Science.gov

Sample records for abundance species diversity

  1. Measuring β-diversity with species abundance data.

    PubMed

    Barwell, Louise J; Isaac, Nick J B; Kunin, William E

    2015-07-01

    In 2003, 24 presence-absence β-diversity metrics were reviewed and a number of trade-offs and redundancies identified. We present a parallel investigation into the performance of abundance-based metrics of β-diversity. β-diversity is a multi-faceted concept, central to spatial ecology. There are multiple metrics available to quantify it: the choice of metric is an important decision. We test 16 conceptual properties and two sampling properties of a β-diversity metric: metrics should be 1) independent of α-diversity and 2) cumulative along a gradient of species turnover. Similarity should be 3) probabilistic when assemblages are independently and identically distributed. Metrics should have 4) a minimum of zero and increase monotonically with the degree of 5) species turnover, 6) decoupling of species ranks and 7) evenness differences. However, complete species turnover should always generate greater values of β than extreme 8) rank shifts or 9) evenness differences. Metrics should 10) have a fixed upper limit, 11) symmetry (βA,B  = βB,A ), 12) double-zero asymmetry for double absences and double presences and 13) not decrease in a series of nested assemblages. Additionally, metrics should be independent of 14) species replication 15) the units of abundance and 16) differences in total abundance between sampling units. When samples are used to infer β-diversity, metrics should be 1) independent of sample sizes and 2) independent of unequal sample sizes. We test 29 metrics for these properties and five 'personality' properties. Thirteen metrics were outperformed or equalled across all conceptual and sampling properties. Differences in sensitivity to species' abundance lead to a performance trade-off between sample size bias and the ability to detect turnover among rare species. In general, abundance-based metrics are substantially less biased in the face of undersampling, although the presence-absence metric, βsim , performed well overall. Only

  2. Foraminifera Species Richness, Abundance, and Diversity Research in Bolinas, California

    NASA Astrophysics Data System (ADS)

    Brunwin, N.; Ingram, Z.; Mendez, M.; Sandoval, K.

    2015-12-01

    Foraminifera are abundant, diverse, respond rapidly to environmental change, and are present in all marine and estuarine environments, making them important indicator species. A survey of occurrence and distribution of foraminifera in the Bolinas Lagoon, Marin County, California was carried out by Hedman in 1975, but no study since has focused on foraminiferal composition within this important ecosystem. In July 2015, the Careers in Science (CiS) Intern Program collected samples at 12 sites previously examined in the 1975 study. Thirty-six samples were collected from the upper few centimeters of sediment from a variety of intertidal and subtidal environments within the lagoon. Foraminifera from each sample were isolated, identified and species richness, abundance and diversity quantified. Furthermore, comparisons of faunal composition represented in our recent collection and that of Hedman's 1975 report are made.

  3. Analyzing fractal property of species abundance distribution and diversity indexes.

    PubMed

    Su, Qiang

    2016-03-01

    Community diversity is usually characterized by numerical indexes; however it indeed depends on the species abundance distribution (SAD). Diversity indexes and SAD are based on the same information but treating as separate themes. Ranking species abundance from largest to smallest, the decreasing pattern can give the information about the SAD. Frontier proposed such SAD might be a fractal structure, and first applied the Zipf-Mandelbrot model to the SAD study. However, this model fails to include the Zipf model, and also fails to ensure an integer rank. In this study, a fractal model of SAD was reconstructed, and tested with 104 community samples from 8 taxonomic groups. The results show that there was a good fit of the presented model. Fractal parameter (p) determines the SAD of a community. The ecological significance of p relates to the "dominance" of a community. The correlation between p and classical diversity indexes show that Shannon index decreases and Simpson index increases as p increases. The main purpose of this paper is not to compare with other SADs models; it simply provides a new interpretation of SAD model construction, and preliminarily integrates diversity indexes and SAD model into a broader perspective of community diversity. PMID:26746388

  4. Diversity is maintained by seasonal variation in species abundance

    PubMed Central

    2013-01-01

    Background Some of the most marked temporal fluctuations in species abundances are linked to seasons. In theory, multispecies assemblages can persist if species use shared resources at different times, thereby minimizing interspecific competition. However, there is scant empirical evidence supporting these predictions and, to the best of our knowledge, seasonal variation has never been explored in the context of fluctuation-mediated coexistence. Results Using an exceptionally well-documented estuarine fish assemblage, sampled monthly for over 30 years, we show that temporal shifts in species abundances underpin species coexistence. Species fall into distinct seasonal groups, within which spatial resource use is more heterogeneous than would be expected by chance at those times when competition for food is most intense. We also detect seasonal variation in the richness and evenness of the community, again linked to shifts in resource availability. Conclusions These results reveal that spatiotemporal shifts in community composition minimize competitive interactions and help stabilize total abundance. PMID:24007204

  5. Using species abundance distribution models and diversity indices for biogeographical analyses

    NASA Astrophysics Data System (ADS)

    Fattorini, Simone; Rigal, François; Cardoso, Pedro; Borges, Paulo A. V.

    2016-01-01

    We examine whether Species Abundance Distribution models (SADs) and diversity indices can describe how species colonization status influences species community assembly on oceanic islands. Our hypothesis is that, because of the lack of source-sink dynamics at the archipelago scale, Single Island Endemics (SIEs), i.e. endemic species restricted to only one island, should be represented by few rare species and consequently have abundance patterns that differ from those of more widespread species. To test our hypothesis, we used arthropod data from the Azorean archipelago (North Atlantic). We divided the species into three colonization categories: SIEs, archipelagic endemics (AZEs, present in at least two islands) and native non-endemics (NATs). For each category, we modelled rank-abundance plots using both the geometric series and the Gambin model, a measure of distributional amplitude. We also calculated Shannon entropy and Buzas and Gibson's evenness. We show that the slopes of the regression lines modelling SADs were significantly higher for SIEs, which indicates a relative predominance of a few highly abundant species and a lack of rare species, which also depresses diversity indices. This may be a consequence of two factors: (i) some forest specialist SIEs may be at advantage over other, less adapted species; (ii) the entire populations of SIEs are by definition concentrated on a single island, without possibility for inter-island source-sink dynamics; hence all populations must have a minimum number of individuals to survive natural, often unpredictable, fluctuations. These findings are supported by higher values of the α parameter of the Gambin mode for SIEs. In contrast, AZEs and NATs had lower regression slopes, lower α but higher diversity indices, resulting from their widespread distribution over several islands. We conclude that these differences in the SAD models and diversity indices demonstrate that the study of these metrics is useful for

  6. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities

    PubMed Central

    Chisholm, Ryan A.; Pacala, Stephen W.

    2010-01-01

    A fundamental challenge in ecology is to understand the mechanisms that govern patterns of relative species abundance. Previous numerical simulations have suggested that complex niche-structured models produce species abundance distributions (SADs) that are qualitatively similar to those of very simple neutral models that ignore differences between species. However, in the absence of an analytical treatment of niche models, one cannot tell whether the two classes of model produce the same patterns via similar or different mechanisms. We present an analytical proof that, in the limit as diversity becomes large, a strong niche model give rises to exactly the same asymptotic form of SAD as the neutral model, and we verify the analytical predictions for a Panamanian tropical forest data set. Our results strongly suggest that neutral processes drive patterns of relative species abundance in high-diversity ecological communities, even when strong niche structure exists. However, neutral theory cannot explain what generates high diversity in the first place, and it may not be valid in low-diversity communities. Our results also confirm that neutral theory cannot be used to infer an absence of niche structure or to explain ecosystem function. PMID:20733073

  7. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama

    PubMed Central

    Crawford, Andrew J.; Lips, Karen R.; Bermingham, Eldredge

    2010-01-01

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity. PMID:20643927

  8. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama.

    PubMed

    Crawford, Andrew J; Lips, Karen R; Bermingham, Eldredge

    2010-08-01

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity. PMID:20643927

  9. Effect of trophic status in lakes on fungal species diversity and abundance.

    PubMed

    Pietryczuk, A; Cudowski, A; Hauschild, T

    2014-11-01

    The objective of this study was to determine the species diversity and abundance of fungi in relation to the hydrochemical conditions, with special emphasis on the trophic status and degree of pollution of lakes. The study was conducted in 14 lakes of the Augustów Lakeland (central Europe, NE Poland) with different hydrological conditions, type of stratification and trophic status. The analyses were performed in the hydrological year 2013. In the waters of the studied lakes, the mean abundance of fungi was 5600±3600 CFU/mL. The minimum value (800 CFU/mL) was recorded for the mesotrophic Płaskie Lake, and the maximum value (14,000 CFU/mL) was recorded for the eutrophic Pobojno Lake. A total of 38 species of fungi were identified, including 11 belonging to the aquatic hyphomycetes; up to 14 species were potentially pathogenic fungi. The potentially pathogenic fungi, particularly Candida albicans and Scopulariopsis fusca, were found in lakes with increased concentrations of chloride and sulphate(VI) ions and may thus serve as indicators of the degree of water pollution. This paper illustrates that the species diversity and abundance of fungi in limnic waters depend on the concentration of organic matter, chlorophyll a concentration, and the degree of water pollution. The results suggest that aquatic fungi can be a valuable indicator of the degree of pollution and the sanitary quality of the water. PMID:25145569

  10. Culicoides monitoring in Belgium in 2011: analysis of spatiotemporal abundance, species diversity and Schmallenberg virus detection.

    PubMed

    DE Regge, N; DE Deken, R; Fassotte, C; Losson, B; Deblauwe, I; Madder, M; Vantieghem, P; Tomme, M; Smeets, F; Cay, A B

    2015-09-01

    In 2011, Culicoides (Diptera: Ceratopogonidae) were collected at 16 locations covering four regions of Belgium with Onderstepoort Veterinary Institute (OVI) traps and at two locations with Rothamsted suction traps (RSTs). Quantification of the collections and morphological identification showed important variations in abundance and species diversity between individual collection sites, even for sites located in the same region. However, consistently higher numbers of Culicoides midges were collected at some sites compared with others. When species abundance and diversity were analysed at regional level, between-site variation disappeared. Overall, species belonging to the subgenus Avaritia together with Culicoides pulicaris (subgenus Culicoides) were the most abundant, accounting for 80% and 96% of all midges collected with RSTs and OVI traps, respectively. Culicoides were present during most of the year, with Culicoides obsoletus complex midges found from 9 February until 27 December. Real-time reverse-transcription polymerase chain reaction screening for Schmallenberg virus in the heads of collected midges resulted in the first detection of the virus in August 2011 and identified C. obsoletus complex, Culicoides chiopterus and Culicoides dewulfi midges as putative vector species. At Libramont in the south of Belgium, no positive pools were identified. PMID:25761054

  11. Determining the Diversity and Species Abundance Patterns in Arctic Soils using Rational Methods for Exploring Microbial Diversity

    NASA Astrophysics Data System (ADS)

    Ovreas, L.; Quince, C.; Sloan, W.; Lanzen, A.; Davenport, R.; Green, J.; Coulson, S.; Curtis, T.

    2012-12-01

    Arctic microbial soil communities are intrinsically interesting and poorly characterised. We have inferred the diversity and species abundance distribution of 6 Arctic soils: new and mature soil at the foot of a receding glacier, Arctic Semi Desert, the foot of bird cliffs and soil underlying Arctic Tundra Heath: all near Ny-Ålesund, Spitsbergen. Diversity, distribution and sample sizes were estimated using the rational method of Quince et al., (Isme Journal 2 2008:997-1006) to determine the most plausible underlying species abundance distribution. A log-normal species abundance curve was found to give a slightly better fit than an inverse Gaussian curve if, and only if, sequencing error was removed. The median estimates of diversity of operational taxonomic units (at the 3% level) were 3600-5600 (lognormal assumed) and 2825-4100 (inverse Gaussian assumed). The nature and origins of species abundance distributions are poorly understood but may yet be grasped by observing and analysing such distributions in the microbial world. The sample size required to observe the distribution (by sequencing 90% of the taxa) varied between ~ 106 and ~105 for the lognormal and inverse Gaussian respectively. We infer that between 5 and 50 GB of sequencing would be required to capture 90% or the metagenome. Though a principle components analysis clearly divided the sites into three groups there was a high (20-45%) degree of overlap in between locations irrespective of geographical proximity. Interestingly, the nearest relatives of the most abundant taxa at a number of most sites were of alpine or polar origin. Samples plotted on first two principal components together with arbitrary discriminatory OTUs

  12. Rich and rare—First insights into species diversity and abundance of Antarctic abyssal Gastropoda (Mollusca)

    NASA Astrophysics Data System (ADS)

    Schwabe, Enrico; Michael Bohn, Jens; Engl, Winfried; Linse, Katrin; Schrödl, Michael

    2007-08-01

    , and all these 84 species seem endemic to Antarctica south of the Polar Front. Comparing diversity and abundances based on epibenthic sledge samples, there is no clear relationship between Antarctic deep-sea gastropod abundance and species richness with depth. However, both Antarctic and adjacent deep-sea areas are still far from being adequately sampled to allow more comprehensive conclusions.

  13. Species abundance and diversity of Burkholderia cepacia complex in the environment.

    PubMed

    Ramette, Alban; LiPuma, John J; Tiedje, James M

    2005-03-01

    Despite considerable interest in studying Burkholderia cepacia complex in the environment, we still do not have efficient methods to detect, isolate, and screen large numbers of B. cepacia isolates. To better describe the ecology and diversity of B. cepacia complex, a colony hybridization assay was developed to detect specifically all species of the complex based on polymorphism of the variable V3 region of the 16S rRNA sequence. The sensitivity of the assay was dramatically enhanced by using a probe consisting of three repeats of a B. cepacia complex-specific probe, each separated by a phosphoramidite spacer. In addition, a duplex PCR targeting B. cepacia complex-specific recA and 16S rRNA sequences was developed to enable a fast and reliable diagnostic assay for members of the complex. When applied to maize rhizosphere samples, colony hybridization results were in good agreement with those of most-probable-number duplex PCR, both indicating a >100-fold fluctuation of abundance between individual plants. Using restriction analysis of recA for a total of 285 confirmed isolates of the B. cepacia complex, up to seven B. cepacia complex species were identified; however, their diversity and abundance were not evenly distributed among individual plants, and several allelic variants were commonly found from the same rhizosphere sample. These results indicate that not only complex communities of B. cepacia complex species and closely related strains of the same species may coexist at high population levels but also species composition and abundance may dramatically vary between individual plants. PMID:15746318

  14. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    PubMed Central

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  15. Abundance, diversity, and resource use in an assemblage of Conus species in Enewetak lagoon

    SciTech Connect

    Kohn, A.J.

    1980-10-01

    Eight species of the gastropod genus Conus co-occur in sand substrate and an adjacent meadow of Halimeda stuposa in Enewetak lagoon, an unusually diverse assemblage for this type of habitat. Population density is high, and large species predominate; they represent all major feeding groups in the genus: predators on polychaetes, enteropneusts, gastropods, and fishes. Although the two most common Conus species eat primarily the same prey species, they mainly take prey of different sizes in different microhabitats. The results suggest that sufficient microhabitat heterogeneity and prey diversity exist to permit spatial segregation and specialization on different prey resources by the different Conus species present. Between-species dissimilarity in resource use thus agrees with previous observations on more diverse Conus assemblages of subtidal coral reef platforms. Prey species diversity is inversely related to body size, confirming and extending a previously identified pattern among Conus species that prey on sedentary polychaetes.

  16. Species Diversity, Abundance, and Host Preferences of Mosquitoes (Diptera: Culicidae) in Two Different Ecotypes of Madagascar With Recent RVFV Transmission.

    PubMed

    Jean Jose Nepomichene, Thiery Nirina; Elissa, Nohal; Cardinale, Eric; Boyer, Sebastien

    2015-09-01

    Mosquito diversity and abundance were examined in six Madagascan villages in either arid (Toliary II district) or humid (Mampikony district) ecotypes, each with a history of Rift Valley fever virus transmission. Centers for Disease Control and Prevention light traps without CO2 (LT) placed near ruminant parks and animal-baited net trap (NT) baited with either zebu or sheep/goat were used to sample mosquitoes, on two occasions between March 2011 and October 2011. Culex tritaeniorhynchus (Giles) was the most abundant species, followed by Culex antennatus (Becker) and Anopheles squamosus/cydippis (Theobald/de Meillon). These three species comprised more than half of all mosquitoes collected. The NT captured more mosquitoes in diversity and in abundance than the LT, and also caught more individuals of each species, except for An. squamosus/cydippis. Highest diversity and abundance were observed in the humid and warm district of Mampikony. No host preference was highlighted, except for Cx. tritaeniorhynchus presenting a blood preference for zebu baits. The description of species diversity, abundance, and host preference described herein can inform the development of control measures to reduce the risk of mosquito-borne diseases in Madagascar. PMID:26336259

  17. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation

    PubMed Central

    Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R.; Luke, Sarah H.; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data. PMID:26881747

  18. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation.

    PubMed

    Májeková, Maria; Paal, Taavi; Plowman, Nichola S; Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R; Luke, Sarah H; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package "traitor" to facilitate assessments of missing trait data. PMID:26881747

  19. Valuing the recreational benefits of wetland adaptation to climate change: a trade-off between species' abundance and diversity.

    PubMed

    Faccioli, Michela; Riera Font, Antoni; Torres Figuerola, Catalina M

    2015-03-01

    Climate change will further exacerbate wetland deterioration, especially in the Mediterranean region. On the one side, it will accelerate the decline in the populations and species of plants and animals, this resulting in an impoverishment of biological abundance. On the other one, it will also promote biotic homogenization, resulting in a loss of species' diversity. In this context, different climate change adaptation policies can be designed: those oriented to recovering species' abundance and those aimed at restoring species' diversity. Based on the awareness that knowledge about visitors' preferences is crucial to better inform policy makers and secure wetlands' public use and conservation, this paper assesses the recreational benefits of different adaptation options through a choice experiment study carried out in S'Albufera wetland (Mallorca). Results show that visitors display positive preferences for an increase in both species' abundance and diversity, although they assign a higher value to the latter, thus suggesting a higher social acceptability of policies pursuing wetlands' differentiation. This finding acquires special relevance not only for adaptation management in wetlands but also for tourism planning, as most visitors to S'Albufera are tourists. Thus, given the growing competition to attract visitors and the increasing demand for high environmental quality and unique experiences, promoting wetlands' differentiation could be a good strategy to gain competitive advantage over other wetland areas and tourism destinations. PMID:25472830

  20. Valuing the Recreational Benefits of Wetland Adaptation to Climate Change: A Trade-off Between Species' Abundance and Diversity

    NASA Astrophysics Data System (ADS)

    Faccioli, Michela; Riera Font, Antoni; Torres Figuerola, Catalina M.

    2015-03-01

    Climate change will further exacerbate wetland deterioration, especially in the Mediterranean region. On the one side, it will accelerate the decline in the populations and species of plants and animals, this resulting in an impoverishment of biological abundance. On the other one, it will also promote biotic homogenization, resulting in a loss of species' diversity. In this context, different climate change adaptation policies can be designed: those oriented to recovering species' abundance and those aimed at restoring species' diversity. Based on the awareness that knowledge about visitors' preferences is crucial to better inform policy makers and secure wetlands' public use and conservation, this paper assesses the recreational benefits of different adaptation options through a choice experiment study carried out in S'Albufera wetland (Mallorca). Results show that visitors display positive preferences for an increase in both species' abundance and diversity, although they assign a higher value to the latter, thus suggesting a higher social acceptability of policies pursuing wetlands' differentiation. This finding acquires special relevance not only for adaptation management in wetlands but also for tourism planning, as most visitors to S'Albufera are tourists. Thus, given the growing competition to attract visitors and the increasing demand for high environmental quality and unique experiences, promoting wetlands' differentiation could be a good strategy to gain competitive advantage over other wetland areas and tourism destinations.

  1. Tanaidacean fauna of the Kuril-Kamchatka Trench and adjacent abyssal plain - abundance, diversity and rare species

    NASA Astrophysics Data System (ADS)

    Błażewicz-Paszkowycz, Magdalena; Pabis, Krzysztof; Jóźwiak, Piotr

    2015-01-01

    Here we examine the distribution patterns, abundance, and species richness of tanaidacean peracarids in the abyssal-hadal transition zone. Material was collected in the region of Kuril-Kamchatka Trench during the German-Russian KuramBio Expedition with use of a giant boxcorer (GKG) of sampling area 0.25 m2. In the 23 samples collected from depths 4900 to 5800 m 48 species of Tanaidacea belonging to 11 families have been identified; most of the species (80%) are new to science. There was no evidence of a distribution pattern associated with depth or geographic location of stations in the nMDS analysis. Frequency of occurrence of twelve species was high (at 34-78% of stations) although the stations were distributed along a distance of about 1000 km. This observation is rationalized by the uniform environmental conditions of temperature, hydrostatic pressure, salinity, conductivity, and character of bottom deposits in the investigated area. Mean tanaidacean densities were 25.0±18.0 ind./0.25 m2, with mean values of species richness (number of species per sample) and diversity (Shannon Index) as high as 9.7±4.6 and 1.9±0.3 respectively. Singletons constituted about 20% of all species and more than one third of the species occurred as low counts per sample. The species accumulation curve did not reach the asymptotic level suggesting under-sampling of the studied area.

  2. Mosquito species abundance and diversity in Malindi, Kenya and their potential implication in pathogen transmission.

    PubMed

    Mwangangi, Joseph M; Midega, Janet; Kahindi, Samuel; Njoroge, Laban; Nzovu, Joseph; Githure, John; Mbogo, Charles M; Beier, John C

    2012-01-01

    Mosquitoes (Diptera: Culicidae) are important vectors of human disease-causing pathogens. Mosquitoes are found both in rural and urban areas. Deteriorating infrastructure, poor access to health, water and sanitation services, increasing population density, and widespread poverty contribute to conditions that modify the environment, which directly influences the risk of disease within the urban and peri-urban ecosystem. The objective of this study was to evaluate the mosquito vector abundance and diversity in urban, peri-urban, and rural strata in Malindi along the Kenya coast. The study was conducted in the coastal district of Malindi between January and December 2005. Three strata were selected which were described as urban, peri-urban, and rural. Sampling was done during the wet and dry seasons. Sampling in the wet season was done in the months of April and June to cover the long rainy season and in November and December to cover the short rainy season, while the dry season was between January and March and September and October. Adult mosquito collection was done using Pyrethrum Spray Collection (PSC) and Centers for Disease Control and Prevention (CDC) light traps inside houses and specimens were identified morphologically. In the three strata (urban, peri-urban, and rural), 78.5% of the total mosquito (n = 7,775) were collected using PSC while 18.1% (n = 1,795) were collected using the CDC light traps. Using oviposition traps, mosquito eggs were collected and reared in the insectary which yielded 329 adults of which 83.8% (n = 276) were Aedes aegypti and 16.2% (n = 53) were Culex quinquefasciatus. The mosquito distribution in the three sites varied significantly in each collection site. Anopheles gambiae, Anopheles funestus and Anopheles coustani were predominant in the rural stratum while C. quinquefasciatus was mostly found in urban and peri-urban strata. However, using PSC and CDC light trap collection techniques, A. aegypti was only found

  3. Diversity and Abundance of House Fly Pupal Parasitoids in Israel, with First Records of Two Spalangia Species.

    PubMed

    Chiel, Elad; Kuslitzky, Wolf

    2016-04-01

    Filth flies (Diptera: Muscidae), particularly the house fly, Musca domestica L., are global pests of livestock production. In this study, we characterized the fauna of house fly pupal parasitoids in Israel and identified factors affecting their diversity and abundance. The study, which included one round of sampling during the fall of 2013 and another round of sampling in the spring of 2014, encompassed 26 locations of common fly-breeding habitats: dairy, egg-laying, and goat farms throughout Israel. Nine parasitoid species were found: Spalangia cameroni Perkins, Spalangia endius Walker, Spalangia drosophilae Ashmead, Spalangia gemina Boucek, Spalangia nigroaenea Curtis, Pachycrepoideus vindemmiae Rondani, Muscidifurax raptor Girault and Sanders, Muscidifurax zaraptor Kogan & Legner (all Hymenoptera: Pteromalidae), and Dirhinus giffardii Silvestri (Hymenoptera: Chalcididae). This is the first record of S. gemina from the Palearctic, as well as the first record of S. drosophilae from the Middle East. The composition and relative abundance of parasitoid species varied markedly among localities, climatic regions (Mediterranean vs. desert), habitat types (dairy vs. egg-laying vs. goat farm), and seasons. Overall, parasitoid richness in egg-laying farms was two- and sevenfold higher than in dairy and goat farms, respectively, and three times higher in Mediterranean than desert climate. The significance and implications of our results for inundative biological control programs of filth flies are discussed. PMID:26637547

  4. Direct evidence that density-dependent regulation underpins the temporal stability of abundant species in a diverse animal community

    PubMed Central

    Henderson, Peter A.; Magurran, Anne E.

    2014-01-01

    To understand how ecosystems are structured and stabilized, and to identify when communities are at risk of damage or collapse, we need to know how the abundances of the taxa in the entire assemblage vary over ecologically meaningful timescales. Here, we present an analysis of species temporal variability within a single large vertebrate community. Using an exceptionally complete 33-year monthly time series following the dynamics of 81 species of fishes, we show that the most abundant species are least variable in terms of temporal biomass, because they are under density-dependent (negative feedback) regulation. At the other extreme, a relatively large number of low abundance transient species exhibit the greatest population variability. The high stability of the consistently common high abundance species—a result of density-dependence—is reflected in the observation that they consistently represent over 98% of total fish biomass. This leads to steady ecosystem nutrient and energy flux irrespective of the changes in species number and abundance among the large number of low abundance transient species. While the density-dependence of the core species ensures stability under the existing environmental regime, the pool of transient species may support long-term stability by replacing core species should environmental conditions change. PMID:25100702

  5. Species diversity and relative abundance of lactic acid bacteria in the milk of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Jin, L.; Hinde, K.; Tao, L.

    2013-01-01

    Background Mother’s milk is a source of bacteria that influences the development of the infant commensal gut microbiota. To date, the species diversity and relative abundance of lactic acid bacteria in the milk of non-human primates have not been described. Methods Milk samples were aseptically obtained from 54 female rhesus monkeys (Macaca mulatta) at peak lactation. Following GM17 and MRS agar plating, single bacterial colonies were isolated based on difference in morphotypes, then grouped based on whole-cell protein profiles on SDS–PAGE. Bacterial DNA was isolated and the sequence the 16S rRNA gene was analyzed. Results A total of 106 strains of 19 distinct bacterial species, belonging to five genera, Bacillus, Enterococcus, Lactobacillus, Pediococcus, and Streptococcus, were identified. Conclusions Maternal gut and oral commensal bacteria may be translocated to the mammary gland during lactation and present in milk. This pathway can be an important source of commensal bacteria to the infant gut and oral cavity. PMID:20946146

  6. Contrasting the species abundance, species density and diversity of seaweed assemblages in alternative states: Urchin density as a driver of biotic homogenization

    NASA Astrophysics Data System (ADS)

    Sangil, Carlos; Sansón, Marta; Clemente, Sabrina; Afonso-Carrillo, Julio; Hernández, José Carlos

    2014-01-01

    Differences in seaweed assemblages' structure (species abundance, species density and diversity) were examined in two habitats, urchin barrens and upright seaweed beds on the Canarian Archipelago (eastern Atlantic Ocean) to demonstrate the key role of extreme density of the sea urchin Diadema africana in the homogenization of assemblages in shallow rocky reefs. Univariate and multivariate analyses were used to test for differences in seaweed the assemblages at multiple spatial scales, from sites (< 10 km apart) to islands (25-450 km apart), based on samples collected from six islands. Distance-based linear model routine (DistLM) and distance-based redundancy analysis (dbRDA) were also applied to analyze and model relationships between seaweed assemblages and environmental variables in each habitat. The patterns of spatial variation in assemblage structure were different in urchin barrens compared to upright seaweed beds. In urchin barrens, spatial variation of seaweed assemblages differed between sites only, whereas in upright seaweed beds were observed differences between sites and islands. Sea urchin density and substrate roughness were the two factors determining assemblage structure in urchin barrens. In contrast, in upright seaweed beds, the major factors influencing assemblages were wave exposure, temperature and productivity. We conclude that potential biogeographic patterns of assemblage structure induced by oceanographic conditions were observed only in pristine areas with low urchin density.

  7. Influence of Trap Height and Bait Type on Abundance and Species Diversity of Cerambycid Beetles Captured in Forests of East-Central Illinois.

    PubMed

    Schmeelk, Thomas C; Millar, Jocelyn G; Hanks, Lawrence M

    2016-08-01

    We assessed how height of panel traps above the forest floor, and the type of trap bait used, influenced the abundance and diversity of cerambycid beetles caught in forested areas of east-central Illinois. Panel traps were suspended from branches of hardwood trees at three heights above the ground: understory (∼1.5 m), lower canopy (∼6 m), and midcanopy (∼12 m). Traps were baited with either a multispecies blend of synthesized cerambycid pheromones or a fermenting bait mixture. Traps captured a total of 848 beetles of 50 species in the cerambycid subfamilies Cerambycinae, Lamiinae, Lepturinae, and Parandrinae, and one species in the closely related family Disteniidae. The species caught in highest numbers was the cerambycine Anelaphus pumilus (Newman), represented by 349 specimens. The 17 most abundant species (mean ± 1 SD: 45 ± 80 specimens per species) included 12 cerambycine and five lamiine species. Of these most abundant species, 13 (77%) were attracted to traps baited with the pheromone blend. Only the cerambycine Eburia quadrigeminata (Say) was attracted by the fermenting bait. Three species were captured primarily in understory traps, and another five species primarily in midcanopy traps. Variation among cerambycid species in their vertical distribution in forests accounted for similar overall abundances and species richness across trap height treatments. These findings suggest that trapping surveys of native communities of cerambycids, and quarantine surveillance for newly introduced exotic species, would be optimized by including a variety of trap baits and distributing traps across vertical strata of forests. PMID:27298428

  8. Can parasites be indicators of free-living diversity? Relationships between species richness and the abundance of larval trematodes and of local benthos and fishes

    USGS Publications Warehouse

    Hechinger, R.F.; Lafferty, K.D.; Huspeni, T.C.; Brooks, A.J.; Kuris, A.M.

    2007-01-01

    Measuring biodiversity is difficult. This has led to efforts to seek taxa whose species richness correlates with the species richness of other taxa. Such indicator taxa could then reduce the time and cost of assessing the biodiversity of the more extensive community. The search for species richness correlations has yielded mixed results, however. This may be primarily because of the lack of functional relationships between the taxa studied. Trematode parasites are highly promising bioindicators. Diverse assemblages of larval trematode parasites are easily sampled in intermediate host snails. Through their life cycles these parasites are functionally coupled with the surrounding free-living diversity of vertebrate and invertebrate animals. It has been shown that larval trematodes in snails correlate positively with bird diversity and abundance. Here, we explore whether trematodes also correlate with standard measures of fishes, and large and small benthos, for 32 sites in three wetlands. We found associations between trematodes and benthic communities that were not consistent across wetlands. The associations were, however, consistently positive for large benthic species richness and density. Some of the contrasting associations between trematode and benthos may be explained by negative associations between large and small benthos. We found no associations with fish communities (probably because of the inadequacy of standard "snapshot" sampling methods for highly mobile fishes). The results support further exploration of trematodes as bioindicators of diversity and abundance of animal communities. ?? 2006 Springer-Verlag.

  9. Short term changes in zooplankton community during the summer-autumn transition in the open NW Mediterranean Sea: species composition, abundance and diversity

    NASA Astrophysics Data System (ADS)

    Raybaud, V.; Nival, P.; Mousseau, L.; Gubanova, A.; Altukhov, D.; Khvorov, S.; Ibañez, F.; Andersen, V.

    2008-05-01

    Short term changes in zooplankton community were investigated at a fixed station in offshore waters of the Ligurian Sea (Dynaproc 2 cruise, September-October 2004). Mesozooplankton was sampled with vertical WP2 hauls (200 µm mesh-size) and large mesozooplankton, macrozooplankton and micronekton with a BIONESS multinet sampler (500 µm mesh-size). Temporal variations of total biomass, species composition and abundance of major taxa were studied. Intrusions of low salinity water masses were observed two times during the cruise. The first one, which was the most important, was associated with changes in zooplankton community composition. Among copepods, the abundance of Calocalanus, Euchaeta, Heterorhabdus, Mesocalanus, Nannocalanus, Neocalanus, Pleuromamma and also calanoid copepodites increased markedly. Among non-copepod taxa, only small ostracods abundance increased. After this low salinity event, abundance of all taxa nearly returned to their initial values. The influence of salinity on each zooplankton taxon was confirmed by a statistical analysis (Perry's method). Shannon diversity index, Pielou evenness and species richness were used to describe temporal variations of large copepod (>500 µm) diversity. Shannon index and Pielou evenness decreased at the beginning of the low salinity water intrusions, but not species richness. We suggest that low salinity water masses contained its own zooplankton community and passed through the sampling area, thus causing the replacement of zooplankton population.

  10. Short term changes in zooplankton community during the summer-autumn transition in the open NW Mediterranean Sea: species composition, abundance and diversity

    NASA Astrophysics Data System (ADS)

    Raybaud, V.; Nival, P.; Mousseau, L.; Gubanova, A.; Altukhov, D.; Khvorov, S.; Ibañez, F.; Andersen, V.

    2008-12-01

    Short term changes in zooplankton community were investigated at a fixed station in offshore waters of the Ligurian Sea (DYNAPROC 2 cruise, September-October 2004). Mesozooplankton were sampled with vertical WP-II hauls (200 μm mesh-size) and large mesozooplankton, macrozooplankton and micronekton with a BIONESS multinet sampler (500 μm mesh-size). Temporal variations of total biomass, species composition and abundance of major taxa were studied. Intrusions of low salinity water masses were observed two times during the cruise. The first one, which was the most intense, was associated with changes in zooplankton community composition. Among copepods, the abundance of Calocalanus, Euchaeta, Heterorhabdus, Mesocalanus, Nannocalanus, Neocalanus, Pleuromammaand also calanoid copepodites increased markedly. Among non-copepod taxa, only small ostracods abundance increased. After this low salinity event, abundance of all taxa nearly returned to their initial values. The influence of salinity on each zooplankton taxon was confirmed by a statistical analysis (Perry's method). The Shannon diversity index, Pielou evenness and species richness were used to describe temporal variations of large copepod (>500 μm) diversity. The Shannon index and Pielou evenness decreased at the beginning of the low salinity water intrusions, but not species richness. We suggest that low salinity water masses contained its own zooplankton community and passed through the sampling area, thus causing a replacement of the zooplankton population.

  11. Species-specific diversity of novel bacterial lineages and differential abundance of predicted pathways for toxic compound degradation in scorpion gut microbiota.

    PubMed

    Bolaños, Luis M; Rosenblueth, Mónica; Castillo-Ramírez, Santiago; Figuier-Huttin, Gilles; Martínez-Romero, Esperanza

    2016-05-01

    Scorpions are considered 'living fossils' that have conserved ancestral anatomical features and have adapted to numerous habitats. However, their gut microbiota diversity has not been studied. Here, we characterized the gut microbiota of two scorpion species, Vaejovis smithi and Centruroides limpidus. Our results indicate that scorpion gut microbiota is species-specific and that food deprivation reduces bacterial diversity. 16S rRNA gene phylogenetic analysis revealed novel bacterial lineages showing a low level of sequence identity to any known bacteria. Furthermore, these novel bacterial lineages were each restricted to a different scorpion species. Additionally, our results of the predicted metagenomic profiles revealed a core set of pathways that were highly abundant in both species, and mostly related to amino acid, carbohydrate, vitamin and cofactor metabolism. Notably, the food-deprived V. smithi shotgun metagenome matched almost completely the metabolic features of the prediction. Finally, comparisons among predicted metagenomic profiles showed that toxic compound degradation pathways were more abundant in recently captured C. limpidus scorpions. This study gives a first insight into the scorpion gut microbiota and provides a reference for future studies on the gut microbiota from other arachnid species. PMID:26058415

  12. Species Abundance Patterns in Complex Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Tokita, Kei

    2004-10-01

    An analytic theory of species abundance patterns (SAPs) in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka-Volterra equation, with diverse interspecies interactions. Various SAPs observed in nature are derived from a single parameter. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g., gene expression.

  13. Sand fly (Diptera: Psychodidae) abundance and species diversity in relation to environmental factors in parts of coastal plains of southern India.

    PubMed

    Srinivasan, R; Jambulingam, P; Vanamail, P

    2013-07-01

    Abundance pattern of sand flies in relation to several environmental factors, such as type of areas, dwellings, landforms, land usage pattern, and surface soil pH, was assessed in 81 areas or villages of Puducherry district, Puducherry Union Territory, located on the coastal plain of southern India, for three seasons, between November 2006 and October 2008, adopting hand-catch method. In total, 1,319 sand fly specimens comprising 12 species under two genera, viz., Phlebotomus and Sergentomyia, were collected. Among them, Phlebotomus (Euphlebotomus) argentipes Annandale & Brunetti, the vector of visceral leishmaniasis in India, was the predominant species in all habitats surveyed. The hierarchical cluster analysis showed that the density of sand flies was 10-fold higher in high-density group and fivefold higher in medium-density group, compared with the no or low-density group. Sand fly density was found to be influenced significantly with the type of areas, dwellings, landforms, land usage pattern, and surface soil pH in different groups. Rural areas located on fluvial landform with alkaline surface soil pH, supporting rice cultivation and luxuriant vegetation, are the most influencing factors that favor sand fly abundance and diversity in this district. PMID:23926773

  14. Previously undocumented diversity and abundance of cryptic species: a phylogenetic analysis of Indo-Pacific Arminidae Rafinesque, 1814 (Mollusca: Nudibranchia) with descriptions of 20 new species of Dermatobranchus

    PubMed Central

    Gosliner, Terrence M; Fahey, Shireen J

    2011-01-01

    ., Dermatobranchus piperoides sp. nov., Dermatobranchus rodmani sp. nov., Dermatobranchus semilunus sp. nov., and Dermatobranchus tuberculatus sp. nov. Eighteen of these new taxa are found in the Indo-Pacific tropics and two are found in temperate South Africa, D. albineus and D. arminus. Unique combinations of morphological characters distinguish these as new species of Dermatobranchus. Several species that are externally similar have radically divergent internal morphology, are members of different clades of Dermatobranchus, and represent cryptic species. Especially important is the radular morphology, which shows remarkable diversity of form, probably related directly to the diversification of feeding of members of this clade on various octocorals. PMID:21527987

  15. Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms.

    PubMed

    Faulwetter, Jennifer L; Burr, Mark D; Parker, Albert E; Stein, Otto R; Camper, Anne K

    2013-01-01

    Constructed wetlands offer an effective means for treatment of wastewater from a variety of sources. An understanding of the microbial ecology controlling nitrogen, carbon and sulfur cycles in constructed wetlands has been identified as the greatest gap for optimizing performance of these promising treatment systems. It is suspected that operational factors such as plant types and hydraulic operation influence the subsurface wetland environment, especially redox, and that the observed variation in effluent quality is due to shifts in the microbial populations and/or their activity. This study investigated the biofilm associated sulfate reducing bacteria and ammonia oxidizing bacteria (using the dsrB and amoA genes, respectively) by examining a variety of surfaces within a model wetland (gravel, thick roots, fine roots, effluent), and the changes in activity (gene abundance) of these functional groups as influenced by plant species and season. Molecular techniques were used including quantitative PCR and denaturing gradient gel electrophoresis (DGGE), both with and without propidium monoazide (PMA) treatment. PMA treatment is a method for excluding from further analysis those cells with compromised membranes. Rigorous statistical analysis showed an interaction between the abundance of these two functional groups with the type of plant and season (p < 0.05). The richness of the sulfate reducing bacterial community, as indicated by DGGE profiles, increased in planted vs. unplanted microcosms. For ammonia oxidizing bacteria, season had the greatest impact on gene abundance and diversity (higher in summer than in winter). Overall, the primary influence of plant presence is believed to be related to root oxygen loss and its effect on rhizosphere redox. PMID:22961363

  16. Genetic diversity in aspen and its relation to arthropod abundance

    PubMed Central

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  17. Non-Additive Effects of Genotypic Diversity Increase Floral Abundance and Abundance of Floral Visitors

    PubMed Central

    Genung, Mark A.; Lessard, Jean-Philippe; Brown, Claire B.; Bunn, Windy A.; Cregger, Melissa A.; Reynolds, Wm. Nicholas; Felker-Quinn, Emmi; Stevenson, Mary L.; Hartley, Amanda S.; Crutsinger, Gregory M.; Schweitzer, Jennifer A.; Bailey, Joseph K.

    2010-01-01

    Background In the emerging field of community and ecosystem genetics, genetic variation and diversity in dominant plant species have been shown to play fundamental roles in maintaining biodiversity and ecosystem function. However, the importance of intraspecific genetic variation and diversity to floral abundance and pollinator visitation has received little attention. Methodology/Principal Findings Using an experimental common garden that manipulated genotypic diversity (the number of distinct genotypes per plot) of Solidago altissima, we document that genotypic diversity of a dominant plant can indirectly influence flower visitor abundance. Across two years, we found that 1) plant genotype explained 45% and 92% of the variation in flower visitor abundance in 2007 and 2008, respectively; and 2) plant genotypic diversity had a positive and non-additive effect on floral abundance and the abundance of flower visitors, as plots established with multiple genotypes produced 25% more flowers and received 45% more flower visits than would be expected under an additive model. Conclusions/Significance These results provide evidence that declines in genotypic diversity may be an important but little considered factor for understanding plant-pollinator dynamics, with implications for the global decline in pollinators due to reduced plant diversity in both agricultural and natural ecosystems. PMID:20090850

  18. Relationships between plant diversity and grasshopper diversity and abundance in the Little Missouri National Grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A continuing challenge in Orthoptera ecology is to understand what determines grasshopper species diversity at a given site. In this study, the objective was to determine if variation in grasshopper abundance and diversity between 23 sites in western North Dakota (USA) could be explained by variatio...

  19. Why abundant tropical tree species are phylogenetically old.

    PubMed

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-10-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community. PMID:24043767

  20. Detecting diversity: emerging methods to estimate species diversity.

    PubMed

    Iknayan, Kelly J; Tingley, Morgan W; Furnas, Brett J; Beissinger, Steven R

    2014-02-01

    Estimates of species richness and diversity are central to community and macroecology and are frequently used in conservation planning. Commonly used diversity metrics account for undetected species primarily by controlling for sampling effort. Yet the probability of detecting an individual can vary among species, observers, survey methods, and sites. We review emerging methods to estimate alpha, beta, gamma, and metacommunity diversity through hierarchical multispecies occupancy models (MSOMs) and multispecies abundance models (MSAMs) that explicitly incorporate observation error in the detection process for species or individuals. We examine advantages, limitations, and assumptions of these detection-based hierarchical models for estimating species diversity. Accounting for imperfect detection using these approaches has influenced conclusions of comparative community studies and creates new opportunities for testing theory. PMID:24315534

  1. Clonal growth and plant species abundance

    PubMed Central

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  2. Dominant species constrain effects of species diversity on temporal variability in biomass production of tallgrass prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species diversity is thought to stabilize functioning of plant communities, although diversity-stability studies have focused on species richness to the neglect of the second component of diversity, species evenness (equitability with which biomass or abundances are distributed among species). An a...

  3. Abundance and Diversity of Mosquito Species Collected From a Rural Area of Central Mississippi: Implications for West Nile Virus Transmission in Mississippi.

    PubMed

    Varnado, Wendy; Goddard, Jerome

    2015-06-01

    To determine abundance and seasonality of potential West Nile virus (WNV) mosquito vectors in a forested area of central Mississippi, mosquitoes were collected weekly from a wildlife management area located approximately 10 mi from a local urban area known to have numerous human WNV cases. We were particularly interested in the presence or absence of Culex quinquefasciatus, the primary vector of WNV in Mississippi, although other Culex species were assayed. Two Centers for Disease Control and Prevention light traps baited with CO2 were set once a week from 2005 through 2006 in the Pearl River Wildlife Management Area (PRWMA), which consists of 6,925 acres primarily composed of bottomland hardwood forest with wetland areas. Traps were placed midafternoon and picked up the following morning. A total of 199,222 mosquitoes were collected during the 2-year study. No Cx. quinquefasciatus were collected throughout the entire study, although other health department surveys have indicated they are abundant just a few miles away. As for other potential WNV vectors, 1,325 (0.6%) Cx. nigripalpus, 1,804 (0.9%) Cx. restuans, and 6,076 (3.1%) Cx. salinarius were collected in the PRWMA over the 2-year period. These data suggest that Cx. quinquefasciatus is not usually found in remote forested environments, but is more associated with human habitation. PMID:26181696

  4. Severe plant invasions can increase mycorrhizal fungal abundance and diversity

    PubMed Central

    Lekberg, Ylva; Gibbons, Sean M; Rosendahl, Søren; Ramsey, Philip W

    2013-01-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)—but not cheatgrass (Bromus tectorum)—support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance. PMID:23486251

  5. How selection structures species abundance distributions

    PubMed Central

    Magurran, Anne E.; Henderson, Peter A.

    2012-01-01

    How do species divide resources to produce the characteristic species abundance distributions seen in nature? One way to resolve this problem is to examine how the biomass (or capacity) of the spatial guilds that combine to produce an abundance distribution is allocated among species. Here we argue that selection on body size varies across guilds occupying spatially distinct habitats. Using an exceptionally well-characterized estuarine fish community, we show that biomass is concentrated in large bodied species in guilds where habitat structure provides protection from predators, but not in those guilds associated with open habitats and where safety in numbers is a mechanism for reducing predation risk. We further demonstrate that while there is temporal turnover in the abundances and identities of species that comprise these guilds, guild rank order is conserved across our 30-year time series. These results demonstrate that ecological communities are not randomly assembled but can be decomposed into guilds where capacity is predictably allocated among species. PMID:22787020

  6. Measurement scale in maximum entropy models of species abundance

    PubMed Central

    Frank, Steven A.

