Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek
2017-10-13
Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek
Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.
Hanrahan, Michael P; Venkatesh, Amrit; Carnahan, Scott L; Calahan, Julie L; Lubach, Joseph W; Munson, Eric J; Rossini, Aaron J
2017-10-25
We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H- 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H- 13 C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H- 13 C HETCOR NMR spectra. 2D 1 H- 13 C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra.
Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR
2015-01-01
We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as 1H–13C and 1H–15N HETCOR or 13C–13C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs. PMID:26393368
Grüning, Wolfram R; Rossini, Aaron J; Zagdoun, Alexandre; Gajan, David; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe
2013-08-28
We present the molecular level characterization of a phenylpyridine-based periodic mesoporous organosilicate and its post-functionalized organometallic derivatives through the fast acquisition of high quality natural isotopic abundance 1D (13)C, (15)N, and (29)Si and 2D (1)H-(13)C and (1)H-(29)Si solid-state NMR spectra enhanced with dynamic nuclear polarization.
Saïdi, Fadila; Taulelle, Francis; Martineau, Charlotte
2016-08-01
In this contribution, we present an analysis of the main parameters influencing the efficiency of the (1)H → (13)C multiple-contact cross-polarization nuclear magnetic resonance (NMR) experiment in the context of solid pharmaceutical materials. Using the optimum experimental conditions, quantitative (13)C NMR spectra are then obtained for porous metal-organic frameworks (potential drug carriers) and for components present in drug formulations (active principle ingredient and excipients, amorphous or crystalline). Finally, we show that mixtures of components can also be quantified with this method and, hence, that it represents an ideal tool for quantification of pharmaceutical formulations by (13)C cross-polarization under magic-angle spinning NMR in the industry as it is robust and easy to set up, much faster than direct (13)C polarization and is efficient for samples at natural abundance. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rogers, K.; Cooper, W. T.; Hodgkins, S. B.; Verbeke, B. A.; Chanton, J.
2017-12-01
Solid state direct polarization 13C NMR spectroscopy (DP-NMR) is generally considered the most quantitatively reliable method for soil organic matter (SOM) characterization, including determination of the relative abundances of carbon functional groups. These functional abundances can then be used to calculate important soil parameters such as degree of humification and extent of aromaticity that reveal differences in reactivity or compositional changes along gradients (e.g. thaw chronosequence in permafrost). Unfortunately, the 13C NMR DP-NMR experiment is time-consuming, with a single sample often requiring over 24 hours of instrument time. Alternatively, solid state cross polarization 13C NMR (CP-NMR) can circumvent this problem, reducing analyses times to 4-6 hours but with some loss of quantitative reliability. Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) is a quick and relatively inexpensive method for characterizing solid materials, and has been suggested as an alternative to NMR for analysis of soil organic matter and determination of humification (HI) and aromatization (AI) indices. However, the quantitative reliability of ATR-FTIR for SOM analyses has never been verified, nor have any ATR-FTIR data been compared to similar measurements by NMR. In this work we focused on FTIR vibrational bands that correspond to the three functional groups used to calculate HI and AI values: carbohydrates (1030 cm-1), aromatics (1510, 1630 cm-1), and aliphatics (2850, 2920 cm-1). Data from ATR-FTIR measurements were compared to analogous quantitation by DP- and CP-NMR using peat samples from Sweden, Minnesota, and North Carolina. DP- and CP-NMR correlate very strongly, although the correlations are not always 1:1. Direct comparison of relative abundances of the three functional groups determined by NMR and ATR-FTIR yielded satisfactory results for carbohydrates (r2= 0.78) and aliphatics (r2=0.58), but less so for aromatics (r2= 0.395). ATR-FTIR has to this point been used primarily for relative abundance analyses (e.g. calculating HI and AI values), but these results suggest FTIR can provide quantitative reliability that approaches that of NMR.
Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi; ...
2018-02-03
In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi
In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Kanmi; Pruski, Marek
Two-dimensional through-bond {sup 1}H({sup 13}C) solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse {sup 1}H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of {sup 1}H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N-formyl-l-methionyl-l-leucyl-l-phenylalanine (f-MLF-OH) and brown coal.
NASA Astrophysics Data System (ADS)
Mao, Kanmi; Pruski, Marek
2009-12-01
Two-dimensional through-bond 1H{ 13C} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse 1H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of 1H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N- formyl- L-methionyl- L-leucyl- L-phenylalanine (f-MLF-OH) and brown coal.
Natural abundance high-resolution solid state 2 H NMR spectroscopy
NASA Astrophysics Data System (ADS)
Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.
1994-08-01
We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.
Natural abundance high-resolution solid state 2 H NMR spectroscopy
NASA Astrophysics Data System (ADS)
Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.
1994-08-01
We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.
Hyperpolarized nanodiamond with long spin-relaxation times
NASA Astrophysics Data System (ADS)
Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.
2015-10-01
The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.
Perras, Frederic A.; Luo, Hao; Zhang, Ximing; ...
2016-12-27
Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frederic A.; Luo, Hao; Zhang, Ximing
Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less
Solid-state NMR studies of form I of atorvastatin calcium.
Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil
2012-03-22
Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).
NASA Astrophysics Data System (ADS)
Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua
2016-07-01
Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.
Dawson, Daniel M; Jamieson, Lauren E; Mohideen, M Infas H; McKinlay, Alistair C; Smellie, Iain A; Cadou, Romain; Keddie, Neil S; Morris, Russell E; Ashbrook, Sharon E
2013-01-21
Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach.
Establishing a molecular relationship between chondritic and cometary organic solids
Cody, George D.; Heying, Emily; Alexander, Conel M. O.; Nittler, Larry R.; Kilcoyne, A. L. David; Sandford, Scott A.
2011-01-01
Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state 13C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites. PMID:21464292
NASA Astrophysics Data System (ADS)
Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy
2014-07-01
Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.
Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy
2014-07-01
Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.
Märker, Katharina; Paul, Subhradip; Fernández-de-Alba, Carlos; Lee, Daniel; Mouesca, Jean-Marie; Hediger, Sabine
2017-01-01
The self-assembly of small organic molecules is an intriguing phenomenon, which provides nanoscale structures for applications in numerous fields from medicine to molecular electronics. Detailed knowledge of their structure, in particular on the supramolecular level, is a prerequisite for the rational design of improved self-assembled systems. In this work, we prove the feasibility of a novel concept of NMR-based 3D structure determination of such assemblies in the solid state. The key point of this concept is the deliberate use of samples that contain 13C at its natural isotopic abundance (NA, 1.1%), while exploiting magic-angle spinning dynamic nuclear polarization (MAS-DNP) to compensate for the reduced sensitivity. Since dipolar truncation effects are suppressed to a large extent in NA samples, unique and highly informative spectra can be recorded which are impossible to obtain on an isotopically labeled system. On the self-assembled cyclic diphenylalanine peptide, we demonstrate the detection of long-range internuclear distances up to ∼7 Å, allowing us to observe π-stacking through 13C–13C correlation spectra, providing a powerful tool for the analysis of one of the most important non-covalent interactions. Furthermore, experimental polarization transfer curves are in remarkable agreement with numerical simulations based on the crystallographic structure, and can be fully rationalized as the superposition of intra- and intermolecular contributions. This new approach to NMR crystallography provides access to rich and precise structural information, opening up a new avenue to de novo crystal structure determination by NMR. PMID:28451235
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Kanmi
The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H- 1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H- 1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace} 13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5 m more » $$\\bar{x}$$, PMLG5 mm $$\\bar{x}$$x and SAM3) were analyzed to maximize the performance of through-bond transfer based on decoupling efficiency as well as scaling factors. Indirect detection with assistance of PMLG m $$\\bar{x}$$ during INEPTR transfer proved to offer the highest sensitivity gains of 3-10. In addition, the CRAMPS sequence was applied under fast MAS to increase the 1H resolution during t 1 evolution in the traditional, 13C detected HETCOR scheme. Two naturally abundant solids, tripeptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (f-MLF-OH) and brown coal, with well ordered and highly disordered structures, respectively, are studied to confirm the capabilities of these techniques. Concomitantly, a simple optimization of 1H homonuclear dipolar decoupling at MAS rates exceeding 10 kHz was developed (Chapter 4). The fine-tuned decoupling efficiency can be obtained by minimizing the signal loss due to transverse relaxation in a simple spin-echo experiment, using directly the sample of interest. The excellent agreement between observed decoupling pattern and earlier theoretical predictions confirmed the utility of this strategy. The properties of naturally abundant surface-bound fluorocarbon groups in mesoporous silica nanoparticles (MSNs) were investigated by the above-mentioned multidimensional solid-state NMR experiments and theoretical modeling (Chapter 5). Two conformations of (pentafluorophenyl)propyl groups (abbreviated as PFP) were determined as PFP-prone and PFP-upright, whose aromatic rings are located above the siloxane bridges and in roughly upright position, respectively. Several 1D and 2D NMR techniques were implemented in the characterizations, including indirectly detected 1H{l_brace} 13C{r_brace} and 19F{l_brace} 13C{r_brace} 2D HETCOR, Carr-Purcell-Meiboom-Gill (CPMG) assisted 29Si direct polarization and 29Si 19F 2D experiments, 2D double-quantum (DQ) 19F MAS NMR spectra and spin-echo measurements. Furthermore, conformational details of two types of PFP were confirmed by theoretical calculation, operated by Dr. Takeshi Kobayashi. Finally, the arrangement of two surfactants, cetyltrimetylammoium bromide (CTAB) and cetylpyridinium bromide (CPB), mixed inside the MSN pores, was studied by solid-state NMR (Chapter 6). By analyzing the 1H- 1H DQMAS and NOESY correlation spectra, the CTAB and CPB molecules were shown to co-exist inside the pores without forming significant monocomponent domains. A 'folded-over' conformation of CPB headgroups was proposed according to the results from 1H- 29Si 2D HETCOR.« less
USDA-ARS?s Scientific Manuscript database
Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...
NASA Astrophysics Data System (ADS)
Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.
2011-12-01
Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid-state NMR experiments, most notably in the spectral region corresponding to glycogen H and C, respectively. Interestingly, whereas in both experiments the predominant site of incorporation was in the membrane lipids, the line width of the aliphatic-D resonance in the D2O enriched experiment is 67 % wider than that observed in the D-glucose enriched experiment. This difference could be due to greater residual 1H-2H dipolar coupling in membrane lipids synthesized with 10 % D2O due to D being incorporated during NADP(D) reduction of the fatty acid precursor during synthesis and the H-glucose being the source of carbon and hydrogen starting with acetyl-CoA. In the case of the D-glucose experiment, the narrower absorption line may be consistent with individual FA's being more homogeneously deuterated. Analysis of the membrane lipids is currently being performed via GCMS in order to gain potentially more insight to guide interpretation of the 2H solid state NMR spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.E.; Spencer, R.B.; Burger, V.T.
1984-01-01
Solid-state cross-polarization/magic-angle sample-spinning /sup 13/C NMR spectra have been recorded on chlorophyll a-water aggregates, methyl pyrochlorophyllide a, and methyl pyropheophorbide a. Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid-state spectra. 18 references, 2 figures, 1 table.
Cerreia Vioglio, Paolo; Catalano, Luca; Vasylyeva, Vera; Nervi, Carlo; Chierotti, Michele R; Resnati, Giuseppe; Gobetto, Roberto; Metrangolo, Pierangelo
2016-11-14
Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a versatile characterization technique that can provide a plethora of information complementary to single crystal X-ray diffraction (SCXRD) analysis. Herein, we present an experimental and computational investigation of the relationship between the geometry of a halogen bond (XB) and the SSNMR chemical shifts of the non-quadrupolar nuclei either directly involved in the interaction ( 15 N) or covalently bonded to the halogen atom ( 13 C). We have prepared two series of X-bonded co-crystals based upon two different dipyridyl modules, and several halobenzenes and diiodoalkanes, as XB-donors. SCXRD structures of three novel co-crystals between 1,2-bis(4-pyridyl)ethane, and 1,4-diiodobenzene, 1,6-diiodododecafluorohexane, and 1,8-diiodohexadecafluorooctane were obtained. For the first time, the change in the 15 N SSNMR chemical shifts upon XB formation is shown to experimentally correlate with the normalized distance parameter of the XB. The same overall trend is confirmed by density functional theory (DFT) calculations of the chemical shifts. 13 C NQS experiments show a positive, linear correlation between the chemical shifts and the C-I elongation, which is an indirect probe of the strength of the XB. These correlations can be of general utility to estimate the strength of the XB occurring in diverse adducts by using affordable SSNMR analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bates, A.L.; Hatcher, P.G.
1992-01-01
Isolated lignin with a low carbohydrate content was spiked with increasing amounts of alpha-cellulose, and then analysed by solid-state 13C nuclear magnetic resonance (NMR) using cross-polarization with magic angle spinning (CPMAS) and dipolar dephasing methods in order to assess the quantitative reliability of CPMAS measurement of carbohydrate content and to determine how increasingly intense resonances for carbohydrate carbons affect calculations of the degree of lignin's aromatic ring substitution and methoxyl carbon content. Comparisons were made of the carbohydrate content calculated by NMR with carbohydrate concentrations obtained by phenol-sulfuric acid assay and by the calculation from the known amounts of cellulose added. The NMR methods used in this study yield overestimates for carbohydrate carbons due to resonance area overlap from the aliphatic side chain carbons of lignin. When corrections are made for these overlapping resonance areas, the NMR results agree very well with results obtained by other methods. Neither the calculated methoxyl carbon content nor the degree of aromatic ring substitution in lignin, both calculated from dipolar dephasing spectra, change with cellulose content. Likewise, lignin methoxyl content does not correlate with cellulose abundance when measured by integration of CPMAS spectra. ?? 1992.
NASA Astrophysics Data System (ADS)
Knicker, Heike
2016-04-01
"Nuclear magnetic resonance (NMR) does not lie". More than anything else, this statement of a former colleague and friend has shaped my relation to solid-state NMR spectroscopy. Indeed, if this technique leads to results which contradict the expectations, it is because i) some parts of the instrument are broken, ii) maladjustment of the acquisition parameters or iii) wrong preparation or confusion of samples. However, it may be even simpler, namely that the expectations were wrong. Of course, for researchers, the latter is the most interesting possibility since it forces to reassess accepted views and to search for new explanations. As my major analytical tool, NMR spectroscopy has confronted me with this challenge often enough to turn this issue into the main subject of my talk and to share with the audience how it formed my understanding of function and nature of soil organic matter (SOM). Already shortly after its introduction into soil science in the 1980's, the data obtained with solid-state 13C NMR spectroscopy opened the stage for ongoing discussions, since they showed that in humified SOM aromatic carbon is considerably less important than previously thought. This finding had major implications regarding the understanding of the origin of SOM and the mechanisms by which it is formed. Certainly, the discrepancy between the new results and previous paradigms contributed to mistrust in the reliability of solid-state NMR techniques. The respective discussion has survived up to our days, although already in the 1980's and 1990's fundamental studies could demonstrate that quantitative solid-state NMR data can be obtained if i) correct acquisition parameters are chosen, ii) the impact of paramagnetic compounds is reduced and iii) the presence of soot in soils can be excluded. On the other hand, this mistrust led to a detailed analysis of the impact of paramagnetics on the NMR behavior of C groups which then improved our understanding of the role of carbohydrates for organo-mineral interactions. Since decent solid-state NMR spectra cannot be obtained from graphenic components, the successful acquisition of solid-state 13C and 15N NMR spectra of charcoals challenged the well accepted model of their chemical nature. Application of advanced 2D NMR approaches confirmed the new view of charcoal as a heterogeneous material, the composition of which depends upon the feedstock and charring condition. The respective consequences of this alternative for the understanding of C sequestration are still matter of ongoing debates. Although the sensitivity of 15N for NMR spectroscopy is 50 times lower than that of 13C, first solid-state 15N NMR spectra of soils with natural 15N abundance were already published in the 1990's. They clearly identified peptide-like structures as the main organic N form in unburnt soils. However, in spite of their high contribution to SOM, the role of peptides in soils is far from understood. Considering the new technological developments in the field of NMR spectroscopy, this technique will certainly not stop to contribute to unexpected results.
Solid-state NMR and IR for the analysis of pharmaceutical solids: polymorphs of fosinopril sodium.
Brittain, H G; Morris, K R; Bugay, D E; Thakur, A B; Serajuddin, A T
1993-01-01
The two polymorphic modifications of fosinopril sodium have been characterized as to their differences in melting behaviour, powder X-ray diffraction patterns, Fourier transform infrared spectra (FTIR), and solid-state 31P- and 13C-NMR spectra. The polymorphs were found to be enantiotropically related based upon melting point, heat of fusion, and solution mediated transformation data. Analysis of the solid-state FTIR and 13C-NMR data indicated that the environment of the acetal side chain of fosinopril sodium differed in two polymorphs, and that there might be cis-trans isomerization about the C6-N peptide bond. These conformational differences are postulated as the origin of the observed polymorphism.
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-09-02
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
NASA Astrophysics Data System (ADS)
Hong, Mei
1999-08-01
We describe an approach to efficiently determine the backbone conformation of solid proteins that utilizes selective and extensive 13C labeling in conjunction with two-dimensional magic-angle-spinning NMR. The selective 13C labeling approach aims to reduce line broadening and other multispin complications encountered in solid-state NMR of uniformly labeled proteins while still enhancing the sensitivity of NMR spectra. It is achieved by using specifically labeled glucose or glycerol as the sole carbon source in the protein expression medium. For amino acids synthesized in the linear part of the biosynthetic pathways, [1-13C]glucose preferentially labels the ends of the side chains, while [2-13C]glycerol labels the Cα of these residues. Amino acids produced from the citric-acid cycle are labeled in a more complex manner. Information on the secondary structure of such a labeled protein was obtained by measuring multiple backbone torsion angles φ simultaneously, using an isotropic-anisotropic 2D correlation technique, the HNCH experiment. Initial experiments for resonance assignment of a selectively 13C labeled protein were performed using 15N-13C 2D correlation spectroscopy. From the time dependence of the 15N-13C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. We demonstrate the selective 13C labeling and these 2D NMR experiments on a 8.5-kDa model protein, ubiquitin. This isotope-edited NMR approach is expected to facilitate the structure determination of proteins in the solid state.
NASA Astrophysics Data System (ADS)
Friesen-Waldner, Lanette; Chen, Albert; Mander, Will; Scholl, Timothy J.; McKenzie, Charles A.
2012-10-01
Dynamic nuclear polarisation (DNP) of carbon-13 (13C) enriched endogenous compounds provides a novel means for magnetic resonance imaging and spectroscopy of biological processes. Adding small amounts of gadolinium-based contrast agents (GBCAs) to the 13C-enriched substrate matrix increases the amount of hyperpolarisation that can be achieved, but also may decrease the longitudinal relaxation time (T1) of the 13C nucleus in solution. This study examined the effects of five different GBCA at concentrations of 0.5, 1, 2, and 3 mM on [1-13C]-enriched pyruvic acid. It was found that contrast agents with an open chain structure (Gadobenate dimeglumine, Gadopentetate dimeglumine, Gadodiamide) caused the largest enhancement (up to 82%) in solid state polarisation relative to solutions without GBCA. In the liquid state, T1 of pyruvate decreased by as much as 62% and polarisation was much lower (70%) relative to solutions without GBCA added. Conversely, for GBCA with macrocyclic structures (Gadoterate meglumine, Gadoteridol), the solid state polarisation enhancement was only slightly less than the open chain GBCA, but enhanced polarisation was retained much better in the liquid state with minimal decrease in T1 (25% at the highest GBCA concentrations). Near maximum polarisation in the solid state was obtained at a GBCA concentration of 2 mM, with a higher concentration of 3 mM producing minimal improvement. These results indicate that the macrocyclic contrast agents provide the best combination of high solid state and liquid state polarisations with minimal loss of T1 in experiments with hyperpolarised 13C-enriched pyruvate. This suggests that macrocyclic contrast agents should be the GBCA of choice for maximising signal in experiments with hyperpolarised 13C-enriched pyruvate, particularly for in vivo measurements where shortened substrate T1 is especially problematic.
Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M
2013-06-13
We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.
Sardo, Mariana; Siegel, Renée; Santos, Sérgio M; Rocha, João; Gomes, José R B; Mafra, Luis
2012-06-28
We present a complete set of experimental approaches for the NMR assignment of powdered tripeptide glutathione at natural isotopic abundance, based on J-coupling and dipolar NMR techniques combined with (1)H CRAMPS decoupling. To fully assign the spectra, two-dimensional (2D) high-resolution methods, such as (1)H-(13)C INEPT-HSQC/PRESTO heteronuclear correlations (HETCOR), (1)H-(1)H double-quantum (DQ), and (1)H-(14)N D-HMQC correlation experiments, have been used. To support the interpretation of the experimental data, periodic density functional theory calculations together with the GIPAW approach have been used to calculate the (1)H and (13)C chemical shifts. It is found that the shifts calculated with two popular plane wave codes (CASTEP and Quantum ESPRESSO) are in excellent agreement with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak; Cooper, Bill; Kostka,
2014-01-01
A large-scale ecosystem manipulation (Spruce and Peatland Responses under Climatic and Environmental Change, SPRUCE) is being constructed in the Marcell Experimental Forest, Minnesota, USA, to determine the effects of climatic forcing on ecosystem processes in northern peatlands. Prior to the initiation of the manipulation, we characterized the solid-phase peat to a depth of 2 meters using a variety of techniques, including peat C:N ratios, 13C and 15N isotopic composition, Fourier Transform Infrared (FT IR), and 13C Nuclear Magnetic Resonance spectroscopy (13C NMR). FT IR determined peat humification-levels increased rapidly between and 75 cm, indicating a highly reactive zone. We observedmore » a rapid drop in the abundance of O-alkyl-C, carboxyl-C, and other oxygenated functionalities within this zone and a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75-cm, minimal change was observed except that aromatic functionalities accumulated with depth. Incubation studies revealed the highest methane production rates and greatest CH4:CO2 ratios within this and 75 cm zone. Hydrology and surface vegetation played a role in belowground carbon cycling. Radiocarbon signatures of microbial respiration products in deeper porewaters resembled the signatures of dissolved organic carbon rather than solid phase peat, indicating that more recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as an excellent proxy for soil decomposition rate, and in addition should be a sensitive indicator of the response of the solid phase peat to the climatic manipulation.« less
The role of solid state 13 C NMR spectroscopy in studies of the nature of native celluloses
R.H. Atalla; D.L. VanderHart
1999-01-01
Published spectroscopic observations pertaining to the crystal structure of native celluloses are reviewed for the purpose of defining our current level of understanding about crystalline polymorphism in these materials. Emphasis is placed on observations from solid state 13 C nuclear magnetic resonance (NMR), which first led to the postulate that most native,...
Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona
2016-04-15
Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gopinath, T.; Veglia, Gianluigi
2013-05-01
We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.
Ito, Atsutoshi; Watanabe, Tomoyuki; Yada, Shuichi; Hamaura, Takeshi; Nakagami, Hiroaki; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji
2010-01-04
The purpose of this study was to elaborate the relationship between the (13)C CP/MAS NMR spectra and the recrystallization behavior during the storage of troglitazone solid dispersions. The solid dispersions were prepared by either the solvent method or by co-grinding. The recrystallization behavior under storage conditions at 40 degrees C/94% RH was evaluated by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. Solid dispersions prepared by the solvent method or by prolonged grinding brought about inhibition of the nucleation and the nuclei growth at the same time. No differences in the PXRD profiles were found in the samples prepared by the co-grinding and solvent methods, however, (13)C CP/MAS NMR showed significant differences in the spectra. The correlation coefficients using partial least square regression analysis between the PXRD profiles and the apparent nuclei-growth constant or induction period to nucleation were 0.1305 or 0.6350, respectively. In contrast, those between the (13)C CP/MAS NMR spectra and the constant or the period were 0.9916 or 0.9838, respectively. The (13)C CP/MAS NMR spectra had good correlation with the recrystallization kinetic parameters evaluated by the KJMA equation. Consequently, solid-state NMR was judged to be a useful tool for the prediction of the recrystallization behavior of solid dispersions.
Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin
NASA Technical Reports Server (NTRS)
Bernards, M. A.; Lopez, M. L.; Zajicek, J.; Lewis, N. G.
1995-01-01
Suberin is an abundant, complex, intractable, plant cell wall polymeric network that forms both protective and wound-healing layers. Its function is, therefore, critical to the survival of all vascular plants. Its chemical structure and biosynthesis are poorly defined, although it is known to consist of both aromatic and aliphatic domains. While the composition of the aliphatic component has been fairly well characterized, that of the phenolic component has not. Using a combination of specific carbon-13 labeling techniques, and in situ solid state 13C NMR spectroscopic analysis, we now provide the first direct evidence for the nature of the phenolic domain of suberin and report here that it is almost exclusively comprised of a covalently linked, hydroxycinnamic acid-derived polymeric matrix.
Campbell, Paul S; Santini, Catherine C; Bouchu, Denis; Fenet, Bernard; Rycerz, Leszek; Chauvin, Yves; Gaune-Escard, Marcelle; Bessada, Catherine; Rollet, Anne-Laure
2010-02-07
Dialkylimidazolium chlorometallate molten salts resulting from the combination of zirconium or hafnium tetrachloride and 1-butyl-3-methylimidazolium chloride, [C(1)C(4)Im][Cl], have been prepared with a molar fraction of MCl(4), R = n(MCl4)/n(MCl4) + n([C1C4IM][Cl]) equal to 0, 0.1, 0.2, 0.33, 0.5, 0.67. The structure and composition were studied by Differential Scanning Calorimetry (DSC), (35)Cl (263 to 333 K), (1)H and (13)C solid state and solution NMR spectroscopy, and electrospray ionisation (ESI) mass spectrometry. The primary anions of the MCl(4)-based ILs were [MCl(5)], [MCl(6)] and [M(2)Cl(9)], whose relative abundances varied with R. For R = 0.33, pure solid [C(1)C(4)Im](2)[MCl(6)], for both M = Zr and Hf are formed (m.p. = 366 and 385 K, respectively). For R = 0.67 pure ionic liquids [C(1)C(4)Im][M(2)Cl(9)] for both M = Zr and Hf are formed (T(g) = 224 and 220 K, respectively). The thermal dissociation has been attempted of [C(1)C(4)Im](2)[HfCl(6)], and [C(1)C(4)Im](2)[ZrCl(6)] monitored by (35)Cl and (91)Zr solid NMR (high temperature up to 551 K).
CP/MAS /sup 13/C NMR spectroscopic study of chlorophyll a in the solid state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.E.; Spencer, R.B.; Burger, V.T.
1983-09-01
Solid-state cross-polarization, magic-angle sample spinning carbon-13 nuclear magnetic resonance spectra have been recorded on chlorophyll a- water aggregates, methyl pyrochlorophyllide a and methyl pyropheophorbide a (derivatives that lack a phytyl chain). Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid state spectra.
Protein-nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR.
Wiegand, Thomas; Liao, Wei-Chih; Ong, Ta Chung; Däpp, Alexander; Cadalbert, Riccardo; Copéret, Christophe; Böckmann, Anja; Meier, Beat H
2017-11-01
DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect protein-DNA and protein-ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect protein-DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31 P- 13 C polarization-transfer experiments followed by the recording of a 2D 13 C- 13 C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding.
First Spectroscopic Studies and Detection in SgrB2 of 13C-DOUBLY Substitued Ethyl Cyanide
NASA Astrophysics Data System (ADS)
Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.; Müller, Holger S. P.; Belloche, Arnaud
2015-06-01
Ethyl cyanide (CH_3CH_2CN) is one of the most abundant complex organic molecules in the interstellar medium firstly detected in OMC-1 and Sgr B2 in 1977. The vibrationally excited states are enough populated under ISM conditions and could be detected. Apart from the deuterated ones, all mono-substituted isotopologues of ethyl cyanide (13C and 15N have been detected in the ISM. The detection of isotopologues in the ISM is important: it can give information about the formation process of complex organic molecules, and it is essential to clean the ISM spectra from the lines of known molecules in order to detect new ones. The 12C/13C ratio found in SgrB2: 20-30 suggests that the doubly 13C could be present in the spectral line survey recently obtained with ALMA (EMoCA), but no spectroscopic studies exist up to now. We measured and analyzed the spectra of the 13C-doubly-substitued species up to 1 THz with the Lille solid-state based spectrometer. The spectroscopic results and and the detection of the doubly 13C species in SgrB2 will be presented. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under ANR-13-BS05-0008-02 IMOLABS. Support by the Deutsche Forschungsgemeinschaft via SFB 956, project B3 is acknowledged D.~R.~Johnson, et al., Astrophys.~J. 1977, 218, L370 A.~Belloche, et al., A&A 2013, 559, A47 A.M.~Daly, et al., Astrophys.~J. 2013, 768, 81 K.~Demyk, et al. A&A 2007 466, 255 Margulès, et al. A&A 2009, 493, 565 Belloche et al. 2014, Science, 345, 1584
NASA Astrophysics Data System (ADS)
Oh-ishi, Katsuyoshi; Nagumo, Kenta; Tateishi, Kazuya; Takafumi, Ohnishi; Yoshikane, Kenta; Sugiyama, Machiko; Oka, Kengo; Kobayashi, Ryota
2017-01-01
Mo-Re-C compounds containing Mo7Re13C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo7Re13C with the β-Mn structure using the solid state method. Almost single-phase Mo7Re13C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with a pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K.
Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro
2013-01-01
Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. Copyright © 2012 Wiley Periodicals, Inc.
13C CP MAS NMR and GIAO-CHF calculations of coumarins.
Zolek, Teresa; Paradowska, Katarzyna; Wawer, Iwona
2003-01-01
13C cross-polarization magic-angle spinning NMR spectra were recorded for a series of solid coumarins. Ab initio calculations of shielding constants were performed with the use of GIAO-CHF method. The combined CPMAS NMR and theoretical approach was successful in characterizing solid-state conformations of coumarins; a relationship sigma (ppm) = -1.032 xdelta + 205.28 (R(2) = 0.9845) can be used to obtain structural information for coumarins, for which solid-state NMR or crystal structure data are not available. Copyright 2002 Elsevier Science (USA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...
2018-02-15
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Nishiyama, Y.; Kobayashi, T.; Malon, M.; ...
2015-02-16
Two-dimensional 1H{ 13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H– 1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less
2013-01-01
We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493
Prospective Work for Alma: the Millimeterwave and Submillimeterwave Spectrum of 13C-GLYCOLALDEHYDE
NASA Astrophysics Data System (ADS)
Haykal, Imane; Margulès, Laurent; Huet, Therese R.; Motiyenko, Roman; Guillemin, J.-C.
2011-06-01
Glycolaldehyde has been identified in interstellar sources. The relative abundance ratios of the three isomers (acetic acid) : (glycolaldehyde) : (methylformate) were estimated . The detection of 13C_1 and 13C_2 isotopomers of methylformate has been recently reported in Orion, as a result of the detailled labororatory spectroscopic study. Therefore the spectroscopy of the 13C isotopomers of glycolaldehyde is investigated in laboratory in order to provide data for an astronomical search. The instrument ALMA will certainly be a good instrument to detect them. Up to now, only the microwave spectra of 13CH_2OH-CHO and of CH_2OH-13CHO have been observed several years ago in the 12-40 GHz range. Spectra of both species are presently recorded in Lille in the 150-950 GHz range with the new submillimetre-wave spectrometer based on harmonic generation of a microwave synthesizer source, using only solid-state devices, and coupled to a cell of 2.2 m length The absolute accuracy of the line positions is better than 30 KHz. The rotational structure of the ground state and of the three first excited vibrational states has been observed. Two 13C enriched samples were used. The analysis is in progress. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) and by the contract ANR-08-BLAN-0054 J. M. Hollis, S. N. Vogel, L. E. Snyder, et al., Astrophys. J. 554(2001) L81 R. A. H. Butler, F. C. De Lucia, D. T Petkie, et al., Astrophys. J. Supp. 134 (2001) 319 M. T. Beltran, C. Codella, S. Viti, R. Niri, R. Cesaroni, Astrophys. J. 690 (2009) L93. M. Carjaval, L. Margulès, B. Tercero et al., Astron. Astrophys. 500 (2009) 1109. K.-M. Marstokk and H. Møllendal, J. Mol. Struct. 16 (1973) 259. R. A. Motiyenko, L. Margulès, E. A. Alekseev et al., J. Mol. Spectrosc. 264 (2010) 94.
Dastmalchi, Keyvan; Kallash, Linda; Wang, Isabel; Phan, Van C.; Huang, Wenlin; Serra, Olga; Stark, Ruth E.
2016-01-01
The cultivation, storage, and distribution of potato tubers are compromised by mechanical damage and suboptimal healing. To investigate wound-healing progress in cultivars with contrasting russeting patterns, metabolite profiles reported previously for polar tissue extracts were complemented by GC/MS measurements for nonpolar extracts and quantitative 13C NMR of interfacial solid suspensions. Potential marker compounds that distinguish cultivar type and wound-healing time point included fatty acids, fatty alcohols, alkanes, glyceryl esters, α,ω-fatty diacids, and hydroxyfatty acids. The abundant long-chain fatty acids in nonpolar extracts and solids from the smooth-skinned Yukon Gold cultivar suggested extensive suberin biopolymer formation; this hypothesis was supported by high proportions of arenes, alkenes, and carbonyl groups in the solid and among the polar markers. The absence of many potential marker classes in nonpolar Atlantic extracts and interfacial solids suggested a limited extent of suberization. Modest scavenging activities of all nonpolar extracts indicate that the majority of antioxidants produced in response to wounding are polar. PMID:26166447
Dastmalchi, Keyvan; Kallash, Linda; Wang, Isabel; Phan, Van C; Huang, Wenlin; Serra, Olga; Stark, Ruth E
2015-08-05
The cultivation, storage, and distribution of potato tubers are compromised by mechanical damage and suboptimal healing. To investigate wound-healing progress in cultivars with contrasting russeting patterns, metabolite profiles reported previously for polar tissue extracts were complemented by GC/MS measurements for nonpolar extracts and quantitative (13)C NMR of interfacial solid suspensions. Potential marker compounds that distinguish cultivar type and wound-healing time point included fatty acids, fatty alcohols, alkanes, glyceryl esters, α,ω-fatty diacids, and hydroxyfatty acids. The abundant long-chain fatty acids in nonpolar extracts and solids from the smooth-skinned Yukon Gold cultivar suggested extensive suberin biopolymer formation; this hypothesis was supported by high proportions of arenes, alkenes, and carbonyl groups in the solid and among the polar markers. The absence of many potential marker classes in nonpolar Atlantic extracts and interfacial solids suggested a limited extent of suberization. Modest scavenging activities of all nonpolar extracts indicate that the majority of antioxidants produced in response to wounding are polar.
(13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.
Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G
2015-06-05
(13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wałejko, P.; Paradowska, K.; Szeleszczuk, Ł.; Wojtulewski, S.; Baj, A.
2018-03-01
Trolox C (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) is a water-soluble vitamin E analogue that is available in enantiomeric forms R or S. Enantiomerically pure Trolox 1, its derivatives 2, 3 (R and S enantiomers) and racemic forms 1-3 were studied using solid-state 13C cross-polarisation (CP) magic angle spinning (MAS) NMR (13C CPMAS NMR). Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of the shielding constants supported the assignment of 13C resonances in the solid-state NMR spectra. For the 13C CPMAS NMR spectra of 1, resonances of pure enantiomers were significantly broader than those of the racemic R/S form. In order to explain these effects, five of the available crystal structures were analysed (1R/S, 3R/S, 2S and the newly measured 2R/S and 3S). Cyclic dimers with one R and one S enantiomer linked by two OHsbnd Odbnd C2b hydrogen bonds were formed in 1R/S. Similar hydrogen-bonded dimers were present in 3S but not in 3R/S, in which interactions are water-mediated. A comparison of X-ray diffraction, CPMAS NMR data and the DFT GIPAW calculations of racemic forms and pure enantiomers was conducted for the first time. Our results, particularly the solid-state NMR data, were discussed in relation to Wallach's rule, that the racemic crystal appears as more ordered than its chiral counterpart.
Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.
1996-01-01
The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.
Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions
Rong, Xing; Geng, Jianpei; Shi, Fazhan; Liu, Ying; Xu, Kebiao; Ma, Wenchao; Kong, Fei; Jiang, Zhen; Wu, Yang; Du, Jiangfeng
2015-01-01
Quantum computation provides great speedup over its classical counterpart for certain problems. One of the key challenges for quantum computation is to realize precise control of the quantum system in the presence of noise. Control of the spin-qubits in solids with the accuracy required by fault-tolerant quantum computation under ambient conditions remains elusive. Here, we quantitatively characterize the source of noise during quantum gate operation and demonstrate strategies to suppress the effect of these. A universal set of logic gates in a nitrogen-vacancy centre in diamond are reported with an average single-qubit gate fidelity of 0.999952 and two-qubit gate fidelity of 0.992. These high control fidelities have been achieved at room temperature in naturally abundant 13C diamond via composite pulses and an optimized control method. PMID:26602456
Trace element abundances in single presolar silicon carbide grains by synchrotron X-ray fluorescence
NASA Astrophysics Data System (ADS)
Kashiv, Yoav
2004-12-01
Synchrotron x-ray fluorescence (SXRF) was applied to the study of presolar grains for the first time in this study. 41 single SiC grains of the KJF size fraction (mass-weighted median size of 1.86 μm) from the Murchison (CM2) Meteorite were analyzed. The absolute abundances of the following elements were determined (not every element in every grain): S, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Sr, Y, Zr, Nb, Mo, Ru, Os, Ir and Pt (underlined elements were detected here for the first time in single grains). There is good agreement between the heavier trace element abundances in the grains and s-process nucleosynthesis calculations. It suggests that smaller 13C pocket sizes are needed in the parent stars, a free parameter in the stellar models, than is deduced from isotopic analyses of s-, and s-mainly, elements, such as Zr and Mo. In addition, the data confirms the radiogenic nature of the Nb in the grains, due to the in situ decay of 93Zr (t 1/2 = 1.5 × 106 year). The data suggest that the trace elements condensed into the host SiC grains by a combination of condensation in solid solution and incorporation of subgrains. It seems that many of the trace elements reside mainly in subgrains of two solid solution: (1)a TiC based solid solution, and (2)a Mo-Ru carbide based solid solution. The presence of subgrains of an Fe-Ni alloy solid solution is suggested as well. Subgrains of all 3 solid solutions were observed previously in presolar graphite grains.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat.
Connin, S.L.; Betancourt, J.; Quade, Jay
1998-01-01
Patterns of climate and C4 plant abundance in the southwestern United States during the last glaciation were evaluated from isotopic study of herbivore tooth enamel. Enamel ??13C values revealed a substantial eastward increase in C4 plant consumption for Mammuthus spp., Bison spp., Equus spp., and Camelops spp. The ??13C values were greatest in Bison spp. (-6.9 to + 1.7???) and Mammuthus spp. (-9.0 to +0.3???), and in some locales indicated C4-dominated grazing. The ??13C values of Antilocaprids were lowest among taxa (-12.5 to -7.9???) and indicated C3 feeding at all sites. On the basis of modern correlations between climate and C4 grass abundance, the enamel data imply significant summer rain in parts of southern Arizona and New Mexico throughout the last glaciation. Enamel ??18O values range from +19.0 to +31.0??? and generally increase to the east. This pattern could point to a tropical or subtropical source of summer rainfall. At a synoptic scale, the isotope data indicate that interactions of seasonal moisture, temperature, and lowered atmospheric pCO2 determined glacial-age C4 abundance patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumner, S.C.J.
1986-01-01
Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemicmore » mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.« less
6-Aminopenicillanic acid revisited: A combined solid state NMR and in silico refinement
NASA Astrophysics Data System (ADS)
Aguiar, Daniel Lima Marques de; San Gil, Rosane Aguiar da Silva; Alencastro, Ricardo Bicca de; Souza, Eugenio Furtado de; Borré, Leandro Bandeira; Vaiss, Viviane da Silva; Leitão, Alexandre Amaral
2016-09-01
13C/15N (experimental and ab initio) solid-state NMR was used to achieve an affordable way to improve hydrogen refinement of 6-aminopenicillanic acid (6-APA) structure. The lattice effect on the isotropic chemical shifts was probed by using two different magnetic shielding calculations: isolated molecules and periodic crystal structure. The electron density difference maps of optimized and non-optimized structures were calculated in order to investigate the interactions inside the 6-APA unit cell. The 13C and 15N chemical shifts assignments were unambiguously stablished. In addition, some of the literature 13C resonances ambiguities could be properly solved.
Capozzi, Andrea; Cheng, Tian; Boero, Giovanni; Roussel, Christophe; Comment, Arnaud
2017-01-01
Hyperpolarization via dynamic nuclear polarization (DNP) is pivotal for boosting magnetic resonance imaging (MRI) sensitivity and dissolution DNP can be used to perform in vivo real-time 13C MRI. The type of applications is however limited by the relatively fast decay time of the hyperpolarized spin state together with the constraint of having to polarize the 13C spins in a dedicated apparatus nearby but separated from the MRI magnet. We herein demonstrate that by polarizing 13C with photo-induced radicals, which can be subsequently annihilated using a thermalization process that maintains the sample temperature below its melting point, hyperpolarized 13C-substrates can be extracted from the DNP apparatus in the solid form, while maintaining the enhanced 13C polarization. The melting procedure necessary to transform the frozen solid into an injectable solution containing the hyperpolarized 13C-substrates can therefore be performed ex situ, up to several hours after extraction and storage of the polarized solid. PMID:28569840
The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.
Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra
2005-07-18
In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.
Dračínský, Martin; Buděšínský, Miloš; Warżajtis, Beata; Rychlewska, Urszula
2012-01-12
Selected guaianolide type sesquiterpene lactones were studied combining solution and solid-state NMR spectroscopy with theoretical calculations of the chemical shifts in both environments and with the X-ray data. The experimental (1)H and (13)C chemical shifts in solution were successfully reproduced by theoretical calculations (with the GIAO method and DFT B3LYP 6-31++G**) after geometry optimization (DFT B3LYP 6-31 G**) in vacuum. The GIPAW method was used for calculations of solid-state (13)C chemical shifts. The studied cases involved two polymorphs of helenalin, two pseudopolymorphs of 6α-hydroxydihydro-aromaticin and two cases of multiple asymmetric units in crystals: one in which the symmetry-independent molecules were connected by a series of hydrogen bonds (geigerinin) and the other in which the symmetry-independent molecules, deprived of any specific intermolecular interactions, differed in the conformation of the side chain (badkhysin). Geometrically different molecules present in the crystal lattices could be easily distinguished in the solid-state NMR spectra. Moreover, the experimental differences in the (13)C chemical shifts corresponding to nuclei in different polymorphs or in geometrically different molecules were nicely reproduced with the GIPAW calculations.
Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR
USDA-ARS?s Scientific Manuscript database
Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Chen, Yan; Hood, Zachary D.
All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less
NASA Astrophysics Data System (ADS)
Zhang, Zhengfeng; Li, Jianping; Chen, Yanke; Xie, Huayong; Yang, Jun
2017-12-01
In this letter, we propose a robust heteronuclear dipolar recoupling method for proteins in magic-angle spinning (MAS) solid-state NMR. This method is as simple, robust and efficient as the well-known TEDOR in the aspect of magnetization transfer between 15N and 13C. Deriving from our recent band-selective dual back-to-back pulses (DBP) (Zhang et al., 2016), this method uses new phase-cycling schemes to realize broadband DBP (Bro-DBP). For broadband 15N-13C magnetization transfer (simultaneous 15N → 13C‧ and 15N → 13Cα), Bro-DBP has almost the same 15N → 13Cα efficiency while offers 30-40% enhancement on 15N → 13C‧ transfer, compared to TEDOR. Besides, Bro-DBP can also be used as a carbonyl (13C‧)-selected method, whose 15N → 13C‧ efficiency is up to 1.7 times that of TEDOR and is also higher than that of band-selective DBP. The performance of Bro-DBP is demonstrated on the N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (fMLF) peptide and the U-13C, 15N labeled β1 immunoglobulin binding domain of protein G (GB1) microcrystalline protein. Since Bro-DBP is as robust, simple and efficient as TEDOR, we believe it is very useful for protein studies in MAS solid-state NMR.
Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.
1987-01-01
An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.
Giovine, Raynald; Volkringer, Christophe; Trébosc, Julien; Amoureux, Jean Paul; Loiseau, Thierry; Lafon, Olivier; Pourpoint, Frédérique
2017-03-01
The metal-organic framework MIL-53(Al) (aluminium terephthalate) exhibits a structural transition between two porous structures with large pore (lp) or narrow pore (np) configurations. This transition, called the breathing effect, is observed upon changes in temperature or external pressure, as well as with the adsorption of guest molecules, such as H 2 O, within the pores. We show here how these different pore openings can be detected by observing the dephasing of 13 C magnetization under 13 C- 27 Al dipolar couplings using Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR) solid-state NMR experiments with Simultaneous Frequency and Amplitude Modulation (SFAM) recoupling. These double-resonance NMR experiments between 13 C and 27 Al nuclei, which have close Larmor frequencies, are feasible thanks to the use of a frequency splitter. The experimental SFAM-RESPDOR signal fractions agree well with those simulated from the MIL-53(Al)-lp and -np crystal structures obtained from powder X-ray diffraction analysis. Hence, these 13 C- 27 Al solid-state NMR experiments validate these structures and confirm their rigidity. A similar agreement is reported for the framework ligands in the as-synthesized (as) MIL-53(Al), in which the pores contain free ligands. Furthermore, in this case, 13 C-{ 27 Al} SFAM-RESPDOR experiments allow an estimation of the average distance between the free ligands and the 27 Al nuclei of the framework.
Ciogli, Alessia; Simone, Patrizia; Villani, Claudio; Gasparrini, Francesco; Laganà, Aldo; Capitani, Donatella; Marchetti, Nicola; Pasti, Luisa; Massi, Alessandro; Cavazzini, Alberto
2014-06-23
The structural and chromatographic characterization of two novel fluorinated mesoporous materials prepared by covalent reaction of 3-(pentafluorophenyl)propyldimethylchlorosilane and perfluorohexylethyltrichlorosilane with 2.5 μm fully porous silica particles is reported. The adsorbents were characterized by solid state (29)Si, (13)C, and (19)F NMR spectroscopy, low-temperature nitrogen adsorption, elemental analysis (C and F), and various chromatographic measurements, including the determination of adsorption isotherms. The structure and abundance of the different organic surface species, as well as the different silanol types, were determined. In particular, the degree of so-called horizontal polymerization, that is, Si-O-Si bridging parallel to the silica surface due to the reaction, under "quasi-dry" conditions, of trifunctional silanizing agents with the silica surface was quantified. Significant agreement was found between the information provided by solid-state NMR, elemental analysis, and excess isotherms regarding the amount of surface residual silanol groups, on the one hand, and the degree of surface functionalization, on the other. Finally, the kinetic performance of the fluorinated materials as separation media for applications in near-ultrahigh-performance liquid chromatography was evaluated. At reduced velocities of about 5.5 (ca. 600 bar backpressure at room temperature) with 3 mm diameter columns and toluene as test compound, reduced plate heights on the order of 2 were obtained on columns of both adsorbents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recording 13C-15N HMQC 2D sparse spectra in solids in 30 s
NASA Astrophysics Data System (ADS)
Kupče, Ēriks; Trébosc, Julien; Perrone, Barbara; Lafon, Olivier; Amoureux, Jean-Paul
2018-03-01
We propose a dipolar HMQC Hadamard-encoded (D-HMQC-Hn) experiment for fast 2D correlations of abundant nuclei in solids. The main limitation of the Hadamard methods resides in the length of the encoding pulses, which results from a compromise between the selectivity and the sensitivity due to losses. For this reason, these methods should mainly be used with sparse spectra, and they profit from the increased separation of the resonances at high magnetic fields. In the case of the D-HMQC-Hn experiments, we give a simple rule that allows directly setting the optimum length of the selective pulses, versus the minimum separation of the resonances in the indirect dimension. The demonstration has been performed on a fully 13C,15N labelled f-MLF sample, and it allowed recording the build-up curves of the 13C-15N cross-peaks within 10 min. However, the method could also be used in the case of less sensitive samples, but with more accumulations.
The Microwave Spectroscopy of HCOO^{13}CH_3 in the Second Torsional Excited State
NASA Astrophysics Data System (ADS)
Kobayashi, Kaori; Kuwahara, Takuro; Urata, Yuki; Ohashi, Nobukimi; Fujitake, Masaharu
2017-06-01
Methyl formate (HCOOCH_3) is an abundant interstellar molecule, found almost everywhere in the star-forming region. The interstellar abundance of the ^{13}C is about 1/50 of ^{12}C. The ^{13}C substituted methyl formate in the ground and first excited states were already found toward massive star-forming regions including Orion KL. With the aid of the state-of-the-art telescope like ALMA, the pure rotational transitions in the second torsional excited may be identified in the near future and laboratory data are necessary. We recorded the spectra of HCOOCH_3 below 340 GHz by using conventional source-modulation microwave spectrometer. The assignment of the pure rotational spectra in the second torsional excited state and the analysis by using pseudo-PAM Hamiltonian, which was effective to analyze the normal species, will be reported. C. Favre, M. Carvajal, D. Field, J. K. Jørgensen, S. E. Bisschop, N. Brouillet, D. Despois, A. Baudry, I. Kleiner, E. A. Bergin, N. R. Crockett, J. L. Neill, L. Marguès, T. R. Huet, and J. Demaison, Astrophys. J. Suppl. Ser. 215, 25 (2014).
Foston, Marcus; Katahira, Rui; Gjersing, Erica; Davis, Mark F; Ragauskas, Arthur J
2012-02-15
The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a (13)C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. (13)C spin diffusion time constants (T(SD)) were extracted using a two-site spin diffusion theory developed for (13)C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated (13)C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances ∼0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.
Wilson, M.A.; Hatcher, P.G.
1988-01-01
Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studies by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing 13C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage. ?? 1988.
Solid-state NMR and computational studies of 4-methyl-2-nitroacetanilide.
Harris, Robin K; Ghi, Phuong Y; Hammond, Robert B; Ma, Cai Yun; Roberts, Kevin J; Yates, Jonathan R; Pickard, Chris J
2006-03-01
Studies on the solid-state structure of two polymorphs of 4-methyl-2-nitroacetanilide (MNA) were conducted using magic-angle spinning (13)C, (15)N and (1)H NMR spectroscopy, together with first-principles computations of NMR shielding (including use of a program that takes explicit account of the translational symmetry inherent in crystalline structures). The effects on (13)C chemical shifts of side-chain rotations have been explored. Information derived from these studies was then incorporated within a systematic space-search methodology for elucidation of trial crystallographic structures from powder XRD.
NASA Technical Reports Server (NTRS)
Cooksy, A. L.; Saykally, R. J.; Brown, J. M.; Evenson, K. M.
1986-01-01
Accurate values are presented for the fine-structure intervals in the 3P ground state of neutral atomic C-12 and C-13 as obtained from laser magnetic resonance spectroscopy. The rigorous analysis of C-13 hyperfine structure, the measurement of resonant fields for C-12 transitions at several additional far-infrared laser frequencies, and the increased precision of the C-12 measurements, permit significant improvement in the evaluation of these energies relative to earlier work. These results will expedite the direct and precise measurement of these transitions in interstellar sources and should assist in the determination of the interstellar C-12/C-13 abundance ratio.
Stability of Soil Carbon Fractions - from molecules to aggregates
NASA Astrophysics Data System (ADS)
Mueller, C. W.; Mueller, K. E.; Freeman, K. H.; Eissenstat, D.; Kögel-Knabner, I.
2009-12-01
The turnover of soil organic matter (SOM) is controlled both by its chemical composition, its spatial bioavailability and the association with the mineral phase. Separation by physical fractionation of bulk soils and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of the study was to elucidate the relative abundance and recalcitrance of lignin and plant lipids (e.g. cutin and suberin) in the course of SOM decomposition within aggregated bulk soils and SOM fractions. By the parallel incubation of physically-separated size fractions and bulk soils of the Ah horizon from a forested soil (Picea abies L.Karst) over a period of 400 days, a unique set of samples was created to study SOM dynamics. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to recalcitrance at different scales of resolution (GC-MS, NMR). A relative enrichment of alkyl C and decreasing lignin contents in the order of sand < silt < clay were observed by 13C-NMR and GC-MS within soils and fractions before the incubation, resulting in increased lipid to lignin ratios with decreasing particle size. A relative enrichment of lignin in the incubated fractions compared to the incubated bulk soils clearly indicated the preferential mineralization of less recalcitrant C compounds that were spatially inaccessible in aggregates of the bulk soil. Differences in the abundance of various lignin, cutin, and suberin monomers measured by GC-MS before and after the incubation indicate selective degradation and preservation patterns at the molecular scale that are rarely observed and are unresolved by NMR analyses. We suggest that the monomer-specific patterns of lignin, cutin, and suberin decomposition facilitate better understanding and modelling of SOM dynamics by providing a tool to potentially separate the influence of input rates from selective preservation on the abundance of these bipolymers in soil.
Zhang, Rongchun; Ramamoorthy, Ayyalusamy
2015-07-21
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.
An air-stable Na 3SbS 4 superionic conductor prepared by a rapid and economic synthetic procedure
Wang, Hui; Chen, Yan; Hood, Zachary D.; ...
2016-01-01
All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less
Solid State Nuclear Magnetic Resonance Studies of the Murchison Organic Macromolecule
NASA Technical Reports Server (NTRS)
Cody, G. D., III; Alexander, C. M. OD.; Tera, F.
2001-01-01
We have used high speed H-1 (DEPTH) and C-13 (VACP MAS-slow spinning) solid state NMR to determine the contributions of protonated vs non-protonated carbon in the Murchison Macromolecule. Additional information is contained in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh-ishi, Katsuyoshi, E-mail: oh-ishi@kc.chuo-u.ac.jp; Nagumo, Kenta; Tateishi, Kazuya
Mo-Re-C compounds containing Mo{sub 7}Re{sub 13}C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo{sub 7}Re{sub 13}C with the β-Mn structure using the solid state method. Almost single-phase Mo{sub 7}Re{sub 13}C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with amore » pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K. - Graphical abstract: Temperature dependence of the magnetic susceptibility measured under 10 Oe for the superconducting PBM-T samples without Fe element and non-superconducting PBM-S with Fe element. The inset is the enlarged view of the data for the PBM-S sample.« less
Didanosine polymorphism in a supercritical antisolvent process.
Bettini, R; Menabeni, R; Tozzi, R; Pranzo, M B; Pasquali, I; Chierotti, M R; Gobetto, R; Pellegrino, L
2010-04-01
Solid-state properties of active ingredients are crucial in pharmaceutical development owing to their significant clinical and economical implications. In the present work we investigated the solid-state properties and the solubility in water of didanosine, DDI, re-crystallized from a dimethylsulfoxide solution using supercritical CO(2) as an antisolvent (SAS process) for comparison with the commercially available drug product. We also applied modern solid-state NMR (SS NMR) techniques, namely 2D (1)H DQ CRAMPS (Combined Rotation And Multiple Pulse Spectroscopy) and (1)H-(13)C on- and off-resonance CP (cross polarization) FSLG-HETCOR experiments, known for providing reliable information about (1)H-(1)H and (1)H-(13)C intra- and intermolecular proximities, in order to address polymorphism issues arising from the crystallization of a new form in the supercritical process. A new polymorph of didanosine was obtained from the supercritical antisolvent process and characterized by means of 1D and 2D multinuclear ((1)H, (13)C, (15)N) SS NMR. The particle size of the new crystal phase was reduced by varying the antisolvent density through a pressure increase. The structural differences between the commercial product and the SAS re-crystallized DDI are highlighted by X-ray diffractometry and well described by solid-state NMR. The carbon C6 (13)C chemical shift suggests that both commercial and re-crystallized didanosine samples are in the enol form. The analysis of homo- and heteronuclear proximities obtained by means of 2D NMR experiments shows that commercial and SAS re-crystallized DDI possess very similar molecular conformation and hydrogen bond network, but different packing. The new polymorph proved to be a metastable form at ambient conditions, showing higher solubility in water and lower stability to mechanical stress. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
The Rotational Spectrum of Singly and Doubly 13C-SUBSTITUTED Dimethylether
NASA Astrophysics Data System (ADS)
Koerber, Monika; Endres, Christian P.; Lewen, Frank; Giesen, Thomas F.; Schlemmer, Stephan; Pohl, Roland; Klein, Axel
2010-06-01
Dimethylether (DME) is a nearly prolate asymmetric top with two internal rotors (methyl groups) which undergo periodic large amplitude motions and show a complicated torsional splitting of each rotational energy level. Due to its complex spectrum and its high abundance in hot cores such as Orion KL or Sagittarius B2 at temperatures exceeding 100 K, DME is very prominent in astronomical line surveys and contributes to spectral line confusion of such sources. The interpretation of astronomical observations therefore depends on the knowledge of accurate rest frequencies and reliable intensities. Precise predictions for the ground state of DME's main isotopologue are now available up to 2.1 THz In contrast, very little is known about 13C-substituted DME. Only a few data are available on singly 13C-substituted DME, 12CH_3O13CH_3. However, no data are available on doubly 13C-substituted DME, (13CH_3)_2O, yet. While in (13CH_3)_2O the two internal rotating methyl groups are equivalent and the splitting of rotational energy levels into four substates is comparable to the main isotopologue, singly 13C-substituted DME has two non-equivalent internal rotors resulting in torsional splitting of rotational energy levels into five substates. The purpose of our new laboratory measurements is to extend the knowledge on the astrophysically relevant species 12CH_3O13CH_3. To analyze the complicated spectrum resulting from a 13C-enriched sample of DME, containing all different 13C-substituted species as well as the main isotopologue, also precise data on doubly 13C-substituted DME are inevitable. We performed measurements in the frequency region 35-120 GHz using an all solid state spectrometer. Rotational as well as torsional parameters have been obtained for (13CH_3)_2O as well as 12CH_3O13CH_3 by fitting the assigned transitions to an effective rotational Hamiltonian introduced by Peter Groner. C. Comito et al., Astrophys. J. Suppl. Ser. 156, 127-167 (2005) C. P. Endres et al., Astronomy & Astrophysics 504, 635-640 (2009) Y. Niide and M. Hayashi, J. Mol. Spectrosc. 220, 65-79 (2003) P. Groner, J. Chem. Phys. 107, 4483-4498 (1997).
Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy
Ferro, Monica; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco
2017-01-01
Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1H fast MAS NMR and 13C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles. PMID:28228859
Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy.
Ferro, Monica; Castiglione, Franca; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea
2017-01-01
Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1 H fast MAS NMR and 13 C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13 C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13 C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles.
Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production
Reza, M. Toufiq; Werner, Maja; Pohl, Marcel; Mumme, Jan
2014-01-01
Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only. PMID:24962786
Spin-lattice relaxation of 13C in solid amino acids using the CP-MAS technique
NASA Astrophysics Data System (ADS)
Naito, A.; Ganapathy, S.; Akasaka, K.; McDowell, C. A.
It is shown by a simple application of relaxation theory that the 13C magnetization decays nonexponentially, in principle, in the CP-MAS experiment because of the distribution of the spin-lattice relaxation times; however, the deviation from the exponential decay is quite small. The transient Overhauser effect also contributes appreciably to the nonexponential decay of the 13C magnetization when the protons are not saturated during the 13C T1 measurements and the correlation time of the group rotational motion satisfies the condition, ω2τc2 ≦ 1. It is shown by both experiment and theory that the transient Overhauser effect in the solid state is much smaller than that expected for the liquid state. The 13C spin-lattice relaxation times of L-alanine, deutero- L-alanine, glycine, and L-serine were determined for the individual carbon atoms. The experimentally obtained 13C T1 values agree well with calculated ones, showing that the CH 3 group rotation provides the main source of the relaxation in alanine, while the NH 3+ group motion plays an important role for the relaxation in glycine and serene.
NASA Astrophysics Data System (ADS)
Pandey, Manoj Kumar; Ramachandran, Ramesh
2010-03-01
The application of solid-state NMR methodology for bio-molecular structure determination requires the measurement of constraints in the form of 13C-13C and 13C-15N distances, torsion angles and, in some cases, correlation of the anisotropic interactions. Since the availability of structurally important constraints in the solid state is limited due to lack of sufficient spectral resolution, the accuracy of the measured constraints become vital in studies relating the three-dimensional structure of proteins to its biological functions. Consequently, the theoretical methods employed to quantify the experimental data become important. To accentuate this aspect, we re-examine analytical two-spin models currently employed in the estimation of 13C-13C distances based on the rotational resonance (R 2) phenomenon. Although the error bars for the estimated distances tend to be in the range 0.5-1.0 Å, R 2 experiments are routinely employed in a variety of systems ranging from simple peptides to more complex amyloidogenic proteins. In this article we address this aspect by highlighting the systematic errors introduced by analytical models employing phenomenological damping terms to describe multi-spin effects. Specifically, the spin dynamics in R 2 experiments is described using Floquet theory employing two different operator formalisms. The systematic errors introduced by the phenomenological damping terms and their limitations are elucidated in two analytical models and analysed by comparing the results with rigorous numerical simulations.
Zhou, Yundong; Wang, Xiaoen; Zhu, Haijin; Yoshizawa-Fujita, Masahiro; Miyachi, Yukari; Armand, Michel; Forsyth, Maria; Greene, George W; Pringle, Jennifer M; Howlett, Patrick C
2017-08-10
Organic ionic plastic crystals (OIPCs) are a class of solid-state electrolytes with good thermal stability, non-flammability, non-volatility, and good electrochemical stability. When prepared in a composite with electrospun polyvinylidene fluoride (PVdF) nanofibers, a 1:1 mixture of the OIPC N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ([C 2 mpyr][FSI]) and lithium bis(fluorosulfonyl)imide (LiFSI) produced a free-standing, robust solid-state electrolyte. These high-concentration Li-containing electrolyte membranes had a transference number of 0.37(±0.02) and supported stable lithium symmetric-cell cycling at a current density of 0.13 mA cm -2 . The effect of incorporating PVdF in the Li-containing plastic crystal was investigated for different ratios of PVdF and [Li][FSI]/[C 2 mpyr][FSI]. In addition, Li|LiNi 1/3 Co 1/3 Mn 1/3 O 2 cells were prepared and cycled at ambient temperature and displayed a good rate performance and stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A High-Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C.
Wu, Wei; Zhang, Yunya; Ding, Dong; He, Ting
2018-01-01
Direct carbon fuel cells (DCFCs) are highly efficient power generators fueled by abundant and cheap solid carbons. However, the limited triple-phase boundaries (TPBs) in the fuel electrode, due to the lack of direct contact among carbon, electrode, and electrolyte, inhibit the performance and result in poor fuel utilization. To address the challenges of low carbon oxidation activity and low carbon utilization, a highly efficient, 3D solid-state architected anode is developed to enhance the performance of DCFCs below 600 °C. The cell with the 3D textile anode framework, Gd:CeO 2 -Li/Na 2 CO 3 composite electrolyte, and Sm 0.5 Sr 0.5 CoO 3 cathode demonstrates excellent performance with maximum power densities of 143, 196, and 325 mW cm -2 at 500, 550, and 600 °C, respectively. At 500 °C, the cells can be operated steadily with a rated power density of ≈0.13 W cm -2 at a constant current density of 0.15 A cm -2 with a carbon utilization over 85.5%. These results, for the first time, demonstrate the feasibility of directly electrochemical oxidation of solid carbon at 500-600 °C, representing a promising strategy in developing high-performing fuel cells and other electrochemical systems via the integration of 3D architected electrodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ishii, Yoshitaka
2001-05-01
A technique is presented to recouple homonuclear dipolar couplings between dilute spin pairs such as 13C-13C systems under very fast magic angle spinning (MAS) in solid-state nuclear magnetic resonance (NMR) spectroscopy. The presented technique, finite pulse rf driven recoupling (fpRFDR), restores homonuclear dipolar interactions based on constructive usage of finite pulse-width effects in a phase- and symmetry-cycled π-pulse train in which a rotor-synchronous π pulse is applied every rotation period. The restored effective dipolar interaction has the form of a zero-quantum dipolar Hamiltonian for static solids, whose symmetry in spin space is different from that obtained by conventional rf driven recoupling (RFDR) techniques. It is demonstrated that the efficiency of recoupling by fpRFDR is not strongly dependent on chemical shift differences or resonance offsets in contrast to previous recoupling methods under very fast MAS. To realize distance measurements without effects of spin relaxation, a constant-time version of fpRFDR (CT-fpRFDR) is introduced, in which the effective evolution period is varied by refocusing dipolar evolution with a rotor-synchronized solid echo while the total recoupling period is kept constant. From CT-fpRFDR experiments at a spinning speed of 30.3 kHz in a field of 17.6 T, the 13C-13C distance of [1-13C]Ala-[1-13C]Gly-Gly was determined to be 3.27 Å, which agrees well with the value of 3.20 Å obtained by x-ray diffraction. Also, two-dimensional (2D) 13C/13C chemical-shift correlation NMR spectrum in a field of 9.4 T was obtained with fpRFDR for fibrils of the segmentally 13C- and 15N-labeled Alzheimer's β-Amyloid fragments, Aβ16-22 (residues 16-22 taken from the 40-residue Aβ peptide) in which Leu-17 through Ala-21 are uniformly 13C- and 15N-labeled. Most 13C resonances for the main chain as well as for the side chains are assigned based on 2D 13C/13C chemical-shift correlation patterns specific to amino-acid types. Examination of the obtained 13C chemical shifts revealed the formation of β-strand across the entire molecule of Aβ16-22. Possibility of high throughput determination of global main-chain structures based on 13C shifts obtained from 2D 13C/13C chemical-shift correlation under very fast MAS is also discussed for uniformly/segmentally 13C-labeled protein/peptide samples.
NASA Astrophysics Data System (ADS)
Podlesak, David; Manner, Virginia; Amato, Ronald; Dattelbaum, Dana; Gusavsen, Richard; Huber, Rachel
2017-06-01
Detonation of HE is an exothermic process whereby metastable complex molecules are converted to simple stable molecules such as H2 O, N2, CO, CO2, and solid carbon. The solid carbon contains various allotropes such as detonation nanodiamonds, graphite, and amorphous carbon. It is well known that certain HE formulations such as Composition B (60% RDX, 40% TNT) produce greater amounts of solid carbon than other more oxygen-balanced formulations. To develop a greater understanding of how formulation and environment influence solid carbon formation, we synthesized TNT and RDX with 13 C and 15 N at levels slightly above natural abundance levels. Synthesized RDX and TNT were mixed at a ratio of 60:40 to form Composition B and solid carbon residues were collected from detonations of isotopically-labeled as well as un-labelled Composition B. The raw HE and detonation residues were analyzed isotopically for C, N, O isotopic compositions. We will discuss differences between treatments groups as a function of formulation and environment. LA-UR - 17-21266.
Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan
2013-06-07
Fungal species of the genus Aspergillus are filamentous ubiquitous saprophytes that play a major role in lignocellulosic biomass recycling and also are considered as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. Analysis of extracellular secreted biomass degrading enzymes using complex lignocellulosic biomass as a substrate by solid-state fermentation could be a more practical approach to evaluate application of the enzymes for lignocellulosic biorefinery. This study isolated a fungal strain from compost, identified as Aspergillus fumigatus, and further analyzed it for lignocellulolytic enzymes at different temperatures using label free quantitative proteomics. The profile of secretome composition discovered cellulases, hemicellulases, lignin degrading proteins, peptidases and proteases, and transport and hypothetical proteins; while protein abundances and further their hierarchical clustering analysis revealed temperature dependent expression of these enzymes during solid-state fermentation of sawdust. The enzyme activities and protein abundances as determined by exponentially modified protein abundance index (emPAI) indicated the maximum activities at the range of 40-50 °C, demonstrating the thermophilic nature of the isolate A. fumigatus LF9. Characterization of the thermostability of secretome suggested the potential of the isolated fungal strain in the production of thermophilic biomass degrading enzymes for industrial application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher,M.; Christl, I.; Vogt, R.
The chemical composition and carbon isotope signature of aquatic dissolved organic matter (DOM) in five boreal forest catchments in Scandinavia were investigated. The DOM was isolated during spring and fall seasons using a reverse osmosis technique. The DOM samples were analyzed by elemental analysis, FT-IR, solid-state CP-MAS {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. In addition, the relative abundance of carbon isotopes ({sup 12}C, {sup 13}C, {sup 14}C) in the samples was measured. There were no significant differences in the chemical composition or carbon isotope signature of the DOM sampled in spring and fall seasons. Also, differences in DOM composition betweenmore » the five catchments were minor. Compared to reference peat fulvic and humic acids, all DOM samples were richer in O-alkyl carbon and contained less aromatic and phenolic carbon, as shown by FT-IR, {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. The DOM was clearly enriched in {sup 14}C relative to the NBS oxalic acid standard of 1950, indicating that the aquatic DOM contained considerable amounts of organic carbon younger than about 50 years. The weight-based C:N ratios of 31 {+-} 6 and the {delta}{sup 13}Cvalues of -29 {+-} 2{per_thousand}indicate that the isolated DOM is of terrestrial rather than aquatic origin. We conclude that young, hydrophilic carbon compounds of terrestrial origin are predominant in the samples investigated, and that the composition of the aquatic DOM in the studied boreal forest catchments is rather stable during low to intermediate flow conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu
2015-07-21
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferredmore » to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.« less
Saitô, Hazime
2004-11-01
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.
Intercalation complex of proflavine with DNA: Structure and dynamics by solid-state NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Pei; Juang, Chilong; Harbison, G.S.
1990-07-06
The structure of the complex formed between the intercalating agent proflavine and fibrous native DNA was studied by one- and two-dimensional high-resolution solid-state nuclear magnetic resonance (NMR). Carbon-13-labeled proflavine was used to show that the drug is stacked with the aromatic ring plane perpendicular to the fiber axis and that it is essentially immobile. Natural abundance carbon-13 NMR of the DNA itself shows that proflavine binding does not change the puckering of the deoxyribose ring. However, phosphorus-31 NMR spectra show profound changes in the orientation of the phosphodiester grouping on proflavine binding, with some of the phosphodiesters tilting almost parallelmore » to the helix axis, and a second set almost perpendicular. The first group to the phosphodiesters probably spans the intercalation sites, whereas the tilting of the second set likely compensates for the unwinding of the DNA by the intercalator.« less
Webber, Amy L; Elena, Bénédicte; Griffin, John M; Yates, Jonathan R; Pham, Tran N; Mauri, Francesco; Pickard, Chris J; Gil, Ana M; Stein, Robin; Lesage, Anne; Emsley, Lyndon; Brown, Steven P
2010-07-14
A disaccharide is a challenging case for high-resolution (1)H solid-state NMR because of the 24 distinct protons (14 aliphatic and 10 OH) having (1)H chemical shifts that all fall within a narrow range of approximately 3 to 7 ppm. High-resolution (1)H (500 MHz) double-quantum (DQ) combined rotation and multiple pulse sequence (CRAMPS) solid-state NMR spectra of beta-maltose monohydrate are presented. (1)H-(1)H DQ-SQ CRAMPS spectra are presented together with (1)H (DQ)-(13)C correlation spectra obtained with a new pulse sequence that correlates a high-resolution (1)H DQ dimension with a (13)C single quantum (SQ) dimension using the refocused INEPT pulse-sequence element to transfer magnetization via one-bond (13)C-(1)H J couplings. Compared to the observation of only a single broad peak in a (1)H DQ spectrum recorded at 30 kHz magic-angle spinning (MAS), the use of DUMBO (1)H homonuclear decoupling in the (1)H DQ CRAMPS experiment allows the resolution of distinct DQ correlation peaks which, in combination with first-principles chemical shift calculations based on the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach, enables the assignment of the (1)H resonances to the 24 distinct protons. We believe this to be the first experimental solid-state NMR determination of the hydroxyl OH (1)H chemical shifts for a simple sugar. Variable-temperature (1)H-(1)H DQ CRAMPS spectra reveal small increases in the (1)H chemical shifts of the OH resonances upon decreasing the temperature from 348 K to 248 K.
Gervais, Christel; Bonhomme-Coury, Laure; Mauri, Francesco; Babonneau, Florence; Bonhomme, Christian
2009-08-28
Octameric silsesquioxanes (RSiO(1.5))(8) are versatile and interesting nano building blocks, suitable for the synthesis of nanocomposites with controlled porosity. In this paper, we revisit the (29)Si and (13)C solid state NMR spectroscopy for this class of materials, by using GIPAW (gauge including projected augmented wave) first principles calculations [Pickard & Mauri, Phys. Rev. B, 2001, 63, 245101]. Full tensorial data, including the chemical shift anisotropies (CSA) and the absolute orientation of the corresponding principal axes systems (PAS), were calculated. Subsequent averaging of the calculated tensors (due to fast reorientation of the R groups around the Si-C bonds) allowed for the interpretation of the strong reduction of CSA and dipolar couplings for these derivatives. Good agreement was observed between the averaged calculated data and the experimental parameters. Interesting questions related to the interplay between X-ray crystallography and solid state NMR are raised and will be emphasized.
Karg, M; Scholz, G; König, R; Kemnitz, E
2012-02-28
The fluorolytic sol-gel reaction of magnesium methoxide with HF in methanol was studied by (19)F, (1)H and (13)C liquid and solid state NMR. In (19)F NMR five different species were identified, three of which belong to magnesium fluoride nanoparticles, i.e. NMR gave access to local structures of solid particles in suspensions. The long-term evolution of (19)F signals was followed and along with (19)F MAS NMR experiments of sols rotating at 13 kHz mechanistic insights into the ageing processes were obtained.
Rotational Spectra of Halogenated Ethers Used as Volatile Anaesthetics
NASA Astrophysics Data System (ADS)
Vega-Toribio, Alicia; Lesarri, Alberto; Suenram, Richard D.; Grabow, Jens-Uwe
2009-06-01
Following previous microwave investigations by Suenram et al., we will report on the rotational spectrum of several halogenated ethers used as volatile anaesthetics, including sevoflurane ((CF_3)_2CH-O-CH_2F), isoflurane (CF_3CHCl-O-CHF_2), enflurane (CHFClCF_2-O-CHF_2) and methoxyflurane (CHCl_2CF_2-O-CH_3). This study has been conducted in the 6-18 GHz centimetre-wave region using Balle-Flygare-type FT-microwave spectroscopy. The results will include the analysis of the rotational spectra of minor species in natural abundance (^{13}C and ^{18}O in some cases), structural calculations and auxiliary ab initio modelling. The conformational and structural conclusions will be compared with previous gas-phase electron diffraction and solid-state X-ray diffraction analysis. R. D. Suenram, D. J. Brugh, F. J. Lovas and C. Chu, 51st OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 1999, RB07
NASA Astrophysics Data System (ADS)
Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang
2018-02-01
The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.
Advanced solid-state NMR spectroscopy of natural organic matter.
Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus
2017-05-01
Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13 C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13 C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15 N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.
Solid state ionics: a Japan perspective
NASA Astrophysics Data System (ADS)
Yamamoto, Osamu
2017-12-01
The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.
NASA Astrophysics Data System (ADS)
Benner, Ronald; Hatcher, Patrick G.; Hedges, John I.
1990-07-01
Changes in the chemical composition of mangrove ( Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed.
Benner, R.; Hatcher, P.G.; Hedges, J.I.
1990-01-01
Changes in the chemical composition of mangrove (Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed. ?? 1990.
Meza-Contreras, Juan C; Manriquez-Gonzalez, Ricardo; Gutiérrez-Ortega, José A; Gonzalez-Garcia, Yolanda
2018-05-22
The production and crystallinity of 13 C bacterial cellulose (BC) was examined in static culture of Komagataeibacter xylinus with different chemical and physical stimuli: the addition of NaCl or cloramphenicol as well as exposure to a magnetic field or to UV light. Crystalline BC biosynthesized under each stimulus was studied by XRD and solid state 13 C NMR analyses. All treatments produced BC with enhanced crystallinity over 90% (XRD) and 80% (NMR) compared to the control (83 and 76%, respectively) or to Avicel (77 and 62%, respectively). The XRD data indicated that the crystallite size was 80-85 Å. Furthermore, changes on the allomorphs (I α and I β ) ratio tendency of BC samples addressed to the stimuli were estimated using the C4 signal from 13 C NMR data. These results showed a decrease of the allomorph I α (3%) when BC was biosynthesized with UV light and chloramphenicol compared to control (58.79%). In contrast, the BC obtained with NaCl increased up to 60.31% of the I α allomorph ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei
2016-06-13
The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal, and animal cellulose, interacts with hemicellulose, is poorly hydrated, and is targeted by the protein expansin during wall loosening. To obtain information about the C6 hydroxymethyl conformation of these plant celluloses, we carried out DFT calculations of (13)C chemical shifts, using the Iα and Iβ crystal structures as templates and varying the C5-C6 torsion angle. Comparison with the experimental chemical shifts suggests that all interior cellulose favor the tg conformation, but cellulose d also has a similar propensity to adopt the gt conformation. These results indicate that cellulose in plant primary cell walls, due to their interactions with matrix polysaccharides, and has polymorphic structures that are not a simple superposition of the Iα and Iβ allomorphs, thus distinguishing them from bacterial and animal celluloses.
Wang, Tuo; Yang, Hui; Kubicki, James D.; Hong, Mei
2017-01-01
The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D 13C-13C correlation spectra of uniformly 13C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose 13C chemical shifts differ significantly from the 13C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing and hydrogen bonding from celluloses of other organisms. 2D 13C-13C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Cellulose f and g are well mixed chains on the microfibril surface, cellulose a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal and animal cellulose, interacts with hemicellulose, is poorly hydrated, and is targeted by the protein expansin during wall loosening. To obtain information about the C6 hydroxymethyl conformation of these plant celluloses, we carried out DFT calculations of 13C chemical shifts, using the Iα and Iβ crystal structures as templates and varying the C5-C6 torsion angle. Comparison with the experimental chemical shifts suggests that all interior cellulose favor the tg conformation, but cellulose d also has a similar propensity to adopt the gt conformation. These results indicate that cellulose in plant primary cell walls, due to their interactions with matrix polysaccharides, has polymorphic structures that are not a simple superposition of the Iα and Iβ allomorphs, thus distinguishing them from bacterial and animal celluloses. PMID:27192562
Quantifying the chemical composition of soil organic carbon with solid-state 13C NMR
NASA Astrophysics Data System (ADS)
Baldock, J. A.; Sanderman, J.
2011-12-01
The vulnerability of soil organic carbon (SOC) to biological decomposition and mineralisation to CO2 is defined at least partially by its chemical composition. Highly aromatic charcoal-like SOC components are more stable to biological decomposition than other forms of carbon including cellulose. Solid-state 13C NMR has gained wide acceptance as a method capable of defining SOC chemical composition and mathematical fitting processes have been developed to estimate biochemical composition. Obtaining accurate estimates depends on an ability to quantitatively detect all carbon present in a sample. Often little attention has been paid to defining the proportion of organic carbon present in a soil that is observable in solid-state 13C NMR analyses of soil samples. However, if such data is to be used to inform carbon cycling studies, it is critical that quantitative assessments of SOC observability be undertaken. For example, it is now well established that a significant discrimination exists against the detection of the low proton content polyaromatic structures typical of charcoal using cross polarisation 13C NMR analyses. Such discrimination does not exist where direct polarisation analyses are completed. In this study, the chemical composition of SOC as defined by cross polarisation and direct polarisation13C NMR analyses will be compared for Australian soils collected from under a diverse range of agricultural managements and climatic conditions. Results indicate that where significant charcoal C contents exist, it is highly under-represented in the acquired CP spectra. For some soils, a discrimination against alkyl carbon was also evident. The ability to derive correction factors to compensate for such discriminations will be assessed and presented.
Polymerization of euphorbia oil in carbon dioxide media
USDA-ARS?s Scientific Manuscript database
Boron trifluoride diethyl etherate (BF3•OEt2), Lewis acid, catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, was conducted in carbon dioxide. The resulting polymers (RPEO) were characterized by FTIR, 1H-NMR, 13C-NMR, solid state 13C-NMR spectroscopies, differential sc...
Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L
2017-03-01
Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P2 1 /c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 13 H 9 N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 12 H 8 N 2 , and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 8 H 12 N 2 . 13 C and 19 F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from 19 F to 13 C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional 1 H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental 13 C and 19 F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.
Wu, Chin H; Das, Bibhuti B; Opella, Stanley J
2010-02-01
(13)C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure (1)H-(13)C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the (1)H-(13)C hetero-nuclear dipolar interactions of (13)C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of (13)C(3) labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. Copyright 2009 Elsevier Inc. All rights reserved.
Reid, David G; Bonnet, Susan L; Kemp, Gabre; van der Westhuizen, Jan H
2013-10-01
(13)C NMR is an effective method of characterizing proanthocyanidin (PAC) tannins in quebracho (Schinopsis lorentzii) heartwood and black wattle (Acacia mearnsii) bark, before and after commercial extraction. The B-rings of the constituent flavan-3-ols, catechols (quebracho) or pyrogallols (wattle), are recognized in unprocessed source materials by "marker" signals at ca. 118 or 105ppm, respectively. NMR allows the minimum extraction efficiency to be calculated; ca. 30%, and ca. 80%, for quebracho heartwood and black wattle bark, respectively. NMR can also identify PAC tannin (predominantly robinetinidin), and compare tannin content, in bark from other acacia species; tannin content decreases in the order A. mearnsii, Acacia pycnantha (87% of A. mearnsii), Acacia dealbata and Acacia decurrens (each 74%) and Acacia karroo (30%). Heartwood from an underexploited PAC tannin source, Searsia lancea, taxonomically close to quebracho, shows abundant profisetinidin and catechin PACs. NMR offers the advantage of being applicable to source materials in their native state, and has potential applications in optimizing extraction processes, identification of tannin sources, and characterization of tannin content in cultivar yield improvement programmes. Copyright © 2013 Elsevier Ltd. All rights reserved.
77 FR 15966 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-19
... Solid Waste Amendments of 1984 (HSWA). New federal requirements and prohibitions imposed by federal...; Definition of Solid Waste; Toxicity Characteristic, Checklist 199, March 13, 2002 (67 FR 11251); [[Page 15968... Solid Waste Disposal Act as amended, 42 U.S.C. 6912(a), 6926, 6974(b). Dated: February 29, 2012. Susan...
Webber, Amy L; Emsley, Lyndon; Claramunt, Rosa M; Brown, Steven P
2010-09-30
(1)H-(13)C two-dimensional magic-angle spinning (MAS) solid-state NMR correlation spectra, recorded with the MAS-J-HMQC experiment, are presented for campho[2,3-c]pyrazole. For each (13)C moiety, there are six resonances associated with the six distinct molecules in the asymmetric unit cell (Z' = 6). The one-bond C-H correlations observed in the 2D (1)H-(13)C MAS-J-HMQC spectra allow the experimental determination of the (1)H and (13)C chemical shifts associated with the separate CH, CH(2), and CH(3) groups. (1)H and (13)C chemical shifts calculated by using the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach are presented. Calculations for the whole unit cell (12 × 29 = 348 atoms, with geometry optimization of all atoms) allow the assignment of the experimental (1)H and (13)C chemical shifts to the six distinct molecules. The calculated chemical shifts for the full crystal structure are compared with those for isolated molecules as extracted from the geometry-optimized crystal structure. In this way, the effect of intermolecular interactions on the observed chemical shifts is quantified. In particular, the calculations are sufficiently precise to differentiate the small (<1 ppm) differences between the (1)H chemical shifts of the six resonances associated with each distinct CH or CH(2) moiety.
Solid state ionics: a Japan perspective
Yamamoto, Osamu
2017-01-01
Abstract The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term ‘solid state ionics’ was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1–xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm–1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm–1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology. PMID:28804526
Quantitative Determination of Fluorochemicals in Municipal Landfill Leachates
Huset, Carin A.; Barlaz, Morton A.; Barofsky, Douglas F.; Field, Jennifer A.
2014-01-01
Twenty four fluorochemicals were quantified in landfill leachates recovered from municipal refuse using an analytical method based on solid-phase extraction, dispersive-carbon sorbent cleanup, and liquid chromatography/tandem mass spectrometry. The method was applied to six landfill leachates from four locations in the U.S. with as well as to a leachate generated by a laboratory bioreactor containing residential refuse. All seven leachates had the common characteristic that short-chain (C4-C7) carboxylates or sulfonates were greater in abundance than their respective longer-chain homologs (≥C8). Perfluoroalkyl carboxylates were the most abundant (67 ± 4% on a nanomolar (nM) basis) fluorochemicals measured in leachates; concentrations of individual carboxylates reaching levels up to 2,800 ng L−1. Perfluoroalkyl sulfonates were the next most abundant class (22 ± 2%) on a nM basis; their abundances in each of the seven leachates derived from municipal refuse were greater for the shorter-chain homologs (C4 and C6) compared to longer-chain homologs (C8 and C10). Perfluorobutane sulfonate concentrations were as high as 2,300 ng/L. Sulfonamide derivatives composed 8 ± 2.1% (nM basis) of the fluorochemicals in landfill leachates with methyl (C4 and C8) and ethyl (C8) sulfonamide acetic acids being the most abundant. Fluorotelomer sulfonates (6:2 and 8:2) composed 2.4 ± 1.3% (nM basis) of the fluorochemicals detected and were present in all leachates. PMID:21194725
Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids.
Pindelska, Edyta; Sokal, Agnieszka; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Kolodziejski, Waclaw
2014-11-01
In this work, three polycrystalline materials containing co-crystals of theophylline with malonic, maleic, and glutaric acids were studied using (13)C, (15)N and (1)H solid-state NMR and FT-IR spectroscopy. The NMR assignments were supported by gauge including projector augmented waves (GIPAW) calculations of chemical shielding, performed using X-ray determined geometry. The experimental (13)C cross polarization/magic angle spinning (CP/MAS) NMR results and the calculated isotropic chemical shifts were in excellent agreement. A rapid and convenient method for theophylline co-crystals crystal structure analysis has been proposed for co-crystals, which are potentially new APIs. Copyright © 2014 Elsevier B.V. All rights reserved.
Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2012-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592
Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2013-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.
Probing Silica-Biomolecule Interactions by Solid-State NMR and Molecular Dynamics Simulations.
Brückner, Stephan Ingmar; Donets, Sergii; Dianat, Arezoo; Bobeth, Manfred; Gutiérrez, Rafael; Cuniberti, Gianaurelio; Brunner, Eike
2016-11-08
Understanding the molecular interactions between inorganic phases such as silica and organic material is fundamental for chromatographic applications, for tailoring silica-enzyme interactions, and for elucidating the mechanisms of biomineralization. The formation, structure, and properties of the organic/inorganic interface is crucial in this context. Here, we investigate the interaction of selectively 13 C-labeled choline with 29 Si-labeled monosilicic acid/silica at the molecular level. Silica/choline nanocomposites were analyzed by solid-state NMR spectroscopy in combination with extended molecular dynamics (MD) simulations to understand the silica/organic interface. Cross-polarization magic angle spinning (CP MAS)-based NMR experiments like 1 H- 13 C CP-REDOR (rotational-echo double resonance), 1 H- 13 C HETCOR (heteronuclear correlation), and 1 H- 29 Si- 1 H double CP are employed to determine spatial parameters. The measurement of 29 Si- 13 C internuclear distances for selectively 13 C-labeled choline provides an experimental parameter that allows the direct verification of MD simulations. Atomistic modeling using classical MD methodologies is performed using the INTERFACE force field. The modeling results are in excellent agreement with the experimental data and reveal the relevant molecular conformations as well as the nature and interplay of the interactions between the choline cation and the silica surface. Electrostatic interactions and hydrogen bonding are both important and depend strongly on the hydration level as well as the charge state of the silica surface.
Application and Reliability of Solid-State NMR in Environmental Sciences
NASA Astrophysics Data System (ADS)
Knicker, Heike
2010-05-01
For the characterization of soil organic matter, a suite of analytical approaches are available. Chemical degradative methods involve an extraction scheme with which the soluble part of the mixture is isolated and analyzed by colorimetrical or chromatographic means. Macromolecular structures can be subjected to thermolytic or combined thermochemolytic degradation. Because secondary reactions (rearrangement, cracking, hydrogenation and polymerization) in a heterogeneous mixture cannot be excluded, it is obvious that conclusions regarding the original structure in the macromolecular phase have to be drawn with caution. A powerful alternative represents solid-state nuclear magnetic resonance (NMR) spectroscopy, allowing the examination of the bulk sample without major pre-treatment In environmental sciences, this technique mostly involves the isotope 13C to study the chemical composition of organic matter in soils, sediments or compost to study the temporal development of humic material or chemical alterations due to variation in environmental parameters. Due to its low sensibility solid-state 15N NMR studies on such samples are only found occasionally. The emphasis of solid-state NMR spectroscopy is not only to determine the gross chemical composition of the material under study via a chemical shift assignment but also a quantitative correlation between the different signal intensities and the relative contribution of the respective C or N types to the total organic C or N content. However, despite increasing popularity, this approach is still viewed as mysterious techniques, in particular with respect to quantification. Accordingly, the purpose of this review is to give a short overview on the possibilities and limitations of this technique in environmental science and in particular for the study of soil organic matter. In general, solid-state 13C NMR spectra of soil organic matter are obtained with the cross polarization magic angle spinning (CPMAS) technique. This technique increases the sensitivity of 13C by magnetization transfer from the 1H to the 13C spin system during a contact time tc. However, one has to bear in mind that some molecular properties may obscure quantification. Thus, for carbons with large C-H internuclear distances (bigger than four bonds, i.e in graphite structures) and for C in groups with high molecular mobility (i.e. gas) the proton-dipolar interactions are weakened and the polarization transfer may be incomplete. The observed intensity can also be affected by interactions of the protons with paramagnetic compounds. To circumvent this problem, the samples are often demineralized with hydrofluoric acid. Alternatively, the Bloch decay, a technique in which the 13C is directly excited is used. Here, on the other hand, one has to consider long relaxation times which may lead to saturation effects. Nevertheless, as it will be discussed within the presentation those quantification problems can be solved for most soil samples and then solid-state NMR spectroscopy represents a powerful tool for qualitative and quantitative analysis. Special techniques, such as dipolar dephasing or the proton spin relaxation editing can be used to extract additional information about chemical properties or mobility. A more detailed examination of the cross polarization behavior can be used to analyze the interaction of organic matter and paramagnetics but also for obtaining revealing properties on a molecular level. Applications involving isotopic labeling combined with both 13C and/or 15N NMR allows to follow the fate of a specific compound i.e. in a natural matrix and- if the enrichment is high enough - the use of 2D solid-state NMR techniques. In particular with respect to environmental chemistry, this combination of isotopic labeling with the use of corresponding NMR spectroscopy shows great potential for a better understanding of the kind of interaction between pollutants and natural organic matter.
NASA Astrophysics Data System (ADS)
Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona
2008-02-01
13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.
Hangan, Adriana; Borodi, Gheorghe; Filip, Xenia; Tripon, Carmen; Morari, Cristian; Oprean, Luminita; Filip, Claudiu
2010-12-01
The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from (13)C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C-H···π non-covalent interactions.
Prebiotic significance of the Maillard reaction
NASA Astrophysics Data System (ADS)
Kolb, Vera M.; Bajagic, Milica; Zhu, William; Cody, George D.
2005-09-01
The Maillard reaction was studied from a prebiotic point of view. We have shown that the Maillard reaction between ribose and common amino acids occurs readily in the solid state at 65°C. The C-13 NMR spectra of the solid insoluble Maillard products of ribose and serine, or alanine or isoleucine were compared to the spectrum of the insoluble organic carbon on Murchison.
Middleton, David A
2011-02-01
Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the secondary structure, alignment and registration of β-strands within amyloid fibrils and identify the tertiary and quaternary contacts defining the packing of the β-sheet layers. Detection of (14)N-(13)C dipolar couplings may provide potentially useful additional structural constraints on β-sheet packing within amyloid fibrils but has not until now been exploited for this purpose. Here a frequency-selective, transfer of population in double resonance SSNMR experiment is used to detect a weak (14)N-(13)C dipolar coupling in amyloid-like fibrils of the peptide H(2)N-SNNFGAILSS-COOH, which was uniformly (13)C and (15)N labelled across the four C-terminal amino acids. The (14)N-(13)C interatomic distance between leucine and asparagine side groups is constrained between 2.4 and 3.8 Å, which allows current structural models of the β-spine arrangement within the fibrils to be refined. This procedure could be useful for the general structural analysis of other proteins in condensed phases and environments, such as biological membranes. Copyright © 2011 John Wiley & Sons, Ltd.
Wawer, Iwona; Pisklak, Maciej; Chilmonczyk, Zdzisław
2005-08-10
Sildenafil citrate (SC) (Viagra) and sildenafil base in pure form are easily and unequivocally characterized by multinuclear NMR spectroscopy. Analysis of chemical shifts indicates that: (i) N6-H forms intramolecular hydrogen bonds, (ii) N25 is protonated in the salt and (iii) intermolecular OH...N hydrogen bonds involving N2 and N4 are present in the solid sildenafil citrate. 13C CPMAS NMR method has been proposed for the identification and quantitation of Viagra in its pharmaceutical formulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaozhou; Bond, Andrew D.; Johansson, Kristoffer E.
2014-08-01
The crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide contains an imine tautomer, rather than the previously reported amine tautomer. The tautomers can be distinguished using dispersion-corrected density functional theory calculations and by comparison of calculated and measured {sup 13}C solid-state NMR spectra. The crystal structure of the title compound, C{sub 11}H{sub 13}N{sub 3}O{sub 2}S{sub 2}, has been determined previously on the basis of refinement against laboratory powder X-ray diffraction (PXRD) data, supported by comparison of measured and calculated {sup 13}C solid-state NMR spectra [Hangan et al. (2010 ▶). Acta Cryst. B66, 615–621]. The mol@@ecule is tautomeric, and was reported as an aminemore » tautomer [systematic name: N-(5-ethyl-1,3,4-thia@@diazol-2-yl)-p-toluene@@sulfonamide], rather than the correct imine tautomer. The protonation site on the mol@@ecule’s 1,3,4-thia@@diazole ring is indicated by the inter@@molecular contacts in the crystal structure: N—H⋯O hydrogen bonds are established at the correct site, while the alternative protonation site does not establish any notable inter molecular inter@@actions. The two tautomers provide essentially identical Rietveld fits to laboratory PXRD data, and therefore they cannot be directly distinguished in this way. However, the correct tautomer can be distinguished from the incorrect one by previously reported qu@@anti@@tative criteria based on the extent of structural distortion on optimization of the crystal structure using dispersion-corrected density functional theory (DFT-D) calculations. Calculation of the {sup 13}C SS-NMR spectrum based on the correct imine tautomer also provides considerably better agreement with the measured {sup 13}C SS-NMR spectrum.« less
NASA Astrophysics Data System (ADS)
Babjaková, Eva; Dastychová, Lenka; Hanulíková, Barbora; Kuřitka, Ivo; Nečas, Marek; Vašková, Hana; Vícha, Robert
2015-04-01
The interest in the oxo-enol tautomerism of 1,3-dioxo compounds is justified by their usefulness in many synthetic fields. A series of new 1,3-bis(1-adamantyl)propan-1,3-diones with a variably substituted phenyl ring at the C2 position was prepared either by the reaction of an appropriate Grignard reagent with adamatane-1-carbonyl chloride or by SEAr on the unsubstituted 1,3-bis(1-adamantyl)-2-phenylpropan-1,3-dione. In addition to the single crystal X-ray diffraction analysis of three of the prepared compounds, the experimental 1H and 13C NMR, IR and Raman spectroscopic data were assigned and compared to those obtained by DFT computations. In the solid state, the syn-dioxo forms were exclusively observed, which are shown to also predominate in CHCl3 solutions. The analysis of the Hirshfeld surface revealed that H⋯H and O⋯H contacts dominate the intermolecular interactions in the solid state, whereas π⋯π stacking plays a marginal role.
Williams, Linda A.; Guo, Neng; Motta, Alessandro; Delferro, Massimiliano; Fragalà, Ignazio L.; Miller, Jeffrey T.; Marks, Tobin J.
2013-01-01
Structural characterization of the catalytically significant sites on solid catalyst surfaces is frequently tenuous because their fraction, among all sites, typically is quite low. Here we report the combined application of solid-state 13C-cross-polarization magic angle spinning nuclear magnetic resonance (13C-CPMAS-NMR) spectroscopy, density functional theory (DFT), and Zr X-ray absorption spectroscopy (XAS) to characterize the adsorption products and surface chemistry of the precatalysts (η5-C5H5)2ZrR2 (R = H, CH3) and [η5-C5(CH3)5]Zr(CH3)3 adsorbed on Brønsted superacidic sulfated alumina (AlS). The latter complex is exceptionally active for benzene hydrogenation, with ∼100% of the Zr sites catalytically significant as determined by kinetic poisoning experiments. The 13C-CPMAS-NMR, DFT, and XAS data indicate formation of organozirconium cations having a largely electrostatic [η5-C5(CH3)5]Zr(CH3)2+···AlS− interaction with greatly elongated Zr···OAlS distances of ∼2.35(2) Å. The catalytic benzene hydrogenation cycle is stepwise understandable by DFT, and proceeds via turnover-limiting H2 delivery to surface [η5-C5(CH3)5]ZrH2(benzene)+···AlS− species, observable by solid-state NMR and XAS. PMID:23269836
Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.
Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier
2016-09-01
Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Polymer mobility in cell walls of cucumber hypocotyls
NASA Technical Reports Server (NTRS)
Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.
1999-01-01
Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.
Ghosh, Tanushree; Rieger, Jana
2017-01-01
Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN) was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h) for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode. PMID:29099804
Thorn, Kevin A.; Cox, Larry G.
2015-01-01
Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected. PMID:26556054
Testing grain-surface chemistry in massive hot-core regions
NASA Astrophysics Data System (ADS)
Bisschop, S. E.; Jørgensen, J. K.; van Dishoeck, E. F.; de Wachter, E. B. M.
2007-04-01
Aims:We study the chemical origin of a set of complex organic molecules thought to be produced by grain surface chemistry in high mass young stellar objects (YSOs). Methods: A partial submillimeter line-survey was performed toward 7 high-mass YSOs aimed at detecting H2CO, CH3OH, CH2CO, CH3CHO, C2H5OH, HCOOH, HNCO and NH2CHO. In addition, lines of CH3CN, C2H5CN, CH3CCH, HCOOCH3, and CH3OCH3 were observed. Rotation temperatures and beam-averaged column densities are determined. To correct for beam dilution and determine abundances for hot gas, the radius and H2 column densities of gas at temperatures >100 K are computed using 850 μm dust continuum data and source luminosity. Results: Based on their rotation diagrams, molecules can be classified as either cold (<100 K) or hot (>100 K). This implies that complex organics are present in at least two distinct regions. Furthermore, the abundances of the hot oxygen-bearing species are correlated, as are those of HNCO and NH2CHO. This is suggestive of chemical relationships within, but not between, those two groups of molecules. Conclusions: .The most likely explanation for the observed correlations of the various hot molecules is that they are "first generation" species that originate from solid-state chemistry. This includes H2CO, CH3OH, C2H5OH, HCOOCH3, CH3OCH3, HNCO, NH2CHO, and possibly CH3CN, and C2H5CN. The correlations between sources implies very similar conditions during their formation or very similar doses of energetic processing. Cold species such as CH2CO, CH3CHO, and HCOOH, some of which are seen as ices along the same lines of sight, are probably formed in the solid state as well, but appear to be destroyed at higher temperatures. A low level of non-thermal desorption by cosmic rays can explain their low rotation temperatures and relatively low abundances in the gas phase compared to the solid state. The CH3CCH abundances can be fully explained by low temperature gas phase chemistry. No cold N-containing molecules are found. Appendices are only available in electronic form at http://www.aanda.org
Fate of lignin, cutin and suberin in soil organic matter fractions - an incubation experiment
NASA Astrophysics Data System (ADS)
Mueller, Carsten W.; Mueller, Kevin E.; Freeman, Katherine H.; Ingrid, Kögel-Knabner
2010-05-01
The turnover of soil organic matter (SOM) is controlled by its chemical composition, its spatial accessibility and the association with the mineral phase. Separation of bulk soils by physical fractionation and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of this study was to elucidate the relative abundance and recalcitrance of lignin, cutin and suberin in aggregated bulk soils and SOM fractions in the course of SOM decomposition. Bulk soils and physically-separated size fractions (sand, silt and clay) of the Ah horizon of a forest soil (under Picea abies L.Karst) were parallel incubated over a period of one year. In order to differentiate between particulate OM (POM) and mineral-associated SOM the particle size fractions were additionally separated by density after the incubation experiment. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of the respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to biochemical recalcitrance at different scales of resolution (GC-MS, NMR). We found a relative enrichment of alkyl C and decreasing lignin contents in the order of sand < silt < clay by 13C-NMR spectroscopy and GC-MS within soils and fractions before the incubation, resulting in increased lipid to lignin ratios with decreasing particle size. An accumulation of aliphatic C compounds was especially found for the small silt and clay sized particulate OM (POM). For the fresh particulate OM (POM) of the sand fraction a clear decay of lignin was observed in the course of the incubation experiment, indicated by decreasing C/V and increasing ac/alV ratios. A relative decrease of aliphatic C in the incubated fractions compared to the incubated bulk soils showed the preferential mineralization of less recalcitrant C compounds that were spatially inaccessible in aggregates of the bulk soil. Differences in the abundance of lignin monomers, hydroxyl acids, n-alkanols and n-fatty acid methyl esters measured by GC MS before and after the incubation indicated selective degradation and preservation patterns at the molecular scale.
Gamble, G R; Akin, D E; Makkar, H P; Becker, K
1996-01-01
Leaves of sericea lespedeza exhibit a high proportion of condensed tannin, resulting in poor forage quality. The white rot fungi Ceriporiopsis subvermispora and Cyathus sterocoreus are known to preferentially degrade lignin in a variety of plants and were evaluated for their ability to degrade condensed tannin from sericea leaves with the aim of improving digestibility. Relative levels of condensed tannin, cutin, pectin, and cellulose were monitored as a function of fungal treatment by solid-state cross-polarization and magic angle spinning 13C nuclear magnetic resonance spectroscopy. Total soluble phenolics, soluble tannins, and soluble and insoluble proanthocyanidin levels in fungus-treated and control samples were measured by established chemical techniques. Results indicate that both species of fungus preferentially degrade condensed tannin and that C. subvermispora is markedly superior to C. stercoreus in this capacity. PMID:8837414
Investigation of the Herzberg (C1Σ+→A1Π) band system in 12C17O
NASA Astrophysics Data System (ADS)
Hakalla, Rafał
2015-10-01
The C→A (0,1), (0,2) and (0,3) rovibronic bands of the less-abundant 12C17O isotopologue are studied in high resolution using a high-accuracy dispersive optical spectroscopy in the region of 22,800-26,100 cm-1. Calibration with respect to simultaneously recorded thorium atomic lines, obtained from several overlapped orders of the spectrum in the visible range, as well as a stainless steel hollow-cathode molecular lamp with two anodes, yields an absolute accuracy of wavenumbers measurements of about 0.0025 cm-1 for the CO spectra. All 261 spectra lines of the Herzberg band system in 12C17O, up to Jmax=34, were precisely measured and rotationally analyzed. As a result, the merged rotational constants and rotational equilibrium constants for the C1Σ+ Rydberg state, as well as the band origins, the isotope shifts, the RKR turning points, Franck-Condon factors, relative intensities, and r-centroids of the C→A system in the 12C17O isotopologue were obtained. An experimental RKR potential energy curve and vibrational levels of the C1Σ+ state in 12C17O together with highly excited k3Π, c3Π, E1Π, B1Σ+ and D‧1Σ+ states lying in the region between the first dissociation limit and the ionization potential of CO were plotted. A detailed investigation of possible perturbations that should occur in the C1Σ+(υ=0) Rydberg state of less-abundant 12C17O isotopologue in the close vicinity of the k3Π(υ=1, 2) and c3Π(υ=0) states in the region 92,000 cm-1 was performed. In the A1Π, υ=3 state of 12C17O, extensive, multi-state rotational perturbations were found and analyzed. Also, a global isotopic analysis of the C1Σ+ Rydberg state was carried out in the 12C16O, 12C17O, 13C16O, 12C18O, 13C17O, and 13C18O as well as in 14C16O and 14C18O isotopologues. This analysis enabled us to determine, amongst others, the vibrational equilibrium constants in 12C17O for the C1Σ+ state, to improve these constants in the 12C16O, 13C16O, 12C18O, 13C17O, and 13C18O isotopologues and the U01 and U10 isotopically invariant parameters in the CO molecule within the Born-Oppenheimer approximation. It also made it possible to calculate many parameters of the rovibronic structure of the C1Σ+ state (such asυ00CBυ01CB,ΔB00CB,and ΔB01CB)for eight isotopologues of the carbon monoxide molecule, investigated so far, and to compare them with the theoretical values.
Characterization and 2D structural model of corn straw and poplar leaf biochars.
Zhao, Nan; Lv, YiZhong; Yang, XiXiang; Huang, Feng; Yang, JianWen
2017-12-22
The integrated experimental methods were used to analyze the physicochemical properties and structural characteristics and to build the 2D structural model of two kinds of biochars. Corn straw and poplar leaf biochars were gained by pyrolysing the raw materials slowly in a furnace at 300, 500, and 700 °C under oxygen-deficient conditions. Scanning electron microscope was applied to observe the surface morphology of the biochars. High temperatures destroyed the pore structures of the biochars, forming a particle mixture of varying sizes. The ash content, yield, pH, and surface area were also observed to describe the biochars' properties. The yield decreases as the pyrolysis temperature increases. The biochars are neutral to alkaline. The biggest surface area is 251.11 m 2 /g for 700 °C corn straw biochar. Elemental analysis, infrared microspectroscopy, solid-state C-13 NMR spectroscopy, and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) were also used to study the structural characteristics and build the 2D structural models of biochars. The C content in the corn straw and poplar leaf biochars increases with the increase of the pyrolysis temperature. A higher pyrolysis temperature makes the aryl carbon increase, and C=O, OH, and aliphatic hydrocarbon content decrease in the IR spectra. Solid-state C-13 NMR spectra show that a higher pyrolysis temperature makes the alkyl carbon and alkoxy carbon decrease and the aryl carbon increase. The results of IR microspectra and solid-state C-13 NMR spectra reveal that some noticeable differences exist in these two kinds of biochars and in the same type of biochar but under different pyrolysis temperatures. The conceptual elemental compositions of 500 °C corn straw and poplar leaf biochars are C 61 H 33 NO 13 and C 59 H 41 N 3 O 12 , respectively. Significant differences exist in the SEM images, physicochemical properties, and structural characteristics of corn straw and poplar leaf biochars.
Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.
2010-01-01
Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP/MAS spectrum. DP/MAS, but not CP/MAS, allowed us to detect the changes during low-temperature oxidation and loss of volatiles. These results demonstrate the applicability of advanced solid-state NMR techniques in chemical characterization of coal. ?? 2010 American Chemical Society.
Macrocyclic molecular rotors with bridged steroidal frameworks.
Czajkowska-Szczykowska, Dorota; Rodríguez-Molina, Braulio; Magaña-Vergara, Nancy E; Santillan, Rosa; Morzycki, Jacek W; Garcia-Garibay, Miguel A
2012-11-16
In this work, we describe the synthesis and solid-state dynamics of isomeric molecular rotors 7E and 7Z, consisting of two androstane steroidal frameworks linked by the D rings by triple bonds at their C17 positions to a 1,4-phenylene rotator. They are also linked by the A rings by an alkenyl diester bridge to restrict the conformational flexibility of the molecules and reduce the number of potential crystalline arrays. The analysis of the resulting molecular structures and packing motifs offered insights of the internal dynamics that were later elucidated by means of line shape analyses of the spectral features obtained through variable-temperature solid-state (13)C NMR; such analysis revealed rotations in the solid state occurring at kilohertz frequency at room temperature.
Mechanical anisotropy control on strain localization in upper mantle shear zones
NASA Astrophysics Data System (ADS)
Herwegh, Marco; Mercolli, Ivan; Linckens, Jolien; Müntener, Othmar
2016-05-01
Mantle rocks at oceanic spreading centers reveal dramatic rheological changes from partially molten to solid-state ductile to brittle deformation with progressive cooling. Using the crustal-scale Wadi al Wasit mantle shear zone (SZ, Semail ophiolite, Oman), we monitor such changes based on quantitative field and microstructural investigations combined with petrological and geochemical analyses. The spatial distribution of magmatic dikes and high strain zones gives important information on the location of magmatic and tectonic activity. In the SZ, dikes derived from primitive melts (websterites) are distributed over the entire SZ but are more abundant in the center; dikes from more evolved, plagioclase saturated melts (gabbronorites) are restricted to the SZ center. Accordingly, harzburgite deformation fabrics show a transition from protomylonite (1100°C), mylonite (900-800°C) to ultramylonite (<700°C) and a serpentine foliation (<500°C) from the SZ rim to the center. The spatial correlation between solid-state deformation fabrics and magmatic features indicates progressive strain localization in the SZ on the cooling path. Three stages can be discriminated: (i) Cycles of melt injection (dunite channels and websterite dikes) and solid-state deformation (protomylonites-mylonites; 1100-900°C), (ii) dominant solid-state deformation in harzburgite mylonites (900-800°C) with some last melt injections (gabbronorites) and ultramylonites (<700°C), and (iii) infiltration of seawater inducing a serpentine foliation (<500°C) followed by cataclasis during obduction. The change of these processes in space and time indicates that early dike-related ridge-parallel deformation controls the onset of the entire strain localization history promoting nucleation sites for different strain weakening processes as a consequence of changing physicochemical conditions.
A 13C NMR study of the structure of four cinnamic acids and their methyl esters
NASA Astrophysics Data System (ADS)
Silva, A. M. S.; Alkorta, I.; Elguero, J.; Silva, V. L. M.
2001-09-01
The 13C NMR spectra, both in DMSO solution and in the solid state of four cinnamic acids (p-methoxy, p-hydroxy, p-methyl, p-chloro) and their corresponding methyl esters have been recorded. The two main results in the solid state are: (i) the only significant difference between acids and esters chemical shifts concerns the Cdbnd O group which, on average, appears at 173 ppm in the acids and 168 ppm in the esters; (ii) the signals of the ortho and meta carbons both in the acids and the esters are splitted. The two 'anomalies' disappear in DMSO solution. These observations can be rationalized using simple GIAO/B3LYP/6-31G∗ calculations.
NASA Astrophysics Data System (ADS)
Pienkina, A.; Motiyenko, R. A.; Margulès, L.; Müller, Holger S. P.; Guillemin, J.-C.
2016-06-01
This study of the 13C-triply labeled species of ethyl cyanide (CH_3CH_2CN) follows our recent work on the three 13C-doubly-labeled that allowed their detection in the line survey recently obtained with ALMA (EMoCA). The detection of isotopologues could improve the knowledge of the astrochemistry. The other goal is to clean the surveys from the lines of known molecules in order to detect new ones, this is especially important for the abundant complex organic molecules like ethyl cyanide. As in the case of the doubly substitued species, no spectroscopic studies exist up to now for 13CH_313CH_213CN, the first predictions were thus obtained from scaled ab initio calculations. The spectra were recorded and analyzed up to 1 THz. More than 5500 lines were fitted with quantum numbers J and K_a up to 95 and 25 respectively. The spectra were obtained with the new version of the Lille's solid state spectrometers. This new version used Direct Digital Synthesizer in order to speed up acquisition time. We constructed a spectrometer covering a decade, from 150 to 1500 GHz, it scans the full range in 24 hours with high sensitivity and accuracy. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under ANR-13-BS05-0008-02 IMOLABS Margules, L.; et al. 2015, 69th International Symposium on Molecular Spectroscopy, RI06 Belloche, A.; et al. 2014, Science, 345, 1584
Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface.
He, Meng; Xu, Min; Zhang, Lina
2013-02-01
A novel, highly hydrophobic cellulose composite film (RCS) with biodegradability was fabricated via solvent-vaporized controllable crystallization of stearic acid in the porous structure of cellulose films (RC). The interface structure and properties of the composite films were investigated with wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, solid-state (13)C NMR, water uptake, tensile testing, water contact angle, and biodegradation tests. The results indicated that the RCS films exhibited high hydrophobicity (water contact angle achieved to 145°), better mechanical properties in the humid state and lower water uptake ratio than RC. Interestingly, the stearic acid crystallization was induced by the pore wall of the cellulose matrix to form a micronano binary structure, resulting in a rough surface. The rough surface with a hierarchical structure containing micronanospace on the RCS film surface could trap abundant air, leading to the high hydrophobicity. Moreover, the RCS films were flexible, biodegradable, and low-cost, showing potential applications in biodegradable water-proof packaging.
Aluas, Mihaela; Filip, Claudiu
2005-05-01
A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.
Sergeyev, Ivan; Moyna, Guillermo
2005-05-02
A novel method for the determination of the three-dimensional (3D) structure of oligosaccharides in the solid state using experimental 13C NMR data is presented. The approach employs this information, combined with 13C chemical shift surfaces (CSSs) for the glycosidic bond carbons in the generation of NMR pseudopotential energy functions suitable for use as constraints in molecular modeling simulations. Application of the method to trehalose, cellobiose, and cellotetraose produces 3D models that agree remarkably well with the reported X-ray structures, with phi and psi dihedral angles that are within 10 degrees from the ones observed in the crystals. The usefulness of the approach is further demonstrated in the determination of the 3D structure of the cellohexaose, an hexasaccharide for which no X-ray data has been reported, as well as in the generation of accurate structural models for cellulose II and amylose V6.
Production of complex organic molecules: H-atom addition versus UV irradiation
NASA Astrophysics Data System (ADS)
Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.
2017-05-01
Complex organic molecules (COMs) have been identified in different environments in star-forming regions. Laboratory studies show that COMs form in the solid state, on icy grains, typically following a 'non-energetic' (atom-addition) or 'energetic' (UV-photon absorption) trigger. So far, such studies have been largely performed for single processes. Here, we present the first work that quantitatively investigates both the relative importance and the cumulative effect of '(non-)energetic' processing. We focus on astronomically relevant CO:CH3OH = 4:1 ice analogues exposed to doses relevant for the collapse stage of dense clouds. Hydrogenation experiments result in the formation of methyl formate (MF; HC(O)OCH3), glycolaldehyde (GA; HC(O)CH2OH) and ethylene glycol (EG; H2C(OH)CH2OH) at 14 K. The absolute abundances and the abundance fractions are found to be dependent on the H-atom/CO:CH3OH-molecule ratios and on the overall deposition rate. In the case that ices are exposed to UV photons only, several different COMs are found. Typically, the abundance fractions are 0.2 for MF, 0.3 for GA and 0.5 for EG as opposed to the values found in pure hydrogenation experiments without UV in which MF is largely absent: 0.0, 0.2-0.6 and 0.8-0.4, respectively. In experiments where both are applied, overall COM abundances drop to about half of those found in the pure UV irradiation experiments, but the composition fractions are very similar. This implies COM ratios can be used as a diagnostic tool to derive the processing history of an ice. Solid-state branching ratios derived here for GA and EG compare well with observations, while the MF case cannot be explained by solid-state conditions investigated here.
Enrichment of very heavy nuclei in the composition of solar accelerated particles.
NASA Technical Reports Server (NTRS)
Mogro-Campero, A.; Simpson, J. A.
1972-01-01
Measurement of the abundances of the nuclei C, N, O, Ne, Mg, Si, Ar, and Ca and the group Cr-Co relative to oxygen from seven solar energetic-particle events in the energy range from about 14 to 61 MeV per nucleon with a solid-state detector telescope on the OGO-5 satellite, 1968-1971. The differential energy spectra of O (14 to 29 MeV per nucleon) and Cr-Co (3 to 61 MeV per nucleon) have a spectral index of about (-3) for a power law in kinetic energy. The relative abundances of C, N, O, and Ne are in excellent agreement with emulsion studies. However, when compared with the solar photospheric and coronal abundances, the OGO-5 measurements show a large enhancement of relative abundances beginning with Si, and extending to the Cr-Co group. The enhancement over the solar and universal abundances is in rough agreement with the composition of the galactic cosmic radiation.
NASA Astrophysics Data System (ADS)
Gerpe, Alejandra; Piro, Oscar E.; Cerecetto, Hugo; González, Mercedes
2007-12-01
A series of indazole N1-oxide derivatives has been spectroscopically studied in solution using 1H, 13C, and 15N NMR based on pulsed field gradient selected PFG 1H sbnd X (X = 13C and 15N) gHMQC and gHMBC experiments. Some indazoles were prepared using a new methodology to compare its spectral and structural data with the indazole N1-oxide parent compounds. The 13C resonances of the indazole N1-oxide carbon 3 and 7a demonstrate the N-oxide push-electron capability. The 15N resonances of the indazole N-oxide, nitrogen 1, are near to 30 ppm more shielded than the corresponding values in the indazole heterocycle (deoxygenated form). Moreover, the structures of one indazole and one indazole N-oxide were unambiguously confirmed by X-ray crystallography. The solid state structures were contrasted with the theoretical ones obtained in vacuo at different calculus level. The aromaticity of the derivatives was studied analyzing the H sbnd H coupling constants of indazole's aromatic hydrogens and measuring C sbnd C distances in the solid state. The fragmentation that takes place in EI/MS was gathered for all the indazole N-oxide derivatives and the general fragmentation pattern analyzed.
Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS
Zhang, Rongchun; Ramamoorthy, Ayyalusamy
2016-01-01
Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological solids. PMID:26801026
Diversity in C-Xanes Spectra Obtained from Carbonaceous Solid Inclusions from Monahans Halite
NASA Technical Reports Server (NTRS)
Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Kilcoyne, A. L. D.; Rahman, Z.; Cody, G. D.
2014-01-01
Monahans meteorite (H5) contains fluid inclusion- bearing halite (NaCl) crystals [1]. Microthermometry and Raman spectroscopy showed that the fluid in the inclusions is an aqueous brine and they were trapped near 25degC [1]. Their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism [2]. Abundant solid inclusions are also present in the halites. The solid inclusions include abundant and widely variable organics [2]. Analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction and TEM reveal that these grains include macromolecular carbon similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo99-59), high- and low-Ca pyroxene, feldspars, magnetite, sulfides, lepidocrocite, carbonates, diamond, apatite and possibly the zeolite phillipsite [3]. Here we report organic analyses of these carbonaceous residues in Monahans halite using C-, N-, and O- X-ray absorption near edge structure (XANES). Samples and Methods: Approximately 100 nm-thick sections were extracted with a focused ion beam (FIB) at JSC from solid inclusions from Monahans halite. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory for XANES spectroscopy. Results and Discussion: C-XANES spectra of the solid inclusions show micrometer-scale heterogeneity, indicating that the macromolecular carbon in the inclusions have complex chemical variations. C-XANES features include 284.7 eV assigned to aromatic C=C, 288.4-288.8 eV assigned to carboxyl, and 290.6 eV assigned to carbonate. The carbonyl features obtained by CXANES might have been caused by the FIB used in sample preparation. No specific N-XANES features are observed. The CXANES spectra obtained from several areas in the FIB sections include type 1&2 chondritic IOM like, type 3 chondritic IOM like, and none of the above. The natures of the macromolecular carbon in the solid inclusions observed by C-XANES are consistent with the previous studies showing that the carbonaceous solid inclusions have not originated from Monahans parent body [1-3], and have various origins, including various chondritic meteorite parent bodies as well as other unknown source(s).
A solid-state [sup 13]C NMR study of the molecular motion of ethylene adsorbed on a silver surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianxin Wang; Ellis, P.D.
1993-01-13
The reorientation of ethylene on a silver catalyst surface has been studied by solid-state [sup 13]C NMR. The static cross-polarization spectra at different temperatures have been measured. Different jump site models are proposed to simulate the experimental results. It was found that the models involving a low number of jump sites are more sensitive to the experimental details. By comparison of the simulated and experimental results, the 6- and 4-site jump models are chosen as the most satisfactory model to fit the experimental spectra. On the basis of this representation, the activation energy derived for the jump process is 4.3more » kJ/mol. From the simulated results, it was concluded that the symmetry axis for the motion of the ethylene at low temperatures ([minus]173 to ca. [minus]45[degrees]C) is perpendicular to the plane of the ethylene molecule. At higher temperatures motion about other axes is initiated such that at room temperature a nearly isotropically averaged [sup 13]C shielding tensor is observed. 20 refs., 9 figs.« less
Asada, Mamiko Nasu; Nemoto, Takayuki; Mimura, Hisashi
2016-03-01
We recently developed several new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state nuclear magnetic resonance (NMR) that allow (13)C signal extraction of the target components from pharmaceuticals. These methods were successful in not only qualification but also quantitation over the wide range of 5% to 100%. Here, we aimed to improve the sensitivity of these methods and initially applied them to (19)F solid-state NMR, on the basis that the fluorine atom is one of the most sensitive NMR-active nuclei. For testing, we selected atorvastatin calcium (ATC), an antilipid BCS class II drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase and is marketed in crystalline and amorphous forms. Tablets were obtained from 2 generic drug suppliers, and the ATC content occurred mainly as an amorphous form. Using the RFS method with (19)F solid-state NMR, we succeeded in qualifying trace amounts (less than 0.5% w/w level) of crystalline phase (Form I) of ATC in the tablets. RFS methods with (19)F solid-state NMR are practical and time efficient and can contribute not only to the study of pharmaceutical drugs, including those with small amounts of a highly potent active ingredient within a formulated product, but also to the study of fluoropolymers in material sciences. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Eldridge, S M; Chen, C R; Xu, Z H; Nelson, P N; Boyd, S E; Meszaros, I; Chan, K Y
2013-11-01
Using solid state (13)C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Molecular Budget for a Peatland Based Upon 13C Solid-State Nuclear Magnetic Resonance
NASA Astrophysics Data System (ADS)
Moody, Catherine S.; Worrall, Fred; Clay, Gareth D.; Burt, Tim P.; Apperley, David C.; Rose, Rob
2018-02-01
Peatlands can accumulate organic matter into long-term carbon (C) storage within the soil profile. This study used solid-state 13C nuclear magnetic resonance (13C-NMR) to investigate the transit of organic C through a peatland ecosystem to understand the molecular budget that accompanies the long-term accumulation of C. Samples of biomass, litter, peat soil profile, particulate organic matter, and dissolved organic matter (DOM) were taken from the Moor House National Nature Reserve, a peat-covered catchment in northern England where both the dry matter and C budget for the ecosystem were known. The results showed that: The interpretation of the 13C-NMR spectra shows that polysaccharides are preferentially removed through the ecosystem, while lignin components are preferentially retained and come to dominate the organic matter accumulated at depth in the profile. The DOM is derived from the oxidation of both biomass and the degradation of lignin, while the particulate organic matter is derived from erosion of the peat profile. The DOM is differentiated by its proportion of oxidized functional groups and not by its aromatic content. The changes in functionality leading to DOM production suggest side chain oxidation resulting in C-C cleavage/depolymerisation of lignin, a common reaction within white rot fungi. The 13C-NMR budget shows that O-alkyl functional groups are disproportionately lost between primary production and accumulation in the deep peat, while C-alkyl functional groups are disproportionately preserved. The carbon lost as gases (CO2 and CH4) was estimated to be composed of 93% polysaccharide-derived carbon and 7% lignin-derived carbon.
Tsukasaki, Hirofumi; Mori, Yota; Otoyama, Misae; Yubuchi, So; Asano, Takamasa; Tanaka, Yoshinori; Ohno, Takahisa; Mori, Shigeo; Hayashi, Akitoshi; Tatsumisago, Masahiro
2018-04-18
Sulfide-based all-solid-state lithium batteries are a next-generation power source composed of the inorganic solid electrolytes which are incombustible and have high ionic conductivity. Positive electrode composites comprising LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC) and 75Li 2 S·25P 2 S 5 (LPS) glass electrolytes exhibit excellent charge-discharge cycle performance and are promising candidates for realizing all-solid-state batteries. The thermal stabilities of NMC-LPS composites have been investigated by transmission electron microscopy (TEM), which indicated that an exothermal reaction could be attributed to the crystallization of the LPS glass. To further understand the origin of the exothermic reaction, in this study, the precipitated crystalline phase of LPS glass in the NMC-LPS composite was examined. In situ TEM observations revealed that the β-Li 3 PS 4 precipitated at approximately 200 °C, and then Li 4 P 2 S 6 and Li 2 S precipitated at approximately 400 °C. Because the Li 4 P 2 S 6 and Li 2 S crystalline phases do not precipitate in the single LPS glass, the interfacial contact between LPS and NMC has a significant influence on both the LPS crystallization behavior and the exothermal reaction in the NMC-LPS composites.
Sakai, Nami; Takano, Shuro; Sakai, Takeshi; Shiba, Shoichi; Sumiyoshi, Yoshihiro; Endo, Yasuki; Yamamoto, Satoshi
2013-10-03
We have studied the abundances of the (13)C isotopic species of C3S and C4H in the cold molecular cloud, Taurus Molecular Cloud-1 (Cyanopolyyne Peak), by radioastronomical observations of their rotational emission lines. The CCCS/(13)CCCS and CCCS/C(13)CCS ratios are determined to be >206 and 48 ± 15, respectively. The CC(13)CS line is identified with the aid of laboratory microwave spectroscopy, and the range of the CCCS/CC(13)CS ratio is found to be from 30 to 206. The abundances of at least two (13)C isotopic species of C3S are thus found to be different. Similarly, it is found that the abundances of the four (13)C isotopic species of C4H are not equivalent. The CCCCH/(13)CCCCH, CCCCH/C(13)CCCH, CCCCH/CC(13)CCH, and CCCCH/CCC(13)CH ratios are evaluated to be 141 ± 44, 97 ± 27, 82 ± 15, and 118 ± 23, respectively. Here the errors denote 3 times the standard deviation. These results will constrain the formation pathways of C3S and C4H, if the nonequivalence is caused during the formation processes of these molecules. The exchange reactions after the formation of these two molecules may also contribute to the nonequivalence. In addition, we have confirmed that the (12)C/(13)C ratio of some species are significantly higher than the interstellar elemental (12)C/(13)C ratio of 60-70. The observations of the (13)C isotopic species provide us with rich information on chemical processes in cold interstellar clouds.
13C-18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths
NASA Astrophysics Data System (ADS)
Tripati, Aradhna K.; Eagle, Robert A.; Thiagarajan, Nivedita; Gagnon, Alexander C.; Bauch, Henning; Halloran, Paul R.; Eiler, John M.
2010-10-01
Accurate constraints on past ocean temperatures and compositions are critical for documenting climate change and resolving its causes. Most proxies for temperature are not thermodynamically based, appear to be subject to biological processes, require regional calibrations, and/or are influenced by fluid composition. As a result, their interpretation becomes uncertain when they are applied in settings not necessarily resembling those in which they were empirically calibrated. Independent proxies for past temperature could provide an important means of testing and/or expanding on existing reconstructions. Here we report measurements of abundances of stable isotopologues of calcitic and aragonitic benthic and planktic foraminifera and coccoliths, relate those abundances to independently estimated growth temperatures, and discuss the possible scope of equilibrium and kinetic isotope effects. The proportions of 13C- 18O bonds in these samples exhibits a temperature dependence that is generally similar to that previously been reported for inorganic calcite and other biologically precipitated carbonate-containing minerals (apatite from fish, reptile, and mammal teeth; calcitic brachiopods and molluscs; aragonitic coral and mollusks). Most species that exhibit non-equilibrium 18O/ 16O (δ 18O) and 13C/ 12C (δ 13C) ratios are characterized by 13C- 18O bond abundances that are similar to inorganic calcite and are generally indistinguishable from apparent equilibrium, with possible exceptions among benthic foraminiferal samples from the Arctic Ocean where temperatures are near-freezing. Observed isotope ratios in biogenic carbonates can be explained if carbonate minerals generally preserve a state of ordering that reflects the extent of isotopic equilibration of the dissolved inorganic carbon species.
Nakazawa, Yasumoto; Asakura, Tetsuo
2003-06-18
Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise to very regular secondary protein structures. Silk fibroin from a wild silkworm, Samia cynthia ricini, consists of about 100 repeats of alternating polyalanine (poly-Ala) regions of 12-13 residues in length and Gly-rich regions. In this paper, the precise structure of the model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, was determined using a combination of three kinds of solid-state NMR studies; a quantitative use of (13)C CP/MAS NMR chemical shift with conformation-dependent (13)C chemical shift contour plots, 2D spin diffusion (13)C solid-state NMR under off magic angle spinning and rotational echo double resonance. The structure of the model peptide corresponding to the silk fibroin structure before spinning was determined. The torsion angles of the central Ala residue, Ala(19), in the poly-Ala region were determined to be (phi, psi) = (-59 degrees, -48 degrees ) which are values typically associated with alpha-helical structures. However, the torsion angles of the Gly(25) residue adjacent to the C-terminal side of the poly-Ala chain were determined to be (phi, psi) = (-66 degrees, -22 degrees ) and those of Gly(12) and Ala(13) residues at the N-terminal of the poly-Ala chain to be (phi, psi) = (-70 degrees, -30 degrees ). In addition, REDOR experiments indicate that the torsion angles of the two C-terminal Ala residues, Ala(23) and Ala(24), are (phi, psi) = (-66 degrees, -22 degrees ) and those of N-terminal two Ala residues, Ala(13) and Ala(14) are (phi, psi) = (-70 degrees, -30 degrees ). Thus, the local structure of N-terminal and C-terminal residues, and also the neighboring residues of alpha-helical poly-Ala chain in the model peptide is a more strongly wound structure than found in typical alpha-helix structures.
Webber, Amy L; Masiero, Stefano; Pieraccini, Silvia; Burley, Jonathan C; Tatton, Andrew S; Iuga, Dinu; Pham, Tran N; Spada, Gian Piero; Brown, Steven P
2011-12-14
By means of the (1)H chemical shifts and the proton-proton proximities as identified in (1)H double-quantum (DQ) combined rotation and multiple-pulse spectroscopy (CRAMPS) solid-state NMR correlation spectra, ribbon-like and quartet-like self-assembly can be identified for guanosine derivatives without isotopic labeling for which it was not possible to obtain single crystals suitable for diffraction. Specifically, characteristic spectral fingerprints are observed for dG(C10)(2) and dG(C3)(2) derivatives, for which quartet-like and ribbon-like self-assembly has been unambiguously identified by (15)N refocused INADEQUATE spectra in a previous study of (15)N-labeled derivatives (Pham, T. N.; et al. J. Am. Chem. Soc.2005, 127, 16018). The NH (1)H chemical shift is observed to be higher (13-15 ppm) for ribbon-like self-assembly as compared to 10-11 ppm for a quartet-like arrangement, corresponding to a change from NH···N to NH···O intermolecular hydrogen bonding. The order of the two NH(2)(1)H chemical shifts is also inverted, with the NH(2) proton closest in space to the NH proton having a higher or lower (1)H chemical shift than that of the other NH(2) proton for ribbon-like as opposed to quartet-like self-assembly. For the dG(C3)(2) derivative for which a single-crystal diffraction structure is available, the distinct resonances and DQ peaks are assigned by means of gauge-including projector-augmented wave (GIPAW) chemical shift calculations. In addition, (14)N-(1)H correlation spectra obtained at 850 MHz under fast (60 kHz) magic-angle spinning (MAS) confirm the assignment of the NH and NH(2) chemical shifts for the dG(C3)(2) derivative and allow longer range through-space N···H proximities to be identified, notably to the N7 nitrogens on the opposite hydrogen-bonding face. © 2011 American Chemical Society
Almeida, Mariana R; Stephani, Rodrigo; Dos Santos, Hélio F; de Oliveira, Luiz Fernando C
2010-01-14
Spectroscopic techniques, including Raman, IR, UV/vis, and NMR were used to characterize the samples of the azo dye Ponceau 4R (also known as E124, New Coccine; Cochineal Red; C.I. no. 16255; Food Red No. 102), which is 1,3-naphthalenedisulfonic acid, 7-hydroxy-8-[(4-sulfo-1-naphthalenyl) azo] trisodium salt in aqueous solution and solid state. In addition, first principle calculations were carried out for the azo (OH) and hydrazo (NH) tautomers in order to assist in the assignment of the experimental data. The two intense bands observed in the UV/vis spectrum, centered at 332 and 507 nm, can be compared to the calculated values at 296 and 474 nm for azo and 315 and 500 nm for hydrazo isomer, with the latter in closer agreement to the experiment. The Raman spectrum is quite sensitive to tautomeric equilibrium; in solid state and aqueous solution, three bands were observed around 1574, 1515, and 1364 cm(-1), assigned to mixed modes including deltaNH + betaCH + nuCC, deltaNH + nuC horizontal lineO + nuC horizontal lineN + betaCH and nuCC vibrations, respectively. These assignments are predicted only for the NH species centered at 1606, 1554, and 1375 cm(-1). The calculated Raman spectrum for the azo (OH) tautomer showed two strong bands at 1468 (nuN = N + deltaOH) and 1324 cm(-1) (nuCC + nuC-N), which were not obtained experimentally. The (13)C NMR spectrum showed a very characteristic peak at 192 ppm assigned to the carbon bound to oxygen in the naphthol ring; the predicted values were 165 ppm for OH and 187 for NH isomer, supporting once again the predominance of NH species in solution. Therefore, all of the experimental and theoretical results strongly suggest the food dye Ponceau 4R or E124 has a major contribution of the hydrazo structure instead of the azo form as the most abundant in condensate phase.
Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka
2015-01-01
We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems. PMID:25856081
De Sa Peixoto, Paulo; Laurent, Guillaume; Azaïs, Thierry; Mosser, Gervaise
2013-01-01
In vivo, collagen I, the major structural protein in human body, is found assembled into fibrils. In the present work, we study a high concentrated collagen sample in its soluble, fibrillar, and denatured states using one and two dimensional {1H}-13C solid-state NMR spectroscopy. We interpret 13C chemical shift variations in terms of dihedral angle conformation changes. Our data show that fibrillogenesis increases the side chain and backbone structural complexity. Nevertheless, only three to five rotameric equilibria are found for each amino acid residue, indicating a relatively low structural heterogeneity of collagen upon fibrillogenesis. Using side chain statistical data, we calculate equilibrium constants for a great number of amino acid residues. Moreover, based on a 13C quantitative spectrum, we estimate the percentage of residues implicated in each equilibrium. Our data indicate that fibril formation greatly affects hydroxyproline and proline prolyl pucker ring conformation. Finally, we discuss the implication of these structural data and propose a model in which the attractive force of fibrillogenesis comes from a structural reorganization of 10 to 15% of the amino acids. These results allow us to further understand the self-assembling process and fibrillar structure of collagen. PMID:23341452
Thorn, Kevin A.; Cox, Larry G.
2015-01-01
Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.
NASA Astrophysics Data System (ADS)
Anderson, Carrie; Samuelson, Robert E.; McLain, Jason L.; Nna Mvondo, Delphine; Romani, Paul; Flasar, F. Michael
2016-10-01
A profusion of organic ices containing hydrocarbons, nitriles, and combinations of their mixtures comprise Titan's complex stratospheric cloud systems, and are typically formed via vapor condensation. These ice particles are then distributed throughout the mid-to-lower stratosphere, with an increased abundance near the winter poles (see Anderson et al., 2016). The cold temperatures and the associated strong circumpolar winds that isolate polar air act in much the same way as on Earth, giving rise to compositional anomalies and stratospheric clouds that provide heterogeneous chemistry sites.Titan's C4N2 ice emission feature at 478 cm-1 and "the Haystack," a strong unidentified stratospheric ice emission feature centered at 220 cm-1, share a common characteristic. Even though both are distinctive ice emission features evident in Cassini Composite InfraRed (CIRS) far-IR spectra, no associated vapor emission features can be found in Titan's atmosphere. Without a vapor phase, solid-state chemistry provides an alternate mechanism beside vapor condensation for producing these observed stratospheric ices.Anderson et al., (2016) postulated that C4N2 ice formed in Titan's stratosphere via the solid-state photochemical reaction HCN + HC3N → C4N2 + H2 can occur within extant HCN-HC3N composite ice particles. Such a reaction, and potentially similar reactions that may produce the Haystack ice, are specific examples of solid-state chemistry in solar system atmospheres. This is in addition to the reaction HCl + ClONO2 → HNO3 + Cl2, which is known to produce HNO3 coatings on terrestrial water ice particles, a byproduct of the catalytic chlorine chemistry that produces ozone holes in Earth's polar stratosphere (see for example, Molina et al., 1987 Soloman, 1999).A combination of radiative transfer modeling of CIRS far-IR spectra, coupled with optical constants derived from thin film transmittance spectra of organic ice mixtures obtained in our Spectroscopy for Planetary ICes Environments (SPICE) laboratory, will be used to: 1) derive the vertical column abundance of C4N2 ice in Titan's early spring polar stratosphere, and 2) narrow the range of possible chemical compositions for the material comprising the Haystack.
Exploring the 13CO/C18O abundance ratio towards Galactic young stellar objects and HII regions
NASA Astrophysics Data System (ADS)
Areal, M. B.; Paron, S.; Celis Peña, M.; Ortega, M. E.
2018-05-01
Aims: Determining molecular abundance ratios is important not only for the study of Galactic chemistry, but also because they are useful to estimate physical parameters in a large variety of interstellar medium environments. One of the most important molecules for tracing the molecular gas in the interstellar medium is CO, and the 13CO/C18O abundance ratio is usually used to estimate molecular masses and densities of regions with moderate to high densities. Nowadays isotope ratios are in general indirectly derived from elemental abundances ratios. We present the first 13CO/C18O abundance ratio study performed from CO isotope observations towards a large sample of Galactic sources of different natures at different locations. Methods: To study the 13CO/C18O abundance ratio, we used 12CO J = 3 - 2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3 - 2 data from the 13CO/C18O (J = 3 - 2) Heterodyne Inner Milky Way Plane Survey, and some complementary data extracted from the James Clerk Maxwell Telescope database. We analyzed a sample of 198 sources composed of young stellar objects (YSOs), and HII and diffuse HII regions as catalogued in the Red MSX Source Survey in 27.°5 ≤ l ≤ 46.°5 and |b|0.°5. Results: Most of the analyzed sources are located in the galactocentric distance range 4.0-6.5 kpc. We found that YSOs have, on average, lower 13CO/C18O abundance ratios than HII and diffuse HII regions. Taking into account that the gas associated with YSOs should be less affected by the radiation than in the case of the others sources, selective far-UV photodissociation of C18O is confirmed. The 13CO/C18O abundance ratios obtained in this work are systematically lower than those predicted from the known elemental abundance relations. These results will be useful in future studies of molecular gas related to YSOs and HII regions based on the observation of these isotopes.
NASA Astrophysics Data System (ADS)
Nelson, D. M.; Urban, M.; Hu, F.
2014-12-01
Understanding the environmental factors controlling the origin and shifting abundance of C4 grasses in Earth's history is useful for projecting the response of C4-grass dominated grasslands to future environmental change. Unfortunately, grass pollen is typically morphologically indistinct, making palynological analysis a blunt tool for studying C4-grasses in the paleorecord. δ13C of individual grass-pollen grains using a spooling wire microcombustion device interfaced with an isotope ratio mass spectrometer (Single Pollen Isotope Ratio AnaLysis, SPIRAL) overcomes this challenge and the potential biases of δ13C data from other substrates (e.g. leaf waxes). To assess the presence and relative abundance of C3- and C4-grass pollen in samples of unknown composition, we developed a hierarchical Bayesian model, trained with ~1,900 δ13C values from pollen grains of 31 grass species. Surface-sediment data from Africa, Australia, and North America demonstrate the reliability of this technique for quantifying C4-grass abundance on the landscape. To investigate the timing and control of the origin of C4-grasses we analyzed samples from the Oligocene-Miocene from Europe and from the Eocene from North America. Results indicate that C4 grasses appeared on the landscape of southwest Europe no later than the early Oligocene, implying that low atmospheric pCO2 may not have been the main driver and/or precondition for the development of C4 photosynthesis in the grass family. In contrast, we found no evidence for C4 grasses in the southeast United States before pCO2 fell. In application of SPIRAL to the late Quaternary, we found that shifts in pCO2 and moisture balance exerted key controls on the relative abundance of C3 and C4 grasses in Africa and Australia. Overall, our results imply that as in the past, future changes in the C3/C4 composition of grass-dominated ecosystems will likely exhibit striking spatiotemporal variability as a result of differing combinations of environmental controls.
13C CPMAS NMR studies and DFT calculations of triterpene xylosides isolated from Actaea racemosa
NASA Astrophysics Data System (ADS)
Jamróz, Marta K.; Paradowska, Katarzyna; Gliński, Jan A.; Wawer, Iwona
2011-05-01
13C CPMAS NMR spectra of four triterpene glycosides: cimigenol xyloside ( 1), 26-deoxyactein ( 2), cimicifugoside H-1 ( 3) and 24-acethylhydroshengmanol xyloside ( 4) were recorded and analyzed to characterize their solid-state structure. Experimental data were supported by theoretical calculations of NMR shielding constants with the GIAO/6-31G**-su1 approach. A number of methods for the conformational search and a number of functionals for the DFT calculations were applied to ( 1). The best method was proven to be MMFF or MMFFAQ for the conformational search and the PBE1PBE functional for the DFT calculations. Extra calculations simulating C16 dbnd O⋯HOH hydrogen bond yield the isotropic shielding closer to the experimental solid-state value. For all the compounds CP kinetics parameters were calculated using either the I-S or the I-I*-S model. The analysis of CP kinetics data for methyl groups revealed differences in the T2 time constant for two methyl groups (C29 and C30) linked at C4.
1999-02-23
pumped at frequencies up to 5.5 kHz (with 10-W pumping). At high pulse repetition rates the radius of the beam waist decreases to ~60 jum, owing to...1998) A 1.3-GHz SOI CMOS Test Chip for R. Berger Low-Power High -Speed Pulse W. G. Lyons Processing A. M. Soares IEEE J. Solid-State Circuits...Goodhue D. E. Mull J. M. Rossler Y. Royter C.G.Fonstad* /. Vac. Sei. Technol. Modeling the Microwave Impedance of High -Tc Long Josephson
Lupulescu, Adonis; Frydman, Lucio
2011-10-07
Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice. © 2011 American Institute of Physics
Lu, Jun-Xia; Bayro, Marvin J.; Tycko, Robert
2016-01-01
We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35–60 nm diameters, planar sheets formed by the Arg18-Leu mutant (R18L-CA), and R18L-CA spheres with 20–100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of 15N,13C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in 15N and 13C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing. PMID:27129282
Ando, Shigeru; Kikuchi, Junko; Fujimura, Yuko; Ida, Yasuo; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji
2012-09-01
Physicochemical characterization and structural evaluation of a 2:1 naproxen-nicotinamide cocrystal were performed. The 2:1 cocrystal showed rapid naproxen dissolution and less water vapor adsorption, indicating better pharmaceutical properties of naproxen. The unique 2:1 cocrystal formation was evaluated by solid-state nuclear magnetic resonance (NMR). The assignments of all H and (13) C peaks for naproxen and the cocrystal were performed using dipolar-insensitive nuclei enhanced by polarization transfer and (1) H-(13) C cross-polarization (CP)-heteronuclear correlation (HETCOR) NMR measurements. The (13) C chemical shift revealed that two naproxen molecules and one nicotinamide molecule existed in the asymmetric unit of the cocrystal. The (1) H chemical shifts indicated that the carboxylic group of the naproxen in the cocrystal was nonionized, and the CH-π interaction between naproxens was very strong. From the (1) H-(13) C CP-HETCOR NMR spectrum with contact time of 5 ms, two different synthons, carboxylic acid-amide and carboxylic acid-pyridine ring, were found between naproxen and nicotinamide. Single-crystal X-ray analysis, which supported the solid-state NMR results, clarified the geometry and intermolecular interactions in more detail. The structure is unique among pharmaceutical cocrystals because each carboxyl group of the two naproxens formed different intermolecular synthons. Copyright © 2012 Wiley Periodicals, Inc.
Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu
2016-01-21
Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and themore » use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment would be useful to study the structure and dynamics of a variety of chemical and biological solids.« less
Modelling of c-C2H4O Formation on Grain-Surfaces
NASA Astrophysics Data System (ADS)
Occhiogrosso, Angela; Viti, S.; Ward, M. D.; Price, S. D.
2013-01-01
Ethylene oxide (c-C2H4O) is a ring-shaped organic compound that may lead to the synthesis of amino acids and the early metabolic pathways in the interstellar medium (ISM) (Cleaves 2003; Miller & Schlesinger 1993). This molecule has been detected towards several high-mass star forming regions (Ikeda et al. 2001) but to date, its observational abundances cannot be reproduced by chemical models. We include new experimental results in the UCL_CHEM chemical model with the aim of reproducing the abundances of ethylene oxide across high-mass sources. In particular, we focused on the solid state reaction investigated by Ward & Price (2011). By comparing our theoretical column densities with those from the observations we found that the reaction between atomic oxygen and ethylene on grains is a viable route of formation for ethylene oxide (Occhiogrosso et al., accepted by MNRAS).
Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachleben, Joseph Robert
1993-09-01
Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10 -8 s -1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O 2 and ultraviolet. A method formore » measuring 14N- 1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T 1 and T 2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.« less
Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids
NASA Astrophysics Data System (ADS)
Sachleben, J. R.
1993-09-01
Semiconductor nanocrystals, small biomolecules, and C-13 enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution H-1 and C-13 liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 angstrom. Internal motion is estimated to be slow with a correlation time greater than 10(exp -8) s(exp -1). The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring (N-14)-(H-1) J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T(sub 1) and T(sub 2) experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in C-13 enriched solids is demonstrated by experiments on zinc acetate and L-alanine.
An EKV-based high voltage MOSFET model with improved mobility and drift model
NASA Astrophysics Data System (ADS)
Chauhan, Yogesh Singh; Gillon, Renaud; Bakeroot, Benoit; Krummenacher, Francois; Declercq, Michel; Ionescu, Adrian Mihai
2007-11-01
An EKV-based high voltage MOSFET model is presented. The intrinsic channel model is derived based on the charge based EKV-formalism. An improved mobility model is used for the modeling of the intrinsic channel to improve the DC characteristics. The model uses second order dependence on the gate bias and an extra parameter for the smoothening of the saturation voltage of the intrinsic drain. An improved drift model [Chauhan YS, Anghel C, Krummenacher F, Ionescu AM, Declercq M, Gillon R, et al. A highly scalable high voltage MOSFET model. In: IEEE European solid-state device research conference (ESSDERC), September 2006. p. 270-3; Chauhan YS, Anghel C, Krummenacher F, Maier C, Gillon R, Bakeroot B, et al. Scalable general high voltage MOSFET model including quasi-saturation and self-heating effect. Solid State Electron 2006;50(11-12):1801-13] is used for the modeling of the drift region, which gives smoother transition on output characteristics and also models well the quasi-saturation region of high voltage MOSFETs. First, the model is validated on the numerical device simulation of the VDMOS transistor and then, on the measured characteristics of the SOI-LDMOS transistor. The accuracy of the model is better than our previous model [Chauhan YS, Anghel C, Krummenacher F, Maier C, Gillon R, Bakeroot B, et al. Scalable general high voltage MOSFET model including quasi-saturation and self-heating effect. Solid State Electron 2006;50(11-12):1801-13] especially in the quasi-saturation region of output characteristics.
Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P
2007-08-01
Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.
Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, Thomas; Pugmire, Ronald
2015-01-01
Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogensmore » were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.« less
Oh, Se-Woung; Weiss, Joseph W E; Kerneghan, Phillip A; Korobkov, Ilia; Maly, Kenneth E; Bryce, David L
2012-05-01
Nine arylboronic acids, seven arylboronic catechol cyclic esters, and two trimeric arylboronic anhydrides (boroxines) are investigated using (11)B solid-state NMR spectroscopy at three different magnetic field strengths (9.4, 11.7, and 21.1 T). Through the analysis of spectra of static and magic-angle spinning samples, the (11)B electric field gradient and chemical shift tensors are determined. The effects of relaxation anisotropy and nutation field strength on the (11)B NMR line shapes are investigated. Infrared spectroscopy was also used to help identify peaks in the NMR spectra as being due to the anhydride form in some of the arylboronic acid samples. Seven new X-ray crystallographic structures are reported. Calculations of the (11)B NMR parameters are performed using cluster model and periodic gauge-including projector-augmented wave (GIPAW) density functional theory (DFT) approaches, and the results are compared with the experimental values. Carbon-13 solid-state NMR experiments and spectral simulations are applied to determine the chemical shifts of the ipso carbons of the samples. One bond indirect (13)C-(11)B spin-spin (J) coupling constants are also measured experimentally and compared with calculated values. The (11)B/(10)B isotope effect on the (13)C chemical shift of the ipso carbons of arylboronic acids and their catechol esters, as well as residual dipolar coupling, is discussed. Overall, this combined X-ray, NMR, IR, and computational study provides valuable new insights into the relationship between NMR parameters and the structure of boronic acids and esters. Copyright © 2012 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hema, B. P.; Pandey, Gajendra; Lambert, David L., E-mail: hema@iiap.res.in, E-mail: pandey@iiap.res.in, E-mail: dll@astro.as.utexas.edu
2012-03-10
Observed spectra of R Coronae Borealis (RCB) and hydrogen-deficient carbon (HdC) stars are analyzed by synthesizing the C{sub 2} Swan bands (1, 0), (0, 0), and (0, 1) using our detailed line list and the Uppsala model atmospheres. The (0, 1) and (0, 0) C{sub 2} bands are used to derive the {sup 12}C abundance, and the (1, 0) {sup 12}C{sup 13}C band to determine the {sup 12}C/{sup 13}C ratios. The carbon abundance derived from the C{sub 2} Swan bands is about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%)more » to 10.5 (C/He = 10%). Carbon abundances derived from C I lines are about a factor of four lower than the carbon abundance of the adopted model atmosphere over the same C/He interval, as reported by Asplund et al., who dubbed the mismatch between adopted and derived C abundance as the 'carbon problem'. In principle, the carbon abundances obtained from C{sub 2} Swan bands and that assumed for the model atmosphere can be equated for a particular choice of C/He that varies from star to star. Then, the carbon problem for C{sub 2} bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. A more likely solution to the C{sub 2} carbon problem may lie in a modification of the model atmosphere's temperature structure. The derived carbon abundances and the {sup 12}C/{sup 13}C ratios are discussed in light of the double degenerate and the final flash scenarios.« less
Li, Wenwen; Zhang, Sanpei; Wang, Bangrun; Gu, Sui; Xu, Dong; Wang, Jianing; Chen, Chunhua; Wen, Zhaoyin
2018-06-19
Solid polymer electrolytes (SPEs) have shown extraordinary promise for all-solid-state lithium metal batteries with high energy density and flexibility but are mainly limited by the low ionic conductivity and their poor stability with lithium metal anode. In this work, we propose a highly ordered porous electrolyte additive derived from SSZ-13 for high-rate all-solid-state lithium metal batteries. The nanoporous adsorption effect provided by the highly ordered porous nanoparticles in the poly (ethylene oxide) (PEO) electrolyte are found to significantly improve the Li + conductivity (1.91×10 -3 S cm -1 at 60°C, 4.43×10 -5 S cm -1 at 20°C) and widen the electrochemical stability window to 4.7 V vs Li + /Li. Meanwhile, the designed PEO-based electrolyte demonstrates enhanced stability with the lithium metal anode. Through systematically increasing Li + diffusion, widening the electrochemical stability window and enhancing the stability of the SSZ-CPE electrolyte, the LiFePO4/SSZ-CPE/Li cell is optimized to deliver high-rate capability and stable cycling performance, which demonstrates great potential for all-solid-state energy storage application.
Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin
Wynn, J.G.; Harden, J.W.; Fries, T.L.
2006-01-01
Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam
2015-03-01
Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.
Toraya, Shuichi; Javkhlantugs, Namsrai; Mishima, Daisuke; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira
2010-01-01
Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes were determined by solid-state 31P and 13C NMR spectroscopy. 31P NMR spectra showed that BLT2-DPPC membranes were disrupted into small particles below the gel-to-liquid crystalline phase transition temperature (Tc) and fused to form a magnetically oriented vesicle system where the membrane surface is parallel to the magnetic fields above the Tc. 13C NMR spectra of site-specifically 13C-labeled BLT2 at the carbonyl carbons were observed and the chemical shift anisotropies were analyzed to determine the dynamic structure of BLT2 bound to the magnetically oriented vesicle system. It was revealed that the membrane-bound BLT2 adopted an α-helical structure, rotating around the membrane normal with the tilt angle of the helical axis at 33°. Interatomic distances obtained from rotational-echo double-resonance experiments further showed that BLT2 adopted a straight α-helical structure. Molecular dynamics simulation performed in the BLT2-DPPC membrane system showed that the BLT2 formed a straight α-helix and that the C-terminus was inserted into the membrane. The α-helical axis is tilted 30° to the membrane normal, which is almost the same as the value obtained from solid-state NMR. These results suggest that the membrane disruption induced by BLT2 is attributed to insertion of BLT2 into the lipid bilayers. PMID:21081076
Detection of the 2165 Inverse Centimeter (4.619 Micron) XCN Band in the Spectrum of L1551 IRS 5
NASA Technical Reports Server (NTRS)
Tegler, Stephen C.; Weintraub, David A.; Allamandola, Louis J.; Sandford, Scott A.; Rettig, Terrence W.; Campins, Humberto
1993-01-01
We report the detection of a broad absorption band at 2165 cm (4.619 microns) in the spectrum of L1551 IRS 5. New laboratory results over the 2200-2100 /cm wavenumber interval (4.55-4.76 microns), performed with realistic interstellar ice analogs, suggest that this feature is due to a CN-containing compound. We will refer to this compound as XCN. We also confirm the presence of frozen CO (both in nonpolar and polar matrices) through absorption bands at 2140 /cm (4.67 microns) and 2135 /cm (4.68 microns). The relative abundance of solid-state CO to frozen H2O is approx. 0.13 while the abundance of XCN seems comparable to that of frozen CO.
The Millimeterwave Spectrum of Four Rare Ketene Isotopomers
NASA Astrophysics Data System (ADS)
Guarnieri, Antonio
2005-09-01
The pure rotational spectra in the ground vibrational state of (1,2-13C)ketene, H213C=13CO, (D2,1-13C)ketene, D2C=13CO, (D2,2-13C)ketene, D213C=CO, and (D2,18O)ketene, D2C=C18O, have been observed in the frequency region 200 - 350 GHz. All the spectral lines have been measured in natural abundances with a source modulated millimeterwave spectrometer. From the measured R-branch transitions a set of rotational and centrifugal distortion constants for each isotopomer could be derived, using the Watson S-reduction formalism. Further, the rotational spectra of the two isotopomers (4,5-D)ketene, D2CCO, and (4-D)ketene, DHCCO, which were already measured several years ago, have been extended to higher J-values and higher frequencies, as it is the case for all investigated isotopomers of this work. As a result of these studies a calculation of a mass-dependent structure will be the topic of a next paper.
Thz Spectroscopy of 13C Isotopic Species of a "weed": Acetaldehyde
NASA Astrophysics Data System (ADS)
Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.
2011-06-01
Our studies of the isotopic species of 13C and D isotopologues of methyl formate (HCOOCH_3), have allowed the detection of more than 600 lines in Orion. This confirms that many observed U-lines are coming from isotopic species of one of the most abundant molecules in space. Since its first detection in 1976 in SgrB2 and in Orion A, acetaldehyde (CH_3CHO) was detected in many other numerous objects. If its deuterated species (CD_3CHO and CH_3CDO) have been previously studied in the millimeterwave range, the data concerning the 13C species are limited to few lines measured in 1957 up to 40 GHz. In this context we decided to study the 13C species of acetaldehyde. Acetaldehyde molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with the Rho Axis Method. Recent versions of the codes include high orders term in order to reproduce the observed frequencies for large quantum numbers values as J-values as high as 70a,b,. Measurements and analysis of the rotational spectra of 13C isotopic species are in progress in Lille with a solid-state submillimetre-wave spectrometer (50-950 GHz), the first results will be presented. This work is supported by the contract ANR-08-BLAN-0054 and by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS). Carvajal, M.; Margulès, L.; Tercero, B.; et al.A&A 500, (2009) 1109 Margulès, L.; Huet, T. R.; Demaison J.; et al.,ApJ 714, (2010) 1120. Ikeda, M.; Ohishi, M.; Nummelin, A.; et al., ApJ, 560, (2001) 792 Kleiner, I.; Lopez, J.-C.; Blanco, S.; et al.J. Mol. Spectrosc. 197, (1999) 275 Elkeurti M.; Coudert, L. H.; Medvedev, I. R.; et al.J. Mol. Spectrosc. 263, (2010) 145 Kilb, R.W.; Lin, C.C.; and Wilson, E.B.J. Chem. Phys. 26, (1957) 1695 Kleiner, I. J. Mol. Spectrosc. 260, (2010) 1 Ilyushin, V.V.; Kryvda, A; and Alekseev, E;J. Mol. Spectrosc. 255, (2009) 32
Fujiwara, T; Kobayashi, Y; Kyogoku, Y; Kataoka, K
1986-01-05
Silk fibroin with the alanyl carboxyl carbon enriched with 13C was obtained by giving a diet containing 13C-enriched alanine to the larvae of Bombyx mori and Antheraea pernyi at the fifth instar. Sericin-free fibroin fibers were prepared from cocoons, and gut was made from the liquid silk in the gland. The final 13C content was about 13%. Cross polarization/magic angle sample spinning spectra at 25 MHz and 75 MHz were measured for each sample at different orientations. Spectra were simulated using the principal values and orientations of the shielding tensor in the alanine crystal. The results indicate that the beta-structure of the fibroin may be a little more flattened than the typical pleated sheet beta-structure.
VizieR Online Data Catalog: The mm and sub-mm spectra of 13C-glycolaldehydes (Haykal+, 2013)
NASA Astrophysics Data System (ADS)
Haykal, I.; Motiyenko, R. A.; Margules, L.; Huet, T. R.
2012-11-01
To allow the detection of the 13C-isotopologues of glycolaldeh the interstellar medium, their rotational spectra in the millimeter and submillimeter-wave regions were studied. The spectra of 13CH2OHCHO and CH2OH13CHO were recorded in the 150-945GHz spectral range in the laboratory using a solid-state submillimeter-wave spectrometer in Lille. The observed line frequencies were measured with accuracy, better than 30kHz up to 700GHz and 50kHz above. The analysis was performed using a standard Watson Hamiltonian. Around 10000 new lines were identified for each isotopologue. The spectroscopic parameters were determined for the ground and the three lowest vibrational states, respectively up to 945 and 630GHz. Previous microwave assignments of 13CH2OHCHO were not confirmed. The provided line-lists and sets of molecular parameters meet the needs for a first astrophysical search of 13C-glycolaldehydes. (2 data files).
Three-Dimensional Conformation of Folded Polymers in Single Crystals
NASA Astrophysics Data System (ADS)
Hong, You-lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu
2015-10-01
The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of 13C CH3 -labeled isotactic poly(1-butene) (i PB 1 ) in form III chiral single crystals blended with nonlabeled i PB 1 crystallized in dilute solutions under low supercooling. An advanced 13C - 13C double-quantum NMR technique probing the spatial proximity pattern of labeled 13C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals.
Gowda, Vasantha; Laitinen, Risto S; Telkki, Ville-Veikko; Larsson, Anna-Carin; Antzutkin, Oleg N; Lantto, Perttu
2016-12-06
The molecular, crystal, and electronic structures as well as spectroscopic properties of a mononuclear heteroleptic lanthanum(iii) complex with diethyldithiocarbamate and 1,10-phenanthroline ligands (3 : 1) were studied by solid-state 13 C and 15 N cross-polarisation (CP) magic-angle-spinning (MAS) NMR, X-ray diffraction (XRD), and first principles density functional theory (DFT) calculations. A substantially different powder XRD pattern and 13 C and 15 N CP-MAS NMR spectra indicated that the title compound is not isostructural to the previously reported analogous rare earth complexes with the space group P2 1 /n. Both 13 C and 15 N CP-MAS NMR revealed the presence of six structurally different dithiocarbamate groups in the asymmetric unit cell, implying a non-centrosymmetric packing arrangement of molecules. This was supported by single-crystal X-ray crystallography showing that the title compound crystallised in the triclinic space group P1[combining macron]. In addition, the crystal structure also revealed that one of the dithiocarbamate ligands has a conformational disorder. NMR chemical shift calculations employing the periodic gauge including projector augmented wave (GIPAW) approach supported the assignment of the experimental 13 C and 15 N NMR spectra. However, the best correspondences were obtained with the structure where the atomic positions in the X-ray unit cell were optimised at the DFT level. The roles of the scalar and spin-orbit relativistic effects on NMR shielding were investigated using the zeroth-order regular approximation (ZORA) method with the outcome that already the scalar relativistic level qualitatively reproduces the experimental chemical shifts. The electronic properties of the complex were evaluated based on the results of the natural bond orbital (NBO) and topology of the electron density analyses. Overall, we apply a multidisciplinary approach acquiring comprehensive information about the solid-state structure and the metal-ligand bonding of the heteroleptic lanthanum complex.
Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan
2014-01-01
(13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. Copyright © 2013 John Wiley & Sons, Ltd.
Gul-E-Noor, Farhana; Jee, Bettina; Pöppl, Andreas; Hartmann, Martin; Himsl, Dieter; Bertmer, Marko
2011-05-07
The process of water adsorption on a dehydrated Cu(3)(BTC)(2) (copper (II) benzene 1,3,5-tricarboxylate) metal-organic framework (MOF) was studied with (1)H and (13)C solid-state NMR. Different relative amounts of water (0.5, 0.75, 1, 1.5, 2, and 5 mole equivalents with respect to copper) were adsorbed via the gas phase. (1)H and (13)C MAS NMR spectra of dehydrated and water-loaded Cu(3)(BTC)(2) samples gave evidence on the structural changes due to water adsorption within the MOF material as well as information on water dynamics. The analysis of (1)H spinning sideband intensities reveals differences in the (1)H-(63/65)Cu hyperfine coupling between dehydrated and water-loaded samples. The investigation was continued for 60 days to follow the stability of the Cu(3)(BTC)(2) network under humid conditions. NMR data reveal that Cu(3)(BTC)(2) decomposes quite fast with the decomposition being different for different water contents. This journal is © the Owner Societies 2011
Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun
2015-06-02
Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.
Evidence for cis Amide Bonds in Peptoid Nanosheets.
Hudson, Benjamin C; Battigelli, Alessia; Connolly, Michael D; Edison, John; Spencer, Ryan K; Whitelam, Stephen; Zuckermann, Ronald N; Paravastu, Anant K
2018-05-17
Peptoid nanosheets are supramolecular protein-mimetic materials that form from amphiphilic polypeptoids with aromatic and ionic side chains. Nanosheets have been studied at the nanometer scale, but the molecular structure has been difficult to probe. We report the use of 13 C- 13 C dipolar recoupling solid-state NMR measurements to reveal the configuration of backbone amide bonds selected by 13 C isotopic labeling of adjacent α-carbons. Measurements on the same molecules in the amorphous state and in nanosheets revealed that amide bonds in the center of the amino block of peptoid (NaeNpe) 7 -(NceNpe) 7 (B28) favor the trans configuration in the amorphous state and the cis configuration in the nanosheet. This unexpected result contrasts with previous NMR and theoretical studies of short solvated peptoids. Furthermore, examination of the amide bond at the junction of the two charged blocks within B28 revealed a mixture of both cis and trans configurational states, consistent with the previously predicted brickwork-like intermolecular organization.
Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong
2013-01-01
Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.
Binding of methane to activated mineral surfaces - a methane sink on Mars?
NASA Astrophysics Data System (ADS)
Nørnberg, P.; Knak Jensen, S. J.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, Ebbe; Iversen, J. J.; Kondrup, J. C.
2015-10-01
Tumbling experiments that simulate the wind erosion of quartz grains in an atmosphere of 13 C-enriched methane are reported. The eroded grains are analyzed by 13C and 29 Si solid-state NMR techniques after several months of tumbling. The analysis shows that methane has reacted with the eroded surface to form covalent Si-CH3 bonds, which stay intact for temperatures up to at least 250oC. These findings offer a model for a methane sink that might explain the fast disappearance of methane on Mars.
A sink for methane on Mars? The answer is blowing in the wind
NASA Astrophysics Data System (ADS)
Knak Jensen, Svend J.; Skibsted, Jørgen; Jakobsen, Hans J.; ten Kate, Inge L.; Gunnlaugsson, Haraldur P.; Merrison, Jonathan P.; Finster, Kai; Bak, Ebbe; Iversen, Jens J.; Kondrup, Jens C.; Nørnberg, Per
2014-07-01
Tumbling experiments that mimic the wind erosion of quartz grains in an atmosphere of 13C-enriched methane are reported. The eroded grains are analyzed by 13C and 29Si solid-state NMR techniques after several months of tumbling. The analysis shows that methane has reacted with the eroded surface to form covalent Si-CH3 bonds, which stay intact for temperatures up to at least 250 °C. The NMR findings offer an explanation for the fast disappearance of methane on Mars.
Deuterium and carbon-13 NMR of the solid polymorphism of benzenehexoyl hexa-n-hexanoate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lifshitz, E.; Goldfarb,, D.; Vega, S.
Deuterium and carbon-13 NMR of specifically labeled benzenehexoyl hexa-n-hexanoate in the various solid-state phases are reported. The spectra exhibit dynamic line shapes which change discontinuously at the phase transitions. The results are interpreted in terms of sequential melting of the side chains on going from the low-temperature solid phases IV, III, etc., toward the liquid. In phase IV the molecules are very nearly static, except for fast rotation of the methyl groups about their C/sub 3/ axes. The results in phase III were quantitatively interpreted in terms of a two-site isomerization process involving simultaneous rotation by 95/sup 0/ about C/submore » 1/-C/sub 2/ and transition from gtg to g'g't (or equivalently g'tg' to ggt) for the rest of the chain. The specific rate of this reaction at 0/sup 0/C is approx. 10/sup 5/s/sup -1/. In phase II additional chain isomerization processes set-in which were, however, not analyzed quantitatively. Further motional modes, involving reorientation of whole chains about their C/sup ar/-O bonds, appear on going to phase I. In all solid phases the benzene ring remains static.« less
Southern, Scott A; Bryce, David L
2015-12-10
Group IV tetrel elements may act as tetrel bond donors, whereby a region of positive electrostatic potential (σ-hole) interacts with a Lewis base. The results of calculations of NMR parameters are reported for a series of model compounds exhibiting tetrel bonding from a methyl carbon to the oxygen or nitrogen atoms in various functional groups. The (13)C chemical shift (δiso) and the (1c)J((13)C,Y) coupling (Y = (17)O, (15)N) across the tetrel bond are recorded as a function of geometry. The sensitivity of the NMR parameters to the noncovalent interaction is demonstrated via an increase in δiso and in |(1c)J((13)C,Y)| as the tetrel bond shortens. Gauge-including projector-augmented wave density functional theory (DFT) calculations of δiso are reported for crystals that exhibit tetrel bonding in the solid state. Experimental δiso values for solid sarcosine and its tetrel-bonded salts corroborate the computational findings. This work offers new insights into tetrel bonding and facilitates the incorporation of tetrel bonds as restraints in NMR crystallographic structure refinement.
Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde
NASA Technical Reports Server (NTRS)
Wirstrom, E. S.; Charnley, S. B.; Geppert, W. D.; Persson, C. M.
2012-01-01
Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes it feasible to observe its less common isotopologues. As a step in our investigation of C-13 fractionation patterns in the ISM, we here present comparisons between observations of the C-13 fraction in formaldehyde, and chemical fractionation models.
Gutarra, Melissa L E; Godoy, Mateus G; Maugeri, Francisco; Rodrigues, Maria Isabel; Freire, Denise M G; Castilho, Leda R
2009-11-01
The production of a lipase by a wild-type Brazilian strain of Penicillium simplicissimum in solid-state fermentation of babassu cake, an abundant residue of the oil industry, was studied. The enzyme production reached about 90 U/g in 72 h, with a specific activity of 4.5 U/mg of total proteins. The crude lipase showed high activities at 35-60 degrees C and pH 4.0-6.0, with a maximum activity at 50 degrees C and pH 4.0-5.0. Enzyme stability was enhanced at pH 5.0 and 6.0, with a maximum half-life of 5.02 h at 50 degrees C and pH 5.0. Thus, this lipase shows a thermophilic and thermostable behavior, what is not common among lipases from mesophilic filamentous fungi. The crude enzyme catalysed the hydrolysis of triglycerides and p-nitrophenyl esters (C4:0-C18:0), preferably acting on substrates with medium-chain fatty acids. This non-purified lipase in addition to interesting properties showed a reduced production cost making feasible its applicability in many fields.
Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical
NASA Astrophysics Data System (ADS)
Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd
2015-03-01
Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.
Sintering of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) with/without SrTiO3 Dopant
NASA Technical Reports Server (NTRS)
Dynys, F.; Sayir, A.; Heimann, P. J.
2004-01-01
The perovskite composition, BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta), displays excellent protonic conduction at high temperatures making it a desirable candidate for hydrogen separation membranes. This paper reports on the sintering behavior of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders doped with SrTiO3. Two methods were used to synthesize BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders: (1) solid state reaction and (2) wet chemical co-precipitation. Co-precipitated powder crystallized into the perovskite phase at 1000 C for 4 hrs. Complete reaction and crystallization of the perovskite phase by solid state was achieved by calcining at 1200 C for 24 hrs. Solid state synthesis produced a coarser powder with an average particle size of 1.3 microns and surface area of 0.74 sq m/g. Co-precipitation produced a finer powder with a average particle size of 65 nm and surface area of 14.9 sq m/g. Powders were doped with 1, 2, 5, and 10 mole % SrTiO3. Samples were sintered at 1450 C, 1550 C and 1650 C. SrTiO3 enhances sintering, optimal dopant level is different for powders synthesized by solid state and co-precipitation. Both powders exhibit similar grain growth behavior. Dopant levels of 5 and 10 mole % SrTiO3 significantly enhances the grain size.
USDA-ARS?s Scientific Manuscript database
Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...
Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K.
Vuichoud, Basile; Canet, Estel; Milani, Jonas; Bornet, Aurélien; Baudouin, David; Veyre, Laurent; Gajan, David; Emsley, Lyndon; Lesage, Anne; Copéret, Christophe; Thieuleux, Chloé; Bodenhausen, Geoffrey; Koptyug, Igor; Jannin, Sami
2016-08-18
We report a simple and general method for the hyperpolarization of condensed gases by dynamic nuclear polarization (DNP). The gases are adsorbed in the pores of structured mesoporous silica matrices known as HYPSOs (HYper Polarizing SOlids) that have paramagnetic polarizing agents covalently bound to the surface of the mesopores. DNP is performed at low temperatures and moderate magnetic fields (T = 1.2 K and B0 = 6.7 T). Frequency-modulated microwave irradiation is applied close to the electron spin resonance frequency (f = 188.3 GHz), and the electron spin polarization of the polarizing agents of HYPSO is transferred to the nuclear spins of the frozen gas. A proton polarization as high as P((1)H) = 70% can be obtained, which can be subsequently transferred to (13)C in natural abundance by cross-polarization, yielding up to P((13)C) = 27% for ethylene.
USDA-ARS?s Scientific Manuscript database
Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions...
NASA Astrophysics Data System (ADS)
Zhang, Rongchun; Damron, Joshua; Vosegaard, Thomas; Ramamoorthy, Ayyalusamy
2015-01-01
Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional 1H-13C dipolar coupling/chemical shift correlation experiment using 13C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H - w1C = ±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly 13C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of 1H-13C dipolar couplings are insensitive to 1H/13C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated 1H detected avenues for ultrafast MAS.
NASA Astrophysics Data System (ADS)
Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria
2008-08-01
We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.
Kametani, Shunsuke; Tasei, Yugo; Nishimura, Akio; Asakura, Tetsuo
2017-08-09
Polyalanine (polyA) sequences are well known as the simplest sequence that naturally forms anti-parallel β-sheets and constitute a key element in the structure of spider and wild silkworm silk fibers. We have carried out a systematic analysis of the packing of anti-parallel β-sheets for (Ala) n , n = 5, 6, 7 and 12, using primarily 13 C solid-state NMR and MD simulation. HFIP and TFA are frequently used as the dope solvents for recombinant silks, and polyA was solidified from both HFIP and TFA solutions by drying. An analysis of Ala Cβ peaks in the 13 C CP/MAS NMR spectra indicated that polyA from HFIP was mainly rectangular but polyA from TFA was mainly staggered. The transition from the rectangular to the staggered arrangement in (Ala) 6 was observed for the first time from the change in the Ala Cβ peak through heat treatment at 200 °C for 4 h. The removal of the bound water was confirmed by thermal analysis. This transition could be reproduced by MD simulation of (Ala) 6 molecules at 200 °C after removal of the bound water molecules. In this way, the origin of the stability of the different packing arrangements of polyA was clarified.
Fine and hyperfine collisional excitation of C6H by He
NASA Astrophysics Data System (ADS)
Walker, Kyle M.; Lique, François; Dawes, Richard
2018-01-01
Hydrogenated carbon chains have been detected in interstellar and circumstellar media and accurate modelling of their abundances requires collisional excitation rate coefficients with the most abundant species. Among them, the C6H molecule is one of the most abundant towards many lines of sight. Hence, we determined fine and hyperfine-resolved rate coefficients for the excitation of C6H(X2Π) due to collisions with He. We present the first interaction potential energy surface for the C6H-He system, obtained from highly correlated ab initio calculations and characterized by a large anisotropy due to the length of the molecule. We performed dynamical calculations for transitions among the first fine structure levels (up to J = 30.5) of both spin-orbit manifolds of C6H using the close-coupling method, and rate coefficients are determined for temperatures ranging from 5 to 100 K. The largest rate coefficients for even ΔJ transitions conserve parity, while parity-breaking rate coefficients are favoured for odd ΔJ. Spin-orbit changing rate coefficients are several orders of magnitude lower than transitions within a single manifold. State-to-state hyperfine-resolved cross-sections for the first levels (up to J = 13.5) in the Ω = 3/2 spin-orbit manifold are deduced using recoupling techniques. Rate coefficients are obtained and the propensity rule ΔJ = ΔF is seen. These new data will help determine the abundance of C6H in astrophysical environments such as cold dense molecular clouds, star-forming regions and circumstellar envelopes, and will help in the interpretation of the puzzling C6H-/C6H abundance ratios deduced from observations.
Abundance of (14)C in biomass fractions of wastes and solid recovered fuels.
Fellner, Johann; Rechberger, Helmut
2009-05-01
In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO(2) emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes (14)C and (12)C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in (14)C and reflect the (14)CO(2) abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying (14)C content of biogenic matter, depending on the period of growth. In the present paper (14)C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated (14)C content of the materials investigated ranges between 98 and 135pMC.
