioerosion process in rocky cliffs on the Pacific coast of Colombia (Eastern Tropical Pacific) we compared: 1) boring volume, 2) grain size distribution of the rocks, and 3) rock porosity, across three tidal zones of two cliffs with different wave exposure; these factors were related to the bioeroding community found. We observed that cliffs that were not exposed to wave action (IC, internal cliffs) exhibited high percentages of clays in their grain size composition, and a greater porosity (47.62%) and perforation (15.86%) than exposed cliffs (EC, external cliffs). However, IC also exhibited less diversity and abundance of bioeroding species (22 species and 314 individuals, respectively) compared to the values found in EC (41.11%, 14.34%, 32 and 491, respectively). The most abundant bioeroders were Petrolisthes zacae in IC and Pachygrapsus transversus in EC. Our findings show that the tidal zone is the common factor controlling bioerosion on both cliffs; in addition to the abundance of bioeroders on IC and the number of bioeroding species on EC. The integration of geology, sedimentology, and biology allows us to obtain a more comprehensive view of the patterns and trends in the process of bioerosion.

  15. Long-term fluctuations in circalunar Beach aggregations of the box jellyfish Alatina moseri in Hawaii, with links to environmental variability.

    PubMed

    Chiaverano, Luciano M; Holland, Brenden S; Crow, Gerald L; Blair, Landy; Yanagihara, Angel A

    2013-01-01

    The box jellyfish Alatina moseri forms monthly aggregations at Waikiki Beach 8-12 days after each full moon, posing a recurrent hazard to swimmers due to painful stings. We present an analysis of long-term (14 years: Jan 1998- Dec 2011) changes in box jellyfish abundance at Waikiki Beach. We tested the relationship of beach counts to climate and biogeochemical variables over time in the North Pacific Sub-tropical Gyre (NPSG). Generalized Additive Models (GAM), Change-Point Analysis (CPA), and General Regression Models (GRM) were used to characterize patterns in box jellyfish arrival at Waikiki Beach 8-12 days following 173 consecutive full moons. Variation in box jellyfish abundance lacked seasonality, but exhibited dramatic differences among months and among years, and followed an oscillating pattern with significant periods of increase (1998-2001; 2006-2011) and decrease (2001-2006). Of three climatic and 12 biogeochemical variables examined, box jellyfish showed a strong, positive relationship with primary production, >2 mm zooplankton biomass, and the North Pacific Gyre Oscillation (NPGO) index. It is clear that that the moon cycle plays a key role in synchronizing timing of the arrival of Alatina moseri medusae to shore. We propose that bottom-up processes, likely initiated by inter-annual regional climatic fluctuations influence primary production, secondary production, and ultimately regulate food availability, and are therefore important in controlling the inter-annual changes in box jellyfish abundance observed at Waikiki Beach.

  16. Long-Term Fluctuations in Circalunar Beach Aggregations of the Box Jellyfish Alatina moseri in Hawaii, with Links to Environmental Variability

    PubMed Central

    Chiaverano, Luciano M.; Holland, Brenden S.; Crow, Gerald L.; Blair, Landy; Yanagihara, Angel A.

    2013-01-01

    The box jellyfish Alatina moseri forms monthly aggregations at Waikiki Beach 8–12 days after each full moon, posing a recurrent hazard to swimmers due to painful stings. We present an analysis of long-term (14 years: Jan 1998– Dec 2011) changes in box jellyfish abundance at Waikiki Beach. We tested the relationship of beach counts to climate and biogeochemical variables over time in the North Pacific Sub-tropical Gyre (NPSG). Generalized Additive Models (GAM), Change-Point Analysis (CPA), and General Regression Models (GRM) were used to characterize patterns in box jellyfish arrival at Waikiki Beach 8–12 days following 173 consecutive full moons. Variation in box jellyfish abundance lacked seasonality, but exhibited dramatic differences among months and among years, and followed an oscillating pattern with significant periods of increase (1998–2001; 2006–2011) and decrease (2001–2006). Of three climatic and 12 biogeochemical variables examined, box jellyfish showed a strong, positive relationship with primary production, >2 mm zooplankton biomass, and the North Pacific Gyre Oscillation (NPGO) index. It is clear that that the moon cycle plays a key role in synchronizing timing of the arrival of Alatina moseri medusae to shore. We propose that bottom-up processes, likely initiated by inter-annual regional climatic fluctuations influence primary production, secondary production, and ultimately regulate food availability, and are therefore important in controlling the inter-annual changes in box jellyfish abundance observed at Waikiki Beach. PMID:24194856

  17. Remote sensing of atmosphere and oceans; Proceedings of Symposium 1 and of the Topical Meeting of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)

    1989-01-01

    Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.

  18. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    PubMed

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same pattern to a lesser degree, although this pattern was not significant. This work bridges the disciplines of biogeography and community ecology to develop tools to better understand the direct and indirect effects of abiotic conditions on ecological communities. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  19. Coral reef fish assemblages along a disturbance gradient in the northern Persian Gulf: A seasonal perspective.

    PubMed

    Ghazilou, Amir; Shokri, Mohammad Reza; Gladstone, William

    2016-04-30

    Seasonal dynamics of coral reef fish assemblages were assessed along a gradient of potential anthropogenic disturbance in the Northern Persian Gulf. Overall, the attributes of coral reef fish assemblages showed seasonality at two different levels: seasonal changes irrespective of the magnitude of disturbance level (e.g. species richness), and seasonal changes in response to disturbance level (e.g. total abundance and assemblage composition). The examined parameters mostly belonged to the second group, but the interpretation of the relationship between patterns of seasonal changes and the disturbance level was not straightforward. The abundance of carnivorous fishes did not vary among seasons. SIMPER identified the family Nemipteridae as the major contributor to the observed spatiotemporal variations in the composition of coral reef fish assemblages in the study area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Species dominance and equitability: patterns in Cenozoic foraminifera of eastern North America

    USGS Publications Warehouse

    Gibson, T.G.; Hill, E.E.

    1992-01-01

    Species dominance in benthonic foraminifera, represented by percent of the assemblage composed of the single most abundant species, shows little change in observed range of values from shallow into deep-marine waters in 1005 samples from the Gulf of Mexico, Atlantic, and Arctic margins of North America. This finding contrasts with the model that species dominance is highest in shallow-marine environments and decreases offshore into deeper marine waters. Equitability, the relation of all species abundances within an assemblage, also shows little change between the values found in shallow-marine assemblages and those found in assemblages from deeper water environments. Equitability and dominance values found in 421 assemblages from Palaeocene, Eocene, Miocene, and Pleistocene strata of the Atlantic and E Gulf of Mexico coastal plains are similar to the modern values. -from Authors

  1. Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable

    PubMed Central

    Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J.; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios

    2010-01-01

    Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity. PMID:20689848

  2. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.

    PubMed

    Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios

    2010-08-02

    Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated (Prokaryotes excluded), most of the unknown species are within the phylum Nematoda, followed by Foraminifera, but an important fraction of macrofaunal and megafaunal species also remains unknown. Data reported here provide new insights into the patterns of biodiversity in the deep-sea Mediterranean and new clues for future investigations aimed at identifying the factors controlling and threatening deep-sea biodiversity.

  3. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes

    PubMed Central

    Fauteux, Lisa; Cottrell, Matthew T.; Kirchman, David L.; Borrego, Carles M.; Garcia-Chaves, Maria Carolina; del Giorgio, Paul A.

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex. PMID:25927833

  4. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes.

    PubMed

    Fauteux, Lisa; Cottrell, Matthew T; Kirchman, David L; Borrego, Carles M; Garcia-Chaves, Maria Carolina; Del Giorgio, Paul A

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.

  5. Advances in satellite remote sensing of environmental variables for epidemiological applications.

    PubMed

    Goetz, S J; Prince, S D; Small, J

    2000-01-01

    Earth-observing satellites have provided an unprecedented view of the land surface but have been exploited relatively little for the measurement of environmental variables of particular relevance to epidemiology. Recent advances in techniques to recover continuous fields of air temperature, humidity, and vapour pressure deficit from remotely sensed observations have significant potential for disease vector monitoring and related epidemiological applications. We report on the development of techniques to map environmental variables with relevance to the prediction of the relative abundance of disease vectors and intermediate hosts. Improvements to current methods of obtaining information on vegetation properties, canopy and surface temperature and soil moisture over large areas are also discussed. Algorithms used to measure these variables incorporate visible, near-infrared and thermal infrared radiation observations derived from time series of satellite-based sensors, focused here primarily but not exclusively on the Advanced Very High Resolution Radiometer (AVHRR) instruments. The variables compare favourably with surface measurements over a broad array of conditions at several study sites, and maps of retrieved variables captured patterns of spatial variability comparable to, and locally more accurate than, spatially interpolated meteorological observations. Application of multi-temporal maps of these variables are discussed in relation to current epidemiological research on the distribution and abundance of some common disease vectors.

  6. Predicting probability of occurrence and factors affecting distribution and abundance of three Ozark endemic crayfish species at multiple spatial scales

    USGS Publications Warehouse

    Nolen, Matthew S.; Magoulick, Daniel D.; DiStefano, Robert J.; Imhoff, Emily M.; Wagner, Brian K.

    2014-01-01

    We found that a range of environmental variables were important in predicting crayfish distribution and abundance at multiple spatial scales and their importance was species-, response variable- and scale dependent. We would encourage others to examine the influence of spatial scale on species distribution and abundance patterns.

  7. Host ecology and variation in helminth community structure in Mastomys rodents from Senegal.

    PubMed

    Brouat, C; Kane, M; Diouf, M; Bâ, K; Sall-Dramé, R; Duplantier, J M

    2007-03-01

    We studied patterns of variation in parasite communities of 2 closely related species of Mastomys rodents. These 2 species live in sympatry in South-eastern Senegal, but differ drastically in their habitat choice. We asked (a) whether the host species have the same parasites; (b) whether there is any observable pattern relative to the host species/habitat type in the structure of parasite communities; (c) whether the variability in parasite community for each host species is related to habitat characteristics. We analysed 220 and 264 individuals of each host species, sampled respectively in 10 and 11 trap sites. Twenty parasite taxa were recorded, and the majority were nematodes. Between-host species comparisons showed that helminth communities were slightly more diversified in M. natalensis. Many parasite species were found in both Mastomys. However, various helminth taxa varied in frequency and abundance between host species. Within each host species, helminth diversity, prevalence and/or abundance of some parasites were correlated with habitat or host population factors that may influence parasite life-cycles, such as village structure, or the presence/absence of a pool. Our results suggest that habitat characteristics have a strong impact on helminth community structure.

  8. Enhanced Lipidome Coverage in Shotgun Analyses by using Gas-Phase Fractionation

    NASA Astrophysics Data System (ADS)

    Nazari, Milad; Muddiman, David C.

    2016-11-01

    A high resolving power shotgun lipidomics strategy using gas-phase fractionation and data-dependent acquisition (DDA) was applied toward comprehensive characterization of lipids in a hen ovarian tissue in an untargeted fashion. Using this approach, a total of 822 unique lipids across a diverse range of lipid categories and classes were identified based on their MS/MS fragmentation patterns. Classes of glycerophospholipids and glycerolipids, such as glycerophosphocholines (PC), glycerophosphoethanolamines (PE), and triglycerides (TG), are often the most abundant peaks observed in shotgun lipidomics analyses. These ions suppress the signal from low abundance ions and hinder the chances of characterizing low abundant lipids when DDA is used. These issues were circumvented by utilizing gas-phase fractionation, where DDA was performed on narrow m/z ranges instead of a broad m/z range. Employing gas-phase fractionation resulted in an increase in sensitivity by more than an order of magnitude in both positive- and negative-ion modes. Furthermore, the enhanced sensitivity increased the number of lipids identified by a factor of ≈4, and facilitated identification of low abundant lipids from classes such as cardiolipins that are often difficult to observe in untargeted shotgun analyses and require sample-specific preparation steps prior to analysis. This method serves as a resource for comprehensive profiling of lipids from many different categories and classes in an untargeted manner, as well as for targeted and quantitative analyses of individual lipids. Furthermore, this comprehensive analysis of the lipidome can serve as a species- and tissue-specific database for confident identification of other MS-based datasets, such as mass spectrometry imaging.

  9. Microarray Analyses of Gene Expression during Adventitious Root Development in Pinus contorta1[w

    PubMed Central

    Brinker, Monika; van Zyl, Leonel; Liu, Wenbin; Craig, Deborah; Sederoff, Ronald R.; Clapham, David H.; von Arnold, Sara

    2004-01-01

    In order to investigate the gene expression pattern during adventitious root development, RNA of Pinus contorta hypocotyls, pulse-treated with the auxin indole-3-butyric acid and harvested at distinct developmental time points of root development, was hybridized to microarrays containing 2,178 cDNAs from Pinus taeda. Over the period of observation of root development, the transcript levels of 220 genes changed significantly. During the root initiation phase, genes involved in cell replication and cell wall weakening and a transcript encoding a PINHEAD/ZWILLE-like protein were up-regulated, while genes related to auxin transport, photosynthesis, and cell wall synthesis were down-regulated. In addition, there were changes in transcript abundance of genes related to water stress. During the root meristem formation phase the transcript abundances of genes involved in auxin transport, auxin responsive transcription, and cell wall synthesis, and of a gene encoding a B-box zinc finger-like protein, increased, while those encoding proteins involved in cell wall weakening decreased. Changes of transcript abundance of genes related to water stress during the root meristem formation and root formation phase indicate that the plant roots had become functional in water transport. Simultaneously, genes involved in auxin transport were up-regulated, while genes related to cell wall modification were down-regulated. Finally, during the root elongation phase down-regulation of transcripts encoding proteins involved in cell replication and stress occurred. Based on the observed changes in transcript abundances, we suggest hypotheses about the relative importance of various physiological processes during the auxin-induced development of roots in P. contorta. PMID:15247392

  10. Effects of an oil spill on leafpack-inhabiting macroinvertebrates in the Chariton river, Missouri

    USGS Publications Warehouse

    Poulton, B.C.; Callahan, E.V.; Hurtubise, R.D.; Mueller, B.G.

    1998-01-01

    Artificial leaf packs were used to determine the effects of an oil spill on stream macroinvertebrate communities in the Chariton River, Missouri. Plastic mesh leaf retainers with approximately 10 g of leaves from five tree species were deployed at five sites (two upstream of the spill and three downstream) immediately after the spill and one year later. Four macroinvertebrate species dominating the community at upstream sites were virtually eliminated below the spill, including the stonefly Isoperla bilineata, the caddisfly Potamyia flava, the midge Thienemanniella xena, and blackfly larvae (Simulium sp.). Density of collector and shredder functional groups, and number of shredder taxa differed between upstream sites and the two furthest downstream sites during the 1990 sample period (Kruskal-Wallis w/Bonferroni paired comparisons, experiment wise error rate = 0.05). With one exception, no differences between sites were detected in the 1991-1992 sample period, indicating that the benthic community had at least partially recovered from the oil spill after one year. The odds of obtaining a sample with a small abundance of shredders (abundance < median) in 1990 was significantly greater downstream of the spill than upstream, and the odds of obtaining a sample with a small abundance of shredders at downstream sites was greater in 1990 than in 1991-1992. A similar pattern was observed in abundance and taxa richness of the collector functional group. No significant differences between the two sampling periods were detected at upstream sites. Observed effects appeared to be associated with oil sorption and substrate coating, creating conditions unsuitable for successful colonization.

  11. Ontogenetic and temporal variations in herbivory and defense of Handroanthus spongiosus (Bignoniaceae) in a Brazilian tropical dry forest.

    PubMed

    Oliveira, Karla N; Espírito-Santo, Mário M; Silva, Jhonathan O; Melo, Geraldo A

    2012-06-01

    We compared the richness and abundance of free-feeding herbivore insects (sap-sucking and leaf-chewing), leaf herbivory damage, leaf toughness and total phenolic content between two ontogenetic stages (juvenile and reproductive) of Handroanthus spongiosus (Rizzini) S. O. Grose (Bignoniaceae) throughout the rainy season in a Brazilian seasonally dry tropical forest. Twenty marked individuals of H. spongiosus were sampled per ontogenetic stage in each period of the rainy season (beginning, middle, and end). Herbivore richness and abundance did not differ between ontogenetic stages, but higher percentage of leaf damage, higher concentration of phenolic compounds, and lower leaf toughness were observed for juvenile individuals. The greatest morphospecies abundance was found at the beginning of the rainy season, but folivory increment was higher at the end, despite the fact that leaf toughness and total phenolic content increased in the same period. No significant relationships between leaf damage and both total phenolic content and leaf toughness were observed. These results suggest that insect richness and abundance do not track changes in foliage quality throughout plant ontogeny, but their decrease along rainy season confirms what was predicted for tropical dry forests. The general trends described in the current study corroborate those described in the literature about herbivores and plant ontogeny. However, the lack of relationship between herbivore damage and the two plant attributes considered here indicates that the analyses of multiple defensive traits (the defense syndrome) must be more enlightening to determine the mechanisms driving temporal and spatial patterns of herbivore attack.

  12. Mapping Vinyl Cyanide and Other Nitriles in Titan’s Atmosphere Using ALMA

    NASA Astrophysics Data System (ADS)

    Lai, J. C.-Y.; Cordiner, M. A.; Nixon, C. A.; Achterberg, R. K.; Molter, E. M.; Teanby, N. A.; Palmer, M. Y.; Charnley, S. B.; Lindberg, J. E.; Kisiel, Z.; Mumma, M. J.; Irwin, P. G. J.