    2010-01-01

    The consistency of the species abundance distribution across diverse communities has attracted widespread attention. In this paper, I argue that the consistency of pattern arises because diverse ecological mechanisms share a common symmetry with regard to measurement scale. By symmetry, I mean that different ecological processes preserve the same measure of information and lose all other information in the aggregation of various perturbations. I frame these explanations of symmetry, measurement, and aggregation in terms of a recently developed extension to the theory of maximum entropy. I show that the natural measurement scale for the species abundance distribution is log-linear: the information in observations at small population sizes scales logarithmically and, as population size increases, the scaling of information grades from logarithmic to linear. Such log-linear scaling leads naturally to a gamma distribution for species abundance, which matches well with the observed patterns. Much of the variation between samples can be explained by the magnitude at which the measurement scale grades from logarithmic to linear. This measurement approach can be applied to the similar problem of allelic diversity in population genetics and to a wide variety of other patterns in biology. PMID:21265915

  7. Attenuation of species abundance distributions by sampling.

    PubMed

    Shimadzu, Hideyasu; Darnell, Ross

    2015-04-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  8. Attenuation of species abundance distributions by sampling

    PubMed Central

    Shimadzu, Hideyasu; Darnell, Ross

    2015-01-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  9. Which Models Are Appropriate for Six Subtropical Forests: Species-Area and Species-Abundance Models

    PubMed Central

    Wei, Shi Guang; Li, Lin; Chen, Zhen Cheng; Lian, Ju Yu; Lin, Guo Jun; Huang, Zhong Liang; Yin, Zuo Yun

    2014-01-01

    The species-area relationship is one of the most important topic in the study of species diversity, conservation biology and landscape ecology. The species-area relationship curves describe the increase of species number with increasing area, and have been modeled by various equations. In this paper, we used detailed data from six 1-ha subtropical forest communities to fit three species-area relationship models. The coefficient of determination and F ratio of ANOVA showed all the three models fitted well to the species-area relationship data in the subtropical communities, with the logarithm model performing better than the other two models. We also used the three species-abundance distributions, namely the lognormal, logcauchy and logseries model, to fit them to the species-abundance data of six communities. In this case, the logcauchy model had the better fit based on the coefficient of determination. Our research reveals that the rare species always exist in the six communities, corroborating the neutral theory of Hubbell. Furthermore, we explained why all species-abundance figures appeared to be left-side truncated. This was due to subtropical forests have high diversity, and their large species number includes many rare species. PMID:24755956

  10. Predator Diversity and Abundance Provide Little Support for the Enemies Hypothesis in Forests of High Tree Diversity

    PubMed Central

    Schuldt, Andreas; Both, Sabine; Bruelheide, Helge; Härdtle, Werner; Schmid, Bernhard; Zhou, Hongzhang; Assmann, Thorsten

    2011-01-01

    Predatory arthropods can exert strong top-down control on ecosystem functions. However, despite extensive theory and experimental manipulations of predator diversity, our knowledge about relationships between plant and predator diversity—and thus information on the relevance of experimental findings—for species-rich, natural ecosystems is limited. We studied activity abundance and species richness of epigeic spiders in a highly diverse forest ecosystem in subtropical China across 27 forest stands which formed a gradient in tree diversity of 25–69 species per plot. The enemies hypothesis predicts higher predator abundance and diversity, and concomitantly more effective top-down control of food webs, with increasing plant diversity. However, in our study, activity abundance and observed species richness of spiders decreased with increasing tree species richness. There was only a weak, non-significant relationship with tree richness when spider richness was rarefied, i.e. corrected for different total abundances of spiders. Only foraging guild richness (i.e. the diversity of hunting modes) of spiders was positively related to tree species richness. Plant species richness in the herb layer had no significant effects on spiders. Our results thus provide little support for the enemies hypothesis—derived from studies in less diverse ecosystems—of a positive relationship between predator and plant diversity. Our findings for an important group of generalist predators question whether stronger top-down control of food webs can be expected in the more plant diverse stands of our forest ecosystem. Biotic interactions could play important roles in mediating the observed relationships between spider and plant diversity, but further testing is required for a more detailed mechanistic understanding. Our findings have implications for evaluating the way in which theoretical predictions and experimental findings of functional predator effects apply to species-rich forest

  11. Liana Abundance, Diversity, and Distribution on Barro Colorado Island, Panama

    PubMed Central

    Schnitzer, Stefan A.; Mangan, Scott A.; Dalling, James W.; Baldeck, Claire A.; Hubbell, Stephen P.; Ledo, Alicia; Muller-Landau, Helene; Tobin, Michael F.; Aguilar, Salomon; Brassfield, David; Hernandez, Andres; Lao, Suzanne; Perez, Rolando; Valdes, Oldemar; Yorke, Suzanne Rutishauser

    2012-01-01

    Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community composition, diversity, abundance, and spatial distribution – critical components for measuring the contribution of lianas to forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas ≥1 cm rooted in a 50-ha plot on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree densities have increased on BCI compared to surveys conducted 30-years earlier. This study represents the most comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for stems ≥1 cm diameter and nearly 140% for stems ≥5 cm diameter, while tree density on BCI decreased 11.5%; a finding consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps, and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCI and other neotropical forests. PMID:23284889

  12. Abundance of introduced species at home predicts abundance away in herbaceous communities

    USGS Publications Warehouse

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  13. The abundance and diversity of legume-nodulating rhizobia in 28-year-old plantations of tropical, subtropical, and exotic tree species: a case study from the Forest Reserve of Bandia, Senegal.

    PubMed

    Sene, Godar; Thiao, Mansour; Samba-Mbaye, Ramatoulaye; Khasa, Damase; Kane, Aboubacry; Mbaye, Mame Samba; Beaulieu, Marie-Ève; Manga, Anicet; Sylla, Samba Ndao

    2013-01-01

    Several fast-growing and multipurpose tree species have been widely used in West Africa to both reverse the tendency of land degradation and restore soil productivity. Although beneficial effects have been reported on soil stabilization, there still remains a lack of information about their impact on soil microorganisms. Our investigation has been carried out in exotic and native tree plantations of 28 years and aimed to survey and compare the abundance and genetic diversity of natural legume-nodulating rhizobia (LNR). The study of LNR is supported by the phylogenetic analysis which clustered the isolates into three genera: Bradyrhizobium, Mesorhizobium, and Sinorhizobium. The results showed close positive correlations between the sizes of LNR populations estimated both in the dry and rainy seasons and the presence of legume tree hosts. There were significant increases in Rhizobium spp. population densities in response to planting with Acacia spp., and high genetic diversities and richness of genotypes were fittest in these tree plantations. This suggests that enrichment of soil Rhizobium spp. populations is host specific. The results indicated also that species of genera Mesorhizobium and Sinorhizobium were lacking in plantations of non-host species. By contrast, there was a widespread distribution of Bradyrhizobium spp. strains across the tree plantations, with no evident specialization in regard to plantation type. Finally, the study provides information about the LNR communities associated with a range of old tree plantations and some aspects of their relationships to soil factors, which may facilitate the management of man-made forest systems that target ecosystem rehabilitation and preservation of soil biota. PMID:22864803

  14. Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity.

    PubMed

    Nolte, Viola; Pandey, Ram Vinay; Jost, Steffen; Medinger, Ralph; Ottenwälder, Birgit; Boenigk, Jens; Schlötterer, Christian

    2010-07-01

    With the advent of molecular methods, it became clear that microbial biodiversity had been vastly underestimated. Since then, species abundance patterns were determined for several environments, but temporal changes in species composition were not studied to the same level of resolution. Using massively parallel sequencing on the 454 GS FLX platform we identified a highly dynamic turnover of the seasonal abundance of protists in the Austrian lake Fuschlsee. We show that seasonal abundance patterns of protists closely match their biogeographic distribution. The stable predominance of few highly abundant taxa, which previously led to the suggestion of a low global protist species richness, is contrasted by a highly dynamic turnover of rare species. We suggest that differential seasonality of rare and abundant protist taxa explains the--so far--conflicting evidence in the 'everything is everywhere' dispute. Consequently temporal sampling is basic for adequate diversity and species richness estimates. PMID:20609083

  15. Modeling species-abundance relationships in multi-species collections

    USGS Publications Warehouse

    Peng, S.; Yin, Z.; Ren, H.; Guo, Q.

    2003-01-01

    Species-abundance relationship is one of the most fundamental aspects of community ecology. Since Motomura first developed the geometric series model to describe the feature of community structure, ecologists have developed many other models to fit the species-abundance data in communities. These models can be classified into empirical and theoretical ones, including (1) statistical models, i.e., negative binomial distribution (and its extension), log-series distribution (and its extension), geometric distribution, lognormal distribution, Poisson-lognormal distribution, (2) niche models, i.e., geometric series, broken stick, overlapping niche, particulate niche, random assortment, dominance pre-emption, dominance decay, random fraction, weighted random fraction, composite niche, Zipf or Zipf-Mandelbrot model, and (3) dynamic models describing community dynamics and restrictive function of environment on community. These models have different characteristics and fit species-abundance data in various communities or collections. Among them, log-series distribution, lognormal distribution, geometric series, and broken stick model have been most widely used.

  16. SPECIES COMPOSITION AND DIVERSITY AS REGULATORS OF TEMPORAL VARIABILITY IN BIOMASS PRODUCTION OF TALLGRASS PRAIRIE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species diversity is thought to stabilize functioning of plant communities, although diversity-stability studies have focused on species richness to the neglect of the second component of diversity, species evenness (equitability with which biomass or abundances are distributed among species). An a...

  17. Species abundance in a forest community in South China: A case of poisson lognormal distribution

    USGS Publications Warehouse

    Yin, Z.-Y.; Ren, H.; Zhang, Q.-M.; Peng, S.-L.; Guo, Q.-F.; Zhou, G.-Y.

    2005-01-01

    Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m??20 m, 5 m??5 m, and 1 m??1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal; (ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (?? and ??) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the ?? and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/?? should be an alternative measure of diversity.

  18. ABUNDANT OR RARE? A HYBRID APPROACH FOR DETERMINING SPECIES RELATIVE ABUNDANCE AT AN ECOREGOIONAL SCALE - 2014

    EPA Science Inventory

    Everyone knows what abundant and rare species are, but quantifying the concept proves elusive. As part of an EPA/USGS project to assess near-coastal species vulnerability to climate change affects, we designed a hybrid approach to determine species relative abundance at an ecoreg...

  19. ABUNDANT OR RARE? A HYBRID APPROACH FOR DETERMINING SPECIES RELATIVE ABUNDANCE AT AN ECOREGOIONAL SCALE

    EPA Science Inventory

    Everyone knows what abundant and rare species are, but quantifying the concept proves elusive. As part of an EPA/USGS project to assess near-coastal species vulnerability to climate change affects, we designed a hybrid approach to determine species relative abundance at an ecoreg...

  20. Negative scaling relationship between molecular diversity and resource abundances

    NASA Astrophysics Data System (ADS)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2016-06-01

    Cell reproduction involves replication of diverse molecule species, in contrast to a simple replication system with fewer components. To address this question of diversity, we study theoretically a cell system with catalytic reaction dynamics that grows by uptake of environmental resources. It is shown that limited resources lead to increased diversity of components within the system, and the number of coexisting species increases with a negative power of the resource uptake. The relationship is explained from the optimum growth speed of the cell, determined by a tradeoff between the utility of diverse resources and the concentration onto fewer components to increase the reaction rate.

  1. Modelling community dynamics based on species-level abundance models from detection/nondetection data

    USGS Publications Warehouse

    Yamaura, Yuichi; Royle, J. Andrew; Kuboi, Kouji; Tada, Tsuneo; Ikeno, Susumu; Makino, Shun'ichi

    2011-01-01

    1. In large-scale field surveys, a binary recording of each species' detection or nondetection has been increasingly adopted for its simplicity and low cost. Because of the importance of abundance in many studies, it is desirable to obtain inferences about abundance at species-, functional group-, and community-levels from such binary data. 2. We developed a novel hierarchical multi-species abundance model based on species-level detection/nondetection data. The model accounts for the existence of undetected species, and variability in abundance and detectability among species. Species-level detection/nondetection is linked to species- level abundance via a detection model that accommodates the expectation that probability of detection (at least one individuals is detected) increases with local abundance of the species. We applied this model to a 9-year dataset composed of the detection/nondetection of forest birds, at a single post-fire site (from 7 to 15 years after fire) in a montane area of central Japan. The model allocated undetected species into one of the predefined functional groups by assuming a prior distribution on individual group membership. 3. The results suggest that 15–20 species were missed in each year, and that species richness of communities and functional groups did not change with post-fire forest succession. Overall abundance of birds and abundance of functional groups tended to increase over time, although only in the winter, while decreases in detectabilities were observed in several species. 4. Synthesis and applications. Understanding and prediction of large-scale biodiversity dynamics partly hinge on how we can use data effectively. Our hierarchical model for detection/nondetection data estimates abundance in space/time at species-, functional group-, and community-levels while accounting for undetected individuals and species. It also permits comparison of multiple communities by many types of abundance-based diversity and similarity

  2. Vascular plant abundance and diversity in an alpine heath under observed and simulated global change

    PubMed Central

    Alatalo, Juha M.; Little, Chelsea J.; Jägerbrand, Annika K.; Molau, Ulf

    2015-01-01

    Global change is predicted to cause shifts in species distributions and biodiversity in arctic tundra. We applied factorial warming and nutrient manipulation to a nutrient and species poor alpine/arctic heath community for seven years. Vascular plant abundance in control plots increased by 31%. There were also notable changes in cover in the nutrient and combined nutrient and warming treatments, with deciduous and evergreen shrubs declining, grasses overgrowing these plots. Sedge abundance initially increased significantly with nutrient amendment and then declined, going below initial values in the combined nutrient and warming treatment. Nutrient addition resulted in a change in dominance hierarchy from deciduous shrubs to grasses. We found significant declines in vascular plant diversity and evenness in the warming treatment and a decline in diversity in the combined warming and nutrient addition treatment, while nutrient addition caused a decline in species richness. The results give some experimental support that species poor plant communities with low diversity may be more vulnerable to loss of species diversity than communities with higher initial diversity. The projected increase in nutrient deposition and warming may therefore have negative impacts on ecosystem processes, functioning and services due to loss of species diversity in an already impoverished environment. PMID:25950370

  3. The Abundance and Diversity of Soil Fungi in Continuously Monocropped Chrysanthemum

    PubMed Central

    Song, Aiping; Zhao, Shuang; Chen, Sisi; Jiang, Jiafu; Chen, Sumei; Li, Huiyun; Chen, Yu; Chen, Xi; Fang, Weimin; Chen, Fadi

    2013-01-01

    Chrysanthemum is an important ornamental plant which is increasingly being monocropped. Monocropping is known to affect both fungal abundance and species diversity. Here, quantitative PCR allied with DGGE analysis was used to show that fungi were more abundant in the rhizosphere than in the bulk soil and that the fungal populations changed during the growth cycle of the chrysanthemum. The majority of amplified fragments appeared to derive from Fusarium species, and F. oxysporum and F. solani proved to be the major pathogenic species which are built up by monocropping. PMID:24260019

  4. Revisiting the relation between species diversity and information theory.

    PubMed

    Camargo, Julio A

    2008-12-01

    The Shannon information function (H) has been extensively used in ecology as a statistic of species diversity. Yet, the use of Shannon diversity index has also been criticized, mainly because of its ambiguous ecological interpretation and because of its relatively great sensitivity to the relative abundances of species in the community. In my opinion, the major shortcoming of the traditional perspective (on the possible relation of species diversity with information theory) is that species need for an external receiver (the scientist or ecologist) to exist and transmit information. Because organisms are self-catalized replicating structures that can transmit genotypic information to offspring, it should be evident that any single species has two possible states or alternatives: to be or not to be. In other words, species have no need for an external receiver since they are their own receivers. Therefore, the amount of biological information (at the species scale) in a community with one only species would be log2(2)1 = 1 species, and not log2(1) = 0 bits as in the traditional perspective. Moreover, species diversity appears to be a monotonic increasing function of log2(2)S (or S) when all species are equally probable (S being species richness), and not a function of log2 S as in the traditional perspective. To avoid the noted shortcoming, we could use 2(H) (instead of H) for calculating species diversity and species evenness (= 2(H)/S). However, owing to the relatively great sensitivity of H to the relative abundances of species in the community, the value of species dominance (= 1 - 2(H)/S) is unreasonably high when differences between dominant and subordinate species are considerable, thereby lowering the value of species evenness and diversity. This unsatisfactory behaviour is even more evident for Simpson index and related algorithms. I propose the use of other statistics for a better analysis of community structure, their relationship being: species evenness

  5. Soil microbial abundance and diversity along a low precipitation gradient.

    PubMed

    Bachar, Ami; Al-Ashhab, Ashraf; Soares, M Ines M; Sklarz, Menachem Y; Angel, Roey; Ungar, Eugene D; Gillor, Osnat

    2010-08-01

    The exploration of spatial patterns of abundance and diversity patterns along precipitation gradients has focused for centuries on plants and animals; microbial profiles along such gradients are largely unknown. We studied the effects of soil pH, nutrient concentration, salinity, and water content on bacterial abundance and diversity in soils collected from Mediterranean, semi-arid, and arid sites receiving approximately 400, 300, and 100 mm annual precipitation, respectively. Bacterial diversity was evaluated by terminal restriction fragment length polymorphism and clone library analyses and the patterns obtained varied with the climatic regions. Over 75% of the sequenced clones were unique to their environment, while ∼2% were shared by all sites, yet, the Mediterranean and semi-arid sites had more common clones (∼9%) than either had with the arid site (4.7% and 6%, respectively). The microbial abundance, estimated by phospholipid fatty acids and real-time quantitative PCR assays, was significantly lower in the arid region. Our results indicate that although soil bacterial abundance decreases with precipitation, bacterial diversity is independent of precipitation gradient. Furthermore, community composition was found to be unique to each ecosystem. PMID:20683588

  6. Is abundance a species attribute? An example with haematophagous ectoparasites.

    PubMed

    Krasnov, Boris R; Shenbrot, Georgy I; Khokhlova, Irina S; Poulin, Robert

    2006-11-01

    Population density is a fundamental property of a species and yet it varies among populations of the same species. The variation comes from the interplay between intrinsic features of a species that tend to produce repeatable density values across all populations of the same species and extrinsic environmental factors that differ among localities and thus tend to produce spatial variation in density. Is inter-population variation in density too large for density to be considered a true species character? We addressed this question using data on abundance (number of parasites per individual host, i.e. equivalent to density) of fleas ectoparasitic on small mammals. The data included samples of 548 flea populations, representing 145 flea species and obtained from 48 different geographical regions. Abundances of the same flea species on the same host species, but in different regions, were more similar to each other than expected by chance, and varied significantly among flea species, with 46% of the variation among samples accounted by differences between flea species. Thus, estimates of abundance are repeatable within the same flea species. The same repeatability was also observed, but to a lesser extent, across flea genera, tribes and subfamilies. Independently of the identity of the flea species, abundance values recorded on the same host species, or in the same geographical region, also showed significant statistical repeatability, though not nearly as strong as that associated with abundance values from the same flea species. There were also no strong indications that regional differences in abiotic variables were an important determinant of variation in abundance of a given flea species on a given host species. Abundance thus appears to be a true species trait in fleas, although it varies somewhat within bounds set by species-specific life history traits. PMID:16896773

  7. Geographical Range and Local Abundance of Tree Species in China

    PubMed Central

    Ren, Haibao; Condit, Richard; Chen, Bin; Mi, Xiangcheng; Cao, Min; Ye, Wanhui; Hao, Zhanqing; Ma, Keping

    2013-01-01

    Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1) whether locally abundant species tend to be geographically widespread; 2) whether species are more abundant towards their range-centers; and 3) how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20–25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km2, and >90% of 651 species had ranges >105 km2. There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species’ abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges. PMID:24130772

  8. Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Dean, Angela J.; Steneck, Robert S.; Tager, Danika; Pandolfi, John M.

    2015-06-01

    The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem. Crustose coralline algae (CCA) are important contributors to reef calcium carbonate and can facilitate coral recruitment. Despite the importance of CCA, little is known about species-level distribution, abundance, and diversity, and how these vary across the continental shelf and key habitat zones within the GBR. We quantified CCA species distributions using line transects ( n = 127) at 17 sites in the northern and central regions of the GBR, distributed among inner-, mid-, and outer-shelf regions. At each site, we identified CCA along replicate transects in three habitat zones: reef flat, reef crest, and reef slope. Taxonomically, CCA species are challenging to identify (especially in the field), and there is considerable disagreement in approach. We used published, anatomically based taxonomic schemes for consistent identification. We identified 30 CCA species among 12 genera; the most abundant species were Porolithon onkodes, Paragoniolithon conicum (sensu Adey), Neogoniolithon fosliei, and Hydrolithon reinboldii. Significant cross-shelf differences were observed in CCA community structure and CCA abundance, with inner-shelf reefs exhibiting lower CCA abundance than outer-shelf reefs. Shelf position, habitat zone, latitude, depth, and the interaction of shelf position and habitat were all significantly associated with variation in composition of CCA communities. Collectively, shelf position, habitat, and their interaction contributed to 22.6 % of the variation in coralline communities. Compared to mid- and outer-shelf sites, inner-shelf sites exhibited lower relative abundances of N. fosliei and Lithophyllum species. Reef crest habitats exhibited greater abundance of N. fosliei than reef flat and reef slope habitats. Reef slope habitats exhibited lower abundance of P. onkodes, but greater abundance of Neogoniolithon clavycymosum than reef crest and reef slope habitats. These findings

  9. Model reduction for stochastic chemical systems with abundant species.

    PubMed

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-01

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems. PMID:26646867

  10. Model reduction for stochastic chemical systems with abundant species

    NASA Astrophysics Data System (ADS)

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-01

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  11. Model reduction for stochastic chemical systems with abundant species

    SciTech Connect

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  12. Contrasting soil ciliate species richness and abundance between two tropical plant species: a test of the plant effect.

    PubMed

    Acosta-Mercado, D; Lynn, D H

    2006-05-01

    We still have a rudimentary understanding about the mechanism by which plant roots may stimulate soil microbial interactions. A biochemical model involving plant-derived biochemical fractions, such as exudates, has been used to explain this "rhizosphere effect" on bacteria. However, the variable response of other soil microbial groups, such as protozoa, to the rhizosphere suggests that other factors could be involved in shaping their communities. Thus, two experiments were designed to: (1) determine whether stimulatory and/or inhibiting factors associated with particular plant species regulate ciliate diversity and abundance and (2) obtain a better understanding about the mechanism by which these plant factors operate in the rhizosphere. Bacterial and chemical slurries were reciprocally exchanged between two plant species known to differ in terms of ciliate species richness and abundance (i.e., Canella winterana and plantation Tectona grandis). Analysis of variance showed that the bacteria plus nutrients and the nutrients only treatment had no significant effect on overall ciliate species richness and abundance when compared to the control treatment. However, the use of only colpodean species increased the taxonomic resolution of treatment effects revealing that bacterial slurries had a significant effect on colpodean ciliate species richness. Thus, for particular rhizosphere ciliates, biological properties, such as bacterial diversity or abundance, may have a strong influence on their diversity and possibly abundance. These results are consistent with a model of soil bacteria-mediated mutualisms between plants and protozoa. PMID:16645921

  13. Gradients in the Number of Species at Reef-Seagrass Ecotones Explained by Gradients in Abundance

    PubMed Central

    Tuya, Fernando; Vanderklift, Mathew A.; Wernberg, Thomas; Thomsen, Mads S.

    2011-01-01

    Gradients in the composition and diversity (e.g. number of species) of faunal assemblages are common at ecotones between juxtaposed habitats. Patterns in the number of species, however, can be confounded by patterns in abundance of individuals, because more species tend to be found wherever there are more individuals. We tested whether proximity to reefs influenced patterns in the composition and diversity (‘species density’ = number of species per area and ‘species richness’ = number of species per number of individuals) of prosobranch gastropods in meadows of two seagrasses with different physiognomy: Posidonia and Amphibolis. A change in the species composition was observed from reef-seagrass edges towards the interiors of Amphibolis, but not in Posidonia meadows. Similarly, the abundance of gastropods and species density was higher at edges relative to interiors of Amphibolis meadows, but not in Posidonia meadows. However, species richness was not affected by proximity to reefs in either type of seagrass meadow. The higher number of species at the reef-Amphibolis edge was therefore a consequence of higher abundance, rather than species richness per se. These results suggest that patterns in the composition and diversity of fauna with proximity to adjacent habitats, and the underlying processes that they reflect, likely depend on the physiognomy of the habitat. PMID:21629654

  14. Gradients in the number of species at reef-seagrass ecotones explained by gradients in abundance.

    PubMed

    Tuya, Fernando; Vanderklift, Mathew A; Wernberg, Thomas; Thomsen, Mads S

    2011-01-01

    Gradients in the composition and diversity (e.g. number of species) of faunal assemblages are common at ecotones between juxtaposed habitats. Patterns in the number of species, however, can be confounded by patterns in abundance of individuals, because more species tend to be found wherever there are more individuals. We tested whether proximity to reefs influenced patterns in the composition and diversity ('species density'  =  number of species per area and 'species richness'  =  number of species per number of individuals) of prosobranch gastropods in meadows of two seagrasses with different physiognomy: Posidonia and Amphibolis. A change in the species composition was observed from reef-seagrass edges towards the interiors of Amphibolis, but not in Posidonia meadows. Similarly, the abundance of gastropods and species density was higher at edges relative to interiors of Amphibolis meadows, but not in Posidonia meadows. However, species richness was not affected by proximity to reefs in either type of seagrass meadow. The higher number of species at the reef-Amphibolis edge was therefore a consequence of higher abundance, rather than species richness per se. These results suggest that patterns in the composition and diversity of fauna with proximity to adjacent habitats, and the underlying processes that they reflect, likely depend on the physiognomy of the habitat. PMID:21629654

  15. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials

    PubMed Central

    Mahmoud, Huda M.; Kalendar, Aisha A.

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  16. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials.

    PubMed

    Mahmoud, Huda M; Kalendar, Aisha A

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  17. Species interaction mechanisms maintain grassland plant species diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theory has outpaced empirical research in pursuit of identifying mechanisms maintaining species diversity. Here we demonstrate how data from diversity-ecosystem functioning experiments can be used to test maintenance of diversity theory. We predict that grassland plant diversity can be maintained by...

  18. The Effect of Urbanization on Ant Abundance and Diversity: A Temporal Examination of Factors Affecting Biodiversity

    PubMed Central

    Buczkowski, Grzegorz; Richmond, Douglas S.

    2012-01-01

    Numerous studies have examined the effect of urbanization on species richness and most studies implicate urbanization as the major cause of biodiversity loss. However, no study has identified an explicit connection between urbanization and biodiversity loss as the impact of urbanization is typically inferred indirectly by comparing species diversity along urban-rural gradients at a single time point. A different approach is to focus on the temporal rather than the spatial aspect and perform “before and after” studies where species diversity is cataloged over time in the same sites. The current study examined changes in ant abundance and diversity associated with the conversion of natural habitats into urban habitats. Ant abundance and diversity were tracked in forested sites that became urbanized through construction and were examined at 3 time points - before, during, and after construction. On average, 4.3±1.2 unique species were detected in undisturbed plots prior to construction. Ant diversity decreased to 0.7±0.8 species in plots undergoing construction and 1.5±1.1 species in plots 1 year after construction was completed. With regard to species richness, urbanization resulted in the permanent loss of 17 of the 20 species initially present in the study plots. Recovery was slow and only 3 species were present right after construction was completed and 4 species were present 1 year after construction was completed. The second objective examined ant fauna recovery in developed residential lots based on time since construction, neighboring habitat quality, pesticide inputs, and the presence of invasive ants. Ant diversity was positively correlated with factors that promoted ecological recovery and negatively correlated with factors that promoted ecological degradation. Taken together, these results address a critical gap in our knowledge by characterizing the short- and long-term the effects of urbanization on the loss of ant biodiversity. PMID:22876291

  19. Ecological niche structure and rangewide abundance patterns of species

    PubMed Central

    Martínez-Meyer, Enrique; Díaz-Porras, Daniel; Peterson, A. Townsend; Yáñez-Arenas, Carlos

    2013-01-01

    Spatial abundance patterns across species' ranges have attracted intense attention in macroecology and biogeography. One key hypothesis has been that abundance declines with geographical distance from the range centre, but tests of this idea have shown that the effect may occur indeed only in a minority of cases. We explore an alternative hypothesis: that species' abundances decline with distance from the centroid of the species' habitable conditions in environmental space (the ecological niche). We demonstrate consistent negative abundance–ecological distance relationships across all 11 species analysed (turtles to wolves), and that relationships in environmental space are consistently stronger than relationships in geographical space. PMID:23134784

  20. Abundance, diversity and community characterization of aquatic Coleoptera in a rice field of Northeastern Argentina.

    PubMed

    Gómez Lutz, María Constanza; Kehr, Arturo I; Fernández, Liliana A

    2015-09-01

    Rice fields occupy large areas in Northeastern Argentina, and in Corrientes this widespead activity has become a feature in the landscape, as it is one of the main producing provinces. The aquatic Coleoptera is part of the fauna inhabiting these artificial environments but little is known about this group in irrigated rice fields. The aims of this study were to determine the diversity and species richness of coleopterans in a typical rice field, and to characterize the community of water beetles through different abundance models. For this, samples were collected from an active rice field located in "El Sombrero" town, in Corrientes Province, between November 2011 and April 2012. An entomological net of 30 cm diameter was used, and species richness, diversity and equitability were calculated monthly; besides, the community composition was characterized by means of rank-abundance models. A total of 74 species of aquatic coleopterans were identified. January and February resulted the months with the highest diversity. The aquatic Coleoptera species found in most of the sampled months were adjusted to the logarithmic rank-abundance model. The data suggests that, if it is properly managed, rice cropping in Northeastern Argentina can support a diverse aquatic coleopteran fauna. PMID:26666120

  1. Peudomonas fluorescens diversity and abundance in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Amina, Melinai; Ahmed, Bensoltane; Khaladi, Mederbel

    2010-05-01

    It is now over 30 years since that a several plant associated strains of fluorescent Pseudomonas spp. are known to produce antimicrobial metabolites, playing a significant role in the biological control of a lot of plant diseases. For that, the interest in the use of these bacteria for biocontrol of plant pathogenic agents has increased. However, few comprehensive studies have described the abundance of this soil borne bacteria in the region of Mascara (Northern-Algerian West). In the connection of this problem, this work was done by monitoring the number of indigenous Pseudomonas fluorescens organisms in three stations characterizing different ecosystems, to document their abundance, diversity and investigate the relationship between P. fluorescens abundance and soil properties. Our quantitative plate counting results hence the conception of their ecology in the rhizosphere. Thus, quantitative results has confirmed that P. fluorescens are successful root colonizers with strong predominance and competed for many ecological niche, where their distribution were correlated significantly (P<0.05) with the majority of soil properties. Keywords: P. Fluorescens, Ecosystems, Abundance, Diversity, Correlated, Soil Properties.

  2. Multiple peaks of species abundance distributions induced by sparse interactions.

    PubMed

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki; Tokita, Kei

    2016-08-01

    We investigate the replicator dynamics with "sparse" symmetric interactions which represent specialist-specialist interactions in ecological communities. By considering a large self-interaction u, we conduct a perturbative expansion which manifests that the nature of the interactions has a direct impact on the species abundance distribution. The central results are all species coexistence in a realistic range of the model parameters and that a certain discrete nature of the interactions induces multiple peaks in the species abundance distribution, providing the possibility of theoretically explaining multiple peaks observed in various field studies. To get more quantitative information, we also construct a non-perturbative theory which becomes exact on tree-like networks if all the species coexist, providing exact critical values of u below which extinct species emerge. Numerical simulations in various different situations are conducted and they clarify the robustness of the presented mechanism of all species coexistence and multiple peaks in the species abundance distributions. PMID:27627322

  3. Percolation Theory for the Distribution and Abundance of Species

    NASA Astrophysics Data System (ADS)

    He, Fangliang; Hubbell, Stephen P.

    2003-11-01

    We develop and test new models that unify the mathematical relationships among the abundance of a species, the spatial dispersion of the species, the number of patches occupied by the species, the edge length of the occupied patches, and the scale on which the distribution of species is mapped. The models predict that species distributions will exhibit percolation critical thresholds, i.e., critical population abundances at which the fragmented patches (as measured by the number of patches and edge length) start to coalesce to form large patches.

  4. Abundance- and functional-based mechanisms of plant diversity loss with fertilization in the presence and absence of herbivores.

    PubMed

    Yang, Zhongling; Hautier, Yann; Borer, Elizabeth T; Zhang, Chunhui; Du, Guozhen

    2015-09-01

    Nutrient supply and herbivores can regulate plant species composition, biodiversity and functioning of terrestrial ecosystems. Nutrient enrichment frequently increases plant productivity and decreases diversity while herbivores tend to maintain plant diversity in productive systems. However, the mechanisms by which nutrient enrichment and herbivores regulate plant diversity remain unclear. Abundance-based mechanisms propose that fertilization leads to the extinction of rare species due to random loss of individuals of all species. In contrast, functional-based mechanisms propose that species exclusion is based on functional traits which are disadvantageous under fertilized conditions. We tested mechanistic links between fertilization and diversity loss in the presence or absence of consumers using data from a 4-year fertilization and fencing experiment in an alpine meadow. We found that both abundance- and functional-based mechanisms simultaneously affected species loss in the absence of herbivores while only abundance-based mechanisms affected species loss in the presence of herbivores. Our results indicate that an abundance-based mechanism may consistently play a role in the loss of plant diversity with fertilization, and that diversity decline is driven primarily by the loss of rare species regardless of a plant's functional traits and whether or not herbivores are present. Increasing efforts to conserve rare species in the context of ecosystem eutrophication is a central challenge for grazed grassland ecosystems. PMID:25969333

  5. A Common Scaling Rule for Abundance, Energetics, and Production of Parasitic and Free-Living Species

    PubMed Central

    Hechinger, Ryan F.; Lafferty, Kevin D.; Dobson, Andy P.; Brown, James H.; Kuris, Armand M.

    2011-01-01

    The metabolic theory of ecology uses the scaling of metabolism with body size and temperature to explain the causes and consequences of species abundance. However, the theory and its empirical tests have never simultaneously examined parasites alongside free-living species. This is unfortunate because parasites represent at least half of species diversity. We show that metabolic scaling theory could not account for the abundance of parasitic or free-living species in three estuarine food webs until accounting for trophic dynamics. Analyses then revealed that the abundance of all species uniformly scaled with body mass to the −¾ power. This result indicates “production equivalence,” where biomass production within trophic levels is invariant of body size across all species and functional groups: invertebrate or vertebrate, ectothermic or endothermic, and free-living or parasitic. PMID:21778398

  6. A common scaling rule for abundance, energetics, and production of parasitic and free-living species

    USGS Publications Warehouse

    Hechinger, Ryan F.; Lafferty, Kevin D.; Dobson, Andy P.; Brown, James H.; Kuris, Armand M.

    2011-01-01

    The metabolic theory of ecology uses the scaling of metabolism with body size and temperature to explain the causes and consequences of species abundance. However, the theory and its empirical tests have never simultaneously examined parasites alongside free-living species. This is unfortunate because parasites represent at least half of species diversity. We show that metabolic scaling theory could not account for the abundance of parasitic or free-living species in three estuarine food webs until accounting for trophic dynamics. Analyses then revealed that the abundance of all species uniformly scaled with body mass to the - 3/4 power. This result indicates "production equivalence," where biomass production within trophic levels is invariant of body size across all species and functional groups: invertebrate or vertebrate, ectothermic or endothermic, and free-living or parasitic.

  7. Diversity and abundance of leafhoppers in Canadian vineyards.

    PubMed

    Saguez, Julien; Olivier, Chrystel; Hamilton, Andrew; Lowery, Thomas; Stobbs, Lorne; Lasnier, Jacques; Galka, Brian; Chen, Xiangsheng; Mauffette, Yves; Vincent, Charles

    2014-01-01

    Leafhoppers (Hemiptera: Cicadellidae) are pests of many temperate crops, including grapevines (Vitis species). Uncontrolled populations can induce direct and indirect damage to crops due to feeding that results in significant yield losses and increased mortality in infected vineyards due to virus, bacteria, or phytoplasmas vectored by leafhoppers. The main objective of this work was to determine the diversity of leafhoppers found in vineyards of the three main Canadian production provinces, i.e., in British Columbia, Ontario, and Quebec. Approximately 18,000 specimens were collected in 80 commercial vineyards from 2006 to 2008. We identified 54 genera and at least 110 different species associated with vineyards, among which 22 were predominant and represented more than 91% of all the leafhoppers. Species richness and diversity were estimated by both Shannon's and Pielou's indices. For each province, results indicated a temporal variation in species composition. Color photographs provide a tool to quickly identify 72 leafhoppers commonly associated with vineyards. PMID:25373220

  8. Diversity and Abundance of Leafhoppers in Canadian Vineyards

    PubMed Central

    Saguez, Julien; Olivier, Chrystel; Hamilton, Andrew; Lowery, Thomas; Stobbs, Lorne; Lasnier, Jacques; Galka, Brian; Chen, Xiangsheng; Mauffette, Yves; Vincent, Charles

    2014-01-01

    Leafhoppers (Hemiptera: Cicadellidae) are pests of many temperate crops, including grapevines (Vitis species). Uncontrolled populations can induce direct and indirect damage to crops due to feeding that results in significant yield losses and increased mortality in infected vineyards due to virus, bacteria, or phytoplasmas vectored by leafhoppers. The main objective of this work was to determine the diversity of leafhoppers found in vineyards of the three main Canadian production provinces, i.e., in British Columbia, Ontario, and Quebec. Approximately 18,000 specimens were collected in 80 commercial vineyards from 2006 to 2008. We identified 54 genera and at least 110 different species associated with vineyards, among which 22 were predominant and represented more than 91% of all the leafhoppers. Species richness and diversity were estimated by both Shannon's and Pielou's indices. For each province, results indicated a temporal variation in species composition. Color photographs provide a tool to quickly identify 72 leafhoppers commonly associated with vineyards. PMID:25373220

  9. Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes

    PubMed Central

    Serra, François; Becher, Verónica; Dopazo, Hernán

    2013-01-01

    It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or “species” of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or “species” populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. PMID:23798991

  10. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    PubMed Central

    Campos-Navarrete, María José; Abdala-Roberts, Luis; Munguía-Rosas, Miguel A.; Parra-Tabla, Víctor

    2015-01-01

    Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and –within each of these two plot types– mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity. PMID:26241962

  11. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    PubMed

    Campos-Navarrete, María José; Abdala-Roberts, Luis; Munguía-Rosas, Miguel A; Parra-Tabla, Víctor

    2015-01-01

    Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and -within each of these two plot types- mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity. PMID:26241962

  12. Experimental simulation of pollinator decline causes community-wide reductions in seedling diversity and abundance.

    PubMed

    Lundgren, Rebekka; Totland, Ørjan; Lázaro, Amparo

    2016-06-01

    Pollinator decline can disrupt the mutualistic interactions between plants and pollinators and potentially affect the maintenance of plant populations. However, there is still little knowledge on how changes in pollinator abundance can affect seedling recruitment, which is essential for population persistence. We experimentally simulated a community-wide reduction in pollinator availability during four years to examine its effects on seedling recruitment in 10 perennial herbs in a Norwegian hay meadow. Our experimental reduction in pollinator availability significantly reduced community-wide seedling diversity. Overall seedling abundance was also consistently lower under reduced pollinator availability, although this effect was only significant when the most abundant plant species in the community was excluded from the analysis. Despite an overall negative effect on seedling abundance, the experimental reduction in pollinator availability had contrasting effects on individual plant species. This tended to cause a larger change in seedling species composition in the experimental than in the control plots after the four study years. Our study demonstrates for the first time a direct causal link between reduced pollinator availability and reduced plant diversity and abundance. PMID:27459773

  13. Predators reduce abundance and species richness of coral reef fish recruits via non-selective predation

    NASA Astrophysics Data System (ADS)

    Heinlein, J. M.; Stier, A. C.; Steele, M. A.

    2010-06-01

    Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.

  14. Across species-pool aggregation alters grassland productivity and diversity.

    PubMed

    McKenna, Thomas P; Yurkonis, Kathryn A

    2016-08-01

    Plant performance is determined by the balance of intra- and interspecific neighbors within an individual's zone of influence. If individuals interact over smaller scales than the scales at which communities are measured, then altering neighborhood interactions may fundamentally affect community responses. These interactions can be altered by changing the number (species richness), abundances (species evenness), and positions (species pattern) of the resident plant species, and we aimed to test whether aggregating species at planting would alter effects of species richness and evenness on biomass production at a common scale of observation in grasslands. We varied plant species richness (2, 4, or 8 species and monocultures), evenness (0.64, 0.8, or 1.0), and pattern (planted randomly or aggregated in groups of four individuals) within 1 × 1 m plots established with transplants from a pool of 16 tallgrass prairie species and assessed plot-scale biomass production and diversity over the first three growing seasons. As expected, more species-rich plots produced more biomass by the end of the third growing season, an effect associated with a shift from selection to complementarity effects over time. Aggregating conspecifics at a 0.25-m scale marginally reduced biomass production across all treatments and increased diversity in the most even plots, but did not alter biodiversity effects or richness-productivity relationships. Results support the hypothesis that fine-scale species aggregation affects diversity by promoting species coexistence in this system. However, results indicate that inherent changes in species neighborhood relationships along grassland diversity gradients may only minimally affect community (meter) - scale responses among similarly designed biodiversity-ecosystem function studies. Given that species varied in their responses to local aggregation, it may be possible to use such species-specific results to spatially design larger-scale grassland

  15. Office space bacterial abundance and diversity in three metropolitan areas.

    PubMed

    Hewitt, Krissi M; Gerba, Charles P; Maxwell, Sheri L; Kelley, Scott T

    2012-01-01

    People in developed countries spend approximately 90% of their lives indoors, yet we know little about the source and diversity of microbes in built environments. In this study, we combined culture-based cell counting and multiplexed pyrosequencing of environmental ribosomal RNA (rRNA) gene sequences to investigate office space bacterial diversity in three metropolitan areas. Five surfaces common to all offices were sampled using sterile double-tipped swabs, one tip for culturing and one for DNA extraction, in 30 different offices per city (90 offices, 450 total samples). 16S rRNA gene sequences were PCR amplified using bar-coded "universal" bacterial primers from 54 of the surfaces (18 per city) and pooled for pyrosequencing. A three-factorial Analysis of Variance (ANOVA) found significant differences in viable bacterial abundance between offices inhabited by men or women, among the various surface types, and among cities. Multiplex pyrosequencing identified more than 500 bacterial genera from 20 different bacterial divisions. The most abundant of these genera tended to be common inhabitants of human skin, nasal, oral or intestinal cavities. Other commonly occurring genera appeared to have environmental origins (e.g., soils). There were no significant differences in the bacterial diversity between offices inhabited by men or women or among surfaces, but the bacterial community diversity of the Tucson samples was clearly distinguishable from that of New York and San Francisco, which were indistinguishable. Overall, our comprehensive molecular analysis of office building microbial diversity shows the potential of these methods for studying patterns and origins of indoor bacterial contamination. "[H]umans move through a sea of microbial life that is seldom perceived except in the context of potential disease and decay." - Feazel et al. (2009). PMID:22666400

  16. Office Space Bacterial Abundance and Diversity in Three Metropolitan Areas

    PubMed Central

    Hewitt, Krissi M.; Gerba, Charles P.; Maxwell, Sheri L.; Kelley, Scott T.

    2012-01-01

    People in developed countries spend approximately 90% of their lives indoors, yet we know little about the source and diversity of microbes in built environments. In this study, we combined culture-based cell counting and multiplexed pyrosequencing of environmental ribosomal RNA (rRNA) gene sequences to investigate office space bacterial diversity in three metropolitan areas. Five surfaces common to all offices were sampled using sterile double-tipped swabs, one tip for culturing and one for DNA extraction, in 30 different offices per city (90 offices, 450 total samples). 16S rRNA gene sequences were PCR amplified using bar-coded “universal” bacterial primers from 54 of the surfaces (18 per city) and pooled for pyrosequencing. A three-factorial Analysis of Variance (ANOVA) found significant differences in viable bacterial abundance between offices inhabited by men or women, among the various surface types, and among cities. Multiplex pyrosequencing identified more than 500 bacterial genera from 20 different bacterial divisions. The most abundant of these genera tended to be common inhabitants of human skin, nasal, oral or intestinal cavities. Other commonly occurring genera appeared to have environmental origins (e.g., soils). There were no significant differences in the bacterial diversity between offices inhabited by men or women or among surfaces, but the bacterial community diversity of the Tucson samples was clearly distinguishable from that of New York and San Francisco, which were indistinguishable. Overall, our comprehensive molecular analysis of office building microbial diversity shows the potential of these methods for studying patterns and origins of indoor bacterial contamination. “[H]umans move through a sea of microbial life that is seldom perceived except in the context of potential disease and decay.” – Feazel et al. (2009). PMID:22666400

  17. Integrating abundance and functional traits reveals new global hotspots of fish diversity.

    PubMed

    Stuart-Smith, Rick D; Bates, Amanda E; Lefcheck, Jonathan S; Duffy, J Emmett; Baker, Susan C; Thomson, Russell J; Stuart-Smith, Jemina F; Hill, Nicole A; Kininmonth, Stuart J; Airoldi, Laura; Becerro, Mikel A; Campbell, Stuart J; Dawson, Terence P; Navarrete, Sergio A; Soler, German A; Strain, Elisabeth M A; Willis, Trevor J; Edgar, Graham J

    2013-09-26

    Species richness has dominated our view of global biodiversity patterns for centuries. The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management. However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling). Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao's Q), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only. There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites ('community evenness'), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness. Our findings suggest that the contribution of species diversity to a range of

  18. [Diversity and abundance of mollusks in the sublittoral epifaunal community of Punta Patilla, Venezuela].