Phyo, Pyae; Wang, Tuo; Xiao, Chaowen; Anderson, Charles T; Hong, Mei
2017-09-11
Significant cellulose-pectin interactions in plant cell walls have been reported recently based on 2D 13 C solid-state NMR spectra of intact cell walls, but how these interactions affect cell growth has not been probed. Here, we characterize two Arabidopsis thaliana lines with altered expression of the POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1) gene, which encodes a polygalacturonase that cleaves homogalacturonan (HG). PGX1 AT plants overexpress PGX1, have HG with lower molecular weight, and grow larger, whereas pgx1-2 knockout plants have HG with higher molecular weight and grow smaller. Quantitative 13 C solid-state NMR spectra show that PGX1 AT cell walls have lower galacturonic acid and xylose contents and higher HG methyl esterification than controls, whereas high molecular weight pgx1-2 walls have similar galacturonic acid content and methyl esterification as controls. 1 H-transferred 13 C INEPT spectra indicate that the interfibrillar HG backbones are more aggregated whereas the RG-I side chains are more dispersed in PGX1 AT cell walls than in pgx1-2 walls. In contrast, the pectins that are close to cellulose become more mobile and have weaker cross peaks with cellulose in PGX1 AT walls than in pgx1-2 walls. Together, these results show that polygalacturonase-mediated plant growth is accompanied by increased esterification and decreased cross-linking of HG, increased aggregation of interfibrillar HG, and weaker HG-cellulose interactions. These structural and dynamical differences give molecular insights into how pectins influence wall dynamics during cell growth.
2-Octyl thiophene based three ring mesogens: solid state (13)C NMR and XRD investigations.
Veeraprakash, B; Lobo, Nitin P; Narasimhaswamy, T; Mandal, A B
2015-08-14
2-Octyl thiophene based three-ring mesogens namely 4-n-alkoxyphenyl 4-(5-n-octyl-2-thienyl)benzoates are synthesized by employing palladium acetate based direct arylation. The alkoxy terminal is varied with even carbons from C2 to C14 and enantiotropic polymesomorphism is noticed for all the homologs. Accordingly, phase sequence consisting of nematic, smectic A, smectic C and smectic B is seen for mesogens with terminal chains C6, C8, C10 and C12 on cooling the isotropic phase. For mesogens with C2, C4, C8 and C10 terminal alkoxy chains, the mesophase assignment from hot-stage optical microscopy and differential scanning calorimetry is further confirmed by variable temperature powder X-ray diffraction measurements. The appearance of smectic B phase is established by noticing sharp and intense peaks in both small-angle and wide-angle regions. For a representative mesogen, i.e. T10, high-resolution solid-state (13)C NMR investigations are carried out in all the phases, viz. nematic, smectic A, smectic C and smectic B phases. The orientational order parameters calculated from (13)C-(1)H dipolar couplings from 2D SAMPI-4 experiments are found to be 0.44, 0.67, 0.73 and 0.79 in nematic, smectic A, smectic C and smectic B mesophases for the center phenyl ring respectively. Remarkably, the thiophene order parameter in all mesophases is found to be higher than that of phenyl rings and is explained by considering the molecular shape, which has a terminal bend. Further, the mesogens are found to be photoemissive in chloroform solution with an emission band at ∼410 nm.
Nie, Zhiqiang; Zheng, Yu; Wang, Min; Han, Yue; Wang, Yuenan; Luo, Jianmei; Niu, Dandan
2013-11-01
Tianjin duliu mature vinegar was one of famous Chinese traditional vinegars. The unique flavor and taste of vinegar are mainly generated by the multitudinous microorganisms during fermentation. In this research, the composition and succession of microbial communities in the entire solid-state fermentation were investigated, including starter daqu and acetic acid fermentation (AAF). Molds and yeasts in daqu, including Aspergillus, Saccharomycopsis and Pichia, decreased in AAF. The bacterial compositions increased from four genera in daqu to more than 13 genera in AAF. Principal component analysis showed that Acetobacter, Gluconacetobacter, Lactobacillus and Nostoc were dominant bacteria that were correlated well with AAF process. In the early fermentation period, lactic acid bacteria (LAB) decreased while acetic acid bacteria and Nostoc increased rapidly with the accumulation of total acids. Then, the abundance and diversity of LAB increased (more than 80%), indicating that LAB had important influences on the flavor and taste of vinegar. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kojima, Taro; Higashi, Kenjirou; Suzuki, Toyofumi; Tomono, Kazuo; Moribe, Kunikazu; Yamamoto, Keiji
2012-10-01
The stabilization mechanism of a supersaturated solution of mefenamic acid (MFA) from a solid dispersion with EUDRAGIT(®) EPO (EPO) was investigated. The solid dispersions were prepared by cryogenic grinding method. Powder X-ray diffractometry, in vitro dissolution test, in vivo oral absorption study, infrared spectroscopy, and solid- and solution-state NMR spectroscopies were used to characterize the solid dispersions. Dissolution tests in acetate buffer (pH 5.5) revealed that solid dispersion showed > 200-fold higher concentration of MFA. Supersaturated solution was stable over 1 month and exhibited improved oral bioavailability of MFA in rats, with a 7.8-fold higher area under the plasma concentration-versus-time curve. Solid-state (1)H spin-lattice relaxation time (T(1)) measurement showed that MFA was almost monomolecularly dispersed in the EPO polymer matrix. Intermolecular interaction between MFA and EPO was indicated by solid-state infrared and (13)C-T(1) measurements. Solution-state (1)H-NMR measurement demonstrated that MFA existed in monomolecular state in supersaturated solution. (1)H-T(1) and difference nuclear Overhauser effect measurements indicated that cross relaxation occurred between MFA and EPO due to the small distance between them. The formation and high stability of the supersaturated solution were attributable to the specifically formed intermolecular interactions between MFA and EPO.
Solid state amorphization kinetic of alpha lactose upon mechanical milling.
Caron, Vincent; Willart, Jean-François; Lefort, Ronan; Derollez, Patrick; Danède, Florence; Descamps, Marc
2011-11-29
It has been previously reported that α-lactose could be totally amorphized by ball milling. In this paper we report a detailed investigation of the structural and microstructural changes by which this solid state amorphization takes place. The investigations have been performed by Powder X-ray Diffraction, Solid State Nuclear Magnetic Resonance ((13)C CP-MAS) and Differential Scanning Calorimetry. The results reveal the structural complexity of the material in the course of its amorphization so that it cannot be considered as a simple mixture made of a decreasing crystalline fraction and an increasing amorphous fraction. Heating this complexity can give rise to a fully nano-crystalline material. The results also show that chemical degradations upon heating are strongly connected to the melting process. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straasø, Lasse A.; Shankar, Ravi; Nielsen, Niels Chr.
The homonuclear radio-frequency driven recoupling (RFDR) experiment is commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological samples due to its ease of implementation, stability towards fluctuations/missetting of radio-frequency (rf) field strength, and in general low rf requirements. A theoretical operator-based Floquet description is presented to appreciate the effect of having a temporal displacement of the π-pulses in the RFDR experiment. From this description, we demonstrate improved transfer efficiency for the RFDR experiment by generating an adiabatic passage through the zero-quantum recoupling condition. We have compared the performances of RFDR and the improved sequence tomore » mediate efficient {sup 13}CO to {sup 13}C{sub α} polarization transfer for uniformly {sup 13}C,{sup 15}N-labeled glycine and for the fibril forming peptide SNNFGAILSS (one-letter amino acid codes) uniformly {sup 13}C,{sup 15}N-labeled at the FGAIL residues. Using numerically optimized sweeps, we get experimental gains of approximately 20% for glycine where numerical simulations predict an improvement of 25% relative to the standard implementation. For the fibril forming peptide, using the same sweep parameters as found for glycine, we have gains in the order of 10%–20% depending on the spectral regions of interest.« less
Determination of the Electronic Density of States of YBa2Cu3O7-delta
1991-10-01
Junod in Physical Properties of High Temperature Superconductors II, ed. by D. M. Ginsberg (World Scientific, Singapore, 1990), p. 43. 3. J. E. Gordon...1987). 12. A. Junod , et al., Physica C159, 215-225 (1989). 13. W. Reichardt, private communication. A tabulation of Fca.c(w)/Gcac( ) was provided to us...1990). 25. A. junod , et al., Physica C1621 64 , 1401 (1989). 26. V. Kresin and S. Wolf, solid State Comm. 63, 1141 (1987). 27. Steven M. Anlage, et
Mobile humic acids and recalcitrant calcium humate in eight US soils
USDA-ARS?s Scientific Manuscript database
Both excitation-emission matrix (EEM) fluorescence spectroscopy and solid state C-13 nuclear magnetic resonance (NMR) spectroscopy have been applied for studying soil organic matter (SOM), but rarely have both techniques been employed together. We analyzed the fluorescence features of water extracta...
Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens
2012-06-20
The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chemical and microscopic characterization of outer seed coats of fossil and extant water plants
NASA Astrophysics Data System (ADS)
van Bergen, P. F.; Goñi, M.; Collinson, M. E.; Barrie, P. J.; Damsté, J. S. Sinninghe; De Leeuw, J. W.
1994-09-01
Sclerotic outer seed coat layers (testae) of three fossil and two extant water plant species were analyzed using scanning electron and light microscopy in addition to Curie-point pyrolysis, solid state 13C NMR, and CuO oxidation. Comparison between the chemical results from the fossil and extant samples reveals that the original resistant constituents in the sclerotic testae are native lignin-celluloses which are transformed to polyphenol macromolecules recognized in the fossil samples. The combination of microscopic and chemical data provides new insights regarding the early diagenetic processes by which lignin-cellulose-containing plant remains may have been transformed. In particular, the unaltered morphology in combination with major chemical modifications is used as the basis to postulate the timing and nature of lignin transformations. The combination of pyrolysis, solid state 13C NMR, and CuO oxidation is shown to be a powerful tool to characterize the chemical structure of testae of fossil and extant water plants.
Bates, A.L.; Hatcher, P.G.
1989-01-01
A series of samples taken from the cross section of a 3-m-diameter fossilized gymnospermous log (Araucariaceae) in the Yallourn Seam of the Australian brown coals was examined by solid state 13C nuclear magnetic resonance to delineate chemical changes related to the combined processes of peatification and coalification. The results show that cellulosic materials were degraded and lost on the periphery of the log, however, the degree of such degradation in the central core is substantially less. The lignin is uniformly altered by coalification reactions to a macromolecular substance displaying decreased aryl ether linkages but significantly greater amounts of carbon linkages compared to modern lignin. Changes in the methoxyl carbon contents of lignin in cross section reveal demethylation reactions, but these do not appear to be related to degree of carbon linking. Both the degredation of cellulosic materials and demethylation of lignin appear to be early diagenetic processes occurring during peatification independently of the coalification reactions. ?? 1989.
Xia, H; Matharu, A S
2017-09-21
Mango peel is the major by-product of mango processing, and compromises 7-24% of the total mango weight. In this study, pectin was extracted from mango peel waste by using subcritical water extraction (SWE) in the absence of mineral acid. A highest yield of 18.34% was achieved from the Kesar variety and the pectin was characterised using ATR-IR spectroscopy, TGA and 13 C solid-state NMR spectroscopy to confirm the structure. The degree of esterification (DE) of the pectin was analysed with both titrimetry and 13 C solid-state NMR spectroscopy, and a high DE (>70%) was observed for all three varieties (Keitt, Sindhri and Kesar). This is the first report on acid-free subcritical water extraction of pectin from mango peel, which provides a green route for the valorisation of mango peel waste and contributes to a source of biobased materials and chemicals for a sustainable 21 st century.
Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam
2015-03-01
Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively (13)C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tfaily, Malak M.; Cooper, William T.; Kostka, Joel E.; Chanton, Patrick R.; Schadt, Christopher W.; Hanson, Paul J.; Iversen, Colleen M.; Chanton, Jeffrey P.
2014-04-01
We characterized peat decomposition at the Marcell Experimental Forest (MEF), Minnesota, USA, to a depth of 2 m to ascertain the underlying chemical changes using Fourier transform infrared (FT IR) and 13C nuclear magnetic resonance (NMR) spectroscopy) and related these changes to decomposition proxies C:N ratio, δ13C and δ15N, bulk density, and water content. FT IR determined that peat humification increased rapidly between 30 and 75 cm, indicating a highly reactive intermediate-depth zone consistent with changes in C:N ratio, δ13C and δ15N, bulk density, and water content. Peat decomposition at the MEF, especially in the intermediate-depth zone, is mainly characterized by preferential utilization of O-alkyl-C, carboxyl-C, and other oxygenated functionalities with a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75 cm, less change was observed but aromatic functionalities and lignin accumulated with depth. Significant correlations with humification indices, identified by FT IR spectroscopy, were found for C:N ratios. Incubation studies at 22°C revealed the highest methane production rates, greatest CH4:CO2 production ratios, and significant O-alkyl-C utilization within this 30 and 75 cm zone. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as excellent proxies for soil decomposition rate and should be a sensitive indicator of the response of the solid phase peat to increased temperatures caused by climate change and the field study manipulations that are planned to occur at this site. Radiocarbon signatures of microbial respiration products in deeper pore waters at the MEF resembled the signatures of more modern dissolved organic carbon rather than solid phase peat, indicating that recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. These results indicate that carbon cycling at depth at the MEF is not isolated from surface processes.
Chemical composition of the metal-poor carbon star HD 187216.
NASA Astrophysics Data System (ADS)
Kipper, T.; Jorgensen, U. G.
1994-10-01
We have derived C, N and metal abundances for the metal-deficient late-type (C3,3CH) CH giant HD 187216 (α_2000.0_=19h24m18.6s, δ_2000.0_=+85deg21'56.5"). The oxygen abundance was fixed at logA(O)=7.0, assuming that it follows the trend of oxygen overabundance relative to iron found in halo stars in general. New model atmospheres of metal-poor carbon stars were calculated with continuum opacity sources and molecular lines of CO, CN, C_2_, HCN, C_2_H_2_ and C_3_. Numerical experiments with various assumed input parameters, such as effective temperature, T_eff_, surface gravity, logg, microturbulent velocity, ξ_t_, and dissociation energy of the CN molecule, D_0_(CN), were performed when constructing the model atmospheres and calculating the synthetic spectra. The atmospheric model with T_eff_=3500K, logg=0.4, ξ_t_=3km/s, ^12^C/^13^C=8 and D_0_(CN)=7.9eV was adopted for abundance analysis. The star was found to be extremely metal-deficient, [Fe/H]=-2.48. The carbon abundance is logA(C)=7.33, the nitrogen abundance is logA(N)=5.60 corresponding to [C/Fe]=+1.3, [N/Fe]=+0.2, and [N/C]=-1.1. The carbon isotopic abundance ratio is ^12^C/^13^C=7.0. The abundances of heavy elements produced in the s-process are larger than in early-type CH stars. The ratio of overabundance of heavier s-process elements to that of lighter ones, [hs/ls]=1.0, points to a very high neutron exposure in a single irradiation event. Search for binarity of HD 187216 has failed, and the star can be an intrinsic asymptotic giant branch (AGB) carbon star with some similarities to the C stars in the dwarf galaxies. If the CH characteristics are due to mass transfer it is most likely oxygen-rich material that has been donated. The star possesses both a low nitrogen abundance and a low ^12^C/^13^C ratio, in conflict with the standard stellar evolution theory.
NASA Astrophysics Data System (ADS)
Leite, Rodrigo Simões Ribeiro; Bocchini, Daniela Alonso; da Silva Martins, Eduardo; Silva, Dênis; Gomes, Eleni; da Silva, Roberto
This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme remaining 100% active when incubated at 75°C for 1 h.
Synthesis and characterization of hydrogel films of carboxymethyl tamarind gum using citric acid.
Mali, Kailas K; Dhawale, Shashikant C; Dias, Remeth J
2017-12-01
The objective of this study was to synthesize and characterize citric acid crosslinked carboxymethyl tamarind gum (CMTG) hydrogels films. The hydrogel films were characterized by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, solid state 13 C-nuclear magnetic resonance ( 13 C NMR) spectroscopy and differential scanning calorimeter (DSC). The prepared hydrogel films were evaluated for the carboxyl content and swelling ratio. The model drug moxifloxacin hydrochloride was loaded into hydrogels films and drug release was studied at pH 7.4. The hemolysis assay was used to study the biocompatibility of hydrogel films. The results of ATR-FTIR, solid state 13 C NMR and DSC confirmed the formation of ester crosslinks between citric acid and CMTG. The total carboxyl content of hydrogel film was found to be decreased when amount of CMTG was increased. The swelling of hydrogel film was found to be decreased with increase in curing temperature and time. CMTG hydrogel films showed high drug loading with non-Fickian release mechanism suggesting controlled release of drug. The hydrogel films were found to be biocompatible. It can be concluded that the citric acid can be used for the preparation of CMTG hydrogel films. Further, CMTG hydrogel film can be used potentially for controlled release of drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert
2014-01-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201
Thurber, Kent R; Tycko, Robert
2014-05-14
We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.
NASA Astrophysics Data System (ADS)
Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert
2014-07-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.
Yau, Wai-Ming; Thurber, Kent R; Tycko, Robert
2014-07-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized (13)C NMR signals from (15)N,(13)C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8s for (1)H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute (13)C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals. Published by Elsevier Inc.
Solid-state NMR reveals differential carbohydrate utilization in diapausing Culex pipiens
NASA Astrophysics Data System (ADS)
Chang, James; Singh, Jugeshwar; Kim, Sungshil; Hockaday, William C.; Sim, Cheolho; Kim, Sung Joon
2016-11-01
Culex pipiens is the mosquito that vectors West Nile Virus and other human-pathogenic flavivruses in North America. In response to shortened day length and lower temperatures, female Cx. pipiense prepares for the diapause by actively feeding on carbohydrates to increase the biosynthesis of glycogen and lipid to store energy for overwintering. The effect of feeding different carbohydrates on glycogen and lipid biosynthesis in diapausing mosquitoes was investigated in vivo using 13C solid-state NMR. Diapause-destined adult females and nondiapausing counterparts after adult eclosion were fed with three different carbohydrate sources for 7 days: 1) 10% sucrose, 2) 10% D-[13C6]glucose, and 3) 1% D-[13C6]glucose co-provisioned with 10% sucrose. NMR measurements show that sucrose and glucose are metabolized differently in diapausing mosquitoes. Mosquitoes fed on sucrose primarily accumulate glycogen with increased branching structures, but less of lipids. In contrast, mosquitoes fed exclusively on glucose show accumulation of both glycogen and lipid with increased aliphatic chain length. Glucose is exclusively metabolized for the biosynthesis of triacylglyceride when mosquitoes were co-fed with sucrose. Our findings provide novel insights into the insect carbohydrate metabolism that governs glycogen and lipid biosynthesis during diapause, which is fundamental for the insect survival during inimical environments.
Romaniuk, Joseph A H; Cegelski, Lynette
2018-06-11
Gram-positive bacteria surround themselves with a multilayered macromolecular cell wall that is essential to cell survival and serves as a major target for antibiotics. The cell wall of Staphylococcus aureus is composed of two major structural components, peptidoglycan (PG) and wall teichoic acid (WTA), together creating a heterogeneous and insoluble matrix that poses a challenge to quantitative compositional analysis. Here, we present 13 C cross polarization magic angle spinning solid-state nuclear magnetic resonance (NMR) spectra of intact cell walls, purified PG, and purified WTA. The spectra reveal the clear molecular differences in the two polymers and enable quantification of PG and WTA in isolated cell walls, an attractive alternative to estimating teichoic acid content from a phosphate analysis of completely pyrolyzed cell walls. Furthermore, we discovered that unique PG and WTA spectral signatures could be identified in whole-cell NMR spectra and used to compare PG and WTA levels among intact bacterial cell samples. The distinguishing whole-cell 13 C NMR contributions associated with PG include the GlcNAc-MurNAc sugar carbons and glycyl α-carbons. WTA contributes carbons from the phosphoribitol backbone. Distinguishing 15 N spectral signatures include glycyl amide nitrogens in PG and the esterified d-alanyl amine nitrogens in WTA. 13 C NMR analysis was performed with samples at natural abundance and included 10 whole-cell sample comparisons. Changes consistent with altered PG and WTA content were detected in whole-cell spectra of bacteria harvested at different growth times and in cells treated with tunicamycin. This use of whole-cell NMR provides quantitative parameters of composition in the context of whole-cell activity.
On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.
Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias
2008-09-01
The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.
Moons, Hans; Łapok, Łukasz; Loas, Andrei; Van Doorslaer, Sabine; Gorun, Sergiu M
2010-10-04
The synthesis, crystal structure, and electronic properties of perfluoro-isopropyl-substituted perfluorophthalocyanine bearing a copper atom in the central cavity (F(64)PcCu) are reported. While most halogenated phthalocyanines do not exhibit long-term order sufficient to form large single crystals, this is not the case for F(64)PcCu. Its crystal structure was determined by X-ray analysis and linked to the electronic properties determined by electron paramagnetic resonance (EPR). The findings are corroborated by density functional theory (DFT) computations, which agree well with the experiment. X-band continuous-wave EPR spectra of undiluted F(64)PcCu powder, indicate the existence of isolated metal centers. The electron-withdrawing effect of the perfluoroalkyl (R(f)) groups significantly enhances the complexes solubility in organic solvents like alcohols, including via their axial coordination. This coordination is confirmed by X-band (1)H HYSCORE experiments and is also seen in the solid state via the X-ray structure. Detailed X-band CW-EPR, X-band Davies and Mims ENDOR, and W-band electron spin-echo-detected EPR studies of F(64)PcCu in ethanol allow the determination of the principal g values and the hyperfine couplings of the metal, nitrogen, and fluorine nuclei. Comparison of the g and metal hyperfine values of F(64)PcCu and other PcCu complexes in different matrices reveals a dominant effect of the matrix on these EPR parameters, while variations in the ring substituents have only a secondary effect. The relatively strong axial coordination occurs despite the diminished covalency of the C-N bonds and potentially weakening Jahn-Teller effects. Surprisingly, natural abundance (13)C HYSCORE signals could be observed for a frozen ethanol solution of F(64)PcCu. The (13)C nuclei contributing to the HYSCORE spectra could be identified as the pyrrole carbons by means of DFT. Finally, (19)F ENDOR and easily observable paramagnetic NMR were found to relate well to the DFT computations, revealing negligible isotropic hyperfine (Fermi contact) contributions. The single-site isolation in solution and solid state and the relatively strong coordination of axial ligands, both attributed to the introduction of R(f) groups, are features important for materials and catalyst design.
Comparison of Photon Stimulated Dissociation of Gas Phase, Solid, and Chemisorbed Water.
1983-09-01
C.C. [25] T. Shibaguchi. H . Onuki and R. Onaka 1. Phys. Soc. Parks. G. Loubriel and ,. H . Stulen, Chem. Phys. Letter Japan 42 (1977) 152. 80 (1981) 48...reduces the effectiveness of th& Ŗa " I " excitation for H desorption. The lbT24a1 and ib’T13aa two bole-one electron states are sufficiently long...peristent for H ’ desorption from the HO phases studied. The core level PSD specutm from solid DO is also Jnterpreted. Al of the results are found to be
Garnero, Claudia; Chattah, Ana Karina; Aloisio, Carolina; Fabietti, Luis; Longhi, Marcela
2018-05-10
Norfloxacin, an antibiotic that exists in different solid forms, has very unfavorable properties in terms of solubility and stability. Binary complexes of norfloxacin, in the solid form C, and β-cyclodextrin were procured by the kneading method and physical mixture. Their effect on the solubility, the dissolution rate, and the chemical and physical stability of norfloxacin was evaluated. To perform stability studies, the solid samples were stored under accelerated storage conditions, for a period of 6 months. Physical stability was monitored through powder X-ray diffraction, high-resolution 13 C solid-state nuclear magnetic resonance, and scanning electron microscopy. The results showed evidence that the kneaded complex increased and modulated the dissolution rate of norfloxacin C. Furthermore, it was demonstrated that the photochemical stability was increased in the complex, without affecting its physical stability. The results point to the conclusion that the new kneading complex of norfloxacin constitutes an alternative tool to formulate a potential oral drug delivery system with improve oral bioavailability.
Katahira, Rui; Sluiter, Justin B; Schell, Daniel J; Davis, Mark F
2013-04-03
The lignin content measured after dilute sulfuric acid pretreatment of corn stover indicates more lignin than could be accounted for on the basis of the untreated corn stover lignin content. This phenomenon was investigated using a combination of (13)C cross-polarization/magic-angle spinning (CP/MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy and lignin removal using acid chlorite bleaching. Only minimal contamination with carbohydrates and proteins was observed in the pretreated corn stover. Incorporating degradation products from sugars was also investigated using (13)C-labeled sugars. The results indicate that sugar degradation products are present in the pretreatment residue and may be intimately associated with the lignin. Studies comparing whole corn stover (CS) to extractives-free corn stover [CS(Ext)] clearly demonstrated that extractives are a key contributor to the high-lignin mass balance closure (MBC). Sugars and other low molecular weight compounds present in plant extractives polymerize and form solids during pretreatment, resulting in apparent Klason lignin measurements that are biased high.
Freeman, Christopher J; Thacker, Robert W; Baker, David M; Fogel, Marilyn L
2013-06-01
By forming symbiotic interactions with microbes, many animals and plants gain access to the products of novel metabolic pathways. We investigated the transfer of symbiont-derived carbon and nitrogen to the sponges Aplysina cauliformis, Aplysina fulva, Chondrilla caribensis, Neopetrosia subtriangularis and Xestospongia bocatorensis, all of which host abundant microbial populations, and Niphates erecta, which hosts a sparse symbiont community. We incubated sponges in light and dark bottles containing seawater spiked with (13)C- and (15)N-enriched inorganic compounds and then measured (13)C and (15)N enrichment in the microbial (nutrient assimilation) and sponge (nutrient transfer) fractions. Surprisingly, although most sponges hosting abundant microbial communities were more enriched in (13)C than N. erecta, only N. subtriangularis was more enriched in (15)N than N. erecta. Although photosymbiont abundance varied substantially across species, (13)C and (15)N enrichment was not significantly correlated with photosymbiont abundance. Enrichment was significantly correlated with the ratio of gross productivity to respiration (P:R), which varied across host species and symbiont phylotype. Because irradiance impacts P:R ratios, we also incubated A. cauliformis in (13)C-enriched seawater under different irradiances to determine whether symbiont carbon fixation and transfer are dependent on irradiance. Carbon fixation and transfer to the sponge host occurred in all treatments, but was greatest at higher irradiances and was significantly correlated with P:R ratios. Taken together, these results demonstrate that nutrient transfer from microbial symbionts to host sponges is influenced more by host-symbiont identities and P:R ratios than by symbiont abundance.
D’haeseleer, Patrik; Khudyakov, Jane; Burd, Helcio; Hadi, Masood; Simmons, Blake A.; Singer, Steven W.; Thelen, Michael P.; VanderGheynst, Jean S.
2013-01-01
High-solids incubations were performed to enrich for microbial communities and enzymes that decompose rice straw under mesophilic (35°C) and thermophilic (55°C) conditions. Thermophilic enrichments yielded a community that was 7.5 times more metabolically active on rice straw than mesophilic enrichments. Extracted xylanase and endoglucanse activities were also 2.6 and 13.4 times greater, respectively, for thermophilic enrichments. Metagenome sequencing was performed on enriched communities to determine community composition and mine for genes encoding lignocellulolytic enzymes. Proteobacteria were found to dominate the mesophilic community while Actinobacteria were most abundant in the thermophilic community. Analysis of protein family representation in each metagenome indicated that cellobiohydrolases containing carbohydrate binding module 2 (CBM2) were significantly overrepresented in the thermophilic community. Micromonospora, a member of Actinobacteria, primarily housed these genes in the thermophilic community. In light of these findings, Micromonospora and other closely related Actinobacteria genera appear to be promising sources of thermophilic lignocellulolytic enzymes for rice straw deconstruction under high-solids conditions. Furthermore, these discoveries warrant future research to determine if exoglucanases with CBM2 represent thermostable enzymes tolerant to the process conditions expected to be encountered during industrial biofuel production. PMID:24205054
NMR spectroscopic study of organic phosphate esters coprecipitated with calcite
NASA Astrophysics Data System (ADS)
Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea
2016-06-01
Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small signals occur with characteristics consistent with phosphate monoesters. The results of this study indicate that trace- to minor concentrations of dissolved organic molecules can be effectively taken up during calcite precipitation and incorporated in the structure, leaving a resilient record of materials present during crystallization.
Fungal carbon sources in a pine forest: evidence from a 13C-labeled global change experiment
Erik A. Hobbie; Kirsten S. Hofmockel; Linda T.A. Van Diepen; Erik A. Lilleskov; Andrew P. Oiumette; Adrien C. Finzi
2014-01-01
We used natural abundance 13C:12C (δ13C) and 8 yr of labeling with 13C-depleted CO2 in a Pinus taeda Free Air CO2 Enrichment (FACE) experiment to investigate carbon sources of saprotrophic fungi, ectomycorrhizal...
Monitoring Cocrystal Formation via In Situ Solid-State NMR.
Mandala, Venkata S; Loewus, Sarel J; Mehta, Manish A
2014-10-02
A detailed understanding of the mechanism of organic cocrystal formation remains elusive. Techniques that interrogate a reacting system in situ are preferred, though experimentally challenging. We report here the results of a solid-state in situ NMR study of the spontaneous formation of a cocrystal between a pharmaceutical mimic (caffeine) and a coformer (malonic acid). Using (13)C magic angle spinning NMR, we show that the formation of the cocrystal may be tracked in real time. We find no direct evidence for a short-lived, chemical shift-resolved amorphous solid intermediate. However, changes in the line width and line center of the malonic acid methylene resonance, in the course of the reaction, provide subtle clues to the mode of mass transfer that underlies cocrystal formation.
Yuste, Jorge Curiel; Barba, Josep; Fernandez-Gonzalez, Antonio José; Fernandez-Lopez, Manuel; Mattana, Stefania; Martinez-Vilalta, Jordi; Nolis, Pau; Lloret, Francisco
2012-01-01
The aim of this study was to understand how drought-induced tree mortality and subsequent secondary succession would affect soil bacterial taxonomic composition as well as soil organic matter (SOM) quantity and quality in a mixed Mediterranean forest where the Scots pine (Pinus sylvestris) population, affected by climatic drought-induced die-off, is being replaced by Holm-oaks (HO; Quercus ilex). We apply a high throughput DNA pyrosequencing technique and 13C solid-state Nuclear Magnetic Resonance (CP-MAS 13C NMR) to soils within areas of influence (defined as an surface with 2-m radius around the trunk) of different trees: healthy and affected (defoliated) pines, pines that died a decade ago and healthy HOs. Soil respiration was also measured in the same spots during a spring campaign using a static close-chamber method (soda lime). A decade after death, and before aerial colonization by the more competitive HOs have even taken place, we could not find changes in soil C pools (quantity and/or quality) associated with tree mortality and secondary succession. Unlike C pools, bacterial diversity and community structure were strongly determined by tree mortality. Convergence between the most abundant taxa of soil bacterial communities under dead pines and colonizer trees (HOs) further suggests that physical gap colonization was occurring below-ground before above-ground colonization was taken place. Significantly higher soil respiration rates under dead trees, together with higher bacterial diversity and anomalously high representation of bacteria commonly associated with copiotrophic environments (r-strategic bacteria) further gives indications of how drought-induced tree mortality and secondary succession were influencing the structure of microbial communities and the metabolic activity of soils. PMID:23301169
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryce, David L.; Wasylishen, Roderick E.
2002-06-21
The chemical shift (CS) and electric field gradient (EFG) tensors in the piano-stool compound mesitylenetricarbonylmolybdenum(0), 1, have been investigated via {sup 95}Mo and {sup 13}C solid-state magic-angle spinning (MAS) NMR as well as relativistic zeroth-order regular approximation density functional theory (ZORA-DFT) calculations. Molybdenum-95 (I = 5/2) MAS NMR spectra acquired at 18.8 T are dominated by the anisotropic chemical shift interaction ({Omega} = 775 {+-} 30 ppm) rather than the 2nd-order quadrupolar interaction (C{sub Q} = -0.96 {+-} 0.15 MHz), an unusual situation for a quadrupolar nucleus. ZORA-DFT calculations of the {sup 95}Mo EFG and CS tensors are in agreementmore » with the experimental data. Mixing of appropriate occupied and virtual d-orbital dominated MOs in the region of the HOMO-LUMO gap are shown to be responsible for the large chemical shift anisotropy. The small, but non-negligible, {sup 95}Mo quadrupolar interaction is discussed in terms of the geometry about Mo. Carbon-13 CPMAS spectra acquired at 4.7 T demonstrate the crystallographic and magnetic nonequivalence of the twelve {sup 13}C nuclei in 1, despite the chemical equivalence of some of these nuclei in isotropic solutions. The principal components of the carbon CS tensors are determined via a Herzfeld-Berger analysis, and indicate that motion of the mesitylene ring is slow compared to a rate which would influence the carbon CS tensors (i.e. tens of {micro}s). ZORA-DFT calculations reproduce the experimental carbon CS tensors accurately. Oxygen-17 EFG and CS tensors for 1 are also calculated and discussed in terms of existing experimental data for related molybdenum carbonyl compounds. This work provides an example of the information available from combined multi-field solid-state multinuclear magnetic resonance and computational investigations of transition metal compounds, in particular the direct study of quadrupolar transition metal nuclei with relatively small magnetic moments.« less
Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[ n]arene Crystals.
Jie, Kecheng; Liu, Ming; Zhou, Yujuan; Little, Marc A; Pulido, Angeles; Chong, Samantha Y; Stephenson, Andrew; Hughes, Ashlea R; Sakakibara, Fumiyasu; Ogoshi, Tomoki; Blanc, Frédéric; Day, Graeme M; Huang, Feihe; Cooper, Andrew I
2018-06-06
The energy-efficient separation of alkylaromatic compounds is a major industrial sustainability challenge. The use of selectively porous extended frameworks, such as zeolites or metal-organic frameworks, is one solution to this problem. Here, we studied a flexible molecular material, perethylated pillar[ n]arene crystals ( n = 5, 6), which can be used to separate C8 alkylaromatic compounds. Pillar[6]arene is shown to separate para-xylene from its structural isomers, meta-xylene and ortho-xylene, with 90% specificity in the solid state. Selectivity is an intrinsic property of the pillar[6]arene host, with the flexible pillar[6]arene cavities adapting during adsorption thus enabling preferential adsorption of para-xylene in the solid state. The flexibility of pillar[6]arene as a solid sorbent is rationalized using molecular conformer searches and crystal structure prediction (CSP) combined with comprehensive characterization by X-ray diffraction and 13 C solid-state NMR spectroscopy. The CSP study, which takes into account the structural variability of pillar[6]arene, breaks new ground in its own right and showcases the feasibility of applying CSP methods to understand and ultimately to predict the behavior of soft, adaptive molecular crystals.
1994-01-31
ECM 300 PA. 13.8 Pe: -1.0 SCALE $000 00 MZ/o• 14.7171 Pe•/CM 50 0 -50 -100 -150 -200 PPM 3 Very unusual perfluoro polyketone structures have beeni...11PIA C14 LI) LL. L)V LLL cim C45 We think the zeolitic solid state structure of this very interesting perfluoro polyketone is most unusual and there
1987-12-01
areas consistant with the alternating copolymer structure. Comparison with the model acetanilide (-241.9) indicates the downfield resonance is due to the...Deguchi, l.; Ando, 1. Macromclecule’-, 1987, 20, 2441. 4 S..:! TABLE I CP-NIAS u N-methyl benzainide -23. 3 2 Acetanilide -241.9 ’iC poly(p-benzamide
USDA-ARS?s Scientific Manuscript database
Humin is the largest and also the least understood fraction of soil organic matter. The humin structure and its correlation with microbiological properties are particularly uncertain. We applied advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to investigate the structural chan...
Chemical Modification of Kraft Lignin: Effect on Chemical and Thermal Properties
Yao Chen; Nicole M. Stark; Zhiyong Cai; Charles R. Frihart; Linda F. Lorenz; Rebecca E. Ibach
2014-01-01
Esterified kraft lignins (KL) were prepared by reaction with maleic anhydride (MA), succinic anhydride (SA), and phthalic anhydride (PA) in acetone solutions. The esterified lignins were characterized using ATR-FTIR, solid state CP-MAS 13C NMR spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). PA...
Pérez-Torralba, Marta; Ángeles García, M; López, Concepción; Torralba, M Carmen; Rosario Torres, M; Alkorta, Ibon; Elguero, José
2013-01-01
Summary Two novel tetrafluorinated 1,5-benzodiazepinones were synthesized and their X-ray structures determined. 6,7,8,9-Tetrafluoro-4-methyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one crystallizes in the monoclinic P21/c space group and 6,7,8,9-tetrafluoro-1,4-dimethyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one in the triclinic P−1 space group. Density functional theory studies at the B3LYP/6-311++G(d,p) level were carried out on these compounds and on four non-fluorinated derivatives, allowing to calculate geometries, tautomeric energies and ring-inversion barriers, that were compared with the experimental results obtained by static and dynamic NMR in solution and in solid state. PMID:24204428
Abu-Baker, Shadi; Lorigan, Gary A.
2008-01-01
Phospholamban (PLB) is a 52-amino acid integral membrane protein that helps to regulate the flow of Ca2+ ions in cardiac muscle cells. Recent structural studies on the PLB pentamer and the functionally active monomer (AFA-PLB) debate whether its cytoplasmic domain, in either the phosphorylated or dephosphorylated states, is α-helical in structure as well as whether it associates with the lipid head groups [Oxenoid, K. (2005) Proc Natl. Acad. Sci. USA 102, 10870–10875, Karim, C. B. (2004) Proc. Natl. Acad. Sci. USA 101, 14437–14442, Andronesi, C.A. (2005) J. Am. Chem. Soc. 127, 12965–12974, Li, J. (2003) Biochemistry 42, 10674–10682, Metcalfe, E. E. (2005) Biochemistry 44, 4386–4396, Clayton, J. C. (2005) Biochemistry 44, 17016–17026]. Comparing the secondary structure of the PLB pentamer and its phosphorylated form (P-PLB) as well as their interaction with the lipid bilayer is crucial in order to understand its regulatory function. Therefore, in this study, the full-length wild-type (WT)-PLB and P-PLB were incorporated into 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) phospholipid bilayers and studied utilizing solid-state NMR spectroscopy. The analysis of the 2H and 31P solid-state NMR data of PLB and P-PLB in POPC multilamellar vesicles (MLVs) indicates that a direct interaction takes place between both proteins and the phospholipid head groups. However, the interaction of P-PLB with POPC bilayers was less significant when compared to PLB. Moreover, the secondary structure using 13C=O site-specific isotopically labeled Ala15-PLB and Ala15-P-PLB in POPC bilayers suggests that this residue, located in the cytoplasmic domain, is a part of an α-helical structure for both PLB and P-PLB. PMID:17073452
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sliwa, Kazimierz; Wilson, Christine D.; Aalto, Susanne
We present ALMA {sup 12}CO (J = 1-0, 3-2 and 6-5), {sup 13}CO (J = 1-0), and C{sup 18}O (J = 1-0) observations of the local ultraluminous infrared galaxy (ULIRG) IRAS 13120-5453. The morphologies of the three isotopic species differ, as {sup 13}CO shows a hole in emission toward the center. We measure integrated brightness temperature line ratios of {sup 12}CO/{sup 13}CO ≥ 60 (exceeding 200) and {sup 13}CO/C{sup 18}O ≤ 1 in the central region. Assuming optical thin emission, C{sup 18}O is more abundant than {sup 13}CO in several regions. The abundances within the central 500 pc are consistentmore » with the enrichment of the interstellar medium via a young starburst (<7 Myr), a top-heavy initial mass function, or a combination of both.« less
Clendinen, Chaevien S; Stupp, Gregory S; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S
2015-01-01
Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize (13)C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) (13)C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two (13)C-based approaches. For samples at natural abundance, we have developed a workflow to obtain (13)C-(13)C and (13)C-(1)H statistical correlations using 1D (13)C and (1)H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct (13)C-(13)C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which (13)C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest.
Ukmar, Tina; Kaučič, Venčeslav; Mali, Gregor
2011-09-01
Two polymorphs of indomethacin were investigated by 1H MAS and CRAMPS, and 1H-13C CPMAS and HETCOR NMR techniques. The obtained spectra clearly elucidated the structural differences between the polymorphs, especially the different numbers of indomethacin molecules within the crystallographic asymmetric units and the different schemes of hydrogen bonding among the molecules. Known structure of indomethacin gamma was used in first-principles DFT/GIPAW calculations of 1H and 13C isotropic chemical shifts. Two packages, freely available Quantum Espresso and commercially available CASTEP, were employed. They both provided values that excellently agreed with the measured values, and thus allowed unambiguous assignment of 1H and 13C spectral lines.
Novel Peak Assignments of in Vivo 13C MRS in Human Brain at 1.5 T
NASA Astrophysics Data System (ADS)
Blüml, Stefan; Hwang, Jong-Hee; Moreno, Angel; Ross, Brian D.
2000-04-01
13C MRS studies at natural abundance and after intravenous 1-13C glucose infusion were performed on a 1.5-T clinical scanner in four subjects. Localization to the occipital cortex was achieved by a surface coil. In natural abundance spectra glucose C3β,5β, myo-inositol, glutamate C1,2,5, glutamine C1,2,5, N-acetyl-aspartate C1-4,Cdbnd O, creatine CH2, CH3, and CCdbnd N, taurine C2,3, bicarbonate HCO-3 were identified. After glucose infusion 13C enrichment of glucose C1α,1β, glutamate C1-4, glutamine C1-4, aspartate C2,3, N-acetyl-aspartate C2,3, lactate C3, alanine C3, and HCO-3 were observed. The observation of 13C enrichment of resonances resonating at >150 ppm is an extension of previously published studies and will provide a more precise determination of metabolic rates and substrate decarboxylation in human brain.
NASA Astrophysics Data System (ADS)
Ośmiałowski, Borys; Kolehmainen, Erkki; Ikonen, Satu; Ahonen, Kari; Löfman, Miika
2011-12-01
2-Acylamino-6-[1 H]-pyridones [acyl = RCO, where R = methyl ( 1), ethyl ( 2), iso-propyl ( 3), tert-butyl ( 4), and 1-adamantyl ( 5)] have been synthesized and characterized by NMR spectroscopy. From three congeners, 2, 3 and 5, also single crystal X-ray structures have been solved. For these derivatives GIPAW calculations acts as a "bridge" between solid-state NMR data and calculated chemical shifts based on X-ray determined geometry. In crystals all three compounds exist as pyridone tautomers possessing similar six-membered ring structure stabilized by intramolecular C dbnd O⋯HN hydrogen bond. Theoretical GIPAW calculated and experimental 13C and 15N CPMAS NMR shifts are in excellent agreement with each other.
Gastric emptying of solids in children: reference values for the (13) C-octanoic acid breath test.
Hauser, B; Roelants, M; De Schepper, J; Veereman, G; Caveliers, V; Devreker, T; De Greef, E; Vandenplas, Y
2016-10-01
(99m) Technetium scintigraphy ((99m) TS) is the 'gold standard' for measuring gastric emptying (GE), but it is associated with a radiation exposure. For this reason, the (13) C-octanoic acid breath test ((13) C-OBT) was developed for measuring GE of solids. The objective of this study was to determine normal values for gastric half-emptying time (t1/2 GE) of solids in healthy children. Gastric emptying of a standardized solid test meal consisting of a pancake evaluated with (99m) TS and (13) C-OBT was compared in 22 children aged between 1 and 15 years with upper gastrointestinal symptoms. Subsequently, the (13) C-OBT was used to determine normal values for GE of the same solid test meal in 120 healthy children aged between 1 and 17 years. The results showed a significant correlation (r = 0.748, p = 0.0001) between t1/2 GE measured with both techniques in the group of children with upper gastrointestinal symptoms. In the group of healthy children, mean t1/2 GE was 157.7 ± 54.0 min (range 71-415 min), but t1/2 GE decreased with age between 1 and 10 years and remained stable afterward. There was no influence of gender, weight, height, body mass index, and body surface area on t1/2 GE. Normal values for GE of solids measured with the (13) C-OBT using a standardized methodology were determined in healthy children. We propose to use this method and corresponding reference ranges to study GE of solids in children with gastrointestinal problems. © 2016 John Wiley & Sons Ltd.
Conformational analysis of some 4‧-substituted 2-(phenylselanyl)- 2-(methoxy)- acetophenones
NASA Astrophysics Data System (ADS)
Traesel, Henrique J.; Olivato, Paulo R.; Valença, J.; Rodrigues, Daniel N. S.; Zukerman-Schpector, Julio; Colle, Maurizio Dal
2018-04-01
A conformational study of some 4‧-substituited 2-(phenylselanyl)-2-(methoxy)-acetophenones (OMe 1, H 2, and Cl 3) was performed using IR carbonyl stretching band analysis supported by NBO and PCM calculations at the B3LYP/6-31 + G (d,p) level for 1-3 and using X-ray diffraction for 1 and 2. The computational results indicated the existence of three stable conformers for the series (c2, c3, and c1 in order of decreasing stability), whose relative abundance changes with solvent permittivity. The experimental trend observed for the components of the triplet carbonyl band in all solvents matches well with computational results and thus allows for their assignment to distinct conformers. The relative population of the c1 conformer increases in more polar solvents, becoming the most stable conformer in the highest permittivity solvent, acetonitrile, as indicated by IR spectra and PCM calculations. These findings are related to the quasi parallel geometry assumed by the Cδ+ = Oδ- and Cδ+-Oδ- dipoles, which favour stronger solvation. NBO analysis shows that the sum of the energies (ΣE) of the relevant orbital interactions stabilizes the c3 conformer of 1-3 slightly, likely due to the minor contribution of the LPO5→σ*C3sbnd Se10 interaction. However, only the c1 conformer is significantly destabilized by the Oδ-(1)CO … Oδ-(5)OMe short contact electrostatic repulsion, which is also responsible for its highest νCO frequency. In addition, the LPO5→ σ*C2sbnd C3 orbital interaction accounts for the lowest νCO frequency of c3 conformer. X-ray single crystal analysis of compounds 1 and 2 indicates that in the solid state they assume the least stable c1 conformation found in the gas phase. Molecules of these compounds are stabilized in the crystal through a series of Csbnd H⋯O and Csbnd H … π intermolecular interactions.
Characterization of a water-solid interaction in a partially ordered system.
Chakravarty, Paroma; Lubach, Joseph W
2013-11-04
GNE068-PC, a developmental compound, was previously characterized to be mesomorphous, i.e. having long-range order associated with significant local molecular disorder (Chakravarty et. al., Mol. Pharmaceutics, accepted). The compound was exposed to moisture under different relative humidity conditions ranging from 11% to 60% RH at room temperature (RT) for 7 days, and the resultant product phases were characterized. The partially ordered sample progressively lost crystallinity (long-range order) and birefringence (orientational order) upon exposure to increasing RH conditions, leading to the formation of a completely disordered amorphous phase at 60% RH (RT). Long-range positional order was irrecoverable even after moisture removal from the sample exposed to 60% RH. This was attributed to replacement of residual ethyl acetate by water, the former being critical for maintenance of long-range order in the material. In addition, water sorption appeared to irreversibly alter the molecular orientation, thereby affecting sample birefringence. Solid-state NMR revealed increases in (1)H and (13)C spin-lattice relaxation times (T1) going from the mesomorphous phase to the fully amorphous phase. This was indicative of reduction in lattice mobility, likely due to the decreased motion of the aromatic portions of the molecule, in particular C17, which showed the most dramatic increase in (13)C T1. This is likely due to decrease in available free volume upon water sorption. Drying of the hydrated disordered phase showed somewhat greater mobility than the hydrated phase, likely due to increased relative free volume through removal of water. A water-solid interaction therefore irreversibly changed the solid-state makeup of GNE068-PC.
Triple Resonance Solid State NMR Experiments with Reduced Dimensionality Evolution Periods
NASA Astrophysics Data System (ADS)
Astrof, Nathan S.; Lyon, Charles E.; Griffin, Robert G.
2001-10-01
Two solid state NMR triple resonance experiments which utilize the simultaneous incrementation of two chemical shift evolution periods to obtain a spectrum with reduced dimensionality are described. The CON CA experiment establishes the correlation of 13Ci-1 to 13Cαi and 15Ni by simultaneously encoding the 13COi-1 and 15Ni chemical shifts. The CAN COCA experiment establishes the correlation 13Cai and 15COi to 13Cαi-1 and 15Ni-1 within a single experiment by simultaneous encoding of the 13Cαi and 15Ni chemical shifts. This experiment establishes sequential amino acid correlations in close analogy to the solution state HNCA experiment. Reduced dimensionality 2D experiments are a practical alternative to recording multiple 3D data sets for the purpose of obtaining sequence-specific resonance assignments of peptides and proteins in the solid state.
2013-01-01
Background A solid-state anaerobic digestion method is used to produce biogas from various solid wastes in China but the efficiency of methane production requires constant improvement. The diversity and abundance of relevant microorganisms play important roles in methanogenesis of biomass. The next-generation high-throughput pyrosequencing platform (Roche/454 GS FLX Titanium) provides a powerful tool for the discovery of novel microbes within the biogas-generating microbial communities. Results To improve the power of our metagenomic analysis, we first evaluated five different protocols for extracting total DNA from biogas-producing mesophilic solid-state fermentation materials and then chose two high-quality protocols for a full-scale analysis. The characterization of both sequencing reads and assembled contigs revealed that the most prevalent microbes of the fermentation materials are derived from Clostridiales (Firmicutes), which contribute to degrading both protein and cellulose. Other important bacterial species for decomposing fat and carbohydrate are Bacilli, Gammaproteobacteria, and Bacteroidetes (belonging to Firmicutes, Proteobacteria, and Bacteroidetes, respectively). The dominant bacterial species are from six genera: Clostridium, Aminobacterium, Psychrobacter, Anaerococcus, Syntrophomonas, and Bacteroides. Among them, abundant Psychrobacter species, which produce low temperature-adaptive lipases, and Anaerococcus species, which have weak fermentation capabilities, were identified for the first time in biogas fermentation. Archaea, represented by genera Methanosarcina, Methanosaeta and Methanoculleus of Euryarchaeota, constitute only a small fraction of the entire microbial community. The most abundant archaeal species include Methanosarcina barkeri fusaro, Methanoculleus marisnigri JR1, and Methanosaeta theromphila, and all are involved in both acetotrophic and hydrogenotrophic methanogenesis. Conclusions The identification of new bacterial genera and species involved in biogas production provides insights into novel designs of solid-state fermentation under mesophilic or low-temperature conditions. PMID:23320936
The isotropic condition of energetic particles emitted from a large solar flare. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Spalding, J.
1983-01-01
Isotope abundance ratios for 5 to 50 MeV/nuc nuclei from a large solar flare were measured. The measurements were made by the heavy isotope spectrometer telescope (HIST) on the ISEE-3 satellite orbiting the Sun near an Earth-Sun liberation point approximately one million miles sunward of the Earth. Finite values for the isotope abundance ratios C-13/C-12, N-15/N-14, O-18/O-16, Ne-22/Ne-20, Mg-25/Mg-24, and Mg-26/Mg-24, and upper limits for the isotope abundance ratios He-3/He-4, C-14/C-12, O-17/O-16 and Ne-21/Ne-20 were reported. Element abundances and spectra were measured to compare the flare with other reported flares. The flare is a typical large flare with low Fe/O abundance or = to 0.1). For C-13/C-12, N-15/N-14, O-18/O-16, Mg-25/Mg-24 and Mg-26/Mg-24 isotope abundance ratios agree with the solar system abundance ratios. Measurement for Ne-22/Ne-20 agree with the isotopic composition of the meteoritic component neon-A.
13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines
NASA Technical Reports Server (NTRS)
Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.
1983-01-01
The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.
Compressed Sensing for Resolution Enhancement of Hyperpolarized 13C Flyback 3D-MRSI
Hu, Simon; Lustig, Michael; Chen, Albert P.; Crane, Jason; Kerr, Adam; Kelley, Douglas A.C.; Hurd, Ralph; Kurhanewicz, John; Nelson, Sarah J.; Pauly, John M.; Vigneron, Daniel B.
2008-01-01
High polarization of nuclear spins in liquid state through dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at very high signal to noise, allowing for rapid assessment of tissue metabolism. The abundant SNR afforded by this hyperpolarization technique makes high resolution 13C 3D-MRSI feasible. However, the number of phase encodes that can be fit into the short acquisition time for hyperpolarized imaging limits spatial coverage and resolution. To take advantage of the high SNR available from hyperpolarization, we have applied compressed sensing to achieve a factor of 2 enhancement in spatial resolution without increasing acquisition time or decreasing coverage. In this paper, the design and testing of compressed sensing suited for a flyback 13C 3D-MRSI sequence are presented. The key to this design was the undersampling of spectral k-space using a novel blipped scheme, thus taking advantage of the considerable sparsity in typical hyperpolarized 13C spectra. Phantom tests validated the accuracy of the compressed sensing approach and initial mouse experiments demonstrated in vivo feasibility. PMID:18367420
NASA Technical Reports Server (NTRS)
Guzik, T. G.; Wefel, J. P.; Crawford, H. J.; Greiner, D. E.; Lindstrom, P. J.; Schimmerling, W.; Symons, T. J. M.
1985-01-01
The fragmentation of a 225 MeV/n O-16 beam was investigated at the Bevalac. Preliminary cross sections for mass = 13, 14, 15 fragments are used to constrain the nuclear excitation functions employed in galactic propagation calculations. Comparison to cosmic ray isotonic data at low energies shows that in the cosmic ray source C-13/C approximately 2% and N-14/0=3-6%. No source abundance of N-15 is required with the current experimental results.
Lithium in Open Cluster Red Giants Hosting Substellar Companions
NASA Technical Reports Server (NTRS)
Carlberg, Joleen K.; Smith, Verne V.; Cunha, Katia; Carpenter, Kenneth G.
2016-01-01
We have measured stellar parameters, [Fe/H], lithium abundances, rotation, and (12)C/13C in a small sample of red giants (RGs) in three open clusters that are each home to a RG star that hosts a substellar companion (SSC) (NGC 2423 3, NGC 4349 127, and BD+12 1917 in M67). Our goal is to explore whether the presence of SSCs influences the Li content. Both (12)C/13C and stellar rotation are measured as additional tracers of stellar mixing. One of the companion hosts, NGC 2423?3, is found to be Li-rich with A(Li)(sub NLTE) = 1.56 dex, and this abundance is significantly higher than the A(Li) of the two comparison stars in NGC 2423. All three SSC hosts have the highest A(Li) and (12)C/13C when compared to the control RGs in their respective clusters; however, except for NGC 2423?3, at least one control star has similarly high abundances within the uncertainties. Higher A(Li) could suggest that the formation or presence of planets plays a role in the degree of internal mixing on or before the RG branch. However, a multitude of factors affect A(Li) during the RG phase, and when the abundances of our sample are compared with the abundances of RGs in other open clusters available in the literature, we find that they all fall well within a much larger distribution of A(Li) and (12)C/13C. Thus, even the high Li in NGC 2423 3 cannot be concretely tied to the presence of the SSC.
Lithium in Open Cluster Red Giants Hosting Substellar Companions
NASA Astrophysics Data System (ADS)
Carlberg, Joleen K.; Smith, Verne V.; Cunha, Katia; Carpenter, Kenneth G.
2016-02-01
We have measured stellar parameters, [Fe/H], lithium abundances, rotation, and 12C/13C in a small sample of red giants (RGs) in three open clusters that are each home to a RG star that hosts a substellar companion (SSC) (NGC 2423 3, NGC 4349 127, and BD+12 1917 in M67). Our goal is to explore whether the presence of SSCs influences the Li content. Both 12C/13C and stellar rotation are measured as additional tracers of stellar mixing. One of the companion hosts, NGC 2423 3, is found to be Li-rich with A(Li){}{{NLTE}} = 1.56 dex, and this abundance is significantly higher than the A(Li) of the two comparison stars in NGC 2423. All three SSC hosts have the highest A(Li) and 12C/13C when compared to the control RGs in their respective clusters; however, except for NGC 2423 3, at least one control star has similarly high abundances within the uncertainties. Higher A(Li) could suggest that the formation or presence of planets plays a role in the degree of internal mixing on or before the RG branch. However, a multitude of factors affect A(Li) during the RG phase, and when the abundances of our sample are compared with the abundances of RGs in other open clusters available in the literature, we find that they all fall well within a much larger distribution of A(Li) and 12C/13C. Thus, even the high Li in NGC 2423 3 cannot be concretely tied to the presence of the SSC.
Determinations of the 12C/13C Ratio for the Secondary Stars of AE Aquarii, SS Cygni, and RU Pegasi
NASA Astrophysics Data System (ADS)
Harrison, Thomas E.; Marra, Rachel E.
2017-07-01
We present new moderate-resolution near-infrared spectroscopy of three CVs obtained using GNIRS on Gemini-North. These spectra covered three 13CO bandheads found in the K-band, allowing us to derive the isotopic abundance ratios for carbon. We find small 12C/13C ratios for all three donor stars. In addition, these three objects show carbon deficits, with AE Aqr being the most extreme ([C/Fe] = -1.4). This result confirms the conjecture that the donor stars in some long-period CVs have undergone considerable nuclear evolution prior to becoming semi-contact binaries. In addition to the results for carbon, we find that the abundance of sodium is enhanced in these three objects, and the secondary stars in both RU Peg and SS Cyg suffer magnesium deficits. Explaining such anomalies appears to require higher mass progenitors than commonly assumed for the donor stars of CVs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).
A multinuclear solid-state NMR study of the dimethyltin chalcogenides ((CH 3) 2SnE) 3, E S,Se,Te
NASA Astrophysics Data System (ADS)
Gay, Ian D.; Jones, C. H. W.; Sharma, R. D.
The solid-state NMR spectra, measured using MAS, are reported for 13C, 119Sn, 77Se, and 125Te in the compounds (Me 2SnE) 3, E S, Se, or Te. For ((CH 3) 2SnS) 3, tetragonal, three inequivalent carbons and two inequivalent tins are observed consistent with a reinterpretation of the crystal structure data of this compound which shows a twofold axis through opposing tin and sulfur atoms, the molecule being in a twisted-boat conformation. For the monoclinic form six inequivalent carbons and three inequivalent tins were observed. Chemical shifts for 13C and 119Sn and the magnitudes of the 2JSn Sn coupling constants are reported. The tetragonal forms of ((CH 3) 2SnSe) 3 and ((CH 3) 2SnTe) 3 show the presence of two inequivalent tin and chalcogen atoms and three inequivalent carbons, again consistent with a twofold axis. In these compounds it is possible to identify the three different observed single-bond coupling constants with the distinct crystallographically determined tin-chalcogen bonds. The 13C, 119Sn, 77Se, and 125Te chemical shifts are reported, together with the magnitude of 1JSn E (E Se or Te). In addition to isotropic shifts and couplings, chemical-shift anisotropies are reported for Sn, Se, and Te.
Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesniková, L.; Alonso, E. R.; Mata, S.