    2017-11-01

    Vinyl cyanide (C2H3CN) is theorized to form in Titan’s atmosphere via high-altitude photochemistry and is of interest regarding the astrobiology of cold planetary surfaces due to its predicted ability to form cell membrane-like structures (azotosomes) in liquid methane. In this work, we follow up on the initial spectroscopic detection of C2H3CN on Titan by Palmer et al. with the detection of three new C2H3CN rotational emission lines at submillimeter frequencies. These new, high-resolution detections have allowed for the first spatial distribution mapping of C2H3CN on Titan. We present simultaneous observations of C2H5CN, HC3N, and CH3CN emission, and obtain the first (tentative) detection of C3H8 (propane) at radio wavelengths. We present disk-averaged vertical abundance profiles, two-dimensional spatial maps, and latitudinal flux profiles for the observed nitriles. Similarly to HC3N and C2H5CN, which are theorized to be short-lived in Titan’s atmosphere, C2H3CN is most abundant over the southern (winter) pole, whereas the longer-lived CH3CN is more concentrated in the north. This abundance pattern is consistent with the combined effects of high-altitude photochemical production, poleward advection, and the subsequent reversal of Titan’s atmospheric circulation system following the recent transition from northern to southern winter. We confirm that C2H3CN and C2H5CN are most abundant at altitudes above 200 km. Using a 300 km step model, the average abundance of C2H3CN is found to be 3.03 ± 0.29 ppb, with a C2H5CN/C2H3CN abundance ratio of 2.43 ± 0.26. Our HC3N and CH3CN spectra can be accurately modeled using abundance gradients above the tropopause, with fractional scale-heights of 2.05 ± 0.16 and 1.63 ± 0.02, respectively.

  13. Ostreopsis cf. ovata dynamics in the NW Mediterranean Sea in relation to biotic and abiotic factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnicer, Olga; Guallar, Carles; IFREMER, DYNECO-PELAGOS Centre de Brest, Pointe du Diable BP70, 29280 Plouzane

    2015-11-15

    An expansion of the distribution of Ostreopsis cf. ovata, a dinoflagellate which produces palytoxin-like compounds, has been reported in recent years. Economical and social interests are affected by blooms, as they are responsible for respiratory and skin problems in humans and may cause damage to marine organisms. In order to identify the most influential environmental factors that trigger proliferations of O. cf. ovata in the area of the adjacent shallow rocky coast of the Ebro Delta (NW Mediterranean Sea) a three-year survey was performed on the metaphytic microalgae community growing on the macrophytes Jania rubens and Corallina elongata. Small-size diatomsmore » were more abundant than dinoflagellates; O. cf. ovata was identified as the only species present from the genus. Seawater temperature was the primary driver defining the ecological niche of O. cf. ovata. Freshwater and groundwater fluxes were more pronounced in southern than in northern sites, which may have resulted in a distinct O. cf. ovata spatial distribution, with the highest records of abundance and more frequent blooms in the north. In consequence, negative correlations between the abundance of O. cf. ovata and nitrate concentrations and significant positive correlation with salinity were observed. The temporal pattern of O. cf. ovata dynamics from mid-July to early-November is probably due to the fact that this species is observed only above a certain threshold temperature of seawater. Metaphytic cells of O. cf. ovata were smaller in the northern site than in the south, possibly as a result of an increase in cell division, coinciding with higher abundance, and this could be an indicator of favorable conditions. Toxicity in planktonic cells was negatively correlated with cell abundance in the water column, achieving maximum concentrations of 25 pg. PLTX eq cell{sup −1}. - Highlights: • Presence of a single Ostreopsis genotype in confirmed through qPCR. • Temperature confirmed as the most important parameter affecting its distribution. • Salinity positively correlated with Ostreopsis cf. ovata abundance. • Ostreopsis cf. ovata has a restricted ecological niche. • Toxicity in Ostreopsis planktonic cells negatively correlated with cell abundance.« less

  14. The Effects of FUV Radiation on C-Shocks: Implications for Water and Other O-bearing Species

    NASA Astrophysics Data System (ADS)

    Kaufman, Michael; Melick, Gary; Tolls, Volker

    2015-08-01

    Protostellar outflows have long been known to drive endothermic reactions that produce high abundances of oxygen-bearing species. Models of shocks in well-shielded gas made the strong prediction that essentially all of the pre-shock oxygen gets driven into water, so that the post-shock water abundances are order 10-4. Herschel observations, however, including those from the key program “Water in Star Forming Regions with Herschel (WISH)” show that for most sources, the shocked gas water abundances of are far lower, 10-7 - 10-5.This pattern of lower-than-predicted water abundance has led us to consider that our C-shock model (Kaufman & Neufeld 1996) is incomplete. In particular, we did not previously take into account that many outflow sources have higher than average far-ultraviolet radiation fields within their outflow cavities. Strong FUV radiation has important effects on the structure of C-shocks: the ionization fraction is larger than in well-shielded gas, decreasing the coupling length between neutrals and ions, and leading to higher temperatures and a lower breakdown speeds; the pre-shock gas composition, including the presence of ice mantles and the dominant charge carriers, is strongly affected; and abundant species such as water are diminished by photodissociation in the cooled down stream gas.In addition to the normal parameters of density, shock velocity, and magnetic field strength, we now include the external FUV field strength and the extinction between the FUV source and the shock. We use the results of a detailed PDR model to compute pre-shock chemical conditions, including the ionization fraction, the increase of which decreases the maximum velocities of C- shocks. FUV also keeps oxygen in the gas phase, making more available for H2O formarion ; however, photodissociation beyond the temperature peak keeps the average H2O abundance down. We present comparisons of our model results with the inferred water abundances and with observations of H2O, CO, O and OH lines from the Herschel archive.

  15. Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed

    PubMed Central

    Smalla, K.; Wieland, G.; Buchner, A.; Zock, A.; Parzy, J.; Kaiser, S.; Roskot, N.; Heuer, H.; Berg, G.

    2001-01-01

    The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands. PMID:11571180

  16. Xenobiotic Metabolism and Gut Microbiomes

    PubMed Central

    Das, Anubhav; Srinivasan, Meenakshi; Ghosh, Tarini Shankar; Mande, Sharmila S.

    2016-01-01

    Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome) in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs) also indicate geographic as well as age specific trends. PMID:27695034

  17. Abundance, seasonal patterns and diet of the non-native jellyfish Blackfordia virginica in a Portuguese estuary

    NASA Astrophysics Data System (ADS)

    Marques, F.; Chainho, P.; Costa, J. L.; Domingos, I.; Angélico, M. M.

    2015-12-01

    Blackfordia virginica, a non-indigenous hydrozoan introduced in many systems around the world, has been observed in the Mira estuary, southwest of Portugal, since 1984. Monthly sampling (January 2013-January 2014) at a fixed location with high abundance of the medusae confirmed the occurrence of a seasonal cycle associated with temperature and photoperiod. The beginning of the medusa cycle occurred in May immediately after the spring zooplankton bloom during April. Examination of the gut contents of B. virginica medusae revealed that copepods, the most abundant group in the zooplankton community, were highly predated. Barnacle nauplii, decapod crustacean larvae and anchovy eggs were also identified in the guts. The medusae showed positive selection for copepods, and negative selection for barnacle nauplii, decapod crustacean larvae and anchovy eggs. The mortality rate of copepods (used as a model prey group) induced by medusae predation was estimated and showed the potential impact of this species in the ecosystem, ranging between 2.34 d-1 and 0.02 d-1, with a minimum copepod half-life of 0.30 days.

  18. A spatial age-structured model for describing sea lamprey (Petromyzon marinus) population dynamics

    USGS Publications Warehouse

    Robinson, Jason M.; Wilberg, Michael J.; Adams, Jean V.; Jones, Michael L.

    2013-01-01

    The control of invasive sea lampreys (Petromyzon marinus) presents large scale management challenges in the Laurentian Great Lakes. No modeling approach has been developed that describes spatial dynamics of lamprey populations. We developed and validated a spatial and age-structured model and applied it to a sea lamprey population in a large river in the Great Lakes basin. We considered 75 discrete spatial areas, included a stock-recruitment function, spatial recruitment patterns, natural mortality, chemical treatment mortality, and larval metamorphosis. Recruitment was variable, and an upstream shift in recruitment location was observed over time. From 1993–2011 recruitment, larval abundance, and the abundance of metamorphosing individuals decreased by 80, 84, and 86%, respectively. The model successfully identified areas of high larval abundance and showed that areas of low larval density contribute significantly to the population. Estimated treatment mortality was less than expected but had a large population-level impact. The results and general approach of this work have applications for sea lamprey control throughout the Great Lakes and for the restoration and conservation of native lamprey species globally.

  19. Constraints on the yields of the first supernovae in the Universe

    NASA Astrophysics Data System (ADS)

    Cayrel, Roger

    The study of the chemical composition of the most primitive stars of the galactic halo has been made possible with the help of large surveys aimed at finding such stars, and by powerful new instruments, as the Keck telescopes, the Subaru telescope, and the ESO Very Large Telescope. The atmospheres of these primitive stars possess, per hydrogen atom, from 1/1000th to 1/10000th less supernovae-made elements than the Sun, and reflect the yields of the first supernovae. It was once expected that these yields would show a larger scatter than those in the more metal-rich Population II stars, which have been enriched by many more supernovae explosions than the earlier generations. If we leave aside one class of objects, the Carbon-Enhanced Metal-Poor (CEMP) stars, which is the topic of another talk at this conference, a rather well-defined set of abundance ratios emerge for C to Zn amongst the most primitive population, with a scatter that is surprisingly small. The quality of the high-resolution spectroscopic data is such that the observed level of scatter in the measured elemental abundances for these species is no longer limited by accuracy of the observations, nor by other errors inherent to the analysis of the data. By way of contrast, amongst the neutron-capture elements produced by the r-process, at a given metallicity a spread reaching a factor of over 1000 exists for elements such as Ba. The stable portion of the r-process pattern observed in such stars is the second peak (Z = 56 to 72), in which the relative abundances of these elements in very metal-poor stars are almost indistinguishable from their inferred proportions in solar-system material. Recent observations have permitted the determination of the abundances of uranium, tho- rium, and lead produced by the r-process in extremely metal-poor stars, and indicate that lead is mainly produced by radioactive decay of the actinides (as opposed to other direct channels). In addition, the observed U/Th ratio has been shown to be the best available radioactive cosmic chronometer, on timescales of interest to cosmology.

  20. Relations between fish abundances, summer temperatures, and forest harvest in a northern Minnesota stream system from 1997 to 2007

    USGS Publications Warehouse

    Merten, Eric C.; Hemstad, Nathaniel A.; Eggert, L.S.; Johnson, L.B.; Kolka, R.K.; Newman, Raymond M.; Vondracek, Bruce C.

    2015-01-01

    Short-term effects of forest harvest on fish habitat have been well documented, including sediment inputs, leaf litter reductions, and stream warming. However, few studies have considered changes in local climate when examining postlogging changes in fish communities. To address this need, we examined fish abundances between 1997 and 2007 in a basin in a northern hardwood forest. Streams in the basin were subjected to experimental riparian forest harvest in fall 1997. We noted a significant decrease for fish index of biotic integrity and abundance of Salvelinus fontinalis and Phoxinus eos over the study period. However, for P. eos and Culaea inconstans, the temporal patterns in abundances were related more to summer air temperatures than to fine sediment or spring precipitation when examined using multiple regressions. Univariate regressions suggested that summer air temperatures influenced temporal patterns in fish communities more than fine sediment or spring precipitation.

  1. Chemical Compositions and Abundance Anomalies in Stellar Coronae ADP 99

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy; Oliversen, Ronald J. (Technical Monitor)

    2003-01-01

    Progress has been made using both EUVE (Extreme Ultraviolet Explorer) and ASCA (Advanced Satellite for Cosmology and Astrophysics) data and a new postdoctoral scientist has now been hired. Stars studied to date include YY Gem (dMe binary), xi Boo A (intermediate activity G8 V), xi UMa (more active G quadruple system) HR1099 (K1 IV + G5 V) RS CVn-like, AU Mic (dMe). In addition to a paper that concentrated on abundancies in HR1099, a paper was recently submitted on the coronal abundances of AR(tilde)Lac that revealed an interesting pattern of overabundances of very low FIP elements (Al and Ca) compared to the low FIP elements Si, Mg and Fe. Two papers are nearing completion on methods of analysis and on the abundances in the corona of AU(tilde)Mic. Additionally, two invited conference proceedings papers are being published on this work. The main conclusion of the study to date is that our existing ideas of coronal abundance anomalies need complete revision. The solar-like FIP effect is replaced by a pattern than appears to enhance high FIP elements rather than low FIP elements in very active stars. The archival studies we are undertaking now are revealing some key details of these patterns, and are beginning to map out the anomalies as a function of spectral type, a key goal of this study.

  2. Seasonal Abundance and Host-Feeding Patterns of Anopheline Vectors in Malaria Endemic Area of Iran

    PubMed Central

    Basseri, Hamidreza; Raeisi, Ahmad; Ranjbar Khakha, Mansoor; Pakarai, Abaas; Abdolghafar, Hassanzehi

    2010-01-01

    Seasonal abundance and tendency to feed on humans are important parameters to measure for effective control of malaria vectors. The objective of this study was to describe relation between feeding pattern, abundance, and resting behavior of four malaria vectors in southern Iran. This study was conducted in ten indicator villages (based on malaria incidence and entomological indices) in mountainous/hilly and plain regions situated south and southeastern Iran. Mosquito vectors were collected from indoor as well as outdoor shelters and the blood meals were examined by ELISA test. Over all 7654 female Anopheles spp. were captured, the most common species were Anopheles stephensi, An. culicifacies, An. fluviatilis, and An. d'thali. The overall human blood index was 37.50%, 19.83%, 16.4%, and 30.1% for An. fluviatilis, An. stephensi, An. culicifacies, and An. d'thali, respectively. In addition, An. fluviatilis fed on human blood during the entire year but the feeding behavior of An. stephensi and An. culicifacies varied according to seasons. Overall, the abundance of the female mosquito positive to human blood was 4.25% per human shelter versus 17.5% per animal shelter. This result indicates that the vectors had tendency to rest in animal shelters after feeding on human. Therefore, vector control measure should be planned based on such as feeding pattern, abundance, and resting behavior of these vectors in the area. PMID:21559055

  3. Ecological aspects of the Phlebotominae fauna (Diptera: Psychodidae) in the Xakriabá Indigenous Reserve, Brazil

    PubMed Central

    2014-01-01

    Background Sand fly collections were performed to study ecological aspects of the Phlebotominae fauna of the Xakriabá Indigenous Reserve, an area with endemic cutaneous leishmaniasis, located in the state of Minas Gerais, Brazil. Methods The collections were performed in peridomicile areas and along trails previously selected for the study of wild and synanthropic Leishmania hosts. Differences in the distribution patterns of the sand fly species as well as in species richness and abundance between the different ecotopes were investigated during both rainy and dry seasons over the course of the study period. Results A total of 8,046 sand flies belonging to 11 genera and 28 species were collected. Lutzomyia longipalpis and Nyssomyia intermedia were the most abundant species in peridomicile areas, whereas Martinsmyia minasensis and Lutzomyia cavernicola were the most abundant species among the different trail ecotopes. Conclusion The different composition of the sand fly fauna observed in the peridomicile areas and in the trails during the study, reinforces the importance of sampled different areas in a phlebotomine fauna survey. The presence of Lutzomyia longipalpis and Ny. Intermedia most abundant in peridomicile can be important to Leishmania infantum and Leishmania braziliensis transmission in the Imbaúbas native village. PMID:24886717

  4. Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean

    USGS Publications Warehouse

    Zinser, E.R.; Johnson, Z.I.; Coe, A.; Karaca, E.; Veneziano, D.; Chisholm, S.W.

    2007-01-01

    In a focused analysis of Prochlorococcus population structure in the western North Atlantic, we found that the relative abundances of ecotypes varied significantly with depth and, at seasonally stratified locations, with degree of vertical mixing. More limited regional variation was observed (e.g., Sargasso Sea, Gulf Stream, continental slope, and equatorial current), and local patchiness was minimal. Modeling of a combined North and South Atlantic data set revealed significant, independent effects of light and temperature on ecotype abundances, suggesting that they are key ecological determinants that establish the different habitat ranges of the physiologically and genetically distinct ecotypes. This was in sharp contrast with the genus Synechococcus, whose total abundance was related to light but did not vary in a predictable way with temperature. Comparisons of field abundances with growth characteristics of cultured isolates of Prochlorococcus suggested the presence of ecotype-specific thermal and light adaptations that could be responsible for the distinct distribution patterns of the four dominant ecotypes. Significantly, we discovered that one "low-light-adapted" ecotype, eNATL2A, can thrive in deeply mixed surface layers, whereas another, eMIT9313, cannot, even though they have the same growth optimum for (low) light. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  5. Habitat-based constraints on food web structure and parasite life cycles.

    PubMed

    Rossiter, Wayne; Sukhdeo, Michael V K

    2014-04-01

    Habitat is frequently implicated as a powerful determinant of community structure and species distributions, but few studies explicitly evaluate the relationship between habitat-based patterns of species' distributions and the presence or absence of trophic interactions. The complex (multi-host) life cycles of parasites are directly affected by these factors, but almost no data exist on the role of habitat in constraining parasite-host interactions at the community level. In this study the relationship(s) between species abundances, distributions and trophic interactions (including parasitism) were evaluated in the context of habitat structure (classic geomorphic designations of pools, riffles and runs) in a riverine community (Raritan River, Hunterdon County, NJ, USA). We report 121 taxa collected over a 2-year period, and compare the observed food web patterns to null model expectations. The results show that top predators are constrained to particular habitat types, and that species' distributions are biased towards pool habitats. However, our null model (which incorporates cascade model assumptions) accurately predicts the observed patterns of trophic interactions. Thus, habitat strongly dictates species distributions, and patterns of trophic interactions arise as a consequence of these distributions. Additionally, we find that hosts utilized in parasite life cycles are more overlapping in their distributions, and this pattern is more pronounced among those involved in trophic transmission. We conclude that habitat structure may be a strong predictor of parasite transmission routes, particularly within communities that occupy heterogeneous habitats.