    PubMed

    Prieto, Antulio; Ruiz, Lilia J; García, Natividad

    2005-01-01

    The diversity of a sublittoral epifaunal mollusk community of Punta Patilla, Sucre State, Venezuela, was studied from September 1990 to September 1991. We identified 25 species (14 bivalves and 11 gastropods) of mollusks that inhabit gravel, soft sand and bottoms covered by Thalassia testudinum. Total diversity indices were H' = 3.42. J' = 0.74 and 1-D = 0.85. Monthly diversity reached its maximum in March 1991 (3.12 bits/ ind.), June 1991 (2.88 bits/ind.) and September 1991 (2.95 bits/ind.); minimum diversity was recorded in August 1991 (1.20 bits/ind.). A log series model showed a diversity index alpha = 4.56 for species abundance data and alpha = 3.11 for biomass data. The more abundant species were Chione cancellata, Anigona listeri, Chione granulata and Area zebra among the bivalves, and Chicoreus brevifrons, Turritella variegata and Phllonotus pomum among the gastropods (which present maximum biomass). The average total biomass (56.80 g/m2) is low when compared to reports from other tropical zones. PMID:17354426

  19. Modelling occurrence and abundance of species when detection is imperfect

    USGS Publications Warehouse

    Royle, J. Andrew; Nichols, J.D.; Kery, M.

    2005-01-01

    Relationships between species abundance and occupancy are of considerable interest in metapopulation biology and in macroecology. Such relationships may be described concisely using probability models that characterize variation in abundance of a species. However, estimation of the parameters of these models in most ecological problems is impaired by imperfect detection. When organisms are detected imperfectly, observed counts are biased estimates of true abundance, and this induces bias in stated occupancy or occurrence probability. In this paper we consider a class of models that enable estimation of abundance/occupancy relationships from counts of organisms that result from surveys in which detection is imperfect. Under such models, parameter estimation and inference are based on conventional likelihood methods. We provide an application of these models to geographically extensive breeding bird survey data in which alternative models of abundance are considered that include factors that influence variation in abundance and detectability. Using these models, we produce estimates of abundance and occupancy maps that honor important sources of spatial variation in avian abundance and provide clearly interpretable characterizations of abundance and occupancy adjusted for imperfect detection.

  20. Lifting a veil on diversity: a Bayesian approach to fitting relative-abundance models.

    PubMed

    Golicher, Duncan J; O'Hara, Robert B; Ruíz-Montoya, Lorena; Cayuela, Luis

    2006-02-01

    Bayesian methods incorporate prior knowledge into a statistical analysis. This prior knowledge is usually restricted to assumptions regarding the form of probability distributions of the parameters of interest, leaving their values to be determined mainly through the data. Here we show how a Bayesian approach can be applied to the problem of drawing inference regarding species abundance distributions and comparing diversity indices between sites. The classic log series and the lognormal models of relative- abundance distribution are apparently quite different in form. The first is a sampling distribution while the other is a model of abundance of the underlying population. Bayesian methods help unite these two models in a common framework. Markov chain Monte Carlo simulation can be used to fit both distributions as small hierarchical models with shared common assumptions. Sampling error can be assumed to follow a Poisson distribution. Species not found in a sample, but suspected to be present in the region or community of interest, can be given zero abundance. This not only simplifies the process of model fitting, but also provides a convenient way of calculating confidence intervals for diversity indices. The method is especially useful when a comparison of species diversity between sites with different sample sizes is the key motivation behind the research. We illustrate the potential of the approach using data on fruit-feeding butterflies in southern Mexico. We conclude that, once all assumptions have been made transparent, a single data set may provide support for the belief that diversity is negatively affected by anthropogenic forest disturbance. Bayesian methods help to apply theory regarding the distribution of abundance in ecological communities to applied conservation. PMID:16705973

  1. How well can we predict forage species occurrence and abundance?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a larger effort focused on forage species production and management, we have been developing a statistical modeling approach to predict the probability of species occurrence and the abundance for Orchard Grass over the Northeast region of the United States using two selected statistical m...

  2. Bird species diversity in the padawan limestone area, sarawak.

    PubMed

    Mansor, Mohammad Saiful; Sah, Shahrul Anuar Mohd; Koon, Lim Chan; Rahman, Mustafa Abdul

    2011-12-01

    Bird surveys were conducted in the Padawan Limestone Area for seven days at each of two study sites, Giam and Danu, from August to December 2008. The purpose of the study was to compare the area's bird species richness and abundance of bird species in other limestone areas and in other forest types. The study also compared the species richness and relative abundance of birds in undisturbed and disturbed areas at both study sites. Twenty mist nets were deployed for 12 hours daily. During this study period, direct observations of birds were also made. In all, 80 species from 34 families were recorded at both sites. At Giam, 120 birds were mist-netted. These birds represented 31 species from 16 families. The direct observations at Giam recorded 13 species from 11 families. In the undisturbed area, 21 species from 13 families were mist-netted, whereas in the disturbed area, 21 species from 10 families were mist-netted. In Danu, a total of 48 birds, representing 25 species from 12 families, were mist-netted. The observations at Danu recorded 34 species from 19 families. Twelve species from 7 families were mist-netted in the undisturbed area, whereas 18 species from 11 families were mist-netted in the disturbed area. Statistical analysis showed that the species diversity index differed significantly between undisturbed and disturbed areas. PMID:24575218

  3. Bird Species Diversity in the Padawan Limestone Area, Sarawak

    PubMed Central

    Mansor, Mohammad Saiful; Sah, Shahrul Anuar Mohd; Koon, Lim Chan; Rahman, Mustafa Abdul

    2011-01-01

    Bird surveys were conducted in the Padawan Limestone Area for seven days at each of two study sites, Giam and Danu, from August to December 2008. The purpose of the study was to compare the area’s bird species richness and abundance of bird species in other limestone areas and in other forest types. The study also compared the species richness and relative abundance of birds in undisturbed and disturbed areas at both study sites. Twenty mist nets were deployed for 12 hours daily. During this study period, direct observations of birds were also made. In all, 80 species from 34 families were recorded at both sites. At Giam, 120 birds were mist-netted. These birds represented 31 species from 16 families. The direct observations at Giam recorded 13 species from 11 families. In the undisturbed area, 21 species from 13 families were mist-netted, whereas in the disturbed area, 21 species from 10 families were mist-netted. In Danu, a total of 48 birds, representing 25 species from 12 families, were mist-netted. The observations at Danu recorded 34 species from 19 families. Twelve species from 7 families were mist-netted in the undisturbed area, whereas 18 species from 11 families were mist-netted in the disturbed area. Statistical analysis showed that the species diversity index differed significantly between undisturbed and disturbed areas. PMID:24575218

  4. [Diversity and ichthyofaunistic abundance of the Rio Grande de Térraba, south of Costa Rica].

    PubMed

    Rodrigo Rojas, José; Rodríguez, Omar

    2008-09-01

    The diversity, abundance and distributional pattern of freshwater fish communities in the Térraba River, south Costa Rica, were investigated from the early dry season of 2004 to early rain season of 2005. There have been no preview studies on the freshwater fish distribution in Térraba. Therefore, the aims of this study were to determine fish species richness, abundance and distribution there. Fish sampling was done using a combination of gears such as gill net, fine mesh net and visual observation. Thirty three species, 26 genera and 14 families were collected in four sampling sites along the river. The number and biomass captured during the entire study was 984 individuals and 147 410.9 g respectively. Most of them are carnivorous species (48%), 33.3% are omnivorous and 12% detritivorous, and only two species are herbivorous. The most important species in relative abundance (56.5%) and biomass (53.7%) in the study area was the machaca (Brycon behreae). It should be clear that although the list of fish species that occur in Térraba River is reasonably complete, knowledge of their ichthyogeographic history patterns is superficial. The main community component was secondary freshwater species; with 17 invading brackish water species and one introduced species (tilapia O. niloticus). Nine species are reported for the first time in this river. The diversity index H' varied from 2.32 (El Brujo) to 1.67 (Coto), a similar pattern was also showed for the other indexes. Most of our results were similar to those of previous studies on freshwater fish distribution elsewhere, however no significant correlation between species distribution and environmental variables was found, and we hypothesized that the depth and water velocity and geomorphological are major environmental variables that influence the fish distribution. Our findings are opposed to the tendency, for species composition, to increase from upstream to the mouth of the river, which is probably due to two major

  5. Effect of land use on the composition, diversity and abundance of insects drifting in neotropical streams.

    PubMed

    Gimenez, B C G; Lansac-Tôha, F A; Higuti, J

    2015-11-01

    Streams may exhibit differences in community structure of invertebrate drift, which may be a reflex of variation in environmental factors, able to change in conditions of anthropogenic interventions. The aim of this study was to analyze the composition, diversity and abundance of insects drifting in two neotropical streams under different land use and to identify the environmental factors involved in determining such patterns. 54 taxa of aquatic insects were identified in urban and rural streams. The results indicated significant differences in species composition due to the replacement of specialist species by generalist species in the urban stream. Higher diversity of taxa was recorded in the rural stream, with high levels of dissolved oxygen and high water flow, which favored the occurrence of sensitive groups to environmental disturbances, such as Ephemeroptera, Plecoptera, Trichoptera and Coleoptera taxa, that living mainly in clean and well oxygenated waters. On the other hand, a higher density of insects drifting, especially Chironomidae, was observed in the urban stream, where high values of pH, electrical conductivity and nitrogen were observed. These larvae are able to explore a wide range of environmental conditions, owing to their great capacity for physiological adaptation. Despite observing the expected patterns, there were no significant differences between streams for the diversity and abundance of species. Thus, the species composition can be considered as the best predictor of impacts on the drifting insect community. PMID:26602342

  6. Landscape Effects on the Presence, Abundance and Diversity of Mosquitoes in Mediterranean Wetlands

    PubMed Central

    Roiz, David; Ruiz, Santiago; Soriguer, Ramon; Figuerola, Jordi

    2015-01-01

    Environment determines the distribution of mosquito-borne diseases in that it influences the vector-host-pathogen transmission cycle, including vector distribution, abundance and diversity. In this study, we analyse the relationship between environmental variables estimated by remote sensing and the spatial distribution (presence, abundance and diversity) of seven mosquito species vectors of West Nile and other pathogens (Usutu, avian malaria and dirofilariasis) in the Doñana Natural Park, Spain. Traps were distributed over an area of 54,984 ha divided into six ecological units: marshland, sand dunes, scrubland, ricefields, crops and fishponds. We collected mosquitoes once a month from up to 112 locations using BG-Sentinel traps baited with BG-lure and CO2 during March-November 2010. Hydroperiod, NDVI and Inundation surface were estimated at several resolution scales (100, 250, 500, 1000 and 2000 metres) from corrected and normalized Landsat Images. We sampled 972,346 female mosquitoes, the most abundant species being Culex theileri, Ochlerotatus caspius, Culex modestus, Culex perexiguus, Culex pipiens, Anopheles atroparvus and Ochlerotatus detritus. Our results suggest that: (1) hydroperiod, inundation surface and NDVI are strongly related to the spatial distribution of mosquitoes; (2) the spatial scales used to measure these variables affected quantification of these relationships, the larger scale being more informative; (3) these relationships are species-specific; (4) hydroperiod is negatively related to mosquito presence and richness; (5) Culex abundance is positively related to hydroperiod; (6) NDVI is positively related to mosquito diversity, presence and abundance, except in the case of the two salt marsh species (Oc. caspius and Oc. detritus); and (7) inundation surfaces positively condition the abundance and richness of most species except the salt marsh mosquitoes. Remote sensing data provided reliable information for monitoring mosquito populations

  7. Landscape Effects on the Presence, Abundance and Diversity of Mosquitoes in Mediterranean Wetlands.

    PubMed

    Roiz, David; Ruiz, Santiago; Soriguer, Ramon; Figuerola, Jordi

    2015-01-01

    Environment determines the distribution of mosquito-borne diseases in that it influences the vector-host-pathogen transmission cycle, including vector distribution, abundance and diversity. In this study, we analyse the relationship between environmental variables estimated by remote sensing and the spatial distribution (presence, abundance and diversity) of seven mosquito species vectors of West Nile and other pathogens (Usutu, avian malaria and dirofilariasis) in the Doñana Natural Park, Spain. Traps were distributed over an area of 54,984 ha divided into six ecological units: marshland, sand dunes, scrubland, ricefields, crops and fishponds. We collected mosquitoes once a month from up to 112 locations using BG-Sentinel traps baited with BG-lure and CO2 during March-November 2010. Hydroperiod, NDVI and Inundation surface were estimated at several resolution scales (100, 250, 500, 1000 and 2000 metres) from corrected and normalized Landsat Images. We sampled 972,346 female mosquitoes, the most abundant species being Culex theileri, Ochlerotatus caspius, Culex modestus, Culex perexiguus, Culex pipiens, Anopheles atroparvus and Ochlerotatus detritus. Our results suggest that: (1) hydroperiod, inundation surface and NDVI are strongly related to the spatial distribution of mosquitoes; (2) the spatial scales used to measure these variables affected quantification of these relationships, the larger scale being more informative; (3) these relationships are species-specific; (4) hydroperiod is negatively related to mosquito presence and richness; (5) Culex abundance is positively related to hydroperiod; (6) NDVI is positively related to mosquito diversity, presence and abundance, except in the case of the two salt marsh species (Oc. caspius and Oc. detritus); and (7) inundation surfaces positively condition the abundance and richness of most species except the salt marsh mosquitoes. Remote sensing data provided reliable information for monitoring mosquito populations

  8. Effect of disjunct size distributions on foraminiferal species abundance determinations

    SciTech Connect

    Martin, R.E.; Liddell, W.D.

    1988-02-01

    Studies of foraminiferal distribution and abundance have typically employed a procedure (standard method) that entails counting approximately 300 specimens from a size range greater than some specified minimum (commonly 63 or 125 ..mu..m). This method fails to take into account that foraminifera may be found only within certain size fractions, either because of species specific size ranges or taphonomic processes (sorting, transport, abrasion). Use of a modified counting procedure (sieve method) takes into account foraminiferal size distributions. The sieve method uses counts of up to 300 specimens in each sand-size fraction (0.125-0.25, 0.25-0.5, 0.5-1, 1-2 mm) of each sample. Counts are then totaled for each sample (up to 1200 specimens per site) and used in determination of species abundances for each site. The sieve method has been of considerable utility in recognition of a foraminiferal bathymetric zonation preserved in sediment assemblages from fringing reef environments at Discovery Bay, north Jamaica. Well-documented reef zones (based on corals and physiography) are clearly defined in Q-mode cluster analysis (UPGMA) of species abundances determined using the sieve method. In contrast, individual fore reef zones are not recognized in cluster analysis of foraminiferal species abundances based on the standard method, nor by cluster analysis of species abundances within individual size fractions.

  9. Diversity and abundance of phosphonate biosynthetic genes in nature

    PubMed Central

    Yu, Xiaomin; Doroghazi, James R.; Janga, Sarath C.; Zhang, Jun Kai; Circello, Benjamin; Griffin, Benjamin M.; Labeda, David P.; Metcalf, William W.

    2013-01-01

    Phosphonates, molecules containing direct carbon–phosphorus bonds, compose a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than 50 y ago, the extent and diversity of phosphonate production in nature remains poorly characterized. The rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate, catalyzed by the enzyme PEP mutase (PepM), is shared by the vast majority of known phosphonate biosynthetic pathways. Thus, the pepM gene can be used as a molecular marker to examine the occurrence and abundance of phosphonate-producing organisms. Based on the presence of this gene, phosphonate biosynthesis is common in microbes, with ∼5% of sequenced bacterial genomes and 7% of genome equivalents in metagenomic datasets carrying pepM homologs. Similarly, we detected the pepM gene in ∼5% of random actinomycete isolates. The pepM-containing gene neighborhoods from 25 of these isolates were cloned, sequenced, and compared with those found in sequenced genomes. PEP mutase sequence conservation is strongly correlated with conservation of other nearby genes, suggesting that the diversity of phosphonate biosynthetic pathways can be predicted by examining PEP mutase diversity. We used this approach to estimate the range of phosphonate biosynthetic pathways in nature, revealing dozens of discrete groups in pepM amplicons from local soils, whereas hundreds were observed in metagenomic datasets. Collectively, our analyses show that phosphonate biosynthesis is both diverse and relatively common in nature, suggesting that the role of phosphonate molecules in the biosphere may be more important than is often recognized. PMID:24297932

  10. Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory.

    PubMed

    Chao, Anne; Hsieh, T C; Chazdon, Robin L; Colwell, Robert K; Gotelli, Nicholas J

    2015-05-01

    Based on a sample of individuals, we focus on inferring the vector of species relative abundance of an entire assemblage and propose a novel estimator of the complete species-rank abundance distribution (RAD). Nearly all previous estimators of the RAD use the conventional "plug-in" estimator Pi (sample relative abundance) of the true relative abundance pi of species i. Because most biodiversity samples are incomplete, the plug-in estimators are applied only to the subset of species that are detected in the sample. Using the concept of sample coverage and its generalization, we propose a new statistical framework to estimate the complete RAD by separately adjusting the sample relative abundances for the set of species detected in the sample and estimating the relative abundances for the set of species undetected in the sample but inferred to be present in the assemblage. We first show that P, is a positively biased estimator of pi for species detected in the sample, and that the degree of bias increases with increasing relative rarity of each species. We next derive a method to adjust the sample relative abundance to reduce the positive bias inherent in j. The adjustment method provides a nonparametric resolution to the longstanding challenge of characterizing the relationship between the true relative abundance in the entire assemblage and the observed relative abundance in a sample. Finally, we propose a method to estimate the true relative abundances of the undetected species based on a lower bound of the number of undetected species. We then combine the adjusted RAD for the detected species and the estimated RAD for the undetected species to obtain the complete RAD estimator. Simulation results show that the proposed RAD curve can unveil the true RAD and is more accurate than the empirical RAD. We also extend our method to incidence data. Our formulas and estimators are illustrated using empirical data sets from surveys of forest spiders (for abundance data) and

  11. Relationships between Plant Diversity and the Abundance and α-Diversity of Predatory Ground Beetles (Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem

    PubMed Central

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems. PMID:24376582

  12. Relating species abundance distributions to species-area curves in two Mediterranean-type shrublands

    USGS Publications Warehouse

    Keeley, J.E.

    2003-01-01

    Based on both theoretical and empirical studies there is evidence that different species abundance distributions underlie different species-area relationships. Here I show that Australian and Californian shrubland communities (at the scale from 1 to 1000 m2) exhibit different species-area relationships and different species abundance patterns. The species-area relationship in Australian heathlands best fits an exponential model and species abundance (based on both density and cover) follows a narrow log normal distribution. In contrast, the species-area relationship in Californian shrublands is best fit with the power model and, although species abundance appears to fit a log normal distribution, the distribution is much broader than in Australian heathlands. I hypothesize that the primary driver of these differences is the abundance of small-stature annual species in California and the lack of annuals in Australian heathlands. Species-area is best fit by an exponential model in Australian heathlands because the bulk of the species are common and thus the species-area curves initially rise rapidly between 1 and 100 m2. Annuals in Californian shrublands generate very broad species abundance distributions with many uncommon or rare species. The power function is a better model in these communities because richness increases slowly from 1 to 100 m2 but more rapidly between 100 and 1000 m2 due to the abundance of rare or uncommon species that are more likely to be encountered at coarser spatial scales. The implications of this study are that both the exponential and power function models are legitimate representations of species-area relationships in different plant communities. Also, structural differences in community organization, arising from different species abundance distributions, may lead to different species-area curves, and this may be tied to patterns of life form distribution.

  13. Estimating abundance in the presence of species uncertainty

    USGS Publications Warehouse

    Chambert, Thierry A; Hossack, Blake R.; Fishback, LeeAnn; Davenport, Jon M.

    2016-01-01

    1.N-mixture models have become a popular method for estimating abundance of free-ranging animals that are not marked or identified individually. These models have been used on count data for single species that can be identified with certainty. However, co-occurring species often look similar during one or more life stages, making it difficult to assign species for all recorded captures. This uncertainty creates problems for estimating species-specific abundance and it can often limit life stages to which we can make inference. 2.We present a new extension of N-mixture models that accounts for species uncertainty. In addition to estimating site-specific abundances and detection probabilities, this model allows estimating probability of correct assignment of species identity. We implement this hierarchical model in a Bayesian framework and provide all code for running the model in BUGS-language programs. 3.We present an application of the model on count data from two sympatric freshwater fishes, the brook stickleback (Culaea inconstans) and the ninespine stickleback (Pungitius pungitius), ad illustrate implementation of covariate effects (habitat characteristics). In addition, we used a simulation study to validate the model and illustrate potential sample size issues. We also compared, for both real and simulated data, estimates provided by our model to those obtained by a simple N-mixture model when captures of unknown species identification were discarded. In the latter case, abundance estimates appeared highly biased and very imprecise, while our new model provided unbiased estimates with higher precision. 4.This extension of the N-mixture model should be useful for a wide variety of studies and taxa, as species uncertainty is a common issue. It should notably help improve investigation of abundance and vital rate characteristics of organisms’ early life stages, which are sometimes more difficult to identify than adults.

  14. Distribution, abundance, diversity and habitat associations of fishes across a bioregion experiencing rapid coastal development

    NASA Astrophysics Data System (ADS)

    McLean, Dianne L.; Langlois, Tim J.; Newman, Stephen J.; Holmes, Thomas H.; Birt, Matthew J.; Bornt, Katrina R.; Bond, Todd; Collins, Danielle L.; Evans, Scott N.; Travers, Michael J.; Wakefield, Corey B.; Babcock, Russ C.; Fisher, Rebecca

    2016-09-01

    Knowledge of the factors that influence spatial patterns in fish abundance, distribution and diversity are essential for informing fisheries and conservation management. The present study was conducted in the nearshore Pilbara bioregion of north-western Australia where the dynamic marine environment is characterised by large embayments, numerous islands and islets, coexisting with globally significant petrochemical and mineral industries. Within Western Australia, this nearshore bioregion has high biodiversity and is considered to play an essential role in the recruitment of species of commercial importance. To better inform future investigations into both ecological processes and planning scenarios for management, a rapid assessment of the distribution, abundance and associations with nearshore habitats of fishes across the region was conducted. Baited remote underwater stereo-video systems (stereo-BRUVs) were used to simultaneously sample the fish assemblage and habitat composition. Generalised additive mixed models (GAMMs) were used to determine whether the abundance of fishes were related to habitat and a range of environmental variables (visibility, depth, distance to 30 m and 200 m depth isobars, boat ramps and the nearest large embayment (Exmouth Gulf). A diverse fish assemblage comprising 343 species from 58 families was recorded. The abundance and distribution patterns of fishery-target species and of the five most common and abundant species and families were linked positively with areas of high relief, hard coral cover, reef and macroalgae and negatively with the distance to the nearest oceanic waters (200 m depth isobar). This study provides information that can contribute to future marine spatial planning scenarios for management of the Pilbara using a unique, analytical approach that has broad application in biogeography.

  15. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service.

    PubMed

    Winfree, Rachael; Fox, Jeremy W; Williams, Neal M; Reilly, James R; Cariveau, Daniel P

    2015-07-01

    Biodiversity-ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real-world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large-scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large-scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species-abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species-abundance distributions in nature. PMID:25959973

  16. Abundance, diversity and community composition of free-living protozoa on vegetable sprouts.

    PubMed

    Chavatte, N; Lambrecht, E; Van Damme, I; Sabbe, K; Houf, K

    2016-05-01

    Interactions with free-living protozoa (FLP) have been implicated in the persistence of pathogenic bacteria on food products. In order to assess the potential involvement of FLP in this contamination, detailed knowledge on their occurrence, abundance and diversity on food products is required. In the present study, enrichment and cultivation methods were used to inventory and quantify FLP on eight types of commercial vegetable sprouts (alfalfa, beetroot, cress, green pea, leek, mung bean, red cabbage and rosabi). In parallel, total aerobic bacteria and Escherichia coli counts were performed. The vegetable sprouts harbored diverse communities of FLP, with Tetrahymena (ciliate), Bodo saltans and cercomonads (flagellates), and Acanthamoeba and Vannella (amoebae) as the dominant taxa. Protozoan community composition and abundance significantly differed between the sprout types. Beetroot harbored the most abundant and diverse FLP communities, with many unique species such as Korotnevella sp., Vannella sp., Chilodonella sp., Podophrya sp. and Sphaerophrya sp. In contrast, mung bean sprouts were species-poor and had low FLP numbers. Sampling month and company had no significant influence, suggesting that seasonal and local factors are of minor importance. Likewise, no significant relationship between protozoan community composition and bacterial load was observed. PMID:26742616

  17. Species diversity of Trichoderma in Poland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fifteen species of Trichoderma were identified from among 118 strains originating from different regions and ecological niches in Poland. This low number indicates low species diversity of Trichoderma in this Central European region. Using the ITS1-ITS2 regions, 64 strains were positively identified...

  18. Beech carbon productivity as driver of ectomycorrhizal abundance and diversity.

    PubMed

    Druebert, Christine; Lang, Christa; Valtanen, Kerttu; Polle, Andrea

    2009-08-01

    We tested the hypothesis that carbon productivity of beech (Fagus sylvatica) controls ectomycorrhizal colonization, diversity and community structures. Carbon productivity was limited by long-term shading or by girdling. The trees were grown in compost soil to avoid nutrient deficiencies. Despite severe limitation in photosynthesis and biomass production by shading, the concentrations of carbohydrates in roots were unaffected by the light level. Shade-acclimated plants were only 10% and sun-acclimated plants were 74% colonized by ectomycorrhiza. EM diversity was higher on roots with high than at roots with low mycorrhizal colonization. Evenness was unaffected by any treatment. Low mycorrhizal colonization had no negative effects on plant mineral nutrition. In girdled plants mycorrhizal colonization and diversity were retained although (14)C-leaf feeding showed almost complete disruption of carbon transport from leaves to roots. Carbohydrate storage pools in roots decreased upon girdling. Our results show that plant carbon productivity was the reason for and not the result of high ectomycorrhizal diversity. We suggest that ectomycorrhiza can be supplied by two carbon routes: recent photosynthate and stored carbohydrates. Storage pools may be important for ectomycorrhizal survival when photoassimilates were unavailable, probably feeding preferentially less carbon demanding EM species as shifts in community composition were found. PMID:19344334

  19. A novel theory to explain species diversity in landscapes: positive frequency dependence and habitat suitability.

    PubMed Central

    Molofsky, Jane; Bever, James D

    2002-01-01

    Theories to explain the diversity of species have required that individual species occupy unique niches and/or vary in their response to environmental factors. Positive interactions within a species, although common in communities, have not been thought to maintain species diversity because in non-spatial models the more abundant species always outcompetes the rarer species. Here, we show, using a stochastic spatial model, that positive intraspecific interactions such as those caused by positive frequency dependence and/or priority effects, can maintain species diversity if interactions between individuals are primarily local and the habitat contains areas that cannot be colonized by any species, such as boulders or other physical obstructions. When intraspecific interactions are primarily neutral, species diversity will eventually erode to a single species. When the landscape is homogeneous (i.e. does not contain areas that cannot be colonized by any species), the presence of strong intraspecific interactions will not maintain diversity. PMID:12495479

  20. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity

    PubMed Central

    Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried

    2014-01-01

    Aim To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to ‘classical’ hotspots based on species richness (SR) only. Location Global Methods SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. Results While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. Main conclusions The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global

  1. Abundance of introduced species at home predicts abundance away in herbaceous grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced versus native communities, because ecological or evolutionary based shifts in popula...

  2. Diverse and abundant antibiotic resistance genes in Chinese swine farms

    PubMed Central

    Zhu, Yong-Guan; Johnson, Timothy A.; Su, Jian-Qiang; Qiao, Min; Guo, Guang-Xia; Stedtfeld, Robert D.; Hashsham, Syed A.; Tiedje, James M.

    2013-01-01

    Antibiotic resistance genes (ARGs) are emerging contaminants posing a potential worldwide human health risk. Intensive animal husbandry is believed to be a major contributor to the increased environmental burden of ARGs. Despite the volume of antibiotics used in China, little information is available regarding the corresponding ARGs associated with animal farms. We assessed type and concentrations of ARGs at three stages of manure processing to land disposal at three large-scale (10,000 animals per year) commercial swine farms in China. In-feed or therapeutic antibiotics used on these farms include all major classes of antibiotics except vancomycins. High-capacity quantitative PCR arrays detected 149 unique resistance genes among all of the farm samples, the top 63 ARGs being enriched 192-fold (median) up to 28,000-fold (maximum) compared with their respective antibiotic-free manure or soil controls. Antibiotics and heavy metals used as feed supplements were elevated in the manures, suggesting the potential for coselection of resistance traits. The potential for horizontal transfer of ARGs because of transposon-specific ARGs is implicated by the enrichment of transposases—the top six alleles being enriched 189-fold (median) up to 90,000-fold in manure—as well as the high correlation (r2 = 0.96) between ARG and transposase abundance. In addition, abundance of ARGs correlated directly with antibiotic and metal concentrations, indicating their importance in selection of resistance genes. Diverse, abundant, and potentially mobile ARGs in farm samples suggest that unmonitored use of antibiotics and metals is causing the emergence and release of ARGs to the environment. PMID:23401528

  3. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States.

    PubMed

    Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff

    2015-12-01

    Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse

  4. Effectiveness of mosquito traps in measuring species abundance and composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquito species abundance and composition estimates provided by trapping devices are commonly used to guide control efforts, but knowledge of trap biases is necessary for accurately interpreting results. We compared the Mosquito Magnet – Pro, the Mosquito Magnet – X and the CDC Miniature Light Trap...

  5. Capitalizing on opportunistic data for monitoring relative abundances of species.

    PubMed

    Giraud, Christophe; Calenge, Clément; Coron, Camille; Julliard, Romain

    2016-06-01

    With the internet, a massive amount of information on species abundance can be collected by citizen science programs. However, these data are often difficult to use directly in statistical inference, as their collection is generally opportunistic, and the distribution of the sampling effort is often not known. In this article, we develop a general statistical framework to combine such "opportunistic data" with data collected using schemes characterized by a known sampling effort. Under some structural assumptions regarding the sampling effort and detectability, our approach makes it possible to estimate the relative abundance of several species in different sites. It can be implemented through a simple generalized linear model. We illustrate the framework with typical bird datasets from the Aquitaine region in south-western France. We show that, under some assumptions, our approach provides estimates that are more precise than the ones obtained from the dataset with a known sampling effort alone. When the opportunistic data are abundant, the gain in precision may be considerable, especially for rare species. We also show that estimates can be obtained even for species recorded only in the opportunistic scheme. Opportunistic data combined with a relatively small amount of data collected with a known effort may thus provide access to accurate and precise estimates of quantitative changes in relative abundance over space and/or time. PMID:26496390

  6. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.

    PubMed

    Smith, Henrik G; Dänhardt, Juliana; Lindström, Ake; Rundlöf, Maj

    2010-04-01

    It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds. PMID:20213151

  7. Region effects influence local tree species diversity

    PubMed Central

    Ricklefs, Robert E.; He, Fangliang

    2016-01-01

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species. PMID:26733680

  8. Region effects influence local tree species diversity.

    PubMed

    Ricklefs, Robert E; He, Fangliang

    2016-01-19

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species. PMID:26733680

  9. Patterns of relative species abundance in rainforests and coral reefs.

    PubMed

    Volkov, Igor; Banavar, Jayanth R; Hubbell, Stephen P; Maritan, Amos

    2007-11-01

    A formidable many-body problem in ecology is to understand the complex of factors controlling patterns of relative species abundance (RSA) in communities of interacting species. Unlike many problems in physics, the nature of the interactions in ecological communities is not completely known. Although most contemporary theories in ecology start with the basic premise that species interact, here we show that a theory in which all interspecific interactions are turned off leads to analytical results that are in agreement with RSA data from tropical forests and coral reefs. The assumption of non-interacting species leads to a sampling theory for the RSA that yields a simple approximation at large scales to the exact theory. Our results show that one can make significant theoretical progress in ecology by assuming that the effective interactions among species are weak in the stationary states in species-rich communities such as tropical forests and coral reefs. PMID:17972874

  10. Analytical formulae for computing dominance from species-abundance distributions.

    PubMed

    Fung, Tak; Villain, Laura; Chisholm, Ryan A

    2015-12-01

    The evenness of an ecological community affects ecosystem structure, functioning and stability, and has implications for biodiversity conservation. In uneven communities, most species are rare while a few dominant species drive ecosystem-level properties. In even communities, dominance is lower, with possibly many species playing key ecological roles. The dominance aspect of evenness can be measured as a decreasing function of the proportion of species required to make up a fixed fraction (e.g., half) of individuals in a community. Here we sought general rules about dominance in ecological communities by linking dominance mathematically to the parameters of common theoretical species-abundance distributions (SADs). We found that if a community's SAD was log-series or lognormal, then dominance was almost inevitably high, with fewer than 40% of species required to account for 90% of all individuals. Dominance for communities with an exponential SAD was lower but still typically high, with fewer than 40% of species required to account for 70% of all individuals. In contrast, communities with a gamma SAD only exhibited high dominance when the average species abundance was below a threshold of approximately 100. Furthermore, we showed that exact values of dominance were highly scale-dependent, exhibiting non-linear trends with changing average species abundance. We also applied our formulae to SADs derived from a mechanistic community model to demonstrate how dominance can increase with environmental variance. Overall, our study provides a rigorous basis for theoretical explorations of the dynamics of dominance in ecological communities, and how this affects ecosystem functioning and stability. PMID:26409166

  11. Plant Functional Diversity and Species Diversity in the Mongolian Steppe

    PubMed Central

    Liu, Guofang; Xie, Xiufang; Ye, Duo; Ye, Xuehua; Tuvshintogtokh, Indree; Mandakh, Bayart; Huang, Zhenying; Dong, Ming

    2013-01-01

    Background The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated. Methodology/Principal Findings In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity. Conclusions/Significance These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to

  12. Terrestrial activity, abundance, diversity of amphibians in differently managed forest types

    SciTech Connect

    Bennett, S.H.; Gibbons, J.W.; Glanville, J.

    1980-04-01

    Diversity indices and relative abundances were determined for amphibians inhabiting three differently managed forest types in South Carolina. Study sites were contiguous around a small lake, and included a slash pine (Pinus ellioti) forest, a loblolly pine (Pinus taeda) forest and a hardwood (predominately oak-hickory) forest. Amphibians were collected using a drift fence and pitfall trap method. Captured animals were marked so that recaptures could be removed from calculations of indices. The dates of study were 30 June-10 August 1977 and 20 June-15 August 1978. The three study sites were similar in species diversity and the evenness component for combined summer data and for the summer of 1978. The hardwood forest had a higher diversity in the summer of 1977. The hardwood forest yielded approximately 50% more individual amphibians than either pine forest during both years.

  13. Rare Species Support Vulnerable Functions in High-Diversity Ecosystems

    PubMed Central

    Mouillot, David; Bellwood, David R.; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C. E. Timothy; Renaud, Julien; Thuiller, Wilfried

    2013-01-01

    Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across

  14. Assessing introduction risk using species' rank-abundance distributions.

    PubMed

    Chan, Farrah T; Bradie, Johanna; Briski, Elizabeta; Bailey, Sarah A; Simard, Nathalie; MacIsaac, Hugh J

    2015-01-22

    Mixed-species assemblages are often unintentionally introduced into new ecosystems. Analysing how assemblage structure varies during transport may provide insights into how introduction risk changes before propagules are released. Characterization of introduction risk is typically based on assessments of colonization pressure (CP, the number of species transported) and total propagule pressure (total PP, the total abundance of propagules released) associated with an invasion vector. Generally, invasion potential following introduction increases with greater CP or total PP. Here, we extend these assessments using rank-abundance distributions to examine how CP : total PP relationships change temporally in ballast water of ocean-going ships. Rank-abundance distributions and CP : total PP patterns varied widely between trans-Atlantic and trans-Pacific voyages, with the latter appearing to pose a much lower risk than the former. Responses also differed by taxonomic group, with invertebrates experiencing losses mainly in total PP, while diatoms and dinoflagellates sustained losses mainly in CP. In certain cases, open-ocean ballast water exchange appeared to increase introduction risk by uptake of new species or supplementation of existing ones. Our study demonstrates that rank-abundance distributions provide new insights into the utility of CP and PP in characterizing introduction risk. PMID:25473007

  15. Diversity and abundance of orchid bees (Hymenoptera: Apidae, Euglossini) in a tropical rainforest succession.

    PubMed

    Rasmussen, Claus

    2009-01-01

    Euglossine bee males are easily lured to chemical baits imitating natural fragrances gathered by bees, providing a widely applied measure for estimating the diversity and abundance of euglossines. In here, I report the composition of euglossine bees in three lowland rainforest habitats of Peru, a primary old forest, a reforested and managed forest, and a very disturbed forest. A total of 2,072 males of euglossine were collected, belonging to 33 species and four genera. Although a comparable diversity relative to other studies from the Amazonian region was found, no significant differences among the sampled areas were detected. Perhaps, the short time and low intensity surveys here used (< 3 months) were not good enough indicators of forest disturbance without additional data. Compared to other major studies on the euglossine bee fauna, Loreto is most similar to the species assemblage reported from lowland rainforest in Brazil (Manaus), central Peru (Panguana) and southern Peru (Tambopata). PMID:19347098

  16. Species richness, equitability, and abundance of ants in disturbed landscapes

    USGS Publications Warehouse

    Graham, J.H.; Krzysik, A.J.; Kovacic, D.A.; Duda, J.J.; Freeman, D.C.; Emlen, J.M.; Zak, J.C.; Long, W.R.; Wallace, M.P.; Chamberlin-Graham, C.; Nutter, J.P.; Balbach, H.E.

    2009-01-01

    Ants are used as indicators of environmental change in disturbed landscapes, often without adequate understanding of their response to disturbance. Ant communities in the southeastern United States displayed a hump-backed species richness curve against an index of landscape disturbance. Forty sites at Fort Benning, in west-central Georgia, covered a spectrum of habitat disturbance (military training and fire) in upland forest. Sites disturbed by military training had fewer trees, less canopy cover, more bare ground, and warmer, more compact soils with shallower A-horizons. We sampled ground-dwelling ants with pitfall traps, and measured 15 habitat variables related to vegetation and soil. Ant species richness was greatest with a relative disturbance of 43%, but equitability was greatest with no disturbance. Ant abundance was greatest with a relative disturbance of 85%. High species richness at intermediate disturbance was associated with greater within-site spatial heterogeneity. Species richness was also associated with intermediate values of the normalized difference vegetation index (NDVI), a correlate of net primary productivity (NPP). Available NPP (the product of NDVI and the fraction of days that soil temperature exceeded 25 ??C), however, was positively correlated with species richness, though not with ant abundance. Species richness was unrelated to soil texture, total ground cover, and fire frequency. Ant species richness and equitability are potential state indicators of the soil arthropod community. Moreover, equitability can be used to monitor ecosystem change. ?? 2008 Elsevier Ltd.

  17. Diversity, abundance and community network structure in sporocarp-associated beetle communities of the central Appalachian Mountains.

    PubMed

    Epps, Mary Jane; Arnold, A Elizabeth

    2010-01-01

    Although arthropods are abundant and diverse in and on macrofungal sporocarps, their associations with fungi seldom have been described at a community level. We examined sporocarp-associated beetle communities in two primary sites in the Appalachian Mountains and foothills, assessing beetle diversity and abundance in relation to study site, sampling season (early vs. late summer), and sporocarp characteristics such as taxonomic position, dry mass and age. From 758 sporocarps representing >180 species we recovered 15404 adult beetles representing 72 species and 15 families, primarily Staphylinidae (> 98% of individuals and of 64% morphospecies). The probability of sporocarp colonization by beetles, beetle abundance and diversity differed among fungal species and were positively associated with sporocarp dry mass. Sporocarp age was positively correlated with beetle diversity and abundance (as measured in a focal species, Megacollybia platyphylla, Tricholomataceae), and its effects were independent of dry mass. Many beetle species were generalists, visiting a wide breadth of fungi in both the Agaricales and Polyporales; however, several beetle taxa showed evidence of specialization on particular fungal hosts. Host association data were used to examine the structure underlying sporocarp-beetle associations. Here we present the first evidence of nested community structure in the sporocarp-beetle interaction network. PMID:20648747

  18. Species abundance distribution and population dynamics in a two-community model of neutral ecology

    NASA Astrophysics Data System (ADS)

    Vallade, M.; Houchmandzadeh, B.

    2006-11-01

    Explicit formulas for the steady-state distribution of species in two interconnected communities of arbitrary sizes are derived in the framework of Hubbell’s neutral model of biodiversity. Migrations of seeds from both communities as well as mutations in both of them are taken into account. These results generalize those previously obtained for the “island-continent” model and they allow an analysis of the influence of the ratio of the sizes of the two communities on the dominance/diversity equilibrium. Exact expressions for species abundance distributions are deduced from a master equation for the joint probability distribution of species in the two communities. Moreover, an approximate self-consistent solution is derived. It corresponds to a generalization of previous results and it proves to be accurate over a broad range of parameters. The dynamical correlations between the abundances of a species in both communities are also discussed.

  19. Weed management practices affect the diversity and relative abundance of physic nut mites.

    PubMed

    Saraiva, Althiéris de Sousa; Sarmento, Renato A; Erasmo, Eduardo A L; Pedro-Neto, Marçal; de Souza, Danival José; Teodoro, Adenir V; Silva, Daniella G

    2015-03-01

    Crop management practices determine weed community, which in turn may influence patterns of diversity and abundance of associated arthropods. This study aimed to evaluate whether local weed management practices influence the diversity and relative abundance of phytophagous and predatory mites, as well as mites with undefined feeding habits--of the families Oribatidae and Acaridae--in a physic nut (Jatropha curcas L.) plantation subjected to (1) within-row herbicide spraying and between-row mowing; (2) within-row herbicide spraying and no between-row mowing; (3) within-row weeding and between-row mowing; (4) within-row weeding and no between-row mowing; and (5) unmanaged (control). The herbicide used was glyphosate. Herbicide treatments resulted in higher diversity and relative abundance of predatory mites and mites with undefined feeding habit on physic nut shrubs. This was probably due to the toxic effects of the herbicide on mites or to removal of weeds. Within-row herbicide spraying combined with between-row mowing was the treatment that most contributed to this effect. Our results show that within-row weeds harbor important species of predatory mites and mites with undefined feeding habit. However, the dynamics of such mites in the system can be changed according to the weed management practice applied. Among the predatory mites of the family Phytoseiidae Amblydromalus sp. was the most abundant, whereas Brevipalpus phoenicis was the most frequent phytophagous mite and an unidentified oribatid species was the most frequent mite with undefined feeding habit. PMID:25528451

  20. Mosquitoes of Western Yunnan Province, China: Seasonal Abundance, Diversity, and Arbovirus Associations

    PubMed Central

    Yang, Wei-Hong; Feng, Yun; Nasci, Roger S.; Yang, Jie; Liu, Yong-Hua; Dong, Chao-Liang; Li, Shi; Zhang, Bao-Sen; Yin, Zheng-Liu; Wang, Pi-Yu; Fu, Shi-Hong; Li, Ming-Hua; Liu, Fen; Zhang, Juan; Sun, Jie; Li, Can-Wei; Gao, Xiao-Yan; Liu, Hong; Wang, Huan-Yu; Petersen, Lyle R.; Liang, Guo-Dong

    2013-01-01

    Objective The western borderland between Yunnan Province, China, and Myanmar is characterized by a climate that facilitates year-round production of mosquitoes. Numerous mosquito-transmitted viruses, including Japanese encephalitis virus circulate in this area. This project was to describe seasonal patterns in mosquito species abundance and arbovirus activity in the mosquito populations. Methods Mosquitoes were collected in Mangshi and Ruili cities of Dehong Prefecture near the border of China and Burma in Yunnan Province, the Peoples Republic of China in 2010. We monitored mosquito species abundance for a 12-month period using ultraviolet light, carbon dioxide baited CDC light and gravid traps; and tested the captured mosquitoes for the presence of virus to evaluate mosquito-virus associations in rural/agricultural settings in the area. Results A total of 43 species of mosquitoes from seven genera were collected, including 15 Culex species, 15 Anopheles spp., four Aedes spp., three Armigeres spp., one Mimomyia spp., two Uranotaenia spp. and three Mansonia spp.. Species richness and diversity varied between Mangshi and Ruili. Culex tritaeniorhynchus, Culex quinquefasciatus, Anopheles sinensis and Anopheles peditaeniatus were the most abundant species in both sampling sites. Ultraviolet light traps collected more specimens than CDC light traps baited with dry ice, though both collected the same variety of mosquito species. The CDC gravid trap was the most effective trap for capture of Culex quinquefasciatus, a species underrepresented in light trap collections. A total of 26 virus strains were isolated, which included 13 strains of Japanese encephalitis virus, four strains of Getah virus, one strain of Oya virus, one strain from the orbivirus genus, and seven strains of Culex pipien pallens densovirus. Conclusions The present study illustrates the value of monitoring mosquito populations and mosquito-transmitted viruses year-round in areas where the climate supports

  1. Species Diversity of Hypogeous Ascomycetes in Israel

    PubMed Central

    Wasser, Solomon P.