2017-04-01
We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.
Spectral Study of Modified Humic Acids from Lignite
NASA Astrophysics Data System (ADS)
Zherebtsov, Sergey; Malyshenko, Natalya; Bryukhovetskaya, Ludmila; Ismagilov, Zinfer
2017-11-01
The IR-Fourier, ESR and solid-state 13C NMR analysis are used for investigation of unmodified and modified humic acids obtained from Tisul lignite (the Kansko-Achinsk Basin). Treatment with Hydrogen peroxide used for modification of humic acids and it changes the functionalgroup composition of the humic acids and increases the sorptional capacity
Hatcher, Patrick G; Obeid, Wassim; Wozniak, Andrew S; Xu, Chen; Zhang, Saijin; Santschi, Peter H; Quigg, Antonietta
2018-01-01
The Deepwater Horizon oil spill stimulated the release of marine snow made up of dead/living plankton/bacteria and their exopolymeric polysaccharide substances (EPS), termed marine oil snow (MOS), promoting rapid removal of oil from the water column into sediments near the well site. Mesocosm simulations showed that Macondo surrogate oil readily associates with the marine snow. Quantitative solid-state 13 C NMR readily distinguishes this oil from naturally formed marine snow and reveals that adding the dispersant Corexit enhances the amount of oil associated with the MOS, thus contributing to rapid removal from the water column. Solvent extraction of MOS removes the oil-derived compounds for analysis by one and two-dimensional GC/MS and evaluation of potential transformations they undergo when associated with the EPS. The results reveal that the oil associated with EPS is subjected to rapid transformation, in a matter of days, presumably by bacteria and fungi associated with EPS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shaibat, Medhat A; Casabianca, Leah B; Siberio-Pérez, Diana Y; Matzger, Adam J; Ishii, Yoshitaka
2010-04-08
Cu(II)(phthalocyanine) (CuPc) is broadly utilized as an archetypal molecular semiconductor and is the most widely used blue printing pigment. CuPc crystallizes in six different forms; the chemical and physical properties are substantially modulated by its molecular packing among these polymorphs. Despite the growing importance of this system, spectroscopic identification of different polymorphs for CuPc has posed difficulties. This study presents the first example of spectroscopic distinction of alpha- and beta-forms of CuPc, the most widely used polymorphs, by solid-state NMR (SSNMR) and Raman spectroscopy. (13)C high-resolution SSNMR spectra of alpha- and beta-CuPc using very-fast magic angle spinning (VFMAS) at 20 kHz show that hyperfine shifts sensitively reflect polymorphs of CuPc. The experimental results were confirmed by ab initio chemical shift calculations. (13)C and (1)H SSNMR relaxation times of alpha- and beta-CuPc under VFMAS also showed marked differences, presumably because of the difference in electronic spin correlation times in the two forms. Raman spectroscopy also provided another reliable method of differentiation between the two polymorphs.
Kakitani, Yoshinori; Harada, Ken-ichi; Mizoguchi, Tadashi; Koyama, Yasushi
2007-06-05
Pigments including bacteriochlorophyll (BChl) c, carotenoids, and a trace of BChl a together with a lipid, monogalactosyl diglyceride (MGDG), were extracted with chloroform/methanol (1:1 v/v) from an aqueous suspension (50 mM Tris-HCl, pH 8.0) of chlorosomes from Chlorobium limicola; other lipids and proteins were left behind in the aqueous layer by funnel separation. The chloroform layer was dried by purging N2 gas, dissolved in methanol, and rapidly injected into the aqueous layer to reassemble chlorosomes. This technique has been developed to replace one-half of the inherent 12C-BChl c by 13C-BChl c to identify the intermolecular 13C...13C magnetic dipole correlation peaks (that are supposed to reduce their intensities to one-fourth by reducing the 13C-BChl c concentration into one-half) and to determine the structure of BChl c aggregates in the rod elements by means of solid-state NMR spectroscopy. The isotopically replaced chlorosomes were characterized (1) by sucrose density gradient centrifugation, zeta potential measurement, electron microscopy, and dynamic light scattering measurement to determine the morphology of chlorosomes, (2) by 13C NMR spectroscopy, electronic absorption and circular dichroism spectroscopies, and low-angle X-ray diffraction to determine the pigment assembly in the rod elements, and (3) by subpicosecond time-resolved absorption spectroscopy to determine the excited-state dynamics in the pigment assembly. The results characterized the reassembled chlorosomes to have (1) similar but longer morphological structures, (2) almost the same pigment assembly in the rod elements, and (3) basically the same excited-state dynamics in the pigment assembly.
Astrobiology: An astronomer's perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergin, Edwin A.
2014-12-08
In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the processmore » of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammann, Blake A.; Marsh, David A.; Ma, Zayd L.
Solid-state {sup 71}Ga NMR was used to characterize a series of [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} “Ga{sub 13}” molecular clusters synthesized by multiple methods. These molecular clusters are precursors to thin film electronics and may be employed in energy applications. The synthetic routes provide varying levels of impurities in the solid phase, and these impurities often elude traditional characterization techniques such as powder X-ray diffraction and Raman spectroscopy. Solid-state NMR can provide a window into the gallium species even in amorphous phases. This information is vital in order to prevent the impurities from causing defect sitesmore » in the corresponding thin films upon gelation and condensation (polymerization) of the Ga{sub 13} clusters. This work demonstrates the resolving power of solid-state NMR to evaluate structure and synthetic quality in the solid state, and the application of high-field NMR to study quadrupolar species, such as {sup 71}Ga. - Graphical abstract: The various synthetic routes and {sup 71}Ga solid-state NMR spectra of the nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15}. - Highlights: • Solid-state {sup 71}Ga NMR of hydroxo-aquo metal clusters and the impurities present. • High-field NMR capability allows for quadrupolar species, such as {sup 71}Ga, to be routinely studied. • Efficient and environmentally friendly synthetic routes have been developed to prepare hydroxo-aquo metal clusters.« less
Sgourakis, Nikolaos G; Yau, Wai-Ming; Qiang, Wei
2015-01-06
Determining the structures of amyloid fibrils is an important first step toward understanding the molecular basis of neurodegenerative diseases. For β-amyloid (Aβ) fibrils, conventional solid-state NMR structure determination using uniform labeling is limited by extensive peak overlap. We describe the characterization of a distinct structural polymorph of Aβ using solid-state NMR, transmission electron microscopy (TEM), and Rosetta model building. First, the overall fibril arrangement is established using mass-per-length measurements from TEM. Then, the fibril backbone arrangement, stacking registry, and "steric zipper" core interactions are determined using a number of solid-state NMR techniques on sparsely (13)C-labeled samples. Finally, we perform Rosetta structure calculations with an explicitly symmetric representation of the system. We demonstrate the power of the hybrid Rosetta/NMR approach by modeling the in-register, parallel "Iowa" mutant (D23N) at high resolution (1.2Å backbone rmsd). The final models are validated using an independent set of NMR experiments that confirm key features. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chierotti, Michele R; Gobetto, Roberto; Nervi, Carlo; Bacchi, Alessia; Pelagatti, Paolo; Colombo, Valentina; Sironi, Angelo
2014-01-06
The hydrogen bond network of three polymorphs (1α, 1β, and 1γ) and one solvate form (1·H2O) arising from the hydration-dehydration process of the Ru(II) complex [(p-cymene)Ru(κN-INA)Cl2] (where INA is isonicotinic acid), has been ascertained by means of one-dimensional (1D) and two-dimensional (2D) double quantum (1)H CRAMPS (Combined Rotation and Multiple Pulses Sequences) and (13)C CPMAS solid-state NMR experiments. The resolution improvement provided by homonuclear decoupling pulse sequences, with respect to fast MAS experiments, has been highlighted. The solid-state structure of 1γ has been fully characterized by combining X-ray powder diffraction (XRPD), solid-state NMR, and periodic plane-wave first-principles calculations. None of the forms show the expected supramolecular cyclic dimerization of the carboxylic functions of INA, because of the presence of Cl atoms as strong hydrogen bond (HB) acceptors. The hydration-dehydration process of the complex has been discussed in terms of structure and HB rearrangements.
Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12.
Sakamoto, Jeff; Rangasamy, Ezhiylmurugan; Kim, Hyunjoung; Kim, Yunsung; Wolfenstine, Jeff
2013-10-25
A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm(-1) at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.
All-solid-state Al-air batteries with polymer alkaline gel electrolyte
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Zuo, Chuncheng; Liu, Zihui; Yu, Ying; Zuo, Yuxin; Song, Yu
2014-04-01
Aluminum-air (Al-air) battery is one of the most promising candidates for next-generation energy storage systems because of its high capacity and energy density, and abundance. The polyacrylic acid (PAA)-based alkaline gel electrolyte is used in all-solid-state Al-air batteries instead of aqueous electrolytes to prevent leakage. The optimal gel electrolyte exhibits an ionic conductivity of 460 mS cm-1, which is close to that of aqueous electrolytes. The Al-air battery peak capacity and energy density considering only Al can reach 1166 mAh g-1-Al and 1230 mWh g-1-Al, respectively, during constant current discharge. The battery prototype also exhibits a high power density of 91.13 mW cm-2. For the battery is a laminated structure, area densities of 29.2 mAh cm-2 and 30.8 mWh cm-2 are presented to appraise the performance of the whole cell. A novel design to inhibit anodic corrosion is proposed by separating the Al anode from the gel electrolyte when not in use, thereby effectively maintaining the available capacity of the battery.
NASA Astrophysics Data System (ADS)
Isab, Anvarhusein A.; Wazeer, Mohamed I. M.
2006-09-01
Complexation of Ag + with captopril, 1-[(2 S)-3-mercapto-2-methylpropionyl]- L-proline, has been studied by 1H and 13C-NMR spectroscopy. The equilibrium constants for the trans to cis isomers of captopril bound to Ag + were measured by 1H NMR spectroscopy. It is observed that the trans isomer of the drug binds more strongly to Ag + between pH 5 and 8, as shown by the broadening of the trans isomer's resonances in 13C NMR spectra on complexation. A monodentate complexation of the trans captopril with Ag + via the thiol site is proposed based on the solid-state NMR and IR data. A superior antimicrobial activity is exhibited by the Cap-Ag(I) complex compared to captopril ligand itself against Heterotrotropic Plate Counts (HPC), Pseudomonas aeruginosa and Fecal streptococcus bacteria.
NASA Astrophysics Data System (ADS)
Fessenden, J. E.; Randerson, J. T.; Schuur, E.; Zimov, S.
2002-12-01
Stable carbon isotope ratios of carbon dioxide and leaf organic matter were measured in boreal forests of varying age and fire severity in Siberia and Alaska. This study focused on moderate and extreme severity burn sites in neighboring Alaskan forests ranging from 2 years to 160 years and Siberian forests ranging from 1 year to 200 years. The Alaskan forests were composed primarily of black spruce (Picea Mariana) and quaking aspen (Populus tremuloides) with a shift in species dominance from aspen to spruce approximately 50 years after fire disturbance. The Siberian forests were composed of Dahurian larch (Larix gmelinii). The understory species are the same in both Siberia and Alaska: dwarf birch (Betula nana), willow (Salix alaxensis), blueberry (Vaccinium ovalifolium), cranberry (Vaccinium vitis-idaea), and various moss and lichen species. Our aim was to determine how disturbance influenced local and regional carbon isotopic ratios in organic pools and fluxes. Samples of organic δ13C in whole leaf tissue were collected from the dominant species of each forest. δ13CO2 and [CO2] were measured on soil cuvette- and canopy-CO2 to determine the isotopic ratio of soil and ecosystem respiration, respectively. Plant functional type primarily controlled the organic δ13C composition, and changes in abundance of different plant functional types with time since fire lead to patterns of 13C-enrichment with increased forest age. Successional stage and species composition trajectory dictated the composition of heterotrophic respiration with more 13C-enriched values found in dry/cold coniferous areas. Burn severity and successional state largely determined the distribution and abundance of plant functional types which dictated the δ13C values of organic pools and fluxes in the ecosystems. These results suggest that fire severity and frequency changes the carbon isotope composition of ecosystems and biosphere-atmosphere fluxes in ways that are predictable at local and regional scales by changing species composition and regrowth patterns.
Stable Isotopes, Quantum Computing and Consciousness
NASA Astrophysics Data System (ADS)
Berezin, Alexander A.
2000-10-01
Recent proposals of quantum computing/computers (QC) based on nuclear spins suggest that consciousness (CON) activity may be related (assisted) to subset of C13 atoms incorporated randomly, or quasirandomly, in neural structures. Consider two DNA chains. Even if they are completely identical chemically (same sequence of codons), patterns of 12C and 13C isotopes in them are different (possible origin of personal individuality). Perhaps it is subsystem of nuclear spins of 13C "sublattice" which forms dynamical system capable of QC and on which CON is "spanned". Some issues related to this hypothesis are: (1) existence of CON-driven positional correlations among C13 atoms, (2) motion (hopping) of C13 via enhanced neutron tunneling, cf. quantum "anti Zeno-effect", (3) possible optimization of concentration of QC-active C13 atoms above their standard isotopic abundance, (4) characteristic time-scales for operation of C13-based QC (perrhaps, broad range of scales), (5) reflection of QC dynamics of C13 on CON, (6) possibility that C13-based QC operates "above" level of "regular" CON (perhaps, Jungian sub/super-CON), (7) isotopicity as connector to universal Library of Patterns ("Platonic World"), (8) self-stabilization of coherence in C13 (sub)system. Some of this questions are, in principle, experimentally addressable through shifting of isotopic abundances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, Kotomi; Saito, Masao; Ozeki, Hiroyuki, E-mail: kotomi.taniguchi@nao.ac.jp
2016-10-20
We observed the J = 9–8 and 10–9 rotational lines of three {sup 13}C isotopologues of HC{sub 3}N in L1527 and G28.28-0.36, with the 45 m radio telescope of the Nobeyama Radio Observatory, in order to constrain the main formation mechanisms of HC{sub 3}N in each source. The abundance ratios of the three {sup 13}C isotopologues of HC{sub 3}N are found to be 0.9 (±0.2) : 1.00 : 1.29 (±0.19) (1 σ ), and 1.0 (±0.2) : 1.00 : 1.47 (±0.17) (1 σ ), for [H{sup 13}CCCN : HC{sup 13}CCN : HCC{sup 13}CN] in L1527 and G28.28-0.36, respectively. We recognize,more » from a similar {sup 13}C isotopic fractionation pattern, that the abundances of H{sup 13}CCCN and HC{sup 13}CCN are comparable, and HCC{sup 13}CN is more abundant than the others. Based on the results, we discuss the main formation pathway of HC{sub 3}N. The {sup 13}C isotopic fractionation pattern derived from our observations can be explained by the neutral-neutral reaction between C{sub 2}H{sub 2} and CN in both the low-mass (L1527) and high-mass (G28.28-0.36) star-forming regions.« less
Hurd, Todd M; Jesic, Slaven; Jerin, Jessica L; Fuller, Nathan W; Miller, David
2008-11-01
Limestone springs support productive ecosystems and fisheries, yet aquaculture may modify or impair these ecosystems. We determined trout hatchery organic contribution to spring creek sediments and foodwebs with natural abundance stable isotope methods. Hatchery feed, waste, and trout were significantly enriched in delta(13)C relative to autotrophs and wild fish. Spring creek sediments were enriched in delta(13)C toward the hatchery endmember relative to reference streams without hatcheries and relative to a larger larger-order, spring-influenced stream. Contribution of hatchery C to spring creek sediments was greatest during March and associated with greatest sediment %C. Contribution of hatchery C to pollution-tolerant isopod diet was 39-51% in a stream receiving limestone spring water via hatchery effluent. Isopods of one spring creek also relied on hatchery-derived C within one month of hatchery closure. Four years later, less pollution pollution-tolerant amphipods dominated and consumed non-vascular over vascular autotrophs (86%). Isopods of a second spring creek with an active hatchery did not appear to be using hatchery matter directly, but were enriched in delta(34)S relative to a spring creek tributary with no hatchery influence. Isopods in both of these streams were relatively enriched in delta(15)N, indicating general nutrient enrichment from surrounding agricultural land use. The contribution of hatchery vs. wild fish in diet of herons and egrets was traced with delta(13)C of guano. These birds were strongly dependent on stocked trout in a spring creek with a recently closed state trout hatchery, and also near another large, state-run hatchery. Heron dependence on hatchery fish in the spring creek decreased with time since hatchery closure. Use of stable isotope natural abundance techniques in karst spring creeks can reveal stream impairment due to aquaculture, specific C sources to bio-indicating consumers, losses of farmed fish to predation, and potential exposure of higher order consumers to contaminants associated with aquaculture.
Solid state structure and absolute configuration of filifolinol acetate.
Muñoz, Marcelo A; Urzúa, Alejandro; Echeverría, Javier; Modak, Brenda; Joseph-Nathan, Pedro
2011-06-01
Careful reevaluation of the 1H and 13C NMR spectroscopic data of filifolinol acetate (4) led to the reassignment of the C-10 and C-11 signals, as well as the gem-dimethyl signals. Single crystal X-ray analysis provided an independent structural confirmation of 4, and comparison of the experimental vibrational circular dichroism spectrum with calculations performed using density functional theory provided the absolute configuration of this 3H-spiro-1-benzofuran-2,1'-cyclohexane and related molecules.
Koontz, John L; Marcy, Joseph E; O'Keefe, Sean F; Duncan, Susan E
2009-02-25
Cyclodextrin (CD) complexation procedures are relatively simple processes, but these techniques often require very specific conditions for each individual guest molecule. Variations of the coprecipitation from aqueous solution technique were optimized for the CD complexation of the natural antioxidants alpha-tocopherol and quercetin. Solid inclusion complex products of alpha-tocopherol/beta-CD and quercetin/gamma-CD had molar ratios of 1.7:1, which were equivalent to 18.1% (w/w) alpha-tocopherol and 13.0% (w/w) quercetin. The molar reactant ratios of CD/antioxidant were optimized at 8:1 to improve the yield of complexation. The product yields of alpha-tocopherol/beta-CD and quercetin/gamma-CD complexes from their individual reactants were calculated as 24 and 21% (w/w), respectively. ATR/FT-IR, 13C CP/MAS NMR, TGA, and DSC provided evidence of antioxidant interaction with CD at the molecular level, which indicated true CD inclusion complexation in the solid state. Natural antioxidant/CD inclusion complexes may serve as novel additives in controlled-release active packaging to extend the oxidative stability of foods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugmire, R.J.; Solum, M.S.
This study was designed to apply {sup 13}C-nuclear magnetic resonance (NMR) spectrometry to the analysis of direct coal liquefaction process-stream materials. {sup 13}C-NMR was shown to have a high potential for application to direct coal liquefaction-derived samples in Phase II of this program. In this Phase III project, {sup 13}C-NMR was applied to a set of samples derived from the HRI Inc. bench-scale liquefaction Run CC-15. The samples include the feed coal, net products and intermediate streams from three operating periods of the run. High-resolution {sup 13}C-NMR data were obtained for the liquid samples and solid-state CP/MAS {sup 13}C-NMR datamore » were obtained for the coal and filter-cake samples. The {sup 1}C-NMR technique is used to derive a set of twelve carbon structural parameters for each sample (CONSOL Table A). Average molecular structural descriptors can then be derived from these parameters (CONSOL Table B).« less
C-13 nuclear magnetic resonance in organic geochemistry.
NASA Technical Reports Server (NTRS)
Balogh, B.; Wilson, D. M.; Burlingame, A. L.
1972-01-01
Study of C-13 nuclear magnetic resonance (NMR) spectra of polycyclic fused systems. The fingerprint qualities of the natural abundance in C-13 NMR spectra permitting unequivocal identification of these compounds is discussed. The principle of structural additivity of C-13 NMR information is exemplified on alpha and beta androstanes, alpha and beta cholestanes, ergostanes, sitostanes, and isodecanes.
Bouhlel, Jihéne; Ratel, Jérémy; Abouelkaram, Said; Mercier, Frédéric; Travel, Angelique; Baéza, Elisabeth; Jondreville, Catherine; Dervilly-Pinel, Gaud; Marchand, Philippe; Le Bizec, Bruno; Dubreil, Estelle; Mompelat, Sophie; Verdon, Eric; Inthavong, Chanthadary; Guérin, Thierry; Rutledge, Douglas N; Engel, Erwan
2017-05-12
Starting from a critical analysis of a first "proof of concept" study on the utility of the liver volatolome for detecting livestock exposure to environmental micropollutants (Berge et al., 2011), the primary aim of this paper is to improve extraction conditions so as to obtain more representative extracts by using an extraction temperature closer to livestock physiological conditions while minimizing analytical variability and maximizing Volatile Organic Compound (VOC) abundancies. Levers related to extraction conditions and sample preparation were assessed in the light of both abundance and coefficient of variation of 22 candidate VOC markers identified in earlier volatolomic studies. Starting with a CAR/PDMS fiber and a 30min extraction, the reduction of SPME temperature to 40°C resulted in a significant decrease in the area of 14 candidate VOC markers (p<0.05), mainly carbonyls and alcohols but also a reduction in the coefficient of variation for 17 of them. In order to restore VOC abundances and to minimize variability, two approaches dealing with sample preparation were investigated. By increasing sample defrosting time at 4°C from 0 to 24h yielded higher abundances and lower variabilities for 15 and 13 compounds, respectively. Lastly, by using additives favouring the release of VOCs (1.2g of NaCl) the sensitivity of the analysis was improved with a significant increase in VOC abundances of more than 50% for 13 out of the 22 candidate markers. The modified SPME parameters significantly enhanced the abundances while decreasing the analytical variability for most candidate VOC markers. The second step was to validate the ability of the revised SPME protocol to discriminate intentionally contaminated broiler chickens from controls, under case/control animal testing conditions. After verification of the contamination levels of the animals by national reference laboratories, data analysis by a multivariate chemometric method (Common Components and Specific Weights Analysis - ComDim) showed that the liver volatolome could reveal dietary exposure of broilers to a group of environmental pollutants (PCBs), a veterinary treatment (monensin), and a pesticide (deltamethrin), thus confirming the usefulness of this analytical set-up. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Heider, Elizabeth M.
Solid-State Nuclear Magnetic Resonance (SSNMR) spectroscopy and quantum mechanical calculations are powerful analysis tools. Leveraged independently, each method yields important nuclear and molecular information. Used in concert, SSNMR and computational techniques provide complementary data about the structure of solids. These methods are particularly useful in characterizing the structures of microcrystalline organic compounds and revealing mechanisms of biological activity. Such applications may possess special relevance in analysis of pharmaceutical products; 90% of all pharmaceuticals are marketed as solids and bioactivity is strongly linked with molecular conformation. Accordingly, this dissertation employs both SSNMR and quantum mechanical computation to study three bioactive molecules: citrinin, two forms of Atrasentan (Abt-627), and paclitaxel (Taxol RTM). First, a computational study is utilized to determine the mechanism for unusual antioxidant activity in citrinin. Here, molecular geometries and bond dissociation enthalpies (BDE) of the citrinin O--H groups are calculated from first principles (ab initio). The total molecular Hamiltonian is determined by approximating the individual contributors to energy including electronic energy and contributions from modes of molecular vibration. This study of citrinin clearly identifies specific reaction sites in the active form, establishing the central role of intramolecular hydrogen bonding in this activity. Notably, it is discovered that citrinin itself is not the active species. Instead, a pair of hydrated Michael addition products of citrinin act as radical scavengers via O--H bond dissociation. Next, two separate compounds of the anticancer drug Abt-627 (form I and form II) are examined via SSNMR. The three principal values of the 13C diagonalized chemical shift tensor are acquired through the high resolution 2D experiment, FIREMAT. Isotropic chemical shift assignments are made utilizing both dipolar dephasing experiments and 1H-- 13C heteronuclear correlation (HETCOR) experiments. A comparison of spectral data confirms the presence of two molecules in the asymmetric unit for form II (Z'=2) and regions of conformational variation between the two forms are posited. Structural rigidity is found throughout both forms and extends into the alkyl groups at the amine with similarties between form I and form II in this moiety. Likely regions of motion are found around the bond axes formed by C1--C5 in form I. This motion is also observed in one of the two molecules of form II. Tensor differences between the two forms at the tetrahydro-pyrrole center indicate that conformational variation between form I and form II exists in the dihedral angles formed by the atoms C14--C13--C3--C2, O--C12--C2--C1, C10--C5--C1--N1 and C21--C20--N1--C4. Finally, SSNMR is applied in conjunction with quantum mechanical calculations in the analysis of a novel polymorph of the anticancer drug paclitaxel. The three dimensional structure of paclitaxel is established through a combination of SSNMR tensor (13C & 15N) and 1H--13C HETCOR data. With two molecules in the asymmetric unit (Z'=2), this represents the first conformational characterization with Z'>1 established solely by SSNMR. Semi-empirical models are constructed and fitted to experimental data by adjusting the conformation of the paclitaxel models and selecting those conformers which minimize the difference between predicted and measured tensors. This computational grid search exhausively samples the conformation of paclitaxel, utilizing more than 600 independent models. HETCOR data at thirteen key positions provide shift assignment to the asymmetric unit for each comparison. The two distinct molecules of the asymmetric unit possess nearly identical baccatin III moieties with matching conformations of the C10 acetyl moiety. Additionally, both are found to exhibit an extended conformation of the phenylisoserine sidechain at the C13 position. Notable differences between the two forms are centered around the rotation axes of O--C13, C2'--C1 ', and C3'--C2'.
The 12C/13C Isotopic Ratio in Planetary Nebulae as Deduced from IUE Data
NASA Astrophysics Data System (ADS)
Miskey, C. L.; Feibelman, W. A.; Bruhweiler, F. C.
2000-05-01
The relative abundances of C, N, and O and the isotopic ratio of 12C/13C represent tracers of nucleosynthesis in intermediate stars with main-sequence masses between 0.6 and 8.0 solar masses in our Galaxy. Determining these abundances and the isotopic 12C/13C ratio in planetary nebulae (PNe) represent perhaps the best means to discern exactly how the ISM is enriched by CNO stellar nucleosynthesis. Walsh et al. (1996) and Clegg et al. (1997), using the Hubble Space Telescope, have derived the isotopic 12C/13C abundance ratio in the galactic carbon-rich PN, NGC 3918, and placed marginal constraints on it for the Magellanic PNe, N2 (SMC) and N122 (LMC). This was done using the well-known 12C 3P-1S (J=1-0 and J=2-0) transitions of C+2 at 1906.68 Angstroms and 1908.77 Angstroms and a J=0-0 transition at 1909.6 Angstroms, which is strictly forbidden in 12C. The finite nuclear spin of 13C (I=1/2) permits a corresponding F=1/2-1/2 electric dipole transition not seen in 12C. Since the 1909.6 Angstroms line is well separated from the other two 12C transitions, it provides an important means of determining 12C/13C in planetary nebulae. We have just completed a search of archival International Ultraviolet Explorer (IUE) high-dispersion spectra of approximately three dozen PNe, and derived 12C/13C ratios of 39 and 23 for the galactic PNe, NGC 2440 and NGC 6302, respectively. These are values much lower than the solar value of 89. In the other objects, the limited S/N of the IUE data indicate 12C/13C ratio upper limits much higher than 50. The implications of these results and their pertinence to stellar evolution are discussed.
NASA Astrophysics Data System (ADS)
Nelson, D. M.; Hu, F.; Pearson, A.
2007-12-01
C3 and C4 grasses have distinct influences on major biogeochemical processes and unique responses to important environmental controls. Difficulties in distinguishing between these two functional groups of grasses have hindered paleoecological studies of grass-dominated ecosystems. We recently developed a technique to analyze the stable carbon isotope composition of individual grass-pollen grains using a spooling- wire microcombustion device interfaced with an isotope-ratio mass spectrometer (Nelson et al. 2007). This technique holds promise for improving C3 and C4 grass reconstructions. It requires ~90% fewer grains than typical methods and avoids assumptions associated with mixing models. However, our previous work was based on known C3 and C4 grasses from herbarium specimens and field collections and the technique had not been test using geological samples. To test the ability of this technique to reproduce the abundance of C3 and C4 grasses on the landscape, we measured δ13C values of >1500 individual grains of grass pollen isolated from the surface sediments of 10 North American lakes that span a large gradient of C3 and C4 grass abundance. Results indicate a strong positive correlation (r=0.94) between % C4-grass pollen (derived from classifying δ13C values from single grains as C3 and C4) and the literature-reported abundance of C4 grasses on the landscape. However, the measured % C4-grass pollen shows some deviation from the actual abundance at sites with high proportions of C4 grasses. This is likely caused by uncertainty in the magnitude, composition, and variability of the analytical blank associated with these measurements. Correcting for this deviation using regression analysis improves the estimation of the abundance of C4 grasses on the landscape. Comparison of the % C4-grass pollen with C/N and δ13C measurements of total organic matter in the same lake-sediment samples illustrates the distinct advantage of grass-pollen δ13C as a proxy for distinguishing C3 and C4 shifts. At 9 of the 10 sites C/N values indicate that surface-sediment organic matter was derived primarily from aquatic production. At the one site where organic matter was produced primarily by vascular plants the δ13C value (-29.3°) suggests organic matter derived exclusively from C3 plants. However, ~80% of the grasses on the landscape at this site are C4 grasses. The C3- like bulk-sediment δ13C value likely represents woody species, which comprise >90% of the pollen spectra. Thus δ13C analysis of single grains of grass pollen offers a new tool to classify grass pollen into two major functional groups and promises to advance our understanding of grassland ecology and evolution. Reference Nelson, D.M., Hu, F.S., Mikucki, J., Tian, J., and Pearson, A., 2007, Carbon isotopic analysis of individual pollen grains from C3 and C4 grasses using a spooling wire microcombustion interface: Geochimica et Cosmochimica Acta, v. 71, p. 4005-4014.
Time averaging of NMR chemical shifts in the MLF peptide in the solid state.
De Gortari, Itzam; Portella, Guillem; Salvatella, Xavier; Bajaj, Vikram S; van der Wel, Patrick C A; Yates, Jonathan R; Segall, Matthew D; Pickard, Chris J; Payne, Mike C; Vendruscolo, Michele
2010-05-05
Since experimental measurements of NMR chemical shifts provide time and ensemble averaged values, we investigated how these effects should be included when chemical shifts are computed using density functional theory (DFT). We measured the chemical shifts of the N-formyl-L-methionyl-L-leucyl-L-phenylalanine-OMe (MLF) peptide in the solid state, and then used the X-ray structure to calculate the (13)C chemical shifts using the gauge including projector augmented wave (GIPAW) method, which accounts for the periodic nature of the crystal structure, obtaining an overall accuracy of 4.2 ppm. In order to understand the origin of the difference between experimental and calculated chemical shifts, we carried out first-principles molecular dynamics simulations to characterize the molecular motion of the MLF peptide on the picosecond time scale. We found that (13)C chemical shifts experience very rapid fluctuations of more than 20 ppm that are averaged out over less than 200 fs. Taking account of these fluctuations in the calculation of the chemical shifts resulted in an accuracy of 3.3 ppm. To investigate the effects of averaging over longer time scales we sampled the rotameric states populated by the MLF peptides in the solid state by performing a total of 5 micros classical molecular dynamics simulations. By averaging the chemical shifts over these rotameric states, we increased the accuracy of the chemical shift calculations to 3.0 ppm, with less than 1 ppm error in 10 out of 22 cases. These results suggests that better DFT-based predictions of chemical shifts of peptides and proteins will be achieved by developing improved computational strategies capable of taking into account the averaging process up to the millisecond time scale on which the chemical shift measurements report.
NASA Astrophysics Data System (ADS)
Purtas, Fatih; Sayin, Koray; Ceyhan, Gokhan; Kose, Muhammet; Kurtoglu, Mukerrem
2017-06-01
A new Schiff base containing azo chromophore group obtained by condensation of 2-hydroxy-4-[(E)-phenyldiazenyl]benzaldehyde with 3,4-dimethylaniline (HL) are used for the syntheses of new copper(II) and zinc(II) chelates, [Cu(L)2], and [Zn(L)2], and characterized by physico-chemical and spectroscopic methods such as 1H and 13C NMR, IR, UV.-Vis. and elemental analyses. The solid state structure of the ligand was characterized by single crystal X-ray diffraction study. X-ray diffraction data was then used to calculate the harmonic oscillator model of aromaticity (HOMA) indexes for the rings so as to investigate of enol-imine and keto-amine tautomeric forms in the solid state. The phenol ring C10-C15 shows a considerable deviation from the aromaticity with HOMA value of 0.837 suggesting the shift towards the keto-amine tautomeric form in the solid state. The analytical data show that the metal to ligand ratio in the chelates was found to be 1:2. Theoretical calculations of the possible isomers of the ligand and two metal complexes are performed by using B3LYP method. Electrochemical and photoluminescence properties of the synthesized azo-Schiff bases were also investigated.
NASA Astrophysics Data System (ADS)
Dal Corso, Jacopo; Schmidt, Alexander R.; Seyfullah, Leyla J.; Preto, Nereo; Ragazzi, Eugenio; Jenkyns, Hugh C.; Delclòs, Xavier; Néraudeau, Didier; Roghi, Guido
2017-02-01
Stable carbon-isotope geochemistry of fossilized tree resin (amber) potentially could be a very useful tool to infer the composition of past atmospheres. To test the reliability of amber as a proxy for the atmosphere, we studied the variability of modern resin δ13C at both local and global scales. An amber δ13C curve was then built for the Cretaceous, a period of abundant resin production, and interpreted in light of data from modern resins. Our data show that hardening changes the pristine δ13C value by causing a 13C-depletion in solid resin when compared to fresh liquid-viscous resin, probably due to the loss of 13C-enriched volatiles. Modern resin δ13C values vary as a function of physiological and environmental parameters in ways that are similar to those described for leaves and wood. Resin δ13C varies between plant species and localities, within the same tree and between different plant tissues by up to 6‰, and in general increases with increasing altitudes of the plant-growing site. We show that, as is the case with modern resin, Cretaceous amber δ13C has a high variability, generally higher than that of other fossil material. Despite the high natural variability, amber shows a negative 2.5-3‰ δ13C trend from the middle Early Cretaceous to the Maastrichtian that parallels published terrestrial δ13C records. This trend mirrors changes in the atmospheric δ13C calculated from the δ13C and δ18O of benthic foraminiferal tests, although the magnitude of the shift is larger in plant material than in the atmosphere. Increasing mean annual precipitation and pO2 could have enhanced plant carbon-isotope fractionation during the Late Cretaceous, whereas changing pCO2 levels seem to have had no effect on plant carbon-isotope fractionation. The results of this study suggest that amber is a powerful fossil plant material for palaeoenvironmental and palaeoclimatic reconstructions. Improvement of the resolution of the existing data coupled with more detailed information about botanical source and environmental growing conditions of the fossil plant material will probably allow a more faithful interpretation of amber δ13C records and a wider understanding of the composition of the past atmosphere.
Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.
2015-01-01
Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment “ghosts” and applied 2D 13C-13C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. PMID:25825492
Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E
2015-05-29
Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment "ghosts" and applied 2D (13)C-(13)C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Nelson, David M.; Urban, Michael A.; Kershaw, A. Peter; Hu, Feng Sheng
2016-05-01
Climate, atmospheric pCO2, and fire all may exert major influences on the relative abundance of C3 and C4 grasses in the present-day vegetation. However, the relative role of these factors in driving variation in C3 and C4 grass abundances in the paleorecord is uncertain, and C4 abundance is often interpreted narrowly as a proxy indicator of aridity or pCO2. We measured δ13C values of individual grains of grass (Poaceae) pollen in the sediments of two sites in southeastern Australia to assess changes in the proportions of C3 and C4 grasses during the past 25,000 years. These data were compared with shifts in pCO2, temperature, moisture balance, and fire to assess how these factors were related to long-term variation of C4 grass abundance during the late Quaternary. At Caledonia Fen, a high-elevation site in the Snowy Mountains, C4 grass abundance decreased from an average of 66% during the glacial period to 11% during the Holocene, primarily in response to increased pCO2 and temperature. In contrast, this pattern did not exist in low-elevation savannah woodlands around Tower Hill Northwest Crater, where C4 grass abundance instead varied in response to shifts in regional aridity. Fire did not appear to have strongly influenced the proportions of C3 and C4 grasses on the landscape at millennial timescales at either site. These patterns are similar to those of a recent study in East Africa, suggesting that elevation-related climatic differences influence how the abundance of C3 and C4 grasses responds to shifts in climate and pCO2. These results caution against using C4 plant abundance as a proxy indicator of either climate or pCO2 without an adequate understanding of key controlling factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poteet, Charles A.; Whittet, Douglas C. B.; Draine, Bruce T., E-mail: charles.poteet@gmail.com
2015-03-10
We investigate the composition of interstellar grains along the line of sight toward ζ Ophiuchi, a well-studied environment near the diffuse-dense cloud transition. A spectral decomposition analysis of the solid-state absorbers is performed using archival spectroscopic observations from the Spitzer Space Telescope and Infrared Space Observatory. We find strong evidence for the presence of sub-micron-sized amorphous silicate grains, principally comprised of olivine-like composition, with no convincing evidence of H{sub 2}O ice mantles. However, tentative evidence for thick H{sub 2}O ice mantles on large (a ≈ 2.8 μm) grains is presented. Solid-state abundances of elemental Mg, Si, Fe, and O aremore » inferred from our analysis and compared to standard reference abundances. We find that nearly all of the Mg and Si atoms along the line of sight reside in amorphous silicate grains, while a substantial fraction of the elemental Fe resides in compounds other than silicates. Moreover, we find that the total abundance of elemental O is largely inconsistent with the adopted reference abundances, indicating that as much as ∼156 ppm of interstellar O is missing along the line of sight. After taking into account additional limits on the abundance of elemental O in other O-bearing solids, we conclude that any missing reservoir of elemental O must reside on large grains that are nearly opaque to infrared radiation.« less
Lubach, Joseph W; Hau, Jonathan
2018-02-20
To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.
USDA-ARS?s Scientific Manuscript database
Solid state 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to study the structure of soil humic fractions; however, knowledge regarding carbon structural relationships in humic fractions is limited. In this study, mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fr...
USDA-ARS?s Scientific Manuscript database
Prescribed burning and thinning are gaining popularity as low-cost forest protection measures. Such field management practices could alter the chemical properties of soil organic matter (SOM), especially humic substances. In this work, we collected surface soil samples from the Bankhead National For...
Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins
Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi
2000-01-01
A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high temperature was developed and used to assess the influence of the reaction pH on the formaldehyde emission and heat stability of the cured resins. Additionally, solid-state 13C CP/MAS nuclear magnetic resonance (NMR) techniques were used to investigate the...
USDA-ARS?s Scientific Manuscript database
Organic dairy (OD) production is drawing increasing attention because of public concerns about food safety, animal welfare and the potential environmental impacts of conventional dairy (CD) systems. However, very limited information is available on how organic farming practices affect the chemical ...
Solid-state NMR characterization of copolymers of nylon 11 and nylon 12.
Johnson, C G; Mathias, L J
1997-05-01
Solid-state 13C and 15N NMR spectroscopy, in conjunction with differential scanning calorimetry, wide-angle X-ray diffraction and infrared spectroscopy, were used to characterize a series of nylon 11 and 12 copolymers with mole percentages of nylon 12 monomer of 0, 15, 35, 50, 65, 85, and 100%. Monotonic melting point (Tm) and heat of fusion depressions were observed for the copolymer series with the 65 mol% nylon 12 copolymer having the lowest apparent crystallinity and Tm at 148 degrees C. Solid-state 15N NMR spectra showed a smooth shift of the main peak position for the as-prepared copolymers from 84 ppm for the alpha-form of pure nylon 11 to 89 ppm for the gamma-form of pure nylon 12. Similar behavior was seen for FTIR amide V and VI modes which are also sensitive to the alpha- and gamma-crystal forms. 13C NMR T1 measurements showed that the overall most mobile sample was the 65:35 copolymer. The amide group of the 1:1 copolymer was labelled using 15N-labelled amino acids available through the Gabriel synthesis; an annealed, solution-cast film of this sample showed a T1N value of 349 s, similar to values seen for annealed nylon 11 and nylon 12 homopolymers. The WAXS pattern for the 65 mol% nylon 12 sample showed a sharp peak at 2 theta = 21.3, overlapping a broad peak centered at 2 theta = 21.0. These are consistent with the values seen for gamma-form nylon 12. The 1:1 copolymer (15N labelled) was shown to be polymorphic, like the homopolymers after specific treatments, with a gamma-like phase formed upon solvent casting, and an alpha-like phase dominating for as-polymerized material and precipitated flakes.
Cyanide and isocyanide abundances in the cold, dark cloud TMC-1
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Schloerb, F. P.
1984-01-01
Cold, dark molecular clouds are particularly useful for the study of interstellar chemistry because their physical parameters are better understood than those of heterogeneous, complex giant molecular clouds. Another advantage is their relatively small distance from the solar system. The present investigaation has the objective to provide accurate abundance ratios for several cyanides and isocyanides in order to constrain models of dark cloud chemistry. The relative abundances of such related species can be particularly useful for the study of chemical processes. The cloud TMC-1 considered in the current study has a remarkably high abundance of acetylene and polyacetylene derivatives. Data at 3 mm, corresponding to the J = 1 to 0 transitions of HCN, H(C-13)N, HN(C-13), HC(N-15), and H(N-15)C were obtained.
Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations
NASA Astrophysics Data System (ADS)
Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław
2017-10-01
Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.
SOLID SOLUTION EFFECTS ON THE THERMAL PROPERTIES IN THE MgAl2O4-MgGa2O4
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Hara, Kelley; Smith, Jeffrey D; Sander, Todd P.
Solid solution eects on thermal conductivity within the MgO-Al2O3-Ga2O3 system were studied. Samples with systematically varied additions of MgGa2O4 to MgAl2O4 were prepared and the laser ash technique was used to determine thermal diusivity at temperatures between 200C and 1300C. Heat capacity as a function of temperature from room temperature to 800C was also determined using dierential scanning calorimetry. Solid solution in the MgAl2O4-MgGa2O4 system decreases the thermal conductivity up to 1000C. At 200C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. At 1000C the thermal conductivity decreased 13% with a 5 mol% addition.more » Steady state calculations showed a 12.5% decrease in heat ux with 5 mol% MgGa2O4 considered across a 12 inch thickness.« less
Zidan, Ahmed S; Aqueel, Sabir M; Alayoubi, Alaadin; Mohammad, Adil; Zhang, Jinhui; Rahman, Ziyaur; Faustino, Patrick; Lostritto, Richard T; Ashraf, Muhammad
2017-10-30
Leachables derived from multi-component drug-device syringe systems can result in changes to the quality of drug products. Diphenylguanidine (DPG), a leachable released from styrene butadiene rubber syringe plungers, interacts with Oxytocin to form protein-adducts. This study investigated the mechanism and kinetics of this interaction in both solid and solution states through in-vitro tests and spectroscopic methods For solid state interaction, the protein-adducts with DPG were characterized using SEM, XRD, DSC, FTIR, 13 C ss NMR, and dissolution analysis. For solution state interaction, LC-HRMS was used to assess stability of Oxytocin solutions in presence of various concentrations of DPG at 25°C and 40°C for 4 weeks. Moreover, molecular docking analysis was used to identify possible molecular configurations of the interaction.Results were consistent with the formation of a new solid state with distorted surface morphology for oxytocin-DPG adducts, in which the oxytocin carbonyl group(s) and the secondary amine groups of DPG interact. This interaction was also confirmed by molecular docking analysis through hydrogen bonding (2.31Å) and Van der Waal attraction (3.14Å). Moreover, LC-HRMS analysis revealed an increase in Oxytocin stability and suppression of Oxytocin dimerization by DPG. A potential reduction in the rate of Oxytocin dissolution from the formed adducts was indicative of its strong association with DPG. Hence, the leaching potential of DPG from rubber closures and plungers should be monitored and controlled to maintain the quality and stability of the pharmaceutical product. Published by Elsevier B.V.
Molecular Structure of Humin and Melanoidin via Solid State NMR
Herzfeld, Judith; Rand, Danielle; Matsuki, Yoh; Daviso, Eugenio; Mak-Jurkauskas, Melody; Mamajanov, Irena
2011-01-01
Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective 13C substitution, 1H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simplified by relying exclusively on hydronium for catalysis. The results for polymers derived from ribose, deoxyribose and fructose indicate diverse pathways to furans, suggest a simple route to pyrroles in the presence of amines, and reveal a heterogenous network-type polymer in which sugar molecules cross-link the heterocycles. PMID:21456563
Katakura, Ryo; Koide, Yoshihiro
2006-07-24
Treatment of AlO(OH) with 3 equiv of 8-hydroxyquinolinol in refluxing deionized water provided the meridional and facial isomers of tris(8-hydroxyquinolinate)aluminum (Alq3) with good yields as solid deposits after 1 and 90 h, respectively. X-ray diffraction and solid-state 13C NMR studies revealed that mer-Alq3 is formed in the early stage of the reaction and then gradually converts to fac-Alq3, which is thermodynamically less stable, although no existence of a catalyst substance is implied.
NASA Astrophysics Data System (ADS)
Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge
2018-04-01
Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high relaxing agent concentrations, leading to a strong reduction of the overall experiment time.
NASA Technical Reports Server (NTRS)
Watson, W. D.; Anicich, V. G.; Huntress, W. T., Jr.
1976-01-01
Laboratory measurements using the ion-cyclotron resonance technique yield a rate constant of 2 by 10 to the -10th power cu cm/sec at 300 K for the isotope exchange C-13(+) + (C-12)O yields C-12(+) + (C-13)O. According to the usual ideas about ion-molecule reactions, this rate constant should also be appropriate at temperatures not exceeding about 100 K. Then the observed C-13/C-12 ratio obtained from radio observation of interstellar molecules may be either larger or smaller than the actual value in the interstellar medium by factors of 2 or so. If the ratio is altered from the actual interstellar value, it will not be the same in all molecules, and CO will tend to have the highest value. The chief astronomical uncertainty for the occurrence of this isotope fractionation is the abundance of 'unobservable' molecules which can react rapidly with C(+): e.g., O2, H2O, CO2, and CH4. If their abundance is greater than about one-tenth that of CO, the isotope fractionation will be inhibited.
Fluorine and Sodium in C-rich Low-metallicity Stars
NASA Astrophysics Data System (ADS)
Lucatello, Sara; Masseron, Thomas; Johnson, Jennifer A.; Pignatari, Marco; Herwig, Falk
2011-03-01
We present the N, O, F, and Na abundance and 12C/13C isotopic ratio measurements or upper limits for a sample of 10 C-rich, metal-poor giant stars: 8 enhanced in s-process (CEMP-s) elements and 2 poor in n-capture elements (CEMP-no). The abundances are derived from IR, K-band, high-resolution CRIRES@VLT obtained spectra. The metallicity of our sample ranges from [Fe/H] = -3.4 to -1.3. F abundance could be measured only in two CEMP-s stars. With [F/Fe] = 0.64, one is mildly F-overabundant, while the other is F-rich, at [F/Fe] = 1.44. For the remaining eight objects, including both CEMP-no stars in our sample, only upper limits on F abundance could be placed. Our measurements and upper limits show that there is a spread in the [F/C+N] ratio in CEMP-s stars as predicted by theory. Predictions from nucleosynthetic models for low-mass, low-metallicity asymptotic giant branch (AGB) stars account for the derived F abundances, while the upper limits on F content derived for most of the stars are lower than the predicted values. The measured Na content is accounted for by AGB models in the 1.25-1.75 M sun range, confirming that the stars responsible for the peculiar abundance pattern observed in CEMP-s stars are low-mass, low-metallicity AGB stars in agreement with the most accepted astrophysical scenario. We conclude that the mechanism of F production in current state-of-the-art low-metallicity low-mass AGB models needs further scrutiny and that F measurements in a larger number of metal-poor stars are needed to better constrain the models. Based on observations made with ESO Telescopes at Paranal Observatories under program ID 080.D-0606A. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, funded by the National Aeronautics and Space Administration and the National Science Foundation.
Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz; Wawer, Iwona
2016-04-15
Excipients used in the solid drug formulations differ in their NMR relaxation and (13)C cross-polarization (CP) kinetics parameters. Therefore, experimental parameters like contact time of cross-polarization and repetition time have a major impact on the registered solid state NMR spectra and in consequence on the results of the NMR analysis. In this work the CP kinetics and relaxation of the most common pharmaceutical excipients: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. The studied excipients differ significantly in their optimum repetition time (from 5 s to 1200 s) and T(1ρ)(I) parameters (from 2 ms to 73 ms). The practical use of those differences in the excipients composition analysis was demonstrated on the example of commercially available tablets containing indapamide as an API. The information presented in this article will help to choose the correct acquisition parameters and also will save the time and effort needed for their optimization in the NMR analysis of the solid drug formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Carbon Isotope Chemistry in Molecular Clouds
NASA Technical Reports Server (NTRS)
Robertson, Amy N.; Willacy, Karen
2012-01-01
Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.
A triple helical calcium-based coordination polymer with strong blue fluorescent emission
NASA Astrophysics Data System (ADS)
Yu, Liang-Cai; Chen, Zhen-Feng; Liang, Hong; Zhou, Chun-Shan; Li, Yan
2005-08-01
A hydrothermal reaction of 1,3-dicyanobenzene and Ca(OH)2 yielded a triple helical calcium-based coordination polymer of the formula, C20H25Ca2.50O18.50 (1). The 1,3-benzenecarboxylate anion, found in the final product was generated in situ during the synthesis by the hydrolysis of 1,3-dicyanobenzene. X-ray diffraction study shows that the complex 1 crystallizes in the monoclinic system, C2/c space group, a=15.5701(5), b=21.4445(7), c=17.1601(6) Å, β=111.7400(7)°, V=5322.1(3) Å3, Z=8, Dc=1.651 Mg/m3. The calcium atoms show differences in the coordination environments. Complex 1 emits strong blue fluorescent light (λem(max)=419 nm) when it is excited by UV light (λex(max)=316 nm) in the solid state at room temperature.
Wu, Junjun; Zhang, Qian; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli
2016-10-15
We investigated soil microbial biomass and its natural abundance of δ(13)C and δ(15)N in aggregates (>2000μm, 250-2000μm, 53-250μm and <53μm) of afforested (implementing woodland and shrubland plantations) soils, adjacent croplands and open area (i.e., control) in the Danjiangkou Reservoir area of central China. The afforested soils averaged higher microbial biomass carbon (MBC) and nitrogen (MBN) levels in all aggregates than in open area and cropland, with higher microbial biomass in micro-aggregates (<250μm) than in macro-aggregates (>2000μm). The δ(13)C of soil microbial biomass was more enriched in woodland soils than in other land use types, while δ(15)N of soil microbial biomass was more enriched compared with that of organic soil in all land use types. The δ(13)C and δ(15)N of microbial biomass were positively correlated with the δ(13)C and δ(15)N of organic soil across aggregates and land use types, whereas the (13)C and (15)N enrichment of microbial biomass exhibited linear decreases with the corresponding C:N ratio of organic soil. Our results suggest that shifts in the natural (13)C and (15)N abundance of microbial biomass reflect changes in the stabilization and turnover of soil organic matter (SOM) and thereby imply that afforestation can greatly impact SOM accumulation over the long-term. Copyright © 2016 Elsevier B.V. All rights reserved.
Birkefeld, Anja Britta; Bertermann, Rüdiger; Eckert, Hellmut; Pfleiderer, Bettina
2003-01-01
To investigate aging processes of silicone gel breast implants, which may include migration of free unreacted material from the gel and rubber to local (e.g. connective tissue capsule) or distant sites in the body, chemical alteration of the polymer and infiltration of body compounds, various approaches of multinuclear nuclear magnetic resonance (NMR) experiments (29Si, 13C, 1H) were evaluated. While 29Si, 13C, and 1H solid-state magic angle spinning (MAS) NMR techniques performed on virgin and explanted envelopes of silicone prostheses provided only limited information, high-resolution liquid-state NMR techniques of CDCl(3) extracts were highly sensitive analytical tools for the detection of aging related changes in the materials. Using 2D 1H, 1H correlation spectroscopy (COSY) and 29Si, 1H heteronuclear multiple bond coherence (HMBC) experiments with gradient selection, it was possible to detect lipids (mainly phospholipids) as well as silicone oligomer species in explanted envelopes and gels. Silicone oligomers were also found in connective tissue capsules, indicating that cyclic polysiloxanes can migrate from intact implants to adjacent and distant sites. Furthermore, lipids can permeate the implant and modify its chemical composition. Copyright 2002 Elsevier Science Ltd.
Guo, Wen; Morrisett, Joel D.; DeBakey, Michael E.; Lawrie, Gerald M.; Hamilton, James A.
2010-01-01
Because of renewed interest in the progression, stabilization, and regression of atherosclerotic plaques, it has become important to develop methods for characterizing structural features of plaques in situ and noninvasively. We present a nondestructive method for ex vivo quantification of 2 solid-phase components of plaques: crystalline cholesterol and calcium phosphate salts. Magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of human carotid endarterectomy plaques revealed 13C resonances of crystalline cholesterol monohydrate and a 31P resonance of calcium phosphate hydroxyapatite (CPH). The spectra were obtained under conditions in which there was little or no interference from other chemical components and were suitable for quantification in situ of the crystalline cholesterol and CPH. Carotid atherosclerotic plaques showed a wide variation in their crystalline cholesterol content. The calculated molar ratio of liquid-crystalline cholesterol to phospholipid ranged from 1.1 to 1.7, demonstrating different capabilities of the phospholipids to reduce crystallization of cholesterol. The spectral properties of the phosphate groups in CPH in carotid plaques were identical to those of CPH in bone. 31P MAS NMR is a simple, rapid method for quantification of calcium phosphate salts in tissue without extraction and time-consuming chemical analysis. Crystalline phases in intact atherosclerotic plaques (ex vivo) can be quantified accurately by solid-state 13C and 31PMAS NMR spectroscopy. PMID:10845882
Cavalheiro, Gabriéla Finoto; Sanguine, Isadora Stranieri; Santos, Flávia Regina da Silva; da Costa, Ana Carolina; Fernandes, Matheus; da Paz, Marcelo Fossa; Fonseca, Gustavo Graciano
2017-01-01
Amylases catalyze the hydrolysis of starch, a vegetable polysaccharide abundant in nature. These enzymes can be utilized in the production of syrups, alcohol, detergent, pharmaceutical products, and animal feed formulations. The aim of this study was to optimize the production of amylases by the filamentous fungus Gongronella butleri by solid-state fermentation and to evaluate the catalytic properties of the obtained enzymatic extract. The highest amylase production, 63.25 U g−1 (or 6.32 U mL−1), was obtained by culturing the fungus in wheat bran with 55% of initial moisture, cultivated for 96 h at 25°C. The enzyme presented optimum activity at pH 5.0 and 55°C. The amylase produced was stable in a wide pH range (3.5–9.5) and maintained its catalytic activity for 1 h at 40°C. Furthermore, the enzymatic extract hydrolyzed starches from different vegetable sources, presenting predominant dextrinizing activity for all substrates evaluated. However, the presence of glucose was observed in a higher concentration during hydrolysis of corn starch, indicating the synergistic action of endo- and exoamylases, which enables the application of this enzymatic extract to produce syrups from different starch sources. PMID:29376074
Sene, Saad; Reinholdt, Marc; Renaudin, Guillaume; Berthomieu, Dorothée; Zicovich-Wilson, Claudio M; Gervais, Christel; Gaveau, Philippe; Bonhomme, Christian; Filinchuk, Yaroslav; Smith, Mark E; Nedelec, Jean-Marie; Bégu, Sylvie; Mutin, P Hubert; Laurencin, Danielle
2013-01-14
Boronic acids (R-B(OH)(2)) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R-B(OH)(3)(-)) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C(4)H(9)-B(OH)(3)](2), which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid-state NMR spectroscopy ((1)H, (13)C, (11)B and (43)Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave--GIPAW--method). These data allow relationships between the geometry around the OH groups in boronates and the IR and (1)H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic-inorganic materials containing boronate building blocks. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evidence of shift in C4 species range in central Argentina during the late Holocene
Silva, L.C.R.; Giorgis, M.A.; Anand, M.; Enrico, L.; Perez-Harguindeguy, N.; Falczuk, V.; Tieszen, L.L.; Cabido, M.
2011-01-01
AimMillennial-scale biogeographic changes are well understood in many parts of the world, but little is known about long-term vegetation dynamics in subtropical regions. Here we investigate shifts in C3/C4 plant abundance occurred in central Argentina during the past few millenniaMethodsWe determined present day soil organic matter δ13C signatures of grasslands, shrublands and woodlands, containing different mixtures of C3 and C4 plants. We measured past changes in the relative cover of C3/C4 plants by comparing δ13C values in soil profiles with present day δ13C signatures. We analyzed 14C activity in soil depths that showed major changes in vegetation.ResultsPresent day relative cover of C3/C4 plants determines whole ecosystem δ13C signatures integrated as litter and superficial soil organic matter (R2 = 0.78; p < 0.01). Deeper soils show a consistent shift in δ13C, indicating a continuous replacement of C4 by C3 plants since 3,870 (±210) YBP. During this period, the relative abundance of C3 plants increased 32% (average across sites) with significant changes being observed in all studied ecosystems.ConclusionsOur results show that C4 species were more abundant in the past, but C3 species became dominant during the late Holocene. We identified increases in the relative C3/C4 cover in grasslands, shrublands and woodlands, suggesting a physiological basis for changes in vegetation. The replacement of C4 by C3 plants coincided with changes in climate towards colder and wetter conditions and could represent a climatically driven shift in the C4 species optimum range.
Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z
2016-09-01
The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Lassoued, Mohamed Saber; Abdelbaky, Mohammed S. M.; Lassoued, Abdelmajid; Meroño, Rafael Mendoza; Gadri, Abdellatif; Ammar, Salah; Ben Salah, Abdelhamid; García-Granda, Santiago
2017-08-01
The present work aimed at studying a new organic-inorganic bis (4-amino quinolinium) hexachloro stanate (II) dihydrate compound. It was prepared and characterized by single crystal X-ray diffraction, X-ray powder, Hirshfeld surface, Spectroscopy measurement, thermal study and photoluminescence properties. It was found to crystallize in the monoclinic system (P21/c space group) with the following lattice parameters: a = 7.2558(6) Å, b = 13.4876(5) Å, c = 17.2107(13) Å, β = 102.028 (12)°. Its crystal structure was determined and refined down to an R value of 0.06 and a wR value of 0.087. The structure consisted of two different alternating organic-inorganic layers. The crystal packing was stabilized by Nsbnd H⋯Cl and Osbnd H⋯Cl hydrogen bonds and π-π interactions. Hirshfeld surface analysis was used to investigate intermolecular interactions, as well 2D finger plots were conducted to reveal the contribution of these interactions in the crystal structure quantitatively. The X-ray powder is in agreement with the X-ray structure. Scanning electronic microscopy (SEM) was carried out. Furthermore, the room temperature Infra Red (IR) spectrum of the title compound was analyzed on the basis of data found in the literature. Solid state 13C NMR spectrum shows ten signals, confirming the solid state structure determined by X-ray diffraction. Thermal analysis shows two anomalies at 380 and 610 °C. The optical properties of the crystal were studied using optical absorption UV-visible and photoluminescence (PL) spectroscopy, which were investigated at room temperature.