  6. Study on Dynamic Development of Three-dimensional Weld Pool Surface in Stationary GTAW

    NASA Astrophysics Data System (ADS)

    Huang, Jiankang; He, Jing; He, Xiaoying; Shi, Yu; Fan, Ding

    2018-04-01

    The weld pool contains abundant information about the welding process. In particular, the type of the weld pool surface shape, i. e., convex or concave, is determined by the weld penetration. To detect it, an innovative laser-vision-based sensing method is employed to observe the weld pool surface of the gas tungsten arc welding (GTAW). A low-power laser dots pattern is projected onto the entire weld pool surface. Its reflection is intercepted by a screen and captured by a camera. Then the dynamic development process of the weld pool surface can be detected. By observing and analyzing, the change of the reflected laser dots reflection pattern, for shape of the weld pool surface shape, was found to closely correlate to the penetration of weld pool in the welding process. A mathematical model was proposed to correlate the incident ray, reflected ray, screen and surface of weld pool based on structured laser specular reflection. The dynamic variation of the weld pool surface and its corresponding dots laser pattern were simulated and analyzed. By combining the experimental data and the mathematical analysis, the results show that the pattern of the reflected laser dots pattern is closely correlated to the development of weld pool, such as the weld penetration. The concavity of the pool surface was found to increase rapidly after the surface shape was changed from convex to concave during the stationary GTAW process.

  7. Food habits of the hoary bat (LASIURUS CINEREUS) during spring migration through new mexico

    USGS Publications Warehouse

    Valdez, E.W.; Cryan, P.M.

    2009-01-01

    Hoary bats (Lasiums cinernis) exhibit continental patterns of migration that are unique to bats, but details about their behaviors during migration are lacking. We captured 177 hoary bats in spring and early summer 2002 as individuals migrated through the Sandia Mountains of north-central New Mexico. Our results support earlier observations of asynchronous timing of migration between sexes of L. cinernis during spring, with females preceding males by ca. 1 month. We provide the first evidence that hoary bats may travel in dispersed groups, fly below the tree canopy along streams, and feed while migrating during spring. Analysis of guano revealed that diet of L. cinereus consisted mostly of moths, with more than one-half of samples identified as Noctuidae and Geometridae. We observed a late-spring decline in consumption of moths that might be related to seasonal changes in abundance of prey, differential selection of prey by bats, or sampling bias. We suspect that spring migration of L. cinernis through New Mexico temporally coincides with the seasonal abundance of moths.

  8. A SUBTLE INFRARED EXCESS ASSOCIATED WITH A YOUNG WHITE DWARF IN THE EDINBURGH-CAPE BLUE OBJECT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennihy, E.; Dunlap, B. H.; Clemens, J. C.

    We report the discovery of a subtle infrared excess associated with the young white dwarf EC 05365–4749 at 3.35 and 4.6 μ m. Follow-up spectroscopic observations are consistent with a hydrogen atmosphere white dwarf of effective temperature 22,800 K and log [ g (cm s{sup −2})] = 8.19. High-resolution spectroscopy reveals atmospheric metal pollution with logarithmic abundances of [Mg/H] = −5.36 and [Ca/H] = −5.75, confirming the white dwarf is actively accreting from a metal-rich source with an intriguing abundance pattern. We find that the infrared excess is well modeled by a flat, opaque debris disk, though disk parameters aremore » not well constrained by the small number of infrared excess points. We further demonstrate that relaxing the assumption of a circular dusty debris disk to include elliptical disks expands the widths of acceptable disks, adding an alternative interpretation to the subtle infrared excesses commonly observed around young white dwarfs.« less

  9. Effects of local and large-scale climate patterns on estuarine resident fishes: The example of Pomatoschistus microps and Pomatoschistus minutus

    NASA Astrophysics Data System (ADS)

    Nyitrai, Daniel; Martinho, Filipe; Dolbeth, Marina; Rito, João; Pardal, Miguel A.

    2013-12-01

    Large-scale and local climate patterns are known to influence several aspects of the life cycle of marine fish. In this paper, we used a 9-year database (2003-2011) to analyse the populations of two estuarine resident fishes, Pomatoschistus microps and Pomatoschistus minutus, in order to determine their relationships with varying environmental stressors operating over local and large scales. This study was performed in the Mondego estuary, Portugal. Firstly, the variations in abundance, growth, population structure and secondary production were evaluated. These species appeared in high densities in the beginning of the study period, with subsequent occasional high annual density peaks, while their secondary production was lower in dry years. The relationships between yearly fish abundance and the environmental variables were evaluated separately for both species using Spearman correlation analysis, considering the yearly abundance peaks for the whole population, juveniles and adults. Among the local climate patterns, precipitation, river runoff, salinity and temperature were used in the analyses, and North Atlantic Oscillation (NAO) index and sea surface temperature (SST) were tested as large-scale factors. For P. microps, precipitation and NAO were the significant factors explaining abundance of the whole population, the adults and the juveniles as well. Regarding P. minutus, for the whole population, juveniles and adults river runoff was the significant predictor. The results for both species suggest a differential influence of climate patterns on the various life cycle stages, confirming also the importance of estuarine resident fishes as indicators of changes in local and large-scale climate patterns, related to global climate change.

  10. Helminth infracommunities of the common snapping turtle (Chelydra serpentina serpentina) from Westhampton Lake, Virginia.

    PubMed

    Zelmer, Derek A; Platt, Thomas R

    2009-12-01

    Patterns of infracommunity similarity were examined for 27 male and 6 female common snapping turtles, Chelydra serpentina serpentina, collected from Westhampton Lake on the campus of the University of Richmond in Richmond, Virginia, during the summer months of 1979 and 1980. Patterns of infracommunity similarity based on parasite abundance emphasized differences between years and between host sexes. Patterns of similarity based on parasite presence or absence emphasized differences among the months sampled. This suggests that there were consistent seasonal changes across both years in terms of which parasites were present, but that there were differences between years in terms of the abundances of those parasites.

  11. Relationships between Plant Diversity and the Abundance and α-Diversity of Predatory Ground Beetles (Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem

    PubMed Central

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems. PMID:24376582

  12. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Philip F.; Conroy, Charlie, E-mail: phopkins@caltech.edu

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances ofmore » these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.« less

  13. Seasonal Blowfly Distribution and Abundance in Fragmented Landscapes. Is It Useful in Forensic Inference about Where a Corpse Has Been Decaying?

    PubMed Central

    Zabala, Jabi; Díaz, Beatriz; Saloña-Bordas, Marta I.

    2014-01-01

    Blowflies are insects of forensic interest as they may indicate characteristics of the environment where a body has been laying prior to the discovery. In order to estimate changes in community related to landscape and to assess if blowfly species can be used as indicators of the landscape where a corpse has been decaying, we studied the blowfly community and how it is affected by landscape in a 7,000 km2 region during a whole year. Using baited traps deployed monthly we collected 28,507 individuals of 10 calliphorid species, 7 of them well represented and distributed in the study area. Multiple Analysis of Variance found changes in abundance between seasons in the 7 analyzed species, and changes related to land use in 4 of them (Calliphora vomitoria, Lucilia ampullacea, L. caesar and L. illustris). Generalised Linear Model analyses of abundance of these species compared with landscape descriptors at different scales found only a clear significant relationship between summer abundance of C. vomitoria and distance to urban areas and degree of urbanisation. This relationship explained more deviance when considering the landscape composition at larger geographical scales (up to 2,500 m around sampling site). For the other species, no clear relationship between land uses and abundance was found, and therefore observed changes in their abundance patterns could be the result of other variables, probably small changes in temperature. Our results suggest that blowfly community composition cannot be used to infer in what kind of landscape a corpse has decayed, at least in highly fragmented habitats, the only exception being the summer abundance of C. vomitoria. PMID:24918607

  14. Influence of summer biogeography on wood warbler stopover abundance

    Treesearch

    Jeffrey F. Kelly; Rob Smith; Deborah M. Finch; Frank R. Moore; Wang Yong

    1999-01-01

    We evaluated the effect of summer biogeography of migrant wood warblers (Parulidae) on their stopover abundance. To characterize abundance patterns, we used mist-net capture data from spring and fall migration in the Middle Rio Grande Valley, New Mexico, spring migration on the Gulf Coast of Louisiana, and fall migration on the Gulf Coast of Alabama. To describe the...

  15. Spatial distribution and succession of epiphytes on Tsuga heterophylla (western hemlock) in an old-growth Douglas-fir forest

    Treesearch

    Betsy Lyons; Nalini M. Nadkarni; Malcolm P. North

    2000-01-01

    We examined the distribution and abundance of nonvascular epiphytes on western hemlock trees in an oldgrowth coniferous forest focusing on patterns of epiphyte distribution at different spatial scales, epiphyte abundance amongst trees differing in size, and crown structures associated with epiphyte abundance. Total epiphyte cover was greatest in four canopy...

  16. CNO abundances in the quintuplet cluster M supergiant 5-7

    NASA Technical Reports Server (NTRS)

    Ramirez, S. V.; Sellgren, K.; Blum, R.; Terndrup, D. M.

    2002-01-01

    We present and analyze infrared spectra of the supergiant VR 5-7, in the Quintuplet cluster 30 pc from the Galactic center. Within the uncertainties, the [C/H],[N/H], and [O/H] abundances in this star are equal of Ori, a star which exhibits mixing of CNO processed elements, but distinct from the abundance patterns in IRS 7.

  17. The contributions of forest structure and substrate to bryophyte diversity and abundance in mature coniferous forests of the Pacific Northwest

    Treesearch

    Shelley A. Evans; Charles B. Halpern; Donald McKenzie

    2012-01-01

    Many aspects of forest structure are thought to contribute to the presence, abundance, and diversity of forest-floor bryophytes. To what extent easily measured characteristics of local environment (overstory structure or substrate availability) explain patterns of abundance and diversity remains unclear in most forest ecosystems. We explore these relationships in four...

  18. How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement

    PubMed Central

    de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J.; Hengeveld, Geerten M.; Nolet, Bart A.; Herman, Peter M. J.; van de Koppel, Johan

    2014-01-01

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern. PMID:24225464

  19. How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement.

    PubMed

    de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J; Hengeveld, Geerten M; Nolet, Bart A; Herman, Peter M J; van de Koppel, Johan

    2014-01-07

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern.

  20. Pollination biology of Eulophia alta (Orchidaceae) in Amazonia: effects of pollinator composition on reproductive success in different populations

    PubMed Central

    Jürgens, Andreas; Bosch, Simone R.; Webber, Antonio C.; Witt, Taina; Frame, Dawn; Gottsberger, Gerhard

    2009-01-01

    Background and Aims Spatial variation in pollinator composition and abundance is a well-recognized phenomenon. However, a weakness of many studies claiming specificity of plant–pollinator interactions is that they are often restricted to a single locality. The aim of the present study was to investigate pollinator effectiveness of the different flower visitors to the terrestrial orchid Eulophia alta at three different localities and to analyse whether differences in pollinator abundance and composition effect this plant's reproductive success. Methods Natural pollination was observed in vivo, and manipulative experiments were used to study the pollination biology and breeding system of E. alta at three sites near Manaus, Brazil. To gain a better understanding of the underlying mechanisms of pollinator attraction, nectar composition and secretion patterns were also studied, floral scent composition was analysed and a bioassay was conducted. Key Results Flower visitors, pollinator composition, pollinia transfer efficiency of particular pollinator species and natural fruit set differed among the investigated populations of E. alta. Flowers were self-compatible, partially autogamous and effectively pollinated by five bee species (four Centris species and Xylocopa muscaria). Visiting insects appeared to imbibe small amounts of hexose-rich nectar. Nectar sugar content was highest on the third day after flower opening. Floral fragrance analyses revealed 42 compounds, of which monoterpenes and benzenoids predominated. A bioassay using floral parts revealed that only floral tissue from the labellum chamber and labellum tip was attractive to flower visitors. Conclusions The data suggest that observed differences in reproductive success in the three populations cannot be explained by absolute abundance of pollinators alone. Due to behavioural patterns such as disturbance of effective pollinators on flowers by male Centris varia bees defending territory, pollinia transfer efficiencies of particular pollinator species also vary between study sites and result in differing reproductive success. PMID:19666899

  1. Meiobenthic communities in permanently open estuaries and open/closed coastal lagoons of Uruguay (Atlantic coast of South America)

    NASA Astrophysics Data System (ADS)

    Kandratavicius, N.; Muniz, P.; Venturini, N.; Giménez, L.

    2015-09-01

    This study aimed to determine if estuarine meiofaunal communities of Uruguay (South America) vary between permanently open estuaries and open/closed coastal lagoons, or if they respond to the sediment composition. In Uruguay, estuaries and coastal lagoons vary in the degree of connectivity to the sea and in the sediment composition; sediments in estuaries are characterized by fine-medium sands but sediments vary from lagoon to lagoon (either fine-medium or coarse sand). Taxa richness (total = 16) showed less temporal variability in lagoons than in estuaries, due to patterns of presence/absence of the less abundant taxa. However, no major response to habitat was found in the most abundant groups: polychaetes (6% of total fauna) were on average 5% more abundant in lagoons than in estuaries. Some level of zonation, within estuaries and lagoons, was found in the most abundant groups, nematodes (63% of total fauna) and copepods (15%) in response to medium and fine sands. In addition, sediment type modulated seasonal patterns in the frequency of presence/absence in ostracods, polychaetes and oligochaetes. For instance, in polychaetes and ostracods the increase in the frequency of absences, occurring from summer to winter, was stronger in lagoons and estuaries dominated by fine sands. The lagoon habitat appears to ameliorate the effects of unfavourable (winter) conditions in less abundant meiofaunal taxa. In summary, sediment fractions explain spatial patterns in the average abundance of organisms (e.g. nematodes) as well as the seasonal changes in frequency of presence/absence (e.g. polychaetes).

  2. Gaze stability of observers watching Op Art pictures.

    PubMed

    Zanker, Johannes M; Doyle, Melanie; Robin, Walker

    2003-01-01

    It has been the matter of some debate why we can experience vivid dynamic illusions when looking at static pictures composed from simple black and white patterns. The impression of illusory motion is particularly strong when viewing some of the works of 'Op Artists, such as Bridget Riley's painting Fall. Explanations of the illusory motion have ranged from retinal to cortical mechanisms, and an important role has been attributed to eye movements. To assess the possible contribution of eye movements to the illusory-motion percept we studied the strength of the illusion under different viewing conditions, and analysed the gaze stability of observers viewing the Riley painting and control patterns that do not produce the illusion. Whereas the illusion was reduced, but not abolished, when watching the painting through a pinhole, which reduces the effects of accommodation, it was not perceived in flash afterimages, suggesting an important role for eye movements in generating the illusion for this image. Recordings of eye movements revealed an abundance of small involuntary saccades when looking at the Riley pattern, despite the fact that gaze was kept within the dedicated fixation region. The frequency and particular characteristics of these rapid eye movements can vary considerably between different observers, but, although there was a tendency for gaze stability to deteriorate while viewing a Riley painting, there was no significant difference in saccade frequency between the stimulus and control patterns. Theoretical considerations indicate that such small image displacements can generate patterns of motion signals in a motion-detector network, which may serve as a simple and sufficient, but not necessarily exclusive, explanation for the illusion. Why such image displacements lead to perceptual results with a group of Op Art and similar patterns, but remain invisible for other stimuli, is discussed.

  3. Productivity and fishing pressure drive variability in fish parasite assemblages of the Line Islands, equatorial Pacific.

    PubMed

    Wood, Chelsea L; Baum, Julia K; Reddy, Sheila M W; Trebilco, Rowan; Sandin, Stuart A; Zgliczynski, Brian J; Briggs, Amy A; Micheli, Fiorenza

    2015-05-01

    Variability in primary productivity and fishing pressure can shape the abundance, species composition, and diversity of marine life. Though parasites comprise nearly half of marine species, their responses to these important forces remain little explored. We quantified parasite assemblages at two spatial scales, across a gradient in productivity and fishing pressure that spans six coral islands of the Line Islands archipelago and within the largest Line Island, Kiritimati, which experiences a west-to-east gradient in fishing pressure and upwelling-driven productivity. In the across-islands data set, we found that increasing productivity was correlated with increased parasite abundance overall, but that the effects of productivity differed among parasite groups. Trophically transmitted parasites increased in abundance with increasing productivity, but directly transmitted parasites did not exhibit significant changes. This probably arises because productivity has stronger effects on the abundance of the planktonic crustaceans and herbivorous snails that serve as the intermediate hosts of trophically transmitted parasites than on the higher-trophic level fishes that are the sole hosts of directly transmitted parasites. We also found that specialist parasites increased in response to increasing productivity, while generalists did not, possibly because specialist parasites tend to be more strongly limited by host availability than are generalist parasites. After the effect of productivity was controlled for, fishing was correlated with decreases in the abundance of trophically transmitted parasites, while directly transmitted parasites appeared to track host density; we observed increases in the abundance of parasites using hosts that experienced fishing-driven compensatory increases in abundance. The within-island data set confirmed these patterns for the combined effects of productivity and fishing on parasite abundance, suggesting that our conclusions are robust across a span of spatial scales. Overall, these results indicate that there are strong and variable effects of anthropogenic and natural drivers on parasite abundance and taxonomic richness. These effects are likely to be mediated by parasite traits, particularly by parasite transmission strategies.