    2010-01-01

    We conducted a species diversity study of the hypogeous Ascomycetes of Israel. The hypogeous Ascomycetes in Israel include members of the families Pyronemataceae, Pezizaceae, and Tuberaceae, which are represented by seven species: Hydnocystis piligera, Terfezia arenaria, T. claveryi, T. oligosperma, Tirmania africana, Tuber asa, and T. nitidum; only T. asa is new to Israeli mycobiota. Synonymy, locations, collection data, general distribution, distribution in Israel, descriptions, a key to identification, illustrations, and taxonomic remarks are provided. PMID:23956647

  2. Does population size affect genetic diversity? A test with sympatric lizard species.

    PubMed

    Hague, M T J; Routman, E J

    2016-01-01

    Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations. PMID:26306730

  3. Diverse CLE peptides from cyst nematode species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant CLAVATA3/ESR (CLE)-like peptides play diverse roles in plant growth and development including maintenance of the stem cell population in the root meristem. Small secreted peptides sharing similarity to plant CLE signaling peptides have been isolated from several cyst nematode species including...

  4. Species diversity and distribution patterns of the ants of Amazonian Ecuador.

    PubMed

    Ryder Wilkie, Kari T; Mertl, Amy L; Traniello, James F A

    2010-01-01

    Ants are among the most diverse, abundant and ecologically significant organisms on earth. Although their species richness appears to be greatest in the New World tropics, global patterns of ant diversity and distribution are not well understood. We comprehensively surveyed ant diversity in a lowland primary rainforest in Western Amazonia, Ecuador using canopy fogging, pitfall traps, baits, hand collecting, mini-Winkler devices and subterranean probes to sample ants. A total of 489 ant species comprising 64 genera in nine subfamilies were identified from samples collected in only 0.16 square kilometers. The most species-rich genera were Camponotus, Pheidole, Pseudomyrmex, Pachycondyla, Brachymyrmex, and Crematogaster. Camponotus and Pseudomyrmex were most diverse in the canopy, while Pheidole was most diverse on the ground. The three most abundant ground-dwelling ant genera were Pheidole, Solenopsis and Pyramica. Crematogaster carinata was the most abundant ant species in the canopy; Wasmannia auropunctata was most abundant on the ground, and the army ant Labidus coecus was the most abundant subterranean species. Ant species composition among strata was significantly different: 80% of species were found in only one stratum, 17% in two strata, and 3% in all three strata. Elevation and the number of logs and twigs available as nest sites were significant predictors of ground-dwelling ant species richness. Canopy species richness was not correlated with any ecological variable measured. Subterranean species richness was negatively correlated with depth in the soil. When ant species were categorized using a functional group matrix based on diet, nest-site preference and foraging ecology, the greatest diversity was found in Omnivorous Canopy Nesters. Our study indicates ant species richness is exceptionally high at Tiputini. We project 647-736 ant species in this global hotspot of biodiversity. Considering the relatively small area surveyed, this region of western

  5. Species Diversity and Distribution Patterns of the Ants of Amazonian Ecuador

    PubMed Central

    Ryder Wilkie, Kari T.; Mertl, Amy L.; Traniello, James F. A.

    2010-01-01

    Ants are among the most diverse, abundant and ecologically significant organisms on earth. Although their species richness appears to be greatest in the New World tropics, global patterns of ant diversity and distribution are not well understood. We comprehensively surveyed ant diversity in a lowland primary rainforest in Western Amazonia, Ecuador using canopy fogging, pitfall traps, baits, hand collecting, mini-Winkler devices and subterranean probes to sample ants. A total of 489 ant species comprising 64 genera in nine subfamilies were identified from samples collected in only 0.16 square kilometers. The most species-rich genera were Camponotus, Pheidole, Pseudomyrmex, Pachycondyla, Brachymyrmex, and Crematogaster. Camponotus and Pseudomyrmex were most diverse in the canopy, while Pheidole was most diverse on the ground. The three most abundant ground-dwelling ant genera were Pheidole, Solenopsis and Pyramica. Crematogaster carinata was the most abundant ant species in the canopy; Wasmannia auropunctata was most abundant on the ground, and the army ant Labidus coecus was the most abundant subterranean species. Ant species composition among strata was significantly different: 80% of species were found in only one stratum, 17% in two strata, and 3% in all three strata. Elevation and the number of logs and twigs available as nest sites were significant predictors of ground-dwelling ant species richness. Canopy species richness was not correlated with any ecological variable measured. Subterranean species richness was negatively correlated with depth in the soil. When ant species were categorized using a functional group matrix based on diet, nest-site preference and foraging ecology, the greatest diversity was found in Omnivorous Canopy Nesters. Our study indicates ant species richness is exceptionally high at Tiputini. We project 647–736 ant species in this global hotspot of biodiversity. Considering the relatively small area surveyed, this region of western

  6. Abundance anomaly of the 13C species of CCH

    NASA Astrophysics Data System (ADS)

    Sakai, N.; Saruwatari, O.; Sakai, T.; Takano, S.; Yamamoto, S.

    2010-03-01

    Aims: We have observed the N = 1-0 lines of CCH and its 13C isotopic species toward a cold dark cloud, TMC-1 and a star-forming region, L1527, to investigate the 13C abundances and formation pathways of CCH. Methods: The observations have been carried out with the IRAM 30 m telescope. Results: We have successfully detected the lines of 13CCH and C13CH toward the both sources and found a significant intensity difference between the two 13C isotopic species. The [C13CH] /[13CCH] abundance ratios are 1.6 ± 0.4 (3σ) and 1.6 ± 0.1 (3σ) for TMC-1 and L1527, respectively. The abundance difference between C13CH and 13CCH means that the two carbon atoms of CCH are not equivalent in the formation pathway. On the other hand, the [CCH]/[C13CH] and [CCH]/[13CCH] ratios are evaluated to be larger than 170 and 250 toward TMC-1, and to be larger than 80 and 135 toward L1527, respectively. Therefore, both of the 13C species are significantly diluted in comparison with the interstellar 12C/13C ratio of 60. The dilution is discussed in terms of a behavior of 13C in molecular clouds.

  7. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies

    PubMed Central

    Jain, Meha; Flynn, Dan FB; Prager, Case M; Hart, Georgia M; DeVan, Caroline M; Ahrestani, Farshid S; Palmer, Matthew I; Bunker, Daniel E; Knops, Johannes MH; Jouseau, Claire F; Naeem, Shahid

    2014-01-01

    The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait-based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance-weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning. PMID:24455165

  8. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies.

    PubMed

    Jain, Meha; Flynn, Dan Fb; Prager, Case M; Hart, Georgia M; Devan, Caroline M; Ahrestani, Farshid S; Palmer, Matthew I; Bunker, Daniel E; Knops, Johannes Mh; Jouseau, Claire F; Naeem, Shahid

    2014-01-01

    The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait-based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance-weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning. PMID:24455165

  9. The edaphic quantitative protargol stain: a sampling protocol for assessing soil ciliate abundance and diversity.

    PubMed

    Acosta-Mercado, Dimaris; Lynn, Denis H

    2003-06-01

    It has been suggested that species loss from microbial groups low in diversity that occupy trophic positions close to the base of the detrital food web could be critical for terrestrial ecosystem functioning. Among the protozoans within the soil microbial loop, ciliates are presumably the least abundant and of low diversity. However, the lack of a standardized method to quantitatively enumerate and identify them has hampered our knowledge about the magnitude of their active and potential diversity, and about the interactions in which they are involved. Thus, the Edaphic Quantitative Protargol Staining (EQPS) method is provided to simultaneously account for ciliate species richness and abundance in a quantitative and qualitative way. This direct method allows this rapid and simultaneous assessment by merging the Non-flooded Petri Dish (NFPD) method [Prog. Protistol. 2 (1987) 69] and the Quantitative Protargol Stain (QPS) method [Montagnes, D.J.S., Lynn, D.H., 1993. A quantitative protargol stain (QPS) for ciliates and other protists. In: Kemp, P.F., Sherr, B.F., Sherr, E.B., Cole, J.J. (Eds.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL, pp. 229-240]. The abovementioned protocols were refined by experiments examining the spatial distribution of ciliates under natural field conditions, sampling intensity, the effect of storage, and the use of cytological preparations versus live observations. The EQPS could be useful in ecological studies since it provides both a "snapshot" of the active and effective diversity and a robust estimate of the potential diversity. PMID:12689714

  10. Anthropic effects on sand fly (Diptera: Psychodidae) abundance and diversity in an Amazonian rural settlement, Brazil.

    PubMed

    Ramos, Walkyria Rodrigues; Medeiros, Jansen Fernandes; Julião, Genimar Rebouças; Ríos-Velásquez, Claudia María; Marialva, Eric Fabrício; Desmouliére, Sylvain J M; Luz, Sérgio Luiz Bessa; Pessoa, Felipe Arley Costa

    2014-11-01

    Sand flies (Diptera: Psychodidae) are responsible for the transmission of protozoan parasites that cause leishmaniases. They are found predominantly in forests, but some species exploit environments that have been subject to deforestation and subsequent human colonization. Studies conducted in Brazil over the past 30 years show that some species are adapting to peri-urban and urban settings. We evaluated sand fly diversity and abundance in the rural settlement of Rio Pardo, Presidente Figueiredo Municipality, Amazonas State, Brazil. Settlement households were divided into four categories. These categories were determined by the human population density and the degree of deforestation in the immediate area. We used CDC light traps to sample the area surrounding 24 households (6 households in each category). Samples were taken on six occasions during September-November 2009 and June-August 2010. A total of 3074 sand fly specimens were collected, including 1163 females and 1911 males. These were classified into 13 genera and 52 species. The greatest abundance of sand flies and the greatest richness of species were observed in areas where human population density was highest. Our results show that changes in the human occupancy and vegetation management in rural settlements may affect the population dynamics and distribution of sand fly species, thereby affecting the local transmission of cutaneous leishmaniases. PMID:25009952

  11. Neutral theory and relative species abundance in ecology

    NASA Astrophysics Data System (ADS)

    Volkov, Igor; Banavar, Jayanth R.; Hubbell, Stephen P.; Maritan, Amos

    2003-08-01

    The theory of island biogeography asserts that an island or a local community approaches an equilibrium species richness as a result of the interplay between the immigration of species from the much larger metacommunity source area and local extinction of species on the island (local community). Hubbell generalized this neutral theory to explore the expected steady-state distribution of relative species abundance (RSA) in the local community under restricted immigration. Here we present a theoretical framework for the unified neutral theory of biodiversity and an analytical solution for the distribution of the RSA both in the metacommunity (Fisher's log series) and in the local community, where there are fewer rare species. Rare species are more extinction-prone, and once they go locally extinct, they take longer to re-immigrate than do common species. Contrary to recent assertions, we show that the analytical solution provides a better fit, with fewer free parameters, to the RSA distribution of tree species on Barro Colorado Island, Panama, than the lognormal distribution.

  12. Solid and Aqueous Geochemical Controls on Phylogenetic Diversity and Abundance of Microbial Biofilms

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Bennett, P. C.

    2015-12-01

    In the subsurface, the vast majority of microorganisms are found in biofilms attached to mineral surfaces. The fickle nature of these environments (chemically and physically) likely causes dynamic ecological shifts in these microbial communities. We used laboratory biofilm reactors (inoculated with a diverse subsurface community) to explore the role of mineralogy as part of a microbe-mineral-water ecosystem under variable pressures (mineralogy, pH, carbon, phosphate). Following multivariate analyses, pH was identified as the key physicochemical property associated with variation in both phylogenetic and taxonomic diversity as well as overall community structure (P<0.05). In particular, the ability of minerals, media, or a combination of the two to buffer metabolically generated acidity impacted community structure under oligotrophic and eutrophic conditions. Additionally, we found that media phosphate limitations were significantly correlated to greater biofilm accumulation (P<0.002), but lower species richness (P<0.001) and Shannon diversity (P<0.001); while mineral-bound phosphate limitations were significantly correlated to lesser biofilm accumulation (P<0.05) but not to species richness or diversity. Carbon (as acetate, lactate, or formate) added to the media was correlated with a significant increase in biofilm accumulation (P<0.04), and overall Shannon diversity (P<0.006), but not significantly correlated with overall species richness. Although variable in magnitude, the effect of surface chemistry on microbial diversity (both phylogenetic and taxonomic) was statistically significant, in all reactors, regardless of environmental pressures. Phylogenetically, surface type (carbonate, silicate, or Al-silicate) controlled ~70-90%, meaning that organisms attached to similar surfaces were significantly more genetically similar. Taxonomy and proportional abundance was significantly sensitive to variations in media chemistry with consistent patterns emerging among

  13. Abundance, diversity, and latitudinal gradients of southeastern Atlantic and Antarctic abyssal gastropods

    NASA Astrophysics Data System (ADS)

    Schrödl, M.; Bohn, J. M.; Brenke, N.; Rolán, E.; Schwabe, E.

    2011-03-01

    Mollusca are widely used for deriving concepts on deep-sea biology and biodiversity, yet abyssal collections are limited to only a few regions of the world ocean and biased toward the northern Atlantic. The present study compares gastropod molluscs sampled along a transect through the southern Atlantic from the equator to Antarctica. The DIVA I and II expeditions concentrated on the hardly explored Guinea, Angola, and Cape Basins. Of the 145 deep-sea deployments (5025-5656 m depth) analyzed to date, 20 have yielded 68 specimens of benthic gastropods, representing 27 species. Only five abyssal species were previously known, four of them from the northern Atlantic deep sea; the remainder appear to be undescribed. Interestingly, there is no faunal overlap with the nearby Antarctic deep-sea. Most of these DIVA species (63%) are represented by single individuals, or limited to one or two stations. The rarity (i.e. 0.55 specimens m -2 calculated from quantitative corers) and still undetectable patchiness of southeastern Atlantic abyssal gastropods may indicate "source-sink" dynamics, but comparison is needed with thus far hardly explored regional bathyal faunas. The BRENKE-epibenthic sledge (EBS) may be efficient at surveying the abyssal gastropod species richness, but is shown to drastically underestimate true abundances. Low diversity values throughout the three southern Atlantic ocean basins do further challenge earlier estimates of a hyperdiverse global abyssal macrofauna. Comparative EBS data available from the southern hemisphere indicate a gradient from the equatorial Guinea Basin towards higher gastropod abundances and diversity in Antarctica. This is in clear contrast to the paradigm of a globally strongly decreasing marine diversity from lower to higher latitudes, highlighting the importance of further exploring the southern fauna from the tropics to Antarctica.

  14. Species composition and seasonal abundance of Chaetognatha in the subtropical coastal waters of Hong Kong

    NASA Astrophysics Data System (ADS)

    Tse, P.; Hui, S. Y.; Wong, C. K.

    2007-06-01

    Species composition, species diversity and seasonal abundance of chaetognaths were studied in Tolo Harbour and the coastal waters of eastern Hong Kong. Tolo Harbour is a semi-enclosed and poorly flushed bay with a long history of eutrophication. It opens into the eastern coast of Hong Kong which is fully exposed to water currents from the South China Sea. Zooplankton samples were collected monthly from July 2003 to July 2005 at six stations. Twenty species of chaetognaths were identified. They included six species of the genus Aidanosagitta ( Aidanosagitta neglecta, Aidanosagitta delicata, Aidanosagitta johorensis, Aidanosagitta regularis, Aidanosagitta bedfordii and Aidanosagitta crassa), four species of the genus Zonosagitta ( Zonosagitta nagae, Zonosagitta bedoti, Zonosagitta bruuni and Zonosagitta pulchra), three species of the genus Ferosagitta ( Ferosagitta ferox, Ferosagitta tokiokai and Ferosagitta robusta) and one species each from the genera Serratosagitta ( Serratosagitta pacifica), Decipisagitta ( Decipisagitta decipiens), Flaccisagitta ( Flaccisagitta enflata), Krohnitta ( Krohnitta pacifica), Mesosagitta ( Mesosagitta minima), Pterosagitta ( Pterosagitta draco) and Sagitta ( Sagitta bipunctata). The most abundant species were Flaccisagitta enflata, A. neglecta and A. delicata. Averaged over the entire study period, the densities of Flaccisagitta enflata, A. neglecta and A. delicata were 9.3, 6.6 and 5.2 ind. m -3, respectively. Overall, these species constituted 39.7%, 28.2% and 22.0% of all chaetognaths collected in the study. Averaged over the entire study, the density of most of the low abundance species was <0.6 ind. m -3. Flaccisagitta enflata occurred throughout the year at all sampling stations. Aidanosagitta neglecta occurred at all sampling stations, but was most common in summer. Aidanosagitta delicata was most common in Tolo Harbour during summer. Tolo Harbour supported larger populations, but fewer species of chaetognaths than the

  15. Abundance and Genetic Diversity of Microbial Polygalacturonase and Pectate Lyase in the Sheep Rumen Ecosystem

    PubMed Central

    Wang, Yaru; Luo, Huiying; Huang, Huoqing; Shi, Pengjun; Bai, Yingguo; Yang, Peilong; Yao, Bin

    2012-01-01

    Background Efficient degradation of pectin in the rumen is necessary for plant-based feed utilization. The objective of this study was to characterize the diversity, abundance, and functions of pectinases from microorganisms in the sheep rumen. Methodology/Principal Findings A total of 103 unique fragments of polygalacturonase (PF00295) and pectate lyase (PF00544 and PF09492) genes were retrieved from microbial DNA in the rumen of a Small Tail Han sheep, and 66% of the sequences of these fragments had low identities (<65%) with known sequences. Phylogenetic tree building separated the PF00295, PF00544, and PF09492 sequences into five, three, and three clades, respectively. Cellulolytic and noncellulolytic Butyrivibrio, Prevotella, and Fibrobacter species were the major sources of the pectinases. The two most abundant pectate lyase genes were cloned, and their protein products, expressed in Escherichia coli, were characterized. Both enzymes probably act extracellularly as their nucleotide sequences contained signal sequences, and they had optimal activities at the ruminal physiological temperature and complementary pH-dependent activity profiles. Conclusion/Significance This study reveals the specificity, diversity, and abundance of pectinases in the rumen ecosystem and provides two additional ruminal pectinases for potential industrial use under physiological conditions. PMID:22815874

  16. When Can Species Abundance Data Reveal Non-neutrality?

    PubMed Central

    Al Hammal, Omar; Alonso, David; Etienne, Rampal S.; Cornell, Stephen J.

    2015-01-01

    Species abundance distributions (SAD) are probably ecology’s most well-known empirical pattern, and over the last decades many models have been proposed to explain their shape. There is no consensus over which model is correct, because the degree to which different processes can be discerned from SAD patterns has not yet been rigorously quantified. We present a power calculation to quantify our ability to detect deviations from neutrality using species abundance data. We study non-neutral stochastic community models, and show that the presence of non-neutral processes is detectable if sample size is large enough and/or the amplitude of the effect is strong enough. Our framework can be used for any candidate community model that can be simulated on a computer, and determines both the sampling effort required to distinguish between alternative processes, and a range for the strength of non-neutral processes in communities whose patterns are statistically consistent with neutral theory. We find that even data sets of the scale of the 50 Ha forest plot on Barro Colorado Island, Panama, are unlikely to be large enough to detect deviations from neutrality caused by competitive interactions alone, though the presence of multiple non-neutral processes with contrasting effects on abundance distributions may be detectable. PMID:25793889

  17. When can species abundance data reveal non-neutrality?

    PubMed

    Al Hammal, Omar; Alonso, David; Etienne, Rampal S; Cornell, Stephen J

    2015-03-01

    Species abundance distributions (SAD) are probably ecology's most well-known empirical pattern, and over the last decades many models have been proposed to explain their shape. There is no consensus over which model is correct, because the degree to which different processes can be discerned from SAD patterns has not yet been rigorously quantified. We present a power calculation to quantify our ability to detect deviations from neutrality using species abundance data. We study non-neutral stochastic community models, and show that the presence of non-neutral processes is detectable if sample size is large enough and/or the amplitude of the effect is strong enough. Our framework can be used for any candidate community model that can be simulated on a computer, and determines both the sampling effort required to distinguish between alternative processes, and a range for the strength of non-neutral processes in communities whose patterns are statistically consistent with neutral theory. We find that even data sets of the scale of the 50 Ha forest plot on Barro Colorado Island, Panama, are unlikely to be large enough to detect deviations from neutrality caused by competitive interactions alone, though the presence of multiple non-neutral processes with contrasting effects on abundance distributions may be detectable. PMID:25793889

  18. Habitat traits and species interactions differentially affect abundance and body size in pond-breeding amphibians.

    PubMed

    Ousterhout, Brittany H; Anderson, Thomas L; Drake, Dana L; Peterman, William E; Semlitsch, Raymond D

    2015-07-01

    In recent studies, habitat traits have emerged as stronger predictors of species occupancy, abundance, richness and diversity than competition. However, in many cases, it remains unclear whether habitat also mediates processes more subtle than competitive exclusion, such as growth, or whether intra- and interspecific interactions among individuals of different species may be better predictors of size. To test whether habitat traits are a stronger predictor of abundance and body size than intra- and interspecific interactions, we measured the density and body size of three species of larval salamanders in 192 ponds across a landscape. We found that the density of larvae was best predicted by models that included habitat features, while models incorporating interactions among individuals of different species best explained the body size of larvae. Additionally, we found a positive relationship between focal species density and congener density, while focal species body size was negatively related to congener density. We posit that salamander larvae may not experience competitive exclusion and thus reduced densities, but instead compensate for increased competition behaviourally (e.g. reduced foraging), resulting in decreased growth. The discrepancy between larval density and body size, a strong predictor of fitness in this system, also highlights a potential shortcoming in using density or abundance as a metric of habitat quality or population health. PMID:25643605

  19. Regular Patterns for Proteome-Wide Distribution of Protein Abundance across Species

    PubMed Central

    Jiang, Ying; Ying, Wantao; Wu, Songfeng; Zhu, Yunping; Liu, Siqi; Yang, Pengyuan; Qian, Xiaohong; He, Fuchu

    2012-01-01

    A proteome of the bio-entity, including cell, tissue, organ, and organism, consists of proteins of diverse abundance. The principle that determines the abundance of different proteins in a proteome is of fundamental significance for an understanding of the building blocks of the bio-entity. Here, we report three regular patterns in the proteome-wide distribution of protein abundance across species such as human, mouse, fly, worm, yeast, and bacteria: in most cases, protein abundance is positively correlated with the protein's origination time or sequence conservation during evolution; it is negatively correlated with the protein's domain number and positively correlated with domain coverage in protein structure, and the correlations became stronger during the course of evolution; protein abundance can be further stratified by the function of the protein, whereby proteins that act on material conversion and transportation (mass category) are more abundant than those that act on information modulation (information category). Thus, protein abundance is intrinsically related to the protein's inherent characters of evolution, structure, and function. PMID:22427835

  20. Observed and predicted effects of climate change on species abundance in protected areas

    NASA Astrophysics Data System (ADS)

    Johnston, Alison; Ausden, Malcolm; Dodd, Andrew M.; Bradbury, Richard B.; Chamberlain, Dan E.; Jiguet, Frédéric; Thomas, Chris D.; Cook, Aonghais S. C. P.; Newson, Stuart E.; Ockendon, Nancy; Rehfisch, Mark M.; Roos, Staffan; Thaxter, Chris B.; Brown, Andy; Crick, Humphrey Q. P.; Douse, Andrew; McCall, Rob A.; Pontier, Helen; Stroud, David A.; Cadiou, Bernard; Crowe, Olivia; Deceuninck, Bernard; Hornman, Menno; Pearce-Higgins, James W.

    2013-12-01

    The dynamic nature and diversity of species' responses to climate change poses significant difficulties for developing robust, long-term conservation strategies. One key question is whether existing protected area networks will remain effective in a changing climate. To test this, we developed statistical models that link climate to the abundance of internationally important bird populations in northwestern Europe. Spatial climate-abundance models were able to predict 56% of the variation in recent 30-year population trends. Using these models, future climate change resulting in 4.0°C global warming was projected to cause declines of at least 25% for more than half of the internationally important populations considered. Nonetheless, most EU Special Protection Areas in the UK were projected to retain species in sufficient abundances to maintain their legal status, and generally sites that are important now were projected to be important in the future. The biological and legal resilience of this network of protected areas is derived from the capacity for turnover in the important species at each site as species' distributions and abundances alter in response to climate. Current protected areas are therefore predicted to remain important for future conservation in a changing climate.

  1. Toward a trophic theory of species diversity.

    PubMed

    Terborgh, John W

    2015-09-15

    Efforts to understand the ecological regulation of species diversity via bottom-up approaches have failed to yield a consensus theory. Theories based on the alternative of top-down regulation have fared better. Paine's discovery of keystone predation demonstrated that the regulation of diversity via top-down forcing could be simple, strong, and direct, yet ecologists have persistently failed to perceive generality in Paine's result. Removing top predators destabilizes many systems and drives transitions to radically distinct alternative states. These transitions typically involve community reorganization and loss of diversity, implying that top-down forcing is crucial to diversity maintenance. Contrary to the expectations of bottom-up theories, many terrestrial herbivores and mesopredators are capable of sustained order-of-magnitude population increases following release from predation, negating the assumption that populations of primary consumers are resource limited and at or near carrying capacity. Predation sensu lato (to include Janzen-Connell mortality agents) has been shown to promote diversity in a wide range of ecosystems, including rocky intertidal shelves, coral reefs, the nearshore ocean, streams, lakes, temperate and tropical forests, and arctic tundra. The compelling variety of these ecosystems suggests that top-down forcing plays a universal role in regulating diversity. This conclusion is further supported by studies showing that the reduction or absence of predation leads to diversity loss and, in the more dramatic cases, to catastrophic regime change. Here, I expand on the thesis that diversity is maintained by the interaction between predation and competition, such that strong top-down forcing reduces competition, allowing coexistence. PMID:26374788

  2. Toward a trophic theory of species diversity

    PubMed Central

    Terborgh, John W.

    2015-01-01

    Efforts to understand the ecological regulation of species diversity via bottom-up approaches have failed to yield a consensus theory. Theories based on the alternative of top-down regulation have fared better. Paine’s discovery of keystone predation demonstrated that the regulation of diversity via top-down forcing could be simple, strong, and direct, yet ecologists have persistently failed to perceive generality in Paine’s result. Removing top predators destabilizes many systems and drives transitions to radically distinct alternative states. These transitions typically involve community reorganization and loss of diversity, implying that top-down forcing is crucial to diversity maintenance. Contrary to the expectations of bottom-up theories, many terrestrial herbivores and mesopredators are capable of sustained order-of-magnitude population increases following release from predation, negating the assumption that populations of primary consumers are resource limited and at or near carrying capacity. Predation sensu lato (to include Janzen–Connell mortality agents) has been shown to promote diversity in a wide range of ecosystems, including rocky intertidal shelves, coral reefs, the nearshore ocean, streams, lakes, temperate and tropical forests, and arctic tundra. The compelling variety of these ecosystems suggests that top-down forcing plays a universal role in regulating diversity. This conclusion is further supported by studies showing that the reduction or absence of predation leads to diversity loss and, in the more dramatic cases, to catastrophic regime change. Here, I expand on the thesis that diversity is maintained by the interaction between predation and competition, such that strong top-down forcing reduces competition, allowing coexistence. PMID:26374788

  3. Wildlife Abundance and Diversity as Indicators of Tourism Potential in Northern Botswana

    PubMed Central

    Winterbach, Christiaan W.; Whitesell, Carolyn; Somers, Michael J.

    2015-01-01

    Wildlife tourism can provide economic incentives for conservation. Due to the abundance of wildlife and the presence of charismatic species some areas are better suited to wildlife tourism. Our first objective was to develop criteria based on wildlife abundance and diversity to evaluate tourism potential in the Northern Conservation Zone of Botswana. Secondly we wanted to quantify and compare tourism experiences in areas with high and low tourism potential. We used aerial survey data to estimate wildlife biomass and diversity to determine tourism potential, while data from ground surveys quantified the tourist experience. Areas used for High Paying Low Volume tourism had significantly higher mean wildlife biomass and wildlife diversity than the areas avoided for this type of tourism. Only 22% of the Northern Conservation Zone has intermediate to high tourism potential. The areas with high tourism potential, as determined from the aerial survey data, provided tourists with significantly better wildlife sightings (ground surveys) than the low tourism potential areas. Even Low Paying tourism may not be economically viable in concessions that lack areas with intermediate to high tourism potential. The largest part of the Northern Conservation Zone has low tourism potential, but low tourism potential is not equal to low conservation value. Alternative conservation strategies should be developed to complement the economic incentive provided by wildlife-based tourism in Botswana. PMID:26308859

  4. Diversity, abundance, and evolutionary dynamics of Pong-like transposable elements in Triticeae.

    PubMed

    Markova, Dragomira N; Mason-Gamer, Roberta J

    2015-12-01

    Pong-like elements are members of the PIF/Harbinger superfamily of DNA transposons that has been described in many plants, animals, and fungi. Most Pong elements contain two open reading frames (ORFs). One encodes a transposase (ORF2) that catalyzes transposition of Pong and related non-autonomous elements, while the function of the second is unknown. Little is known about the evolutionary history of Pong elements in flowering plants. In this work, we present the first comprehensive analysis of the diversity, abundance, and evolution of the Pong-like transposase gene in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of nuclear-encoded Pong elements in any organism. A phylogenetic analysis of nearly 300 Pong sequences based on a conserved region of the transposase domain revealed a complex evolutionary history of Pong elements that can be best explained by ancestral polymorphism, followed by differential evolutionary success of some transposase lineages, and by occasional horizontal transfer between phylogenetically distant genera. In addition, we used transposon display to estimate the abundance of the transposase gene within Triticeae genomes, and our results revealed varying levels of Pong proliferation, with numbers of transposase copies ranging from 22 to 92. Comparisons of Pong transposase abundance to flow cytometry estimates of genome size revealed that larger Triticeae genome size was not correlated with transposase abundance. PMID:26206730

  5. Species composition and abundance of Brevipalpus spp. on different citrus species in Mexican orchards.

    PubMed

    Salinas-Vargas, D; Santillán-Galicia, M T; Valdez-Carrasco, J; Mora-Aguilera, G; Atanacio-Serrano, Y; Romero-Pescador, P

    2013-08-01

    We studied the abundance of Brevipalpus spp. in citrus orchards in the Mexican states of Yucatan, Quintana Roo and Campeche. Mites were collected from 100 trees containing a mixture of citrus species where sweet orange was always the main species. Eight collections were made at each location from February 2010 to February 2011. Mites from the genus Brevipalpus were separated from other mites surveyed and their abundance and relationships with the different citrus species were quantified throughout the collection period. A subsample of 25% of the total Brevipalpus mites collected were identified to species level and the interaction of mite species and citrus species were described. Brevipalpus spp. were present on all collection dates and their relative abundance was similar on all citrus species studies. The smallest number of mites collected was during the rainy season. Brevipalpus phoenicis (Geijskes) and Brevipalpus californicus (Banks) were the only two species present and they were found in all locations except Campeche, where only B. phoenicis was present. Yucatan and Campeche are at greater risk of leprosis virus transmission than Quintana Roo because the main vector, B. phoenicis, was more abundant than B. californicus. The implications of our results for the design of more accurate sampling and control methods for Brevipalpus spp. are discussed. PMID:23949863

  6. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest.

    PubMed

    Camenzind, Tessa; Hempel, Stefan; Homeier, Jürgen; Horn, Sebastian; Velescu, Andre; Wilcke, Wolfgang; Rillig, Matthias C

    2014-12-01

    Increased nitrogen (N) depositions expected in the future endanger the diversity and stability of ecosystems primarily limited by N, but also often co-limited by other nutrients like phosphorus (P). In this context a nutrient manipulation experiment (NUMEX) was set up in a tropical montane rainforest in southern Ecuador, an area identified as biodiversity hotspot. We examined impacts of elevated N and P availability on arbuscular mycorrhizal fungi (AMF), a group of obligate biotrophic plant symbionts with an important role in soil nutrient cycles. We tested the hypothesis that increased nutrient availability will reduce AMF abundance, reduce species richness and shift the AMF community toward lineages previously shown to be favored by fertilized conditions. NUMEX was designed as a full factorial randomized block design. Soil cores were taken after 2 years of nutrient additions in plots located at 2000 m above sea level. Roots were extracted and intraradical AMF abundance determined microscopically; the AMF community was analyzed by 454-pyrosequencing targeting the large subunit rDNA. We identified 74 operational taxonomic units (OTUs) with a large proportion of Diversisporales. N additions provoked a significant decrease in intraradical abundance, whereas AMF richness was reduced significantly by N and P additions, with the strongest effect in the combined treatment (39% fewer OTUs), mainly influencing rare species. We identified a differential effect on phylogenetic groups, with Diversisporales richness mainly reduced by N additions in contrast to Glomerales highly significantly affected solely by P. Regarding AMF community structure, we observed a compositional shift when analyzing presence/absence data following P additions. In conclusion, N and P additions in this ecosystem affect AMF abundance, but especially AMF species richness; these changes might influence plant community composition and productivity and by that various ecosystem processes. PMID:24764217

  7. Diversity and abundance of mosquitoes (Diptera:Culicidae) in an urban park: larval habitats and temporal variation.

    PubMed

    Medeiros-Sousa, Antônio R; Ceretti-Júnior, Walter; de Carvalho, Gabriela C; Nardi, Marcello S; Araujo, Alessandra B; Vendrami, Daniel P; Marrelli, Mauro T

    2015-10-01

    Urban parks are areas designated for human recreation but also serve as shelter and refuge for populations of several species of native fauna, both migratory and introduced. In Brazil, the effect of annual climate variations on Aedes aegypti and dengue epidemics in large cities like São Paulo is well known, but little is known about how such variations can affect the diversity of mosquito vectors in urban parks and the risk of disease transmission by these vectors. This study investigates the influence of larval habitats and seasonal factors on the diversity and abundance of Culicidae fauna in Anhanguera Park, one of the largest remaining green areas in the city of São Paulo. Species composition and richness and larval habitats were identified. Seasonality (cold-dry and hot-rainy periods) and year were considered as explanatory variables and the models selection approach was developed to investigate the relationship of these variables with mosquito diversity and abundance. A total of 11,036 specimens from 57 taxa distributed in 13 genera were collected. Culex nigripalpus, Cx. quinquefasciatus and Aedes albopictus were the most abundant species. Bamboo internodes and artificial breeding sites showed higher abundance, while ponds and puddles showed greater richness. Significant relationships were observed between abundance and seasonality, with a notable increase in the mosquitos abundance in the warm-rainy periods. The Shannon and Berger-Parker indices were related with interaction between seasonality and year, however separately these predictors showed no relationship with ones. The increased abundance of mosquitoes in warm-rainy months and the fact that some of the species are epidemiologically important increase not only the risk of pathogen transmission to people who frequent urban parks but also the nuisance represented by insect bites. The findings of this study highlight the importance of knowledge of culicid ecology in green areas in urban environments

  8. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    SciTech Connect

    Resasco, Julian; et al,

    2014-04-01

    Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.

  9. Microbial Diversity and Putative Diazotrophy in High- and Low-Microbial-Abundance Mediterranean Sponges

    PubMed Central

    Coma, Rafel; Riemann, Lasse

    2015-01-01

    Microbial communities associated with marine sponges carry out nutrient transformations essential for benthic-pelagic coupling; however, knowledge about their composition and function is still sparse. We evaluated the richness and diversity of prokaryotic assemblages associated with three high-microbial-abundance (HMA) and three low-microbial-abundance (LMA) sympatric Mediterranean sponges to address their stability and uniqueness. Moreover, to examine functionality and because an imbalance between nitrogen ingestion and excretion has been observed for some of these species, we sequenced nitrogenase genes (nifH) and measured N2 fixation. The prokaryotic communities in the two sponge types did not differ in terms of richness, but the highest diversity was found in HMA sponges. Moreover, the discrete composition of the communities in the two sponge types relative to that in the surrounding seawater indicated that horizontal transmission and vertical transmission affect the microbiomes associated with the two sponge categories. nifH genes were found in all LMA species and sporadically in one HMA species, and about half of the nifH gene sequences were common between the different sponge species and were also found in the surrounding water, suggesting horizontal transmission. 15N2-enriched incubations showed that N2 fixation was measurable in the water but was not associated with the sponges. Also, the analysis of the isotopic ratio of 15N to 14N in sponge tissue indicated that N2 fixation is not an important source of nitrogen in these Mediterranean sponges. Overall, our results suggest that compositional and functional features differ between the prokaryotic communities associated with HMA and LMA sponges, which may affect sponge ecology. PMID:26070678

  10. Microbial Diversity and Putative Diazotrophy in High- and Low-Microbial-Abundance Mediterranean Sponges.

    PubMed

    Ribes, Marta; Dziallas, Claudia; Coma, Rafel; Riemann, Lasse

    2015-09-01

    Microbial communities associated with marine sponges carry out nutrient transformations essential for benthic-pelagic coupling; however, knowledge about their composition and function is still sparse. We evaluated the richness and diversity of prokaryotic assemblages associated with three high-microbial-abundance (HMA) and three low-microbial-abundance (LMA) sympatric Mediterranean sponges to address their stability and uniqueness. Moreover, to examine functionality and because an imbalance between nitrogen ingestion and excretion has been observed for some of these species, we sequenced nitrogenase genes (nifH) and measured N2 fixation. The prokaryotic communities in the two sponge types did not differ in terms of richness, but the highest diversity was found in HMA sponges. Moreover, the discrete composition of the communities in the two sponge types relative to that in the surrounding seawater indicated that horizontal transmission and vertical transmission affect the microbiomes associated with the two sponge categories. nifH genes were found in all LMA species and sporadically in one HMA species, and about half of the nifH gene sequences were common between the different sponge species and were also found in the surrounding water, suggesting horizontal transmission. (15)N2-enriched incubations showed that N2 fixation was measurable in the water but was not associated with the sponges. Also, the analysis of the isotopic ratio of (15)N to (14)N in sponge tissue indicated that N2 fixation is not an important source of nitrogen in these Mediterranean sponges. Overall, our results suggest that compositional and functional features differ between the prokaryotic communities associated with HMA and LMA sponges, which may affect sponge ecology. PMID:26070678

  11. Annual cycle of zooplankton abundance and species composition in Izmit Bay (the northeastern Marmara Sea)

    NASA Astrophysics Data System (ADS)

    Isinibilir, Melek; Kideys, Ahmet E.; Tarkan, Ahmet N.; Yilmaz, I. Noyan

    2008-07-01

    The monthly abundance, biomass and taxonomic composition of zooplankton of Izmit Bay (the northeastern Marmara Sea) were studied from October 2001 to September 2002. Most species within the zooplankton community displayed a clear pattern of succession throughout the year. Generally copepods and cladocerans were the most abundant groups, while the contribution of meroplankton increased at inner-most stations and dominated the zooplankton. Both species number ( S) and diversity ( H') were positively influenced by the increase in salinity of upper layers ( r = 0.30 and r = 0.31, p < 0.001, respectively), while chlorophyll a was negatively affected ( r = -0.36, p < 0.001). Even though Noctiluca scintillans had a significant seasonality ( F11,120 = 8.45, p < 0.001, ANOVA), abundance was not related to fluctuations in temperature and only chlorophyll a was adversely correlated ( r = -0.35, p < 0.001). In general, there are some minor differences in zooplankton assemblages of upper and lower layers. A comparison of the species composition and abundance of Izmit Bay with other Black Sea bays reveals a high similarity between them.

  12. Community structure influences species' abundance along environmental gradients.

    PubMed

    Eloranta, Antti P; Helland, Ingeborg P; Sandlund, Odd T; Hesthagen, Trygve; Ugedal, Ola; Finstad, Anders G

    2016-01-01

    Species' response to abiotic environmental variation can be influenced by local community structure and interspecific interactions, particularly in restricted habitats such as islands and lakes. In temperate lakes, future increase in water temperature and run-off of terrestrial (allochthonous) dissolved organic carbon (DOC) are predicted to alter community composition and the overall ecosystem productivity. However, little is known about how the present community structure and abiotic environmental variation interact to affect the abundance of native fish populations. We used a space-for-time approach to study how local community structure interact with lake morphometric and climatic characteristics (i.e. temperature and catchment productivity) to affect brown trout (Salmo trutta L.) yield in 283 Norwegian lakes located in different biogeographical regions. Brown trout yield (based on data from standardized survey gill net fishing; g 100 m(-2) gill net night(-1)) was generally lower in lakes where other fish species were present than in lakes with brown trout only. The yield showed an overall negative relationship with increasing temperature and a positive relationship with lake shoreline complexity. Brown trout yield was also negatively correlated with DOC load (measured using Normalized Difference Vegetation Index as a proxy) and lake size and depth (measured using terrain slope as a proxy), but only in lakes where other fish species were present. The observed negative response of brown trout yield to increasing DOC load and proportion of the pelagic open-water area is likely due to restricted (littoral) niche availability and competitive dominance of more pelagic fishes such as Arctic charr (Salvelinus alpinus (L.)). Our study highlights that, through competitive interactions, the local community structure can influence the response of a species' abundance to variation in abiotic conditions. Changes in biomass and niche use of top predators (such as the brown

  13. Diversity and abundance of invertebrate epifaunal assemblages associated with gorgonians are driven by colony attributes

    NASA Astrophysics Data System (ADS)

    Cúrdia, João; Carvalho, Susana; Pereira, Fábio; Guerra-García, José Manuel; Santos, Miguel N.; Cunha, Marina R.

    2015-06-01

    The present study aimed to explicitly quantify the link between the attributes of shallow-water gorgonian colonies (Octocorallia: Alcyonacea) and the ecological patterns of associated non-colonial epifaunal invertebrates. Based on multiple regression analysis, we tested the contribution of several attributes (colony height, width, and area, fractal dimension as a measure of colony complexity, lacunarity as a measure of the heterogeneity, and "colonial" epibiont cover) to abundance and taxonomic richness of associated assemblages. The results highlight the variation in the response of epifaunal assemblages to the gorgonian colony characteristics. The nature and intensity of the relationships were gorgonian species-dependent and varied from one taxonomic group to another. For both gorgonian species analyzed, the strongest predictor of species richness and abundance of the epifaunal assemblages was "colonial" epibiont cover, possibly due to a trophic effect (direct or indirect enhancement of food availability) combined with the surface available for colonization (species-area effect). Although structural complexity is usually indicated as the main driver for rich and abundant coral-associated assemblages, no significant relationship was observed between fractal dimension and the community descriptors; lacunarity, which reflects the sizes of the inter-branch spaces, was only linked to taxonomic richness in the assemblages associated with Leptogorgia lusitanica. The validity of the paradigm that structural complexity enhances biodiversity may be scale-dependent. In the case of gorgonians, the effect of complexity at the "garden" level may be more relevant than at the individual colony level. This reinforces the need for the conservation of gorgonian aggregation areas as a whole in order to preserve host diversity and size structure.

  14. Metagenomic abundance estimation and diagnostic testing on species level

    PubMed Central

    Lindner, Martin S.; Renard, Bernhard Y.

    2013-01-01

    One goal of sequencing-based metagenomic community analysis is the quantitative taxonomic assessment of microbial community compositions. In particular, relative quantification of taxons is of high relevance for metagenomic diagnostics or microbial community comparison. However, the majority of existing approaches quantify at low resolution (e.g. at phylum level), rely on the existence of special genes (e.g. 16S), or have severe problems discerning species with highly similar genome sequences. Yet, problems as metagenomic diagnostics require accurate quantification on species level. We developed Genome Abundance Similarity Correction (GASiC), a method to estimate true genome abundances via read alignment by considering reference genome similarities in a non-negative LASSO approach. We demonstrate GASiC’s superior performance over existing methods on simulated benchmark data as well as on real data. In addition, we present applications to datasets of both bacterial DNA and viral RNA source. We further discuss our approach as an alternative to PCR-based DNA quantification. PMID:22941661

  15. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on

  16. Positive Effects of Plant Genotypic and Species Diversity on Anti-Herbivore Defenses in a Tropical Tree Species

    PubMed Central

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A.

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on

  17. Spatial heterogeneity of zooplankton abundance and diversity in the Saudi coastal waters of the Southern Red Sea

    NASA Astrophysics Data System (ADS)

    Al-Aidaroos, Ali; El-Sherbiny, Mohsen; Mantha, Gopikrishna

    2013-04-01

    The horizontal distribution, abundance and diversity of zooplankton has been studied at 50 stations along the Saudi coastal waters of the southern Red Sea (27 stations around Farasan archipelago, 9 around Al-Qunfodah and 14 around Al-Lith) during March-April 2011 using a plankton net of 150 µm. The zooplankton standing crop fluctuated between 1058 and 25787 individuals/m3 with an average of 5231 individuals/m3. Zooplankton was dominated by holoplanktonic forms that representing 80.26 % of total zooplankton, while meroplanktonic constituting 19.74% and dominated by mollusc larvae. Copepods appeared to be the predominant component, formed an average of 69.69 % of the total zooplankton count followed by chaetognaths and urochordates (4.5 and 4.1% of total zooplankton respectively). A total of 100 copepods species in addition to several species of other planktonic groups (cladocerans, chaetognaths, urochordates) were recorded in the study area. The copepod diversity decreased northward (94, 69 and 62 species at Farasan, Al-Qunfodah and Al-Lith respectively). In general, adult cyclopoid copepods dominated the zooplankton community in term of abundance and species number (19.55 %, 65 species) with dominance of Oncaea media, Oithona similis and Farranula carinata followed by adult calanoid copepods (19.38%, 35 species) with dominance of Paracalanus aculeatus, Clausocalanus minor, Acartia (Acanthacartia) fossae and Centropages orsinii. Harapacticoids densities were low in abundance, represented only by 5 species and dominated mainly by Euterpina acutifronis. Some copepod species decreased northward: Acartia amboinensis, Canthocalanus pauper, Labidocera acuta, Corycaeus flaccus, C. typicus, C. agilis, C. catus, C. giesbrechti, C. latus, C. furcifer and Euterpina acutifronis, while others increased northward (Acartia fossae, Undinula vulgaris and Centropages orsinii). Among copepod orders, Monstrilloida and Siphonostomatoida were observed only in southern area (Farasan

  18. Effects of human trampling on abundance and diversity of vascular plants, bryophytes and lichens in alpine heath vegetation, Northern Sweden.