Prakash, Shipra; Iturmendi, Nerea; Grelard, Axelle; Moine, Virginie; Dufourc, Erick
2016-05-15
Stability of wines is of great importance in oenology matters. Quantitative estimation of dark red precipitates formed in Merlot and Cabernet Sauvignon wine from Bordeaux region for vintages 2012 and 2013 was performed during the oak barrel ageing process. Precipitates were obtained by placing wine at -4°C or 4°C for 2-6 days and monitored by periodic sampling during a one-year period. Spectroscopic identification of the main families of components present in the precipitate powder was performed with (13)C solid-state CPMAS NMR and 1D and 2D solution NMR of partially water re-solubilized precipitates. The study revealed that the amount of precipitate obtained is dependent on vintage, temperature and grape variety. Major components identified include potassium bitartrate, polyphenols, polysaccharides, organic acids and free amino acids. No evidence was found for the presence of proteins. The influence of main compounds found in the precipitates is discussed in relation to wine stability. Copyright © 2016. Published by Elsevier Ltd.
On the problem of resonance assignments in solid state NMR of uniformly 15N, 13C-labeled proteins
NASA Astrophysics Data System (ADS)
Tycko, Robert
2015-04-01
Determination of accurate resonance assignments from multidimensional chemical shift correlation spectra is one of the major problems in biomolecular solid state NMR, particularly for relative large proteins with less-than-ideal NMR linewidths. This article investigates the difficulty of resonance assignment, using a computational Monte Carlo/simulated annealing (MCSA) algorithm to search for assignments from artificial three-dimensional spectra that are constructed from the reported isotropic 15N and 13C chemical shifts of two proteins whose structures have been determined by solution NMR methods. The results demonstrate how assignment simulations can provide new insights into factors that affect the assignment process, which can then help guide the design of experimental strategies. Specifically, simulations are performed for the catalytic domain of SrtC (147 residues, primarily β-sheet secondary structure) and the N-terminal domain of MLKL (166 residues, primarily α-helical secondary structure). Assuming unambiguous residue-type assignments and four ideal three-dimensional data sets (NCACX, NCOCX, CONCA, and CANCA), uncertainties in chemical shifts must be less than 0.4 ppm for assignments for SrtC to be unique, and less than 0.2 ppm for MLKL. Eliminating CANCA data has no significant effect, but additionally eliminating CONCA data leads to more stringent requirements for chemical shift precision. Introducing moderate ambiguities in residue-type assignments does not have a significant effect.
Kozerski, L; Sierzputowska-Gracz, H; Krzyzosiak, W; Bratek-Wiewiórowska, M; Jaskólski, M; Wiewiórowski, M
1984-01-01
The 1H, 13C, 15N NMR spectra of cytidine /Cyd/, ethenocytidine /epsilon Cyd/ and their hydrochlorides /Cyd X HC1/ and /epsilon Cyd X HC1/ have been analysed to compare structural differences observed in solution with those existing in the crystalline state. The effects of ethenobridging and protonation of the hertero-aromatic base on the intramolecular stereochemistry, intermolecular interactions and electronic structure of the whole molecule are discussed on the basis of the NMR studies in DMSO solutions. Particular interest is devoted to the discussion of the conformation of the ribose ring, the presence of the intramolecular C-5'-0...H-6-C hydrogen bond, unambiguous assignment of the site of protonation, the mechanism of the 5C-H deuterium exchange in Cyd X HC1, and the intermolecular interactions in solution. PMID:6701098
Kazakov, Igor V; Bodensteiner, Michael; Timoshkin, Alexey Y
2014-03-01
The molecular structures of trichlorido(2,2':6',2''-terpyridine-κ(3)N,N',N'')gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2':6',2''-terpyridine-κ(3)N,N',N'')gallium(III), [GaBr3(C15H11N3)], are isostructural, with the Ga(III) atom displaying an octahedral geometry. It is shown that the Ga-N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2':6',2''-terpyridine donor as well.
Secondary Structures of Ubiquitin Ions Soft-Landed onto Self-Assembled Monolayer Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Qichi; Laskin, Julia
2016-06-09
The secondary structures of multiply charged ubiquitin ions soft-landed onto self-assembled monolayer (SAM) surfaces were studied using in situ infrared reflection-absorption spectroscopy (IRRAS). Two charge states of ubiquitin, 5+ and 13+, were mass selected separately from a mixture of different charge states produced by electrospray ionization (ESI). The low 5+ charge state represents a native-like folded state of ubiquitin, while the high 13+ charge state assumes an extended, almost linear conformation. Each of the two charge states was soft-landed onto a CH 3- and COOH-terminated SAM of alkylthiols on gold (HSAM and COOH-SAM). HSAM is a hydrophobic surface known tomore » stabilize helical conformations of soft-landed protonated peptides, whereas COOH-SAM is a hydrophilic surface that preferentially stabilizes β-sheet conformations. IRRAS spectra of the soft-landed ubiquitin ions were acquired as a function of time during and after ion soft-landing. Similar to smaller peptide ions, helical conformations of ubiquitin are found to be more abundant on HSAM, while the relative abundance of β-sheet conformations increases on COOH-SAM. The initial charge state of ubiquitin also has a pronounced effect on its conformation on the surface. Specifically, on both surfaces, a higher relative abundance of helical conformations and lower relative abundance of β-sheet conformations is observed for the 13+ charge state compared to the 5+ charge state. Time-resolved experiments indicate that the α-helical band in the spectrum of the 13+ charge state slowly increases with time on the HSAM surface and decreases in the spectrum of the 13+ charge state on COOH-SAM. These results further support the preference of the hydrophobic HSAM surface toward helical conformations and demonstrate that soft-landed protein ions may undergo slow conformational changes during and after deposition.« less
Widdifield, Cory M; Cavallo, Gabriella; Facey, Glenn A; Pilati, Tullio; Lin, Jingxiang; Metrangolo, Pierangelo; Resnati, Giuseppe; Bryce, David L
2013-09-02
Although the understanding of intermolecular interactions, such as hydrogen bonding, is relatively well-developed, many additional weak interactions work both in tandem and competitively to stabilize a given crystal structure. Due to a wide array of potential applications, a substantial effort has been invested in understanding the halogen bond. Here, we explore the utility of multinuclear ((13)C, (14/15)N, (19)F, and (127)I) solid-state magnetic resonance experiments in characterizing the electronic and structural changes which take place upon the formation of five halogen-bonded co-crystalline product materials. Single-crystal X-ray diffraction (XRD) structures of three novel co-crystals which exhibit a 1:1 stoichiometry between decamethonium diiodide (i.e., [(CH3)3N(+)(CH2)10N(+)(CH3)3][2 I(-)]) and different para-dihalogen-substituted benzene moieties (i.e., p-C6X2Y4, X=Br, I; Y=H, F) are presented. (13)C and (15)N NMR experiments carried out on these and related systems validate sample purity, but also serve as indirect probes of the formation of a halogen bond in the co-crystal complexes in the solid state. Long-range changes in the electronic environment, which manifest through changes in the electric field gradient (EFG) tensor, are quantitatively measured using (14)N NMR spectroscopy, with a systematic decrease in the (14)N quadrupolar coupling constant (CQ) observed upon halogen bond formation. Attempts at (127)I solid-state NMR spectroscopy experiments are presented and variable-temperature (19)F NMR experiments are used to distinguish between dynamic and static disorder in selected product materials, which could not be conclusively established using solely XRD. Quantum chemical calculations using the gauge-including projector augmented-wave (GIPAW) or relativistic zeroth-order regular approximation (ZORA) density functional theory (DFT) approaches complement the experimental NMR measurements and provide theoretical corroboration for the changes in NMR parameters observed upon the formation of a halogen bond. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Jian; Zhou, Huang; Zhu, Jiawei; Hu, Pei; Hang, Chao; Yang, Jinlong; Peng, Tao; Mu, Shichun; Huang, Yunhui
2017-07-26
Developing facile and low-cost porous graphene-based catalysts for highly efficient oxygen reduction reaction (ORR) remains an important matter for fuel cells. Here, a defect-enriched and dual heteroatom (S and N) doped hierarchically porous graphene-like carbon nanomaterial (D-S/N-GLC) was prepared by a simple and scalable strategy, and exhibits an outperformed ORR activity and stability as compared to commercial Pt/C catalyst in an alkaline condition (its half-wave potential is nearly 24 mV more positive than Pt/C). The excellent ORR performance of the catalyst can be attributed to the synergistic effect, which integrates the novel graphene-like architectures, 3D hierarchically porous structure, superhigh surface area, high content of active dopants, and abundant defective sites in D-S/N-GLC. As a result, the developed catalysts are used as the air electrode for primary and all-solid-state Zn-air batteries. The primary batteries demonstrate a higher peak power density of 252 mW cm -2 and high voltage of 1.32 and 1.24 V at discharge current densities of 5 and 20 mA cm -2 , respectively. Remarkably, the all-solid-state battery also exhibits a high peak power density of 81 mW cm -2 with good discharge performance. Moreover, such catalyst possesses a comparable ORR activity and higher stability than Pt/C in acidic condition. The present work not only provides a facile but cost-efficient strategy toward preparation of graphene-based materials, but also inspires an idea for promoting the electrocatalytic activity of carbon-based materials.
Metallicity Gradients in the Intracluster Gas of Abell 496
NASA Astrophysics Data System (ADS)
Dupke, Renato A.; White, Raymond E., III
2000-07-01
Analysis of spatially resolved ASCA spectra of the intracluster gas in Abell 496 confirms there are mild metal abundance enhancements near the center, as previously found in a joint analysis of spectra from Ginga Large Area Counter and Einstein solid state spectrometer. Simultaneous analysis of spectra from all ASCA instruments (SIS+GIS) shows that the iron abundance is 0.36+/-0.03 solar 3'-12' from the center of the cluster and rises ~50% to 0.53+/-0.04 solar within the central 2'. The F-test shows that this abundance gradient is significant at the more than 99.99% level. Nickel and sulfur abundances are also centrally enhanced. We use a variety of elemental abundance ratios to assess the relative contribution of Type Ia supernovae (SNe Ia) and Type II supernovae (SNe II) to the metal enrichment of the intracluster gas. We find spatial gradients in several abundance ratios, indicating that the fraction of iron from SNe Ia increases toward the cluster center, with SNe Ia accounting for ~50% of the iron mass 3'-12' from the center and ~70% within 2'. The increased proportion of SN Ia ejecta at the center is such that the central iron abundance enhancement can be attributed wholly to SNe Ia; we find no significant gradient in SN II ejecta. These spatial gradients in the proportion of SN Ia/II ejecta imply that the dominant metal enrichment mechanism near the center is different than in the outer parts of the cluster. We show that the central abundance enhancement is unlikely to be due to ram pressure stripping of gas from cluster galaxies or to secularly accumulated stellar mass loss within the central cD. We suggest that the additional SN Ia ejecta near the center is the vestige of a secondary SN Ia-driven wind from the cD (following a more energetic protogalactic SN II-driven wind phase), which was partially smothered in the cD due to its location at the cluster center.
Wu, A; Kunju, L P; Cheng, L; Shah, R B
2008-11-01
Recent studies suggest that paediatric renal cell carcinoma (RCC) may represent a distinct group of tumours; however, its biological behaviour and classification remain poorly understood. The aim was to analyse 13 RCCs from patients < or =23 years of age to determine their clinicopathological, immunohistochemical and molecular characteristics. The histological spectrum included: Xp11.2 translocation-associated (6/13 patients, 46%), clear cell (5/13 patients, 38%), papillary (1/13 patients) and unclassified (1/13 patients) types. The Xp11.2 translocation-associated RCCs had a wide morphological spectrum, with high nuclear grade cells with abundant cytoplasm ranging from clear to granular and architecture ranging from solid to papillary. These tumours lacked cytokeratin expression and were confirmed by nuclear reactivity for TFE3 protein. Most of these translocation-associated tumours presented at high stage and had an unfavourable outcome. Three clear cell RCCs had unusual features that have not been previously characterized, including solid and cystic architecture, cells with abundant eosinophilic cytoplasm yet low nuclear grade and focal cytoplasmic inclusions, resembling oncocytoma. Deletion of subtelomeric 3p25 was observed in two of these RCCs. Xp11.2 translocation-associated RCC represents a predominant and aggressive subtype in the paediatric age group. Increased awareness of this subtype is important due to its heterogeneous morphology.
Laundry Detergency of Solid Non-Particulate Soil Using Microemulsion-Based Formulation.
Chanwattanakit, Jarussri; Chavadej, Sumaeth
2018-02-01
Laundry detergency of solid non-particulate soil on polyester and cotton was investigated using a microemulsion-based formulation, consisting of an anionic extended surfactant (C 12,13 -4PO-SO 4 Na) and sodium mono-and di-methyl naphthalene sulfonate (SMDNS) as the hydrophilic linker, to provide a Winsor Type III microemulsion with an ultralow interfacial tension (IFT). In this work, methyl palmitate (palmitic acid methyl ester) having a melting point around 30°C, was used as a model solid non-particulate (waxy) soil. A total surfactant concentration of 0.35 wt% of the selected formulation (4:0.65 weight ratio of C 12,13 -4PO-SO 4 Na:SMDNS) with 5.3 wt% NaCl was able to form a middle phase microemulsion at a high temperature (40°C),which provided the highest oil removal level with the lowest oil redeposition and the lowest IFT, and was much higher than that with a commercial detergent or de-ionized water. Most of the detached oil, whether in liquid or solid state, was in an unsolubilized form. Hence, the dispersion stability of the detached oil droplets or solidified oil particles that resulted from the surfactant adsorption played an important role in the oil redeposition. For an oily detergency, the lower the system IFT, the higher the oil removal whereas for a waxy (non-particulate) soil detergency, the lower the contact angle, the higher the solidified oil removal. For a liquefied oil, the detergency mechanism was roll up and emulsification with dispersion stability, while that for the waxy soil (solid oil) was the detachment by wettability with dispersion stability.
Zhang, Xueqin; Guo, Kun; Shen, Dongsheng; Feng, Huajun; Wang, Meizhen; Zhou, Yuyang; Jia, Yufeng; Liang, Yuxiang; Zhou, Mengjiao
2017-08-01
Rather than the conventional concept of viewing conductive carbon black (CB) to be chemically inert in microbial electrochemical cells (MECs), here we confirmed the redox activity of CB for its feasibility as an electron sink in the microbial battery (MB). Acting as the cathode of a MB, the solid-state CB electrode showed the highest electron capacity equivalent of 18.58 ± 0.46 C/g for the unsintered one and the lowest capacity of 2.29 ± 0.48 C/g for the one sintered under 100% N 2 atmosphere. The capacity vibrations of CBs were strongly in coincidence with the abundances of C=O moiety caused by different pretreatments and it implied one plausible mechanism based on CB's surface functionality for its electron capturing. Once subjected to electron saturation, CB could be completely regenerated by different strategies in terms of electrochemical discharging or donating electrons to biologically-catalyzed nitrate reduction. Surface characterization also revealed that CB's regeneration fully depended on the reversible shift of C=O moiety, further confirming the functionality-based mechanism for CB's feasibility as the role of MB's cathode. Moreover, resilience tests demonstrated that CB cathode was robust for the multi-cycles charging-discharging operations. These results imply that CB is a promising alternative material for the solid-state cathode in MBs.
NASA Astrophysics Data System (ADS)
Longbottom, T. L.; Hockaday, W. C.
2016-12-01
Kerogen represents the largest terrestrial organic carbon (OC) reservoir on earth and is vulnerable to remineralization upon exposure to earth's atmosphere. Oxidative weathering of ancient sedimentary organic matter is an immensely transformative process with poorly-constrained mechanisms and flux values in contemporary carbon cycle models. The weathered residuum of organic-rich mudrocks serves as parent material for many modern soils, and it is likely that the structure and dynamics of the resulting soil organic matter pool is inherited directly from kerogen-rich bedrock. We used a combination of solid-state 13-C nuclear magnetic resonance (NMR) spectroscopy, and carbon isotope techniques to describe molecular and isotopic changes that occur throughout oxidative weathering of marine kerogens, and the subsequent formation of modern soils, in two outcropping Cretaceous mudstones of the Eagle Ford and Pepper Formations in central, TX. Gradational production of O-containing functionalities was observed, coupled with reductions in characteristically abundant polymethylenic components of type II kerogens. Organic matter structural parameters, derived from C-H dephasing NMR experiments, also provide the basis for a novel weathering index that accounts for the degree of post-sedimentary diagenetic alteration of samples along the kerogen-soil continuum. Molecular and isotopic mixing models were employed in estimating the proportions of modern and ancient C in soils, as increased incorporation and vulnerability of ancient OC under climatic shifts in temperature and/or precipitation is likely.
Compositions and constituents of freshwater dissolved organic matter isolated by reverse osmosis.
Zhang, Yulong; Huang, Wen; Ran, Yong; Mao, Jingdong
2014-08-15
Dissolved organic matter (DOM) from riverine and lacustrine water was isolated using a reverse osmosis (RO) system. Solid-state (13)C nuclear magnetic resonance ((13)C NMR) was used to quantitatively evaluate the compositions and constituents of DOM, which are compared with previous investigations on marine DOM. Results indicated that concentration factor (CF) was a key metric controlling yield and sorption of DOM on the RO system. The sorption was likely non-selective, based on the (13)C NMR and δ(13)C analyses. Carbohydrates and lipids accounted for 25.0-41.5% and 30.2-46.3% of the identifiable DOM, followed by proteins (18.2-19.8%) and lignin (7.17-12.8%). The freshwater DOM contained much higher alkyl and aromatic C but lower alkoxyl and carboxyl C than marine DOM. The structural difference was not completely accounted for by using structure of high molecular weight (HMW) DOM, suggesting a size change involved in transformations of DOM during the transport from rivers to oceans. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stötter, Tabea; Bastviken, David; Bodelier, Paul L. E.; van Hardenbroek, Maarten; Rinta, Päivi; Schilder, Jos; Schubert, Carsten J.; Heiri, Oliver
2018-07-01
Proxy-indicators in lake sediments provide the only approach by which the dynamics of in-lake methane cycling can be examined on multi-decadal to centennial time scales. This information is necessary to constrain how lacustrine methane production, oxidation and emissions are expected to respond to global change drivers. Several of the available proxies for reconstructing methane cycle changes of lakes rely on interpreting past changes in the abundance or relevance of methane oxidizing bacteria (MOB), either directly (e.g. via analysis of bacterial lipids) or indirectly (e.g. via reconstructions of the past relevance of MOB in invertebrate diet). However, only limited information is available about the extent to which, at the ecosystem scale, variations in abundance and availability of MOB reflect past changes in in-lake methane concentrations. We present a study examining the abundances of fatty acids (FAs), particularly of 13C-depleted FAs known to be produced by MOB, relative to methane concentrations in 29 small European lakes. 39 surface sediment samples were obtained from these lakes and FA abundances were compared with methane concentrations measured at the lake surface, 10 cm above the sediments and 10 cm within the sediments. Three of the FAs in the surface sediment samples, C16:1ω7c, C16:1ω5c/t, and C18:1ω7c were characterized by lower δ13C values than the remaining FAs. We show that abundances of these FAs, relative to other short-chain FAs produced in lake ecosystems, are related with sedimentary MOB concentrations assessed by quantitative polymerase chain reaction (qPCR). We observed positive relationships between methane concentrations and relative abundances of C16:1ω7c, C16:1ω5c/t, and C18:1ω7c and the sum of these FAs. For the full dataset these relationships were relatively weak (Spearman's rank correlation (rs) of 0.34-0.43) and not significant if corrected for multiple testing. However, noticeably stronger and statistically significant relationships were observed when sediments from near-shore and deep-water oxic environments (rs = 0.57 to 0.62) and those from anoxic deep-water environment (rs = 0.55 to 0.65) were examined separately. Our results confirm that robust relationships exist between in-lake CH4 concentrations and 13C-depleted groups of FAs in the examined sediments, agreeing with earlier suggestions that the availability of MOB-derived, 13C-depleted organic matter for aquatic invertebrates increases with increasing methane concentrations. However, we also show that these relationships are complex, with different relationships observed for oxic and anoxic sediments and highest values measured in sediments deposited in oxic environments overlain with relatively methane-rich water. Furthermore, although all three 13C-depleted FA groups identified in our survey are known to be produced by MOB, they also receive contributions by other organism groups, and this will have influenced their distribution in our dataset.
{sup 13}CO/C{sup 18}O Gradients across the Disks of Nearby Spiral Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank
We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure {sup 13}CO(1-0)/C{sup 18}O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of {sup 12}CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved {sup 13}CO/C{sup 18}O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean {sup 13}CO/C{sup 18}O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with resultsmore » in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the {sup 13}CO/C{sup 18}O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.« less
C isotope fractionation during heterotrophic activity driven carbonate precipitation
NASA Astrophysics Data System (ADS)
Balci, Nurgul; Demirel, Cansu
2016-04-01
Stable carbon isotopic fractionation during carbonate precipitation induced by environmentally enriched heterotrophic halophilic microorganims was experimentally investigated under various salinity (% 4.5, %8, %15) conditions at 30 °C. Halophilic heterotrophic microorganims were enriched from a hypersaline Lake Acigöl located in SW Turkey (Balci et al.,2015) and later used for the precipitation experiments (solid and liquid medium). The carbonate precipitates had relatively high δ13C values (-4.3 to -16.9 ‰) compared to the δ13C values of the organic compounds that ranged from -27.5 to -25.4 ‰. At salinity of 4.5 % δ13C values of carbonate ranged from -4.9 ‰ to -10.9 ‰ with a 13C-enrichment factor of +20 to +16 ‰ higher than the δ13C values of the associated DOC (-27.5) . At salinity 8 % δ13C values of carbonate ranged from -16.3 ‰ to -11.7 ‰ with a 13C-enrichment factor of+11.3 to+15.9 ‰ higher than the δ13C values of the associated DOC. The respected values for 15 % salinity ranged from -12.3 ‰ to -9.7 ‰ with a 13C-enrichment factor of +15.2 to+16.8 ‰ higher than the δ13C values of the associated DOC. The carbonate precipitates produced in the solid medium are more enriched in 13C relative to liquid culture experiments. These results suggest that the carbon in the solid was derived from both the bacterial oxidation of organic compounds in the medium and from the atmospheric CO2. A solid medium used in the experiments may have suppressed convective and advective mass transport favouring diffusion-controlled system. This determination suggests that the rate and equilibration of CO2 exchange with the atmosphere is the major control on C isotope composition of carbonate minerals precipitated in the experiments. Key words: Lake Acıgöl, halophilic bacteria, carbonate biomineralization, C isotopes References Nurgul Balci, Meryem Menekşe, Nevin Gül Karagüler, M. Şeref Sönmez,Patrick Meister 2015.Reproducing authigenic carbonate precipitation inthe hypersaline Lake Acıgöl (Turkey) with microbial cultures. Geomicrobiology Journal DOI: 10.1080/01490451.2015.1099763. TUBITAK (The Scientific and Technological Research Council of Turkey) Grant to N. BALCI (113Y464).
NASA Astrophysics Data System (ADS)
Czernek, Jiří; Pawlak, Tomasz; Potrzebowski, Marek J.; Brus, Jiří
2013-01-01
The 13C and 15N CPMAS SSNMR measurements were accompanied by the proper theoretical description of the solid-phase environment, as provided by the density functional theory in the pseudopotential plane-wave scheme, and employed in refining the atomic coordinates of the crystal structures of thiamine chloride hydrochloride and of its monohydrate. Thus, using the DFT functionals PBE, PW91 and RPBE, the SSNMR-consistent solid-phase structures of these compounds are derived from the geometrical optimization, which is followed by an assessment of the fits of the GIPAW-predicted values of the chemical shielding parameters to their experimental counterparts.
NASA Technical Reports Server (NTRS)
Byer, R. L. (Editor); Trebino, R. (Editor); Gustafson, E. K. (Editor)
1985-01-01
Papers are presented on solid-state lasers for remote sensing, diode-pumped Nd:YAG lasers, and tunable solid-state-laser systems. Topics discussed include titanium-sapphire tunable laser systems, the performance of slab geometry, and the development of slab lasers. Consideration is given to garnet host solid-state lasers, the growth of lasers and nonlinear materials, and nonlinear frequency conversion and tunable sources.
Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu
2011-10-28
A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data. This journal is © the Owner Societies 2011
Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.
2010-01-01
We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.
Chemical Reactions at the in vacuo Au/InP Interface.
1987-07-25
Phys. C: Solid State Phys. 10, 4545 (1977). 2 A. Hiraki, K. Shuto, S. Kim, W. Kanmnura, and M. Iwami, Appl.Phys. Letts. 31, 611 (1977). 3. P.W. Chye ...Pelous, and P. Henoc, J.Appl.Phys. 52, 5112 (1981). 13. 1. Camlibel, A.K. Chin , F. Ermanis, M.A. DiGiuseppe, J.A. Lourenco and W.A. Bonner
Heat stability of cured urea-formaldehyde resins by measuring formaldehyde emission
Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi
1999-01-01
A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high temperaÂtures was developed and used to assess the influence of the reaction pH at synthesis on the formaldehyde emission during cure and heat stability of the cured resins without water. Additionally, 13C-CP/MAS solid-state nuclear magnetic resonance (NMR)...
Crankshaft motion in a highly congested bis(triarylmethyl)peroxide.
Khuong, Tinh-Alfredo V; Zepeda, Gerardo; Sanrame, Carlos N; Dang, Hung; Bartberger, Michael D; Houk, K N; Garcia-Garibay, Miguel A
2004-11-17
Crankshaft motion has been proposed in the solid state for molecular fragments consisting of three or more rotors linked by single bonds, whereby the two terminal rotors are static and the internal rotors experience circular motion. Bis-[tri-(3,5-di-tert-butyl)phenylmethyl]-peroxide 2 was tested as a model in search of crankshaft motion at the molecular level. In the case of peroxide 2, the bulky trityl groups may be viewed as the external static rotors, while the two peroxide oxygens can undergo the sought after internal rotation. Evidence for this process in the case of peroxide 2 was obtained from conformational dynamics determined by variable-temperature (13)C and (1)H NMR between 190 and 375 K in toluene-d(8). Detailed spectral assignments for the interpretation of two coalescence processes were based on a correlation between NMR spectra obtained in solution at low temperature, in the solid state by (13)C CPMAS NMR, and by GIAO calculations based on a B3LYP/6-31G structure of 2 obtained from its X-ray coordinates as the input. Evidence supporting crankshaft rotation rather than slippage of the trityl groups was obtained from molecular mechanics calculations.
Shaibat, Medhat A.; Casabianca, Leah B.; Siberio-Pérez, Diana Y.; Matzger, Adam J; Ishii, Yoshitaka
2010-01-01
Cu(II)(phthalocyanine) (CuPc) is broadly utilized as an archetypal molecular semiconductor and is the most widely used blue printing pigment. CuPc crystallizes in six different forms; the chemical and physical properties are substantially modulated by its molecular packing among these polymorphs. Despite the growing importance of this system, spectroscopic identification of different polymorphs for CuPc has posed difficulties. This study presents the first example of spectroscopic distinction of α- and β-forms of CuPc, the most widely used polymorphs, by solid-state NMR (SSNMR) and Raman spectroscopy. 13C high-resolution SSNMR spectra of α- and β-CuPc using very-fast magic angle spinning (VFMAS) at 20 kHz show that hyperfine shifts sensitively reflect polymorphs of CuPc. The experimental results were confirmed by ab initio chemical shift calculations. 13C and 1H SSNMR relaxation times of α- and β-CuPc under VFMAS also showed marked differences, presumably because of the difference in electronic spin correlation times in the two forms. Raman spectroscopy also provided another reliable method of differentiation between the two polymorphs. PMID:20225842
Abraham, Anuji; Crull, George
2014-10-06
A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.
Timm, Kerstin N; Hartl, Johannes; Keller, Markus A; Hu, De-En; Kettunen, Mikko I; Rodrigues, Tiago B; Ralser, Markus; Brindle, Kevin M
2015-12-01
A resonance at ∼181 ppm in the (13) C spectra of tumors injected with hyperpolarized [U-(2) H, U-(13) C]glucose was assigned to 6-phosphogluconate (6PG), as in previous studies in yeast, whereas in breast cancer cells in vitro this resonance was assigned to 3-phosphoglycerate (3PG). These peak assignments were investigated here using measurements of 6PG and 3PG (13) C-labeling using liquid chromatography tandem mass spectrometry (LC-MS/MS) METHODS: Tumor-bearing mice were injected with (13) C6 glucose and the (13) C-labeled and total 6PG and 3PG concentrations measured. (13) C MR spectra of glucose-6-phosphate dehydrogenase deficient (zwf1Δ) and wild-type yeast were acquired following addition of hyperpolarized [U-(2) H, U-(13) C]glucose and again (13) C-labeled and total 6PG and 3PG were measured by LC-MS/MS RESULTS: Tumor (13) C-6PG was more abundant than (13) C-2PG/3PG and the resonance at ∼181 ppm matched more closely that of 6PG. (13) C MR spectra of wild-type and zwf1Δ yeast cells showed a resonance at ∼181 ppm after labeling with hyperpolarized [U-(2) H, U-(13) C]glucose, however, there was no 6PG in zwf1Δ cells. In the wild-type cells 3PG was approximately four-fold more abundant than 6PG CONCLUSION: The resonance at ∼181 ppm in (13) C MR spectra following injection of hyperpolarized [U-(2) H, U-(13) C]glucose originates predominantly from 6PG in EL4 tumors and 3PG in yeast cells. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Wu, Feng; Zhan, Chun
The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li+ conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO 2, LiNi 1/3Co 1/3Mn 1/3O 2, or LiFePO 4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparentmore » glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.« less
Method and system for making integrated solid-state fire-sets and detonators
O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.
1998-03-24
A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.
Optimized Spectral Editing of 13C MAS NMR Spectra of Rigid Solids Using Cross-Polarization Methods
NASA Astrophysics Data System (ADS)
Sangill, R.; Rastrupandersen, N.; Bildsoe, H.; Jakobsen, H. J.; Nielsen, N. C.
Combinations of 13C magic-angle spinning (MAS) NMR experiments employing cross polarization (CP), cross polarization-depolarization (CPD), and cross polarization-depolarization-repolarization are analyzed quantitatively to derive simple and general procedures for optimized spectral editing of 13C CP/MAS NMR spectra of rigid solids by separation of the 13C resonances into CH n subspectra ( n = 0, 1, 2, and 3). Special attention is devoted to a differentiation by CPD/MAS of CH and CH 2 resonances since these groups behave quite similarly during spin lock under Hartmann-Hahn match and are therefore generally difficult to distinguish unambiguously. A general procedure for the design of subexperiments and linear combinations of their spectra to provide optimized signal-to-noise ratios for the edited subspectra is described. The technique is illustrated by a series of edited 13C CP/MAS spectra for a number of rigid solids ranging from simple organic compounds (sucrose and l-menthol) to complex pharmaceutical products (calcipotriol monohydrate and vitamin D 3) and polymers (polypropylene, polyvinyl alcohol, polyvinyl chloride, and polystyrene).
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M; Graham, Matthew J; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z D
2010-05-28
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with beta-cyclodextrin (beta-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state (13)C NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the beta-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in (13)C solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after beta-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of beta-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that beta-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using (1)H NMR, and a 3:1 (PO unit to beta-CD) was found for all inclusion complexes, which indicated that the number of threaded beta-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the beta-CD in the inclusion complex formed a channel-like structure that is different from the pure beta-CD crystal structure.
NASA Astrophysics Data System (ADS)
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M.; Graham, Matthew J.; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z. D.
2010-05-01
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with β-cyclodextrin (β-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state C13 NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the β-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in C13 solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after β-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of β-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that β-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using H1 NMR, and a 3:1 (PO unit to β-CD) was found for all inclusion complexes, which indicated that the number of threaded β-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the β-CD in the inclusion complex formed a channel-like structure that is different from the pure β-CD crystal structure.
Ferromagnetic Long Range Ordering in Copper(2) Maleate Monohydrate.
1988-11-20
thanks the Consejo Nacional de Ciencia y Tecnologia for a partial fellowship. 10 References 1a) SYNTHECO, Inc., 1920 Industrial Pike, Gastonia, N.C...Philadelphia, 1966; Chapter 3. 14) D. B. Losee and W. E. Hatfield, Phs e.i Q 1122 (1974). 15) y . Yamamoto, M. Matsuura, and T. Haseda, J. Phys.-Soc...Mal in the solid state recorded at room temperature. 12 (0 Vj) N 4W +C +~ 13 4P4 CYC CS) (SG) CS + 0 (0 + C, S+ + 06 + + + 3 CC, (( Y ) uo p1 3ubA 00 CL
Bottom-sediment chemistry in Devil's Lake, northeast North Dakota
Komor, S.C.
1994-01-01
High magnesium calcite 8 mole percent MgCO3 is the most abundant carbonate at the sediment surface. With increasing depth abundances of high magnesium carbonate decrease and abundances of low magnesium calcite aragonite and dolomite increase. Carbon isotope compositions of bulk carbonates range from δ13C = -0.7 to +0.5%. These values are close to equilibrium with dissolved inorganic carbon in lake water (δ13C = -2%) but far from equilibrium with dissolved inorganic carbon in pore water (δ13C = -16.3- -10/0%). Disequilibrium between pore water and carbonates suggests that the carbonates did not recrystallize substantially in the presence of pore water. Therefore the change of carbonate mineral proportions with depth in the sediments is due mainly to temporal changes in the proportions of endogenic, detrital, and biologic carbonates that were deposited on the lake bottom rather than postdepositional carbonate diagenesis.
NASA Astrophysics Data System (ADS)
Ambus, P.; Reinsch, S.; Sárossy, Z.; Egsgaard, H.; Jakobsen, I.; Michelsen, A.; Schmidt, I.; Nielsen, P.
2013-12-01
An in-situ 13CO2 pulse-labeling experiment was carried out in a temperate heathland (8 oC MAT, 610 mm MAP) to study the impact on short-term carbon (C) allocation as affected by elevated CO2 concentration (+120 ppm), prolonged summer droughts (ca. -43 mm) and warming (+1 oC). The study was carried out six years after the climate treatments were initiated and took place in the early growing season in May in vegetation dominated by grasses, mainly Deschampsia flexuosa. Newly assimilated C (13C from the pulse-label) was traced into vegetation, soil and soil microorganisms and belowground respiration 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in different microbial functional groups on the basis of phospholipid fatty acid (PLFA) profiles. Climate treatments did not affect microorganism abundance in soil or rhizosphere fractions in terms of total PLFA-C concentration. Elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy), but did not affect the abundance of decomposers (fungi and actinomycetes) in rhizosphere fractions. Drought favored the bacterial community in rhizosphere fractions whereas warming reduced the abundance of gram-negative bacteria (19:0cy) and changed the actinomycetes community (10Me16:0, 10Me18:0). Fastest and highest utilization of recently assimilated C was observed in rhizosphere associated gram-negative bacteria followed by gram-positive bacteria. The utilization of recently assimilated C by the microbial community was faster under elevated CO2 conditions compared to ambient. The 13C assimilation by green plant tissue and translocation to roots was significantly reduced by the extended summer drought. Under elevated CO2 conditions we observed an increased amount of 13C in the litter fraction. The assimilation of 13C by vegetation was not changed when the climate factors were applied in combination. The total amount of 13C lost by belowground respiration was not altered by the climatic manipulations. We conclude that six years of changed climatic conditions have affected the temporal and functional pattern of C utilization by the soil microorganisms towards increased C cycling mainly caused by bacterial activity. This change may potentially alter the ecosystem C balance. Meanwhile, the short-term C balance was not affected by six years of environmental changes, which suggests substantial ecosystem resilience.
Joshi, Chetna; Khare, S K
2011-01-01
Jatropha curcas is a major biodiesel crop. Large amount of deoiled cake is generated as by-product during biodiesel production from its seeds. Deoiled J. curcas seed cake was assessed as substrate for the production of xylanase from thermophilic fungus Scytalidium thermophilum by solid-state fermentation. The seed cake was efficiently utilized by S. thermophilum for its growth during which it produced good amount of heat stable extracellular xylanase. The solid-state fermentation conditions were optimized for maximum xylanase production. Under the optimized conditions viz. deoiled seed cake supplemented with 1% oat-spelt xylan, adjusted to pH 9.0, moisture content 1:3 w/v, inoculated with 1×10(6) spores per 5 g cake and incubated at 45 °C, 1455 U xylanase/g deoiled seed cake was obtained. The xylanase was useful in biobleaching of paper pulp. Solid-state fermentation of deoiled cake appears a potentially viable approach for its effective utilization. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fritz, Tyler O.; Yapp, Crayton J.
2018-04-01
The channel iron deposits (CID) of the Hamersley Province in Western Australia are dominated by pedogenic goethite/hematite-rich ooids and pisoids that were transported to, and deposited in, the meandering channels of Miocene rivers. Information about the Miocene weathering environments that produced the Fe(III) oxides is archived in the mole fraction (X) and δ13C of the Fe(CO3)OH component in solid solution in oolitic CID goethite (α-FeOOH). Values of X and δ13C were measured for 12 oolitic goethite samples from different depths in two cores drilled in CID of the Robe Formation of Mesa J. The weighted-average plateau values of X ranged from 0.0098 to 0.0334, which suggest ambient CO2 concentrations that ranged from ∼50,000 ppm V to perhaps as much as ∼200,000 ppm V at the time of goethite crystallization. In a vadose zone characterized by in situ production of CO2 with steady-state Fickian diffusive transport of the gas, such concentrations would correspond to modeled soil respiration rates (Q) ranging from about 10 to 30 mmol/m2/h. Values for Q of about 10 mmol/m2/h are reported for soils in modern tropical forests with MAP ≥ ∼2000 mm. However, model-derived values of Q that exceed 15 mmol/m2/h are larger than observed in modern systems. This could indicate that some of the CID goethites crystallized in conditions that were phreatic or near phreatic rather than vadose. The δ13C values of the Fe(CO3)OH component in these 12 CID samples ranged from -24.0‰ to -22.3‰, which are among the most negative measured to date. If they reflect steady-state diffusive transport of CO2 in vadose environments, the soil CO2 would have been derived from a source with δ13C values that ranged from ∼-31‰ to -29‰. If, on the other hand, the goethites crystallized in a nearly phreatic environment that was moderately acidic, the inferred δ13C of the ancient CO2 source would have been about -27.6‰ to -25.8‰. In either case, the δ13C values point to in situ oxidation of C3 organic matter as the predominant source of the ambient CO2. The Fe(III) oxides in the CID ooids suggest crystallization in aerobic environments. However, even in aerobic environments, many microbial species can reduce the Fe3+ in oxides to relatively soluble Fe2+ and may have facilitated progressive Fe enrichment during multiple cycles of Fe(III) oxide dissolution and recrystallization. At the same time, microbially mediated oxidation of organic matter could have produced the high concentrations of soil CO2 with the very negative δ13C values recorded in the Fe(CO3)OH component in oolitic goethite. More frequent summer storms in the Miocene, may have been a significant factor in forming and eroding these soil systems and in concentrating large volumes of oolitic Fe(III) oxides in the local river systems to form channel iron deposits. However, published (U-Th)/He ages indicate that the oolitic CID goethites of Mesa J became closed systems after ∼7 Ma, which suggests a change in local climate and/or conditions of burial at about that time in the Miocene.
NASA Astrophysics Data System (ADS)
Willans, Mathew J.; Sears, Devin N.; Wasylishen, Roderick E.
2008-03-01
The use of continuous-wave (CW) 1H decoupling has generally provided little improvement in the 13C MAS NMR spectroscopy of paramagnetic organic solids. Recent solid-state 13C NMR studies have demonstrated that at rapid magic-angle spinning rates CW decoupling can result in reductions in signal-to-noise and that 1H decoupling should be omitted when acquiring 13C MAS NMR spectra of paramagnetic solids. However, studies of the effectiveness of modern 1H decoupling sequences are lacking, and the performance of such sequences over a variety of experimental conditions must be investigated before 1H decoupling is discounted altogether. We have studied the performance of several commonly used advanced decoupling pulse sequences, namely the TPPM, SPINAL-64, XiX, and eDROOPY sequences, in 13C MAS NMR experiments performed under four combinations of the magnetic field strength (7.05 or 11.75 T), rotor frequency (15 or 30 kHz), and 1H rf-field strength (71, 100, or 140 kHz). The effectiveness of these sequences has been evaluated by comparing the 13C signal intensity, linewidth at half-height, LWHH, and coherence lifetimes, T2', of the methine carbon of copper(II) bis( DL-alanine) monohydrate, Cu(ala) 2·H 2O, and methylene carbon of copper(II) bis( DL-2-aminobutyrate), Cu(ambut) 2, obtained with the advanced sequences to those obtained without 1H decoupling, with CW decoupling, and for fully deuterium labelled samples. The latter have been used as model compounds with perfect 1H decoupling and provide a measure of the efficiency of the 1H decoupling sequence. Overall, the effectiveness of 1H decoupling depends strongly on the decoupling sequence utilized, the experimental conditions and the sample studied. Of the decoupling sequences studied, the XiX sequence consistently yielded the best results, although any of the advanced decoupling sequences strongly outperformed the CW sequence and provided improvements over no 1H decoupling. Experiments performed at 7.05 T demonstrate that the XiX decoupling sequence is the least sensitive to changes in the 1H transmitter frequency and may explain the superior performance of this decoupling sequence. Overall, the most important factor in the effectiveness of 1H decoupling was the carbon type studied, with the methylene carbon of Cu(ambut) 2 being substantially more sensitive to 1H decoupling than the methine carbon of Cu(ala) 2·H 2O. An analysis of the various broadening mechanisms contributing to 13C linewidths has been performed in order to rationalize the different sensitivities of the two carbon sites under the four experimental conditions.
NASA Astrophysics Data System (ADS)
Iriepa, I.; Bellanato, J.; Gálvez, E.; Gil-Alberdi, B.
2010-07-01
Some mono-substituted amides ( 2- 5) derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9α-amine were synthesized and studied by IR, 1H and 13C NMR spectroscopy. The crystal structure of 3-methyl-2,4-diphenyl-9α-(3,5-dichlorobenzamido)-3-azabicyclo[3.3.1]nonane ( 3) was determined by X-ray diffraction. NMR data showed that all compounds adopt in CDCl 3 a preferred flattened chair-chair conformation with the N-CH 3 group in equatorial disposition. X-ray data agreed with this conformation in the case of compound 3. IR data revealed that compounds 2 and 3 present a C dbnd O⋯HN intermolecular bond in the solid state. This conclusion was also confirmed by X-ray data of compound 3. In the case of compound 5, IR results suggested intermolecular NH⋯N-heterocyclic bonding. On the contrary, in the pyrazine derivative ( 4), IR, 1H and 13C NMR data showed the presence of an intramolecular NH⋯N1″-heterocyclic hydrogen bond in the solid state and solution. Moreover, NMR and IR data showed a preferred trans disposition for the NH-C dbnd O group. NMR also revealed free rotation of the -NH-CO-R group around C9-NH bond. Pharmacological assays on mice were drawn to evaluate analgesic activity.
Cai, Yihua; Guo, Laodong; Wang, Xuri; Aiken, George R.
2015-01-01
Sources, abundance, isotopic compositions, and export fluxes of dissolved inorganic carbon (DIC), dissolved and colloidal organic carbon (DOC and COC), and particulate organic carbon (POC), and their response to hydrologic regimes were examined through monthly sampling from the Lower Mississippi River during 2006–2008. DIC was the most abundant carbon species, followed by POC and DOC. Concentration and δ13C of DIC decreased with increasing river discharge, while those of DOC remained fairly stable. COC comprised 61 ± 3% of the bulk DOC with similar δ13C abundances but higher percentages of hydrophobic organic acids than DOC, suggesting its aromatic and diagenetically younger status. POC showed peak concentrations during medium flooding events and at the rising limb of large flooding events. While δ13C-POC increased, δ15N of particulate nitrogen decreased with increasing discharge. Overall, the differences in δ13C between DOC or DIC and POC show an inverse correlation with river discharge. The higher input of soil organic matter and respired CO2 during wet seasons was likely the main driver for the convergence of δ13C between DIC and DOC or POC, whereas enhanced in situ primary production and respiration during dry seasons might be responsible for their isotopic divergence. Carbon export fluxes from the Mississippi River were estimated to be 13.6 Tg C yr−1 for DIC, 1.88 Tg C yr−1 for DOC, and 2.30 Tg C yr−1 for POC during 2006–2008. The discharge-normalized DIC yield decreased during wet seasons, while those of POC and DOC increased and remained constant, respectively, implying variable responses in carbon export to the increasing discharge.
Kuś, Piotr M; Jerković, Igor; Marijanović, Zvonimir; Kranjac, Marina; Tuberoso, Carlo I G
2018-04-01
Phacelia tanacetifolia Benth. honey (14 samples) collected in Poland was characterized by melissopalynological analysis, color determination (CIE L*a*b*C ab *h ab ° coordinates) and volatiles (VOCs) composition. VOCs were isolated by headspace solid-phase microextraction (HS-SPME, two fibers) and ultrasound-assisted solvent extraction (USE, two solvents) and analyzed by GC-MS. Principal component analysis (PCA) and hierarchical-tree clustering (HTC) were applied to show trends and form groups and to indicate the most representative unifloral samples. Six samples were pointed out with average pollen 74.9% and color parameters (L=85.1; a*=-0.8; b*=27.9; C ab *=27.9; h ab *=91.9) that were significantly correlated. High abundance of trans-linalool oxide (27.3-45.9%) that was significantly correlated with the pollen percentages, hexan-1-ol (4.4-5.7%) and lavender lactone (0.8% - 1.5%) were characteristic for their headspace. C 13 -norisoprenoids, mainly (E)-/(Z)-3-oxo-retro-α-ionol (4.7-5.4%; 6.9-9.4%) and vomifoliol (9.0-13.0%) dominated in their USE extracts. Copyright © 2018 Elsevier Ltd. All rights reserved.
Godin, Jean-Philippe; Faure, Magali; Breuille, Denis; Hopfgartner, Gérard; Fay, Laurent-Bernard
2007-06-01
We describe a new method of assessing, in a single run, (13)C isotopic enrichment of both Val and Thr by gas chromatography-combustion-isotope-ratio mass spectrometry (GC-C-IRMS). This method characterised by a rapid one-step derivatisation procedure performed at room temperature to form the N(O,S)-ethoxycarbonyl ethyl ester derivatives, and a polar column for GC. The suitability of this method for Val and Thr in in-vivo samples (mucosal hydrolysate) was demonstrated by studying protein metabolism with two tracers ((13)C-valine or (13)C-threonine). The intra-day and inter-day repeatability were both assessed either with standards or with in-vivo samples at natural abundance and at low (13)C isotopic enrichment. For inter-day repeatability CVs were between 0.8 and 1.5% at natural abundance and lower than 5.5% at 0.112 and 0.190 atom% enrichment for Val and Thr, respectively. Overall isotopic precision was studied for eleven standard amino acid derivatives (those of Val, Ala, Leu, Iso, Gly, Pro, Asp, Thr, Ser, Met, and Phe) and was assessed at 0.32 per thousand. The (13)C isotopic measurement was then extended to the other amino acids (Ala, Val, Leu, Iso, Gly, Pro, Thr, and Phe) at natural abundance for in-vivo samples. The isotopic precision was better than 0.002 atom% per amino acid (for n = 4 rats). This analytical method was finally applied to an animal study to measure Thr utilization in protein synthesis.
Duan, Pu; Cao, Xiaoyan; Pham, Hien; Datye, Abhaya; Schmidt-Rohr, Klaus
2018-06-09
Hydrothermally stable carbon overlayers can protect mesoporous oxides (SiO₂ and Al₂O₃) from hydrolysis during aqueous-phase catalysis. Overlayers made at 800 °C by pyrolysis of 2,3-naphthalenediol deposited out of acetone solution were analyzed by solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy. Power absorption due to sample conductivity was prevented by diluting the sample in nonconductive and background-free tricalcium phosphate. While pyrolysis on SiO₂ produced a predominantly aromatic carbon film, at least 15% of nonaromatic carbon (sp³-hybridized C as well as C=O) was observed on γ-Al₂O₃. These species were not derived from residual solvent, according to spectra of the same material treated at 400 °C. The sp³-hybridized C exhibited weak couplings to hydrogen, short spin-lattice relaxation times, and unusually large shift anisotropies, which are characteristics of tetrahedral carbon with high concentrations of unpaired electrons. Moderate heat treatment at 400 °C on SiO₂ and Al₂O₃ resulted in yellow-brown and nearly black samples, respectively, but the darker color on Al₂O₃ did not correspond to more extensive carbonization. Aromatic carbon bonded to hydrogen remained predominant and the peaks of naphthalenediol were still recognizable; however, some of the chemical shifts differed by up to 5 ppm, indicating significant differences in local structure. On SiO₂, additional sharp peaks were detected and attributed to 1/3 of the 2,3-naphthalene molecules undergoing fast, nearly isotropic motions.
De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G
2008-03-28
We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5
Li, Yangyang; Li, Yu; Zhang, Difang; Li, Guoxue; Lu, Jiaxin; Li, Shuyan
2016-10-01
Solid-state anaerobic co-digestion of tomato residues with dairy manure and corn stover was conducted at 20% total solids under 35°C for 45days. Results showed digestion of mixed tomato residues with dairy manure and corn stover improved methane yields. The highest VS reduction (46.2%) and methane yield (415.4L/kg VSfeed) were achieved with the ternary mixtures of 33% corn stover, 54% dairy manure, and 13% tomato residues, lead to a 0.5-10.2-fold higher than that of individual feedstocks. Inhibition of volatile fatty acids (VFAs) to biogas production occurred when more than 40% tomato residues were added. The results indicated that ternary mixtures diluted the inhibitors that would otherwise cause inhibition in the digestion of tomato residues as a mono-feedstock. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shull, J. Michael; Stevans, Matthew; Danforth, Charles
2011-10-01
We report ultraviolet spectra of Galactic high-velocity clouds (HVCs) in Complex C, taken by the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), together with new 21 cm spectra from the Green Bank Telescope. The wide spectral coverage and higher signal-to-noise ratio, compared to previous HST spectra, provide better velocity definition of the HVC absorption, additional ionization species (including high ions), and improved abundances in this halo gas. Complex C has a metallicity of 10%-30% solar and a wide range of ions, suggesting dynamical and thermal interactions with hot gas in the Galactic halo. Spectra in the COSmore » medium-resolution G130M (1133-1468 A) and G160M (1383-1796 A) gratings detect ultraviolet absorption lines from eight elements in low-ionization states (O I, N I, C II, S II, Si II, Al II, Fe II, P II) and three elements in intermediate- and high-ionization states (Si III, Si IV, C IV, N V). Our four active galactic nucleus sight lines toward Mrk 817, Mrk 290, Mrk 876, and PG 1259+593 have high-velocity H I and O VI column densities, log N{sub Hi}= 19.39-20.05 and log N{sub Ovi}= 13.58-14.10, with substantial amounts of kinematically associated photoionized gas. The high-ion abundance ratios are consistent with cooling interfaces between photoionized and collisionally ionized gas: N(C IV)/N(O VI) {approx} 0.3-0.5, N(Si IV)/N(O VI) {approx} 0.05-0.11, N(N V)/N(O VI) {approx} 0.07-0.13, and N(Si IV)/N(Si III) {approx}0.2.« less
NASA Astrophysics Data System (ADS)
Funke, B.; López-Puertas, M.; Bermejo-Pantaleón, D.; von Clarmann, T.; Stiller, G. P.; HöPfner, M.; Grabowski, U.; Kaufmann, M.
2007-06-01
Nonlocal thermodynamic equilibrium (non-LTE) simulations of the 12C16O(1 → 0) fundamental band, the 12C16O(2 → 1) hot band, and the isotopic 13C16O(1 → 0) band performed with the Generic Radiative Transfer and non-LTE population Algorithm (GRANADA) and the Karlsruhe Optimized and Precise Radiative Transfer Algorithm (KOPRA) have been compared to spectrally resolved 4.7 μm radiances measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). The performance of the non-LTE simulation has been assessed in terms of band radiance ratios in order to avoid a compensation of possible non-LTE model errors by retrieval errors in the CO abundances inferred from MIPAS data with the same non-LTE algorithms. The agreement with the measurements is within 5% for the fundamental band and within 10% for the hot band. Simulated 13C16O radiances agree with the measurements within the instrumental noise error. Solar reflectance at the surface or clouds has been identified as an important additional excitation mechanism for the CO(2) state. The study represents a thorough validation of the non-LTE scheme used in the retrieval of CO abundances from MIPAS data.
Phase equilibria and crystal structure of the complex oxides in the Sr Fe Co O system
NASA Astrophysics Data System (ADS)
Aksenova, T. V.; Gavrilova, L. Ya.; Cherepanov, V. A.
2008-06-01
Phase relations in the Sr-Fe-Co-O system have been investigated at 1100 °C in air by X-ray powder diffraction on quenched samples. Solid solutions of the form SrFe 1-xCo xO 3-δ (0⩽ x⩽0.7), Sr 3Fe 2-yCo yO 7-δ (0⩽ y⩽0.4) and Sr 4Fe 6-zCo zO 13±δ (0⩽ z⩽1.6) were prepared by solid-state reaction and by the sol-gel method. The structural parameters of single-phase samples were refined by the Rietveld profile method. The variation of the lattice parameters with composition has been determined for each solid solution and a cross-section of the phase diagram at 1100 °C in air for the entire Sr-Fe-Co-O system has been constructed.
Evaluation of light penetration on Navigation Pools 8 and 13 of the Upper Mississippi River
Giblin, Shawn; Hoff, Kraig; Fischer, Jim; Dukerschein, Terry
2010-01-01
The availability of light can have a dramatic affect on macrophyte and phytoplankton abundance in virtually all aquatic ecosystems. The Long Term Resource Monitoring Program and other monitoring programs often measure factors that affect light extinction (nonvolatile suspended solids, volatile suspended solids, and chlorophyll) and correlates of light extinction (turbidity and Secchi depth), but rarely do they directly measure light extinction. Data on light extinction, Secchi depth, transparency tube, turbidity, total suspended solids, and volatile suspended solids were collected during summer 2003 on Pools 8 and 13 of the Upper Mississippi River. Regressions were developed to predict light extinction based upon Secchi depth, transparency tube, turbidity, and total suspended solids. Transparency tube, Secchi depth, and turbidity all showed strong relations with light extinction and can effectively predict light extinction. Total suspended solids did not show as strong a relation to light extinction. Volatile suspended solids had a greater affect on light extinction than nonvolatile suspended solids. The data were compared to recommended criteria established for light extinction, Secchi depth, total suspended solids, and turbidity by the Upper Mississippi River Conservation Committee to sustain submersed aquatic vegetation in the Upper Mississippi River. During the study period, the average condition in Pool 8 met or exceeded all of the criteria whereas the average condition in Pool 13 failed to meet any of the criteria. This report provides river managers with an effective tool to predict light extinction based upon readily available data.
Laser spectrometer for CO2 clumped isotope analysis
NASA Astrophysics Data System (ADS)
Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof
2017-04-01
Carbon dioxide clumped isotope thermometry has proven to be a reliable method for biogeochemical and atmospheric research. We present a new laser spectroscopic instrument for doubly-substituted isotopologues analysis. In contrast to a conventional isotope ratio mass spectrometry (IRMS), tunable laser direct absorption spectroscopy (TLDAS) has the advantage of isotopologue-specific determination free of isobaric interferences. Tunable infrared laser based spectrometer for clumped isotope analysis is being developed in collaboration between Heidelberg University, Germany, and LERMA-IPSL, CNRS, France. The instrument employs two continuous intraband cascade lasers (ICL) tuned at 4439 and 4329 nm. The spectral windows covered by the lasers contain absorption lines of the six most abundant CO2 isotopologues, including the two doubly substituted species 16O13C18O and 16O13C17O, and all singly substituted isotopologues with 13C, 18O and 17O. A Herriott-type multi-pass cell provides two different absorption pathlengths to compensate the abundance difference between singly- and doubly-substituted isotopologues. We have reached the sub-permill precision required for clumped isotope measurements within the integration time of several seconds. The test version of the instrument demonstrates a performance comparable to state of the art IRMS. We highlight the following features of the instrument that are strong advantages compared to conventional mass spectrometry: measurement cycle in the minute range, simplified sample preparation routine, table-top layout with a potential for in-situ applications.
Nitrosation and nitration of fulvic acid, peat and coal with nitric acid
Thorn, Kevin A.; Cox, Larry G.
2016-01-01
Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples.
Nitrosation and Nitration of Fulvic Acid, Peat and Coal with Nitric Acid
Thorn, Kevin A.; Cox, Larry G.
2016-01-01
Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples. PMID:27175784
Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.
Hung, Ivan; Gan, Zhehong
2015-07-01
Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended. Copyright © 2015 Elsevier Inc. All rights reserved.
Coordination geometry of lead carboxylates - spectroscopic and crystallographic evidence.
Catalano, Jaclyn; Murphy, Anna; Yao, Yao; Yap, Glenn P A; Zumbulyadis, Nicholas; Centeno, Silvia A; Dybowski, Cecil
2015-02-07
Despite their versatility, only a few single-crystal X-ray structures of lead carboxylates exist, due to difficulties with solubility. In particular, the structures of long-chain metal carboxylates have not been reported. The lone electron pair in Pb(ii) can be stereochemically active or inactive, leading to two types of coordination geometries commonly referred to as hemidirected and holodirected structures, respectively. We report (13)C and (207)Pb solid-state NMR and infrared spectra for a series of lead carboxylates, ranging from lead hexanoate (C6) to lead hexadecanoate (C18). The lead carboxylates based on consistent NMR parameters can be divided in two groups, shorter-chain (C6, C7, and C8) and longer-chain (C9, C10, C11, C12, C14, C16, and C18) carboxylates. This dichotomy suggests two modes of packing in these solids, one for the short-chain lead carboxylates and one for long-chain lead carboxylates. The consistency of the (13)C and (207)Pb NMR parameters, as well as the IR data, in each group suggests that each motif represents a structure characteristic of each subgroup. We also report the single-crystal X-ray diffraction structure of lead nonanoate (C9), the first single-crystal structure to have been reported for the longer-chain subgroup. Taken together the evidence suggests that the coordination geometry of C6-C8 lead carboxylates is hemidirected, and that of C9-C14, C16 and C18 lead carboxylates is holodirected.