  4. Experimental evidence of the role of pores on movement and distribution of bacteria in soil

    NASA Astrophysics Data System (ADS)

    Kravchenko, Alexandra N.; Rose, Joan B.; Marsh, Terence L.; Guber, Andrey K.

    2014-05-01

    It has been generally recognized that micro-scale heterogeneity in soil environments can have a substantial effect on movement, fate, and survival of soil microorganisms. However, only recently the development of tools for micro-scale soil analyses, including X-ray computed micro-tomography (μ-CT), enabled quantitative analyses of these effects. The long-term goal of our work is to explore how differences in micro-scale characteristics of pore structures influence movement, spatial distribution patterns, and activities of soil microorganisms. Using X-ray μ-CT we found that differences in land use and management practices lead to development of contrasting patterns in pore size-distributions within intact soil aggregates. Then our experiments with Escherichia coli added to intact soil aggregates demonstrated that the differences in pore structures can lead to substantial differences in bacteria redistribution and movement within the aggregates. Specifically, we observed more uniform E.coli redistribution in aggregates with homogeneously spread pores, while heterogeneous pore structures resulted in heterogeneous E.coli patterns. Water flow driven by capillary forces through intact aggregate pores appeared to be the main contributor to the movement patterns of the introduced bacteria. Influence of pore structure on E.coli distribution within the aggregates further continued after the aggregates were subjected to saturated water flow. E. coli's resumed movement with saturated water flow and subsequent redistribution within the soil matrix was influenced by porosity, abundance of medium and large pores, pore tortuosity, and flow rates, indicating that greater flow accompanied by less convoluted pores facilitated E. coli transport within the intra-aggregate space. We also found that intra-aggregate heterogeneity of pore structures can have an effect on spatial distribution patterns of indigenous microbial populations. Preliminary analysis showed that in aggregates from an organic agricultural system with cover crops, characterized by greater intra-aggregate pore heterogeneity, bacteria of Actinobacteria and Firmicutes groups were more abundant in presence of large as compared to small pores. In contrast, no differences were observed in the aggregates from conventionally managed soil, overall characterized by homogeneous intra-aggregate pore patterns. Further research efforts are being directed towards quantification of the pore structure effects on activities and community composition of soil microorganisms.

  5. Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Ming, D. W.; Blake, D. F.; Bristow, T. F.; Chipera, S. J.; Grotzinger, J. P.; Morris, R. V.; Morrison, S. M.; Vaniman, D. T.; Yen, A. S.; Achilles, C. N.; Craig, P. I.; Des Marais, D. J.; Downs, R. T.; Farmer, J. D.; Fendrich, K. V.; Gellert, R.; Hazen, R. M.; Kah, L. C.; Morookian, J. M.; Peretyazhko, T. S.; Sarrazin, P.; Treiman, A. H.; Berger, J. A.; Eigenbrode, J.; Fairén, A. G.; Forni, O.; Gupta, S.; Hurowitz, J. A.; Lanza, N. L.; Schmidt, M. E.; Siebach, K.; Sutter, B.; Thompson, L. M.

    2017-08-01

    The Mars Science Laboratory Curiosity rover has been traversing strata at the base of Aeolis Mons (informally known as Mount Sharp) since September 2014. The Murray formation makes up the lowest exposed strata of the Mount Sharp group and is composed primarily of finely laminated lacustrine mudstone intercalated with rare crossbedded sandstone that is prodeltaic or fluvial in origin. We report on the first three drilled samples from the Murray formation, measured in the Pahrump Hills section. Rietveld refinements and FULLPAT full pattern fitting analyses of X-ray diffraction patterns measured by the MSL CheMin instrument provide mineral abundances, refined unit-cell parameters for major phases giving crystal chemistry, and abundances of X-ray amorphous materials. Our results from the samples measured at the Pahrump Hills and previously published results on the Buckskin sample measured from the Marias Pass section stratigraphically above Pahrump Hills show stratigraphic variations in the mineralogy; phyllosilicates, hematite, jarosite, and pyroxene are most abundant at the base of the Pahrump Hills, and crystalline and amorphous silica and magnetite become prevalent higher in the succession. Some trace element abundances measured by APXS also show stratigraphic trends; Zn and Ni are highly enriched with respect to average Mars crust at the base of the Pahrump Hills (by 7.7 and 3.7 times, respectively), and gradually decrease in abundance in stratigraphically higher regions near Marias Pass, where they are depleted with respect to average Mars crust (by more than an order of magnitude in some targets). The Mn stratigraphic trend is analogous to Zn and Ni, however, Mn abundances are close to those of average Mars crust at the base of Pahrump Hills, rather than being enriched, and Mn becomes increasingly depleted moving upsection. Minerals at the base of the Pahrump Hills, in particular jarosite and hematite, as well as enrichments in Zn, Ni, and Mn, are products of acid-sulfate alteration on Earth. We hypothesize that multiple influxes of mildly to moderately acidic pore fluids resulted in diagenesis of the Murray formation and the observed mineralogical and geochemical variations. The preservation of some minerals that are highly susceptible to dissolution at low pH (e.g., mafic minerals and fluorapatite) suggests that acidic events were not long-lived and that fluids may not have been extremely acidic (pH > 2). Alternatively, the observed mineralogical variations within the succession may be explained by deposition in lake waters with variable Eh and/or pH, where the lowermost sediments were deposited in an oxidizing, perhaps acidic lake setting, and sediments deposited in the upper Pahrump Hills and Marias Pass were deposited lake waters with lower Eh and higher pH.

  6. Abiotic and biotic factors influencing nanoflagellate abundance and distribution in three different seasons in PRE, South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Shi, Zhen; Huang, Xiaoping; Li, Xiangfu

    2017-07-01

    Spatial distribution characteristics of two nanoflagellate groups, together with physico-chemical and biological factors, were studied in three seasons in the Pearl River Estuary (PRE), South China Sea. Nanoflagellates were more abundant in warm periods than that in winter. The average abundance in the three observations (spring, summer and winter) was as follow: 1.28 ± 1.17, 0.88 ± 1.02 and 0.28 ± 0.23 × 103 cells ml-1 of heterotrophic nanoflagellate (HNF), and 1.26 ± 0.85, 0.89 ± 0.77 and 0.65 ± 0.52 × 103 cells ml-1 of pigmented nanoflagellate (PNF). In our three studied seasons, NF density was generally higher in the inner estuary and decreasing to the lowest in the outer estuary. Our results suggested that PNF classes were more sensitive than HNF groups to freshwater discharge. The proportion of PNF gradually increased from spring (49.7%) to winter (67.7%), with the river flow was accordingly decreasing. Moreover, spatial distribution pattern in three seasons showed the response of PNF populations to freshwater input was similar to phytoplankton assemblages in the PRE. Total bacterial and live bacterial abundance (measured by LIVE/DEAD kit) were associated with both two NF components, which implied that NF was a potential predator controlling the bulk abundance of bacteria and proportion of active cells. These results revealed the seasonal and spatial variations of NF abundance in diverse conditions in the PRE and how their response to different ecological processes.

  7. Indication of a species in an extinction vortex: The ocellated turkey on the Yucatan peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Kampichler, Christian; Calmé, Sophie; Weissenberger, Holger; Arriaga-Weiss, Stefan Louis

    2010-11-01

    The ocellated turkey Meleagris ocellata (OT) is a large, unmistakable endemic bird of the Yucatan peninsula. The species has suffered a considerable loss of distributional area as well as local abundance between 1980 and 2000 and is classified as endangered according to Mexican norms. We applied Classification Trees and Random Forests in order to determine the factors that most closely explain the observed patterns of distribution and abundance loss, and to develop hypotheses that may guide measures for the protection of the OT. Among the most important predictors of change were variables corresponding to aspects of forest cover and variables on human population and small settlements. OT abundance in 1980, however, was by far the most important predictor for OT abundance change. This is an indication that the OT dynamics are governed by internal rather than by external factors. Medium and low abundances in 1980 inevitably led to a further decrease during the following years, which gives rise to the conclusion that the OT might find itself in an extinction vortex. We suggest the following hypothetical scenario for OT decline: migrant people from other Mexican states colonise forested regions in Yucatan; they establish small settlements; bushmeat hunting is important for their survival; the naïve OT is easy prey; hunting—together with beginning deforestation—reaches a certain level, and local OT abundance falls below a critical threshold; OT continues declining regardless of current social and environmental changes except where there is total protection of both the species and its habitat.

  8. A Review of Stellar Abundance Databases and the Hypatia Catalog Database

    NASA Astrophysics Data System (ADS)

    Hinkel, Natalie Rose

    2018-01-01

    The astronomical community is interested in elements from lithium to thorium, from solar twins to peculiarities of stellar evolution, because they give insight into different regimes of star formation and evolution. However, while some trends between elements and other stellar or planetary properties are well known, many other trends are not as obvious and are a point of conflict. For example, stars that host giant planets are found to be consistently enriched in iron, but the same cannot be definitively said for any other element. Therefore, it is time to take advantage of large stellar abundance databases in order to better understand not only the large-scale patterns, but also the more subtle, small-scale trends within the data.In this overview to the special session, I will present a review of large stellar abundance databases that are both currently available (i.e. RAVE, APOGEE) and those that will soon be online (i.e. Gaia-ESO, GALAH). Additionally, I will discuss the Hypatia Catalog Database (www.hypatiacatalog.com) -- which includes abundances from individual literature sources that observed stars within 150pc. The Hypatia Catalog currently contains 72 elements as measured within ~6000 stars, with a total of ~240,000 unique abundance determinations. The online database offers a variety of solar normalizations, stellar properties, and planetary properties (where applicable) that can all be viewed through multiple interactive plotting interfaces as well as in a tabular format. By analyzing stellar abundances for large populations of stars and from a variety of different perspectives, a wealth of information can be revealed on both large and small scales.

  9. Metazoan meiofauna in deep-sea canyons and adjacent open slopes: A large-scale comparison with focus on the rare taxa

    NASA Astrophysics Data System (ADS)

    Bianchelli, S.; Gambi, C.; Zeppilli, D.; Danovaro, R.

    2010-03-01

    Metazoan meiofaunal abundance, total biomass, nematode size and the richness of taxa were investigated along bathymetric gradients (from the shelf break down to ca. 5000-m depth) in six submarine canyons and on five adjacent open slopes of three deep-sea regions. The investigated areas were distributed along >2500 km, on the Portuguese to the Catalan and South Adriatic margins. The Portuguese and Catalan margins displayed the highest abundances, biomass and richness of taxa, while the lowest values were observed in the Central Mediterranean Sea. The comparison between canyons and the nearby open slopes showed the lack of significant differences in terms of meiofaunal abundance and biomass at any sampling depth. In most canyons and on most slopes, meiofaunal variables did not display consistent bathymetric patterns. Conversely, we found that the different topographic features were apparently responsible for significant differences in the abundance and distribution of the rare meiofaunal taxa (i.e. taxa accounting for <1% of total meiofaunal abundance). Several taxa belonging to the temporary meiofauna, such as larvae/juveniles of Priapulida, Holothuroidea, Ascidiacea and Cnidaria, were encountered exclusively on open slopes, while others (including the Tanaidacea and Echinodea larvae) were found exclusively in canyons sediments. Results reported here indicate that, at large spatial scales, differences in deep-sea meiofaunal abundance and biomass are not only controlled by the available food sources, but also by the region or habitat specific topographic features, which apparently play a key role in the distribution of rare benthic taxa.

  10. Facilitation drives 65 years of vegetation change in the Sonoran Desert

    USGS Publications Warehouse

    Butterfield, Bradley J.; Betancourt, Julio L.; Turner, Raymond M.; Briggs, John M.

    2010-01-01

    Ecological processes of low-productivity ecosystems have long been considered to be driven by abiotic controls with biotic interactions playing an insignificant role. However, existing studies present conflicting evidence concerning the roles of these factors, in part due to the short temporal extent of most data sets and inability to test indirect effects of environmental variables modulated by biotic interactions. Using structural equation modeling to analyze 65 years of perennial vegetation change in the Sonoran Desert, we found that precipitation had a stronger positive effect on recruitment beneath existing canopies than in open microsites due to reduced evaporation rates. Variation in perennial canopy cover had additional facilitative effects on juvenile recruitment, which was indirectly driven by effects of density and precipitation on cover. Mortality was strongly influenced by competition as indicated by negative density-dependence, whereas precipitation had no effect. The combined direct, indirect, and interactive facilitative effects of precipitation and cover on recruitment were substantial, as was the effect of competition on mortality, providing strong evidence for dual control of community dynamics by climate and biotic interactions. Through an empirically derived simulation model, we also found that the positive feedback of density on cover produces unique temporal abundance patterns, buffering changes in abundance from high frequency variation in precipitation, amplifying effects of low frequency variation, and decoupling community abundance from precipitation patterns at high abundance. Such dynamics should be generally applicable to low-productivity systems in which facilitation is important and can only be understood within the context of long-term variation in climatic patterns. This predictive model can be applied to better manage low-productivity ecosystems, in which variation in biogeochemical processes and trophic dynamics may be driven by positive density-dependent feedbacks that influence temporal abundance and productivity patterns.

  11. Lithium abundance patterns of late-F stars: an in-depth analysis of the lithium desert

    NASA Astrophysics Data System (ADS)

    Aguilera-Gómez, Claudia; Ramírez, Iván; Chanamé, Julio

    2018-06-01

    Aims: We address the existence and origin of the lithium (Li) desert, a region in the Li-Teff plane sparsely populated by stars. Here we analyze some of the explanations that have been suggested for this region, including mixing in the late main sequence, a Li dip origin for stars with low Li abundances in the region, and a possible relation with the presence of planets. Methods: To study the Li desert, we measured the atmospheric parameters and Li abundance of 227 late-F dwarfs and subgiants, chosen to be in the Teff range of the desert and without previous Li abundance measurements. Subsequently, we complemented those with literature data to obtain a homogeneous catalog of 2318 stars, for which we compute masses and ages. We characterize stars surrounding the region of the Li desert. Results: We conclude that stars with low Li abundances below the desert are more massive and more evolved than stars above the desert. Given the unexpected presence of low Li abundance stars in this effective temperature range, we concentrate on finding their origin. We conclude that these stars with low Li abundance do not evolve from stars above the desert: at a given mass, stars with low Li (i.e., below the desert) are more metal-poor. Conclusions: Instead, we suggest that stars below the Li desert are consistent with having evolved from the Li dip, discarding the need to invoke additional mixing to explain this feature. Thus, stars below the Li desert are not peculiar and are only distinguished from other subgiants evolved from the Li dip in that their combination of atmospheric parameters locates them in a range of effective temperatures where otherwise only high Li abundance stars would be found (i.e., stars above the desert). Full Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A55This paper includes observations collected at The McDonald Observatory and observations gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  12. Impacts of urbanization and landscape patterns on the earthworm communities in residential areas in Beijing.

    PubMed

    Xie, Tian; Wang, Meie; Chen, Weiping; Uwizeyimana, Herman

    2018-06-01

    Earthworms play an important role in soil processes and functions. However, few studies have focused on their community patterns in perturbed systems, especially in an urban environment with a high turnover rate of land cover. In this study, we collected and identified the earthworms in the residential areas in metropolitan Beijing. We further investigated the effects of urban soil properties, urbanization and landscape patterns on the earthworm communities. The results showed that both the abundance and biomass of earthworms in residential areas in metropolitan was relatively low. The abundance of earthworms was negatively correlated with soil organic carbon (SOC) in this study. Soil moisture and pH could be considered as the most important edaphic variables that affected earthworm communities. The construction age of residential areas significantly influenced the earthworm abundance. Moreover, the earthworm community composition responded differently to urban landscape features at different scales. The percentage of impervious and green space surface, the amount of landscape cover types, patch density and landscape fragment significantly affected the earthworm assemblages. Our result discovered that the edaphic properties, urbanization as well as landscape patterns might be the potential factors that influenced the earthworm community patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Biogeography and Photosynthetic Biomass of Arctic Marine Pico-Eukaroytes during Summer of the Record Sea Ice Minimum 2012

    PubMed Central

    Metfies, Katja; von Appen, Wilken-Jon; Kilias, Estelle; Nicolaus, Anja; Nöthig, Eva-Maria

    2016-01-01

    Information on recent photosynthetic biomass distribution and biogeography of Arctic marine pico-eukaryotes (0.2–3 μm) is needed to better understand consequences of environmental change for Arctic marine ecosystems. We analysed pico-eukaryote biomass and community composition in Fram Strait and large parts of the Central Arctic Ocean (Nansen Basin, Amundsen Basin) using chlorophyll a (Chl a) measurements, automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing. Samples were collected during summer 2012, the year with the most recent record sea ice minimum. Chl a concentrations were highest in eastern Fram Strait and pico-plankton accounted for 60–90% of Chl a biomass during the observation period. ARISA-patterns and 454-pyrosequencing revealed that pico-eukaryote distribution is closely related to water mass distribution in the euphotic zone of the Arctic Ocean. Phaeocystaceae, Micromonas sp., Dinophyceae and Syndiniales constitute a high proportion of sequence reads, while sequence abundance of autotrophic Phaeocystaceae and mixotrophic Micromonas sp. was inversely correlated. Highest sequence abundances of Phaeocystaceae were observed in the warm Atlantic Waters in Fram Strait, while Micromonas sp. dominated the abundant biosphere in the arctic halocline. Our results are of particular interest considering existing hypotheses that environmental conditions in Nansen Basin might become more similar to the current conditions in Fram Strait. We propose that in response, biodiversity and biomass of pico-eukaryotes in Nansen Basin could resemble those currently observed in Fram Strait in the future. This would significantly alter biogeochemical cycles in a large part of the Central Arctic Ocean. PMID:26895333

  14. Ichthyoplankton Time Series: A Potential Ocean Observing Network to Provide Indicators of Climate Impacts on Fish Communities along the West Coast of North America

    NASA Astrophysics Data System (ADS)

    Koslow, J. A.; Brodeur, R.; Duffy-Anderson, J. T.; Perry, I.; jimenez Rosenberg, S.; Aceves, G.