    PubMed

    Jägerbrand, Annika K; Alatalo, Juha M

    2015-01-01

    This study investigated the effects of human trampling on cover, diversity and species richness in an alpine heath ecosystem in northern Sweden. We tested the hypothesis that proximity to trails decreases plant cover, diversity and species richness of the canopy and the understory. We found a significant decrease in plant cover with proximity to the trail for the understory, but not for the canopy level, and significant decreases in the abundance of deciduous shrubs in the canopy layer and lichens in the understory. Proximity also had a significant negative impact on species richness of lichens. However, there were no significant changes in species richness, diversity or evenness of distribution in the canopy or understory with proximity to the trail. While not significant, liverworts, acrocarpous and pleurocarpous bryophytes tended to have contrasting abundance patterns with differing proximity to the trail, indicating that trampling may cause shifts in dominance hierarchies of different groups of bryophytes. Due to the decrease in understory cover, the abundance of litter, rock and soil increased with proximity to the trail. These results demonstrate that low-frequency human trampling in alpine heaths over long periods can have major negative impacts on lichen abundance and species richness. To our knowledge, this is the first study to demonstrate that trampling can decrease species richness of lichens. It emphasises the importance of including species-level data on non-vascular plants when conducting studies in alpine or tundra ecosystems, since they often make up the majority of species and play a significant role in ecosystem functioning and response in many of these extreme environments. PMID:25774335

  19. Diversity and abundance of phosphonate biosynthetic genes in nature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphonates, molecules containing direct C-P bonds, comprise a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than fifty years ago, the extent and diversity of phosphonate production in natur...

  20. SPECIES-ABUNDANCE-BIOMASS RESPONSES BY ESTUARINE MACROBENTHOS TO SEDIMENT CHEMICAL CONTAMINATION.

    EPA Science Inventory

    Macrobenthic community responses can be measured through concerted changes in univariate metrics, including species richness, total abundance, and total biomass. The classic model of pollution effects on marine macroinvertebrate communities recognizes that species/abundance/bioma...

  1. Decreasing Abundance, Increasing Diversity and Changing Structure of the Wild Bee Community (Hymenoptera: Anthophila) along an Urbanization Gradient

    PubMed Central

    Fortel, Laura; Henry, Mickaël; Guilbaud, Laurent; Guirao, Anne Laure; Kuhlmann, Michael; Mouret, Hugues; Rollin, Orianne; Vaissière, Bernard E.

    2014-01-01

    Background Wild bees are important pollinators that have declined in diversity and abundance during the last decades. Habitat destruction and fragmentation associated with urbanization are reported as part of the main causes of this decline. Urbanization involves dramatic changes of the landscape, increasing the proportion of impervious surface while decreasing that of green areas. Few studies have investigated the effects of urbanization on bee communities. We assessed changes in the abundance, species richness, and composition of wild bee community along an urbanization gradient. Methodology/Principal Findings Over two years and on a monthly basis, bees were sampled with colored pan traps and insect nets at 24 sites located along an urbanization gradient. Landscape structure within three different radii was measured at each study site. We captured 291 wild bee species. The abundance of wild bees was negatively correlated with the proportion of impervious surface, while species richness reached a maximum at an intermediate (50%) proportion of impervious surface. The structure of the community changed along the urbanization gradient with more parasitic species in sites with an intermediate proportion of impervious surface. There were also greater numbers of cavity-nesting species and long-tongued species in sites with intermediate or higher proportion of impervious surface. However, urbanization had no effect on the occurrence of species depending on their social behavior or body size. Conclusions/Significance We found nearly a third of the wild bee fauna known from France in our study sites. Indeed, urban areas supported a diverse bee community, but sites with an intermediate level of urbanization were the most speciose ones, including greater proportion of parasitic species. The presence of a diverse array of bee species even in the most urbanized area makes these pollinators worthy of being a flagship group to raise the awareness of urban citizens about

  2. Astrochem: Abundances of chemical species in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Maret, Sébastien; Bergin, Edwin A.

    2015-07-01

    Astrochem computes the abundances of chemical species in the interstellar medium, as function of time. It studies the chemistry in a variety of astronomical objects, including diffuse clouds, dense clouds, photodissociation regions, prestellar cores, protostars, and protostellar disks. Astrochem reads a network of chemical reactions from a text file, builds up a system of kinetic rates equations, and solves it using a state-of-the-art stiff ordinary differential equation (ODE) solver. The Jacobian matrix of the system is computed implicitly, so the resolution of the system is extremely fast: large networks containing several thousands of reactions are usually solved in a few seconds. A variety of gas phase process are considered, as well as simple gas-grain interactions, such as the freeze-out and the desorption via several mechanisms (thermal desorption, cosmic-ray desorption and photo-desorption). The computed abundances are written in a HDF5 file, and can be plotted in different ways with the tools provided with Astrochem. Chemical reactions and their rates are written in a format which is meant to be easy to read and to edit. A tool to convert the chemical networks from the OSU and KIDA databases into this format is also provided. Astrochem is written in C, and its source code is distributed under the terms of the GNU General Public License (GPL).

  3. Fuel breaks affect nonnative species abundance in Californian plant communities

    USGS Publications Warehouse

    Merriam, K.E.; Keeley, J.E.; Beyers, J.L.

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.

  4. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding.

    PubMed

    Evans, Nathan T; Olds, Brett P; Renshaw, Mark A; Turner, Cameron R; Li, Yiyuan; Jerde, Christopher L; Mahon, Andrew R; Pfrender, Michael E; Lamberti, Gary A; Lodge, David M

    2016-01-01

    Freshwater fauna are particularly sensitive to environmental change and disturbance. Management agencies frequently use fish and amphibian biodiversity as indicators of ecosystem health and a way to prioritize and assess management strategies. Traditional aquatic bioassessment that relies on capture of organisms via nets, traps and electrofishing gear typically has low detection probabilities for rare species and can injure individuals of protected species. Our objective was to determine whether environmental DNA (eDNA) sampling and metabarcoding analysis can be used to accurately measure species diversity in aquatic assemblages with differing structures. We manipulated the density and relative abundance of eight fish and one amphibian species in replicated 206-L mesocosms. Environmental DNA was filtered from water samples, and six mitochondrial gene fragments were Illumina-sequenced to measure species diversity in each mesocosm. Metabarcoding detected all nine species in all treatment replicates. Additionally, we found a modest, but positive relationship between species abundance and sequencing read abundance. Our results illustrate the potential for eDNA sampling and metabarcoding approaches to improve quantification of aquatic species diversity in natural environments and point the way towards using eDNA metabarcoding as an index of macrofaunal species abundance. PMID:26032773

  5. Effect of Landscape Structure on Species Diversity

    PubMed Central

    Campos, Paulo R. A.; Rosas, Alexandre; de Oliveira, Viviane M.; Gomes, Marcelo A. F.

    2013-01-01

    The effects of habitat fragmentation and their implications for biodiversity is a central issue in conservation biology which still lacks an overall comprehension. There is not yet a clear consensus on how to quantify fragmentation even though it is quite common to couple the effects of habitat loss with habitat fragmentation on biodiversity. Here we address the spatial patterns of species distribution in fragmented landscapes, assuming a neutral community model. To build up the fragmented landscapes, we employ the fractional Brownian motion approach, which in turn permits us to tune the amount of habitat loss and degree of clumping of the landscape independently. The coupling between the neutral community model, here simulated by means of the coalescent method, and fractal neutral landscape models enables us to address how the species–area relationship changes as the spatial patterns of a landscape is varied. The species–area relationship is one of the most fundamental laws in ecology, considered as a central tool in conservation biology, and is used to predict species loss following habitat disturbances. Our simulation results indicate that the level of clumping has a major role in shaping the species–area relationship. For instance, more compact landscapes are more sensitive to the effects of habitat loss and speciation rate. Besides, the level of clumping determines the existence and extension of the power-law regime which is expected to hold at intermediate scales. The distributions of species abundance are strongly influenced by the degree of fragmentation. We also show that the first and second commonest species have approximately self-similar spatial distributions across scales, with the fractal dimensions of the support of the first and second commonest species being very robust to changes in the spatial patterns of the landscape. PMID:23840490

  6. Diversity, Abundance and Community Structure of Benthic Macro- and Megafauna on the Beaufort Shelf and Slope

    PubMed Central

    Nephin, Jessica; Juniper, S. Kim; Archambault, Philippe

    2014-01-01

    Diversity and community patterns of macro- and megafauna were compared on the Canadian Beaufort shelf and slope. Faunal sampling collected 247 taxa from 48 stations with box core and trawl gear over the summers of 2009–2011 between 50 and 1,000 m in depth. Of the 80 macrofaunal and 167 megafaunal taxa, 23% were uniques, present at only one station. Rare taxa were found to increase proportional to total taxa richness and differ between the shelf ( 100 m) where they tended to be sparse and the slope where they were relatively abundant. The macrofauna principally comprised polychaetes with nephtyid polychaetes dominant on the shelf and maldanid polychaetes (up to 92% in relative abundance/station) dominant on the slope. The megafauna principally comprised echinoderms with Ophiocten sp. (up to 90% in relative abundance/station) dominant on the shelf and Ophiopleura sp. dominant on the slope. Macro- and megafauna had divergent patterns of abundance, taxa richness ( diversity) and diversity. A greater degree of macrofaunal than megafaunal variation in abundance, richness and diversity was explained by confounding factors: location (east-west), sampling year and the timing of sampling with respect to sea-ice conditions. Change in megafaunal abundance, richness and diversity was greatest across the depth gradient, with total abundance and richness elevated on the shelf compared to the slope. We conclude that megafaunal slope taxa were differentiated from shelf taxa, as faunal replacement not nestedness appears to be the main driver of megafaunal diversity across the depth gradient. PMID:25007347

  7. Abundance, species composition of microzooplankton from the coastal waters of Port Blair, South Andaman Island

    PubMed Central

    2012-01-01

    Background Microzooplankton consisting of protists and metazoa <200 μm. It displays unique feeding mechanisms and behaviours that allow them to graze cells up to five times their own volume. They can grow at rates which equal or exceed prey growth and can serve as a viable food source for metazoans. Moreover, they are individually inconspicuous, their recognition as significant consumers of oceanic primary production. The microzooplankton can be the dominant consumers of phytoplankton production in both oligo- and eutrophic regions of the ocean and are capable of consuming >100% of primary production. Results The microzooplankton of the South Andaman Sea were investigated during September 2011 to January 2012. A total of 44 species belong to 19 genera were recorded in this study. Tintinnids made larger contribution to the total abundance (34%) followed in order by dinoflagellates (24%), ciliates (20%) and copepod nauplii (18%). Foraminifera were numerically less (4%). Tintinnids were represented by 20 species belong to 13 genera, Heterotrophic dinoflagellates were represented by 17 species belong to 3 genera and Ciliates comprised 5 species belong to 3 genera. Eutintinus tineus, Tintinnopsis cylindrical, T. incertum, Protoperidinium divergens, Lomaniella oviformes, Strombidium minimum were the most prevalent microzooplankton. Standing stock of tintinnids ranged from 30–80 cells.L-1 and showed a reverse distribution with the distribution of chlorophyll a relatively higher species diversity and equitability was found in polluted harbour areas. Conclusions The change of environmental variability affects the species composition and abundance of microzooplankton varied spatially and temporarily. The observations clearly demonstrated that the harbor area differed considerably from other area in terms of species present and phytoplankton biomass. Further, the phytoplankton abundance is showed to be strongly influenced by tintinnid with respect to the relationship of

  8. Diversity and abundance of dung beetles (Coleoptera: Scaraebidae) at several different ecosystem functions in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah; Hazmi, Izfa Riza

    2015-09-01

    Dung beetles has known for its bioindicator characteristic. Sensitive towards forest disturbance, dung beetles population and diversity will be less in disturbed and modified area. The objective of this study is to evaluate the diversity and distribution of dung beetles in different type of ecosystems in Peninsular Malaysia. Fifteen baited pitfall traps aligned in three transects were used in this study. Samples were collected after 24 h and repeated three time collections and identified afterwards. Two ecosystem types were selected, which are forested and agricultural ecosystem (livestock and plantation). A total of 4249 individuals, 47 species, in 11 genera was successfully collected from all localities. The H' index for Fraser Hill, Langkawi, Bangi Reserve Forest, Selangor (HSB), Sungkai Reserve Forest, Perak (SRF), Chini Lake, Bera Lake, chicken farm, goat farm, Longan plantation, and palm oil plantation were 1.58, 1.74, 2.17, 2.63, 1.80, 1.52, 1.63, 0.46, 0.00 and 1.98 respectively.Forest ecosystem, SRF shows the highest abundance (1486 individuals) and diversity, while for agricultural ecosystem,palm oil plantation shows the highest with 273 individuals and 16 species. Based onDetrended Correspondence Analysis (DCA) shows two groups that separate forest ecosystem with the agricultural ecosystem, with palm oil is the nearest to the forest. Palm oil ecosystem can sustain a dung beetles population due to the area can provide the requirements for the dung beetles to survive, such as food which comes from local domestic cows, shade from sunlight provide by the palm oil trees, and ground cover from small plants and shrubs.Even though modified ecosystem should have lower diversity of dung beetles, but some factors must be measured as well in order to have a better point of view.

  9. Monitoring species richness and abundance of shorebirds in the western Great Basin

    USGS Publications Warehouse

    Warnock, N.; Haig, Susan M.; Oring, L.W.

    1998-01-01

    Broad-scale avian surveys have been attempted within North America with mixed results. Arid regions, such as the Great Basin, are often poorly sampled because of the vastness of the region, inaccessibility of sites, and few ornithologists. In addition, extreme variability in wetland habitat conditions present special problems for conducting censuses of species inhabiting these areas. We examined these issues in assessing multi-scale shorebird (order: Charadriiformes) censuses conducted in the western Great Basin from 1992-1997. On ground surveys, we recorded 31 species of shorebirds, but were unable to accurately estimate population size. Conversely, on aerial surveys we were able to estimate regional abundance of some shorebirds, but were unable to determine species diversity. Aerial surveys of three large alkali lakes in Oregon (Goose, Summer, and Abert Lakes) revealed > 300,000 shorebirds in one year of this study, of which 67% were American Avocets (Recurvirostra americana) and 30% phalaropes (Phalaropus spp.). These lakes clearly meet Western Hemisphere Shorebird Reserve Network guidelines for designation as important shorebird sites. Based upon simulations of our monitoring effort and the magnitude and variation of numbers of American Avocets, detection of S-10% negative declines in populations of these birds would take a minimum of 7-23 years of comparable effort. We conclude that a combination of ground and aerial surveys must be conducted at multiple sites and years and over a large region to obtain an accurate picture of the diversity, abundance, and trends of shorebirds in the western Great Basin.

  10. Monitoring species richness and abundance of shorebirds in the western Great Basin

    USGS Publications Warehouse

    Warnock, N.; Haig, S.M.; Oring, L.W.

    1998-01-01

    Broad-scale avian surveys have been attempted within North America with mixed results. Arid regions, such as the Great Basin, are often poorly sampled because of the vastness of the region, inacessibilty of sites, and few ornithologist. In addition, extreme variability in wetland habitat conditions present special problems for conducting censuses of species inhabiting these areas. We examined these issues in assessing multi-scale shorebird (order: Charadriiformes) censuses conducted the western Great Basin from 1992-1997. On ground surveys, we recorded 31 species of shorebirds, but were unable to accurately estimate population size. Conversely, on aerial surveys we were able to estimate regional abundance of some shorebirds, but were unable to determined species diversity. Acrial surveys of three large alkali lakcs in Oregon (Goose, Summer, and abert Lakes) revealed > 300,000 shorebirds in one year of this study, of which 67% were American Avocets (Recurvirostra americana) and 30% phalaropes (Phalaropus spp.). These lakes clearly meet Western Hemisphere Shorebird Reserve Network guidelines for designation as important shorebirds sites. Based upon simulations of our monitoring effort and the magnitude and variation of numbers of American Avocets, detection of 5-10% negative declines in population of these birds would take a minimum of 7-23 years comparable effort. We conclude that a combination of ground and aerial surveys must be conducted at multiple sites and years and over a large region to obtain an accurate picture of the diversity, abundance, and trends of shorebirds in the western Great Basin.

  11. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity.

    PubMed

    Grange, Laura J; Smith, Craig R

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436-725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400-700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  12. Megafaunal Communities in Rapidly Warming Fjords along the West Antarctic Peninsula: Hotspots of Abundance and Beta Diversity

    PubMed Central

    Grange, Laura J.; Smith, Craig R.

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436–725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400–700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  13. Abundances, diversity and seasonality of (non-extremophilic) Archaea in Alpine freshwaters.

    PubMed

    Reitschuler, Christoph; Hofmann, Katrin; Illmer, Paul

    2016-06-01

    The objectives of this study were to assess abundances and community compositions of Archaea within a heterogeneous set of freshwater systems in the Austrian Alps. Seasonal changes and geographical differences within Archaea, considering abiotic and biotic factors (e.g. temperature, pH, total organic carbon (TOC), NH4 (+), bacteria, fungi), were analysed in this context. Water samples were collected from 8 lakes, 10 creeks and the river Inn in 2014. Qualitative-quantitative data were derived via a comprehensive set of (quantitative) PCR assays and PCR-DGGE (denaturing gradient gel electrophoresis) based methodology, which was evaluated concerning specificity and reliability either previously or in this study. QPCR-derived archaeal abundances reached values of 10(3) copies mL(-1) on average, with a peak in winter-spring ('Cold Peak'), and covered 0-15 % (average: 1 %) of the microbial populations. This peak correlated with significantly raised TOC and low NH4 (+) levels during the cold seasons. Stagnant waters showed significantly higher archaeal abundances and diversities than flowing ones. Among methanogens, Methanosarcinales were the most common order. PCR-DGGE data showed that the archaeal communities were site-specific and could function as an ecological marker, in contrast to the more heterogeneous and unsteady bacterial and fungal community. This is attributable to the highly heterogeneous community of methanogenic Archaea (MA, Euryarchaeota), while only two species, Nitrosopumilus maritimus and Ca. Nitrososphaera gargensis, were found to be the ubiquitous representatives of ammonia-oxidizing Archaea (AOA, Thaumarchaeota) in Alpine freshwaters. This work emphasises the diversity, distribution and seasonality of non-extremophilic Archaea in Alpine freshwaters, with a first insight into their ecophysiological potential. PMID:27002962

  14. Bacterial Community Diversity Harboured by Interacting Species.

    PubMed

    Bili, Mikaël; Cortesero, Anne Marie; Mougel, Christophe; Gauthier, Jean Pierre; Ermel, Gwennola; Simon, Jean Christophe; Outreman, Yannick; Terrat, Sébastien; Mahéo, Frédérique; Poinsot, Denis

    2016-01-01

    All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts. PMID:27258532

  15. Bacterial Community Diversity Harboured by Interacting Species

    PubMed Central

    Bili, Mikaël; Cortesero, Anne Marie; Mougel, Christophe; Gauthier, Jean Pierre; Ermel, Gwennola; Simon, Jean Christophe; Outreman, Yannick; Terrat, Sébastien; Mahéo, Frédérique; Poinsot, Denis

    2016-01-01

    All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts. PMID:27258532

  16. Effects of habitat-forming species richness, evenness, identity, and abundance on benthic intertidal community establishment and productivity.

    PubMed

    Lemieux, Julie; Cusson, Mathieu

    2014-01-01

    In a context of reduced global biodiversity, the potential impacts from the loss of habitat-forming species (HFS) on ecosystem structure and functioning must be established. These species are often the main community primary producers and have a major role in the establishment of organisms through facilitation processes. This study focuses on macroalgae and mussels as HFS within an intertidal zone along the St. Lawrence estuary (Quebec, Canada). Over a 16-week period, we manipulated the in situ diversity profile (richness, evenness, identity, and abundance) of the dominant HFS (Fucus distichus edentatus, F. vesiculosus, and Mytilus spp.) in order to define their role in both the establishment of associated species and community primary production. Contrary to expectation, no general change in HFS richness, evenness, abundance, or identity on associated species community establishment was observed. However, over the study period, the HFS diversity profile modified the structure within the trophic guilds, which may potentially affect further community functions. Also, our results showed that the low abundance of HFS had a negative impact on the primary productivity of the community. Our results suggest that HFS diversity profiles have a limited short-term role in our study habitat and may indicate that biological forcing in these intertidal communities is less important than environmental conditions. As such, there was an opportunistic establishment of species that ensured rapid colonization regardless of the absence, or the diversity profile, of facilitators such as HFS. PMID:25313459

  17. Effects of Habitat-Forming Species Richness, Evenness, Identity, and Abundance on Benthic Intertidal Community Establishment and Productivity

    PubMed Central

    Lemieux, Julie; Cusson, Mathieu

    2014-01-01

    In a context of reduced global biodiversity, the potential impacts from the loss of habitat-forming species (HFS) on ecosystem structure and functioning must be established. These species are often the main community primary producers and have a major role in the establishment of organisms through facilitation processes. This study focuses on macroalgae and mussels as HFS within an intertidal zone along the St. Lawrence estuary (Quebec, Canada). Over a 16-week period, we manipulated the in situ diversity profile (richness, evenness, identity, and abundance) of the dominant HFS (Fucus distichus edentatus, F. vesiculosus, and Mytilus spp.) in order to define their role in both the establishment of associated species and community primary production. Contrary to expectation, no general change in HFS richness, evenness, abundance, or identity on associated species community establishment was observed. However, over the study period, the HFS diversity profile modified the structure within the trophic guilds, which may potentially affect further community functions. Also, our results showed that the low abundance of HFS had a negative impact on the primary productivity of the community. Our results suggest that HFS diversity profiles have a limited short-term role in our study habitat and may indicate that biological forcing in these intertidal communities is less important than environmental conditions. As such, there was an opportunistic establishment of species that ensured rapid colonization regardless of the absence, or the diversity profile, of facilitators such as HFS. PMID:25313459

  18. Target strengths of two abundant mesopelagic fish species.

    PubMed

    Scoulding, Ben; Chu, Dezhang; Ona, Egil; Fernandes, Paul G

    2015-02-01

    Mesopelagic fish of the Myctophidae and Sternoptychidae families dominate the biomass of the oceanic deep scattering layers and, therefore, have important ecological roles within these ecosystems. Interest in the commercial exploitation of these fish is growing, so the development of techniques for estimating their abundance, distribution and, ultimately, sustainable exploitation are essential. The acoustic backscattering characteristics for two size classes of Maurolicus muelleri and Benthosema glaciale are reported here based on swimbladder morphology derived from digitized soft x-ray images, and empirical (in situ) measurements of target strength (TS) derived from an acoustic survey in a Norwegian Sea. A backscattering model based on a gas-filled prolate spheroid was used to predict the theoretical TS for both species across a frequency range between 0 and 250 kHz. Sensitivity analyses of the TS model to the modeling parameters indicate that TS is rather sensitive to the viscosity, swimbladder volume ratio, and tilt, which can result in substantial changes to the TS. Theoretical TS predictions close to the resonance frequency were in good agreement (±2 dB) with mean in situ TS derived from the areas acoustically surveyed that were spatially and temporally consistent with the trawl information for both species. PMID:25698030

  19. Species composition, distribution and abundance of chaetodontidae along reef transects in the Flores Sea

    NASA Astrophysics Data System (ADS)

    Adrim, Mohammad; Hutomo, Malikusworo

    Observations on chaetodontid fishes were made by applying a visual census technique at 13 coral reef locations in the Flores Sea region in October and November 1984. These observations were made along 50 m transect lines, parallel to the shore or the reef edge at depths between 3 to 12 m. Twenty-three species of Chaetodontidae were observed, representing three genera: Chaetodon (20 species), Heniochus (2 species) and Forcipiger (1 species). Chaetodon kleini, C. trifasciatus, C. melannotus and C. baronessa proved to be the most abundant species, and among them C. kleini and C. trifasciatus were the most widely distributed ones. Chaetodon semeion and C. mertensi were the rarest species. The greatest number of individuals (77) was counted at station 4.268 near Tanjung Burung, Sumbawa, while the greatest number of species (14) was observed at station 4.257, north of Komodo. The lowest number of individuals (17) was counted at station 4.175 near P. Bahuluang, Salayer, while station 4.251 near Teluk Slawi, Komodo, was inhabited by the smallest numbver of species (2). Numerical classification by using the Bray Curtis dissimilarity index resulted in three groups of entities. The first group was characterized by predomination of C. kleini and the second by predomination of C. melannotus. The third one was a loose group not characterized by any predominant species. The analyses indicated that the similarities of the chaetodontid communities between locations are not related to the distance between them, but rather to habitat conditions. For example predomination of C. melannotus is strongly related to the predomination of soft coral. Compared to other areas of Indonesia, e.g. Bali, Seribu Islands, Batam, Sunda Strait, and Ambon Bay, the Flores Sea reefs have a more abundant and more diverse chaetodontid fauna.

  20. Daughter Species Abundances in Comet C/2014 Q2 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Cochran, Anita; Dello Russo, Neil; Kelley, Michael

    2015-11-01

    We present analysis of high spectral resolution optical spectra of C/2014 Q2 (Lovejoy) acquired with the Tull Coude spectrometer on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory and the ARCES spectrometer mounted on the 3.5-meter Astrophysical Research Consortium Telescope at Apache Point Observatory. Both Tull Coude and ARCES provide high spectral resolution (R=30,000-60,000) and a large spectral range of approximately 3500-10000 Angstroms. We obtained two observation epochs, one in February 2015 at a heliocentric distance of 1.3 AU, and another in May 2015 at a heliocentric distance of 1.9 AU. Another epoch in late August 2015 at a heliocentric distance of 3.0 AU is scheduled. We will present production rates of the daughter species CN, C3, CH, C2, and NH2. We will also present H2O production rates derived from the [OI]6300 emission, as well as measurements of the flux ratio of the [OI]5577 Angstrom line to the sum of the [OI]6300 and [OI]6364 Angstrom lines (sometimes referred to as the oxygen line ratio). This ratio is indicative of the CO2 abundance of the comet. As we have observations at several heliocentric distances, we will examine how production rates and mixing ratios of the various species change with heliocentric distance. We will compare our oxygen line measurements to observations of CO2 made with Spitzer, as well as our other daughter species observations to those of candidate parent molecules made at IR wavelengths.

  1. DIVERSITY OF TYPE Ia SUPERNOVAE IMPRINTED IN CHEMICAL ABUNDANCES

    SciTech Connect

    Tsujimoto, Takuji; Shigeyama, Toshikazu

    2012-12-01

    A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit an SN-Ia-like elemental feature including a very low [Mg/Fe] ( Almost-Equal-To - 1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr, Mn, Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth and give a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nicely explains the different [Cr, Mn, Ni/Fe] features between the two galaxies as well as the puzzling feature seen in the LMC stars exhibiting very low Ca but normal Mg abundances. Furthermore, the corresponding channel of slow SN Ia is exemplified by performing detailed nucleosynthesis calculations in the scheme of SNe Ia resulting from a 0.8 + 0.6 M{sub Sun} white dwarf merger.

  2. Abundance changes and habitat availability drive species' responses to climate change

    NASA Astrophysics Data System (ADS)

    Mair, Louise; Hill, Jane K.; Fox, Richard; Botham, Marc; Brereton, Tom; Thomas, Chris D.

    2014-02-01

    There is little consensus as to why there is so much variation in the rates at which different species' geographic ranges expand in response to climate warming. Here we show that the relative importance of species' abundance trends and habitat availability for British butterfly species vary over time. Species with high habitat availability expanded more rapidly from the 1970s to mid-1990s, when abundances were generally stable, whereas habitat availability effects were confined to the subset of species with stable abundances from the mid-1990s to 2009, when abundance trends were generally declining. This suggests that stable (or positive) abundance trends are a prerequisite for range expansion. Given that species' abundance trends vary over time for non-climatic as well as climatic reasons, assessment of abundance trends will help improve predictions of species' responses to climate change, and help us to understand the likely success of different conservation strategies for facilitating their expansions.

  3. SSRs transferability and genetic diversity of three allogamous ryegrass species.

    PubMed

    Guo, Zhi-Hui; Fu, Kai-Xin; Zhang, Xin-Quan; Zhang, Cheng-Lin; Sun, Ming; Huang, Ting; Peng, Yan; Huang, Lin-Kai; Yan, Yan-Hong; Ma, Xiao

    2016-02-01

    Simple sequence repeat (SSR) markers are widely applied in studies of plant molecular genetics due to their abundance in the genome, codominant nature, and high repeatability. However, microsatellites are not always available for the species to be studied and their isolation could be time- and cost-consuming. To investigate transferability in cross-species applications, 102 primer pairs previously developed in ryegrass and tall fescue were amplified across three allogamous ryegrass species including Lolium rigidum, Lolium perenne and Lolium multiflorum. Their highly transferability (100%) were evidenced. While, most of these markers were multiple loci, only 17 loci were selected for a robust, single-locus pattern, which may be due to the recentness of the genome duplication or duplicated genomic regions, as well as speciation. A total of 87 alleles were generated with an average of 5.1 per locus. The mean polymorphism information content (PIC) and observed heterozygosity (Ho) values at genus was 0.5532 and 0.5423, respectively. Besides, analysis of molecular variance (AMOVA) revealed that all three levels contributed significantly to the overall genetic variation, with the species level contributing the least (P<0.001). Also, the unweighted pair group method with arithmetic averaging dendrogram (UPGMA), Bayesian model-based STRUCTURE analysis and the principal coordinate analysis (PCoA) showed that accessions within species always tended to the same cluster firstly and then to related species. The results showed that these markers developed in related species are transferable efficiently across species, and likely to be useful in analyzing genetic diversity. PMID:26874459

  4. Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic Species

    PubMed Central

    Hansen, Gretchen J. A.; Vander Zanden, M. Jake; Blum, Michael J.; Clayton, Murray K.; Hain, Ernie F.; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S.; McIntyre, Peter B.; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D.; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies. PMID:24194883

  5. Commonly rare and rarely common: comparing population abundance of invasive and native aquatic species.

    PubMed

    Hansen, Gretchen J A; Vander Zanden, M Jake; Blum, Michael J; Clayton, Murray K; Hain, Ernie F; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S; McIntyre, Peter B; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies. PMID:24194883

  6. Abundance and functional diversity of riboswitches in microbial communities

    PubMed Central

    Kazanov, Marat D; Vitreschak, Alexey G; Gelfand, Mikhail S

    2007-01-01

    Background Several recently completed large-scale enviromental sequencing projects produced a large amount of genetic information about microbial communities ('metagenomes') which is not biased towards cultured organisms. It is a good source for estimation of the abundance of genes and regulatory structures in both known and unknown members of microbial communities. In this study we consider the distribution of RNA regulatory structures, riboswitches, in the Sargasso Sea, Minnesota Soil and Whale Falls metagenomes. Results Over three hundred riboswitches were found in about 2 Gbp metagenome DNA sequences. The abundabce of riboswitches in metagenomes was highest for the TPP, B12 and GCVT riboswitches; the S-box, RFN, YKKC/YXKD, YYBP/YKOY regulatory elements showed lower but significant abundance, while the LYS, G-box, GLMS and YKOK riboswitches were rare. Regions downstream of identified riboswitches were scanned for open reading frames. Comparative analysis of identified ORFs revealed new riboswitch-regulated functions for several classes of riboswitches. In particular, we have observed phosphoserine aminotransferase serC (COG1932) and malate synthase glcB (COG2225) to be regulated by the glycine (GCVT) riboswitch; fatty acid desaturase ole1 (COG1398), by the cobalamin (B12) riboswitch; 5-methylthioribose-1-phosphate isomerase ykrS (COG0182), by the SAM-riboswitch. We also identified conserved riboswitches upstream of genes of unknown function: thiamine (TPP), cobalamine (B12), and glycine (GCVT, upstream of genes from COG4198). Conclusion This study demonstrates applicability of bioinformatics to the analysis of RNA regulatory structures in metagenomes. PMID:17908319

  7. RELATIONSHIPS OF ALIEN PLANT SPECIES ABUNDANCE TO RIPARIAN VEGETATION, ENVIRONMENT, AND DISTURBANCE

    EPA Science Inventory

    Riparian ecosystems are often invaded by alien species. We evaluated vegetation, environment, and disturbance conditions and their interrelationships with alien species abundance along reaches of 29 streams in eastern Oregon, USA. Using flexible-BETA clustering, indicator species...

  8. Diversity and abundance of forest frogs (Anura: Leptodactylidae) before and after Hurricane Georges in the Cordillera Central of Puerto Rico

    USGS Publications Warehouse

    Vilella, F.J.; Fogarty, J.H.

    2005-01-01

    Caribbean hurricanes often impact terrestrial vertebrates in forested environments. On 21 September 1998, Hurricane Georges impacted Puerto Rico with sustained winds in excess of 166 km/hr, causing damage to forests of the island's principal mountain range; the Cordillera Central. We estimated forest frog abundance and diversity from call counts conducted along marked transects before and after Hurricane Georges in two forests reserves of the Cordillera Central (Maricao and Guilarte). We used distance sampling to estimate density of Eleutherodactylus coqui and recorded counts of other species. After the hurricane, the abundance of E. coqui increased in both reserves compared to prehurricane levels while abundance of other frog species decreased. In Maricao, relative abundance of E. richmondi (P = 0.013) and E. brittoni (P = 0.034) were significantly lower after the hurricane. Moreover, species richness and evenness of the Maricao and Guilarte frog assemblages declined after the hurricane. Our results on abundance patterns of the forest frog assemblages of Maricao and Guilarte Forests were similar to those reported from the Luquillo Experimental Forest after Hurricane Hugo in September 1989. Long-term demographic patterns of the forest frog assemblages in the Cordillera Central may be associated with changes due to the ecological succession in post-hurricane forests. Copyright 2005 College of Arts and Sciences.

  9. Abundance and Spatial Dispersion of Rice Stem Borer Species in Kahama, Tanzania

    PubMed Central

    Leonard, Alfonce; Rwegasira, Gration M.

    2015-01-01

    Species diversity, abundance, and dispersion of rice stem borers in framer’s fields were studied in four major rice growing areas of Kahama District. Stem borer larvae were extracted from the damaged tillers in 16 quadrants established in each field. Adult Moths were trapped by light traps and collected in vials for identification. Results indicated the presence of Chilo partellus, Maliarpha separatella, and Sesamia calamistis in all study areas. The most abundant species was C. partellus (48.6%) followed by M. separatella (35.4%) and S. calamistis was least abundant (16.1%). Stem borers dispersion was aggregated along the edges of rice fields in three locations (wards) namely: Bulige, Chela, and Ngaya. The dispersion in the fourth ward, Kashishi was uniform as established from two of the three dispersion indices tested. Further studies would be required to establish the available alternative hosts, the extent of economic losses and the distribution of rice stem borers in the rest of the Lake zone of Tanzania. PMID:26411785

  10. Abundance and Spatial Dispersion of Rice Stem Borer Species in Kahama, Tanzania.

    PubMed

    Leonard, Alfonce; Rwegasira, Gration M

    2015-01-01

    Species diversity, abundance, and dispersion of rice stem borers in framer's fields were studied in four major rice growing areas of Kahama District. Stem borer larvae were extracted from the damaged tillers in 16 quadrants established in each field. Adult Moths were trapped by light traps and collected in vials for identification. Results indicated the presence of Chilo partellus, Maliarpha separatella, and Sesamia calamistis in all study areas. The most abundant species was C. partellus (48.6%) followed by M. separatella (35.4%) and S. calamistis was least abundant (16.1%). Stem borers dispersion was aggregated along the edges of rice fields in three locations (wards) namely: Bulige, Chela, and Ngaya. The dispersion in the fourth ward, Kashishi was uniform as established from two of the three dispersion indices tested. Further studies would be required to establish the available alternative hosts, the extent of economic losses and the distribution of rice stem borers in the rest of the Lake zone of Tanzania. PMID:26411785

  11. Polychaete abundance, biomass and diversity patterns at the Mid-Atlantic Ridge, North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Shields, Mark A.; Blanco-Perez, Raimundo

    2013-12-01

    Recent studies have revealed that the Mid-Atlantic Ridge (MAR) in the North Atlantic Ocean accounts for a large proportion of available bathyal soft-sediment habitat. When comparing the MAR to the continental margins of the North Atlantic, it is apparent that very little is known about the soft-sediment macrofaunal community associated with the MAR. In the present study, as part of the ECOMAR (Ecosystems of the Mid-Atlantic Ridge at the Sub-Polar Front and Charlie-Gibbs Fracture Zone) project, the polychaete component of the MAR macrofaunal community was investigated. A total of 751 polychaete specimens and 133 species were identified from megacorer samples collected at four MAR sites (48-54°N, depth: 2500-2800 m) sampled during the RRS James Cook 48 cruise in the summer of 2010. Polychaetes were the most abundant member of the macrofaunal community, and there was no significant difference in polychaete abundance, biomass and diversity between any of the MAR sites. In addition, the MAR did not appear to provide a physical barrier to the distribution of bathyal polychaetes either side of the ridge.

  12. The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration.

    PubMed

    Santelli, Cara M; Edgcomb, Virginia P; Bach, Wolfgang; Edwards, Katrina J

    2009-01-01

    Young, basaltic ocean crust exposed near mid-ocean ridge spreading centers present a spatially extensive environment that may be exploited by epi- and endolithic microbes in the deep sea. Geochemical energy released during basalt alteration reactions can theoretically support chemosynthesis, contributing to a trophic base for the ocean crust biome. To examine associations between endolithic microorganisms and basalt alteration processes, we compare the phylogenetic diversity, abundance and community structure of bacteria existing in several young, seafloor lavas from the East Pacific Rise at approximately 9 degrees N that are variably affected by oxidative seawater alteration. The results of 16S rRNA gene analyses and real-time, quantitative polymerase chain reaction measurements show that the abundance of prokaryotic communities, dominated by the bacterial domain, positively correlates with the extent of rock alteration--the oldest, most altered basalt harbours the greatest microbial biomass. The bacterial community overlap, structure and species richness relative to alteration state is less explicit, but broadly corresponds to sample characteristics (type of alteration products and general alteration state). Phylogenetic analyses suggest that the basalt biome may contribute to the geochemical cycling of Fe, S, Mn, C and N in the deep sea. PMID:18783382

  13. Predictability of reef fish diversity and abundance using remote sensing data in Diego Garcia (Chagos Archipelago)

    NASA Astrophysics Data System (ADS)

    Purkis, S. J.; Graham, N. A. J.; Riegl, B. M.

    2008-03-01

    The diversity, abundance and distribution of reef fish are related to heterogeneity and physical complexity of benthic habitat. However, the field effort required to evaluate these aspects of the benthos in situ, at the scale of entire reefscapes, is greatly constrained by logistical and resource limitations. With moderate ground truthing, both substratum type and seabed topography are amenable to monitoring using satellite data. Here, remote sensing imagery was used to resolve the bathymetry and benthic character of a reef system in Diego Garcia (British Indian Ocean Territory). Replicate fish counts were made at seven measurement stations across the study area using visual census. Monte Carlo simulation revealed that species richness and abundance of several guilds and size groupings of reef fish appraised in situ were correlated with the satellite-derived seabed parameters over areas of seafloor as large as 5,030 m2. The study suggests that satellite remote sensing is capable of predicting habitat complexity at a scale relevant to fish. Furthermore, as larger size classes of fish were better predicted with the satellite habitat complexity data, this technique could be used to predict fish stocks and identify potential sites for marine protected areas where intensive field surveys are not practical.

  14. Genetic diversity and species diversity of stream fishes covary across a land-use gradient

    USGS Publications Warehouse

    Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackson, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S.

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems. ?? 2011 Springer-Verlag.

  15. Amphibian Diversity and Threatened Species in a Severely Transformed Neotropical Region in Mexico

    PubMed Central

    Meza-Parral, Yocoyani; Pineda, Eduardo

    2015-01-01

    Many regions around the world concentrate a large number of highly endangered species that have very restricted distributions. The mountainous region of central Veracruz, Mexico, is considered a priority area for amphibian conservation because of its high level of endemism and the number of threatened species. The original tropical montane cloud forest in the region has been dramatically reduced and fragmented and is now mainly confined to ravines and hillsides. We evaluated the current situation of amphibian diversity in the cloud forest fragments of this region by analyzing species richness and abundance, comparing assemblage structure and species composition, examining the distribution and abundance of threatened species, and identifying the local and landscape variables associated with the observed amphibian diversity. From June to October 2012 we sampled ten forest fragments, investing 944 person-hours of sampling effort. A total of 895 amphibians belonging to 16 species were recorded. Notable differences in species richness, abundance, and assemblage structure between forest fragments were observed. Species composition between pairs of fragments differed by an average of 53%, with the majority (58%) resulting from species replacement and the rest (42%) explained by differences in species richness. Half of the species detected are under threat of extinction according to the International Union for Conservation of Nature, and although their distribution and abundance varied markedly, there were also ubiquitous and abundant species, along with rare species of restricted distribution. The evident heterogeneity of the ten study sites indicates that to conserve amphibians in a mountainous region such as this one it is necessary to protect groups of fragments which represent the variability of the system. Both individually and together cloud forest fragments are very important to conservation because each remnant is inhabited by several threatened species, some of

  16. Plant Trait-Species Abundance Relationships Vary with Environmental Properties in Subtropical Forests in Eastern China

    PubMed Central

    Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X.; Wang, Xi-Hua

    2013-01-01

    Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests. PMID:23560114

  17. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    PubMed

    Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X; Wang, Xi-Hua

    2013-01-01

    Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests. PMID:23560114

  18. Species diversity: Benthonic Foraminifera in Western North Atlantic

    USGS Publications Warehouse

    Buzas, M.A.; Gibson, T.G.

    1969-01-01

    Maximum species diversity occurs at abyssal depths of greater than 2500 meters. Other diversity peaks occur at depths of 35 to 45 meters and 100 to 200 meters. The peak at 35 to 45 meters is due to species equitability, whereas the other two peaks correspond to an increase in the number of species.

  19. Patterns of spatio-temporal distribution, abundance, and diversity in a mosquito community from the eastern Smoky Hills of Kansas.

    PubMed

    Ganser, Claudia; Wisely, Samantha M

    2013-12-01

    Nearly 30% of emerging infectious disease events are caused by vector-borne pathogens with wildlife origins. Their transmission involves a complex interplay among pathogens, arthropod vectors, the environment and host species, and they pose a risk for public health, livestock and wildlife species. Examining habitat associations of vector species known to transmit infectious diseases, and quantifying spatio-temporal dynamics of mosquito vector communities is one aspect of the holistic One Health approach that is necessary to develop effective control measures. A survey was conducted from May to August, 2010 of the abundance and diversity of mosquito species occurring in the mixed-grass prairie habitat of the Smoky Hills of Kansas. This region is an important breeding ground for North America's grassland nesting birds and, as such, it could represent an important habitat for the enzootic amplification cycle of avian malaria and infectious encephalitides, as well as spill-over events to humans and livestock. A total of 11 species, belonging to the three genera Aedes, Anopheles, and Culex, was collected during this study. Aedes nigromaculis, Ae. sollicitans, Ae. taeniorhynchus, Culex salinarius, and Cx. tarsalis accounted for 98% of the collected species. Multiple linear regression models suggested that mosquito abundances in the grasslands of the central Great Plains were explained by meteorological and environmental variables. Temporal dynamics in mosquito abundances were well supported by models that included maximum and minimum temperature indices (adjusted R(2) = 0.73). Spatial dynamics of mosquito abundances were best explained by a model containing the following environmental variables (adjusted R(2) =0.37): ground curvature, topographic wetness index, distance to woodland, and distance to road. The mosquito species we detected are known vectors for infectious encephalitides, including West Nile virus. Understanding the microhabitat characteristics of these

  20. Heterogeneity of macrozoobenthic assemblages within a Zostera noltii seagrass bed: diversity, abundance, biomass and structuring factors

    NASA Astrophysics Data System (ADS)

    Blanchet, Hugues; de Montaudouin, Xavier; Lucas, Aurélien; Chardy, Pierre

    2004-09-01

    The macrobenthic fauna community of a 70-km 2Zostera noltii seagrass bed (Arcachon bay, France) was studied by sampling 49 stations systematically. A total of 126 taxa were identified. Cluster Analysis based on χ2 distance showed that in this apparently homogeneous habitat, four distinct macrobenthic communities could be identified. Multiple Discriminant Analysis highlighted the major contribution of the overlying water mass as a forcing variable, and, to a lesser extent, of tidal level and Z. noltii's below-ground parts. Seven stations did not constitute any conspicuous group, and were characterized by a low biomass of leaf (<28 g DW m -2), considered as the lowest value to constitute a Z. noltii community. Less than 24% of the seagrass bed was situated in more oceanic waters and at a quite low tidal level. In this relatively stable environment, the macrofauna community was characterized by a high species richness (mean = 39) and a moderate density and high biomass (12 638 individuals m -2 and 25 g AFDW m -2, respectively). Annelids dominated, particularly the oligochaetes. When physical constraints increased (emersion or brackish water conditions), diversity decreased, abundance and biomass increased. The seagrass bed (55%) was flooded with highly fluctuating waters in term of temperature and salinity, here species richness was low (mean = 27) but abundance and biomass were high (24 384 individuals m -2 and 28 g AFDW m -2, respectively), with a dominance of molluscs. The meadow (7%) was in external waters but at a higher tidal level (2.4 m vs 1.8 m above medium low tide level). This community was characterized by the particularly high density (41 826 individuals m -2) and dominance of oligochaetes (79% of total abundance). Species richness was high (mean = 37) here. A fourth community, extending over 12% of the meadow was dominated by the gastropod Hydrobia ulvae but could not be linked to a specific forcing variable. This study confirmed the almost

  1. Abundance, diversity, and patterns of distribution of primates on the Tapiche River in Amazonian Peru.

    PubMed

    Bennett, C L; Leonard, S; Carter, S

    2001-06-01

    This work presents data on the relative diversity, abundance, and distribution patterns of primates in a 20 km2 area of the Tapiche River in the Peruvian Amazon. Population data were collected while the study area was both inundated and dry (March to September 1997) using conventional line-transect census techniques. Survey results reflected the presence of 11 primate species, but population parameters on only eight of the species will be presented, including saddleback tamarins (Saguinus fuscicollis), Bolivian squirrel monkeys (Saimiri boliviensis), brown capuchins (Cebus apella), white-fronted capuchins (Cebus albifrons), monk sakis (Pithecia monachus), red titi monkeys (Callicebus cupreus), red uakaris (Cacajao calvus), and red howler monkeys (Alouatta seniculus). Woolly monkeys (Lagothrix lagotricha), night monkeys (Aotus nancymaae), and pygmy marmosets (Callithrix pygmaea) were also seen in the area. The data for the smaller-bodied primates is similar to that reported almost 18 years earlier, but the data for the larger-bodied primates reflect a loss in the number of animals present in the area. Pressure from hunters and the timber industry may account for declining numbers of large-bodied primates, while it appears that natural features peculiar to the conservation area contribute to the patchy pattern of distribution. PMID:11376449

  2. Application of species richness estimators for the assessment of fungal diversity.

    PubMed

    Unterseher, Martin; Schnittler, Martin; Dormann, Carsten; Sickert, Andreas

    2008-05-01

    Species richness and distribution patterns of wood-inhabiting fungi and mycetozoans (slime moulds) were investigated in the canopy of a Central European temperate mixed deciduous forest. Species richness was described with diversity indices and species-accumulation curves. Nonmetrical multidimensional scaling was used to assess fungal species composition on different tree species. Different species richness estimators were used to extrapolate species richness beyond our own data. The reliability of the abundance-based coverage estimator, Chao, Jackknife and other estimators of species richness was evaluated for mycological surveys. While the species-accumulation curve of mycetozoans came close to saturation, that of wood-inhabiting fungi was continuously rising. The Chao 2 richness estimator was considered most appropriate to predict the number of species at the investigation site if sampling were continued. Gray's predictor of species richness should be used if statements of the number of species in larger areas are required. Multivariate analysis revealed the importance of different tree species for the conservation and maintenance of fungal diversity within forests, because each tree species possessed a characteristic fungal community. The described mathematical approaches of estimating species richness possess great potential to address fungal diversity on a regional, national, and global scale. PMID:18355274

  3. Diversity of Riparian Plants among and within Species Shapes River Communities

    PubMed Central

    Jackrel, Sara L.; Wootton, J. Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  4. Diversity of Riparian Plants among and within Species Shapes River Communities.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  5. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on (13)C natural abundances.