[Physicochemical properties of suplatast tosilate racemate and enantiomers].
Ushio, T; Endo, K; Yamamoto, K
1996-11-01
The physicochemical properties of the enantiomer and racemates of suplatast tosilate (ST) were investigated by means of infrared spectroscopy, solid-state 13C CP/MAS NMR spectroscopy, thermal analysis, and X-ray diffraction analysis, and by measuring the solubility and hygroscopy. The infrared and NMR spectra and X-ray diffraction pattern of the enantiomer were distinctly different from those of the racemate. The melting point of the enantiomer was lower than that of the racemate by 5 degrees C, while the solubility of the enantiomer was 1.3 times higher than that of the racemate. The hygroscopic rate of the enantiomer was greater than that of the racemate. These results suggested that ST was classified into a racemic compound crystal. Furthermore, by comparing the relative peak intensity ratios on X-ray diffraction patterns of the crystals with various optical purities prepared by recrystallization, it was found that a mixture of racemic compound crystals and either of racemic mixture crystals or racemic solid solutions was obtained by recrystallization of ST in the content of 0 to 64%ee, while the recrystallization of ST in the content of more than 64%ee led to the formation of racemic mixture crystals or racemic solid solutions.
Biomolecular solid state NMR with magic-angle spinning at 25K.
Thurber, Kent R; Tycko, Robert
2008-12-01
A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (+/-5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature (13)C NMR data for two biomolecular samples, namely the peptide Abeta(14-23) in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and (13)C MAS NMR linewidths are discussed.
Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge
2018-04-01
Isotope ratio monitoring by 13 C NMR spectrometry (irm- 13 C NMR) provides the complete 13 C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13 C natural abundance values (50‰), irm- 13 C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13 C NMR. Until now, the conventional strategy to determine the position-specific abundance x i relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13 C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13 C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1 H NMR pulse sequence (named DWET) with a 13 C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T 1 , which forms a serious limitation for irm- 13 C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T 1 variations. Their performance is evaluated on the determination of the 13 C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm- 13 C NMR since it is now possible to perform isotopic analysis with high relaxing agent concentrations, leading to a strong reduction of the overall experiment time. Copyright © 2018 Elsevier Inc. All rights reserved.
Lyons, P.C.; Mastalerz, Maria; Orem, W.H.
2009-01-01
A maturation series of resins and fossil resins from New Zealand, ranging in age from Modern to Eocene and ranging from uncoalified to high volatile C bituminous coal, were analyzed by elemental, pyrolysis-gas chromatography (Py-GC), Fourier Transform infrared (FTir), and solid-state 13C nuclear magnetic resonance (13C NMR) techniques. For comparison, four resin samples from the Latrobe Valley, Australia, were analyzed. All of the resins and fossil resins of this study show very high H/C atomic ratios, and are characterized by dominant peaks in the 10-60??ppm range of solid-state 13C NMR spectra and prominent bands in the aliphatic stretching region (2800-3000??cm- 1) of FTir spectra, all indicating a highly aliphatic molecular structure. The 13C NMR and FTir data indicate a diterpenoid structure for these resins. There is an abrupt loss of oxygen that occurs at the Lignite A/Subbituminous C stage, which is attributed to a dramatic loss of carboxyl (COOH) from the diterpenoid molecule. This is a new finding in the diagenesis of resins. This important loss in oxygenated functional groups is attributed to a maturation change. Also, there is a progressive loss of exomethylene (CH2) groups with increasing degree of maturation, as shown by both 13C NMR and FTir data. This change has been noted by previous investigators. Exomethylene is absent in the fossil resins from the Eocene high volatile C bituminous coals. This progressive loss is characteristic of Class I resinites. FTir data indicate that the oxygenated functional groups are strong in all the resin samples except the fossil resin from high volatile C bituminous coal. This important change in oxygenated functional groups is attributed to maturation changes. The 13C NMR and FTir data indicate there are minor changes in the Agathis australis resin from the living tree and soil, which suggests that alteration of A. australis resins begins shortly after deposition in the soil for as little as 1000??years. The Morwell and Yallourn fossil resins from brown coal (lignite B) Australia do not have some of the FTir characteristics of the New Zealand resins, which most likely indicates they have a different plant source because different degrees of oxidation and weathering and changes due to fires (i.e., charring) can be ruled out. Our results have implications for studies of the maturation, provenance, and botanical sources of fossil resins and resinites in Eocene and Miocene coals and sediments of New Zealand and Australia. ?? 2009 Elsevier B.V. All rights reserved.
A reconnaissance study of 13C-13C clumping in ethane from natural gas
NASA Astrophysics Data System (ADS)
Clog, Matthieu; Lawson, Michael; Peterson, Brian; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Eiler, John M.
2018-02-01
Ethane is the second most abundant alkane in most natural gas reservoirs. Its bulk isotopic compositions (δ13C and δD) are used to understand conditions and progress of cracking reactions that lead to the accumulation of hydrocarbons. Bulk isotopic compositions are dominated by the concentrations of singly-substituted isotopologues (13CH3-12CH3 for δ13C and 12CDH2-12CH3 for δD). However, multiply-substituted isotopologues can bring additional independent constraints on the origins of natural ethane. The 13C2H6 isotopologue is particularly interesting as it can potentially inform the distribution of 13C atoms in the parent biomolecules whose thermal cracking lead to the production of natural gas. This work presents methods to purify ethane from natural gas samples and quantify the abundance of the rare isotopologue 13C2H6 in ethane at natural abundances to a precision of ±0.12 ‰ using a high-resolution gas source mass spectrometer. To investigate the natural variability in carbon-carbon clumping, we measured twenty-five samples of thermogenic ethane from a range of geological settings, supported by two hydrous pyrolysis of shales experiments and a dry pyrolysis of ethane experiment. The natural gas samples exhibit a range of 'clumped isotope' signatures (Δ13C2H6) at least 30 times larger than our analytical precision, and significantly larger than expected for thermodynamic equilibration of the carbon-carbon bonds during or after formation of ethane, inheritance from the distribution of isotopes in organic molecules or different extents of cracking of the source. However we show a relationship between the Δ13C2H6 and the proportion of alkanes in natural gas samples, which we believe can be associated to the extent of secondary ethane cracking. This scenario is consistent with the results of laboratory experiments, where breaking down ethane leaves the residue with a low Δ13C2H6 compared to the initial gas. Carbon-carbon clumping is therefore a new potential tracer suitable for the study of kinetic processes associated with natural gas.
Presti, Davide; Pedone, Alfonso; Menziani, Maria Cristina
2014-08-04
The structural and (13)C/(1)H NMR parameters of the four crystal forms (1α, 1·H2O, 1β, and 1γ) of the solid wheel-and-axle (WAA) metal-organic compound [(p-cymene)Ru(κN-INA)Cl2] have been studied by means of periodic DFT calculations. The quality of the results obtained strongly depends on a correct description of long-range interactions; thus, in the geometry refinement protocol used, the pure DFT functionals need to be coupled with a dispersion-correction term (B3LYP-D2, B3LYP-D*). The solid-state (13)C/(1)H NMR δ(iso) parameters and (13)C MAS NMR spectra, calculated by means of the PBE-GIPAW method, agree well with the experimental data for the four crystal forms (mean absolute deviations of the (13)C and (1)H δ(iso) data values lie in the ranges 1.3-2.9 and 0.3-1.0 ppm, respectively). In this context, some revisions in the experimental assignment of the (13)C/(1)H NMR δ(iso) parameters of the 1·H2O, 1β, and 1γ crystal forms can be suggested. The mismatch in the assignment seems to be due to the rotation of the -COOH moiety, which occurs at the 1α-1·H2O transition and was not considered in the experiments. Finally, the results obtained suggest the presence of two COOH···Cl hydrogen bonds of comparable strength established by the two molecules in the asymmetric unit of the 1γ polymorph, in partial disagreement with previous findings.
Stronger warming effects on microbial abundances in colder regions
Chen, Ji; Luo, Yiqi; Xia, Jianyang; ...
2015-12-10
Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra,more » and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.« less
Stronger warming effects on microbial abundances in colder regions
Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji
2015-01-01
Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra, and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our findings therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions. PMID:26658882
[7,13-Bis(2-aminobenzyl)-1,4,10-trioxa-7,13-diazacyclopentadecane]diisothiocyanatobarium(II).
Avecilla, Fernando; Esteban, David; Platas-Iglesias, Carlos; De Blas, Andres; Rodríguez-Blas, Teresa
2003-01-01
The X-ray crystal structure of the title complex, [Ba(NCS)(2)(C(24)H(36)N(4)O(3))], indicates that the Ba(II) cation is nine-coordinate in the solid state, being fully encapsulated by the organic receptor ligand. The receptor adopts a syn arrangement, with both pendant arms oriented on the same side of the crown moiety. The distance between the two amine N atoms is 3.911 (12) A, while the pivotal N atoms are 5.322 (10) A apart.
NASA Astrophysics Data System (ADS)
LIU, S. S.; Zhu, Y.; Meng, W.; Wu, F.
2016-12-01
Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state 13C NMR and solution 31P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes.
Topgaard, Daniel; Sparr, Emma
2017-01-01
Solvents are commonly used in pharmaceutical and cosmetic formulations and sanitary products and cleansers. The uptake of solvent into the skin may change the molecular organization of skin lipids and proteins, which may in turn alter the protective skin barrier function. We herein examine the molecular effects of 10 different solvents on the outermost layer of skin, the stratum corneum (SC), using polarization transfer solid-state NMR on natural abundance 13C in intact SC. With this approach it is possible to characterize the molecular dynamics of solvent molecules when present inside intact SC and to simultaneously monitor the effects caused by the added solvent on SC lipids and protein components. All solvents investigated cause an increased fluidity of SC lipids, with the most prominent effects shown for the apolar hydrocarbon solvents and 2-propanol. However, no solvent other than water shows the ability to fluidize amino acids in the keratin filaments. The solvent molecules themselves show reduced molecular mobility when incorporated in the SC matrix. Changes in the molecular properties of the SC, and in particular alternation in the balance between solid and fluid SC components, may have significant influences on the macroscopic SC barrier properties as well as mechanical properties of the skin. Deepened understanding of molecular effects of foreign compounds in SC fluidity can therefore have strong impact on the development of skin products in pharmaceutical, cosmetic, and sanitary applications. PMID:28028209
Frossard, Victor; Verneaux, Valérie; Millet, Laurent; Magny, Michel; Perga, Marie-Elodie
2015-06-01
Stable C isotope ratio (δ(13)C) values of chironomid remains (head capsules; HC) were used to infer changes in benthic C sources over the last 150 years for two French sub-Alpine lakes. The HCs were retrieved from a series of sediment cores from different depths. The HC δ(13)C values started to decrease with the onset of eutrophication. The HC δ(13)C temporal patterns varied among depths, which revealed spatial differences in the contribution of methanotrophic bacteria to the benthic secondary production. The estimates of the methane (CH4)-derived C contribution to chironomid biomass ranged from a few percent prior to the 1930s to up to 30 % in recent times. The chironomid fluxes increased concomitantly with changes in HC δ(13)C values before a drastic decrease due to the development of hypoxic conditions. The hypoxia reinforced the implication for CH4-derived C transfer to chironomid production. In Lake Annecy, the HC δ(13)C values were negatively correlated to total organic C (TOC) content in the sediment (Corg), whereas no relationship was found in Lake Bourget. In Lake Bourget, chironomid abundances reached their maximum with TOC contents between 1 and 1.5 % Corg, which could constitute a threshold for change in chironomid abundance and consequently for the integration of CH4-derived C into the lake food webs. Our results indicated that the CH4-derived C contribution to the benthic food webs occurred at different depths in these two large, deep lakes (deep waters and sublittoral zone), and that the trophic transfer of this C was promoted in sublittoral zones where O2 gradients were dynamic.
Ma, Jeffrey; Wu, Lijun; Bo, Shou -Hang; ...
2015-04-14
Na-ion batteries are appealing alternatives to Li-ion battery systems for large-scale energy storage applications in which elemental cost and abundance are important. Although it is difficult to find Na-ion batteries which achieve substantial specific capacities at voltages above 3 V (vs Na⁺/Na), the honeycomb-layered compound Na(Ni 2/3Sb 1/3)O₂ can deliver up to 130 mAh/g of capacity at voltages above 3 V with this capacity concentrated in plateaus at 3.27 and 3.64 V. Comprehensive crystallographic studies have been carried out in order to understand the role of disorder in this system which can be prepared in both “disordered” and “ordered” forms,more » depending on the synthesis conditions. The average structure of Na(Ni 2/3Sb 1/3)O₂ is always found to adopt an O3-type stacking sequence, though different structures for the disordered (R3¯ m, #166, a = b = 3.06253(3) Å and c = 16.05192(7) Å) and ordered variants ( C2/m, #12, a = 5.30458(1) Å, b = 9.18432(1) Å, c = 5.62742(1) Å and β = 108.2797(2)°) are demonstrated through the combined Rietveld refinement of synchrotron X-ray and time-of-flight neutron powder diffraction data. However, pair distribution function studies find that the local structure of disordered Na(Ni 2/3Sb 1/3)O₂ is more correctly described using the honeycomb-ordered structural model, and solid state NMR studies confirm that the well-developed honeycomb ordering of Ni and Sb cations within the transition metal layers is indistinguishable from that of the ordered phase. The disorder is instead found to mainly occur perpendicular to the honeycomb layers with an observed coherence length of not much more than 1 nm seen in electron diffraction studies. When the Na environment is probed through ²³Na solid state NMR, no evidence is found for prismatic Na environments, and a bulk diffraction analysis finds no evidence of conventional stacking faults. The lack of long range coherence is instead attributed to disorder among the three possible choices for distributing Ni and Sb cations into a honeycomb lattice in each transition metal layer. It is observed that the full theoretical discharge capacity expected for a Ni³⁺/²⁺ redox couple (133 mAh/g) can be achieved for the ordered variant but not for the disordered variant (~110 mAh/g). The first 3.27 V plateau during charging is found to be associated with a two-phase O3 ↔ P3 structural transition, with the P3 stacking sequence persisting throughout all further stages of desodiation.« less
Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar
2018-05-01
We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.
The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids
Hatcher, P.G.; Wilson, M.A.
1991-01-01
Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.
Equbal, Asif; Paul, Subhradip; Mithu, Venus Singh; Madhu, P K; Nielsen, Niels Chr
2014-09-01
We present new non-rotor-synchronized variants of the recently introduced refocused continuous wave (rCW) heteronuclear decoupling method significantly improving the performance relative to the original rotor-synchronized variants. Under non-rotor-synchronized conditions the rCW decoupling sequences provide more efficient decoupling, are easier to setup, and prove more robust towards experimental parameters such as radio frequency (rf) field amplitude and spinning frequency. This is demonstrated through numerical simulations substantiated with experimental results under different sample spinning and rf field amplitude conditions for powder samples of U-(13)C-glycine and U-(13)C-L-histidine·HCl·H2O. Copyright © 2014 Elsevier Inc. All rights reserved.
Fuentes, Mariela; González-Martín, Inmaculada; Hernández-Hierro, Jose Miguel; Hidalgo, Claudia; Govaerts, Bram; Etchevers, Jorge; Sayre, Ken D; Dendooven, Luc
2009-06-30
In the present study the natural abundance of (13)C is quantified in agricultural soils in Mexico which have been submitted to different agronomic practices, zero and conventional tillage, retention of crop residues (with and without) and rotation of crops (wheat and maize) for 17 years, which have influenced the physical, chemical and biological characteristics of the soil. The natural abundance of C13 is quantified by near infrared spectra (NIRS) with a remote reflectance fibre optic probe, applying the probe directly to the soil samples. Discriminate partial least squares analysis of the near infrared spectra allowed to classify soils with and without residues, regardless of the type of tillage or rotation systems used with a prediction rate of 90% in the internal validation and 94% in the external validation. The NIRS calibration model using a modified partial least squares regression allowed to determine the delta(13)C in soils with or without residues, with multiple correlation coefficients 0.81 and standard error prediction 0.5 per thousand in soils with residues and 0.92 and 0.2 per thousand in soils without residues. The ratio performance deviation for the quantification of delta(13)C in soil was 2.5 in soil with residues and 3.8 without residues. This indicated that the model was adequate to determine the delta(13)C of unknown soils in the -16.2 per thousand to -20.4 per thousand range. The development of the NIR calibration permits analytic determinations of the values of delta(13)C in unknown agricultural soils in less time, employing a non-destructive method, by the application of the fibre optic probe of remote reflectance to the soil sample.
Keske, John C; Lin, Wei; Pringle, Wallace C; Novick, Stewart E; Blake, Thomas A; Plusquellic, David F
2006-02-21
Rotationally resolved microwave (MW) and ultraviolet (UV) spectra of jet-cooled tropolone have been obtained in S(0) and S(1) electronic states using Fourier-transform microwave and UV-laser/molecular-beam spectrometers. In the ground electronic state, the MW spectra of all heavy-atom isotopomers including one (18)O and four (13)C isotopomers were observed in natural abundance. The OD isotopomer was obtained from isotopically enriched samples. The two lowest tunneling states of each isotopomer except (18)O have been assigned. The observed inversion splitting for the OD isotopomer is 1523.227(5) MHz. For the asymmetric (13)C structures, the magnitudes of tunneling-rotation interactions are found to diminish with decreasing distance between the heavy atom and the tunneling proton. In the limit of closest approach, the 0(+) state of (18)O was well fitted to an asymmetric rotor Hamiltonian, reflecting significant changes in the tautomerization dynamics. Comparisons of the substituted atom coordinates with theoretical predictions at the MP2/aug-cc-pVTZ level of theory suggest the localized 0(+) and 0(-) wave functions of the heavier isotopes favor the C-OH and C=O forms of tropolone, respectively. The only exception occurs for the (13)C-OH and (13)C[Double Bond]O structures which correlate to the 0(-) and 0(+) states, respectively. These preferences reflect kinetic isotope effects as quantitatively verified by the calculated zero-point energy differences between members of the asymmetric atom pairs. From rotationally resolved data of the 0(+) <--0(+) and 0(-) <--0(-) bands in S(1), line-shape fits have yielded Lorentzian linewidths that differ by 12.2(16) MHz over the 19.88(4) cm(-1) interval in S(1). The fluorescence decay rates together with previously reported quantum yield data give nonradiative decay rates of 7.7(5) x 10(8) and 8.5(5) x 10(8) s(-1) for the 0(+) and 0(-) levels of the S(1) state of tropolone.
Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.
Hayashi, Akitoshi; Noi, Kousuke; Sakuda, Atsushi; Tatsumisago, Masahiro
2012-05-22
Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safety, long-cycle lives and versatile geometries. Rechargeable sodium batteries are more suitable than lithium-ion batteries, because they use abundant and ubiquitous sodium sources. Solid electrolytes are critical for realizing all-solid-state sodium batteries. Here we show that stabilization of a high-temperature phase by crystallization from the glassy state dramatically enhances the Na(+) ion conductivity. An ambient temperature conductivity of over 10(-4) S cm(-1) was obtained in a glass-ceramic electrolyte, in which a cubic Na(3)PS(4) crystal with superionic conductivity was first realized. All-solid-state sodium batteries, with a powder-compressed Na(3)PS(4) electrolyte, functioned as a rechargeable battery at room temperature.
1998-05-15
2 Bioaerosol fluorescence sensor concept. 2 1-3 Bioaerosol fluorescence sensor detection geometry: (a) signal collection (side view... wavelength light, (b) Strength of output signal along vertical line trace indicated by arrow in (a). 37 5-2 Brick wall pattern revealed by chemical...etchant. 38 5-3 (a) Flat-field illumination of improved laser-annealed CCD at -90°C with 410-nm wavelength light, (b) Strength of output signal along
Detection of (C-13)-ethane in Jupiter's atmosphere
NASA Technical Reports Server (NTRS)
Wiedemann, Guenter; Bjoraker, Gordon L.; Jennings, Donald E.
1991-01-01
High-resolution (C-12)- and (C-13)-ethane spectra of Jupiter were acquired with the Kitt Peak 4 m Fourier spectrometer and the Goddard postdisperser in June 1987. A relative abundance ratio (C-12/C-13) of 94 +/- 12 was derived from the measurements. This nearly terrestrial value indicates little or no fractionation of carbon isotopes when ethane is produced in the photolysis of methane in Jupiter's atmosphere.
Seewald, Jeffrey S.; Seyfried, W.E.; Shanks, Wayne C.
1994-01-01
Organic-rich diatomaceous ooze was reacted with seawater and a Na-Ca-K-Cl fluid of seawater chlorinity at 325-400??C, 400-500 bars, and fluid/sediment mass ratios of 1.56-2.35 to constrain factors regulating the abundance and stable isotope composition of C and S species during hydrothermal alteration of sediment from Guaymas Basin, Gulf of California. Alteration of inorganic and organic sedimentary components resulted in extensive exchange reactions, the release of abundant H2S, CO2, CH4, and Corganic, to solution, and recrystallization of the sediment to an assemblage containing albitic plagioclase, quartz, pyrrhotite, and calcite. The ??34Scdt values of dissolved H2S varied from -10.9 to +4.3??? during seawater-sediment interaction at 325 and 400??C and from -16.5 to -9.0??? during Na-Ca-K-Cl fluid-sediment interaction at 325 and 375??C. In the absence of seawater SO4, H2S is derived from both the transformation of pyrite to pyrrhotite and S released during the degradation of organic matter. In the presence of seawater SO4, reduction of SO4 contributes directly to H2S production. Sedimentary organic matter acts as the reducing agent during pyrite and SO4 reduction. Requisite acidity for the reduction of SO4 is provided by Mg fixation during early-stage sediment alteration and by albite and calcite formation in Mg-free solutions. Organically derived CH4 was characterized by ??13Cpdb values ranging between -20.8 and -23.1???, whereas ??13Cpdb values for dissolved Corganic ranged between -14.8 and -17.7%. Mass balance calculations indicate that ??13C values for organically derived CO2 were ??? - 14.8%. Residual solid sedimentary organic C showed small (??? 0.7???) depletions in 13C relative to the starting sediment. The experimental results are consistent with the isotopic and chemical composition of natural hydrothermal fluids and minerals at Guaymas Basin and permit us to better constrain sources and sinks for C and S species in subseafloor hydrothermal systems at sediment-covered spreading centers. Our data show that the sulfur isotope composition of hydrothermal Sulfide minerals in Guaymas Basin can be explained by derivation of S from diagenetic sulfide and seawater sulfate. Basaltic S may also contribute to hydrothermal sulfide precipitates but is not required to explain their isotopic composition. Estimates of seawater/ sediment mass ratios based on sulfur isotopic composition of sulfide minerals and the abundance of dissolved NH3 in vent fluids range from 3-29 during hydrothermal circulation. Sources of C in Guaymas Basin hydrothermal fluids include thermal degradation of organic matter, bacteriogenic methane production, and dissolution of diagenetic carbonate. ?? 1994.
Tanaka, Mizuki; Yoshimura, Midori; Ogawa, Masahiro; Koyama, Yasuji; Shintani, Takahiro; Gomi, Katsuya
2016-07-01
Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production. This strain was a disruption mutant of the C2H2-type transcription factor, FlbC, which is reported to be involved in the regulation of conidiospore development. Disruption mutants of other upstream regulators comprising a conidiation regulatory network had no apparent effect on GlaB production in solid-state culture. In addition to GlaB, the production of acid protease in solid-state culture was also markedly decreased by flbC disruption. Northern blot analyses revealed that transcripts of glaB and pepA were significantly decreased in the flbC disruption strain. These results suggested that FlbC is involved in the transcriptional regulation of genes specifically expressed under solid-state cultivation conditions, possibly independent of the conidiation regulatory network.
Wang, Tuo; Park, Yong Bum; Hong, Mei
2015-01-01
The structural role of pectins in plant primary cell walls is not yet well understood because of the complex and disordered nature of the cell wall polymers. We recently introduced multidimensional solid-state nuclear magnetic resonance spectroscopy to characterize the spatial proximities of wall polysaccharides. The data showed extensive cross peaks between pectins and cellulose in the primary wall of Arabidopsis (Arabidopsis thaliana), indicating subnanometer contacts between the two polysaccharides. This result was unexpected because stable pectin-cellulose interactions are not predicted by in vitro binding assays and prevailing cell wall models. To investigate whether the spatial contacts that give rise to the cross peaks are artifacts of sample preparation, we now compare never-dried Arabidopsis primary walls with dehydrated and rehydrated samples. One-dimensional 13C spectra, two-dimensional 13C-13C correlation spectra, water-polysaccharide correlation spectra, and dynamics data all indicate that the structure, mobility, and intermolecular contacts of the polysaccharides are indistinguishable between never-dried and rehydrated walls. Moreover, a partially depectinated cell wall in which 40% of homogalacturonan is extracted retains cellulose-pectin cross peaks, indicating that the cellulose-pectin contacts are not due to molecular crowding. The cross peaks are observed both at −20°C and at ambient temperature, thus ruling out freezing as a cause of spatial contacts. These results indicate that rhamnogalacturonan I and a portion of homogalacturonan have significant interactions with cellulose microfibrils in the native primary wall. This pectin-cellulose association may be formed during wall biosynthesis and may involve pectin entrapment in or between cellulose microfibrils, which cannot be mimicked by in vitro binding assays. PMID:26036615
Zhang, Xihua; Xie, Yongbing; Cao, Hongbin; Nawaz, Faheem; Zhang, Yi
2014-09-01
To solve the recycling challenge for aqueous binder based lithium-ion batteries (LIBs), a novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps generated during manufacturing process is proposed in this study. Trifluoroacetic acid (TFA) is employed to separate the cathode material from the aluminum foil. The effects of TFA concentration, liquid/solid (L/S) ratio, reaction temperature and time on the separation efficiencies of the cathode material and aluminum foil are investigated systematically. The cathode material can be separated completely under the optimal experimental condition of 15vol.% TFA solution, L/S ratio of 8.0 mL g(-1), reacting at 40°C for 180 min along with appropriate agitation. LiNi1/3Co1/3Mn1/3O2 is successfully resynthesized from the separated cathode material by solid state reaction method. Several kinds of characterizations are performed to verify the typical properties of the resynthesized LiNi1/3Co1/3Mn1/3O2 powder. Electrochemical tests show that the initial charge and discharge capacities of the resynthesized LiNi1/3Co1/3Mn1/3O2 are 201 mAh g(-)(1) and 155.4 mAh g(-1) (2.8-4.5 V, 0.1C), respectively. The discharge capacity remains at 129 mAh g(-1) even after 30 cycles with a capacity retention ratio of 83.01%. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kulish, Kirill I.; Novikov, Alexander S.; Tolstoy, Peter M.; Bolotin, Dmitrii S.; Bokach, Nadezhda A.; Zolotarev, Andrey A.; Kukushkin, Vadim Yu.
2016-05-01
Three new iminium salts [H2Ndbnd C(R)ONdbnd C(R‧)NH2](p-TolSO3)·½H2O ([1-3](p-TolSO3)·½H2O; R/R‧ = NMe2/PhCH21, NMe2/p-BrC6H42, N(CH2)5/p-BrC6H43) were synthesized via ZnII-mediated amidoxime-cyanamide coupling and their solid structures were studied by X-ray diffraction. Solution structure and conformational changes of [1-3](p-TolSO3)·½H2O were studied by dynamic NMR. The obtained quantitative data were supported by DFT calculations. All the obtained results help to understand the relative stability of the salts [H2Ndbnd C(R)ONdbnd C(R‧)NH2](X) (R = NAlk2, Alk, Ar) and give a further insight into the mechanism of ZnII-mediated generation of 1,2,4-oxadiazoles. The electron delocalization and sesquialteral bonds in the [H2Ndbnd C(NR2)ONdbnd C(R‧)NH2]+ system was recognized by estimation of values of activation energy barriers (14-18 kcal/mol by DNMR and 16-17 kcal/mol by DFT calculations) for the rotation around the CN bonds for the NR2 groups and inspection of the solid-state X-ray data along with the Wiberg bond indices (intermediate single/double bond order for the CN distances). This electron delocalization is responsible for the stabilization of the positively charged iminium cation. The moderate strength hydrogen bonding between the oxime N atom and the =NH2 group, which is verified from the X-ray, DNMR experiments, and by using quantum chemical calculations, stabilizes the iminium salt, but it is still weak to prevent the heterocyclization. Theoretical calculations of the heterocyclization of [H2Ndbnd C(R)ONdbnd C(R‧)NH2]+ to 1,2,4-oxadiazoles demonstrated that it is kinetically hindered to a greater extent for R = NAlk2 and this explains their lower reactivity as compared to the iminium salts with R = Alk, Ar.
Solution and solid state NMR approaches to draw iron pathways in the ferritin nanocage.
Lalli, Daniela; Turano, Paola
2013-11-19
Ferritins are intracellular proteins that can store thousands of iron(III) ions as a solid mineral. These structures autoassemble from four-helix bundle subunits to form a hollow sphere and are a prototypical example of protein nanocages. The protein acts as a reservoir, encapsulating iron as ferric oxide in its central cavity in a nontoxic and bioavailable form. Scientists have long known the structural details of the protein shell, owing to very high resolution X-ray structures of the apoform. However, the atomic level mechanism governing the multistep biomineralization process remained largely elusive. Through analysis of the chemical behavior of ferritin mutants, chemists have found the role of some residues in key reaction steps. Using Mössbauer and XAS, they have identified some di-iron intermediates of the catalytic reaction trapped by rapid freeze quench. However, structural information about the iron interaction sites remains scarce. The entire process is governed by a number of specific, but weak, interactions between the protein shell and the iron species moving across the cage. While this situation may constitute a major problem for crystallography, NMR spectroscopy represents an optimal tool to detect and characterize transient species involving soluble proteins. Regardless, NMR analysis of the 480 kDa ferritin represents a real challenge. Our interest in ferritin chemistry inspired us to use an original combination of solution and solid state approaches. While the highly symmetric structure of the homo-24-mer frog ferritin greatly simplifies the spectra, the large protein size hinders the efficient coherence transfer in solution, thus preventing the sequence specific assignments. In contrast, extensive (13)C-spin diffusion makes the solution (13)C-(13)C NOESY experiment our gold standard to monitor protein side chains both in the apoprotein alone and in its interaction with paramagnetic iron species, inducing line broadening on the resonances of nearby residues. We could retrieve the structural information embedded in the (13)C-(13)C NOESY due to a partial sequence specific assignment of protein backbone and side chains we obtained from solid state MAS NMR of ferritin microcrystals. We used the 59 assigned amino acids (∼33% of the total) as probes to locate paramagnetic ferric species in the protein cage. Through this approach, we could identify ferric dimers at the ferroxidase site and on their pathway towards the nanocage. Comparison with existing data on bacterioferritins and bacterial ferritins, as well as with eukaryotic ferritins loaded with various nonfunctional divalent ions, allowed us to reinterpret the available information. The resulting picture of the ferroxidase site is slightly different with various ferritins but is designed to provide multiple and generally weak iron ligands. The latter assist binding of two incoming iron(II) ions in two proximal positions to facilitate coupling with oxygen. Subsequent oxidation is accompanied by a decrease in the metal-metal distance (consistent with XAS/Mössbauer) and in the number of protein residues involved in metal coordination, facilitating the release of products as di-iron clusters under the effect of new incoming iron(II) ions.
Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till
2013-01-01
Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ(15)N and δ(13)C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ(15)N (δ(15)N plant - δ(15)N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ(13)C in hay and δ(15)N in both soil and hay between management types, but showed that δ(13)C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ(15)N values implied that management types did not substantially differ in nitrogen cycling. Only δ(13)C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice.
Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till
2013-01-01
Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N (δ15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice. PMID:24205126
Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents.
Zhang, Guishui; Dass, Crispin R; Sumithran, Eric; Di Girolamo, Nick; Sun, Lun-Quan; Khachigian, Levon M
2004-05-05
The basic region-leucine zipper protein c-Jun has been linked to cell proliferation, transformation, and apoptosis. However, a direct role for c-Jun in angiogenesis has not been shown. We used human microvascular endothelial cells (HMEC-1) transfected with a DNAzyme targeting the c-Jun mRNA (Dz13), related oligonucleotides, or vehicle in in vitro models of microvascular endothelial cell proliferation, migration, chemoinvasion, and tubule formation, a rat model of corneal neovascularization, and a mouse model of solid tumor growth and vascular endothelial growth factor (VEGF)-induced angiogenesis. All statistical tests were two-sided. Compared with mock-transfected cells, HMEC-1 cells transfected with Dz13 expressed less c-Jun protein and possessed lower DNA-binding activity. Dz13 blocked endothelial cell proliferation, migration, chemoinvasion, and tubule formation. Dz13 inhibited the endothelial cell expression and proteolytic activity of MMP-2, a c-Jun-dependent gene. Dz13 inhibited VEGF-induced neovascularization in the rat cornea compared with vehicle control (Dz13 versus vehicle: 4.0 neovessels versus 30.7 neovessels, difference = 26.7 neovessels; P =.004; area occupied by new blood vessels for Dz13 versus vehicle: 0.35 mm2 versus 1.52 mm2, difference = 1.17 mm2; P =.005) as well as solid melanoma growth in mice (Dz13 versus vehicle at 14 days: 108 mm3 versus 283 mm3, difference = 175 mm3; P =.006) with greatly reduced vascular density (Dz13 versus vehicle: 30% versus 100%, difference = 70%; P<.001). DNAzymes targeting c-Jun may have therapeutic potential as inhibitors of tumor angiogenesis and growth.
NASA Astrophysics Data System (ADS)
Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong
2015-10-01
A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.
Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong
2015-01-01
A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species. PMID:26515033
NASA Technical Reports Server (NTRS)
Fouke, B. W.; Farmer, J. D.; Des Marais, D. J.; Pratt, L.; Sturchio, N. C.; Burns, P. C.; Discipulo, M. K.
2000-01-01
Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72 degrees C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62 degrees C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite "ice sheets", calcified bubbles, and aggregates of aragonite needles ("fuzzy dumbbells") precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54 degrees C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30 degrees C) is composed of calcite spherules and calcite "feather" crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding delta 13C. Travertine delta 13C and delta 18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature (approximately 50-73 degrees C) depositional facies. Conversely, travertine precipitating in the lower-temperature (< approximately 50 degrees C) depositional facies exhibits delta 13C and delta 18O values that are as much as 4% less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H2S and the abundance of sulfide oxidizing microbes, preliminary delta 34S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO2 degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry.
Fouke, B W; Farmer, J D; Des Marais, D J; Pratt, L; Sturchio, N C; Burns, P C; Discipulo, M K
2000-05-01
Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72 degrees C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62 degrees C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite "ice sheets", calcified bubbles, and aggregates of aragonite needles ("fuzzy dumbbells") precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54 degrees C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30 degrees C) is composed of calcite spherules and calcite "feather" crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding delta 13C. Travertine delta 13C and delta 18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature (approximately 50-73 degrees C) depositional facies. Conversely, travertine precipitating in the lower-temperature (< approximately 50 degrees C) depositional facies exhibits delta 13C and delta 18O values that are as much as 4% less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H2S and the abundance of sulfide oxidizing microbes, preliminary delta 34S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO2 degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry.
Catalysis and chemical mechanisms of calcite dissolution in seawater
Adkins, Jess F.; Rollins, Nick E.; Naviaux, John; Erez, Jonathan; Berelson, William M.
2017-01-01
Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric CO2 on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve 13C-labeled calcites in natural seawater. We show that the time-evolving enrichment of 𝜹13C in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the 13C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution–precipitation shifts significantly toward a dissolution-dominated mechanism below about Ω= 0.7. Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of CO2 is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid–solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at Ω= 0.7, which we interpret as the onset of homogeneous etch pit nucleation. PMID:28720698
Carbon isotope ratios of selected volatiles in Citrus sinensis and in orange-flavoured food.
Schipilliti, Luisa; Bonaccorsi, Ivana; Cotroneo, Antonella; Dugo, Paola; Mondello, Luigi
2015-11-01
Twenty genuine samples of industrially cold-pressed sweet orange essential oils, were analysed by gas chromatography-combustion-isotope ratio mass spectrometry to determine the values of the carbon isotope ratios (δ(13)C(VPDB)) of selected volatiles and assess the corresponding range of authenticity. Successively, four commercial orange-flavoured products were analysed under identical conditions to evaluate the authenticity of the orange flavour. The samples were extracted by solid-phase microextraction under optimised conditions. The evaluation was performed by using an internal standard procedure to neglect the contribution due to the original environment to the isotopic abundance of (13)C. The composition of the volatile fraction of the essential oils and of the flavoured products was determined by gas chromatography coupled to mass spectrometry with linear retention indices, and by gas chromatography with a flame ionisation detector. The δ(13)C(VPDB) values of seven secondary metabolites determined here were successfully used to characterise genuine orange essential oil. These values were used to evaluate the quality of orange-flavoured products, revealing the presence of compounds of different origin, not compatible with the values of genuine orange secondary metabolites. This study provides the range of authenticity of δ(13)C(VPDB) of seven different secondary metabolites in sweet orange genuine essential oil, useful for evaluating the genuineness of orange flavour. In accord with a previous study on different essential oils, the values determined here can be successfully applied for the evaluation of a large number of flavoured food stuffs and correlated with their origins. © 2014 Society of Chemical Industry.
Tanis, A A; Rietveld, T; Van den Berg, J W; Wattimena, J L; Swart, G R
2000-01-01
A diet containing naturally 13C-enriched carbohydrate combined with a 13CO2 breath-test analysis can be used to monitor liver glycogen oxidation in persons used to a diet low in 13C, e.g., the Western European diet. In this study, we evaluated this test principle further by changing the way we label the glycogen pool. The 13C enrichment of exhaled CO2 was studied in two groups, one in Europe and one in Africa. The European group (n = 12) was accustomed to a diet low in 13C, and they went on a 13C-enriched study diet to identify liver glycogen. The African group (n = 6) was accustomed to a diet naturally high in 13C, and they went on a diet low in 13C. The basal 13C abundance in exhaled CO2 was higher in the African group (1.0879 At%; atmospheric 1.1 atom percent) than in the European group (1.0821 At%). During the study period, the parameters for liver glycogen oxidation--the 13CO2 enrichment plateau, the plateau duration, and the return to baseline time--did not differ between groups. The abundance of 13CO2 in exhaled CO2 over time in the two groups was similar but inverse. This study confirms the use of a 13CO2 breath test to monitor liver glycogen oxidation and demonstrates how to use such a test in persons accustomed to a diet high in 13C.
Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.
Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul
2016-01-04
Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.
The Role of (Delta)C-13 in the Search for Reduced Organics on the Surface of Mars
NASA Technical Reports Server (NTRS)
Stern, J. C.; McAdam, A. C.
2012-01-01
The capabilities of the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) to detect trace amounts of organic carbon compounds are unprecedented, and MSL may be the first mission to reveal the presence of organic carbon on Mars. The search for reduced organic carbon on Mars is inextricably tied to: a) the preservation potential of the environment from which we take a solid sample, and b) the evolved gas analysis (EGA) techniques used by SAM to release volatiles from this solid sample. Several prospective targets have been identified for sample analysis at Gale Crater. Stratigraphic sequences of phyllosilicates and sulfates at Gale are thought to represent a period of global climate transition from a moderate pH lacustrine environment to an evaporitic environment, both of which could sequester organic carbon (Thomson et al. 2011). The sediment mound in Gale Crater contains a range of lithologies suggesting changes in redox conditions, and evidence of both lacustrine and fluvial depositional processes, which may have transported organic carbon from the layer in which it formed and resulted in its preservation elsewhere within the crater (Anderson and Bell, 2010). Inverted channel fills suggest erosion resistant material that could serve to preserve organics originally deposited in a low energy aqueous environment. The lithology sampled will affect not only the preservation of organics, but also our ability to detect organics during our evolved gas analysis, based on the sample matrix. For example, reduced organics may be trapped in the mineral structure, and thermal evolution of these organics will occur during thermal decomposition of the host mineral. If organics are occluded in minerals that have very high thermal decomposition temperatures, they may be, in effect, "too well preserved," and difficult to detect during EGA. Alternatively, the possible presence of perchlorate, or other strong oxidants in surface regolith, may result in destruction of structural information identifying organic molecules before reaching the QMS on SAM via oxidation to C02 during heating. If this is the case, the stable carbon isotopic composition (delta 13C) of the C02 evolved and measured by the Tunable Laser Spectrometer (TLS) on SAM may help identify the presence of organics. On Earth, biological activity can cause large fractionations of 13C/12C, which can preserved in sedimentary deposits and distinguish the organic products of biotic processes from inorganic atmospheric and geological reservoirs. It is plausible that similar fractionations could occur on Mars and be preserved in reduced organic matter in sediments. Bulk delta 13C measurements alone may not reveal a signature of trace organic carbon that may be present along with inorganic carbon. If both organic and inorganic carbon compounds are present, it may be possible to detect the organic carbon by comparing the 013C of pyrolysis and combustion experiments. The TLS on SAM is capable of obtaining high precision measurements of delta13C from C02 evolved during pyrolysis and combustion of solid regolith samples. Because carbonates are expected to be present at abundances of 0.1-1 % in Martian soil, and organics in the ppb range (Webster and Mahaffy, 2011), analog samples must represent this mix of reduced organic carbon and carbonate. The work presented here will examine the use of delta13C of C02 produced during combustion of bulk Mars analog samples as a proxy for detection of reduced organic carbon.
NASA Astrophysics Data System (ADS)
Pepe-Ranney, C. P.; Campbell, A.; Buckley, D. H.
2015-12-01
Microorganisms drive biogeochemical cycles and because soil is a large global carbon (C) reservoir (soil contains more C than plants and the atmosphere combined), soil microorganisms are important players in the global C-cycle. Frustratingly, however, many soil microorganisms resist cultivation and soil communities are astoundingly complex. This makes soil microbiology difficult to study and without a solid understanding of soil microbial ecology, models of soil C feedbacks to climate change are under-informed. Stable isotope probing (SIP) is a useful approach for establishing identity-function connections in microbial communities but has been challenging to employ in soil due to the inadequate resolution of microbial community fingerprinting techniques. High throughput DNA sequencing improves SIP resolving power transforming it into a powerful tool for studying the soil C cycle. We conducted a DNA-SIP experiment to track flow of xylose-C, a labile component of plant biomass, and cellulose-C, the most abundant global biopolymer, through a soil microbial community. We could track 13C into microbial DNA even when added 13C amounted to less than 5% of native C and found Spartobacteria, Chloroflexi, and Planctomycetes taxa were among those that assimilated 13C cellulose. These lineages are cosmopolitan in soil but little is known of their ecophysiology. By profiling SSU rRNA genes across entire DNA-SIP density gradients, we assessed relative DNA atom % 13C per taxon in 13C treatments and found cellulose degraders exhibited signal consistent with a specialist lifestyle with respect to C preference. Further, DNA-SIP enriches DNA of targeted microorganisms (Verrucomicrobia cellulose degraders were enriched by nearly two orders of magnitude) and this enriched DNA can serve as template for community genomics. We produced draft genomes from soil cellulose degraders including microorganisms belonging to Verrucomicrobia, Chloroflexi, and Planctomycetes from SIP enriched DNA. This study demonstrates how DNA-SIP can be used to study microbial ecology and target guilds of microorganisms for community genomics. Improving our fundamental understanding of ecophysiology relevant to terrestrial C cycling is essential for tuning global C models.
NASA Astrophysics Data System (ADS)
Yu, Shicheng; Mertens, Andreas; Gao, Xin; Gunduz, Deniz Cihan; Schierholz, Roland; Benning, Svenja; Hausen, Florian; Mertens, Josef; Kungl, Hans; Tempel, Hermann; Eichel, Rüdiger-A.
2016-09-01
A ceramic solid-state electrolyte of lithium aluminum titanium phosphate with the composition of Li1.3Al0.3Ti1.7(PO4)3 (LATP) was synthesized by a sol-gel method using a pre-dissolved Ti-source. The annealed LATP powders were subsequently processed in a binder-free dry forming method and sintered under air for the pellet preparation. Phase purity, density, microstructure as well as ionic conductivity of the specimen were characterized. The highest density (2.77gṡcm-3) with an ionic conductivity of 1.88×10-4 Sṡcm-1 (at 30∘C) was reached at a sintering temperature of 1100∘C. Conductivity of LATP ceramic electrolyte is believed to be significantly affected by both, the AlPO4 secondary phase content and the ceramic electrolyte microstructure. It has been found that with increasing sintering temperature, the secondary-phase content of AlPO4 increased. For sintering temperatures above 1000∘C, the secondary phase has only a minor impact, and the ionic conductivity is predominantly determined by the microstructure of the pellet, i.e. the correlation between density, porosity and particle size. In that respect, it has been demonstrated, that the conductivity increases with increasing particle size in this temperature range and density.
Titanium doped LSCM anode for hydrocarbon fuelled SOFCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Abul K.; Hakem, Afizul; Petra, Pg. M. Iskandar
2015-05-15
La{sub 0.75}Sr{sub 0.25}Cr{sub 0.5-x}Mn{sub 0.5}Ti{sub x}O{sub 3} (x = 0.1, 0.2) has been synthesized in solid state reaction method and tested as a potential anode material for solid oxide fuel cells. Rietveld refinement of X-ray powder diffraction data using Fullprof software shows that the materials crystallize in the rhombohedral symmetry in the R-3C space group. The cell parameters are: a = b = 5.5286 (4) Å, c = 13.408(1) Å, α = β = 90°, γ = 120°. Particle size distribution measurements show that the average particle size for x = 0.1 and 0.2 was 232.66 nm and 176.63 nm, respectively. Themore » potential on particles were found to be −22.86 mV and −27.73 mV, for x = 0.1 and x = 0.2, respectively. Thermal expansion measurement using thermo-mechanical analyzer shows that the thermal expansion coefficient is 13.96 × 10{sup −6}/°C which is close to the thermal expansion of the state-of–the art YSZ electrolyte. Microstructure has been observed from scanning electron microscopy which shows a porous structure. Energy dispersive X-ray shows that the percentage of the different cations and anions in the structure are close to the chemical occupancies.« less
NASA Astrophysics Data System (ADS)
Nelson, Peter N.; Taylor, Richard A.
2015-03-01
A comparative study of the room temperature molecular packing and lattice structures for the homologous series of zinc(II) and sodium(I) n-alkanoates adduced from Fourier transform infrared and solid-state 13C NMR spectroscopic data in conjunction with X-ray powder diffraction measurements is carried out. For zinc carboxylates, metal-carboxyl bonding is via asymmetric bridging bidentate coordination whilst for the sodium adducts, coordination is via asymmetric chelating bidentate bonding. All compounds are packed in a monoclinic crystal system. Furthermore, the fully extended all-trans hydrocarbon chains are arranged as lamellar bilayers. For zinc compounds, there is bilayer overlap, for long chain adducts (nc > 8) but not for sodium compounds where methyl groups from opposing layers in the lamellar are only closely packed. Additionally, the hydrocarbon chains are extended along the a-axis of the unit cell for zinc compounds whilst for sodium carboxylates they are extended along the c-axis. These packing differences are responsible for different levels of Van der Waals effects in the lattices of these two series of compounds, hence, observed odd-even alternation is different. The significant difference in lattice packing observed for these two series of compounds is proposed to be due to the difference in metal-carboxyl coordination mode, arising from the different electronic structure of the central metal ions.
Gas-Phase Synthesis and Characterization of CH4-Loaded Hydroquinone Clathrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.; Lee, Y; Takeya, S
2010-01-01
A CH{sub 4}-loaded hydroquinone (HQ) clathrate was synthesized via a gas-phase reaction using the {alpha}-form of crystalline HQ and CH{sub 4} gas at 12 MPa and room temperature. Solid-state {sup 13}C cross-polarization/magic angle spinning (CP/MAS) NMR and Raman spectroscopic measurements confirm the incorporation of CH{sub 4} molecules into the cages of the HQ clathrate framework. The chemical analysis indicates that about 69% of the cages are filled by CH{sub 4} molecules, that is, 0.69 CH{sub 4} per three HQ molecules. Rietveld refinement using synchrotron X-ray powder diffraction (XRD) data shows that the CH{sub 4}-loaded HQ clathrate adopts the {beta}-form ofmore » HQ clathrate in a hexagonal space group R3 with lattice parameters of a = 16.6191 {angstrom} and c = 5.5038 {angstrom}. Time-resolved synchrotron XRD and quadrupole mass spectroscopic measurements show that the CH{sub 4}-loaded HQ clathrate is stable up to 368 K and gradually transforms to the {alpha}-form by releasing the confined CH{sub 4} gases between 368-378 K. Using solid-state {sup 13}C CP/MAS NMR, the reaction kinetics between the {alpha}-form HQ and CH{sub 4} gas is qualitatively described in terms of the particle size of the crystalline HQ.« less
Hot atoms in cosmic chemistry.
Rossler, K; Jung, H J; Nebeling, B
1984-01-01
High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. "Hot" atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 10(8)-10(10) atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime. Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: N(p,alpha) 11C, 16O(p,alpha pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.
Roach, David J; Dou, Shichen; Colby, Ralph H; Mueller, Karl T
2013-05-21
Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T(g)) have been investigated using solid-state nuclear magnetic resonance. Experiments detecting (13)C with (1)H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) (1)H-(13)C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and (1)H spin-lattice relaxation rate measurements. Previous (1)H and (7)Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of (13)C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time (1)H-(13)C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from (1)H to (13)C nuclei, becomes similar for T≳1.1 T(g) in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for the dependence of backbone dynamics on cation density (and here, cation identity as well) in these amorphous PEO-based ionomer systems.
Lira, Giulliari A S T; Araújo, Elcida L; Bittencourt-Oliveira, Maria Do Carmo; Moura, Ariadne N
2011-12-01
The present study reports the phytoplankton abundance, dominance and co-existence relationships in the eutrophic Carpina reservoir, Pernambuco, Brazil. Sampling was carried out at six different depths bimonthly at a single reservoir spanning two climatic periods: dry season (January, September, and November 2006) and rainy season (March, May, and July 2006). Density, abundance, dominance, specific diversity and equitability of the community were determined, along with chlorophyll a, and physical and chemical variables of the environment. Eight species were considered abundant, and their densities corresponded to more than 90% of the total phytoplankton community quantified. Cyanobacteria represented more than 80% of this density. Cylindrospermopsis raciborskii was the only dominant taxon in the dry season, and was co-dominant in the rainy season. C. raciborskii, Planktothrix agardhii and Geitlerinema amphibium had the greatest densities and lowest vertical variation coefficients. The statistical analysis indicated relationships with vertical and seasonal variations in the phytoplankton community and the following variables: total dissolved solids, water temperature, electrical conductivity and pH. The changes in the environmental variables were discrete and regulated by the establishment of precipitation however, they were able to promote vertical and seasonal instability in the structure of the phytoplankton community.
Co-assembly of Zn(SPh){sub 2} and organic linkers into helical and zig-zag polymer chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yi; Yu Lingmin; Loo, Say Chye Joachim
2012-07-15
Two novel one-dimensional coordination polymers, single helicate [Zn(SPh){sub 2}(TPyTA)(EG)]{sub n} (EG=ethylene glycol) (1) and zig-zag structure [Zn(SPh){sub 2}(BPyVB)]{sub n} (2), were synthesized under solvothermal conditions at 150 Degree-Sign C or room temperature by the co-assembly of Zn(SPh){sub 2} and organic linkers such as 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPyTA) and 1,3-bis(trans-4-pyridylvinyl)benzene (BPyVB). X-ray crystallography study reveals that both polymers 1 and 2 crystallize in space group P2{sub 1}/c of the monoclinic system. The solid-state UV-vis absorption spectra show that 1 and 2 have maxium absorption onsets at 400 nm and 420 nm, respectively. TGA analysis indicates that 1 and 2 are stable up tomore » 110 Degree-Sign C and 210 Degree-Sign C. - Graphical abstract: Two novel one-dimensional coordination polymers, single helicate [Zn(SPh){sub 2}(TPyTA)(EG)]{sub n} (1) and zig-zag structure [Zn(SPh){sub 2}(BPyVB)]{sub n} (2), were synthesized. Solid-state UV-vis absorptions show that 1 and 2 have maxium absorption onsets at 400 nm and 420 nm, respectively. TGA analysis indicates that 1 and 2 are stable up to 110 Degree-Sign C and 210 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Two novel one-dimensional coordination polymers have been synthesized. Black-Right-Pointing-Pointer TPyTA results in helical structures in 1 while BPyVB leads to zig-zag chains in 2. Black-Right-Pointing-Pointer Solid-state UV-vis absorption spectra and TGA analysis of the title polymers were studied.« less
The gas phase structure of α -pinene, a main biogenic volatile organic compound
NASA Astrophysics Data System (ADS)
Neeman, Elias M.; Avilés Moreno, Juan Ramón; Huet, Thérèse R.
2017-12-01
The gas phase structure of the bicyclic atmospheric aerosol precursor α-pinene was investigated employing a combination of quantum chemical calculation and Fourier transform microwave spectroscopy coupled to a supersonic jet expansion. The very weak rotational spectra of the parent species and all singly substituted 13C in natural abundance have been identified, from 2 to 20 GHz, and fitted to Watson's Hamiltonian model. The rotational constants were used together with geometrical parameters from density functional theory and ab initio calculations to determine the rs, r0, and rm(1 ) structures of the skeleton, without any structural assumption in the fit concerning the heavy atoms. The double C=C bond was found to belong to a quasiplanar skeleton structure containing 6 carbon atoms. Comparison with solid phase structure is reported. The significant differences of α-pinene in gas phase and other gas phase bicyclic monoterpene structures (β-pinene, nopinone, myrtenal, and bicyclo[3.1.1]heptane) are discussed.
Li, Ping; Zhou, Yong; Li, Haijin; Xu, Qinfeng; Meng, Xianguang; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang
2015-01-31
Correction for 'All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel' by Ping Li et al., Chem. Commun., 2015, 51, 800-803.
NASA Astrophysics Data System (ADS)
Morishita, Hidetada; Tamiaki, Hitoshi
2009-03-01
Metal complexes of methyl 13 1- 18O-labelled pyropheophorbide- a1-M- 18O (M = Zn, Cu and Ni) were prepared by metallation of the 18O-labelled free base ( 1- 18O) and 18O-labelling of unlabelled nickel complex ( 1-Ni). The FT-IR spectra of 1-Zn and 1-Zn- 18O in CH 2Cl 2 showed that the 13-keto carbonyl stretching vibration mode moved to about a 30-cm -1 lower wavenumber by 18O-labelling of the 13 1-oxo moiety. In 1-Cu- 18O and 1-Ni- 18O, the 13-C dbnd 18O stretching modes were close to the highest-energy wavenumber mode of chlorin skeletal C-C/C-N vibrations at around 1650 cm -1 and they were coupled in CH 2Cl 2 to give two split IR bands (Fermi resonance). A similar coupling was observed in the resonance Raman scattering of 1-Ni- 18O in the solid state. The hydrogen-bonded 13-C dbnd 16O vibration mode of 1-Ni similarly coupled with the skeletal C-C/C-N mode in CCl 4 containing 1% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol, while such a coupling was not observed in a neat CCl 4 solution of 1-Ni possessing the 13-C dbnd 16O free from any interaction. The skeletal C-C/C-N band selectively coupled with the 13-C dbnd O, not with the 3-C dbnd O, when the difference in their peak maxima was less than 20 cm -1.
Shinebarger, Steven R.; Haisch, Michael; Matthews, Dwight E.
2008-01-01
Continuous-flow inlets from oxidation reactors are commonly used systems for biological sample introduction into isotope ratio mass spectrometers (IRMS) to measure 13C enrichment above natural abundance. Because the samples must be volatile enough to pass through a gas chromatograph, silylated derivatization reactions are commonly used to modify biological molecules to add the necessary volatility. Addition of a t-butyldimethylsilyl (TBDMS) group is a common derivatization approach. However, we have found that samples do not produce the expected increment in measured 13C abundance as the TBDMS derivatives. We have made measurements of 13C enrichment of leucine and glutamate standards of known 13C enrichment using derivatives without silicon (N-acetyl n-propyl ester), with silicon (TBDMS), and an intermediate case. The measurements of 13C in amino acids derivatized without silicon were as expected. The 13C enrichment measurements using the TBDMS derivative were higher than expected, but could be corrected to produce the expected 13C enrichment measurement by IRMS if one carbon was removed per silicon. We postulate that the silicon in the derivative forms silicon carbide compounds in the heated cupric oxide reactor, rather than forming silicon dioxide. Doing so reduces the amount of CO2 formed from the carbon in the sample. Silylated derivatives retain carbon with the silicon and must be used carefully and with correction factors to measure 13C enrichments by continuous-flow IRMS. PMID:12510745
Phyo, Pyae; Wang, Tuo; Yang, Yu; O'Neill, Hugh; Hong, Mei
2018-05-14
In contrast to the well-studied crystalline cellulose of microbial and animal origins, cellulose in plant cell walls is disordered due to its interactions with matrix polysaccharides. Plant cell wall (PCW) is an undisputed source of sustainable global energy; therefore, it is important to determine the molecular structure of PCW cellulose. The most reactive component of cellulose is the exocyclic hydroxymethyl group: when it adopts the tg conformation, it stabilizes intrachain and interchain hydrogen bonding, while gt and gg conformations destabilize the hydrogen-bonding network. So far, information about the hydroxymethyl conformation in cellulose has been exclusively obtained from 13 C chemical shifts of monosaccharides and oligosaccharides, which do not reflect the environment of cellulose in plant cell walls. Here, we use solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy to measure the hydroxymethyl torsion angle of cellulose in two model plants, by detecting distance-dependent polarization transfer between H4 and H6 protons in 2D 13 C- 13 C correlation spectra. We show that the interior crystalline portion of cellulose microfibrils in Brachypodium and Arabidopsis cell walls exhibits H4-H6 polarization transfer curves that are indicative of a tg conformation, whereas surface cellulose chains exhibit slower H4-H6 polarization transfer that is best fit to the gt conformation. Joint constraints by the H4-H6 polarization transfer curves and 13 C chemical shifts indicate that it is unlikely for interior cellulose to have a significant population of the gt and gg conformation mixed with the tg conformation, while surface cellulose may adopt a small percentage of the gg conformation. These results provide new constraints to the structure and matrix interactions of cellulose in plant cell walls, and represent the first direct determination of a torsion angle in an important noncrystalline carbohydrate polymer.