    2016-02-01

    Ichthyoplankton time series available from the Bering Sea, Gulf of Alaska and California Current (Oregon to Baja California) provide a potential ocean observing network to assess climate impacts on fish communities along the west coast of North America. Larval fish abundance reflects spawning stock biomass, so these data sets provide indicators of the status of a broad range of exploited and unexploited fish populations. Analyses to date have focused on individual time series, which generally exhibit significant change in relation to climate. Off California, a suite of 24 midwater fish taxa have declined > 60%, correlated with declining midwater oxygen concentrations, and overall larval fish abundance has declined 72% since 1969, a trend based on the decline of predominantly cool-water affinity taxa in response to warming ocean temperatures. Off Oregon, there were dramatic differences in community structure and abundance of larval fishes between warm and cool ocean conditions. Midwater deoxygenation and warming sea surface temperature trends are predicted to continue as a result of global climate change. US, Canadian, and Mexican fishery scientists are now collaborating in a virtual ocean observing network to synthesize available ichthyoplankton time series and compare patterns of change in relation to climate. This will provide regional indicators of populations and groups of taxa sensitive to warming, deoxygenation and potentially other stressors, establish the relevant scales of coherence among sub-regions and across Large Marine Ecosystems, and provide the basis for predicting future climate change impacts on these ecosystems.

  15. Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root.

    PubMed

    Carvalho, Luiz Jcb; Agustini, Marco Av; Anderson, James V; Vieira, Eduardo A; de Souza, Claudia Rb; Chen, Songbi; Schaal, Barbara A; Silva, Joseane P

    2016-06-10

    Cassava (Manihot esculenta Crantz) storage root provides a staple food source for millions of people worldwide. Increasing the carotenoid content in storage root of cassava could provide improved nutritional and health benefits. Because carotenoid accumulation has been associated with storage root color, this study characterized carotenoid profiles, and abundance of key transcripts associated with carotenoid biosynthesis, from 23 landraces of cassava storage root ranging in color from white-to-yellow-to-pink. This study provides important information to plant breeding programs aimed at improving cassava storage root nutritional quality. Among the 23 landraces, five carotenoid types were detected in storage root with white color, while carotenoid types ranged from 1 to 21 in storage root with pink and yellow color. The majority of storage root in these landraces ranged in color from pale-to-intense yellow. In this color group, total β-carotene, containing all-E-, 9-Z-, and 13-Z-β-carotene isomers, was the major carotenoid type detected, varying from 26.13 to 76.72 %. Although no α-carotene was observed, variable amounts of a α-ring derived xanthophyll, lutein, was detected; with greater accumulation of α-ring xanthophylls than of β-ring xanthophyll. Lycopene was detected in a landrace (Cas51) with pink color storage root, but it was not detected in storage root with yellow color. Based on microarray and qRT-PCR analyses, abundance of transcripts coding for enzymes involved in carotenoid biosynthesis were consistent with carotenoid composition determined by contrasting HPLC-Diode Array profiles from storage root of landraces IAC12, Cas64, and Cas51. Abundance of transcripts encoding for proteins regulating plastid division were also consistent with the observed differences in total β-carotene accumulation. Among the 23 cassava landraces with varying storage root color and diverse carotenoid types and profiles, landrace Cas51 (pink color storage root) had low LYCb transcript abundance, whereas landrace Cas64 (intense yellow storage root) had decreased HYb transcript abundance. These results may explain the increased amounts of lycopene and total β-carotene observed in landraces Cas51 and Cas64, respectively. Overall, total carotenoid content in cassava storage root of color class representatives were associated with spatial patterns of secondary growth, color, and abundance of transcripts linked to plastid division. Finally, a partial carotenoid biosynthesis pathway is proposed.

  16. Time scales of change in the San Francisco Bay benthos

    USGS Publications Warehouse

    Nichols, F.H.; Thompson, J.K.

    1985-01-01

    Results from multi-year investigations in the San Francisco Bay estuary show that large abundance fluctuations within benthic macroinvertebrate populations reflect both (1) within-year periodicity of reproduction, recruitment, and mortality that is not necessarily coincident with seasonal changes of the environment (e.g., the annual temperature cycle), and (2) aperiodic density changes (often larger than within-year fluctuations) following random perturbations of the environment. Density peaks of the small, short-lived estuarine invertebrates that comprise the vast majority of individuals in the bay's relatively homogeneous benthic community normally occur between spring and autumn depending on the species, in large part a reflection of reproductive periodicity. However, because mild winters permit reproductive activity in some of the common species throughout much of the year, other factors are important to within-year density fluctuations in the community. Seasonally predictable changes in freshwater inflow, wind and tidal mixing, microalgal biomass, and sediment erosion/deposition patterns all contribute to observed seasonal changes in abundance. For example, the commonly observed decline in abundance during winter reflects both short-lived species that die after reproducing and the stress of winter conditions (e.g., inundation by less saline, sediment-laden water and the decline in both planktonic and benthic algal biomass - a direct source of food for the shallow-water benthos). On the other hand, data from several studies suggest that observed 'recruitment' and 'mortality' may in fact be the migration of juveniles and adults to and from study sites. For example, the common amphipod Ampelisca abdita apparently moves from shallow to deep water, or from up-estuary to down-estuary locations, coincident with periods of high river runoff in winter. Growth of individuals within the few studied species populations is also highly seasonal, and appears to be coincident with seasonal increases in the abundance of planktonic and/or benthic microalgae. Two multi-year studies have shown that, in addition to within-year periodicity, major restructuring of the benthic community can occur as a result of anomalous (usually climate-related) perturbations of the benthic habitat. For example, during wet years freshwater-intolerant species disappear from the upper part of the estuary and from shallow areas of the bay. During a two-year drought these same species colonized the extreme upper end of the estuary in large numbers. Other aperiodic perturbations include localized instances of sediment erosion or deposition and algal mat accumulations that greatly depress abundance. Additionally, there is evidence (observations that the clam Macoma balthica establishes large populations only when the amphipod A. abdita is not abundant) that species interactions can contribute greatly to interannual variations. Thus, while community composition may change little over the long term, year-to-year predictability of species abundances is low. ?? 1985 Dr W. Junk Publishers.

  17. CN anomalies in extremely metal-deficient red giants

    NASA Technical Reports Server (NTRS)

    Anthony-Twarog, Barbara J.; Shawl, Stephen J.; Twarog, Bruce A.

    1992-01-01

    New photometric and UV spectroscopic data for the metal-deficient red giants CD -38 deg 245 and BD -18 deg 5550 are presented and discussed in light of recently noted photometric anomalies. From the IUE spectra it is aparent that the UV excess found in BD -18 deg 5550 is not the result of a hot companion. The IUE spectra, in conjunction with other observations, point to anomalous nitrogen abundances as the source of the discrepancies between the photometric and spectroscopic abundances for these stars. CD -38 deg 245 appears to be exceptionally nitrogen-rich while BD -18 deg 5550 is anomalously nitrogen-poor with respect to stars of comparable metallicities. While BD -18 deg 5550 appears to be an exception to the rule for its metallicity, the confirmation of a similar photometric pattern for CS 22885-96 may be an indication that the nitrogen overabundance in CD -38 deg 245 is typical for giants of extreme metal-deficiency.

  18. Membrane biofouling process correlated to the microbial community succession in an A/O MBR.

    PubMed

    Chen, Chun-Hong; Fu, Yuan; Gao, Da-Wen

    2015-12-01

    The microbial community succession of the biofouling layer in a submerged anoxic/oxic membrane biological reactor (A/O MBR) that fed with synthesized domestic wastewater was investigated under three different flux conditions without the changing of the nutrient load. The noticeable microbial community succession and its significant correlation with the metabolic products were observed under the subcritical flux condition. Under the supercritical flux condition, the microbial community shift was in a different pattern compared with that under the subcritical flux condition and it was affected by the increased permeable suction more than the metabolic products. The most abundant microorganisms in the foulants were β-proteobacteria and γ-proteobacteria which can reach more than 20% of the microbial community. However the microorganisms which had significant correlation with the metabolic products were in lower abundance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Predictive Spatial Analysis of Marine Mammal Habitats

    DTIC Science & Technology

    2010-01-01

    Therefore, it would be desirable to focus on biological components of their habitat to describe their patterns of distribution and abundance . For...difficult (and often impossible) to determine prey abundance and distribution in the ocean, even with commercially important species. We currently do...not have the tools to determine the distribution and abundance of these prey species at scales that are relevant to either marine mammals or the

  20. Chemistry of the older supracrustals of Archaean age around Sargur

    NASA Technical Reports Server (NTRS)

    Janardhan, A. S.; Shadaksharaswamy, N.; Capdevila, R.

    1988-01-01

    In the Archaeans of the Karnataka craton two stratigraphically distinct volcano-sedimentary sequences occur, namely the older supracrustals of the Sargur type and the younger Dharwar greenstones. The dividing line between these is the 3 by old component of the Peninsular gneiss. The trace and rare earth element chemistry of the Sargur metasediments show, in general, marked similarity to the Archaean sediments. The significant departures are in the nickel and chromium abundances. The REE data of the Sargur pelites of the Terakanambi region represented by Silli-gt-bio-feldspar schists and paragneisses show LREE enrichment and flat to depleted HREE pattern. Banded iron formations have very low REE abundance. They show slightly enriched LREE and flat to depleted HREE pattern. REE abundance in the Mn-horizons is comparable to that of the Archaean sediments. Mn-horizons show enriched LREE and flat HREE with anamolous Eu. REE patterns of these bands is well evolved and has similarities with PAAS.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi, E-mail: ktakahashi@astron.s.u-tokyo.ac.jp

    We perform a stellar evolution simulation of first stars and calculate stellar yields from the first supernovae. The initial masses are taken from 12 to 140 M {sub ☉} to cover the whole range of core-collapse supernova progenitors, and stellar rotation is included, which results in efficient internal mixing. A weak explosion is assumed in supernova yield calculations, thus only outer distributed matter, which is not affected by the explosive nucleosynthesis, is ejected in the models. We show that the initial mass and the rotation affect the explosion yield. All the weak explosion models have abundances of [C/O] larger thanmore » unity. Stellar yields from massive progenitors of >40-60 M {sub ☉} show enhancement of Mg and Si. Rotating models yield abundant Na and Al, and Ca is synthesized in nonrotating heavy massive models of >80 M {sub ☉}. We fit the stellar yields to the three most iron-deficient stars and constrain the initial parameters of the mother progenitor stars. The abundance pattern in SMSS 0313–6708 is well explained by 50-80 M {sub ☉} nonrotating models, rotating 30-40 M {sub ☉} models well fit the abundance of HE 0107-5240, and both nonrotating and rotating 15-40 M {sub ☉} models explain HE 1327-2326. The presented analysis will be applicable to other carbon-enhanced hyper-metal-poor stars observed in the future. The abundance analyses will give valuable information about the characteristics of the first stars.« less

  2. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus

    PubMed Central

    Flombaum, Pedro; Gallegos, José L.; Gordillo, Rodolfo A.; Rincón, José; Zabala, Lina L.; Jiao, Nianzhi; Karl, David M.; Li, William K. W.; Lomas, Michael W.; Veneziano, Daniele; Vera, Carolina S.; Vrugt, Jasper A.; Martiny, Adam C.

    2013-01-01

    The Cyanobacteria Prochlorococcus and Synechococcus account for a substantial fraction of marine primary production. Here, we present quantitative niche models for these lineages that assess present and future global abundances and distributions. These niche models are the result of neural network, nonparametric, and parametric analyses, and they rely on >35,000 discrete observations from all major ocean regions. The models assess cell abundance based on temperature and photosynthetically active radiation, but the individual responses to these environmental variables differ for each lineage. The models estimate global biogeographic patterns and seasonal variability of cell abundance, with maxima in the warm oligotrophic gyres of the Indian and the western Pacific Oceans and minima at higher latitudes. The annual mean global abundances of Prochlorococcus and Synechococcus are 2.9 ± 0.1 × 1027 and 7.0 ± 0.3 × 1026 cells, respectively. Using projections of sea surface temperature as a result of increased concentration of greenhouse gases at the end of the 21st century, our niche models projected increases in cell numbers of 29% and 14% for Prochlorococcus and Synechococcus, respectively. The changes are geographically uneven but include an increase in area. Thus, our global niche models suggest that oceanic microbial communities will experience complex changes as a result of projected future climate conditions. Because of the high abundances and contributions to primary production of Prochlorococcus and Synechococcus, these changes may have large impacts on ocean ecosystems and biogeochemical cycles. PMID:23703908

  3. Abyssal near-bottom dispersal stages of benthic invertebrates in the Clarion-Clipperton polymetallic nodule province

    NASA Astrophysics Data System (ADS)

    Kersten, Oliver; Smith, Craig R.; Vetter, Eric W.

    2017-09-01

    Growing interest in polymetallic nodule mining has intensified the need to characterize the abundance, community structure and vertical flux of meroplankton in the Clarion-Clipperton Zone (CCZ) to facilitate the estimation of larval supply and potential connectivity of benthic populations. These ecological parameters are essential to predict recolonization processes following the expected large-scale, high intensity disturbances associated with nodule extraction. Here, we present the first description of the composition, abundance, temporal variability, and mesoscale distribution of dispersing stages of the benthos in two study areas in the eastern CCZ. Samples from free-vehicle plankton pumps showed little variation in meroplankton diversity and abundance over scales of 30-100 km for time scales of days to weeks. However, sediment-trap samples revealed high temporal variability in vertical flux over weeks to months. Larval abundances and fluxes measured in the abyssal CCZ are 1-2 orders of magnitude lower than observed at deep-sea ridge and hydrothermal-vent habitats. We found significantly higher downward larval fluxes at 11 m above the bottom (mab) than at 146 mab, indicating accumulation or retention of meroplankton within the Benthic Boundary Layer (BBL). The high abundance of meroplankton in the BBL emphasizes its importance to dispersing stages and suggests that the creation of large sediment plumes in the BBL during nodule mining could compromise the dispersal and recruitment abilities of the abyssal benthos, potentially slowing rates and altering patterns of benthic community recovery following mining disturbance.

  4. Modeling and mapping abundance of American Woodcock across the Midwestern and Northeastern United States

    USGS Publications Warehouse

    Thogmartin, W.E.; Sauer, J.R.; Knutson, M.G.

    2007-01-01

    We used an over-dispersed Poisson regression with fixed and random effects, fitted by Markov chain Monte Carlo methods, to model population spatial patterns of relative abundance of American woodcock (Scolopax minor) across its breeding range in the United States. We predicted North American woodcock Singing Ground Survey counts with a log-linear function of explanatory variables describing habitat, year effects, and observer effects. The model also included a conditional autoregressive term representing potential correlation between adjacent route counts. Categories of explanatory habitat variables in the model included land-cover composition, climate, terrain heterogeneity, and human influence. Woodcock counts were higher in landscapes with more forest, especially aspen (Populus tremuloides) and birch (Betula spp.) forest, and in locations with a high degree of interspersion among forest, shrubs, and grasslands. Woodcock counts were lower in landscapes with a high degree of human development. The most noteworthy practical application of this spatial modeling approach was the ability to map predicted relative abundance. Based on a map of predicted relative abundance derived from the posterior parameter estimates, we identified major concentrations of woodcock abundance in east-central Minnesota, USA, the intersection of Vermont, USA, New York, USA, and Ontario, Canada, the upper peninsula of Michigan, USA, and St. Lawrence County, New York. The functional relations we elucidated for the American woodcock provide a basis for the development of management programs and the model and map may serve to focus management and monitoring on areas and habitat features important to American woodcock.