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily F; Hänsel, Falk; Fischer, Markus; Kleinebecker, Till

    2016-10-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ(13)C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier (13)C due to closing stomata leading to an enrichment of (13)C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ(13)C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ(13)C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ(13)C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change. PMID:27220098

  6. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    PubMed Central

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  7. Fish and phytoplankton exhibit contrasting temporal species abundance patterns in a dynamic north temperate lake.

    PubMed

    Hansen, Gretchen J A; Carey, Cayelan C

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of "core" (common occurrence and high abundance) and "occasional" (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  8. Diverse Thermus species inhabit a single hot spring microbial mat

    NASA Technical Reports Server (NTRS)

    Nold, S. C.; Ward, D. M.

    1995-01-01

    Through an effort to characterize aerobic chemoorganotrophic bacteria in the Octopus Spring cyano-bacterial mat community, we cultivated four Thermus isolates with unique 16S rRNA sequences. Isolates clustered within existing Thermus clades, including those containing Thermus ruber, Thermus aquaticus, and a subgroup closely related to T. aquaticus. One Octopus Spring isolate is nearly identical (99.9% similar) to isolates from Iceland, and two others are closely related to a T. ruber isolated from Russia. Octopus Spring isolates similar to T. aquaticus and T. ruber exhibited optimal growth rates at high (65-70 degrees C) and low (50 degrees C) temperatures, respectively, with the most abundant species best adapted to the temperature of the habitat (50-55 degrees C). Our results display a diversity of Thermus genotypes defined by 16S rRNA within one hot spring microbial community. We suggest that specialization to temperature and perhaps other local environmental features controls the abundance of Thermus populations.

  9. Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Bridge, T.; Scott, A.; Steinberg, D.

    2012-12-01

    Anemonefishes and their host sea anemones are iconic inhabitants of coral reef ecosystems. While studies have documented their abundance in shallow-water reef habitats in parts of the Indo-Pacific, none have examined these species on mesophotic reefs. In this study, we used autonomous underwater vehicle imagery to examine the abundance and diversity of anemones and anemonefishes at Viper Reef and Hydrographers Passage in the central Great Barrier Reef at depths between 50 and 65 m. A total of 37 host sea anemones (31 Entacmaea quadricolor and 6 Heteractis crispa) and 24 anemonefishes (23 Amphiprion akindynos and 1 A. perideraion) were observed. Densities were highest at Viper Reef, with 8.48 E. quadricolor and A. akindynos per 100 m2 of reef substratum. These results support the hypothesis that mesophotic reefs have many species common to shallow-water coral reefs and that many taxa may occur at depths greater than currently recognised.

  10. Declining Diversity in Abandoned Grasslands of the Carpathian Mountains: Do Dominant Species Matter?

    PubMed Central

    Csergő, Anna Mária; Demeter, László; Turkington, Roy

    2013-01-01

    Traditional haymaking has created exceptionally high levels of plant species diversity in semi-natural grasslands of the Carpathian Mountains (Romania), the maintenance of which is jeopardized by recent abandonment and subsequent vegetation succession. We tested the hypothesis that the different life history strategies of dominant grasses cause different patterns of diversity loss after abandonment of traditional haymaking in two types of meadow. Although diversity loss rate was not significantly different, the mechanism of loss depended on the life history of dominant species. In meadows co-dominated by competitive stress-tolerant ruderals, diversity loss occurred following the suppression of dominant grasses by tall forbs, whereas in meadows dominated by a stress-tolerant competitor, diversity loss resulted from increased abundance and biomass of the dominant grass. We conclude that management for species conservation in abandoned grasslands should manipulate the functional turnover in communities where the dominant species is a weaker competitor, and abundance and biomass of dominant species in communities where the dominant species is the stronger competitor. PMID:24014148

  11. Digenean species diversity in teleost fishes from the Gulf of Gabes, Tunisia (Western Mediterranean)

    PubMed Central

    Derbel, H.; Châari, M.; Neifar, L.

    2012-01-01

    This study is the first attempt to survey the diversity of fish digeneans in the Gulf of Gabes (southern coast of Tunisia). A total of 779 fishes belonging to 32 species were sampled. 53 species of Digenea belonging to 15 families were recorded. Among these species, 24 are reported for the first time from the coast of Tunisia. We report one new host record, Lecithochirium sp. from Sardinella aurita. The Hemiuridae is the dominant family. A host-parasite list is presented with the information on the prevalence, abundance and mean intensity of each species collected. The diversity of Digenea is compared with other localities in the Mediterranean Sea and the northern east of Tunisia. The Gulf of Gabes shows the lowest diversity linked to the anthropogenic activities and impact of exotic species. The use of Digenea as indicators of the state of the ecosystem is discussed. PMID:22550623

  12. Variation in local abundance and species richness of stream fishes in relation to dispersal barriers: Implications for management and conservation

    USGS Publications Warehouse

    Nislow, K.H.; Hudy, M.; Letcher, B.H.; Smith, E.P.

    2011-01-01

    1.Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream-dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population- and community-level effects can be difficult to detect. 2.In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above- and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3.Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4.Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at

  13. Genomic patterns of species diversity and divergence in Eucalyptus.

    PubMed

    Hudson, Corey J; Freeman, Jules S; Myburg, Alexander A; Potts, Brad M; Vaillancourt, René E

    2015-06-01

    We examined genome-wide patterns of DNA sequence diversity and divergence among six species of the important tree genus Eucalyptus and investigated their relationship with genomic architecture. Using c. 90 range-wide individuals of each Eucalyptus species (E. grandis, E. urophylla, E. globulus, E. nitens, E. dunnii and E. camaldulensis), genetic diversity and divergence were estimated from 2840 polymorphic diversity arrays technology markers covering the 11 chromosomes. Species differentiating markers (SDMs) identified in each of 15 pairwise species comparisons, along with species diversity (HHW ) and divergence (FST ), were projected onto the E. grandis reference genome. Across all species comparisons, SDMs totalled 1.1-5.3% of markers and were widely distributed throughout the genome. Marker divergence (FST and SDMs) and diversity differed among and within chromosomes. Patterns of diversity and divergence were broadly conserved across species and significantly associated with genomic features, including the proximity of markers to genes, the relative number of clusters of tandem duplications, and gene density within or among chromosomes. These results suggest that genomic architecture influences patterns of species diversity and divergence in the genus. This influence is evident across the six species, encompassing diverse phylogenetic lineages, geography and ecology. PMID:25678438

  14. Abundance, diversity, and feeding behavior of coral reef butterflyfishes at Lord Howe Island

    PubMed Central

    Pratchett, Morgan S; Hoey, Andrew S; Cvitanovic, Christopher; Hobbs, Jean-Paul A; Fulton, Christopher J

    2014-01-01

    Endemic species are assumed to have a high risk of extinction because their restricted geographic range is often associated with low abundance and high ecological specialization. This study examines the abundance of Chaetodon butterflyfishes at Lord Howe Island in the south-west Pacific, and compares interspecific differences in local abundance to the feeding behavior and geographic range of these species. Contrary to expected correlations between abundance and geographic range, the single most abundant species of butterflyfish was Chaetodon tricinctus, which is endemic to Lord Howe Island and adjacent reefs; densities of C. tricinctus (14.1 ± 2.1 SE fish per 200m2) were >3 times higher than the next most abundant butterflyfish (Chaetodon melannotus), and even more abundant than many other geographically widespread species. Dietary breadth for the five dominant butterflyfishes at Lord Howe Island was weakly and generally negative correlated with abundance. The endemic C. tricinctus was a distinct outlier in this relationship, though our extensive feeding observations suggest some issues with the measurements of dietary breadth for this species. Field observations revealed that all bites taken on benthic substrates by C. tricinctus were from scleractinian corals, but adults rarely, if ever, took bites from the benthos, suggesting that they may be feeding nocturnally and/or using mid-water prey, such as plankton. Alternatively, the energetic demands of C. tricinctus may be fundamentally different to other coral-feeding butterflyfishes. Neither dietary specialization nor geographic range accounts for interspecific variation in abundance of coral reef butterflyfishes at Lord Howe Island, while much more work on the foraging behavior and population dynamics of C. tricinctus will be required to understand its’ abundance at this location. PMID:25478152

  15. Enhanced abundance and diversity of ammonia-oxidizing Archaea in the Pearl River estuary

    NASA Astrophysics Data System (ADS)

    Xie, W.; Zhang, C. L.; Wang, P.; Zhou, X.; Guo, W.

    2014-12-01

    Thaumarchaeota are recently recognized as an important group of Archaea that can perform aerobic oxidation of ammonia in a wide range of environments. The goal of this study was to evaluate changes in abundance and diversity of planktonic ammonia-oxidizing Archaea (e.g., Thaumarchaeota) along a salinity gradient from the lower Pearl River to the northern South China Sea. Quantitative PCR and sequencing of total archaeal 16S rRNA gene and the archaeal amoA gene were performed on suspended particulate organic matter collected in different seasons from the freshwater to the ocean water. Total amoA gene copies and relative abundance of Thaumarchaeota all peaked in the estuary where salinity ranged between 4.5‰ and 26.7‰. The diversity of archaeal amoA gene was also highest in the estuary. Seasonality and SiO32- appear to be two major factors affecting the distribution of subclusters of archaeal amoA genes. For example, Nitrosopumilus subcluster 7.1 was most abundant in winter in fresh water, whereas Nitrososphaera were more abundant in summer. Samples collected from the area around Wanshan Island, which is located at the outermost part of the Pearl River estuary, had high abundance of unclassified archaeal amoA genes, suggesting some new groups of Thaumarchaeota might inhabit this water body. Overall, the high abundance and diversity of Thaumarchaeota in the Pearl River estuary may indicate enhanced role of AOA in nitrogen cycle in this dynamic ecosystem.

  16. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA [abstract

    USGS Publications Warehouse

    Knutson, M.G.; Sauer, J.R.; Olsen, D.A.; Mossman, M.J.; Hemesath, L.M.; Lannoo, M.J.

    1998-01-01

    We examined the relationships between anuran diversity and landscape features in the Upper Midwestern United States. Anuran relative abundance and species richness were measured using data collected by Wisconsin and Iowa state calling surveys conducted from 1990-1995. Landscape features surrounding survey points were determined using National Wetland Inventory and Wisconsin Wetland Inventory maps. We tested several hypotheses suggested by the literature. We hypothesized that the relative abundance and species richness of anurans that breed in ephemeral wetlands is positively correlated with the surrounding area of temporary wetlands and emergent wetlands. We hypothesized that the relative abundance and species richness of anurans is positively correlated with patch diversity and wetland edges, in the absence of local fragmentation effects. We hypothesized that the relative abundance and species richness of anurans is positively associated with forests but negatively associated with agriculture and urban areas. Our results show that the interspersion of different wetland types and the concomitant increase in wetland edge habitats were generally positive for frogs and toads and anuran abundance and diversity were generally higher in association with forests, especially forested wetlands. The presence of agriculture did not always depress frog and toad populations or diversity; some species were associated with agricultural landscapes. The two states differed in how anurans were associated with landscape features like lakes and permanent wetlands. We found that frog and toad relative abundance and diversity were lower when urban areas were present. Managers can use models like ours, generated from landscape analyses, along with range maps and population trend analyses to get a comprehensive picture of the health of individual species and groups of species. Our models could be applied to the landscape as a whole, and used to predict species relative abundance and

  17. Rhamnus cathartica (Rosales: Rhamnaceae) Invasion Reduces Ground-Dwelling Insect Abundance and Diversity in Northeast Iowa Forests.

    PubMed

    Schuh, Marissa; Larsen, Kirk J

    2015-06-01

    European buckthorn (Rhamnus cathartica L.) is an invasive woody shrub in deciduous forests of the Upper Midwest. Studies have suggested buckthorn invasion has negative effects on native plants, soil, and ecosystems, but its impacts on insects are largely unstudied. To test the impact of buckthorn invasion on ground-dwelling insects in forests of northeastern Iowa, pitfall traps were used to sample ground-dwelling insects at five sites four different periods from June to August 2013. Each site had three treatments: areas heavily infested with buckthorn, areas where buckthorn has not established, and areas where buckthorn had been removed within the past 2-10 yr. Most insects were identified to family and quantified; while ground beetles (Coleoptera: Carabidae) and ants (Hymenoptera: Formicidae) were identified to species and quantified. In total, 11,576 insects representing eight orders and 46 families were collected. Areas uninvaded by buckthorn had significantly greater insect abundance and taxonomic richness than areas invaded by buckthorn. Of the 948 ground beetles representing 40 species, abundance, species richness, and Shannon diversity indices were significantly lower in areas invaded by buckthorn compared with areas with no buckthorn. The 2,661 ants from 24 species had similar trends, but treatment differences were not significant because of high variability. These results clearly show a negative impact of buckthorn invasion on the abundance and taxonomic richness of ground-dwelling insects. PMID:26313971

  18. Relationship of Course Woody Debris to Red-Cockaded Woodpecker Prey Diversity and Abundance

    SciTech Connect

    Horn, G.S.

    1999-09-03

    The abundance of diversity of prey commonly used by the red-cockaded woodpecker were monitored in experimental plots in which course woody debris was manipulated. In one treatment, all the woody debris over four inches was removed. In the second treatment, the natural amount of mortality remained intact. The overall diversity of prey was unaffected; however, wood roaches were significantly reduced by removal of woody debris. The latter suggests that intensive utilizations or harvesting practices may reduce foraging.

  19. Increasing aridity reduces soil microbial diversity and abundance in global drylands

    PubMed Central

    Delgado-Baquerizo, Manuel; Jeffries, Thomas C.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Quero, José Luis; García-Gómez, Miguel; Gallardo, Antonio; Ulrich, Werner; Bowker, Matthew A.; Arredondo, Tulio; Barraza-Zepeda, Claudia; Bran, Donaldo; Florentino, Adriana; Gaitán, Juan; Gutiérrez, Julio R.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Miriti, Maria; Naseri, Kamal; Ospina, Abelardo; Stavi, Ilan; Wang, Deli; Woods, Natasha N.; Yuan, Xia; Zaady, Eli; Singh, Brajesh K.

    2015-01-01

    Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands. PMID:26647180

  20. Increasing aridity reduces soil microbial diversity and abundance in global drylands.

    PubMed

    Maestre, Fernando T; Delgado-Baquerizo, Manuel; Jeffries, Thomas C; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Quero, José Luis; García-Gómez, Miguel; Gallardo, Antonio; Ulrich, Werner; Bowker, Matthew A; Arredondo, Tulio; Barraza-Zepeda, Claudia; Bran, Donaldo; Florentino, Adriana; Gaitán, Juan; Gutiérrez, Julio R; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Miriti, Maria; Naseri, Kamal; Ospina, Abelardo; Stavi, Ilan; Wang, Deli; Woods, Natasha N; Yuan, Xia; Zaady, Eli; Singh, Brajesh K

    2015-12-22

    Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands. PMID:26647180

  1. Genomes, diversity and resistance gene analogues in Musa species.

    PubMed

    Azhar, M; Heslop-Harrison, J S

    2008-01-01

    Resistance genes (R genes) in plants are abundant and may represent more than 1% of all the genes. Their diversity is critical to the recognition and response to attack from diverse pathogens. Like many other crops, banana and plantain face attacks from potentially devastating fungal and bacterial diseases, increased by a combination of worldwide spread of pathogens, exploitation of a small number of varieties, new pathogen mutations, and the lack of effective, benign and cheap chemical control. The challenge for plant breeders is to identify and exploit genetic resistances to diseases, which is particularly difficult in banana and plantain where the valuable cultivars are sterile, parthenocarpic and mostly triploid so conventional genetic analysis and breeding is impossible. In this paper, we review the nature of R genes and the key motifs, particularly in the Nucleotide Binding Sites (NBS), Leucine Rich Repeat (LRR) gene class. We present data about identity, nature and evolutionary diversity of the NBS domains of Musa R genes in diploid wild species with the Musa acuminata (A), M. balbisiana (B), M. schizocarpa (S), M. textilis (T), M. velutina and M. ornata genomes, and from various cultivated hybrid and triploid accessions, using PCR primers to isolate the domains from genomic DNA. Of 135 new sequences, 75% of the sequenced clones had uninterrupted open reading frames (ORFs), and phylogenetic UPGMA tree construction showed four clusters, one from Musa ornata, one largely from the B and T genomes, one from A and M. velutina, and the largest with A, B, T and S genomes. Only genes of the coiled-coil (non-TIR) class were found, typical of the grasses and presumably monocotyledons. The analysis of R genes in cultivated banana and plantain, and their wild relatives, has implications for identification and selection of resistance genes within the genus which may be useful for plant selection and breeding and also for defining relationships and genome evolution

  2. Diversity, Pathogenicity And Control of Verticillium Species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Verticillium is a cosmopolitan group of ascomycetous fungi, encompassing phytopathogenic species that cause vascular wilts of plants. Two of these species, V. dahliae and V. albo-atrum, cause billions of dollars in annual crop losses worldwide. The soil habitat of these species, the exte...

  3. Abundance and diversity of soybean-nodulating rhizobia in black soil are impacted by land use and crop management.

    PubMed

    Yan, Jun; Han, Xiao Zeng; Ji, Zhao Jun; Li, Yan; Wang, En Tao; Xie, Zhi Hong; Chen, Wen Feng

    2014-09-01

    To investigate the effects of land use and crop management on soybean rhizobial communities, 280 nodule isolates were trapped from 7 fields with different land use and culture histories. Besides the known Bradyrhizobium japonicum, three novel genospecies were isolated from these fields. Grassland (GL) maintained a higher diversity of soybean bradyrhizobia than the other cultivation systems. Two genospecies (Bradyrhizobium spp. I and III) were distributed widely in all treatments, while Bradyrhizobium sp. II was found only in GL treatment. Cultivation with soybeans increased the rhizobial abundance and diversity, except for the soybean monoculture (S-S) treatment. In monoculture systems, soybeans favored Bradyrhizobium sp. I, while maize and wheat favored Bradyrhizobium sp. III. Fertilization decreased the rhizobial diversity indexes but did not change the species composition. The organic carbon (OC) and available phosphorus (AP) contents and pH were the main soil parameters positively correlated with the distribution of Bradyrhizobium spp. I and II and Bradyrhizobium japonicum and negatively correlated with Bradyrhizobium sp. III. These results revealed that different land uses and crop management could not only alter the diversity and abundance of soybean rhizobia, but also change interactions between rhizobia and legume or nonlegume plants, which offered novel information about the biogeography of rhizobia. PMID:24951780

  4. Abundance and Diversity of Soybean-Nodulating Rhizobia in Black Soil Are Impacted by Land Use and Crop Management

    PubMed Central

    Yan, Jun; Ji, Zhao Jun; Li, Yan; Wang, En Tao; Xie, Zhi Hong

    2014-01-01

    To investigate the effects of land use and crop management on soybean rhizobial communities, 280 nodule isolates were trapped from 7 fields with different land use and culture histories. Besides the known Bradyrhizobium japonicum, three novel genospecies were isolated from these fields. Grassland (GL) maintained a higher diversity of soybean bradyrhizobia than the other cultivation systems. Two genospecies (Bradyrhizobium spp. I and III) were distributed widely in all treatments, while Bradyrhizobium sp. II was found only in GL treatment. Cultivation with soybeans increased the rhizobial abundance and diversity, except for the soybean monoculture (S-S) treatment. In monoculture systems, soybeans favored Bradyrhizobium sp. I, while maize and wheat favored Bradyrhizobium sp. III. Fertilization decreased the rhizobial diversity indexes but did not change the species composition. The organic carbon (OC) and available phosphorus (AP) contents and pH were the main soil parameters positively correlated with the distribution of Bradyrhizobium spp. I and II and Bradyrhizobium japonicum and negatively correlated with Bradyrhizobium sp. III. These results revealed that different land uses and crop management could not only alter the diversity and abundance of soybean rhizobia, but also change interactions between rhizobia and legume or nonlegume plants, which offered novel information about the biogeography of rhizobia. PMID:24951780

  5. Abundance and Diversity of Soil Arthropods in the Olive Grove Ecosystem

    PubMed Central

    Gonçalves, Maria Fátima; Pereira, José Alberto

    2012-01-01

    Arthropods are part of important functional groups in soil food webs. Recognizing these arthropods and understanding their function in the ecosystem as well as when they are active is essential to understanding their roles. In the present work, the abundance and diversity of soil arthropods is examined in olive groves in the northeast region of Portugal during the spring. Five classes of arthropods were found: Chilopoda, Malacostraca, Entognatha, Insecta, and Arachnida. Captures were numerically dominated by Collembola within Entognatha, representing 70.9% of total captures. Arachnida and Insecta classes represented about 20.4 and 9.0%, respectively. Among the predatory arthropods, the most representative groups were Araneae and Opiliones from Arachnida, and Formicidae, Carabidae, and Staphylinidae from Insecta. From the Formicidae family, Tetramorium semilaeve (Andre 1883), Tapinoma nigerrimum (Nylander 1856), and Crematogaster scutellaris (Olivier 1792) were the most representative ant species. Arthropods demonstrated preference during the day, with 74% of the total individuals recovered in this period, although richness and similarity were analogous during the day and night. PMID:22943295

  6. Abundance and diversity of soil arthropods in the olive grove ecosystem.

    PubMed

    Gonçalves, Maria Fátima; Pereira, José Alberto

    2012-01-01

    Arthropods are part of important functional groups in soil food webs. Recognizing these arthropods and understanding their function in the ecosystem as well as when they are active is essential to understanding their roles. In the present work, the abundance and diversity of soil arthropods is examined in olive groves in the northeast region of Portugal during the spring. Five classes of arthropods were found: Chilopoda, Malacostraca, Entognatha, Insecta, and Arachnida. Captures were numerically dominated by Collembola within Entognatha, representing 70.9% of total captures. Arachnida and Insecta classes represented about 20.4 and 9.0%, respectively. Among the predatory arthropods, the most representative groups were Araneae and Opiliones from Arachnida, and Formicidae, Carabidae, and Staphylinidae from Insecta. From the Formicidae family, Tetramorium semilaeve (Andre 1883), Tapinoma nigerrimum (Nylander 1856), and Crematogaster scutellaris (Olivier 1792) were the most representative ant species. Arthropods demonstrated preference during the day, with 74% of the total individuals recovered in this period, although richness and similarity were analogous during the day and night. PMID:22943295

  7. Documenting and comparing plant species diversity by using numerical and parametric methods in Khaje Kalat, NE Iran.

    PubMed

    Ejtehadi, H; Soltani, R; Zahedi Pour, H

    2007-10-15

    The aim was to examine and document several aspects of numerical diversity such as species richness, species diversity and evenness and to compare diversity in different slope aspects of the area by using numerical and parametric methods. About 193 quadrats of 4 m2 were located according to the nature of vegetation. Species composition and their abundance were recorded in a two-year period (2005 to 2006). The result of field investigation was collecting and identifying of the total 225 plant species belonging to 154 genera and 37 families. The abundance data were subjected to analyses by specific diversity packages to characterize and obtain numerical indices (Shannon, Simpson, Brillouin, McIntosh, etc.,) and parametric families of species diversity. Numerical indices were calculated and documented for monitoring purposes. The results of diversity in main slope aspects (N, S, E, W) showed higher species richness and species diversity indices in the north aspect than in the others but it was not true with evenness indices. About 30 species such as Acanthophyllum glandulosum, Acroptilon repens, Alcea tiliacea, Bromus sericeous, Astragalus turbinatus, Centaurea balsamita etc., were detected exclusively in the north aspect. This can be important in reducing the evenness. Diversity comparing by using rank-abundance plot as well as diversity ordering of Hill, Renyi and Patil and Taillie confirmed high species diversity in the north yet the result of ANOVA showed no significant differences in the four aspects. The result of diversity based on the models revealed that the whole area, the south and the west aspects follow lognormal distribution, north aspect follows logarithmic whereas the east follows both lognormal and logarithmic distribution. In other word, a shift from being lognormal to logarithmic model was observed in the east aspect. PMID:19093482

  8. [Diversity, abundance and distribution of benthic macrofauna on rocky shores from North Sucre State, Venezuela].

    PubMed

    Fernandez, Johanna; Jiménez, Mayré; Allen, Thays

    2014-09-01

    The rocky intertidal zone is among the most extreme physical environments on Earth. Organisms living in this area are constantly stricken by physico-chemical and biological factors. Due to the ecological importance of these areas, we studied the diversity, abundance and distribution of the rocky coastline benthic macrofauna, from the North coast of Sucre State, Venezuela. We performed bimonthly samplings from November 2008 to September 2009. The collection of biological material in the littoral zone (supra, mid and infralittoral) was done manually with a grid of 0.25m2. Organisms were preserved in 10% formalin for later identification and analysis (ecological parameters and Kruskal-Wallis test to the abundance and diversity). We found a total 19,020 organisms (86 spp.), in 8 phyla, 45 families and 47 genera. Mollusks were the most abundant and diverse (58 spp.), followed by arthropods (12 spp.), annelids (7 spp.), echinoderms (5 spp.), and the less represented cnidarians, sipunculids, nemertinids and urochordates (1 sp.). The zonation found coincided with the universal scheme of zonation. The towns of Rio Boca and Rio Caribe presented the highest values of ecological parameters, and the lowest were found in Playa Grande. Statistical significant differences were found in the abundance and diversity of macrofauna among the three zones. The little information on the composition and distribution of macrobenthic rocky coastline, prevents a better comparison, however the results contribute to the knowledge of the marine biodiversity in this region. PMID:25412527

  9. Microbial mat controls on infaunal abundance and diversity in modern marine microbialites.

    PubMed

    Tarhan, L G; Planavsky, N J; Laumer, C E; Stolz, J F; Reid, R P

    2013-09-01

    Microbialites are the most abundant macrofossils of the Precambrian. Decline in microbialite abundance and diversity during the terminal Proterozoic and early Phanerozoic has historically been attributed to the concurrent radiation of complex metazoans. Similarly, the apparent resurgence of microbialites in the wake of Paleozoic and Mesozoic mass extinctions is frequently linked to drastic declines in metazoan diversity and abundance. However, it has become increasing clear that microbialites are relatively common in certain modern shallow, normal marine carbonate environments-foremost the Bahamas. For the first time, we present data, collected from the Exuma Cays, the Bahamas, systematically characterizing the relationship between framework-building cyanobacteria, microbialite fabrics, and microbialite-associated metazoan abundance and diversity. We document the coexistence of diverse microbialite and infaunal metazoan communities and demonstrate that the predominant control upon both microbialite fabric and metazoan community structure is microbial mat type. These findings necessitate that we rethink prevalent interpretations of microbialite-metazoan interactions and imply that microbialites are not passive recipients of metazoan-mediated alteration. Additionally, this work provides support for the theory that certain Precambrian microbialites may have been havens of early complex metazoan life, rather than bereft of metazoans, as has been traditionally envisaged. PMID:23889904

  10. Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber

    PubMed Central

    Antón, Josefa; Peña, Arantxa; Santos, Fernando; Martínez-García, Manuel; Schmitt-Kopplin, Philippe; Rosselló-Mora, Ramon

    2008-01-01

    Since its discovery in 1998, representatives of the extremely halophilic bacterium Salinibacter ruber have been found in many hypersaline environments across the world, including coastal and solar salterns and solar lakes. Here, we review the available information about the distribution, abundance and diversity of this member of the Bacteroidetes. PMID:18957079

  11. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities.

    PubMed

    Taberlet, Pierre; Zimmermann, Niklaus E; Englisch, Thorsten; Tribsch, Andreas; Holderegger, Rolf; Alvarez, Nadir; Niklfeld, Harald; Coldea, Gheorghe; Mirek, Zbigniew; Moilanen, Atte; Ahlmer, Wolfgang; Marsan, Paolo Ajmone; Bona, Enzo; Bovio, Maurizio; Choler, Philippe; Cieślak, Elżbieta; Colli, Licia; Cristea, Vasile; Dalmas, Jean-Pierre; Frajman, Božo; Garraud, Luc; Gaudeul, Myriam; Gielly, Ludovic; Gutermann, Walter; Jogan, Nejc; Kagalo, Alexander A; Korbecka, Grażyna; Küpfer, Philippe; Lequette, Benoît; Letz, Dominik Roman; Manel, Stéphanie; Mansion, Guilhem; Marhold, Karol; Martini, Fabrizio; Negrini, Riccardo; Niño, Fernando; Paun, Ovidiu; Pellecchia, Marco; Perico, Giovanni; Piękoś-Mirkowa, Halina; Prosser, Filippo; Puşcaş, Mihai; Ronikier, Michał; Scheuerer, Martin; Schneeweiss, Gerald M; Schönswetter, Peter; Schratt-Ehrendorfer, Luise; Schüpfer, Fanny; Selvaggi, Alberto; Steinmann, Katharina; Thiel-Egenter, Conny; van Loo, Marcela; Winkler, Manuela; Wohlgemuth, Thomas; Wraber, Tone; Gugerli, Felix; Vellend, Mark

    2012-12-01

    The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies. PMID:23006492

  12. Theory predicts the uneven distribution of genetic diversity within species.

    PubMed

    Rauch, Erik M; Bar-Yam, Yaneer

    2004-09-23

    Global efforts to conserve species have been strongly influenced by the heterogeneous distribution of species diversity across the Earth. This is manifest in conservation efforts focused on diversity hotspots. The conservation of genetic diversity within an individual species is an important factor in its survival in the face of environmental changes and disease. Here we show that diversity within species is also distributed unevenly. Using simple genealogical models, we show that genetic distinctiveness has a scale-free power law distribution. This property implies that a disproportionate fraction of the diversity is concentrated in small sub-populations, even when the population is well-mixed. Small groups are of such importance to overall population diversity that even without extrinsic perturbations, there are large fluctuations in diversity owing to extinctions of these small groups. We also show that diversity can be geographically non-uniform--potentially including sharp boundaries between distantly related organisms--without extrinsic causes such as barriers to gene flow or past migration events. We obtained these results by studying the fundamental scaling properties of genealogical trees. Our theoretical results agree with field data from global samples of Pseudomonas bacteria. Contrary to previous studies, our results imply that diversity loss owing to severe extinction events is high, and focusing conservation efforts on highly distinctive groups can save much of the diversity. PMID:15386012

  13. Species richness and morphological diversity of passerine birds

    PubMed Central

    Ricklefs, Robert E.

    2012-01-01

    The relationship between species richness and the occupation of niche space can provide insight into the processes that shape patterns of biodiversity. For example, if species interactions constrained coexistence, one might expect tendencies toward even spacing within niche space and positive relationships between diversity and total niche volume. I use morphological diversity of passerine birds as a proxy for diet, foraging maneuvers, and foraging substrates and examine the morphological space occupied by regional and local passerine avifaunas. Although independently diversified regional faunas exhibit convergent morphology, species are clustered rather than evenly distributed, the volume of the morphological space is weakly related to number of species per taxonomic family, and morphological volume is unrelated to number of species within both regional avifaunas and local assemblages. These results seemingly contradict patterns expected when species interactions constrain regional or local diversity, and they suggest a larger role for diversification, extinction, and dispersal limitation in shaping species richness. PMID:22908271

  14. Species richness - Energy relationships and dung beetle diversity across an aridity and trophic resource gradient

    NASA Astrophysics Data System (ADS)

    Tshikae, B. Power; Davis, Adrian L. V.; Scholtz, Clarke H.

    2013-05-01

    Understanding factors that drive species richness and turnover across ecological gradients is important for insect conservation planning. To this end, we studied species richness - energy relationships and regional versus local factors that influence dung beetle diversity in game reserves along an aridity and trophic resource gradient in the Botswana Kalahari. Dung beetle species richness, alpha diversity, and abundance declined with increasing aridity from northeast to southwest and differed significantly between dung types (pig, elephant, cattle, sheep) and carrion (chicken livers). Patterns of between-study area species richness on ruminant dung (cattle, sheep) differed to other bait types. Patterns of species richness between bait types in two southwest study areas differed from those in four areas to the northeast. Regional species turnover between study areas was higher than local turnover between bait types. Patterns of southwest to northeast species loss showed greater consistency than northeast to southwest losses from larger assemblages. Towards the southwest, similarity to northeast assemblages declined steeply as beta diversity increased. High beta diversity and low similarity at gradsect extremes resulted from two groups of species assemblages showing either northeast or southwest biogeographical centres. The findings are consistent with the energy hypothesis that indicates insect species richness in lower latitudes is indirectly limited by declining water variables, which drive reduced food resources (lower energy availability) represented, here, by restriction of large mammals dropping large dung types to the northeast and dominance of pellet dropping mammals in the arid southwest Kalahari. The influence of theoretical causal mechanisms is discussed.

  15. [Seasonal evaluation of mammal species richness and abundance in the "Mário Viana" municipal reserve, Mato Grosso, Brasil].

    PubMed

    Rocha, Ednaldo Cândido; Silva, Elias; Martins, Sebastião Venâncio; Barreto, Francisco Cândido Cardoso

    2006-09-01

    We evaluated seasonal species presence and richness, and abundance of medium and large sized mammalian terrestrial fauna in the "Mário Viana" Municipal Biological Reserve, Nova Xavantina, Mato Grosso, Brazil. During 2001, two monthly visits were made to an established transect, 2,820 m in length. Records of 22 mammal species were obtained and individual footprint sequences quantified for seasonal calculation of species richness and relative abundance index (x footprints/km traveled). All 22 species occurred during the rainy season, but only 18 during the dry season. Pseudalopex vetulus (Lund, 1842) (hoary fox), Eira barbara (Linnaeus, 1758) (tayra), Puma concolor (Linnaeus, 1771) (cougar) and Hydrochaeris hydrochaeris (Linnaeus, 1766) (capybara) were only registered during the rainy season. The species diversity estimated using the Jackknife procedure in the dry season (19.83, CI = 2.73) was smaller than in the rainy season (25.67, CI = 3.43). Among the 18 species common in the two seasons, only four presented significantly different abundance indexes: Dasypus novemcinctus Linnaeus, 1758 (nine-banded armadillo), Euphractus sexcinctus (Linnaeus, 1758) (six-banded armadillo), Dasyprocta azarae Lichtenstein, 1823 (Azara's Agouti) and Tapirus terrestris (Linnaeus, 1758) (tapir). On the other hand, Priodontes maximus (Kerr, 1792) (giant armadillo) and Leopardus pardalis (Linnaeus, 1758) (ocelot) had identical abundance index over the two seasons. Distribution of species abundance in the sampled area followed the expected pattern for communities in equilibrium, especially in the rainy season, suggesting that the environment still maintains good characteristics for mammal conservation. The present study shows that the reserve, although only 470 ha in size, plays an important role for conservation of mastofauna of the area as a refuge in an environment full of anthropic influence (mainly cattle breeding in exotic pasture). PMID:18491629

  16. High levels of cryptic species diversity uncovered in Amazonian frogs

    PubMed Central

    Funk, W. Chris; Caminer, Marcel; Ron, Santiago R.

    2012-01-01

    One of the greatest challenges for biodiversity conservation is the poor understanding of species diversity. Molecular methods have dramatically improved our ability to uncover cryptic species, but the magnitude of cryptic diversity remains unknown, particularly in diverse tropical regions such as the Amazon Basin. Uncovering cryptic diversity in amphibians is particularly pressing because amphibians are going extinct globally at an alarming rate. Here, we use an integrative analysis of two independent Amazonian frog clades, Engystomops toadlets and Hypsiboas treefrogs, to test whether species richness is underestimated and, if so, by how much. We sampled intensively in six countries with a focus in Ecuador (Engystomops: 252 individuals from 36 localities; Hypsiboas: 208 individuals from 65 localities) and combined mitochondrial DNA, nuclear DNA, morphological, and bioacoustic data to detect cryptic species. We found that in both clades, species richness was severely underestimated, with more undescribed species than described species. In Engystomops, the two currently recognized species are actually five to seven species (a 150–250% increase in species richness); in Hypsiboas, two recognized species represent six to nine species (a 200–350% increase). Our results suggest that Amazonian frog biodiversity is much more severely underestimated than previously thought. PMID:22130600

  17. From the Cover: Ecological community description using the food web, species abundance, and body size

    NASA Astrophysics Data System (ADS)

    Cohen, Joel E.; Jonsson, Tomas; Carpenter, Stephen R.

    2003-02-01

    Measuring the numerical abundance and average body size of individuals of each species in an ecological community's food web reveals new patterns and illuminates old ones. This approach is illustrated using data from the pelagic community of a small lake: Tuesday Lake, Michigan, United States. Body mass varies almost 12 orders of magnitude. Numerical abundance varies almost 10 orders of magnitude. Biomass abundance (average body mass times numerical abundance) varies only 5 orders of magnitude. A new food web graph, which plots species and trophic links in the plane spanned by body mass and numerical abundance, illustrates the nearly inverse relationship between body mass and numerical abundance, as well as the pattern of energy flow in the community. Species with small average body mass occur low in the food web of Tuesday Lake and are numerically abundant. Larger-bodied species occur higher in the food web and are numerically rarer. Average body size explains more of the variation in numerical abundance than does trophic height. The trivariate description of an ecological community by using the food web, average body sizes, and numerical abundance includes many well studied bivariate and univariate relationships based on subsets of these three variables. We are not aware of any single community for which all of these relationships have been analyzed simultaneously. Our approach demonstrates the connectedness of ecological patterns traditionally treated as independent. Moreover, knowing the food web gives new insight into the disputed form of the allometric relationship between body mass and abundance.

  18. Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya

    PubMed Central

    2010-01-01

    Background The diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya. Methods Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru), unplanned rice cultivation (Kiamachiri) and non-irrigated (Murinduko) agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent Azolla cover were taken for each habitat. Results Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total Anopheles immatures sampled (n = 29,252), respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower Anopheles larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage Azolla cover, distance to nearest homestead, depth and water turbidity were the best predictors for Anopheles mosquito larval abundance. Conclusion

  19. Species Divergence and the Measurement of Microbial Diversity

    PubMed Central

    Lozupone, Catherine A.; Knight, Rob

    2008-01-01

    Diversity measurement is important for understanding community structure and dynamics, but has been particularly challenging for microbes. Microbial community characterization using small subunit ribosomal RNA (SSU rRNA) gene sequences has revealed an extensive, previously unsuspected diversity that we are only now beginning to understand, especially now that advanced sequencing technologies are producing data sets containing hundreds of thousands of sequences from hundreds of samples. Efforts to quantify microbial diversity often use taxon-based methods that ignore the fact that not all species are equally related, which can therefore obscure important patterns in the data. For example, α diversity (diversity within communities) is often estimated as the number of species in a community (species richness), and β diversity (partitioning of diversity among communities) is often based on the number of shared species. Methods for measuring α diversity and β diversity that account for different levels of divergence between individuals have recently been more widely applied. These methods are more powerful than taxon-based methods because microbes in a community differ dramatically in sequence similarity, which also often correlates with phenotypic similarity in key features such as metabolic capabilities. Consequently, divergence-based methods are providing new insights into microbial community structure and function. PMID:18435746

  20. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    NASA Astrophysics Data System (ADS)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  1. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    PubMed Central

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to −25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g−1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  2. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China.

    PubMed

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 10(4) to 8.5 × 10(9) copies g(-1)), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  3. Estimating Abundances of Interacting Species Using Morphological Traits, Foraging Guilds, and Habitat

    PubMed Central

    Dorazio, Robert M.; Connor, Edward F.

    2014-01-01

    We developed a statistical model to estimate the abundances of potentially interacting species encountered while conducting point-count surveys at a set of ecologically relevant locations – as in a metacommunity of species. In the model we assume that abundances of species with similar traits (e.g., body size) are potentially correlated and that these correlations, when present, may exist among all species or only among functionally related species (such as members of the same foraging guild). We also assume that species-specific abundances vary among locations owing to systematic and stochastic sources of heterogeneity. For example, if abundances differ among locations due to differences in habitat, then measures of habitat may be included in the model as covariates. Naturally, the quantitative effects of these covariates are assumed to differ among species. Our model also accounts for the effects of detectability on the observed counts of each species. This aspect of the model is especially important for rare or uncommon species that may be difficult to detect in community-level surveys. Estimating the detectability of each species requires sampling locations to be surveyed repeatedly using different observers or different visits of a single observer. As an illustration, we fitted models to species-specific counts of birds obtained while sampling an avian community during the breeding season. In the analysis we examined whether species abundances appeared to be correlated due to similarities in morphological measures (body mass, beak length, tarsus length, wing length, tail length) and whether these correlations existed among all species or only among species of the same foraging guild. We also used the model to estimate the effects of forested area on species abundances and the effects of sound power output (as measured by body size) on species detection probabilities. PMID:24727898

  4. Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat

    USGS Publications Warehouse

    Dorazio, Robert M.; Connor, Edward F.

    2014-01-01

    We developed a statistical model to estimate the abundances of potentially interacting species encountered while conducting point-count surveys at a set of ecologically relevant locations - as in a metacommunity of species. In the model we assume that abundances of species with similar traits (e.g., body size) are potentially correlated and that these correlations, when present, may exist among all species or only among functionally related species (such as members of the same foraging guild). We also assume that species-specific abundances vary among locations owing to systematic and stochastic sources of heterogeneity. For example, if abundances differ among locations due to differences in habitat, then measures of habitat may be included in the model as covariates. Naturally, the quantitative effects of these covariates are assumed to differ among species. Our model also accounts for the effects of detectability on the observed counts of each species. This aspect of the model is especially important for rare or uncommon species that may be difficult to detect in community-level surveys. Estimating the detectability of each species requires sampling locations to be surveyed repeatedly using different observers or different visits of a single observer. As an illustration, we fitted models to species-specific counts of birds obtained while sampling an avian community during the breeding season. In the analysis we examined whether species abundances appeared to be correlated due to similarities in morphological measures (body mass, beak length, tarsus length, wing length, tail length) and whether these correlations existed among all species or only among species of the same foraging guild. We also used the model to estimate the effects of forested area on species abundances and the effects of sound power output (as measured by body size) on species detection probabilities.

  5. Tree diversity promotes functional dissimilarity and maintains functional richness despite species loss in predator assemblages.

    PubMed

    Schuldt, Andreas; Bruelheide, Helge; Durka, Walter; Michalski, Stefan G; Purschke, Oliver; Assmann, Thorsten

    2014-02-01

    The effects of species loss on ecosystems depend on the community's functional diversity (FD). However, how FD responds to environmental changes is poorly understood. This applies particularly to higher trophic levels, which regulate many ecosystem processes and are strongly affected by human-induced environmental changes. We analyzed how functional richness (FRic), evenness (FEve), and divergence (FDiv) of important generalist predators-epigeic spiders-are affected by changes in woody plant species richness, plant phylogenetic diversity, and stand age in highly diverse subtropical forests in China. FEve and FDiv of spiders increased with plant richness and stand age. FRic remained on a constant level despite decreasing spider species richness with increasing plant species richness. Plant phylogenetic diversity had no consistent effect on spider FD. The results contrast with the negative effect of diversity on spider species richness and suggest that functional redundancy among spiders decreased with increasing plant richness through non-random species loss. Moreover, increasing functional dissimilarity within spider assemblages with increasing plant richness indicates that the abundance distribution of predators in functional trait space affects ecological functions independent of predator species richness or the available trait space. While plant diversity is generally hypothesized to positively affect predators, our results only support this hypothesis for FD-and here particularly for trait distributions within the overall functional trait space-and not for patterns in species richness. Understanding the way predator assemblages affect ecosystem functions in such highly diverse, natural ecosystems thus requires explicit consideration of FD and its relationship with species richness. PMID:24096740

  6. Effects of understory structure on the abundance, richness and diversity of Collembola (Arthropoda) in southern Brazil.