Materials research for passive solar systems: Solid-state phase-change materials
NASA Astrophysics Data System (ADS)
Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.
1985-03-01
A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.
X-ray, DFT, FTIR and thermal study of the antimicrobial N-benzenesulfonyl-1H-1,2,3-benzotriazole
NASA Astrophysics Data System (ADS)
Komrovsky, Fabián; Sperandeo, Norma R.; Vera, D. Mariano A.; Caira, Mino R.; Mazzieri, María R.
2018-07-01
N-benzenesulfonyl-1H-1,2,3-benzotriazole (NBSBZT) is a compound with significant trypanocidal and bactericidal activities, which we reported previously. In this work a combined experimental and theoretical study of its structural and molecular properties is communicated. The crystal structure of NBSBZT was determined by single crystal X-ray diffraction. The molecular vibrations and behavior on heating of NBSBZT were investigated by Fourier Transform Infrared (FTIR) Spectroscopy, Differential Scanning Calorimetry (DSC), Thermogravimetry (TG) and Hot Stage Microscopy (HSM). In parallel, Quantum Chemical calculations based on Density Functional Theory (DFT) and Scaled Quantum Mechanics methods were used to determine the geometrical, energetic and vibrational characteristics of NBSBZT. The study demonstrated that NBSBZT crystallized in the triclinic space group P‾1 (No. 2) with two inversion-related molecules in the unit cell (Z = 2). Its overall molecular conformation can be described by two torsion angles, namely φ1 (N2sbnd N1sbnd S10sbnd C13) = -94.5(2)° and φ2 (N1sbnd S10sbnd C13sbnd C14) = 84.2(2)°. The minimum energy structures found by theoretical calculations showed φ1 = -67.6° and φ2 = 88.0° in vacuum; however, in water, the torsion angles were -77.5° and 88.7°, respectively. The differences in φ1 (Δφ1solid state-vacuum = 26.9° and Δφ1solid state-water = 17.0°) could be attributed to the high intermolecular cohesive forces present in the crystal of NBSBZT. A good correlation between the experimental and theoretical mid-FTIR spectra was found. The DSC, TG and HSM results indicated that NBSBZT was a solvent-free solid, which melted at 128.8 °C but decomposed above 130 °C.
Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.
2013-01-01
This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617
The extent of mixing in stellar interiors: the open clusters Collinder 261 and Melotte 66
NASA Astrophysics Data System (ADS)
Drazdauskas, Arnas; Tautvaišienė, Gražina; Randich, Sofia; Bragaglia, Angela; Mikolaitis, Šarūnas; Janulis, Rimvydas
2016-05-01
Context. Determining carbon and nitrogen abundances in red giants provides useful diagnostics to test mixing processes in stellar atmospheres. Aims: Our main aim is to determine carbon-to-nitrogen and carbon isotope ratios for evolved giants in the open clusters Collinder 261 and Melotte 66 and to compare the results with predictions of theoretical models. Methods: High-resolution spectra were analysed using a differential model atmosphere method. Abundances of carbon were derived using the C2 Swan (0, 1) band head at 5635.5 Å. The wavelength interval 7940-8130 Å, which contains CN features, was analysed to determine nitrogen abundances and carbon isotope ratios. The oxygen abundances were determined from the [O I] line at 6300 Å. Results: The mean values of the elemental abundances in Collinder 261, as determined from seven stars, are: [ C/Fe ] = -0.23 ± 0.02 (s.d.), [ N/Fe ] = 0.18 ± 0.09, [ O/Fe ] = -0.03 ± 0.07. The mean 12C /13C ratio is 11 ± 2, considering four red clump stars and 18 for one star above the clump. The mean C/N ratios are 1.60 ± 0.30 and 1.74, respectively. For the five stars in Melotte 66 we obtained: [ C/Fe ] = -0.21 ± 0.07 (s.d.), [ N/Fe ] = 0.17 ± 0.07, [ O/Fe ] = 0.16 ± 0.04. The 12C /13C and C/N ratios are 8 ± 2 and 1.67 ± 0.21, respectively. Conclusions: The 12C /13C and C/N ratios of stars in the investigated open clusters were compared with the ratios predicted by stellar evolution models. The mean values of 12C /13C ratios in Collinder 261 and Melotte 66 agree well with models of thermohaline-induced extra-mixing for the corresponding stellar turn-off masses of about 1.1-1.2 M⊙. The mean C/N ratios are not decreased as much as predicted by the model in which the thermohaline- and rotation-induced extra-mixing act together. Based on observations collected at ESO telescopes under Guaranteed Time Observation programmes 071.D-0065, 072.D-0019, and 076.D-0220.
Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang
2014-02-01
Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.
Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR.
Gupta, Sebanti; Tycko, Robert
2018-02-01
Recent studies of noncrystalline HIV-1 capsid protein (CA) assemblies by our laboratory and by Polenova and coworkers (Protein Sci 19:716-730, 2010; J Mol Biol 426:1109-1127, 2014; J Biol Chem 291:13098-13112, 2016; J Am Chem Soc 138:8538-8546, 2016; J Am Chem Soc 138:12029-12032, 2016; J Am Chem Soc 134:6455-6466, 2012; J Am Chem Soc 132:1976-1987, 2010; J Am Chem Soc 135:17793-17803, 2013; Proc Natl Acad Sci USA 112:14617-14622, 2015; J Am Chem Soc 138:14066-14075, 2016) have established the capability of solid state nuclear magnetic resonance (NMR) measurements to provide site-specific structural and dynamical information that is not available from other types of measurements. Nonetheless, the relatively high molecular weight of HIV-1 CA leads to congestion of solid state NMR spectra of fully isotopically labeled assemblies that has been an impediment to further progress. Here we describe an efficient protocol for production of segmentally labeled HIV-1 CA samples in which either the N-terminal domain (NTD) or the C-terminal domain (CTD) is uniformly 15 N, 13 C-labeled. Segmental labeling is achieved by trans-splicing, using the DnaE split intein. Comparisons of two-dimensional solid state NMR spectra of fully labeled and segmentally labeled tubular CA assemblies show substantial improvements in spectral resolution. The molecular structure of HIV-1 assemblies is not significantly perturbed by the single Ser-to-Cys substitution that we introduce between NTD and CTD segments, as required for trans-splicing.
Wu, Chin H; Grant, Christopher V; Cook, Gabriel A; Park, Sang Ho; Opella, Stanley J
2009-09-01
A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800MHz (1)H/(15)N and (1)H/(13)C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers.
Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.
Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham
2017-07-01
Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
de Armas, Héctor Novoa; Peeters, Oswald M; Blaton, Norbert; Van Gyseghem, Elke; Martens, Johan; Van Haele, Gerrit; Van Den Mooter, Guy
2009-01-01
Ranitidine hydrochloride (RAN-HCl), a known anti-ulcer drug, is the product of reaction between HCl and ranitidine base (RAN-B). RAN-HCl has been extensively studied; however this is not the case of the RAN-B. The solid state characterization of RAN-B polymorphs has been carried out using different analytical techniques (microscopy, thermal analysis, Fourier transform infrared spectrometry in the attenuated total reflection mode, (13)C-CPMAS-NMR spectroscopy and X-ray powder diffraction). The crystal structures of RAN-B form I and form II have been determined using conventional X-ray powder diffraction in combination with simulated annealing and whole profile pattern matching, and refined using rigid-body Rietveld refinement. RAN-B form I is a monoclinic polymorph with cell parameters: a = 7.317(2), b = 9.021(2), c = 25.098(6) A, beta = 95.690(1) degrees and space group P2(1)/c. The form II is orthorhombic: a = 31.252(4), b = 13.052(2), c = 8.0892(11) A with space group Pbca. In RAN-B polymorphs, the nitro group is involved in a strong intramolecular hydrogen bond responsible for the existence of a Z configuration in the enamine portion of the molecules. A tail to tail packing motif can be denoted via intermolecular hydrogen bonds. The crystal structures of RAN-B forms are compared to those of RAN-HCl polymorphs. RAN-B polymorphs are monotropic polymorphic pairs. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous carbon.
Notohara, Hiroo; Urita, Koki; Yamamura, Hideyuki; Moriguchi, Isamu
2018-06-08
Extensive research efforts are devoted to development of high performance all-solid-state lithium ion batteries owing to their potential in not only improving safety but also achieving high stability and high capacity. However, conventional approaches based on a fabrication of highly dense electrode and solid electrolyte layers and their close contact interface is not always applicable to high capacity alloy- and/or conversion-based active materials such as SnO 2 accompanied with large volume change in charging-discharging. The present work demonstrates that SnO 2 -embedded nanoporous carbons without solid electrolyte inside the nanopores are a promising candidate for high capacity and stable anode material of all-solid-state battery, in which the volume change reactions are restricted in the nanopores to keep the constant electrode volume. A prototype all-solid-state full cell consisting of the SnO 2 -based anode and a LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 -based cathode shows a good performance of 2040 Wh/kg at 268.6 W/kg based on the anode material weight.
Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe
2017-12-06
Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 < MoF 3 < MoF 6 before sharply decreasing for MoF 9 , with a similar effect for the supported systems (MoF 0 ≈ MoF 9 < MoF 6 < MoF 3 ). This is consistent with the different kinetic behavior (zeroth order in alkyne for MoF 9 derivatives instead of first order for the others) and the isolation of stable metallacyclobutadiene intermediates of MoF 9 for both molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.
1987-12-01
261.3 show equivalent areas consistant with tiie alternating copolymer structure. Comparison with the model acetanilide (-241.5) indicates the...T.; Fujito, T.; Deguchi. 1\\.; Ando, 1. Macromolecules. 1987, 2?0, 2441. 4 TABLE I CP MNAS ,_’ii N-methyl benzamide -2-o3.3 -226. Acetanilide -241.9
Wang, Tuo; Hong, Mei
2016-01-01
Until recently, the 3D architecture of plant cell walls was poorly understood due to the lack of high-resolution techniques for characterizing the molecular structure, dynamics, and intermolecular interactions of the wall polysaccharides in these insoluble biomolecular mixtures. We introduced multidimensional solid-state NMR (SSNMR) spectroscopy, coupled with (13)C labelling of whole plants, to determine the spatial arrangements of macromolecules in near-native plant cell walls. Here we review key evidence from 2D and 3D correlation NMR spectra that show relatively few cellulose-hemicellulose cross peaks but many cellulose-pectin cross peaks, indicating that cellulose microfibrils are not extensively coated by hemicellulose and all three major polysaccharides exist in a single network rather than two separate networks as previously proposed. The number of glucan chains in the primary-wall cellulose microfibrils has been under active debate recently. We show detailed analysis of quantitative (13)C SSNMR spectra of cellulose in various wild-type (WT) and mutant Arabidopsis and Brachypodium primary cell walls, which consistently indicate that primary-wall cellulose microfibrils contain at least 24 glucan chains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.
Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A
2018-06-22
High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.
Li, Ping; Zhou, Yong; Li, Haijin; Xu, Qinfeng; Meng, Xianguang; Meng, Xiangguang; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang
2015-01-14
An all-solid-state Z-scheme system array consisting of an Fe2V4O13 nanoribbon (NR)/reduced graphene oxide (RGO)/CdS nanoparticle grown on the stainless-steel mesh was rationally designed for photoconversion of gaseous CO2 into renewable hydrocarbon fuels (methane: CH4).
Cahill, Lindsay S; Hanna, John V; Wong, Alan; Freitas, Jair C C; Yates, Jonathan R; Harris, Robin K; Smith, Mark E
2009-09-28
Solid-state (25)Mg magic angle spinning nuclear magnetic resonance (MAS NMR) data are reported from a range of organic and inorganic magnesium-oxyanion compounds at natural abundance. To constrain the determination of the NMR interaction parameters (delta(iso), chi(Q), eta(Q)) data have been collected at three external magnetic fields (11.7, 14.1 and 18.8 T). Corresponding NMR parameters have also been calculated by using density functional theory (DFT) methods using the GIPAW approach, with good correlations being established between experimental and calculated values of both chi(Q) and delta(iso). These correlations demonstrate that the (25)Mg NMR parameters are very sensitive to the structure, with small changes in the local Mg(2+) environment and the overall hydration state profoundly affecting the observed spectra. The observations suggest that (25)Mg NMR spectroscopy is a potentially potent probe for addressing some key problems in inorganic materials and of metal centres in biologically relevant molecules.
Composite-pulse and partially dipolar dephased multiCP for improved quantitative solid-state 13C NMR
NASA Astrophysics Data System (ADS)
Duan, Pu; Schmidt-Rohr, Klaus
2017-12-01
Improved multiple cross polarization (multiCP) pulse sequences for quickly acquiring quantitative 13C NMR spectra of organic solids are presented. Loss of 13C magnetization due to imperfect read-out and storage pulses in multiCP has been identified as a significant mechanism limiting polarization enhancement for 13C sites with weak couplings to 1H. This problem can be greatly reduced by composite 90° pulses with non-orthogonal phases that flip the magnetization onto the spin-lock field and back to the longitudinal direction for the 1H repolarization period; the observed loss is <3% for over ±10 kHz resonance offset and up to 20% flip-angle error. This composite-pulse multiCP (ComPmultiCP) sequence consistently provides performance superior to that of conventional multiCP, without any trade-off. The longer total CP time enabled by the composite pulses allows for a wider amplitude ramp during CP, which decreases the sensitivity to Hartmann-Hahn mismatch by a factor of two, with a <7% root-mean-square deviation within a 1-dB range for Boc-alanine. In samples with very short T1ρ, under-polarization of non-protonated carbons can be compensated by slight dipolar dephasing of CHn signals resulting from relatively weak decoupling during the Hahn spin echo period before detection. Quantitative spectra have been obtained by ComPmultiCP for low-crystallinity branched polyethylene at 4.5 kHz MAS, and in combination with partial dipolar dephasing for soil organic matter at 14 kHz MAS.
NASA Astrophysics Data System (ADS)
Vaccher, Claude; Berthelot, Pascal; Debaert, Michel; Vermeersch, Gaston; Guyon, René; Pirard, Bernard; Vercauteren, Daniel P.; Dory, Magdalena; Evrard, Guy; Durant, François
1993-12-01
The conformations of 3-(substituted furan-2-yl) and 3-(substituted thien-2-yl)-γ-aminobutyric acid 1-9 in solution (D 2O) are estimated from high-resolution (300 MHz) 1H NMR coupling data. Conformations and populations of conformers are calculated by means of a modified Karplus-like relationship for the vicinal coupling constants. The results are compared with X-ray crystallographic investigations (torsion angles) and ab initio HF MO ST-3G or STO-3G* calculations. 1H NMR spectral analysis shows how 1-9 in solution retain the preferred g- conformation around the C3C4 bond, as found in the solid state, while a partial rotation is set up around the C2C3 bond: the conformations about C2C3 are all highly populated in solution. The 13C spin-lattice relaxation times are also discussed.
Formation of nitrogenated organic aerosols in the Titan upper atmosphere.
Imanaka, Hiroshi; Smith, Mark A
2010-07-13
Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan's organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet-vacuum ultraviolet irradiation of a N(2)/CH(4) gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N(2)/CH(4) photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H(2)C(2)N and HCN, respectively, are suggestive of important roles of H(2)C(2)N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using (13)C and (15)N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan's atmosphere.
Formation of nitrogenated organic aerosols in the Titan upper atmosphere
Imanaka, Hiroshi; Smith, Mark A.
2010-01-01
Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan’s organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet–vacuum ultraviolet irradiation of a N2/CH4 gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N2/CH4 photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H2C2N and HCN, respectively, are suggestive of important roles of H2C2N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using 13C and 15N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan’s atmosphere. PMID:20616074
High field (33)S solid state NMR and first-principles calculations in potassium sulfates.
Moudrakovski, Igor; Lang, Stephen; Patchkovskii, Serguei; Ripmeester, John
2010-01-14
A set of potassium sulfates presenting a variety of sulfur environments (K(2)SO(4), KHSO(4), K(2)S(2)O(7), and K(2)S(2)O(8)) has been studied by (33)S solid state NMR at 21 T. Low natural abundance (0.75%) and small gyromagnetic ratio of (33)S presented a serious challenge even at such a high magnetic field. Nevertheless, using the QCPMG technique we were able to obtain good signals from the sites with C(Q) values approaching 16 MHz. Assignment of the sites and the relative orientations of the EFG tensors were assisted by quantum mechanical calculations using the Gaussian 98 and CASTEP packages. The Gaussian 98 calculations were performed using the density functional method and gauge independent atomic orbitals on molecular clusters of about 100-120 atoms. The CASTEP calculations utilized periodic boundary conditions and a gauge-including projector augmented-wave pseudopotential approach. Although only semiquantitative agreement is observed between the experimental and calculated parameters, the calculations are a very useful aid in the interpretation of experimental data.
Wu, Songqing; Lan, Yanjiao; Huang, Dongmei; Peng, Yan; Huang, Zhipeng; Xu, Lei; Gelbic, Ivan; Carballar-Lejarazu, Rebeca; Guan, Xiong; Zhang, Lingling; Zou, Shuangquan
2014-02-01
The aim of this study was to explore a cost-effective method for the mass production of Bacillus thuringiensis (Bt) by solid-state fermentation. As a locally available agroindustrial byproduct, spent mushroom substrate (SMS) was used as raw material for Bt cultivation, and four combinations of SMS-based media were designed. Fermentation conditions were optimized on the best medium and the optimal conditions were determined as follows: temperature 32 degrees C, initial pH value 6, moisture content 50%, the ratio of sieved material to initial material 1:3, and inoculum volume 0.5 ml. Large scale production of B. thuringiensis subsp. israelensis (Bti) LLP29 was conducted on the optimal medium at optimal conditions. High toxicity (1,487 international toxic units/milligram) and long larvicidal persistence of the product were observed in the study, which illustrated that SMS-based solid-state fermentation medium was efficient and economical for large scale industrial production of Bt-based biopesticides. The cost of production of 1 kg of Bt was approximately US$0.075.
Wiegand, Thomas; Cadalbert, Riccardo; Gardiennet, Carole; Timmins, Joanna; Terradot, Laurent; Böckmann, Anja; Meier, Beat H
2016-11-02
DnaB helicases are bacterial, ATP-driven enzymes that unwind double-stranded DNA during DNA replication. Herein, we study the sequential binding of the "non-hydrolysable" ATP analogue AMP-PNP and of single-stranded (ss) DNA to the dodecameric DnaB helicase from Helicobacter pylori using solid-state NMR. Phosphorus cross-polarization experiments monitor the binding of AMP-PNP and DNA to the helicase. 13 C chemical-shift perturbations (CSPs) are used to detect conformational changes in the protein upon binding. The helicase switches upon AMP-PNP addition into a conformation apt for ssDNA binding, and AMP-PNP is hydrolyzed and released upon binding of ssDNA. Our study sheds light on the conformational changes which are triggered by the interaction with AMP-PNP and are needed for ssDNA binding of H. pylori DnaB in vitro. They also demonstrate the level of detail solid-state NMR can provide for the characterization of protein-DNA interactions and the interplay with ATP or its analogues. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Fei; Nielson, Weston; Xia, Yi; ...
2014-10-27
First-principles prediction of lattice thermal conductivity K L of strongly anharmonic crystals is a long-standing challenge in solid state physics. Using recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics (CSLD). Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Non-intuitively, high accuracy is achieved when the model is trained on first-principles forces in quasi-random atomic configurations. The method is demonstrated for Si, NaCl, and Cu 12Sb 4S 13, an earth-abundant thermoelectric with strong phononphonon interactions thatmore » limit the room-temperature K L to values near the amorphous limit.« less
NASA Astrophysics Data System (ADS)
Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Ferguson, Sarah; Taylor, David; McDonald, George; Lumata, Lloyd
Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging technique in biomedical and metabolic imaging since it amplifies the liquid-state nuclear magnetic resonance (NMR) and imaging (MRI) signals by >10,000-fold. Originally used in nuclear scattering experiments, DNP works by creating a non-Boltzmann nuclear spin distribution by transferring the high electron (γ = 28,000 MHz/T) thermal polarization to the nuclear spins via microwave irradiation of the sample at high magnetic field and low temperature. A dissolution device is used to rapidly dissolve the frozen sample and consequently produces an injectable ``hyperpolarized'' liquid at physiologically-tolerable temperature. Here we report the construction and performance evaluation of a dissolution DNP hyperpolarizer at 6.4 T and 1.4 K using a continuous-flow cryostat. The solid and liquid-state 13C NMR signal enhancement levels of 13C acetate samples doped with trityl OX063 and 4-oxo-TEMPO free radicals will be discussed and compared with the results from the 3.35 T commercial hyperpolarizer. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.
Hatcher, P.G.; Schnitzer, M.; Vassallo, A.M.; Wilson, M.A.
1989-01-01
Dipolar dephasing 13C NMR studies of three highly aromatic humic acids, one from a modern soil and two from paleosols, have permitted the determination of the degree of aromatic substitution. From these data and the normal solid-state 13C NMR data we have been able to develop a model for the average chemical structure of these humic acids that generally correlates well with permanganate oxidation data. The models depict these humic acids as benzene di- and tricarboxylic acids interconnected by biphenyl linkages. An increasing degree of substitution is observed with increasing geologic age. These structures may be characteristic of the resistant aromatic part of the "core" of humic substances that survives degradation. ?? 1989.
Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape
Mahmood, Shahid; Ekblad, Alf; Alström, Sadhna; Högberg, Nils; Finlay, Roger
2017-01-01
ABSTRACT RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13CO2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia, Proteobacteria, Planctomycetes, Acidobacteria, Gemmatimonadetes, Actinobacteria, and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13C- and 12C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces, Rhizobium, and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas (Kaistobacter) were dominant in rhizosphere soil. “Candidatus Nitrososphaera” was enriched in 13C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napus. IMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13CO2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture. PMID:28887416
Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape.
Gkarmiri, Konstantia; Mahmood, Shahid; Ekblad, Alf; Alström, Sadhna; Högberg, Nils; Finlay, Roger
2017-11-15
RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following 13 CO 2 labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. Verrucomicrobia , Proteobacteria , Planctomycetes , Acidobacteria , Gemmatimonadetes , Actinobacteria , and Chloroflexi were the most active bacterial phyla in the rhizosphere soil. Bacteroidetes were more active in roots. The most abundant bacterial genera were well represented in both the 13 C- and 12 C-RNA fractions, while the fungal taxa were more differentiated. Streptomyces , Rhizobium , and Flavobacterium were dominant in roots, whereas Rhodoplanes and Sphingomonas ( Kaistobacter ) were dominant in rhizosphere soil. " Candidatus Nitrososphaera" was enriched in 13 C in rhizosphere soil. Olpidium and Dendryphion were abundant in the 12 C-RNA fraction of roots; Clonostachys was abundant in both roots and rhizosphere soil and heavily 13 C enriched. Cryptococcus was dominant in rhizosphere soil and less abundant, but was 13 C enriched in roots. The patterns of colonization and C acquisition revealed in this study assist in identifying microbial taxa that may be superior competitors for plant-derived carbon in the rhizosphere of Brassica napus IMPORTANCE This microbiome study characterizes the active bacteria and fungi colonizing the roots and rhizosphere soil of Brassica napus using high-throughput sequencing and RNA-stable isotope probing. It identifies taxa assimilating plant-derived carbon following 13 CO 2 labeling and compares these with other less active groups not incorporating a plant assimilate. Brassica napus is an economically and globally important oilseed crop, cultivated for edible oil, biofuel production, and phytoextraction of heavy metals; however, it is susceptible to several diseases. The identification of the fungal and bacterial species successfully competing for plant-derived carbon, enabling them to colonize the roots and rhizosphere soil of this plant, should enable the identification of microorganisms that can be evaluated in more detailed functional studies and ultimately be used to improve plant health and productivity in sustainable agriculture. Copyright © 2017 American Society for Microbiology.
High-resolution X-ray spectroscopy of the supernova remnant N132D
NASA Technical Reports Server (NTRS)
Hwang, Una; Hughes, John P.; Canizares, Claude R.; Markert, Thomas H.
1993-01-01
A joint nonequilibrium ionization analysis of spectral data from the Einstein Observatory of the SNR N132D in the LMC is presented on the basis of data from the Focal Plane Crystal Spectrometer (FPCS) and the Solid State Spectrometer (SSS), and lower spectral resolution data from the IPC and the Monitor Proportional Counter (MPC). The FPCS detected individual emission lines of O VII, O VIII, Ne IX, Ne X, Fe XVII, and possibly Fe XX. Measured line widths for the oxygen lines suggest Doppler broadening that is roughly consistent with optically measured expansion velocities of 2250 km/s. At the SSS/IPC temperature, FPCS flux ratios constrain the O/Fe abundance to be at least 1.9 times its solar value and the O/Ne abundance to be 0.2-1.0 times its solar value. Models for remnants with progenitor masses of 20 and 25 solar masses are completely consistent with the data, while remnants with progenitor masses of 13 and 15 solar masses can be made consistent if the progenitors are required to eject a large fraction of their iron cores.
Synthesis and structure elucidation of fluoro substituted guanidines as potential therapeutic agents
NASA Astrophysics Data System (ADS)
Ullah, Waseem; Imtiaz-ud-Din; Raheel, Ahmad; Badshah, Amin; Tahir, Muhammad Nawaz
2017-09-01
Six new fluoro -substituted guanidines (1-6) were synthesized and characterized by 1H and 13C NMR spectroscopy to ascertain the structures in solution (DMSO) besides the solid state information collected through FT IR and single crystal X-ray spectroscopy. The XRD data for (1-3) show that molecules are stabilized by strong intramolecular hydrogen bonding. The compounds were also preliminary bio-assayed for anti-microbial studies and show good to moderate activities. The anti-oxidant data revealed that o and p-substituted fluoro-guanidines enhances their DPPH scavenging ability significantly.
Metal Substitution in Keggin-Type Tridecameric Aluminum-Oxo-Hydroxy Clusters.
Parker, Wallace O'Neil; Millini, Roberto; Kiricsi, Imre
1997-02-12
The species resulting from a typical preparation for metal-substituted hybrids of the Keggin tridecamer, Al 13 or [AlO 4 Al 12 (OH) 24 (OH 2 ) 12 ] 7+ , were examined by performing 27 Al NMR on the solutions during aging and by studying the precipitated sulfate salts via solid state 27 Al NMR and powder X-ray diffraction (XRD). Aqueous mixtures (0.25 mol L -1 ) of AlCl 3 and another metal ion (M), in a 12:1 mole ratio (Al:M), where M = Fe 3+ , Zn 2+ , Ga 3+ , In 3+ , Sn 2+ , La 3+ , and Bi 3+ , were subjected to forced hydrolysis by addition of NaOH (1.0 mol L -1 ) until OH/(Al + M) = 2.25, and the kinetics of Al 13 formation and disappearance with aging at 80 °C was monitored by 27 Al NMR spectroscopy. Al 13 units polymerize on aging with an apparent rate constant (k) of 4.8(8) × 10 -2 h -1 to form a species referred to as AlP 2 . Only the solutions containing Ga 3+ and Sn 2+ exhibited faster Al 13 conversion rates. GaAl 12 forms quickly at 80 °C (k = 0.54 h -1 ) and is more stable than AlP 2 . Sn 2+ apparently promotes AlP 2 formation (k = 0.38 h -1 ). XRD and solid state NMR reveal that only the Ga hybrid can be prepared by this method. No hybrid formation was evidenced using M = Mg 2+ , Fe 3+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , In 3+ , La 3+ , or Ce 3+ at 25 °C or M = Co 2+ or La 3+ under reflux conditions. Isostructural (cubic symmetry) single crystals were obtained for the sulfate salts of Al 13 and GaAl 12 . Single-crystal XRD analysis of these two polyoxocations provides the first rigorous comparison between them and shows they have very similar structures. The main crystallographic data for Al 13 and GaAl 12 are as follows: Na[AlO 4 Al 12 (OH) 24 (H 2 O) 12 ](SO 4 ) 4 ·10H 2 O, cubic, F4̄3m, a = 17.856(2) Å, Z = 4; Na[GaO 4 Al 12 (OH) 24 (H 2 O) 12 ](SO 4 ) 4 ·10H 2 O, cubic, F4̄3m, a = 17.869(3) Å, Z = 4. Thus, the greater thermal stability of GaAl 12 cannot be rationalized in terms of the overall geometric considerations, as suggested by others. Solid state NMR also shows the coordination symmetries of the outer 12 Al nuclei in both clusters to be similar.
Nanothermodynamics of iron clusters: Small clusters, icosahedral and fcc-cuboctahedral structures
NASA Astrophysics Data System (ADS)
Angelié, C.; Soudan, J.-M.
2017-05-01
The study of the thermodynamics and structures of iron clusters has been carried on, focusing on small clusters and initial icosahedral and fcc-cuboctahedral structures. Two combined tools are used. First, energy intervals are explored by the Monte Carlo algorithm, called σ-mapping, detailed in the work of Soudan et al. [J. Chem. Phys. 135, 144109 (2011), Paper I]. In its flat histogram version, it provides the classical density of states, gp(Ep), in terms of the potential energy of the system. Second, the iron system is described by a potential which is called "corrected EAM" (cEAM), explained in the work of Basire et al. [J. Chem. Phys. 141, 104304 (2014), Paper II]. Small clusters from 3 to 12 atoms in their ground state have been compared first with published Density Functional Theory (DFT) calculations, giving a complete agreement of geometries. The series of 13, 55, 147, and 309 atom icosahedrons is shown to be the most stable form for the cEAM potential. However, the 147 atom cluster has a special behaviour, since decreasing the energy from the liquid zone leads to the irreversible trapping of the cluster in a reproducible amorphous state, 7.38 eV higher in energy than the icosahedron. This behaviour is not observed at the higher size of 309 atoms. The heat capacity of the 55, 147, and 309 atom clusters revealed a pronounced peak in the solid zone, related to a solid-solid transition, prior to the melting peak. The corresponding series of 13, 55, and 147 atom cuboctahedrons has been compared, underscoring the unstability towards the icosahedral structure. This unstability occurs clearly in several steps for the 147 atom cluster, with a sudden transformation at a transition state. This illustrates the concerted icosahedron-cuboctahedron transformation of Buckminster Fuller-Mackay, which is calculated for the cEAM potential. Two other clusters of initial fcc structures with 24 and 38 atoms have been studied, as well as a 302 atom cluster. Each one relaxes towards a more stable structure without regularity. The 38 atom cluster exhibits a nearly glassy relaxation, through a cascade of six metastable states of long life. This behaviour, as that of the 147 atom cluster towards the amorphous state, shows that difficulties to reach ergodicity in the lower half of the solid zone are related to particular features of the potential energy landscape, and not necessarily to a too large size of the system. Comparisons of the cEAM iron system with published results about Lennard-Jones systems and DFT calculations are made. The results of the previous clusters have been combined with that of Paper II to plot the cohesive energy Ec and the melting temperature Tm in terms of the cluster atom number Nat. The Nat -1 /3 linear dependence of the melting temperature (Pawlow law) is observed again for Nat > 150. In contrast, for Nat < 150, the curve diverges strongly from the Pawlow law, giving it an overall V-shape, with a linear increase of Tm when Nat goes from 55 to 13 atoms. Surprisingly, the 38 atom cluster is anomalously below the overall curve.
Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.
14N ultra-wideline (UW), 1H{ 15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH + and RR'NH 2 +) or other (i.e., RNH 2 and RNO 2) nitrogen environments.« less
Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs
Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; ...
2016-06-08
14N ultra-wideline (UW), 1H{ 15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH + and RR'NH 2 +) or other (i.e., RNH 2 and RNO 2) nitrogen environments.« less
NASA Astrophysics Data System (ADS)
Mitsunaga, B.; Mosenfelder, J. L.; Tripati, A.
2017-12-01
"Clumped" isotope thermometry—the relationship between the formation temperature of a carbonate mineral and the relative abundance of 13C—18O bonds in its crystal lattice—is a novel geochemical proxy with a wide range of applications in paleoclimatology, geobiology, and paleoceanography. It is based on the thermodynamic propensity for rare, heavy isotopes to bond at greater rates at lower temperatures, while at high temperatures, a stochastic distribution of heavy isotopologues is achieved. Unfortunately, precision mass spectrometric determination of the abundance of isotopologues in solid materials has proven difficult; instead, the isotopic composition of carbonates has traditionally been measured through acid digestion and subsequent analysis of the product CO2 gas. For example, clumped isotope thermometry typically relates formation temperature to Δ47, the abundance of 47-amu isotopologues relative to the predicted stochastic distribution. As a consequence, the degree of fractionation that occurs between solid (Δ63) and gaseous (Δ47) phases has largely gone unstudied. By melting calcite and witherite powder at high pressures and temperatures ( 1650ºC), we have produced a suite of carbonates predicted to have stochastic distributions of CO32- isotopologues (i.e., Δ63 values of 0‰). Thus, the measured Δ47 values of CO2 produced from these samples through acid digestion should equal the degree of fractionation that occurs. We perform these measurements at a range of acid temperatures on several digestion apparatuses in order to deduce and quantify controls on acid digestion fractionation factors. We also calculate acid digestion fractionation factors using different sets of constants and compare our results to previously published estimates.
Structure and Dynamics of Nonionic Surfactant Aggregates in Layered Materials.
Guégan, Régis; Veron, Emmanuel; Le Forestier, Lydie; Ogawa, Makoto; Cadars, Sylvian
2017-09-26
The aggregation of surfactants on solid surfaces as they are adsorbed from solution is the basis of numerous technological applications such as colloidal stabilization, ore flotation, and floor cleaning. The understanding of both the structure and the dynamics of surfactant aggregates applies to the development of alternative ways of preparing hybrid layered materials. For this purpose, we study the adsorption of the triethylene glycol mono n-decyl ether (C 10 E 3 ) nonionic surfactant onto a synthetic montmorillonite (Mt), an aluminosilicate clay mineral for organoclay preparation with important applications in materials sciences, catalysis, wastewater treatment, or as drug delivery. The aggregation mechanisms follow those observed in an analogous natural Mt, with the condensation of C 10 E 3 in a bilayer arrangement once the surfactant self-assembles in a lamellar phase beyond the critical micelle concentration, underlining the importance of the surfactant state in solution. Solid-state 1 H nuclear magnetic resonance (NMR) at fast magic-angle spinning (MAS) and high magnetic field combined with 1 H- 13 C correlation experiments and different types of 13 C NMR experiments selectively probes mobile or rigid moieties of C 10 E 3 in three different aggregate organizations: (i) a lateral monolayer, (ii) a lateral bilayer, and (iii) a normal bilayer. High-resolution 1 H{ 27 Al} CP- 1 H- 1 H spin diffusion experiments shed light on the proximities and dynamics of the different fragments and fractions of the intercalated surfactant molecules with respect to the Mt surface. 23 Na and 1 H NMR measurements combined with complementary NMR data, at both molecular and nanometer scales, precisely pointed out the location of the C 10 E 3 ethylene oxide hydrophilic group in close contact with the Mt surface interacting through ion-dipole or van der Waals interactions.
Liu, Nan; Gallino, Roberto; Bisterzo, Sara; ...
2014-06-04
In this paper, we present postprocess asymptotic giant branch (AGB) nucleosynthesis models with different 13C-pocket internal structures to better explain zirconium isotope measurements in mainstream presolar SiC grains by Nicolussi et al. and Barzyk et al. We show that higher-than-solar 92Zr/ 94Zr ratios can be predicted by adopting a 13C-pocket with a flat 13C profile, instead of the previous decreasing-with-depth 13C profile. Finally, the improved agreement between grain data for zirconium isotopes and AGB models provides additional support for a recent proposal of a flat 13C profile based on barium isotopes in mainstream SiC grains by Liu et al.
Supported molten-metal catalysts
Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela
2001-01-01
An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.
Efficient, inkjet-printed TADF-OLEDs with an ultra-soluble NHetPHOS complex
NASA Astrophysics Data System (ADS)
Verma, Anand; Zink, Daniel M.; Fléchon, Charlotte; Leganés Carballo, Jaime; Flügge, Harald; Navarro, José M.; Baumann, Thomas; Volz, Daniel
2016-03-01
Using printed organic light-emitting diodes (OLEDs) for lighting, smart-packaging and other mass-market applications has remained a dream since the first working OLED devices were demonstrated in the late 1980s. The realization of this long-term goal is hindered by the very low abundance of iridium and problems when using low-cost wet chemical production processes. Abundant, solution-processable Cu(I) complexes promise to lower the cost of OLEDs. A new copper iodide NHetPHOS emitter was prepared and characterized in solid state with photoluminescence spectroscopy and UV photoelectron spectroscopy under ambient conditions. The photoluminescence quantum efficiency was determined as 92 ± 5 % in a thin film with yellowish-green emission centered around 550 nm. This puts the material on par with the most efficient copper complexes known so far. The new compound showed superior solubility in non-polar solvents, which allowed for the fabrication of an inkjet-printed OLED device from a decalin-based ink formulation. The emission layer could be processed under ambient conditions and was annealed under air. In a very simple stack architecture, efficiency values up to 45 cd A-1 corresponding to 13.9 ± 1.9 % EQE were achieved. These promising results open the door to printed, large-scale OLED devices with abundant copper emitters.
He, Hong-Bo; Zhang, Wei; Ding, Xue-Li; Bai, Zhen; Liu, Ning; Zhang, Xu-Dong
2008-06-01
The transformation and renewal of amino acid enantiomers is of significance in indicating the turnover mechanism of soil organic matter. In this paper, a method of gas chromatogram/mass spectrometry combined with U-13 C-glucose incubation was developed to determine the 13C enrichment in soil amino acid enantiomers, which could effectively differentiate the original and the newly synthesized amino acids in soil matrix. The added U-13 C-glucose was utilized rapidly to structure the amino acid carbon skeleton, and the change of relative abundance of isotope ions could be determined by mass spectrometry. The direct incorporation of U-13 C glucose was estimated by the intensity increase of m/z (F + n) to F (F was parent fragment, and n was the carbon number in the fragment), while the total isotope incorporation from the added 13C could be calculated according to the abundance ratio increment summation from m/z (Fa + 1) through (Fa + T) (Fa was the fragment containing all original skeleton carbons, and T was the carbon number in the amino acid molecule). The 13C enrichment in the target compound was expressed as atom percentage excess (APE), and that of D-amino acid needed to be corrected by the coefficient of hydrolysis-induced racemization. The 13C enrichment reflected the carbon turnover velocity of individual amino acid enantiomers, and was powerful to investigate the dynamics of soil amino acids.
Detection of C-13O radio emission from C-13-rich carbon stars
NASA Technical Reports Server (NTRS)
Jura, M.; Kahane, C.; Omont, A.
1988-01-01
A high ratio of C-13O radio emission in the J = 1-0 rotational line has been detected from three mass-losing carbon stars which optical data indicate have high C-13/C12 ratios. Since chemical fractionation, isotope-dependent photodissociation and opacity in the rotational and vibrational lines may not raise significantly the C-13O ratio above the actual C-13/C-12 ratio in these circumstellar envelopes, the relative abundance of C-13 in these stars might be even greater by perhaps a factor of two than previously believed. About 15 percent of all luminous carbon stars are C-13-rich, and these stars may play a significant role in the enhancement in the C-13/C12 ratio that has occurred during the past 4.6 billion years since the formation of the sun.
Bjerring, Morten; Jain, Sheetal; Paaske, Berit; Vinther, Joachim M; Nielsen, Niels Chr
2013-09-17
Rapid developments in solid-state NMR methodology have boosted this technique into a highly versatile tool for structural biology. The invention of increasingly advanced rf pulse sequences that take advantage of better hardware and sample preparation have played an important part in these advances. In the development of these new pulse sequences, researchers have taken advantage of analytical tools, such as average Hamiltonian theory or lately numerical methods based on optimal control theory. In this Account, we focus on the interplay between these strategies in the systematic development of simple pulse sequences that combines continuous wave (CW) irradiation with short pulses to obtain improved rf pulse, recoupling, sampling, and decoupling performance. Our initial work on this problem focused on the challenges associated with the increasing use of fully or partly deuterated proteins to obtain high-resolution, liquid-state-like solid-state NMR spectra. Here we exploit the overwhelming presence of (2)H in such samples as a source of polarization and to gain structural information. The (2)H nuclei possess dominant quadrupolar couplings which complicate even the simplest operations, such as rf pulses and polarization transfer to surrounding nuclei. Using optimal control and easy analytical adaptations, we demonstrate that a series of rotor synchronized short pulses may form the basis for essentially ideal rf pulse performance. Using similar approaches, we design (2)H to (13)C polarization transfer experiments that increase the efficiency by one order of magnitude over standard cross polarization experiments. We demonstrate how we can translate advanced optimal control waveforms into simple interleaved CW and rf pulse methods that form a new cross polarization experiment. This experiment significantly improves (1)H-(15)N and (15)N-(13)C transfers, which are key elements in the vast majority of biological solid-state NMR experiments. In addition, we demonstrate how interleaved sampling of spectra exploiting polarization from (1)H and (2)H nuclei can substantially enhance the sensitivity of such experiments. Finally, we present systematic development of (1)H decoupling methods where CW irradiation of moderate amplitude is interleaved with strong rotor-synchronized refocusing pulses. We show that these sequences remove residual cross terms between dipolar coupling and chemical shielding anisotropy more effectively and improve the spectral resolution over that observed in current state-of-the-art methods.
Huang, Wenlin; Serra, Olga; Dastmalchi, Keyvan; Jin, Liqing; Yang, Lijia; Stark, Ruth E
2017-03-15
The potato (Solanum tuberosum L.) ranks third in worldwide consumption among food crops. Whereas disposal of potato peels poses significant challenges for the food industry, secondary metabolites in these tissues are also bioactive and essential to crop development. The diverse primary and secondary metabolites reported in whole tubers and wound-healing tissues prompted a comprehensive profiling study of native periderms from four cultivars with distinctive skin morphologies and commercial food uses. Polar and nonpolar soluble metabolites were extracted concurrently, analyzed chromatographically, and characterized with mass spectrometry; the corresponding solid interfacial polymeric residue was examined by solid-state 13 C NMR. In total, 112 secondary metabolites were found in the phellem tissues; multivariate analysis identified 10 polar and 30 nonpolar potential biomarkers that distinguish a single cultivar among Norkotah Russet, Atlantic, Chipeta, and Yukon Gold cultivars which have contrasting russeting features. Compositional trends are interpreted in the context of periderm protective function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Long; Alamillo, Ricardo; Elliott, William A.
Liquid-phase processing of molecules using heterogeneous catalysts – an important strategy for obtaining renewable chemicals sustainably from biomass – involves reactions that occur at solid-liquid interfaces. In glucose isomerization catalyzed by basic faujasite zeolites, the catalytic activity depends strongly on the solvent composition: initially, it declines precipitously when water is mixed with a small amount of the organic co-solvent γ-valerolactone (GVL), then recovers as the GVL content increases. Using solid-state 13C NMR spectroscopy, we observed glucose isomers located inside the zeolite pores directly, and followed their transformations into fructose and mannose in real time. At low GVL concentrations, glucose ismore » depleted in the zeolite pores relative to the liquid phase, while higher GVL concentrations in solution drive glucose inside the pores, resulting in up to a 32 enhancement in the local glucose concentration. Although their populations exchange rapidly, molecules present at the reactive interface experience a significantly different environment from the bulk solution.« less
Increasing Protein Charge State When Using Laser Electrospray Mass Spectrometry
NASA Astrophysics Data System (ADS)
Karki, Santosh; Flanigan, Paul M.; Perez, Johnny J.; Archer, Jieutonne J.; Levis, Robert J.
2015-05-01
Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol ( m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.
Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz
2016-11-20
Solid-state nuclear magnetic resonance (ssNMR) is a powerful and unique method for analyzing solid forms of the active pharmaceutical ingredients (APIs) directly in their original formulations. Unfortunately, despite their wide range of application, the ssNMR experiments often suffer from low sensitivity and peaks overlapping between API and excipients. To overcome these limitations, the crosspolarization inversion recovery method was successfully used. The differences in the spin-lattice relaxation time constants for hydrogen atoms T1(H) between API and excipients were employed in order to separate and discriminate their peaks in ssNMR spectra as well as to increase the intensity of API signals in low-dose formulations. The versatility of this method was demonstrated by different examples, including the excipients mixture and commercial solid dosage forms (e.g. granules and tablets). Copyright © 2016 Elsevier B.V. All rights reserved.
Stevens, C. M. [Chemical Technology Division, Argonne National Laboratory, Argonne, Illinois (USA)
2012-01-01
This data package presents atmospheric CH4 concentration and 13C isotopic abundance data derived from air samples collected over the period 1978-1989 at globally distributed clean-air sites. The data set comprises 201 records, 166 from the Northern Hemisphere and 35 from the Southern Hemisphere. The air samples were collected mostly in rural or marine locations remote from large sources of CH4 and are considered representative of tropospheric background conditions. The air samples were processed by isolation of CH4 from air and conversion to CO2 for isotopic analysis by isotope ratio mass spectrometry. These data represent one of the earliest records of 13C isotopic yy!measurements for atmospheric methane and have been used to refine estimates of CH4 emissions, calculate annual growth rates of emissions from changing sources, and provide evidence for changes in the rate of atmospheric removal of CH4. The data records consist of sample collection date; number of samples combined for analysis; sampling location; analysis date; CH4 concentration; 13C isotopic abundance; and flag codes to indicate outliers, repeated analyses, and other information.
Spindler, Xanthe; Shimmon, Ronald; Roux, Claude; Lennard, Chris
2015-05-01
Most spectroscopic studies of the reaction products formed by ninhydrin, 1,2-indanedione-zinc (Ind-Zn) and 1,8-diazafluoren-9-one (DFO) when reacted with amino acids or latent fingermarks on paper substrates are focused on visible absorption or luminescence spectroscopy. In addition, structural elucidation studies are typically limited to solution-based mass spectrometry or liquid nuclear magnetic resonance (NMR) spectroscopy, which does not provide an accurate representation of the fingermark development process on common paper substrates. The research presented in this article demonstrates that solid-state carbon-13 magic angle spinning NMR ((13)C-MAS-NMR) is a technique that can not only be utilised for structural studies of fingermark enhancement reagents, but is a promising technique for characterising the effect of paper chemistry on fingermark deposition and enhancement. The latter opens up a research area that has been under-explored to date but has the potential to improve our understanding of how fingermark secretions and enhancement reagents interact with paper substrates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Fluorination Effects on NOS Inhibitory Activity of Pyrazoles Related to Curcumin.
Nieto, Carla I; Cabildo, María Pilar; Cornago, María Pilar; Sanz, Dionisia; Claramunt, Rosa M; Torralba, María Carmen; Torres, María Rosario; Elguero, José; García, José A; López, Ana; Acuña-Castroviejo, Darío
2015-08-28
A series of new (E)-3(5)-[β-(aryl)-ethenyl]-5(3)-phenyl-1H-pyrazoles bearing fluorine atoms at different positions of the aryl group have been synthesized starting from the corresponding β-diketones. All compounds have been characterized by elemental analysis, DSC as well as NMR (¹H, (13)C, (19)F and (15)N) spectroscopy in solution and in solid state. Three structures have been solved by X-ray diffraction analysis, confirming the tautomeric forms detected by solid state NMR. The in vitro study of their inhibitory potency and selectivity on the activity of nNOS and eNOS (calcium-calmodulin dependent) as well as iNOS (calcium-calmodulin independent) isoenzymes is presented. A qualitative structure-activity analysis allowed the establishment of a correlation between the presence/ absence of different substituents with the inhibition data proving that fluorine groups enhance the biological activity. (E)-3(5)-[β-(3-Fluoro-4-hydroxyphenyl)-ethenyl]-5(3)-phenyl-1H-pyrazole (13), is the best inhibitor of iNOS, being also more selective towards the other two isoforms.
Structural characterization and chemical classification of some bryophytes found in Latvia.
Maksimova, Viktorija; Klavina, Laura; Bikovens, Oskars; Zicmanis, Andris; Purmalis, Oskars
2013-07-01
Bryophytes are the second largest taxonomic group in the plant kingdom; yet, studies conducted to better understand their chemical composition are rare. The aim of this study was to characterize the chemical composition of bryophytes common in Northern Europe by using elemental, spectral, and non-destructive analytical methods, such as Fourier transform IR spectrometry (FT-IR), solid-phase (13) C-NMR spectrometry, and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), for the purpose of investigating their chemotaxonomic relationships on the basis of chemical-composition data. The results of all these analyses showed that bryophytes consist mainly of carbohydrates. Judging by FT-IR spectra, the OH groups in combination of CO groups were the most abundant groups. The (13) C-NMR spectra provided information on the presence of such compounds as phenolics and lipids. It was found that the amount of phenolic compounds in bryophytes is relatively small. This finding definitely confirmed the absence of lignin in the studied bryophytes. Cluster analysis was used to better understand differences in the chemical composition of bryophyte samples and to evaluate possible usage of these methods in the chemotaxonomy of bryophytes. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Theoretical estimates of equilibrium 13C-18O clumping in carbonates and organic acids
NASA Astrophysics Data System (ADS)
Schauble, E. A.; Eiler, J. M.
2004-12-01
The development of techniques for measuring small gas-phase molecules containing more than one rare stable isotope (e.g., 13C18O16O) at natural, ppm-level abundances1,2 has made it possible to track sources and sinks of atmospheric gases from a new perspective. Similar measurements of 13C-18O clumping in ancient samples could improve our understanding of ancient climates, if the abundances of `clumped' rare stable isotopes in materials that retain isotopic signatures over geologic time can be measured with sufficient precision. This theoretical study estimates the abundances of such 13C-18O `clumps' in carbonates and organic acids and discusses their potential applications. Accompanying abstracts by Eiler et al. and Ghosh et al. will present the analytical methods and some initial data for carbonate minerals to examine the applicability of our theoretical models. Equilibrium isotopic speciations in carbonate minerals and organic acids are calculated from the reduced partition function ratios of isotopically substituted crystals and molecules. Vibrational frequencies used as input for these calculations come from ab initio force fields, determined using density functional theory. Our calculations indicate that carbonate minerals, including calcite, dolomite, and aragonite, when equilibrated at earth-surface temperatures, will have a slight overabundance of CO32- groups containing both 13C and 18O (i.e., 13C18O16O22-) relative to what would be expected if carbon and oxygen isotopes were distributed randomly in the crystal lattice. Calcite and dolomite crystals are predicted to have 0.4‰ excesses of 13C18O16O22- at 298 K; in aragonite the excess will be about 0.05‰ larger. The excesses are smaller for crystals formed or equilibrated at higher temperatures, decreasing by 0.003\\permil/oC at room temperature and essentially disappearing at temperatures of 1000 K or higher. Similarly, there is an excess of both 13C18O16OH and 13C16O18OH groups in organic acids like formic acid (HCOOH) and pyruvic acid (CH3COCOOH) that equilibrate at low temperatures. For gas-phase carboxylic acids, 13C-18O clumping in the COOH group is strongest at the C=O double bond, with an 1.0-1.1‰ excess at room temperature. The C-O-H subgroup has an ~0.4‰ 13C-18O excess, and thus the average anomaly for the whole COOH group is 0.7-0.8\\permil. As with carbonate minerals, these excesses decrease at higher temperatures. The magnitude of 13C-18O clumping in carboxylic acid is similar to gas-phase CO2 1,2,3, while in carbonate minerals the effect is about one-half as large. The temperature sensitivity of these isotopic clumping effects suggests that measurements of abundances of 13C-18O bonds in carbonates and organic acids could be useful for paleothermometry. The clumping equilibrium is an internal property of each phase, so temperature information can be obtained even when the isotopic composition of the fluid phase from which a sample precipitated is unknown. Clumping effects may also be able to distinguish pristine, unaltered sedimentary and biogenic carbonates and organic deposits from those that have undergone post-depositional diagenesis or metamorphism, even in samples that have not suffered extensive open-system exchange. Refs: 1Eiler et al. 2004, GCA in press; 2Schauble et al. in prep.; 3Wang et al. 2004, GCA in press.
Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils.
Tycko, Robert; Sciarretta, Kimberly L; Orgel, Joseph P R O; Meredith, Stephen C
2009-07-07
Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.
Evidence for Novel β-Sheet Structures in Iowa Mutant β-Amyloid Fibrils†
Tycko, Robert; Sciarretta, Kimberly L.; Orgel, Joseph P. R. O.; Meredith, Stephen C.
2009-01-01
Asp23-to-Asn mutation within the coding sequence of β-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer’s disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Aβ40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Aβ40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 × 10-3 min-1 and 1.07 × 10-4 min-1 for D23N-Aβ40 and the wild-type peptide WT-Aβ40, respectively) and without a lag phase. Electron microscopy shows that D23N-Aβ40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-β pattern, with a sharp reflection at 4.7 Å and a broad reflection at 9.4 Å, which is notably smaller than the value for WT-Aβ40 fibrils (10.4 Å). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Aβ40 fibrils containing the in-register, parallel β-sheet structure commonly found in WT-Aβ40 fibrils and most other amyloid fibrils. Antiparallel β-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through 13C-13C and 15N-13C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Aβ40 fibrils and the unusual vasculotropic clinical picture in these patients. PMID:19358576
Assembly and performance of a 6.4 T cryogen-free dynamic nuclear polarization system.
Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Wang, Qing; Lumata, Lloyd
2017-09-01
We report on the assembly and performance evaluation of a 180-GHz/6.4 T dynamic nuclear polarization (DNP) system based on a cryogen-free superconducting magnet. The DNP system utilizes a variable-field superconducting magnet that can be ramped up to 9 T and equipped with cryocoolers that can cool the sample space with the DNP assembly down to 1.8 K via the Joule-Thomson effect. A homebuilt DNP probe insert with top-tuned nuclear magnetic resonance coil and microwave port was incorporated into the sample space in which the effective sample temperature is approximately 1.9 K when a 180-GHz microwave source is on during DNP operation. 13 C DNP of [1- 13 C] acetate samples doped with trityl OX063 and 4-oxo-TEMPO in this system have resulted in solid-state 13 C polarization levels of 58 ± 3% and 18 ± 2%, respectively. The relatively high 13 C polarization levels achieved in this work have demonstrated that the use of a cryogen-free superconducting magnet for 13 C DNP is feasible and in fact, relatively efficient-a major leap to offset the high cost of liquid helium consumption in DNP experiments. Copyright © 2017 John Wiley & Sons, Ltd.
Catalysis and chemical mechanisms of calcite dissolution in seawater.
Subhas, Adam V; Adkins, Jess F; Rollins, Nick E; Naviaux, John; Erez, Jonathan; Berelson, William M
2017-07-18
Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric [Formula: see text] on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve 13 C-labeled calcites in natural seawater. We show that the time-evolving enrichment of [Formula: see text] in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the 13 C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution-precipitation shifts significantly toward a dissolution-dominated mechanism below about [Formula: see text] Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of [Formula: see text] is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid-solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at [Formula: see text], which we interpret as the onset of homogeneous etch pit nucleation.
NASA Astrophysics Data System (ADS)
Passey, B. H.; Shenton, B.; Grossman, E. L.; Henkes, G. A.; Laya, J. C.; Perez-Huerta, A.
2014-12-01
Constraining the thermal histories of sedimentary basins is fundamental to a range of geologic applications including tectonics, petroleum system analysis, and the genesis of ore deposits. Carbonate rocks can serve as archives of basin thermal histories through solid-state reordering of their 13C-18O, or 'clumped isotope', bonds at elevated burial temperatures. Here we present one of the first applied studies of carbonate clumped isotope reordering to explore the diagenetic and thermal histories of exhumed brachiopods, crinoids, cements, and host rock in the Permian Palmarito Formation, Venezuela and the Carboniferous Bird Spring Formation, Nevada, USA. Carbonate components in the Palmarito Formation, buried to ~4 km depth, yield statistically indistinguishable clumped isotope temperatures (T(Δ47)) ranging from 86 to 122 °C. Clumped isotope temperatures of components in the more deeply buried Bird Spring Formation (>5 km), range from ~100 to 165 °C and differ by component type, with brachiopods and pore-filling cements yielding the highest T(Δ47) (mean = 153 and 141 °C, respectively) and crinoids and host rock yielding significantly cooler T(Δ47) (mean = 103 and 114 °C). New high-resolution thermal histories are coupled with kinetic models to predict the extent of solid-state C-O bond reordering during burial and exhumation for both sites. Application of these models suggests that brachiopods in the Palmarito Formation experienced partial bond reordering without complete equilibration of clumped isotopes at maximum burial temperature. In contrast, clumped isotope bonds of brachiopods from the Bird Spring Formation appear to have completely equilibrated at maximum burial temperature, and now reflect blocking temperatures 'locked-in' during cooling. The 40-50 °C cooler clumped isotope temperatures measured in Bird Spring Formation crinoids and host rock can be explained by both recrystallization and cementation during shallow burial and a greater inherent resistance to solid-state reordering than brachiopods.
Lumata, Lloyd L; Martin, Richard; Jindal, Ashish K; Kovacs, Zoltan; Conradi, Mark S; Merritt, Matthew E
2015-04-01
We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of (13)C polarization levels using free radicals that span a range of ESR linewidths. A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate (13)C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m(3)/h roots blower. A hyperpolarized (13)C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdiphenylene-2-phenylallyl), trityl OX063 (tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl}methyl sodium salt), galvinoxyl ((2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy), 2,2-diphenylpicrylhydrazyl (DPPH) and 4-oxo-TEMPO (4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy) were assayed. Microwave dynamic nuclear polarization (DNP) spectra and solid-state (13)C polarization levels for these samples were determined. (13)C polarization levels close to 50 % were achieved for [1-(13)C]pyruvic acid at 1.15 K using the narrow electron spin resonance (ESR) linewidth free radicals trityl OX063 and BDPA, while 10-20 % (13)C polarizations were achieved using galvinoxyl, DPPH and 4-oxo-TEMPO. At this field strength free radicals with smaller ESR linewidths are still superior for DNP of (13)C as opposed to those with linewidths that exceed that of the (1)H Larmor frequency.
Absorption Coefficient of Alkali Halides. Part I.
1979-03-01
Q7 A*.oj DATA’ SET ±6 4-5. 0.827 T - Elsa - Li,. 1.62, 3..%?. f..224 1 t.-.5 :.13L 312.9 15.8 9.8*6 16. t u.. t...5 ., i lo.~ 6.705 Z6.8 . 87± - c7. 9...With Synchrotron Radiation," Solid State Coimnun., 6, 575 (1968). 168. Saito, H., Saito, S., Onaka, R., and Ikeo, B., "Extreme Ultraviolet Ab- sorption