  5. Seasonal variation in natural abundance of 2H and 18O in urine samples from rural Nigeria

    PubMed Central

    Dugas, Lara R.; Brieger, William; Tayo, Bamidele O.; Alabi, Tunrayo; Schoeller, Dale A.; Luke, Amy

    2015-01-01

    The doubly labeled water (DLW) method is used to measure free-living energy expenditure in humans. Inherent to this technique is the assumption that natural abundances of stable isotopes 2H and 18O in body water remain constant over the course of the measurement period and after elimination of the loading dose of DLW will return to the same predose level. To determine variability in the natural abundances of 2H and 18O in humans living in a region with seasonal shifts in rain patterns and sources of drinking water, over the course of 12 mo we collected weekly urine samples from four individuals living in southwest Nigeria as well as samples of their drinking water. From ongoing regional studies of hypertension, obesity, and energy expenditure, we estimated average water turnover rate, urine volumes, and sodium and potassium excretion. Results suggest that 2H and 18O in urine, mean concentrations of urinary sodium and potassium, urine volume, and total body turnover differed significantly from dry to rainy season. Additionally, seasonal weather variables (mean monthly maximum temperatures, total monthly rainfall, and minimum relative humidity) were all significantly associated with natural abundances in urine. No seasonal difference was observed in drinking water samples. Findings suggest that natural abundances in urine may not remain constant as assumed, and studies incorporating DLW measurements across the transition of seasons should interpret results with caution unless appropriate doses of the tracers are used. PMID:25977450

  6. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasselquist, Sten; Holtzman, Jon; Shetrone, Matthew

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars withmore » [Fe/H] ≳ −0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.« less

  7. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Hasselquist, Sten; Shetrone, Matthew; Smith, Verne; Holtzman, Jon; McWilliam, Andrew; Fernández-Trincado, J. G.; Beers, Timothy C.; Majewski, Steven R.; Nidever, David L.; Tang, Baitian; Tissera, Patricia B.; Fernández Alvar, Emma; Allende Prieto, Carlos; Almeida, Andres; Anguiano, Borja; Battaglia, Giuseppina; Carigi, Leticia; Delgado Inglada, Gloria; Frinchaboy, Peter; García-Hernández, D. A.; Geisler, Doug; Minniti, Dante; Placco, Vinicius M.; Schultheis, Mathias; Sobeck, Jennifer; Villanova, Sandro

    2017-08-01

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.

  8. Contributions to the 19th International Cosmic Ray Conference

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Various aspects of cosmic radiation, its measurements and their patterns are presented. Measurement techniques and variations in solar cosmic ray patterns and calculations of elemental abundances are reviewed.

  9. Seasonal Patterns of Stored-Product Insects at a Rice Mill.

    PubMed

    McKay, Tanja; White, Amanda L; Starkus, Laura A; Arthur, Frank H; Campbell, James F

    2017-06-01

    The temporal and spatial patterns in flight activity outside of a rice mill were evaluated for the lesser grain borer [Rhyzopertha dominica (F.)], warehouse beetle [Trogoderma variabile Ballion], cigarette beetle [Lasioderma serricorne (F.)], and Indian meal moth [Plodia interpunctella (Hüϋbner)] to determine critical times of year when the mill would be vulnerable to invasion. Insect activity was monitored using pheromone-baited glue traps (N = 99) from June 2008 to October 2010. Traps were placed along exterior walls of all major buildings and along the fence around the perimeter of the facility. Trogoderma variabile was the most abundant species, with flight activity between mid-March and November. No activity of T. variabile was observed during December through March. Rhyzopertha dominica was also abundant, with activity in mid-April through October. A few adult R. dominica were captured in traps during winter months in the first year of study. Trap captures for all four species increased with an increase in temperature and can be described by linear equations. Knowing seasonal patterns in insect activity allows rice facilities to better understand when facilities are most vulnerable to pest activity. However, this study demonstrates that more research is needed to address how insects are immigrating and emigrating within and around a rice mill. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, K.; Chubb, C.; Huberman, E.

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteinsmore » were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.« less

  11. A Stochastic Model to Study Rift Valley Fever Persistence with Different Seasonal Patterns of Vector Abundance: New Insights on the Endemicity in the Tropical Island of Mayotte

    PubMed Central

    Dommergues, Laure; Zumbo, Betty; Cardinale, Eric

    2015-01-01

    Rift Valley fever (RVF) is a zoonotic vector-borne disease causing abortion storms in cattle and human epidemics in Africa. Our aim was to evaluate RVF persistence in a seasonal and isolated population and to apply it to Mayotte Island (Indian Ocean), where the virus was still silently circulating four years after its last known introduction in 2007. We proposed a stochastic model to estimate RVF persistence over several years and under four seasonal patterns of vector abundance. Firstly, the model predicted a wide range of virus spread patterns, from obligate persistence in a constant or tropical environment (without needing vertical transmission or reintroduction) to frequent extinctions in a drier climate. We then identified for each scenario of seasonality the parameters that most influenced prediction variations. Persistence was sensitive to vector lifespan and biting rate in a tropical climate, and to host viraemia duration and vector lifespan in a drier climate. The first epizootic peak was primarily sensitive to viraemia duration and thus likely to be controlled by vaccination, whereas subsequent peaks were sensitive to vector lifespan and biting rate in a tropical climate, and to host birth rate and viraemia duration in arid climates. Finally, we parameterized the model according to Mayotte known environment. Mosquito captures estimated the abundance of eight potential RVF vectors. Review of RVF competence studies on these species allowed adjusting transmission probabilities per bite. Ruminant serological data since 2004 and three new cross-sectional seroprevalence studies are presented. Transmission rates had to be divided by more than five to best fit observed data. Five years after introduction, RVF persisted in more than 10% of the simulations, even under this scenario of low transmission. Hence, active surveillance must be maintained to better understand the risk related to RVF persistence and to prevent new introductions. PMID:26147799

  12. Quantitative Analysis of Trace Element Impurity Levels in Some Gem-Quality Diamonds

    NASA Astrophysics Data System (ADS)

    McNeill, J. C.; Klein-Bendavid, O.; Pearson, D. G.; Nowell, G. M.; Ottley, C. J.; Chinn, I.; Malarkey, J.

    2009-05-01

    Perhaps the most important information required to understand the origin of diamonds is the nature of the fluid that they crystallise from. Constraining the identity of the diamond-forming fluid for high purity gem diamonds is hampered by analytical challenges because of the very low analyte levels involved. Here we use a new ultra- low blank 'off-line' laser ablation method coupled to sector-field ICPMS for the quantitative analysis of fluid-poor gem diamonds. Ten diamonds comprised of both E- and P-type parageneses, from the Premier Mine, South Africa, were analysed for trace element abundances. We assume that the elemental signatures arise from low densities of sub-microscopic fluid inclusions that are analogous to the much higher densities of fluid inclusions commonly found within fluid-rich diamonds exhibiting fibrous growth. Repeatability of multiple (>20) blanks yielded consistently low values so that using the current procedure our limits of quantitation (10-ã blank) are <1pg for most trace elements, except for Sr, Zr, Ba, from 2-9pg and Pb ~30pg. Trace element patterns of the Premier diamond suite show enrichment of LREE over HREE. Abundances broadly decrease with increasing elemental compatibility. As a suite the chondrite normalised diamond patterns show negative Sr, Zr, Ti and Y anomalies and positive U, and Pb anomalies. All sample abundances are very depleted relative to chondrites (0.1 to 0.001X ch). HREE range from 0.1 to 1ppb as do Y, Nb, Cs. Other lighter elements vary from 2-30ppb. Pb reaches several ppb and Ti ranges from ppb values up to 2ppm. No significant difference were observed between the trace element systematics of the eclogitic and peridotitic diamonds. Overall, these initial data have inter-element fractionation patterns similar to those evident from fluid-rich fibrous diamonds and can be sued to infer that both types of diamond-forming fluids share a common origin.

  13. Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds.

    PubMed

    Rood, Stewart B; Braatne, Jeffrey H; Goater, Lori A

    2010-09-01

    River valleys represent biologically rich corridors characterized by natural disturbances that create moist and barren sites suitable for colonization by native riparian plants, and also by weeds. Dams and reservoirs interrupt the longitudinal corridors and we hypothesized that this could restrict downstream weed expansion. To consider this "reservoir impediment" hypothesis we assessed the occurrences and abundances of weeds along a 315-km river valley corridor that commenced with an unimpounded reach of the Snake River and extended through Brownlee, Oxbow, and Hells Canyon reservoirs and dams, and downstream along the Snake River. Sampling along 206 belt transects with 3610 quadrats revealed 16 noxious and four invasive weed species. Ten weeds were upland plants, with Canada thistle (Cirsium arvense) restricted to the upstream reaches, where field morning glory (Convolvulus arvensis) was also more common. In contrast, St. John's wort (Hypericum perforatum) was more abundant below the dams, and medusahead wildrye (Taeniatherum caput-medusae) occurred primarily along the reservoirs. All seven riparian species were abundant in the upstream zones but sparse or absent below the dams. This pattern was observed for the facultative riparian species, poison hemlock (Conium maculatum) and perennial pepperweed (Lepidium latifolium), the obligate riparian, yellow nut sedge (Cyperus esculentus), the invasive perennial, reed canary grass (Phalaris arundinacea), and three invasive riparian trees, Russian olive (Elaeagnus angustifolia), false indigo (Amorpha fruticosa), and tamarisk (Tamarix spp.). The hydrophyte purple loosestrife (Lythrum salicaria) was also restricted to the upstream zone. These longitudinal patterns indicate that the reservoirs have impeded the downstream expansion of riparian weeds, and this may especially result from the repetitive draw-down and refilling of Brownlee Reservoir that imposes a lethal combination of drought and flood stress. The dams and reservoirs may also interrupt hydrochory, the downstream flow of seeds and clonal fragments. We thus conclude that with some operational patterns, dams and reservoirs can impede the downstream expansion of riparian weeds.

  14. Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats

    PubMed Central

    Abecia, Leticia; Jiménez, Elisabeth; Martínez-Fernandez, Gonzalo; Martín-García, A. Ignacio; Ramos-Morales, Eva; Pinloche, Eric; Denman, Stuart E.; Newbold, C. Jamie

    2017-01-01

    The aim of this work was to evaluate the effect of feeding management during the first month of life (natural with the mother, NAT, or artificial with milk replacer, ART) on the rumen microbial colonization and the host innate immune response. Thirty pregnant goats carrying two fetuses were used. At birth one kid was taken immediately away from the doe and fed milk replacer (ART) while the other remained with the mother (NAT). Kids from groups received colostrum during first 2 days of life. Groups of four kids (from ART and NAT experimental groups) were slaughtered at 1, 3, 7, 14, 21 and 28 days of life. On the sampling day, after slaughtering, the rumen content was sampled and epithelial rumen tissue was collected. Pyrosequencing analyses of the bacterial community structure on samples collected at 3, 7, 14 and 28 days showed that both systems promoted significantly different colonization patterns (P = 0.001). Diversity indices increased with age and were higher in NAT feeding system. Lower mRNA abundance was detected in TLR2, TLR8 and TLR10 in days 3 and 5 compared to the other days (7, 14, 21 and 28). Only TLR5 showed a significantly different level of expression according to the feeding system, presenting higher mRNA abundances in ART kids. PGLYRP1 showed significantly higher abundance levels in days 3, 5 and 7, and then experienced a decline independently of the feeding system. These observations confirmed a highly diverse microbial colonisation from the first day of life in the undeveloped rumen, and show that the colonization pattern substantially differs between pre-ruminants reared under natural or artificial milk feeding systems. However, the rumen epithelial immune development does not differentially respond to distinct microbial colonization patterns. PMID:28813529

  15. Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats.

    PubMed

    Abecia, Leticia; Jiménez, Elisabeth; Martínez-Fernandez, Gonzalo; Martín-García, A Ignacio; Ramos-Morales, Eva; Pinloche, Eric; Denman, Stuart E; Newbold, C Jamie; Yáñez-Ruiz, David R

    2017-01-01

    The aim of this work was to evaluate the effect of feeding management during the first month of life (natural with the mother, NAT, or artificial with milk replacer, ART) on the rumen microbial colonization and the host innate immune response. Thirty pregnant goats carrying two fetuses were used. At birth one kid was taken immediately away from the doe and fed milk replacer (ART) while the other remained with the mother (NAT). Kids from groups received colostrum during first 2 days of life. Groups of four kids (from ART and NAT experimental groups) were slaughtered at 1, 3, 7, 14, 21 and 28 days of life. On the sampling day, after slaughtering, the rumen content was sampled and epithelial rumen tissue was collected. Pyrosequencing analyses of the bacterial community structure on samples collected at 3, 7, 14 and 28 days showed that both systems promoted significantly different colonization patterns (P = 0.001). Diversity indices increased with age and were higher in NAT feeding system. Lower mRNA abundance was detected in TLR2, TLR8 and TLR10 in days 3 and 5 compared to the other days (7, 14, 21 and 28). Only TLR5 showed a significantly different level of expression according to the feeding system, presenting higher mRNA abundances in ART kids. PGLYRP1 showed significantly higher abundance levels in days 3, 5 and 7, and then experienced a decline independently of the feeding system. These observations confirmed a highly diverse microbial colonisation from the first day of life in the undeveloped rumen, and show that the colonization pattern substantially differs between pre-ruminants reared under natural or artificial milk feeding systems. However, the rumen epithelial immune development does not differentially respond to distinct microbial colonization patterns.

  16. Chemical Abundances of Hydrostatic and Explosive Alpha-elements in Sagittarius Stream Stars

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sheffield, Allyson A.; Cunha, Katia; Smith, Verne V.

    2018-05-01

    We analyze chemical abundances of stars in the Sagittarius (Sgr) tidal stream using high-resolution Gemini+GRACES spectra of 42 members of the highest surface-brightness portions of both the trailing and leading arms. Targets were chosen using a 2MASS+WISE color–color selection, combined with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) radial velocities. In this Letter, we analyze [Fe/H] and α-elements produced by both hydrostatic (O, Mg) and explosive (Si, Ca, Ti) nucleosynthetic processes. The average [Fe/H] for our Sgr stream stars is lower than that for stars in the Sgr core, and stars in the trailing and leading arms show systematic differences in [Fe/H]. Both hydrostatic and explosive elements are depleted relative to Milky Way (MW) disk and halo stars, with a larger gap between the MW trend and Sgr stars for the hydrostatic elements. Chemical abundances of Sgr stream stars show similar patterns to those measured in the core of the Sgr dSph. We explore the ratio of hydrostatic to explosive α-elements [α h/ex] (which we refer to as the “HEx ratio”). Our observed HEx ratio trends for Sgr debris are deficient relative to MW stars. Via simple chemical evolution modeling, we show that these HEx ratio patterns are consistent with a Sgr IMF that lacks the most massive stars. This study provides a link between the chemical properties in the intact Sgr core and the significant portion of the Sgr system’s luminosity that is estimated to currently reside in the streams.

  17. Microbial Communities as Environmental Indicators of Ecological Disturbance in Restored Carbonate Fen-Results of 10 Years of Studies.

    PubMed

    Mieczan, Tomasz; Tarkowska-Kukuryk, Monika

    2017-08-01

    Interactions between bacteria and protists are essential to the ecosystem ecology of fens. Until now, however, there has been almost no information on how restoration procedures in carbonate fens affect the functioning of microbial food webs. Changes in vegetation patterns resulting from restoration may take years to be observed, whereas microbial processes display effects even after short-term exposure to changes in environmental conditions caused by restoration. Therefore, microbial processes and patterns can be used as sensitive indicators of changes in environmental conditions. The present study attempts to verify the hypothesis that the species richness and abundance of microbial loop components would differ substantially before and after restoration. The effect of restoration processes on the functioning of the food web was investigated for a 10 years in a carbonate-rich fen, before and after restoration. The restoration procedure (particularly the improvement in hydrological conditions) distinctly modified the taxonomic composition and functioning of microbial food webs. This is reflected in the increased abundance and diversity of testate amoeba, i.e. top predators, within the microbial food web and in the pronounced increase in the abundance of bacteria. This study suggests potential use of microbial loop components as bio-indicators and bio-monitoring tools for hydrological status of fens and concentrations of nutrients. Better understanding of what regulates microbial populations and activity in fens and unravelling of these fundamental mechanisms are particularly critical in order to more accurately predict how fens will respond to global change or anthropogenic disturbances.

  18. Global distribution and vertical patterns of a prymnesiophyte–cyanobacteria obligate symbiosis

    PubMed Central

    Cabello, Ana M; Cornejo-Castillo, Francisco M; Raho, Nicolas; Blasco, Dolors; Vidal, Montserrat; Audic, Stéphane; de Vargas, Colomban; Latasa, Mikel; Acinas, Silvia G; Massana, Ramon

    2016-01-01

    A marine symbiosis has been recently discovered between prymnesiophyte species and the unicellular diazotrophic cyanobacterium UCYN-A. At least two different UCYN-A phylotypes exist, the clade UCYN-A1 in symbiosis with an uncultured small prymnesiophyte and the clade UCYN-A2 in symbiosis with the larger Braarudosphaera bigelowii. We targeted the prymnesiophyte–UCYN-A1 symbiosis by double CARD-FISH (catalyzed reporter deposition-fluorescence in situ hybridization) and analyzed its abundance in surface samples from the MALASPINA circumnavigation expedition. Our use of a specific probe for the prymnesiophyte partner allowed us to verify that this algal species virtually always carried the UCYN-A symbiont, indicating that the association was also obligate for the host. The prymnesiophyte–UCYN-A1 symbiosis was detected in all ocean basins, displaying a patchy distribution with abundances (up to 500 cells ml−1) that could vary orders of magnitude. Additional vertical profiles taken at the NE Atlantic showed that this symbiosis occupied the upper water column and disappeared towards the Deep Chlorophyll Maximum, where the biomass of the prymnesiophyte assemblage peaked. Moreover, sequences of both prymnesiophyte partners were searched within a large 18S rDNA metabarcoding data set from the Tara-Oceans expedition around the world. This sequence-based analysis supported the patchy distribution of the UCYN-A1 host observed by CARD-FISH and highlighted an unexpected homogeneous distribution (at low relative abundance) of B. bigelowii in the open ocean. Our results demonstrate that partners are always in symbiosis in nature and show contrasted ecological patterns of the two related lineages. PMID:26405830

  19. Global distribution and vertical patterns of a prymnesiophyte-cyanobacteria obligate symbiosis.

    PubMed

    Cabello, Ana M; Cornejo-Castillo, Francisco M; Raho, Nicolas; Blasco, Dolors; Vidal, Montserrat; Audic, Stéphane; de Vargas, Colomban; Latasa, Mikel; Acinas, Silvia G; Massana, Ramon

    2016-03-01

    A marine symbiosis has been recently discovered between prymnesiophyte species and the unicellular diazotrophic cyanobacterium UCYN-A. At least two different UCYN-A phylotypes exist, the clade UCYN-A1 in symbiosis with an uncultured small prymnesiophyte and the clade UCYN-A2 in symbiosis with the larger Braarudosphaera bigelowii. We targeted the prymnesiophyte-UCYN-A1 symbiosis by double CARD-FISH (catalyzed reporter deposition-fluorescence in situ hybridization) and analyzed its abundance in surface samples from the MALASPINA circumnavigation expedition. Our use of a specific probe for the prymnesiophyte partner allowed us to verify that this algal species virtually always carried the UCYN-A symbiont, indicating that the association was also obligate for the host. The prymnesiophyte-UCYN-A1 symbiosis was detected in all ocean basins, displaying a patchy distribution with abundances (up to 500 cells ml(-1)) that could vary orders of magnitude. Additional vertical profiles taken at the NE Atlantic showed that this symbiosis occupied the upper water column and disappeared towards the Deep Chlorophyll Maximum, where the biomass of the prymnesiophyte assemblage peaked. Moreover, sequences of both prymnesiophyte partners were searched within a large 18S rDNA metabarcoding data set from the Tara-Oceans expedition around the world. This sequence-based analysis supported the patchy distribution of the UCYN-A1 host observed by CARD-FISH and highlighted an unexpected homogeneous distribution (at low relative abundance) of B. bigelowii in the open ocean. Our results demonstrate that partners are always in symbiosis in nature and show contrasted ecological patterns of the two related lineages.