    PubMed

    Ribeiro-Troian, Vera R; Baldissera, Ronei; Hartz, Sandra M

    2009-01-01

    The purpose of this study was to investigate the effects of different landscape structures on the understory Collembola community. Four different forest physiognomies were compared: Pinus spp. plantation, Eucalyptus spp. plantation, Araucaria angustifolia plantation, and a remaining native Araucaria forest. Three areas containing two sampling units (25 mx2 m each) were selected in each forest physiognomy. Understory Collembola collection was done with a 1x1 m canvas sheet held horizontally below the vegetation, which was beaten with a 1 m long stick, seasonally from September 2003 to August 2004. We evaluated the influence of forest physiognomies on the abundance, richness and diversity of Collembola communities. It was also verified if the habitat structure of each physiognomy was associated with the composition of the Collembola community. A total number of 4,111 individuals were collected belonging to the families Entomobrydae and Tomocerida (Entomobryomorpha), and Sminthuridae (Symphypleona), and divided in 12 morphospecies. Pinus plantation presented the highest richness, abundance and diversity of Collembola and it was associated to diverse understory vegetation. The abundance of Entomobrydae and Sminthuridae was associated to the presence of bushes, while Tomoceridae abundance was associated to the presence of trees. The habitat structure, measured through understory vegetation density and composition, plays an important role on the determination of the structure and composition of the Collembola community. PMID:19618049

  7. Linking environmental drivers with amphibian species diversity in ponds from subtropical grasslands.

    PubMed

    Gonçalves, Darlene S; Crivellari, Lucas B; Conte, Carlos Eduardo

    2015-09-01

    Amphibian distribution patterns are known to be influenced by habitat diversity at breeding sites. Thus, breeding sites variability and how such variability influences anuran diversity is important. Here, we examine which characteristics at breeding sites are most influential on anuran diversity in grasslands associated with Araucaria forest, southern Brazil, especially in places at risk due to anthropic activities. We evaluate the associations between habitat heterogeneity and anuran species diversity in nine body of water from September 2008 to March 2010, in 12 field campaigns in which 16 species of anurans were found. Of the seven habitat descriptors we examined, water depth, pond surface area and distance to the nearest forest fragment explained 81% of total species diversity. Water depth, margin vegetation type, surface area and distance to the next body of water explained between 31-74% of the variance in abundance of nine of the 16 species. Thus, maintenance of body of water, of the vegetation along the water edge and natural forest fragments in the grasslands, along with fire control (used to renovation of pasture), are fundamentally important for the maintenance of anuran species diversity through the conservation of their breeding sites. PMID:26421457

  8. Abundance and diversity of ammonia-oxidizing microorganisms in the sediments of Jinshan Lake.

    PubMed

    Liu, Biao; Li, Yimin; Zhang, Jinping; Zhou, Xiaohong; Wu, Chundu

    2014-11-01

    Community structures of ammonia-oxidizing microorganisms were investigated using PCR primers designed to specifically target the ammonia monooxygenase α-subunit (amoA) gene in the sediment of Jinshan Lake. Relationships between the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), and physicochemical parameters were also explored. The AOA abundance decreased sharply from west to east; however, the AOB abundance changed slightly with AOB outnumbering AOA in two of the four sediment samples (JS), JS3 and JS4. The AOA abundance was significantly correlated with the NH4-N, NO3-N, and TP. No significant correlations were observed between the AOB abundance and environmental variables. AOB had a higher diversity and richness of amoA genes than AOA. Among the 76 archaeal amoA sequences retrieved, 57.89, 38.16, and 3.95 % fell within the Nitrosopumilus, Nitrososphaera, and Nitrososphaera sister clusters, respectively. The 130 bacterial amoA gene sequences obtained in this study were grouped with known AOB sequences in the Nitrosomonas and Nitrosospira genera, which occupied 72.31 % and 27.69 % of the AOB group, respectively. Compared to the other three sample sites, the AOA and AOB community compositions at JS4 showed a large difference. This work could enhance our understanding of the roles of ammonia-oxidizing microorganisms in freshwater lake environment. PMID:25008777

  9. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Gong, Jun; Zhang, Xiaoli; Yin, Guoyu; You, Li

    2013-07-01

    ammonium oxidation (anammox) as an important process of nitrogen cycle has been studied in estuarine environments. However, knowledge about the dynamics of anammox bacteria and their interactions with associated activity remains scarce in these environments. Here we report the anammox bacterial diversity, abundance, and activity in the Yangtze Estuary, using molecular and isotope-tracing techniques. The phylogenetic analysis of 16S rRNA indicated that high anammox bacterial diversity occurred in this estuary, including Scalindua, Brocadia, Kuenenia, and two novel clusters. The patterns of community composition and diversity of anammox bacteria differed across the estuary. Salinity was a key environmental factor defining the geographical distribution and diversity of the anammox bacterial community at the estuarine ecosystem. Temperature and organic carbon also had significant influences on anammox bacterial biodiversity. The abundance of anammox bacteria ranged from 2.63 × 106 and 1.56 × 107 gene copies g-1, and its spatiotemporal variations were related significantly to salinity, temperature, and nitrite content. The anammox activity was related to temperature, nitrite, and anammox bacterial abundance, with values of 0.94-6.61 nmol N g-1 h-1. The tight link between the anammox and denitrification processes implied that denitrifying bacteria may be a primary source of nitrite for the anammox bacteria in the estuarine marshes. On the basis of the 15N tracing experiments, the anammox process was estimated to contribute 6.6%-12.9% to the total nitrogen loss whereas the remainder was attributed to denitrification.

  10. Microbiome interplay: plants alter microbial abundance and diversity within the built environment

    PubMed Central

    Mahnert, Alexander; Moissl-Eichinger, Christine; Berg, Gabriele

    2015-01-01

    The built indoor microbiome has importance for human health. Residents leave their microbial fingerprint but nothing is known about the transfer from plants. Our hypothesis that indoor plants contribute substantially to the microbial abundance and diversity in the built environment was experimentally confirmed as proof of principle by analyzing the microbiome of the spider plant Chlorophytum comosum in relation to their surroundings. The abundance of Archaea, Bacteria, and Eukaryota (fungi) increased on surrounding floor and wall surfaces within 6 months of plant isolation in a cleaned indoor environment, whereas the microbial abundance on plant leaves and indoor air remained stable. We observed a microbiome shift: the bacterial diversity on surfaces increased significantly but fungal diversity decreased. The majority of cells were intact at the time of samplings and thus most probably alive including diverse Archaea as yet unknown phyllosphere inhabitants. LEfSe and network analysis showed that most microbes were dispersed from plant leaves to the surrounding surfaces. This led to an increase of specific taxa including spore-forming fungi with potential allergic potential but also beneficial plant-associated bacteria, e.g., Paenibacillus. This study demonstrates for the first time that plants can alter the microbiome of a built environment, which supports the significance of plants and provides insights into the complex interplay of plants, microbiomes and human beings. PMID:26379656

  11. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments

    PubMed Central

    Kubo, Kyoko; Lloyd, Karen G; F Biddle, Jennifer; Amann, Rudolf; Teske, Andreas; Knittel, Katrin

    2012-01-01

    Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and quantification of MCG crenarchaeota in diverse types of marine sediments and microbial mats. In general, abundance of MCG (cocci, 0.4 μm) relative to other archaea was highest (12–100%) in anoxic, low-energy environments characterized by deeper sulfate depletion and lower microbial respiration rates (P=0.06 for slot blot and P=0.05 for qPCR). When studied in high depth resolution in the White Oak River estuary and Hydrate Ridge methane seeps, changes in MCG abundance relative to total archaea and MCG phylogenetic composition did not correlate with changes in sulfate reduction or methane oxidation with depth. In addition, MCG abundance did not vary significantly (P>0.1) between seep sites (with high rates of methanotrophy) and non-seep sites (with low rates of methanotrophy). This suggests that MCG are likely not methanotrophs. MCG crenarchaeota are highly diverse and contain 17 subgroups, with a range of intragroup similarity of 82 to 94%. This high diversity and widespread distribution in subsurface sediments indicates that this group is globally important in sedimentary processes. PMID:22551871

  12. New Insights on Jupiter's Deep Water Abundance from Disequilibrium Species

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Gierasch, Peter; Lunine, Jonathan; Mousis, Olivier

    2014-11-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We aim to improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of eddy diffusion coefficient. The new formulation predicts a smooth transition from slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for newly derived coefficient of less than 25%, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraintprovided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other one constrains the water enrichment between 7 and 23. This difference calls for a better assessment of CO kinetic models.

  13. New insights on Jupiter's deep water abundance from disequilibrium species

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Gierasch, Peter J.; Lunine, Jonathan I.; Mousis, Olivier

    2015-04-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of the eddy diffusion coefficient for the troposphere of giant planets. The new formulation predicts a smooth transition from the slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for the newly derived coefficient of less than 25%, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraint provided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other constrains the water enrichment between 3 and 11.

  14. Do stacked species distribution models reflect altitudinal diversity patterns?

    PubMed

    Mateo, Rubén G; Felicísimo, Ángel M; Pottier, Julien; Guisan, Antoine; Muñoz, Jesús

    2012-01-01

    The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed. PMID

  15. Variations in the abundance and structural diversity of microbes forming biofilms in a thermally stressed coral reef system.

    PubMed

    Mahmoud, Huda

    2015-11-30

    Little information is known about biofilm formation in the thermally stressed coral reef systems north of the Arabian Gulf. The current study investigates the abundance and diversity of marine microbes involved in biofilm formation and their succession over a period of 14 weeks (May-August 2007) at temperatures exceeding 32 °C. The results showed variations in microbial numbers and the development of more stable biofilm communities as the biofilms aged. The culture-dependent technique and microscopic examination of the developed biofilms showed the dominance of key species known for their role in precipitating CaCO3 such as Vibrio and in facilitating coral larvae settlement and metamorphosis such as Pseudoalteromonas, Bacillariophyceae and Rhodophyceae. The results revealed biofilm formations with microbial diversities that have the potential to support the larval settlement and metamorphism of marine organisms and to consolidate and stabilize biofilms via the process of calcification in the thermally stressed coral reef system considered herein. PMID:26494248

  16. [Species diversity and managed ecosystem stability].

    PubMed

    Feng, Yaozong

    2003-06-01

    Based on partial experimental data of the studies on managed communities over 40 years, various managed communities in terms of ecological structures, e.g., rubber or tea plantation in one species with one community layer, rubber-tea and rubber-coffee of two species with two community layers, rubber-luofumu-qiannianjian of three species with three community layers, and artificial rain forest with multiple species and layers (hundred species with five layers) were discussed. The differences in systematic functions among three structures of the community were discussed, mainly from the followint spects: Biomass, productivity, and economical productivity; capability of protection and improvement of community environment (microclimate, soil etc.); capability of resistant to natural disaster (chilling and storm). The biomass and productivity in the system were significantly increased, as there were more species and vertical layers in the community. As the community structure became complicated, the microclimatic factors inside the system were marked changed: relative humidity was higher, maximum temperature was lower, minimum temperature was higher, wind slowdown velocity was slowed down, soil erosion reduced, and the resistance to chilling and storm become stronger. It is concluded that the stability of the system could be greatly affected by an artificial ecosystem. PMID:12973982

  17. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance.

    PubMed

    Taylor, Joe D; Cunliffe, Michael

    2016-09-01

    Mycoplankton have so far been a neglected component of pelagic marine ecosystems, having been poorly studied relative to other plankton groups. Currently, there is a lack of understanding of how mycoplankton diversity changes through time, and the identity of controlling environmental drivers. Using Fungi-specific high-throughput sequencing and quantitative PCR analysis of plankton DNA samples collected over 6 years from the coastal biodiversity time series site Station L4 situated off Plymouth (UK), we have assessed changes in the temporal variability of mycoplankton diversity and abundance in relation to co-occurring environmental variables. Mycoplankton diversity at Station L4 was dominated by Ascomycota, Basidiomycota and Chytridiomycota, with several orders within these phyla frequently abundant and dominant in multiple years. Repeating interannual mycoplankton blooms were linked to potential controlling environmental drivers, including nitrogen availability and temperature. Specific relationships between mycoplankton and other plankton groups were also identified, with seasonal chytrid blooms matching diatom blooms in consecutive years. Mycoplankton α-diversity was greatest during periods of reduced salinity at Station L4, indicative of riverine input to the ecosystem. Mycoplankton abundance also increased during periods of reduced salinity, and when potential substrate availability was increased, including particulate organic matter. This study has identified possible controlling environmental drivers of mycoplankton diversity and abundance in a coastal sea ecosystem, and therefore sheds new light on the biology and ecology of an enigmatic marine plankton group. Mycoplankton have several potential functional roles, including saprotrophs and parasites, that should now be considered within the consensus view of pelagic ecosystem functioning and services. PMID:26943623

  18. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin

    2012-01-01

    Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090

  19. Species, trophic, and functional diversity in marine protected and non-protected areas

    NASA Astrophysics Data System (ADS)

    Villamor, Adriana; Becerro, Mikel A.

    2012-10-01

    The number of Marine Protected Areas (MPAs) has grown exponentially in the last decades as marine environments steadily deteriorate. The success of MPAs stems from the overall positive benefits attributed to the "reserve effect," the totality of the consequences of protecting marine systems. The reserve effect includes but is beyond the goal of protecting particular species or areas with economical or cultural value. However, most data on the effects of MPAs focus on target species and there is limited evidence for the consequences of protection at larger levels of organization. Quantitative information on the reserve effect remains elusive partly because of its complex nature. Data on biodiversity can be used to quantify the reserve effect if not restricted to specific taxonomic groups. In our study, we quantified species diversity, trophic diversity, and an approach to functional diversity in five MPAs and adjacent non-protected areas along the Mediterranean coast of Spain. Our three measures of diversity were based on the abundance of algae, fish, sessile and mobile invertebrates in shallow water rocky communities and could be used to estimate the reserve effect based on species, trophic levels, or functional roles. We tested the hypothesis that species, trophic, and functional diversity were higher in protected areas than in adjacent non-protected areas. Species diversity varied with geographic area but not with protection status. However, we found higher functional diversity inside MPAs. Also, the effect of protection on functional diversity varied as a function of the geographic area. Our results support the uniqueness of MPAs at a species level and the universality of the reserve effect at the level of the trophic groups' composition. This type of comprehensive ecological approach may broaden our understanding of MPAs and their efficiency as management tools.

  20. Urbanization Level and Woodland Size Are Major Drivers of Woodpecker Species Richness and Abundance

    PubMed Central

    Myczko, Łukasz; Rosin, Zuzanna M.; Skórka, Piotr; Tryjanowski, Piotr

    2014-01-01

    Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species. PMID:24740155

  1. Limits to randomness in paleobiologic models: the case of Phanerozoic species diversity

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1994-01-01

    The question of how random, or unconstrained, paleobiologic models should be is examined with a case study: Signor's (1982, 1985) inverse calculation of levels of marine species diversity through the Phanerozoic. His calculation involved an ingenious model that estimated species numbers and species abundances in the world oceans of the past by correcting known numbers of fossil species for variations in sedimentary rocks available for sampling and in effort paleontologists might devote to sampling. The model proves robust to changes in possible shapes of species-abundance distributions, but it is sensitive to alterations in the assumption that paleontologists collect fossils at random. If it is assumed that ease of collecting varies with age of sediment (with the Cenozoic offering easy sampling) or that paleontologists tend to seek out rarer fossils, results of the inverse calculation change. In particular, the magnitude of the calculated Cenozoic diversity increase always declines from the factor of about seven as originally reported to something considerably smaller. This leaves open the problem of the magnitude of Cenozoic increase in marine species diversity, awaiting better empirical data and, perhaps, more exacting models, random or otherwise.

  2. Diversity in Protein Glycosylation among Insect Species

    PubMed Central

    Vandenborre, Gianni; Smagghe, Guy; Ghesquière, Bart; Menschaert, Gerben; Nagender Rao, Rameshwaram; Gevaert, Kris; Van Damme, Els J. M.

    2011-01-01

    Background A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster. Methodology/Principal Findings In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin) affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum), the silkworm (Bombyx mori), the honeybee (Apis mellifera), the fruit fly (D. melanogaster) and the pea aphid (Acyrthosiphon pisum). To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans. Conclusions/Significance The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed. PMID:21373189

  3. Macrofaunal assemblages from mud volcanoes in the Gulf of Cadiz: abundance, biodiversity and diversity partitioning across spatial scales

    NASA Astrophysics Data System (ADS)

    Cunha, M. R.; Rodrigues, C. F.; Génio, L.; Hilário, A.; Ravara, A.; Pfannkuche, O.

    2013-04-01

    The Gulf of Cadiz is an extensive seepage area in the south Iberian margin (NE Atlantic) encompassing over 40 mud volcanoes (MVs) at depths ranging from 200 to 4000 m. The area has a long geologic history and a central biogeographic location with a complex circulation ensuring oceanographic connectivity with the Mediterranean Sea, equatorial and North Atlantic regions. The geodynamics of the region promotes a notorious diversity in the seep regime despite the relatively low fluxes of hydrocarbon-rich gases. We analyse quantitative samples taken during the cruises TTR14, TTR15 and MSM01-03 in seven mud volcanoes grouped into Shallow MVs (Mercator: 350 m, Kidd: 500 m, Meknès: 700 m) and Deep MVs (Captain Arutyunov: 1300 m, Carlos Ribeiro: 2200 m, Bonjardim: 3000 m, Porto: 3900 m) and two additional Reference sites (ca. 550 m). Macrofauna (retained by a 500 μm sieve) was identified to species level whenever possible. The samples yielded modest abundances (70-1567 individuals per 0.25 m2), but the local and regional number of species is among the highest ever reported for cold seeps. Among the 366 recorded species, 22 were symbiont-hosting bivalves (Thyasiridae, Vesicomyidae, Solemyidae) and tubeworms (Siboglinidae). The multivariate analyses supported the significant differences between Shallow and Deep MVs: The environmental conditions at the Shallow MVs make them highly permeable to the penetration of background fauna leading to high diversity of the attendant assemblages (H': 2.92-3.94; ES(100): 28.3-45.0; J': 0.685-0.881). The Deep MV assemblages showed, in general, contrasting features but were more heterogeneous (H': 1.41-3.06; ES(100): 10.5-30.5; J': 0.340-0.852) and often dominated by one or more siboglinid species. The rarefaction curves confirmed the differences in biodiversity of Deep and Shallow MVs as well as the convergence of the latter to the Reference sites. The Bray-Curtis dissimilarity demonstrated the high β-diversity of the assemblages

  4. Macrofaunal assemblages from mud volcanoes in the Gulf of Cadiz: abundance, biodiversity and diversity partitioning across spatial scales

    NASA Astrophysics Data System (ADS)

    Cunha, M. R.; Rodrigues, C. F.; Génio, L.; Hilário, A.; Ravara, A.; Pfannkuche, O.

    2012-12-01

    The Gulf of Cadiz is an extensive seepage area in the South Iberian Margin (NE Atlantic) encompassing over 40 mud volcanoes (MVs) at depths ranging from 200 to 4000 m. The area has a long geologic history and a central biogeographic location with a complex circulation assuring oceanographic connectivity with the Mediterranean Sea, Equatorial and Northern Atlantic regions. The geodynamics of the region promotes a notorious diversity in the seep regime despite the relatively low fluxes of hydrocarbon-rich gases. We analyse quantitative samples taken during the cruises TTR14, TTR15 and MSM01-03 in seven mud volcanoes grouped into Shallow MVs (Mercator: 350 m, Kidd: 500 m, Meknès: 700 m) and Deep MVs (Captain Arutyunov: 1300 m, Carlos Ribeiro: 2200 m, Bonjardim: 3000 m, Porto: 3900 m) and two additional reference sites (ca. 550 m). Macrofauna (retained by a 500 μm sieve) was identified to species level whenever possible. The samples yielded modest abundances (70-1567 ind. per 0.25 m2) but a number of species among the highest ever reported for cold seeps. Among the 366 recorded species, 22 were symbiont-hosting bivalves (Thyasiridae, Vesicomyidae, Solemyidae) and tubeworms (Siboglinidae). The multivariate analyses indicated significant differences between Shallow and Deep MVs: The environmental conditions at the Shallow MVs makes them highly permeable to the penetration of background fauna leading to high diversity of the attendant assemblages (H': 2.92-3.94; ES(100): 28.3-45.0; J': 0.685-0.881). The Deep MVs showed, in general, contrasting features but were more heterogeneous (H': 1.41-3.06; ES(100): 10.5-30.5; J': 0.340-0.852) and often dominated by one or more siboglinid species. The rarefaction curves confirmed the differences in biodiversity of Deep and Shallow MVs as well as the approximation of the latter to the reference sites. The Bray-Curtis dissimilarity demonstrated the high β-diversity of the assemblages, especially in pairwise comparisons involving

  5. The Abundance of Pink-Pigmented Facultative Methylotrophs in the Root Zone of Plant Species in Invaded Coastal Sage Scrub Habitat

    PubMed Central

    Irvine, Irina C.; Brigham, Christy A.; Suding, Katharine N.; Martiny, Jennifer B. H.

    2012-01-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 102 to 105 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems. PMID:22383990

  6. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted

  7. Genetic diversity analysis in Piper species (Piperaceae) using RAPD markers.

    PubMed

    Sen, Sandeep; Skaria, Reby; Abdul Muneer, P M

    2010-09-01

    The genetic diversity of eight species of Piper (Piperaceae) viz., P. nigrum, P. longum, P. betle, P. chaba, P. argyrophyllum, P. trichostachyon, P. galeatum, and P. hymenophyllum from Kerala state, India were analyzed by Random amplified polymorphic DNA (RAPD). Out of 22 10-mer RAPD primers screened, 11 were selected for comparative analysis of different species of Piper. High genetic variations were found among different Piper species studied. Among the total of 149 RAPD fragments amplified, 12 bands (8.05%) were found monomorphic in eight species. The remaining 137 fragments were found polymorphic (91.95%). Species-specific bands were found in all eight species studied. The average gene diversity or heterozygosity (H) was 0.33 across all the species, genetic distances ranged from 0.21 to 0.69. The results of this study will facilitate germplasm identification, management, and conservation. PMID:20383613

  8. Genetic Diversity Estimates for Dichroa Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Dichroa consists of 12 species of flowering plants in the family Hydrangeaceae, native to eastern and southeastern Asia. They are deciduous shrubs growing 1 to 3 meters tall in full sun or light shade and may exhibit evergreen growth habit in warmer climes. Flowers are hermaphroditic and s...

  9. Declines in both redundant and trace species characterize the latitudinal diversity gradient in tintinnid ciliates.

    PubMed

    Dolan, John R; Yang, Eun Jin; Kang, Sung-Ho; Rhee, Tae Siek

    2016-09-01

    The latitudinal diversity gradient is a well-known biogeographic pattern. However, rarely considered is how a cline in species richness may be reflected in the characteristics of species assemblages. Fewer species may equal fewer distinct ecological types, or declines in redundancy (species functionally similar to one another) or fewer trace species, those occurring in very low concentrations. We focused on tintinnid ciliates of the microzooplankton in which the ciliate cell is housed inside a species-specific lorica or shell. The size of lorica oral aperture, the lorica oral diameter (LOD), is correlated with a preferred prey size and maximum growth rate. Consequently, species of a distinct LOD are distinct in key ecologic characteristics, whereas those of a similar LOD are functionally similar or redundant species. We sampled from East Sea/Sea of Japan to the High Arctic Sea. We determined abundance distributions of biological species and also ecological types by grouping species in LOD size-classes, sets of ecologically similar species. In lower latitudes there are more trace species, more size-classes and the dominant species are accompanied by many apparently ecologically similar species, presumably able to replace the dominant species, at least with regard to the size of prey exploited. Such redundancy appears to decline markedly with latitude in assemblages of tintinnid ciliates. Furthermore, the relatively small species pools of the northern high latitude assemblages suggest a low capacity to adapt to changing conditions. PMID:26990873

  10. Abundance of minor ion species at Mars: ASPERA-3 observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yiteng; Nilsson, Hans; Barabash, Stas; Li, Lei

    2012-07-01

    The main species at Mars are O+, O2+, CO2+, while there are also some minor species. This article successfully separates minor species of O++, He+ and H2+ with about 12eV by integrating from two and a half years ASPERA-3 data on Mars Express and by integrating and taking some corrections and data processing. At the same time some space statistic Statistics of these Mars ions and estimating are taken place. The result indicates O++ ions density reduce quickly in the region without sunlight, and have moreis higher at subsolar than in the high alatitude place,. and reduces quickly in the region without sunlight. He+ and H2+ have similar distribution in space mainly above in the high altitude ionosphere, and relatively reduce sparse in the midnight space. O++ and He+ have a comparable volume density about 0.1% of O+, and H2+ is muchone order of magnitude lowerless for one order. Our results imply that O++ ions in the martian space are mainly the product of phtoionization in the ionosphere, while H2+ and He+ might also be originated in the planet.

  11. Species Composition and Abundance of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) in Minnesota Field Corn.

    PubMed

    Koch, Robert L; Pahs, Tiffany

    2015-04-01

    In response to concerns of increasing significance of stink bugs (Hemiptera: Heteroptera: Pentatomidae) in northern states, a survey was conducted over 2 yr in Minnesota to characterize the Pentatomidae associated with field corn, Zea mays L. Halyomorpha halys (Stål), an exotic species, was not detected in this survey, despite continued detection of this species as an invader of human-made structures in Minnesota. Five species of Pentatomidae (four herbivorous; one predatory) were collected from corn. Across years, Euschistus variolarius (Palisot de Beauvois) and Euschistus servus euschistoides (Vollenhoven) had the greatest relative abundances and frequencies of detection. In 2012, the abundance of herbivorous species exceeded 25 nymphs and adults per 100 plants (i.e., an economic threshold) in 0.48% of fields. However, the abundance of herbivorous species did not reach economic levels in any fields sampled in 2013. The frequency of detection of herbivorous species and ratio of nymphs to adults was highest during reproductive growth stages of corn. The predator species, Podisus maculiventris (Say), was detected in 0 to 0.32% of fields. These results provide baseline information on the species composition and abundance of Pentatomidae in Minnesota field corn, which will be necessary for documentation of changes to this fauna as a result of the invasion of H. halys and to determine if some native species continue to increase in abundance in field crops. PMID:26313176

  12. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear

  13. The Impact of Land Abandonment on Species Richness and Abundance in the Mediterranean Basin: A Meta-Analysis

    PubMed Central

    Plieninger, Tobias; Hui, Cang; Gaertner, Mirijam; Huntsinger, Lynn

    2014-01-01

    Land abandonment is common in the Mediterranean Basin, a global biodiversity hotspot, but little is known about its impacts on biodiversity. To upscale existing case-study insights to the Pan-Mediterranean level, we conducted a meta-analysis of the effects of land abandonment on plant and animal species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1) which taxonomic groups (arthropods, birds, lichen, vascular plants) are more affected by land abandonment; (2) at which spatial and temporal scales the effect of land abandonment on species richness and abundance is pronounced; (3) whether previous land use and current protected area status affect the magnitude of changes in the number and abundance of species; and (4) how prevailing landforms and climate modify the impacts of land abandonment. After identifying 1240 potential studies, 154 cases from 51 studies that offered comparisons of species richness and abundance and had results relevant to our four areas of investigation were selected for meta-analysis. Results are that land abandonment showed slightly increased (effect size  = 0.2109, P<0.0001) plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no “one-size-fits-all” conservation approach that applies to the diverse contexts of land abandonment in the Mediterranean Basin. Instead, conservation policies should strive to increase awareness of this heterogeneity and the potential trade-offs after abandonment. The strong role of factors at the farm and landscape scales that was revealed by the analysis indicates that purposeful management at these scales can have a powerful impact on biodiversity. PMID:24865979

  14. The impact of land abandonment on species richness and abundance in the Mediterranean Basin: a meta-analysis.

    PubMed

    Plieninger, Tobias; Hui, Cang; Gaertner, Mirijam; Huntsinger, Lynn

    2014-01-01

    Land abandonment is common in the Mediterranean Basin, a global biodiversity hotspot, but little is known about its impacts on biodiversity. To upscale existing case-study insights to the Pan-Mediterranean level, we conducted a meta-analysis of the effects of land abandonment on plant and animal species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1) which taxonomic groups (arthropods, birds, lichen, vascular plants) are more affected by land abandonment; (2) at which spatial and temporal scales the effect of land abandonment on species richness and abundance is pronounced; (3) whether previous land use and current protected area status affect the magnitude of changes in the number and abundance of species; and (4) how prevailing landforms and climate modify the impacts of land abandonment. After identifying 1240 potential studies, 154 cases from 51 studies that offered comparisons of species richness and abundance and had results relevant to our four areas of investigation were selected for meta-analysis. Results are that land abandonment showed slightly increased (effect size  = 0.2109, P<0.0001) plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no "one-size-fits-all" conservation approach that applies to the diverse contexts of land abandonment in the Mediterranean Basin. Instead, conservation policies should strive to increase awareness of this heterogeneity and the potential trade-offs after abandonment. The strong role of factors at the farm and landscape scales that was revealed by the analysis indicates that purposeful management at these scales can have a powerful impact on biodiversity. PMID:24865979

  15. Soil Nematode Diversity: Species Coexistence and Ecosystem Function

    PubMed Central

    Ettema, Christien H.

    1998-01-01

    Soil nematode species diversity is often high, both at ecosystem and single soil-core scales. First, how can so many species coexist? There is evidence of niche partitioning, notably of physical space, but vast interspecific overlaps and trait plasticity seem equally common. It appears that coexistence of species with similar resource needs is made possible by small-scale disturbance and predation, which likely reduce local population sizes and interspecific competition. Regional processes such as dispersal, large-scale disturbance, and aggregation, which govern ecosystem level diversity, may also affect local species interactions and soil-core scale diversity. Second, what is the significance of having so many species, with so few trophic functions, for ecosystem processes? Focusing on bacterivore diversity, it is clear that species contributions to decomposition, likely to differ as a function of individual biologies, are concealed by the trophic group approach. However, considerable functional redundancy probably exists, which may explain why decomposition processes are maintained in highly disturbed soils despite the extinction of many species. Thus, soil nematode diversity is important for the long-term stability of soil functioning, and merits protection and further study. PMID:19274206

  16. Linking Carbonic Anhydrase Abundance and Diversity in Soils to Ecological Function

    NASA Astrophysics Data System (ADS)

    Pang, E.; Meredith, L. K.; Welander, P. V.

    2015-12-01

    Carbonic anhydrase (CA) is an ancient enzyme widespread among bacteria, archaea, and eukarya that catalyzes the following reaction: CO2 + H2O ⇌ HCO3- + H+. Its functions are critical for key cellular processes such as concentrating CO2 for autotrophic growth, pH regulation, and pathogen survival in hosts. Currently, there are six known CA classes (α, β, γ, δ, η, ζ) arising from several distinct evolutionary lineages. CA are widespread in sequenced genomes, with many organisms containing multiple classes of CA or multiple CA of the same class. Soils host rich microbial communities with diverse and important ecological functions, but the diversity and abundance of CA in soils has not been explored. CA appears to play an important, but poorly understood, role in some biogeochemical cycles such as those of CO2 and its oxygen isotope composition and also carbonyl sulfide (COS), which are potential tracers in predictive carbon cycle models. Recognizing the prevalence and functional significance of CA in soils, we used a combined bioinformatics and molecular biology approach to address fundamental questions regarding the abundance, diversity, and function of CA in soils. To characterize the abundance and diversity of the different CA classes in soils, we analyzed existing soil metagenomic and metatranscriptomic data from the DOE Joint Genome Institute databases. Out of the six classes of CA, we only found the α, β, and γ classes to be present in soils, with the β class being the most abundant. We also looked at genomes of sequenced soil microorganisms to learn what combination of CA classes they contain, from which we can begin to predict the physiological role of CA. To characterize the functional roles of the different CA classes in soils, we collected soil samples from a variety of biomes with diverse chemical and physical properties and quantified the rate of two CA-mediated processes: soil uptake of COS and acceleration of the oxygen isotope exchange

  17. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances

    PubMed Central

    Boulangeat, Isabelle; Gravel, Dominique; Thuiller, Wilfried

    2014-01-01

    Although abiotic factors, together with dispersal and biotic interactions, are often suggested to explain the distribution of species and their abundances, species distribution models usually focus on abiotic factors only. We propose an integrative framework linking ecological theory, empirical data and statistical models to understand the distribution of species and their abundances together with the underlying community assembly dynamics. We illustrate our approach with 21 plant species in the French Alps. We show that a spatially nested modelling framework significantly improves the model’s performance and that the spatial variations of species presence–absence and abundances are predominantly explained by different factors. We also show that incorporating abiotic, dispersal and biotic factors into the same model bring new insights to our understanding of community assembly. This approach, at the crossroads between community ecology and biogeography, is a promising avenue for a better understanding of species co-existence and biodiversity distribution. PMID:22462813

  18. Macroalgal mats and species abundance: a field experiment

    NASA Astrophysics Data System (ADS)

    Hull, S. C.

    1987-11-01

    A field experiment was carried out whereby the density of macroalgae ( Enteromorpha spp.) was manipulated and the resultant changes in sediment infaunal density were monitored. Four densities of Enteromorpha spp. were used: 0,0·3, 1, and 3 kg FW m -2, corresponding to control, low-, medium-, and high-density plots. The experiment ran from May to October 1985 and was sampled on three occasions. By July, the density of Corophium volutator was reduced at all weed levels when compared to control plots, whereas densities of Hydrobia ulvae, Macoma balthica, Nereis diversicolor, and Capitella capitata, all increased. Samples taken in October when the weed mats were buried in the sediment showed fewer differences than in July. Macoma, Nereis, and Capitella were still significantly more abundant at medium and high weed densities. Corophium showed no significant treatment effect. There was, however, a highly significant difference in population size structure for Corophium. Measurements of sediment redox potential and silt content under medium- and high-density plots revealed rapid anoxia with a significant increase in siltation.

  19. Population diversity and the portfolio effect in an exploited species.

    PubMed

    Schindler, Daniel E; Hilborn, Ray; Chasco, Brandon; Boatright, Christopher P; Quinn, Thomas P; Rogers, Lauren A; Webster, Michael S

    2010-06-01

    One of the most pervasive themes in ecology is that biological diversity stabilizes ecosystem processes and the services they provide to society, a concept that has become a common argument for biodiversity conservation. Species-rich communities are thought to produce more temporally stable ecosystem services because of the complementary or independent dynamics among species that perform similar ecosystem functions. Such variance dampening within communities is referred to as a portfolio effect and is analogous to the effects of asset diversity on the stability of financial portfolios. In ecology, these arguments have focused on the effects of species diversity on ecosystem stability but have not considered the importance of biologically relevant diversity within individual species. Current rates of population extirpation are probably at least three orders of magnitude higher than species extinction rates, so there is a pressing need to clarify how population and life history diversity affect the performance of individual species in providing important ecosystem services. Here we use five decades of data from Oncorhynchus nerka (sockeye salmon) in Bristol Bay, Alaska, to provide the first quantification of portfolio effects that derive from population and life history diversity in an important and heavily exploited species. Variability in annual Bristol Bay salmon returns is 2.2 times lower than it would be if the system consisted of a single homogenous population rather than the several hundred discrete populations it currently consists of. Furthermore, if it were a single homogeneous population, such increased variability would lead to ten times more frequent fisheries closures. Portfolio effects are also evident in watershed food webs, where they stabilize and extend predator access to salmon resources. Our results demonstrate the critical importance of maintaining population diversity for stabilizing ecosystem services and securing the economies and livelihoods

  20. The effect of soil-borne pathogens depends on the abundance of host tree species

    PubMed Central

    Liu, Yu; Fang, Suqin; Chesson, Peter; He, Fangliang

    2015-01-01

    The overarching issue for understanding biodiversity maintenance is how fitness advantages accrue to a species as it becomes rare, as this is the defining feature of stable coexistence mechanisms. Without these fitness advantages, average fitness differences between species will lead to exclusion. However, empirical evidence is lacking, especially for forests, due to the difficulty of manipulating density on a large-enough scale. Here we took advantage of naturally occurring contrasts in abundance between sites of a subtropical tree species, Ormosia glaberrima, to demonstrate how low-density fitness advantages accrue by the Janzen–Connell mechanism. The results showed that soil pathogens suppressed seedling recruitment of O. glaberrima when it is abundant but had little effect on the seedlings when it is at low density due to the lack of pathogens. The difference in seedling survival between abundant and low-density sites demonstrates strong dependence of pathogenic effect on the abundance of host species. PMID:26632594

  1. The effect of soil-borne pathogens depends on the abundance of host tree species.

    PubMed

    Liu, Yu; Fang, Suqin; Chesson, Peter; He, Fangliang

    2015-01-01

    The overarching issue for understanding biodiversity maintenance is how fitness advantages accrue to a species as it becomes rare, as this is the defining feature of stable coexistence mechanisms. Without these fitness advantages, average fitness differences between species will lead to exclusion. However, empirical evidence is lacking, especially for forests, due to the difficulty of manipulating density on a large-enough scale. Here we took advantage of naturally occurring contrasts in abundance between sites of a subtropical tree species, Ormosia glaberrima, to demonstrate how low-density fitness advantages accrue by the Janzen-Connell mechanism. The results showed that soil pathogens suppressed seedling recruitment of O. glaberrima when it is abundant but had little effect on the seedlings when it is at low density due to the lack of pathogens. The difference in seedling survival between abundant and low-density sites demonstrates strong dependence of pathogenic effect on the abundance of host species. PMID:26632594

  2. Butterfly Species Richness and Diversity in the Trishna Wildlife Sanctuary in South Asia

    PubMed Central

    Majumder, Joydeb; Lodh, Rahul; Agarwala, B. K.

    2013-01-01

    Several wildlife sanctuaries in the world are home to the surviving populations of many endemic species. Trishna wildlife sanctuary in northeast India is protected by law, and is home to the last surviving populations of Asian bison (Bos gorus Smith), spectacle monkey (Trachypithecus phayrie Blyth), capped langur (Trachypithecus pileatus Blyth), slow loris (Nycticebus coucang Boddaert), wild cat (Felis chaus Schreber), and wild boars (Sus scrofa L.), among many other animals and plants. The sanctuary was explored for species richness and diversity of butterflies. A six-month-long study revealed the occurrence of 59 butterfly species that included 21 unique species and 9 species listed in the threatened category. The mixed moist deciduous mature forest of the sanctuary harbored greater species richness and species diversity (39 species under 31 genera) than other parts of the sanctuary, which is comprised of regenerated secondary mixed deciduous forest (37 species under 32 genera), degraded forests (32 species under 28 genera), and open grassland with patches of plantations and artificial lakes (24 species under 17 genera). The majority of these species showed a distribution range throughout the Indo-Malayan region and Australasia tropics, and eight species were distributed in the eastern parts of South Asia, including one species, Labadea martha (F.), which is distributed in the eastern Himalayas alone. Estimator Chao 2 provided the best-predicted value of species richness. The steep slope of the species accumulation curve suggested the occurrence of a large number of rare species, and a prolonged gentle slope suggested a higher species richness at a higher sample abundance. The species composition of vegetation-rich habitats showed high similarity in comparison to vegetation-poor habitats. PMID:24219624

  3. Viral Abundance, Decay, and Diversity in the Meso- and Bathypelagic Waters of the North Atlantic▿

    PubMed Central

    Parada, Verónica; Sintes, Eva; van Aken, Hendrik M.; Weinbauer, Markus G.; Herndl, Gerhard J.

    2007-01-01

    To elucidate the potential importance of deep-water viruses in controlling the meso- and bathypelagic picoplankton community, the abundance, decay rate, and diversity of the virioplankton community were determined in the meso- and bathypelagic water masses of the eastern part of the subtropical North Atlantic. Viral abundance averaged 1.4 × 106 ml−1 at around 100 m of depth and decreased only by a factor of 2 at 3,000 to 4,000 m of depth. In contrast, picoplankton abundance decreased by 1 order of magnitude to the Lower Deep Water (LDW; 3,500- to 5,000-m depth). The virus-to-picoplankton ratio increased from 9 at about 100 m of depth to 110 in the LDW. Mean viral decay rates were 3.5 × 10−3 h−1 between 900 m and 2,750 m and 1.1 × 10−3 h−1 at 4,000 m of depth, corresponding to viral turnover times of 11 and 39 days, respectively. Pulsed-field gel electrophoresis fingerprints obtained from the viral community between 2,400 m and 4,000 m of depth revealed a maximum of only four bands from 4,000 m of depth. Based on the high viral abundance and the low picoplankton production determined via leucine incorporation, we conclude that the viral production calculated from the viral decay is insufficient to maintain the high viral abundance in the deep North Atlantic. Rather, we propose that substantial allochthonous viral input or lysogenic or pseudolysogenic production is required to maintain the high viral abundance detected in the meso- and bathypelagic North Atlantic. Consequently, deep-water prokaryotes are apparently far less controlled in their abundance and taxon richness by lytic prokaryotic phages than the high viral abundance and the virus-to-picoplankton ratio would suggest. PMID:17496133

  4. Characterization of the most abundant Lactobacillus species in chicken gastrointestinal tract and potential use as probiotics for genetic engineering.

    PubMed

    Wang, Lei; Fang, Mingjian; Hu, Yanping; Yang, Yuxin; Yang, Mingming; Chen, Yulin

    2014-07-01

    The count and diffusion of Lactobacilli species in the different gastrointestinal tract (GI) regions of broilers were investigated by quantitative real-time polymerase chain reaction, and the probiotic characteristics of six L. reuteri species isolated from broilers' GI tract were also investigated to obtain the potential target for genetic engineering. Lactobacilli had the highest diversity in the crop and the lowest one in the cecum. Compared with the lower GI tract, more Lactobacilli were found in the upper GI tract. Lactobacillus reuteri, L. johnsonii, L. acidophilus, L. crispatus, L. salivarius, and L. aviarius were the predominant Lactobacillus species and present throughout the GI tract of chickens. Lactobacillus reuteri was the most abundant Lactobacillus species. Lactobacillus reuteri XC1 had good probiotic characteristics that would be a potential and desirable target for genetic engineering. PMID:24850302

  5. Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations.

    PubMed

    Dashko, Sofia; Liu, Ping; Volk, Helena; Butinar, Lorena; Piškur, Jure; Fay, Justin C

    2016-01-01

    Saccharomyces cerevisiae and its sibling species Saccharomyces paradoxus are known to inhabit temperate arboreal habitats across the globe. Despite their sympatric distribution in the wild, S. cerevisiae is predominantly associated with human fermentations. The apparent ecological differentiation of these species is particularly striking in Europe where S. paradoxus is abundant in forests and S. cerevisiae is abundant in vineyards. However, ecological differences may be confounded with geographic differences in species abundance. To compare the distribution and abundance of these two species we isolated Saccharomyces strains from over 1200 samples taken from vineyard and forest habitats in Slovenia. We isolated numerous strains of S. cerevisiae and S. paradoxus, as well as a small number of Saccharomyces kudriavzevii strains, from both vineyard and forest environments. We find S. cerevisiae less abundant than S. paradoxus on oak trees both within and outside the vineyard, but more abundant on grapevines and associated substrates. Analysis of the uncultured microbiome shows, that both S. cerevisiae and S. paradoxus are rare species in soil and bark samples, but can be much more common in grape must. In contrast to S. paradoxus, European strains of S. cerevisiae have acquired multiple traits thought to be important for life in the vineyard and dominance of wine fermentations. We conclude, that S. cerevisiae and S. paradoxus currently share both vineyard and non-vineyard habitats in Slovenia and we discuss factors relevant to their global distribution and relative abundance. PMID:26941733

  6. Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations

    PubMed Central

    Dashko, Sofia; Liu, Ping; Volk, Helena; Butinar, Lorena; Piškur, Jure; Fay, Justin C.

    2016-01-01

    Saccharomyces cerevisiae and its sibling species Saccharomyces paradoxus are known to inhabit temperate arboreal habitats across the globe. Despite their sympatric distribution in the wild, S. cerevisiae is predominantly associated with human fermentations. The apparent ecological differentiation of these species is particularly striking in Europe where S. paradoxus is abundant in forests and S. cerevisiae is abundant in vineyards. However, ecological differences may be confounded with geographic differences in species abundance. To compare the distribution and abundance of these two species we isolated Saccharomyces strains from over 1200 samples taken from vineyard and forest habitats in Slovenia. We isolated numerous strains of S. cerevisiae and S. paradoxus, as well as a small number of Saccharomyces kudriavzevii strains, from both vineyard and forest environments. We find S. cerevisiae less abundant than S. paradoxus on oak trees both within and outside the vineyard, but more abundant on grapevines and associated substrates. Analysis of the uncultured microbiome shows, that both S. cerevisiae and S. paradoxus are rare species in soil and bark samples, but can be much more common in grape must. In contrast to S. paradoxus, European strains of S. cerevisiae have acquired multiple traits thought to be important for life in the vineyard and dominance of wine fermentations. We conclude, that S. cerevisiae and S. paradoxus currently share both vineyard and non-vineyard habitats in Slovenia and we discuss factors relevant to their global distribution and relative abundance. PMID:26941733

  7. Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons.