  20. Coccolithophore diversity and dynamics at a coastal site in the Gulf of Trieste (northern Adriatic Sea)

    NASA Astrophysics Data System (ADS)

    Cerino, Federica; Malinverno, Elisa; Fornasaro, Daniela; Kralj, Martina; Cabrini, Marina

    2017-09-01

    Two years-data (May 2011-February 2013) obtained from a monthly sampling carried out at the coastal long term Ecological Research station C1-LTER in the Gulf of Trieste (northern Adriatic Sea) were analysed to describe the seasonal dynamics and diversity of coccolithophore assemblages and to assess their relationship with environmental forcing. Coccolithophores represented 10.7% of the total Utermöhl phytoplankton that were mainly dominated by small (<10 μm) flagellates and diatoms (62.2% and 24.8% of total abundances, respectively). Coccolithophore abundances obtained by polarized light microscopy analysis ranged from 0.2 to 35.3 · 104 coccospheres L-1 with a mean value of 5.2 · 104 coccospheres L-1. A marked seasonal pattern was observed with a main peak in December-February (2.5-31.5 · 104 coccospheres L-1), in correspondence of the winter mixing, mainly due to Emiliania huxleyi, and a secondary peak in May-June (0.7-15.0 · 104 coccospheres L-1), coinciding with the increase of the light intensity and the beginning of the seasonal stratification, dominated by holococcolithophores and small Syracosphaera species. The most abundant taxa were E. huxleyi and holococcolithophores, followed by Acanthoica quattrospina, Syracosphaera species and other minor species. Statistical analyses recognized four distinct groups, corresponding to seasonal variations of environmental conditions. Considering the two years, some species displayed a recurrent seasonal pattern highlighting possible species-specific ecological requirements, while others showed an interannual variability probably due to local factors.

  1. Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants.

    PubMed

    Jiao, Shuo; Luo, Yantao; Lu, Mingmei; Xiao, Xiao; Lin, Yanbing; Chen, Weimin; Wei, Gehong

    2017-06-01

    Elucidating the driving forces behind the temporal dynamics of abundant and rare microbes is essential for understanding the assembly and succession of microbial communities. Here, we explored the successional trajectories and mechanisms of abundant and rare bacteria via soil-enrichment subcultures in response to various pollutants (phenanthrene, n-octadecane, and CdCl 2 ) using time-series Illumina sequencing datasets. The results reveal different successional patterns of abundant and rare sub-communities in eighty pollutant-degrading consortia and two original soil samples. A temporal decrease in α-diversity and high turnover rate for β-diversity indicate that deterministic processes are the main drivers of the succession of the abundant sub-community; however, the high cumulative species richness indicates that stochastic processes drive the succession of the rare sub-community. A functional prediction showed that abundant bacteria contribute primary functions to the pollutant-degrading consortia, such as amino acid metabolism, cellular responses to stress, and hydrocarbon degradation. Meanwhile, rare bacteria contribute a substantial fraction of auxiliary functions, such as carbohydrate-active enzymes, fermentation, and homoacetogenesis, which indicates their roles as a source of functional diversity. Our study suggests that the temporal succession of microbes in polluted microcosms is mainly associated with abundant bacteria rather than the high proportion of rare taxa. The major forces (i.e., stochastic or deterministic processes) driving microbial succession could be dependent on the low- or high-abundance community members in temporal microcosms with pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Seasonal distribution and abundance of cetaceans within French waters- Part I: The North-Western Mediterranean, including the Pelagos sanctuary

    NASA Astrophysics Data System (ADS)

    Laran, Sophie; Pettex, Emeline; Authier, Matthieu; Blanck, Aurélie; David, Léa; Dorémus, Ghislain; Falchetto, Hélène; Monestiez, Pascal; Van Canneyt, Olivier; Ridoux, Vincent

    2017-07-01

    The biodiversity of the Mediterranean Sea is undergoing important changes. Cetaceans, as top predators, are an important component of marine ecosystems. The seasonal distribution and abundance of several cetacean species were studied with a large aerial survey over the North-Western Mediterranean Sea, including the international Pelagos sanctuary, the largest Marine Protected Area (MPA) designed for marine mammals in the Mediterranean. A total of 8 distinct species of cetaceans were identified, and their occurrence within the sanctuary was investigated. Abundance estimates were obtained for three groups of species: the small delphinids (striped dolphins mainly), the bottlenose dolphin and the fin whale. There was a seasonal variation in striped dolphin abundance between winter (57,300 individuals, 95% CI: 34,500-102,000) and summer (130,000, 95% CI: 76,800-222,100). In contrast, bottlenose dolphin winter abundance was thrice that of summer. It was also the only species to exhibit any preference for the Pelagos sanctuary. Fin whale abundance had the reverse pattern with winter abundance (1000 individuals, 95% CI: 500-2500) and summer (2500 individuals, 95% CI: 1500-4300), without any preference for the sanctuary. Risso's dolphins, pilot whales and sperm whales did not exhibit strong seasonal pattern in their abundance. These results provide baseline estimates which can be used to inform conservation policies and instruments such as the Habitats Directive or the recent European Marine Strategy Framework Directive.

  3. An In-Depth Study of the Abundance Pattern in the Hot Interstellar Medium in NGC 4649

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzaku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of Oxygen. We construct steady state solutions to the chemical evolution equations that include infall in addition to stellar mass return and Type Ia supernovae (SNIa) enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649 we infer that introduction of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern towards low alpha/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly-introduced gas is heated as it is integrated into, and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an appendix we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  4. An In-Depth Study of the Abundance Pattern in the Hot Interstellar Medium in NGC 4649

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzuku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of O. We construct steady state solutions to the chemical evolution equations that include infall in addition to stellar mass return and SNIa enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649 we infer that accretion of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern towards low alpha/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly-introduced gas is heated as it is integrated into. and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an appendix we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  5. Benthic communities in the deep Mediterranean Sea: exploring microbial and meiofaunal patterns in slope and basin ecosystems

    NASA Astrophysics Data System (ADS)

    Sevastou, K.; Lampadariou, N.; Polymenakou, P. N.; Tselepides, A.

    2012-12-01

    The long held perception of the deep sea consisting of monotonous slopes and uniform oceanic basins has over the decades given way to the idea of a complex system with wide habitat heterogeneity. Under the prism of a highly diverse environment, a large dataset was used to describe and compare spatial patterns of the dominant small-size components of deep-sea benthos, metazoan meiofauna and bacteria, from Mediterranean basins and slopes. A grid of 73 stations sampled at five geographical areas along the central-eastern Mediterranean basin (central Mediterranean, northern Aegean Sea, Cretan Sea, Libyan Sea, eastern Levantine) spanning over 4 km in depth revealed a high diversity in terms of both metazoan meiofauna and microbial communities. The higher meiofaunal abundance and richness observed in the northern Aegean Sea highlights the effect of productivity on benthic patterns. Non parametric analyses detected no differences for meiobenthic standing stocks and major taxa diversity (α, β, γ and δ components) between the two habitats (basin vs. slope) for the whole investigated area and within each region, but revealed significant bathymetric trends: abundance and richness follow the well-known gradient of decreasing values with increasing depth, whereas differentiation diversity (β- and δ-diversity) increases with depth. In spite of a similar bathymetric trend observed for nematode genera richness, no clear pattern was detected with regard to habitat type; the observed number of nematode genera suggests higher diversity in slopes, whereas richness estimator Jack1 found no differences between habitats. On the other hand, δ-diversity was higher at the basin habitat, but no differences were found among depth ranges, though turnover values were high in all pairwise comparisons of the different depth categories. Results of multivariate analysis are in line with the above findings, indicating high within habitat variability of meiofaunal communities and a gradual change of meiofaunal structure towards the abyssal stations. In contrast to meiobenthic results, microbial richness is significantly higher at the basin ecosystem and tends to increase with depth, while community structure varies greatly among samples regardless of the type of habitat, depth or area. The results presented here suggest that differences in benthic parameters between the two habitats are neither strong nor consistent; it appears that within habitat variability is high and differences among depth ranges are more important.

  6. Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: a case study of microbial communities in the sediments of Hangzhou Bay.

    PubMed

    Dai, Tianjiao; Zhang, Yan; Tang, Yushi; Bai, Yaohui; Tao, Yile; Huang, Bei; Wen, Donghui

    2016-10-01

    Coastal areas are land-sea transitional zones with complex natural and anthropogenic disturbances. Microorganisms in coastal sediments adapt to such disturbances both individually and as a community. The microbial community structure changes spatially and temporally under environmental stress. In this study, we investigated the microbial community structure in the sediments of Hangzhou Bay, a seriously polluted bay in China. In order to identify the roles and contribution of all microbial taxa, we set thresholds as 0.1% for rare taxa and 1% for abundant taxa, and classified all operational taxonomic units into six exclusive categories based on their abundance. The results showed that the key taxa in differentiating the communities are abundant taxa (AT), conditionally abundant taxa (CAT), and conditionally rare or abundant taxa (CRAT). A large population in conditionally rare taxa (CRT) made this category collectively significant in differentiating the communities. Both bacteria and archaea demonstrated a distance decay pattern of community similarity in the bay, and this pattern was strengthened by rare taxa, CRT and CRAT, but weakened by AT and CAT. This implied that the low abundance taxa were more deterministically distributed, while the high abundance taxa were more ubiquitously distributed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Seasonal patterns of aster leafhopper (Hemiptera: Cicadellidae) abundance and aster yellows phytoplasma infectivity in Wisconsin carrot fields.

    PubMed

    Frost, K E; Esker, P D; Van Haren, R; Kotolski, L; Groves, R L

    2013-06-01

    In Wisconsin, vegetable crops are threatened annually by the aster yellows phytoplasma (AYp), which is obligately transmitted by the aster leafhopper. Using a multiyear, multilocation data set, seasonal patterns of leafhopper abundance and infectivity were modeled. A seasonal aster yellows index (AYI) was deduced from the model abundance and infectivity predictions to represent the expected seasonal risk of pathogen transmission by infectious aster leafhoppers. The primary goal of this study was to identify periods of time during the growing season when crop protection practices could be targeted to reduce the risk of AYp spread. Based on abundance and infectivity, the annual exposure of the carrot crop to infectious leafhoppers varied by 16- and 70-fold, respectively. Together, this corresponded to an estimated 1,000-fold difference in exposure to infectious leafhoppers. Within a season, exposure of the crop to infectious aster leafhoppers (Macrosteles quadrilineatus Forbes), varied threefold because of abundance and ninefold because of infectivity. Periods of above average aster leafhopper abundance occurred between 11 June and 2 August and above average infectivity occurred between 27 May and 13 July. A more comprehensive description of the temporal trends of aster leafhopper abundance and infectivity provides new information defining when the aster leafhopper moves into susceptible crop fields and when they transmit the pathogen to susceptible crops.

  8. Anomalous droughts, not invasion, decrease persistence of native fishes in a desert river.

    PubMed

    Ruhí, Albert; Holmes, Elizabeth E; Rinne, John N; Sabo, John L

    2015-04-01

    Changing climate extremes and invasion by non-native species are two of the most prominent threats to native faunas. Predicting the relationships between global change and native faunas requires a quantitative toolkit that effectively links the timing and magnitude of extreme events to variation in species abundances. Here, we examine how discharge anomalies--unexpected floods and droughts--determine covariation in abundance of native and non-native fish species in a highly variable desert river in Arizona. We quantified stochastic variation in discharge using Fourier analyses on >15,000 daily observations. We subsequently coupled maximum annual spectral anomalies with a 15-year time series of fish abundances (1994-2008), using Multivariate Autoregressive State-Space (MARSS) models. Abiotic drivers (discharge anomalies) were paramount in determining long-term fish abundances, whereas biotic drivers (species interactions) played only a secondary role. As predicted, anomalous droughts reduced the abundances of native species, while floods increased them. However, in contrast to previous studies, we observed that the non-native assemblage was surprisingly unresponsive to extreme events. Biological trait analyses showed that functional uniqueness was higher in native than in non-native fishes. We also found that discharge anomalies influenced diversity patterns at the meta-community level, with nestedness increasing after anomalous droughts due to the differential impairment of native species. Overall, our results advance the notion that discharge variation is key in determining community trajectories in the long term, predicting the persistence of native fauna even in the face of invasion. We suggest this variation, rather than biotic interactions, may commonly underlie covariation between native and non-native faunas, especially in highly variable environments. If droughts become increasingly severe due to climate change, and floods increasingly muted due to regulation, fish assemblages in desert rivers may become taxonomically and functionally impoverished and dominated by non-native taxa. © 2014 John Wiley & Sons Ltd.

  9. Ostreopsis cf. ovata dynamics in the NW Mediterranean Sea in relation to biotic and abiotic factors.

    PubMed

    Carnicer, Olga; Guallar, Carles; Andree, Karl B; Diogène, Jorge; Fernández-Tejedor, Margarita

    2015-11-01

    An expansion of the distribution of Ostreopsis cf. ovata, a dinoflagellate which produces palytoxin-like compounds, has been reported in recent years. Economical and social interests are affected by blooms, as they are responsible for respiratory and skin problems in humans and may cause damage to marine organisms. In order to identify the most influential environmental factors that trigger proliferations of O. cf. ovata in the area of the adjacent shallow rocky coast of the Ebro Delta (NW Mediterranean Sea) a three-year survey was performed on the metaphytic microalgae community growing on the macrophytes Jania rubens and Corallina elongata. Small-size diatoms were more abundant than dinoflagellates; O. cf. ovata was identified as the only species present from the genus. Seawater temperature was the primary driver defining the ecological niche of O. cf. ovata. Freshwater and groundwater fluxes were more pronounced in southern than in northern sites, which may have resulted in a distinct O. cf. ovata spatial distribution, with the highest records of abundance and more frequent blooms in the north. In consequence, negative correlations between the abundance of O. cf. ovata and nitrate concentrations and significant positive correlation with salinity were observed. The temporal pattern of O. cf. ovata dynamics from mid-July to early-November is probably due to the fact that this species is observed only above a certain threshold temperature of seawater. Metaphytic cells of O. cf. ovata were smaller in the northern site than in the south, possibly as a result of an increase in cell division, coinciding with higher abundance, and this could be an indicator of favorable conditions. Toxicity in planktonic cells was negatively correlated with cell abundance in the water column, achieving maximum concentrations of 25pg. PLTX eqcell(-1). Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida.

    PubMed

    Reiskind, M H; Lounibos, L P

    2013-12-01

    Invasion by mosquito vectors of disease may impact the distribution of resident mosquitoes, resulting in novel patterns of vectors and concomitant risk for disease. One example of such an impact is the invasion by Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] (Diptera: Culicidae) of North America and this species' interaction with Aedes aegypti L. (Stegomyia aegypti L). We hypothesized that Ae. aegypti would be found in urban, coastal areas that experience hotter and drier conditions, whereas Ae. albopictus would be more commonly found in suburban and rural areas that are cooler and wetter. In addition, we hypothesized that Ae. aegypti would be more abundant early in the wet season, whereas Ae. albopictus would be more abundant later in the wet season. Urban areas were drier, hotter and contained more Ae. aegypti than suburban or rural areas. Aedes aegypti was relatively more abundant early in the wet season, whereas Ae. albopictus was more abundant in both the late wet season and the dry season. The spatial patterns of inter- and intraspecific encounters between these species were also described. The distribution of these mosquitoes is correlated with abiotic conditions, and with temperature, humidity and the relative availability of rain-filled containers. Understanding the ecological determinants of species distribution can provide insight into the biology of these vectors and important information for their appropriate control. © 2012 The Royal Entomological Society.

  11. A search for strongly Mg-enhanced stars from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhao, Gang; Chen, Yu-Qin; Li, Hai-Ning

    2014-11-01

    Strongly Mg-enhanced stars with [Mg/Fe] > 1.0 show peculiar abundance patterns and hence are of great interest for our understanding of stellar formation and chemical evolution of the Galaxy. A systematic search for strongly Mg-enhanced stars based on low-resolution (R ≃ 2000) spectra from the Sloan Digital Sky Survey (SDSS) is carried out by finding the synthetic spectrum that best matches the observed one in the region of Mg I b lines around λ5170 Å via a profile matching method. The advantage of our method is that fitting parameters are refined by reproducing the [Mg/Fe] ratios of 47 stars from the very precise high-resolution spectroscopic (HRS) analysis by Nissen & Schuster; and these parameters are crucial to the precision and validity of the derived Mg abundances. As a further check of our method, Mg abundances are estimated with our method for member stars in four Galactic globular clusters (M92, M13, M3, M71) which coverthe same metallicity range as our sample, and the results are in good agreement with those of HRS analysis in the literature. The validation of our method is also demonstrated by the agreement of [Mg/Fe] between our values and those of HRS analysis by Aoki et al. Finally, 33 candidates of strongly Mg-enhanced stars with [Mg/Fe] > 1.0 are selected from 14 850 F and G stars. Follow-up observations will be carried out on these candidates with high-resolution spectroscopy by large telescopes in the near future, so as to check our selection procedure and to perform a precise and detailed abundance analysis and to explore the origins of these stars.

  12. Does Human-Induced Habitat Modification Influence the Impact of Introduced Species? A Case Study on Cavity-Nesting by the Introduced Common Myna ( Acridotheres tristis) and Two Australian Native Parrots

    NASA Astrophysics Data System (ADS)

    Grarock, Kate; Lindenmayer, David B.; Wood, Jeffrey T.; Tidemann, Christopher R.

    2013-10-01

    Introduced species pose a major threat to biodiversity across the globe. Understanding the impact of introduced species is critical for effective management. Many species around the world are reliant on tree cavities, and competition for these resources can be intense: threatening the survival of native species. Through the establishment of 225 nest boxes, we examined the relationship between tree density and the abundance and nesting success of three bird species in Canberra, Australia. The common myna ( Acridotheres tristis) is an introduced species in Australia, and the crimson rosella ( Platycercus elegans) and eastern rosella ( Platycercus eximius) are native species. We then investigated the impact of common myna nest box occupation on crimson rosella and eastern rosella abundance. Tree density significantly influenced the abundance and cavity-nesting of all three species. Common myna abundance (birds per square kilometer) was greatest at low tree density sites (101.9 ± 22.4) and declined at medium (45.4 ± 10.1) and high (9.7 ± 3.6) tree density sites. The opposite pattern was observed for the crimson rosella, with greater abundance (birds per square kilometer) at high tree density sites (83.9 ± 9.3), declining over medium (61.6 ± 6.4) and low (31.4 ± 3.9) tree density sites. The eastern rosella was more abundant at medium tree density sites (48.6 ± 8.0 birds per square kilometer). Despite the strong influence of tree density, we found a significant negative relationship between common myna nest box occupancy and the abundance of the crimson rosella ( F 1,13 = 7.548, P = 0.017) and eastern rosella ( F 1,13 = 9.672, P < 0.001) at some sites. We also observed a slight increase in rosella nesting interruptions by the common myna at lower tree densities (high: 1.3 % ± 1.3, medium: 6.6 % ± 2.2, low: 12.7 % ± 6.2), although this increase was not statistically significant ( F 2,40 = 2.435, P = 0.100). Our study provides the strongest evidence to date for the negative impact of the common myna on native bird abundance through cavity-nesting competition. However, due to the strong influence of habitat on species abundance and nesting, it is essential to investigate the impacts of introduced species in conjunction with habitat variation. We also suggest one component of introduced species management could include habitat restoration to reduce habitat suitability for introduced species.

  13. Does human-induced habitat modification influence the impact of introduced species? A case study on cavity-nesting by the introduced common myna (Acridotheres tristis) and two Australian native parrots.

    PubMed

    Grarock, Kate; Lindenmayer, David B; Wood, Jeffrey T; Tidemann, Christopher R

    2013-10-01

    Introduced species pose a major threat to biodiversity across the globe. Understanding the impact of introduced species is critical for effective management. Many species around the world are reliant on tree cavities, and competition for these resources can be intense: threatening the survival of native species. Through the establishment of 225 nest boxes, we examined the relationship between tree density and the abundance and nesting success of three bird species in Canberra, Australia. The common myna (Acridotheres tristis) is an introduced species in Australia, and the crimson rosella (Platycercus elegans) and eastern rosella (Platycercus eximius) are native species. We then investigated the impact of common myna nest box occupation on crimson rosella and eastern rosella abundance. Tree density significantly influenced the abundance and cavity-nesting of all three species. Common myna abundance (birds per square kilometer) was greatest at low tree density sites (101.9 ± 22.4) and declined at medium (45.4 ± 10.1) and high (9.7 ± 3.6) tree density sites. The opposite pattern was observed for the crimson rosella, with greater abundance (birds per square kilometer) at high tree density sites (83.9 ± 9.3), declining over medium (61.6 ± 6.4) and low (31.4 ± 3.9) tree density sites. The eastern rosella was more abundant at medium tree density sites (48.6 ± 8.0 birds per square kilometer). Despite the strong influence of tree density, we found a significant negative relationship between common myna nest box occupancy and the abundance of the crimson rosella (F 1,13 = 7.548, P = 0.017) and eastern rosella (F 1,13 = 9.672, P < 0.001) at some sites. We also observed a slight increase in rosella nesting interruptions by the common myna at lower tree densities (high: 1.3% ± 1.3, medium: 6.6% ± 2.2, low: 12.7% ± 6.2), although this increase was not statistically significant (F 2,40 = 2.435, P = 0.100). Our study provides the strongest evidence to date for the negative impact of the common myna on native bird abundance through cavity-nesting competition. However, due to the strong influence of habitat on species abundance and nesting, it is essential to investigate the impacts of introduced species in conjunction with habitat variation. We also suggest one component of introduced species management could include habitat restoration to reduce habitat suitability for introduced species.

  14. Mesozooplankton structure and functioning during the onset of the Kerguelen phytoplankton bloom during the KEOPS2 survey

    NASA Astrophysics Data System (ADS)

    Carlotti, F.; Jouandet, M.-P.; Nowaczyk, A.; Harmelin-Vivien, M.; Lefèvre, D.; Richard, P.; Zhu, Y.; Zhou, M.

    2015-07-01

    This paper presents results on the spatial and temporal distribution patterns of mesozooplankton in the naturally fertilized region to the east of the Kerguelen Islands (Southern Ocean) visited at early bloom stage during the KEOPS2 survey (15 October to 20 November 2011). The aim of this study was to compare the zooplankton response in contrasted environments localized over the Kerguelen Plateau in waters of the east shelf and shelf edge and in productive oceanic deep waters characterized by conditions of complex circulation and rapidly changing phytoplankton biomass. The mesozooplankton community responded to the spring bloom earlier on the plateau than in the oceanic waters, where complex mesoscale circulation stimulated initial more or less ephemeral blooms before a broader bloom extension. Taxonomic compositions showed a high degree of similarity across the whole region, and the populations initially responded to spring bloom with a large production of larval forms increasing abundances, without biomass changes. Taxonomic composition and stable isotope ratios of size-fractionated zooplankton indicated the strong domination of herbivores, and the total zooplankton biomass values over the survey presented a significant correlation with the integrated chlorophyll concentrations in the mixed layer. The biomass stocks observed at the beginning of the KEOPS2 cruise were around 1.7 g C m-2 above the plateau and 1.2 g C m-2 in oceanic waters. Zooplankton biomass in oceanic waters remained on average below 2 g C m-2 over the study period, except for one station in the Polar Front zone (F-L), whereas zooplankton biomasses were around 4 g C m-2 on the plateau at the end of the survey. The most remarkable feature during the sampling period was the stronger increase in abundance in the oceanic waters (25 × 103 to 160 × 103 ind m-2) than on the plateau (25 × 103 to 90 × 103 ind m-2). The size structure and taxonomic distribution patterns revealed a cumulative contribution of various larval stages of dominant copepods and euphausiids particularly in the oceanic waters, with clearly identifiable stages of progress during a Lagrangian time series survey. The reproduction and early stage development of dominant species were sustained by mesoscale-related initial ephemeral blooms in oceanic waters, but growth was still food-limited and zooplankton biomass stagnated. In contrast, zooplankton abundance and biomass on the shelf were both in a growing phase, at slightly different rates, due to growth under sub-optimal conditions. Combined with our observations during the KEOPS1 survey (January-February 2005), the present results deliver a consistent understanding of patterns in mesozooplankton abundance and biomass from early spring to summer in the poorly documented oceanic region east of the Kerguelen Islands.

  15. Patterns of distribution, abundance, and change over time in a subarctic marine bird community

    NASA Astrophysics Data System (ADS)

    Cushing, Daniel A.; Roby, Daniel D.; Irons, David B.

    2018-01-01

    Over recent decades, marine ecosystems of Prince William Sound (PWS), Alaska, have experienced concurrent effects of natural and anthropogenic perturbations, including variability in the climate system of the northeastern Pacific Ocean. We documented spatial and temporal patterns of variability in the summer marine bird community in relation to habitat and climate variability using boat-based surveys of marine birds conducted during the period 1989-2012. We hypothesized that a major factor structuring marine bird communities in PWS would be proximity to the shoreline, which is theorized to relate to aspects of food web structure. We also hypothesized that shifts in physical ecosystem drivers differentially affected nearshore-benthic and pelagic components of PWS food webs. We evaluated support for our hypotheses using an approach centered on community-level patterns of spatial and temporal variability. We found that an environmental gradient related to water depth and distance from shore was the dominant factor spatially structuring the marine bird community. Responses of marine birds to this onshore-offshore environmental gradient were related to dietary specialization, and separated marine bird taxa by prey type. The primary form of temporal variability over the study period was monotonic increases or decreases in abundance for 11 of 18 evaluated genera of marine birds; 8 genera had declined, whereas 3 had increased. The greatest declines occurred in genera associated with habitats that were deeper and farther from shore. Furthermore, most of the genera that declined primarily fed on pelagic prey resources, such as forage fish and mesozooplankton, and few were directly affected by the 1989 Exxon Valdez oil spill. Our observations of synchronous declines are indicative of a shift in pelagic components of PWS food webs. This pattern was correlated with climate variability at time-scales of several years to a decade.

  16. Patterns of distribution, abundance, and change over time in a subarctic marine bird community

    USGS Publications Warehouse

    Cushing, Daniel; Roby, Daniel D.; Irons, David B.

    2017-01-01

    Over recent decades, marine ecosystems of Prince William Sound (PWS), Alaska, have experienced concurrent effects of natural and anthropogenic perturbations, including variability in the climate system of the northeastern Pacific Ocean. We documented spatial and temporal patterns of variability in the summer marine bird community in relation to habitat and climate variability using boat-based surveys of marine birds conducted during the period 1989–2012. We hypothesized that a major factor structuring marine bird communities in PWS would be proximity to the shoreline, which is theorized to relate to aspects of food web structure. We also hypothesized that shifts in physical ecosystem drivers differentially affected nearshore-benthic and pelagic components of PWS food webs. We evaluated support for our hypotheses using an approach centered on community-level patterns of spatial and temporal variability. We found that an environmental gradient related to water depth and distance from shore was the dominant factor spatially structuring the marine bird community. Responses of marine birds to this onshore-offshore environmental gradient were related to dietary specialization, and separated marine bird taxa by prey type. The primary form of temporal variability over the study period was monotonic increases or decreases in abundance for 11 of 18 evaluated genera of marine birds; 8 genera had declined, whereas 3 had increased. The greatest declines occurred in genera associated with habitats that were deeper and farther from shore. Furthermore, most of the genera that declined primarily fed on pelagic prey resources, such as forage fish and mesozooplankton, and few were directly affected by the 1989 Exxon Valdez oil spill. Our observations of synchronous declines are indicative of a shift in pelagic components of PWS food webs. This pattern was correlated with climate variability at time-scales of several years to a decade.

  17. Occupancy patterns of mammals and lentic amphibians in the Elwha River riparian zone before dam removal

    USGS Publications Warehouse

    Jenkins, Kurt J.; Chelgren, Nathan; Sager-Fradkin, K.A.; Happe, P.J.; Adams, Michael J.

    2015-01-01

    The downstream transport of sediments and organics and upstream migration of anadromous fishes are key ecological processes in unregulated riverine ecosystems of the North Pacific coast, but their influence on wildlife habitats and populations is poorly documented. Removal of two large hydroelectric dams in Washington’s Elwha Valley provides an unprecedented opportunity to study long-term responses of wildlife populations to dam removal and restoration of these key ecological processes. We compared pre-dam removal patterns in the relative abundance and occupancy of mesocarnivores, small mammals and lentic amphibians of the Elwha River riparian zone above, between and below the dams. Occupancy of riparian habitats by three mesocarnivore species diminished upriver but did not appear to be closely linked with the absence of salmon in the upper river. Although the importance of salmon in the lower river cannot be discounted, other gradients in food resources also likely contributed to observed distribution patterns of mesocarnivores. Abundance and occupancy patterns within congeneric pairs of new world mice (Peromyscus spp.) and shrews (Sorex spp.) indicated that closely related species were negatively associated with each other and responded to habitat gradients in the riparian zone. The availability of lentic habitats of amphibians was highly variable, and occupancy was low as a result of rapidly changing flows during the larval development period. We speculate that long-term changes in habitat conditions and salmon availability following dam removal will elicit long-term changes in distribution of mesocarnivores, small mammals and amphibians. Long-term monitoring will enhance understanding of the role of fish and restored ecosystem processes on wildlife communities along salmon-bearing rivers in the region.

  18. How training citizen scientists affects the accuracy and precision of phenological data.

    PubMed

    Feldman, Richard E; Žemaitė, Irma; Miller-Rushing, Abraham J

    2018-05-07

    Monitoring plant and animal phenology is a critical step to anticipating and predicting changes in species interactions and biodiversity. Because phenology necessarily involves frequent and repeated observations over time, citizen scientists have become a vital part of collecting phenological data. However, there is still concern over the accuracy and precision of citizen science data. It is possible that training citizen scientists can improve data quality though there are few comparisons of trained and untrained citizen scientists in the ability of each to accurately and precisely measure phenology. We assessed how three types of observers-experts, trained citizen scientists that make repeated observations, and untrained citizen scientists making once-per-year observations-differ in quantifying temporal change in flower and fruit abundance of American mountain ash trees (Sorbus americana Marsh.) and arthropods in Acadia National Park, Maine, USA. We found that trained more so than untrained citizen science observers over- or under-estimated abundances leading to precise but inaccurate characterizations of phenological patterns. Our results suggest a new type of bias induced by repeated observations: A type of learning takes place that reduces the independence of observations taken on different trees or different dates. Thus, in this and many other cases, having individuals make one-off observations of marked plants may produce data as good if not better than individuals making repeated observations. For citizen science programs related to phenology, our results underscore the importance of (a) attracting the most number of observers possible even if they only make one observation, (b) producing easy-to-use and informative data sheets, and (c) carefully planning effective training programs that are, perhaps, repeated at different points during the data collection period.

  19. Vector ecology of human schistosomiasis in south India and description of a new species of the genus Ferrissia (Mollusca: Gastropoda: Planorbidae).

    PubMed

    Sankarappan, Anbalagan; Chellapandian, Balachandran; Vimalanathan, Arun Prasanna; Mani, Kannan; Sundaram, Dinakaran; Muthukalingan, Krishnan

    2015-09-01

    Vector ecology and taxonomy of snails is a prerequisite for controlling schistosomiasis in the tropics. The ecology of the freshwater limpet genus Ferrissia was investigated for detection of cercariae larvae in them, and taxonomic description of a new species of the genus Ferrissia. This study was conducted in 15 perennial streams from five different hills of south India. To study the seasonal patterns, a stream from each hill was selected and sampled in three seasons. In each study site, triplicate sampling was done and specimens were collected from stream substrates as well as waste material submerged in stream. Microscopic examination was carried out for detecting cercariae larvae in limpets. Three freshwater limpets (F. tenuis, F. verruca and F. fivefallsiensis) were observed. Seasonality influenced the abundance of limpets. The highest abundance was observed during post-monsoon (December and January). The distribution of Ferrissia was observed at riffle in pebbles, leaf litter and wastes (polyethylene bags and snacks cover) submerged in water. No cercariae larvae were found from the body of limpets. In this study, we described a new species of Ferrissia fivefallsiensis. Our results showed the distribution, habitat preference and seasonality of limpets, and recommend the detection of Schistosoma from limpets as well as human samples by use of molecular tools.

  20. Species are not most abundant in the centre of their geographic range or climatic niche.

    PubMed

    Dallas, Tad; Decker, Robin R; Hastings, Alan

    2017-12-01

    The pervasive idea that species should be most abundant in the centre of their geographic range or centre of their climatic niche is a key assumption in many existing ecological hypotheses and has been declared a general macroecological rule. However, empirical support for decreasing population abundance with increasing distance from geographic range or climatic niche centre (distance-abundance relationships) remains fairly weak. We examine over 1400 bird, mammal, fish and tree species to provide a thorough test of distance-abundance relationships, and their associations with species traits and phylogenetic relationships. We failed to detect consistent distance-abundance relationships, and found no association between distance-abundance slope and species traits or phylogenetic relatedness. Together, our analyses suggest that distance-abundance relationships may be rare, difficult to detect, or are an oversimplification of the complex biogeographical forces that determine species spatial abundance patterns. © 2017 John Wiley & Sons Ltd/CNRS.

Top