    PubMed

    Huang, Liangmin; Jian, Weijun; Song, Xingyu; Huang, Xiaoping; Liu, Sheng; Qian, Peiyuan; Yin, Kedong; Wu, Madeline

    2004-10-01

    Based on data collected at 31 stations and 1 continuous station in the Pearl River estuary during cruises of July 1999 (rainy season) and January 2001 (dry season), this study examined taxonomic composition, abundance, and spatial distribution of phytoplankton. Results indicated 130 species of phytoplankton in the samples from the rainy season, and 132 species in the dry season. Among them, in the rainy season, 82 species of diatom, 39 fresh-water and half-fresh-water species and 41 species of red tide organisms were found. Within these, there were 54 tropical and sub-tropical species, 47 cosmopolitan species and 17 temperate species. The abundance of phytoplankton in the rainy season was higher than that of the dry season, with an average of 6.3 x 10(5) cells x L(-1) and 1.4 x 10(5) cells x L(-1), respectively. Diversity index (H') and evenness (J) were 2.47 and 0.57 in the rainy season, and 2.01 and 0.54 in the dry season. The dominant phytoplankton species in the rainy season was Skeletonema costatum with an average of 2.8 x 10(5) cells x L(-1) and 45.0% of the total phytoplankton abundance. In the dry season, Eucampia zoodiacus became the key dominant species (5.9 x 10(4) cells x L(-1)) when it was 43.47% of the total phytoplankton abundance. Distribution of the dominant species varied with salinity of sea-water, and their amounts correlated negatively with nutrients and zooplankton. PMID:15476837

  8. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems

    PubMed Central

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H.; Hickey, William J.

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, and coffee hulls), which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase) and the finished product (mature phase). The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (group I.1b), in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have significant effects on its performance as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities) with nitrification in these systems. PMID:22787457

  9. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems.

    PubMed

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H; Hickey, William J

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, and coffee hulls), which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase) and the finished product (mature phase). The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (group I.1b), in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have significant effects on its performance as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities) with nitrification in these systems. PMID:22787457

  10. Standardizing germination protocols for diverse raspberry and blackberry species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most Rubus species exhibit delayed or poor germination because of a deep double dormancy. The objective of this study was to improve Rubus seed germination protocols by defining the seed characteristics of diverse Rubus species and determining scarification and germination requirements. Seeds of fie...

  11. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards.

    PubMed

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-09-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness. PMID:26380684

  12. Trophic Niche in a Raptor Species: The Relationship between Diet Diversity, Habitat Diversity and Territory Quality

    PubMed Central

    2015-01-01

    Recent research reports that many populations of species showing a wide trophic niche (generalists) are made up of both generalist individuals and individuals with a narrow trophic niche (specialists), suggesting trophic specializations at an individual level. If true, foraging strategies should be associated with individual quality and fitness. Optimal foraging theory predicts that individuals will select the most favourable habitats for feeding. In addition, the “landscape heterogeneity hypothesis” predicts a higher number of species in more diverse landscapes. Thus, it can be predicted that individuals with a wider realized trophic niche should have foraging territories with greater habitat diversity, suggesting that foraging strategies, territory quality and habitat diversity are inter-correlated. This was tested for a population of common kestrels Falco tinnunculus. Diet diversity, territory occupancy (as a measure of territory quality) and habitat diversity of territories were measured over an 8-year period. Our results show that: 1) territory quality was quadratically correlated with habitat diversity, with the best territories being the least and most diverse; 2) diet diversity was not correlated with territory quality; and 3) diet diversity was negatively correlated with landscape heterogeneity. Our study suggests that niche generalist foraging strategies are based on an active search for different prey species within or between habitats rather than on the selection of territories with high habitat diversity. PMID:26047025

  13. Diversity and Abundance of the Bacterial Community of the Red Macroalga Porphyra umbilicalis: Did Bacterial Farmers Produce Macroalgae?

    PubMed Central

    Miranda, Lilibeth N.; Hutchison, Keith; Grossman, Arthur R.; Brawley, Susan H.

    2013-01-01

    Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1) to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2) determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3) to determine how the microbial community associated with a laboratory strain (P.um.1) established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal P.um.1) were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5–V6 and V8; 147,880 total reads). The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7). The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria) were also abundant. Sphingobacteria (Bacteroidetes) and Flavobacteria (Bacteroidetes) had inverse abundances on natural versus P.um.1 blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes), was abundant. Lewinella (as 66 OTUs) was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had unexpected

  14. Where to nest? Ecological determinants of chimpanzee nest abundance and distribution at the habitat and tree species scale.

    PubMed

    Carvalho, Joana S; Meyer, Christoph F J; Vicente, Luis; Marques, Tiago A

    2015-02-01

    Conversion of forests to anthropogenic land-uses increasingly subjects chimpanzee populations to habitat changes and concomitant alterations in the plant resources available to them for nesting and feeding. Based on nest count surveys conducted during the dry season, we investigated nest tree species selection and the effect of vegetation attributes on nest abundance of the western chimpanzee, Pan troglodytes verus, at Lagoas de Cufada Natural Park (LCNP), Guinea-Bissau, a forest-savannah mosaic widely disturbed by humans. Further, we assessed patterns of nest height distribution to determine support for the anti-predator hypothesis. A zero-altered generalized linear mixed model showed that nest abundance was negatively related to floristic diversity (exponential form of the Shannon index) and positively with the availability of smaller-sized trees, reflecting characteristics of dense-canopy forest. A positive correlation between nest abundance and floristic richness (number of plant species) and composition indicated that species-rich open habitats are also important in nest site selection. Restricting this analysis to feeding trees, nest abundance was again positively associated with the availability of smaller-sized trees, further supporting the preference for nesting in food tree species from dense forest. Nest tree species selection was non-random, and oil palms were used at a much lower proportion (10%) than previously reported from other study sites in forest-savannah mosaics. While this study suggests that human disturbance may underlie the exclusive arboreal nesting at LCNP, better quantitative data are needed to determine to what extent the construction of elevated nests is in fact a response to predators able to climb trees. Given the importance of LCNP as refuge for Pan t. verus our findings can improve conservation decisions for the management of this important umbrella species as well as its remaining suitable habitats. PMID:25224379

  15. Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities.

    PubMed

    Paula, Fabiana S; Rodrigues, Jorge L M; Zhou, Jizhong; Wu, Liyou; Mueller, Rebecca C; Mirza, Babur S; Bohannan, Brendan J M; Nüsslein, Klaus; Deng, Ye; Tiedje, James M; Pellizari, Vivian H

    2014-06-01

    Land use change in the Amazon rainforest alters the taxonomic structure of soil microbial communities, but whether it alters their functional gene composition is unknown. We used the highly parallel microarray technology GeoChip 4.0, which contains 83,992 probes specific for genes linked nutrient cycling and other processes, to evaluate how the diversity, abundance and similarity of the targeted genes responded to forest-to-pasture conversion. We also evaluated whether these parameters were reestablished with secondary forest growth. A spatially nested scheme was employed to sample a primary forest, two pastures (6 and 38 years old) and a secondary forest. Both pastures had significantly lower microbial functional genes richness and diversity when compared to the primary forest. Gene composition and turnover were also significantly modified with land use change. Edaphic traits associated with soil acidity, iron availability, soil texture and organic matter concentration were correlated with these gene changes. Although primary and secondary forests showed similar functional gene richness and diversity, there were differences in gene composition and turnover, suggesting that community recovery was not complete in the secondary forest. Gene association analysis revealed that response to ecosystem conversion varied significantly across functional gene groups, with genes linked to carbon and nitrogen cycling mostly altered. This study indicates that diversity and abundance of numerous environmentally important genes respond to forest-to-pasture conversion and hence have the potential to affect the related processes at an ecosystem scale. PMID:24806276

  16. Assessing the sensitivity of avian species abundance to land cover and climate

    USGS Publications Warehouse

    LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R., III; Dijak, William D.; Millspaugh, Joshua J.

    2016-01-01

    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

  17. Spatial covariation of local abundance among different parasite species: the effect of shared hosts.

    PubMed

    Lagrue, C; Poulin, R

    2015-10-01

    Within any parasite species, abundance varies spatially, reaching higher values in certain localities than in others, presumably reflecting the local availability of host resources or the local suitability of habitat characteristics for free-living stages. In the absence of strong interactions between two species of helminths with complex life cycles, we might predict that the degree to which their abundances covary spatially is determined by their common resource requirements, i.e. how many host species they share throughout their life cycles. We test this prediction using five trematode species, all with a typical three-host cycle, from multiple lake sampling sites in New Zealand's South Island: Stegodexamene anguillae, Telogaster opisthorchis, Coitocaecum parvum, Maritrema poulini, and an Apatemon sp. Pairs of species from this set of five share the same host species at either one, two, or all three life cycle stages. Our results show that when two trematode species share the same host species at all three life stages, they show positive spatial covariation in abundance (of metacercarial and adult stages) across localities. When they share hosts at two life stages, they show positive spatial covariation in abundance in some cases but not others. Finally, if two trematode species share only one host species, at a single life stage, their abundances do not covary spatially. These findings indicate that the extent of resource sharing between parasite species can drive the spatial match-mismatch between their abundances, and thus influence their coevolutionary dynamics and the degree to which host populations suffer from additive or synergistic effects of multiple infections. PMID:26113509

  18. High Diversity and Abundance of Legionella spp. in a Pristine River and Impact of Seasonal and Anthropogenic Effects ▿ †

    PubMed Central

    Parthuisot, N.; West, N. J.; Lebaron, P.; Baudart, J.

    2010-01-01

    The diversity and dynamics of Legionella species along a French river watershed subject to different thermal and wastewater discharges during an annual cycle were assessed by 16S rRNA gene sequencing and by a fingerprint technique, single-strand conformation polymorphism. A high diversity of Legionella spp. was observed at all the sampling sites, and the dominant Legionella clusters identified were most closely related to uncultured bacteria. The monthly monitoring revealed that Legionella sp. diversity changes were linked only to season at the wastewater site whereas there was some evidence for anthropogenic effects on Legionella sp. diversity downstream of the thermal bath. Quantification of Legionella pneumophila and Legionella spp. by culture and quantitative PCR (qPCR) was performed. Whereas only L. pneumophila was quantified on culture media, the qPCR assay revealed that Legionella spp. were ubiquitous and abundant from the pristine source of the river to the downstream sampling sites. These results suggest that Legionella spp. may be present at significant concentrations in many more freshwater environments than previously thought, highlighting the need for further ecological studies and culturing efforts. PMID:20971864

  19. Red Squirrel Middens Influence Abundance but Not Diversity of Other Vertebrates

    PubMed Central

    Posthumus, Erin E.; Koprowski, John L.; Steidl, Robert J.

    2015-01-01

    Some animals modify the environment in ways that can influence the resources available to other species. Because red squirrels (Tamiasciurus hudsonicus) create large piles of conifer-cone debris (middens) in which they store cones, squirrels concentrate resources that might affect biodiversity locally. To determine whether other animals are attracted to midden sites beyond their affinity for the same resources that attract red squirrels, we assessed associations between middens, mammals, and birds at population and community levels. We surveyed 75 middens where residency rates of red squirrels varied during the previous five years; sampling along this residency gradient permitted us to evaluate the influence of resources at middens beyond the influence of a resident squirrel. At each location, we quantified vegetation, landscape structure, abundance of conifer cones, and midden structure, and used capture–recapture, distance sampling, and remote cameras to quantify presence, abundance, and species richness of mammals and birds. Red squirrels and the resources they concentrated at middens influenced mammals and birds at the population scale and to a lesser extent at the community scale. At middens with higher residency rates of red squirrels, richness of medium and large mammals increased markedly and species richness of birds increased slightly. After accounting for local forest characteristics, however, only species richness of medium-to-large mammals was associated with a red squirrel being resident during surveys. In areas where red squirrels were resident during surveys or in areas with greater amounts of resources concentrated by red squirrels, abundances of two of four small mammal species and two of four bird species increased. We conclude that the presence of this ecosystem modifier and the resources it concentrates influence abundance of some mammals and birds, which may have implications for maintaining biodiversity across the wide geographic range

  20. Red squirrel middens influence abundance but not diversity of other vertebrates.

    PubMed

    Posthumus, Erin E; Koprowski, John L; Steidl, Robert J

    2015-01-01

    Some animals modify the environment in ways that can influence the resources available to other species. Because red squirrels (Tamiasciurus hudsonicus) create large piles of conifer-cone debris (middens) in which they store cones, squirrels concentrate resources that might affect biodiversity locally. To determine whether other animals are attracted to midden sites beyond their affinity for the same resources that attract red squirrels, we assessed associations between middens, mammals, and birds at population and community levels. We surveyed 75 middens where residency rates of red squirrels varied during the previous five years; sampling along this residency gradient permitted us to evaluate the influence of resources at middens beyond the influence of a resident squirrel. At each location, we quantified vegetation, landscape structure, abundance of conifer cones, and midden structure, and used capture-recapture, distance sampling, and remote cameras to quantify presence, abundance, and species richness of mammals and birds. Red squirrels and the resources they concentrated at middens influenced mammals and birds at the population scale and to a lesser extent at the community scale. At middens with higher residency rates of red squirrels, richness of medium and large mammals increased markedly and species richness of birds increased slightly. After accounting for local forest characteristics, however, only species richness of medium-to-large mammals was associated with a red squirrel being resident during surveys. In areas where red squirrels were resident during surveys or in areas with greater amounts of resources concentrated by red squirrels, abundances of two of four small mammal species and two of four bird species increased. We conclude that the presence of this ecosystem modifier and the resources it concentrates influence abundance of some mammals and birds, which may have implications for maintaining biodiversity across the wide geographic range

  1. How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscapes?

    NASA Astrophysics Data System (ADS)

    Michel, Nadia; Burel, Françoise; Butet, Alain

    2006-07-01

    Over the last decades, profound changes in agricultural practices in the world have led to modifications of land-use as well as landscape structure and composition. Major changes resulted in enlargement of parcel size, increase of cultivated areas and drastic reduction of permanent elements such as woods, hedges or natural meadows. In this context we chose to investigate the composition and structure of small mammal communities in the hedgerow networks of three landscape units of Western France (Brittany) differing by their level of agricultural land-use intensity and hedgerow network density: a slightly intensified dense hedgerow network landscape unit (BOC1), a moderately intensified and fragmented hedgerow network landscape unit (BOC2) and a highly intensified landscape unit on an area reclaimed from the sea (POL). Characterization of small mammal communities was performed using live trapping on permanent habitats (eight hedges per landscape unit). In each of the 24 trapping units, a standardized method was used consisting of a baited 100-m trap-line. Diversity indices were used to compare the three communities. Species richness didn't vary across landscapes whereas Shannon's index of diversity underlined a clear difference between, on the one hand, the most intensified landscape unit (POL) which displayed the lowest diversity and, on the other hand, the two other less intensified units. The abundance of small mammals differed between the three sites: they were significantly more numerous in the hedges of the most intensified site than in hedges of the two other sites. Differences between species also appeared: for example, the Bank vole ( Clethrionomys glareolus) was very characteristic of POL, whereas the Pygmy shrew ( Sorex minutus) was much more associated with BOC sites. Within hedges, like for abundance, small mammal biomass was the highest in the most intensified site (POL > BOC2 = BOC1). On the contrary, at the landscape scale, biomass was the lowest in

  2. Arbovirus circulation, temporal distribution, and abundance of mosquito species in two Carolina bay habitats.

    PubMed

    Ortiz, D I; Wozniak, A; Tolson, M W; Turner, P E

    2005-01-01

    Carolina bays, a type of geomorphic feature, may be important in the ecology of mosquito vectors in South Carolina. Their hydrology varies from wetland habitats with marked flooding/drying regimes to permanently flooded spring-fed lakes. Moreover, they possess characteristics that contribute to the support of a particularly abundant and diverse invertebrate fauna. Although it has been estimated that 2,700+ bays exist in South Carolina, approximately 97% have been altered; < or = 200 bays remain intact, and only 36 are protected by state-funded conservation projects. We conducted a study in two distinct Carolina bay habitats, Savage Bay Heritage Preserve (SBHP) and Woods Bay State Park (WBSP), from June 1997 to July 1998 to determine mosquito temporal distribution, species composition, and the occurrence of arbovirus activity. The largest mosquito collection was obtained at WBSP (n = 31,172) representing 25 species followed by SBHP (n = 3,940) with 24 species. Anopheles crucians complex were the most common species encountered in both bays. Two virus isolates were obtained from SBHP in 1997: Keystone (KEY) virus from Ochlerotatus atlanticus-tormentor and Cache Valley (CV) virus from Oc. canadensis canadensis. Twenty-nine (29) arbovirus-positive pools were obtained from WBSP: 28 in 1997 and one in 1998. KEY virus was isolated from three pools of Oc. atlanticus-tormentor and Tensaw (TEN) virus was isolated from two pools of An. crucians complex; 10 isolates could not be identified with the sera available. Additionally, 14 pools of An. crucians complex tested positive for Eastern equine encephalitis (EEE) virus antigen. These represent the first record of KEY and CV viruses in South Carolina. Our data indicate the presence of high mosquito density and diversity in both Carolina bay habitats, which may be influenced, in part, by seasonal changes in their hydroperiods. The study of mosquito and arbovirus ecology in Carolina Bay habitats could provide more information on

  3. High-order species interactions shape ecosystem diversity.

    PubMed

    Bairey, Eyal; Kelsic, Eric D; Kishony, Roy

    2016-01-01

    Classical theory shows that large communities are destabilized by random interactions among species pairs, creating an upper bound on ecosystem diversity. However, species interactions often occur in high-order combinations, whereby the interaction between two species is modulated by one or more other species. Here, by simulating the dynamics of communities with random interactions, we find that the classical relationship between diversity and stability is inverted for high-order interactions. More specifically, while a community becomes more sensitive to pairwise interactions as its number of species increases, its sensitivity to three-way interactions remains unchanged, and its sensitivity to four-way interactions actually decreases. Therefore, while pairwise interactions lead to sensitivity to the addition of species, four-way interactions lead to sensitivity to species removal, and their combination creates both a lower and an upper bound on the number of species. These findings highlight the importance of high-order species interactions in determining the diversity of natural ecosystems. PMID:27481625

  4. High-order species interactions shape ecosystem diversity

    PubMed Central

    Bairey, Eyal; Kelsic, Eric D.; Kishony, Roy

    2016-01-01

    Classical theory shows that large communities are destabilized by random interactions among species pairs, creating an upper bound on ecosystem diversity. However, species interactions often occur in high-order combinations, whereby the interaction between two species is modulated by one or more other species. Here, by simulating the dynamics of communities with random interactions, we find that the classical relationship between diversity and stability is inverted for high-order interactions. More specifically, while a community becomes more sensitive to pairwise interactions as its number of species increases, its sensitivity to three-way interactions remains unchanged, and its sensitivity to four-way interactions actually decreases. Therefore, while pairwise interactions lead to sensitivity to the addition of species, four-way interactions lead to sensitivity to species removal, and their combination creates both a lower and an upper bound on the number of species. These findings highlight the importance of high-order species interactions in determining the diversity of natural ecosystems. PMID:27481625

  5. Remembrance of things past: modelling the relationship between species' abundances in living communities and death assemblages.

    PubMed

    Olszewski, Thomas D

    2012-02-23

    Accumulations of dead skeletal material are a valuable archive of past ecological conditions. However, such assemblages are not equivalent to living communities because they mix the remains of multiple generations and are altered by post-mortem processes. The abundance of a species in a death assemblage can be quantitatively modelled by successively integrating the product of an influx time series and a post-mortem loss function (a decay function with a constant half-life). In such a model, temporal mixing increases expected absolute dead abundance relative to average influx as a linear function of half-life and increases variation in absolute dead abundance values as a square-root function of half-life. Because typical abundance distributions of ecological communities are logarithmically distributed, species' differences in preservational half-life would have to be very large to substantially alter species' abundance ranks (i.e. make rare species common or vice-versa). In addition, expected dead abundances increase at a faster rate than their range of variation with increased time averaging, predicting greater consistency in the relative abundance structure of death assemblages than their parent living community. PMID:21653564

  6. Hydrographic structure and zooplankton abundance and diversity off Paita, northern Peru (1994 to 2004) — ENSO effects, trends and changes

    NASA Astrophysics Data System (ADS)

    Aronés, Katia; Ayón, Patricia; Hirche, Hans-Jürgen; Schwamborn, Ralf

    2009-11-01

    The objective of the present study was to verify possible spatial, seasonal, and inter-annual changes in the zooplankton off Paita (northern Peru), an upwelling area located closely to the limits of cold Humboldt Current and warm Equatorial Surface Waters. Zooplankton was sampled at subsurface on 53 occasions from August 1994 to December 2004 at four stations located 2 to 30 km offshore with a WP-2 net (300 µm). Extremely high surface water temperatures combined with low salinities were observed during the 1997/98 El Niño up to 29.0 °C) and in April 2002 (up to 25.0 °C). Temperatures more than 2 °C above monthly average were also observed in October 1994, in April 2000, and in November 2004. Significant trends were observed for oxygen concentration (increase) and several horizontal and vertical gradients. Among the copepods (72% of all individuals), the most abundant species were Paracalanus parvus (28%), Acartia tonsa (26%), and Calanus sp. (10%). The strong 1997-98 El Niño (EN) event led to drastic changes in species composition that were reversed during the 1998-99 La Niña (LN) event. Community parameters such as total abundance, diversity, equitability and species richness displayed marked variations associated with the 1997-98 EN and long-term trends. Long-term trends were significant for several vertical and horizontal temperature and oxygen gradients, indicating an increase in upwelling intensity at the shelf during the study period. 10-year-trends were also significant for total zooplankton abundance (increase) and community evenness ( J, decline). Our data confirmed the importance of the weak EN in 2002/03 for the study region. Within the trend of increasing zooplankton abundance, a sharp step or shift was observed from 1999 to 2000. When using sequential t-tests to detect shifts in ( x + 1) transformed abundance data, a significant rupture was found between the last sampling in 1999 and the first sampling in 2000. Also, a substantial decrease in

  7. Long-term changes in species composition and relative abundances of sharks at a provisioning site.

    PubMed

    Brunnschweiler, Juerg M; Abrantes, Kátya G; Barnett, Adam

    2014-01-01

    Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today's recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004-2006 and 2007-2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004-2006 and very rare in the period of 2007-2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark

  8. Long-Term Changes in Species Composition and Relative Abundances of Sharks at a Provisioning Site

    PubMed Central

    Brunnschweiler, Juerg M.; Abrantes, Kátya G.; Barnett, Adam

    2014-01-01

    Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today’s recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004–2006 and 2007–2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004–2006 and very rare in the period of 2007–2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion

  9. Diverse microbial species survive high ammonia concentrations

    NASA Astrophysics Data System (ADS)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  10. Regional species richness of families and the distribution of abundance and rarity in a local community of forest Hymenoptera

    NASA Astrophysics Data System (ADS)

    Ulrich, Werner

    2005-09-01

    Recent investigations about the relationship between the number of species of taxonomic lineages and regional patterns of species abundances gave indecisive results. Here, it is shown that mean densities of species of a species-rich community of forest Hymenoptera (673 species out of 25 families) were positively related to the number of European species per family. The fraction of abundant species per family declined and the fraction of rare species increased with species richness. Species rich families contained relatively more species, which were present in only one study year (occasional species), and relatively fewer species present during the whole study period (frequent species).

  11. Estimating species occurrence, abundance, and detection probability using zero-inflated distributions

    USGS Publications Warehouse

    Wenger, S.J.; Freeman, Mary C.

    2008-01-01

    Researchers have developed methods to account for imperfect detection of species with either occupancy (presence-absence) or count data using replicated sampling. We show how these approaches can be combined to simultaneously estimate occurrence, abundance, and detection probability by specifying a zero-inflated distribution for abundance. This approach may be particularly appropriate when patterns of occurrence and abundance arise from distinct processes operating at differing spatial or temporal scales. We apply the model to two data sets: (1) previously published data for a species of duck, Anas platyrhynchos, and (2) data for a stream fish species, Etheostoma scotti. We show that in these cases, an incomplete-detection zero-inflated modeling approach yields a superior fit to the data than other models. We propose that zero-inflated abundance models accounting for incomplete detection be considered when replicate count data are available.

  12. Rapid Diversity Loss of Competing Animal Species in Well-Connected Landscapes

    PubMed Central

    Schippers, Peter; Hemerik, Lia; Baveco, Johannes M.; Verboom, Jana

    2015-01-01

    Population viability of a single species, when evaluated with metapopulation based landscape evaluation tools, always increases when the connectivity of the landscape increases. However, when interactions between species are taken into account, results can differ. We explore this issue using a stochastic spatially explicit meta-community model with 21 competing species in five different competitive settings: (1) weak, coexisting competition, (2) neutral competition, (3) strong, excluding competition, (4) hierarchical competition and (5) random species competition. The species compete in randomly generated landscapes with various fragmentation levels. With this model we study species loss over time. Simulation results show that overall diversity, the species richness in the entire landscape, decreases slowly in fragmented landscapes whereas in well-connected landscapes rapid species losses occur. These results are robust with respect to changing competitive settings, species parameters and spatial configurations. They indicate that optimal landscape configuration for species conservation differs between metapopulation approaches, modelling species separately and meta-community approaches allowing species interactions. The mechanism behind this is that species in well-connected landscapes rapidly outcompete each other. Species that become abundant, by chance or by their completive strength, send out large amounts of dispersers that colonize and take over other patches that are occupied by species that are less abundant. This mechanism causes rapid species loss. In fragmented landscapes the colonization rate is lower, and it is difficult for a new species to establish in an already occupied patch. So, here dominant species cannot easily take over patches occupied by other species and higher diversity is maintained for a longer time. These results suggest that fragmented landscapes have benefits for species conservation previously unrecognized by the landscape ecology

  13. Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio.

    PubMed

    Ercole, Enrico; Adamo, Martino; Rodda, Michele; Gebauer, Gerhard; Girlanda, Mariangela; Perotto, Silvia

    2015-02-01

    Many adult orchids, especially photoautotrophic species, associate with a diverse range of mycorrhizal fungi, but little is known about the temporal changes that might occur in the diversity and functioning of orchid mycorrhiza during vegetative and reproductive plant growth. Temporal variations in the spectrum of mycorrhizal fungi and in stable isotope natural abundance were investigated in adult plants of Anacamptis morio, a wintergreen meadow orchid. Anacamptis morio associated with mycorrhizal fungi belonging to Tulasnella, Ceratobasidium and a clade of Pezizaceae (Ascomycetes). When a complete growing season was investigated, multivariate analyses indicated significant differences in the mycorrhizal fungal community. Among fungi identified from manually isolated pelotons, Tulasnella was more common in autumn and winter, the pezizacean clade was very frequent in spring, and Ceratobasidium was more frequent in summer. By contrast, relatively small variations were found in carbon (C) and nitrogen (N) stable isotope natural abundance, A. morio samples showing similar (15)N enrichment and (13)C depletion at the different sampling times. These observations suggest that, irrespective of differences in the seasonal environmental conditions, the plant phenological stages and the associated fungi, the isotopic content in mycorrhizal A. morio remains fairly constant over time. PMID:25382295

  14. Effects of Habitat Structure and Fragmentation on Diversity and Abundance of Primates in Tropical Deciduous Forests in Bolivia

    PubMed Central

    Büntge, Anna B. S.; Herzog, Sebastian K.; Kessler, Michael

    2010-01-01

    Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures. PMID:20949116

  15. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    PubMed

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances. PMID:25712048

  16. Vector species richness increases haemorrhagic disease prevalence through functional diversity modulating the duration of seasonal transmission.

    PubMed

    Park, Andrew W; Cleveland, Christopher A; Dallas, Tad A; Corn, Joseph L

    2016-06-01

    Although many parasites are transmitted between hosts by a suite of arthropod vectors, the impact of vector biodiversity on parasite transmission is poorly understood. Positive relationships between host infection prevalence and vector species richness (SR) may operate through multiple mechanisms, including (i) increased vector abundance, (ii) a sampling effect in which species of high vectorial capacity are more likely to occur in species-rich communities, and (iii) functional diversity whereby communities comprised species with distinct phenologies may extend the duration of seasonal transmission. Teasing such mechanisms apart is impeded by a lack of appropriate data, yet could highlight a neglected role for functional diversity in parasite transmission. We used statistical modelling of extensive host, vector and microparasite data to test the hypothesis that functional diversity leading to longer seasonal transmission explained variable levels of disease in a wildlife population. We additionally developed a simple transmission model to guide our expectation of how an increased transmission season translates to infection prevalence. Our study demonstrates that vector SR is associated with increased levels of disease reporting, but not via increases in vector abundance or via a sampling effect. Rather, the relationship operates by extending the length of seasonal transmission, in line with theoretical predictions. PMID:26206418

  17. Organic amendments enhance microbial diversity and abundance of functional genes in Australian Soils

    NASA Astrophysics Data System (ADS)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2016-04-01

    Food and cash crops play important roles in Australia's economy with black, grey and red clay soil, widely use for growing cotton, wheat, corn and other crops in rotation. While the majority of cotton growers use nitrogen and phosphate fertilizers only in the form of agrochemicals, a few experiment with the addition of manure or composted plant material before planting. We hypothesized that the use of such organic amendments would enhance the soil microbial function through increased microbial diversity and abundance, thus contribute to improved soil sustainability. To test the hypothesis we collected soil samples from two cotton-growing farms in close geographical proximity and with mostly similar production practices other than one grower has been using composted plants as organic amendment and the second farmer uses only agrochemicals. We applied the Biolog Ecoplate system to study the metabolic signature of microbial communities and used qPCR to estimate the abundance of functional genes in the soil. The soil treated with organic amendments clearly showed higher metabolic activity of a more diverse range of carbon sources as well as higher abundance of genes involved in the nitrogen and phosphorous cycles. Since microbes undertake a large number of soil functions, the use of organic amendments can contribute to the sustainability of agricultural soils.

  18. Global Patterns of Abundance, Diversity and Community Structure of the Aminicenantes (Candidate Phylum OP8)

    PubMed Central

    Farag, Ibrahim F.; Davis, James P.; Youssef, Noha H.; Elshahed, Mostafa S.

    2014-01-01

    We investigated the global patterns of abundance, diversity, and community structure of members of the Aminicenantes (candidate phylum OP8). Our aim was to identify the putative ecological role(s) played by members of this poorly characterized bacterial lineages in various ecosystems. Analysis of near full-length 16S rRNA genes identified four classes and eight orders within the Aminicenantes. Within 3,134 datasets comprising ∼1.8 billion high throughput-generated partial 16S rRNA genes, 47,351 Aminicenantes-affiliated sequences were identified in 913 datasets. The Aminicenantes exhibited the highest relative abundance in hydrocarbon-impacted environments, followed by marine habitats (especially hydrothermal vents and coral-associated microbiome samples), and aquatic, non-marine habitats (especially in terrestrial springs and groundwater samples). While the overall abundance of the Aminicenantes was higher in low oxygen tension as well as non-saline and low salinity habitats, it was encountered in a wide range of oxygen tension, salinities, and temperatures. Analysis of the community structure of the Aminicenantes showed distinct patterns across various datasets that appear to be, mostly, driven by habitat variations rather than prevalent environmental parameters. We argue that the detection of the Aminicenantes across environmental extremes and the observed distinct community structure patterns reflect a high level of intraphylum metabolic diversity and adaptive capabilities that enable its survival and growth in a wide range of habitats and environmental conditions. PMID:24637619

  19. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches

    PubMed Central

    Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region. PMID:26644988

  20. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches.

    PubMed

    Wagner, Elena L E S; Roche, Dominique G; Binning, Sandra A; Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region. PMID:26644988

  1. Patterns of species diversity in the deep sea as a function of sediment particle size diversity

    NASA Astrophysics Data System (ADS)

    Etter, Ron J.; Grassle, J. Frederick

    1992-12-01

    UNDERSTANDING the processes that generate and maintain patterns of species diversity is a major focus of contemporary ecological and evolutionary research. In the deep sea, species diversity varies geographically and bathymetrically1-3, and may attain levels that rival tropical communities4. Many hypotheses have been proposed concerning the forces that shape patterns of species diversity in the deep sea5, but so far it has not been possible to relate these patterns to potential causes in a direct quantitative way. The nature of sediments should be important in structuring deep-sea communities because deposit feeders rely on the sediments for nutrition and comprise most of the organisms in the deep sea6. The composition of soft sediment communities is influenced by sediment particle size7,8. Shallow-water deposit feeders selectively ingest particular size fractions of the sediments9,10 and there are interspecific differences in particle size preference11-13. Partitioning of sediments with respect to size may be more likely in the deep sea if there is strong selection for macrophagy as a result of reduced food supply and digestive constraints imposed by feeding on deposits14; macrophagy would permit species to ingest selectively the more labile components of the sediments. If deposit feeders in the deep sea partition the sediments with respect to size, species diversity may in part be a function of sediment particle size diversity. Also, sediment particle size diversity may reflect habitat complexity because the organisms live on or within the sediments15-21. Here we show that species diversity is a significant positive function of sediment particle size diversity. The relationship seems to be scale-invariant, accounting for a similar proportion of the variance at inter-regional, regional and local scales. Bathymetric patterns of species diversity also appear to be largely attributable to changes in sediment characteristics with depth. These results suggest that

  2. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area.

    PubMed

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-01-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area. PMID:26902649

  3. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area

    PubMed Central

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-01-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area. PMID:26902649

  4. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    PubMed

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  5. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    PubMed Central

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  6. Global patterns of freshwater species diversity, threat and endemism

    PubMed Central

    Collen, Ben; Whitton, Felix; Dyer, Ellie E; Baillie, Jonathan E M; Cumberlidge, Neil; Darwall, William R T; Pollock, Caroline; Richman, Nadia I; Soulsby, Anne-Marie; Böhm, Monika

    2014-01-01

    Aim Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. Location Global. Methods We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. Results We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. Main conclusions We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in

  7. The influence of land use on the abundance and diversity of ammonia oxidizers.

    PubMed

    Zhao, Dayong; Luo, Juan; Wang, Jianqun; Huang, Rui; Guo, Kun; Li, Yi; Wu, Qinglong L

    2015-02-01

    Nitrification plays a significant role in soil nitrogen cycling, a process in which the first step can be catalyzed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). In this study, six soil samples with distinct land-use regimes (forestland soil, paddy soil, wheat-planted soil, fruit-planted soil, grassland soil, and rape-planted soil) were collected from Chuzhou city in the Anhui province to elucidate the effects of land use on the abundance and diversity of AOA and AOB. The abundance of the archaeal amoA gene ranged from 2.12 × 10(4) copies per gram of dry soil to 2.57 × 10(5) copies per gram of dry soil, while the abundance of the bacterial amoA gene ranged from 5.58 × 10(4) copies per gram of dry soil to 1.59 × 10(8) copies per gram of dry soil. The grassland and the rape-planted soil samples maintained the highest abundance of the bacterial and archaeal amoA genes, respectively. The abundance of the archaeal amoA gene was positively correlated with the pH (P < 0.05). The ammonia concentrations exhibited a significantly positive relation with the abundance of the bacterial amoA gene (P < 0.01) and the number of OTUs of AOB (P < 0.05). The community composition of AOB was more sensitive to the land-use regimes than that of AOA. The data obtained in this study may be useful to better understand the nitrification process in soils with different land-use regimes. PMID:25331793

  8. Variation in species diversity and functional traits of sponge communities near human populations in Bocas del Toro, Panama.

    PubMed

    Easson, Cole G; Matterson, Kenan O; Freeman, Christopher J; Archer, Stephanie K; Thacker, Robert W

    2015-01-01

    Recent studies have renewed interest in sponge ecology by emphasizing the functional importance of sponges in a broad array of ecosystem services. Many critically important habitats occupied by sponges face chronic stressors that might lead to alterations in their diversity, relatedness, and functional attributes. We addressed whether proximity to human activity might be a significant factor in structuring sponge community composition, as well as potential functional roles, by monitoring sponge diversity and abundance at two structurally similar sites that vary in distance to areas of high coastal development in Bocas Del Toro, Panama. We surveyed sponge communities at each site using belt transects and differences between two sites were compared using the following variables: (1) sponge species richness, Shannon diversity, and inverse Simpson's diversity; (2) phylogenetic diversity; (3) taxonomic and phylogenetic beta diversity; (4) trait diversity and dissimilarity; and (5) phylogenetic and trait patterns in community structure. We observed significantly higher sponge diversity at Punta Caracol, the site most distant from human development (∼5 km). Although phylogenetic diversity was lower at Saigon Bay, the site adjacent to a large village including many houses, businesses, and an airport, the sites did not exhibit significantly different patterns of phylogenetic relatedness in species composition. However, each site had a distinct taxonomic and phylogenetic composition (beta diversity). In addition, the sponge community at Saigon included a higher relative abundance of sponges with high microbial abundance and high chlorophyll a concentration, whereas the community at Punta Caracol had a more even distribution of these traits, yielding a significant difference in functional trait diversity between sites. These results suggest that lower diversity and potentially altered community function might be associated with proximity to human populations. This study

  9. Variation in species diversity and functional traits of sponge communities near human populations in Bocas del Toro, Panama

    PubMed Central

    Matterson, Kenan O.; Freeman, Christopher J.; Archer, Stephanie K.; Thacker, Robert W.

    2015-01-01

    Recent studies have renewed interest in sponge ecology by emphasizing the functional importance of sponges in a broad array of ecosystem services. Many critically important habitats occupied by sponges face chronic stressors that might lead to alterations in their diversity, relatedness, and functional attributes. We addressed whether proximity to human activity might be a significant factor in structuring sponge community composition, as well as potential functional roles, by monitoring sponge diversity and abundance at two structurally similar sites that vary in distance to areas of high coastal development in Bocas Del Toro, Panama. We surveyed sponge communities at each site using belt transects and differences between two sites were compared using the following variables: (1) sponge species richness, Shannon diversity, and inverse Simpson’s diversity; (2) phylogenetic diversity; (3) taxonomic and phylogenetic beta diversity; (4) trait diversity and dissimilarity; and (5) phylogenetic and trait patterns in community structure. We observed significantly higher sponge diversity at Punta Caracol, the site most distant from human development (∼5 km). Although phylogenetic diversity was lower at Saigon Bay, the site adjacent to a large village including many houses, businesses, and an airport, the sites did not exhibit significantly different patterns of phylogenetic relatedness in species composition. However, each site had a distinct taxonomic and phylogenetic composition (beta diversity). In addition, the sponge community at Saigon included a higher relative abundance of sponges with high microbial abundance and high chlorophyll a concentration, whereas the community at Punta Caracol had a more even distribution of these traits, yielding a significant difference in functional trait diversity between sites. These results suggest that lower diversity and potentially altered community function might be associated with proximity to human populations. This study

  10. Genetic Diversity of the Two Commercial Tetraploid Cotton Species in the Gossypium Diversity Reference Set.

    PubMed

    Hinze, Lori L; Gazave, Elodie; Gore, Michael A; Fang, David D; Scheffler, Brian E; Yu, John Z; Jones, Don C; Frelichowski, James; Percy, Richard G

    2016-05-01

    A diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G. barbadense. The reference set contained 410 G. barbadense accessions and 1523 G. hirsutum accessions. Observed numbers of polymorphic and private bands indicated a greater diversity in G. hirsutum as compared to G. barbadense as well as in wild-type accessions as compared to improved accessions in both species. The markers clearly differentiated the 2 species. Patterns of diversity within species were observed but not clearly delineated, with much overlap occurring between races and regions of origin for wild accessions and between historical and geographic breeding pools for cultivated accessions. Although the percentage of accessions showing introgression was higher among wild accessions than cultivars in both species, the average level of introgression within individual accessions, as indicated by species-specific bands, was much higher in wild accessions of G. hirsutum than in wild accessions of G. barbadense. The average level of introgression within individual accessions was higher in improved G. barbadense cultivars than in G. hirsutum cultivars. This molecular characterization reveals the levels and distributions of genetic diversity that will allow for better exploration and utilization of cotton genetic resources. PMID:26774060

  11. Deep-sea methane seep sediments in the Okhotsk Sea sustain diverse and abundant anammox bacteria.

    PubMed

    Shao, Sudong; Luan, Xiwu; Dang, Hongyue; Zhou, Haixia; Zhao, Yakun; Liu, Haitao; Zhang, Yunbo; Dai, Lingqing; Ye, Ying; Klotz, Martin G

    2014-02-01

    Marginal sea methane seep sediments sustain highly productive chemosynthetic ecosystems and are hotspots of intense biogeochemical cycling. Rich methane supply stimulates rapid microbial consumption of oxygen; these systems are thus usually hypoxic to anoxic. This and reported evidence for resident nitrogen fixation suggest the presence of an anaerobic ammonium-oxidizing (anammox) bacterial community in methane seep sediments. To test this hypothesis, we employed detection of genes encoding 16S rRNA gene and hydrazine dehydrogenase (hzo) to investigate the structure, abundance and distribution of the anammox bacterial community in the methane seep sediments of the Okhotsk Sea. Diverse complements of Candidatus Scalindua-related 16S rRNA and hzo gene sequences were obtained. Most of the deep-sea sites harbored abundant hzo genes with copy numbers as high as 10(7)  g(-1) sediment. In general, anammox bacterial signatures were significantly more abundant in the deep-water sediments. Sediment porewater NO3-, NOx- (i.e. NO3- + NO2-), NOx-/NH4+ and sediment silt content correlated with in situ distribution patterns of anammox bacterial marker genes, likely because they determine anammox substrate availability and sediment geochemistry, respectively. The abundance and distribution of anammox bacterial gene markers indicate a potentially significant contribution of anammox bacteria to the marine N cycle in the deep-sea methane seep sediments. PMID:24164560

  12. Functional Diversity of Boreal Bog Plant Species Decreases Seasonal Variation of Ecosystem Carbon Sink Function

    NASA Astrophysics Data System (ADS)

    Korrensalo, A.

    2015-12-01

    Species diversity has been found to decrease the temporal variance of productivity of a plant community, and diversity in species responses to environmental factors seems to make a plant community more stable in changing conditions. Boreal bogs are nutrient poor peatland ecosystems where the number of plant species is low but the species differ greatly in their growth form. In here we aim to assess the role of the variation in photosynthesis between species for the temporal variation in ecosystem carbon sink function. To quantify the photosynthetic properties and their seasonal variation for different bog plant species we measured photosynthetic parameters and stress-inducing chlorophyll fluorescence of vascular plant and Sphagnum moss species in a boreal bog over a growing season. We estimated monthly gross photosynthesis (PG) of the whole study site based on species level light response curves and leaf area development. The estimated PG was further compared with a gross primary production (GPP) estimate measured by eddy covariance (EC) technique. The sum of upscaled PG estimates agreed well with the GPP estimate measured by the EC technique. The contributions of the species and species groups to the ecosystem level PG changed over the growing season. The sharp mid-summer peak in sedge PG was balanced by more stable PG of evergreen shrubs and Sphagna. Species abundance rather than differences in photosynthetic properties between species and growth forms determined the most productive plants on the ecosystem scale. Sphagna had lower photosynthesis and clorophyll fluorescence than vascular plants but were more productive on the ecosystem scale throughout the growing season due to their high areal coverage. These results show that the diversity of growth forms stabilizes the seasonal variation of the ecosystem level PG in an ombrotrophic bog ecosystem. This may increase the resilience of the ecosystem to changing environmental conditions.

  13. Spatial Patterns in the Distribution, Diversity and Abundance of Benthic Foraminifera around Moorea (Society Archipelago, French Polynesia).

    PubMed

    Fajemila, Olugbenga T; Langer, Martin R; Lipps, Jere H

    2015-01-01

    Coral reefs are now subject to global threats and influences from numerous anthropogenic sources. Foraminifera, a group of unicellular shelled organisms, are excellent indicators of water quality and reef health. Thus we studied a set of samples taken in 1992 to provide a foraminiferal baseline for future studies of environmental change. Our study provides the first island-wide analysis of shallow benthic foraminifera from around Moorea (Society Archipelago). We analyzed the composition, species richness, patterns of distribution and abundance of unstained foraminiferal assemblages from bays, fringing reefs, nearshore and back- and fore-reef environments. A total of 380 taxa of foraminifera were recorded, a number that almost doubles previous species counts. Spatial patterns of foraminiferal assemblages are characterized by numerical abundances of individual taxa, cluster groups and gradients of species richness, as documented by cluster, Fisher α, ternary plot and Principal Component Analyses (PCA). The inner bay inlets are dominated by stress-tolerant, mostly thin-shelled taxa of Bolivina, Bolivinella, Nonionoides, Elongobula, and Ammonia preferring low-oxygen and/or nutrient-rich habitats influenced by coastal factors such as fresh-water runoff and overhanging mangroves. The larger symbiont-bearing foraminifera (Borelis, Amphistegina, Heterostegina, Peneroplis) generally live in the oligotrophic, well-lit back- and fore-reef environments. Amphisteginids and peneroplids were among the few taxa found in the bay environments, probably due to their preferences for phytal substrates and tolerance to moderate levels of eutrophication. The fringing reef environments along the outer bay are characterized by Borelis schlumbergeri, Heterostegina depressa, Textularia spp. and various miliolids which represent a hotspot of diversity within the complex reef-lagoon system of Moorea. The high foraminiferal Fisher α and species richness diversity in outer bay fringing reefs

  14. Spatial Patterns in the Distribution, Diversity and Abundance of Benthic Foraminifera around Moorea (Society Archipelago, French Polynesia)

    PubMed Central

    2015-01-01

    Coral reefs are now subject to global threats and influences from numerous anthropogenic sources. Foraminifera, a group of unicellular shelled organisms, are excellent indicators of water quality and reef health. Thus we studied a set of samples taken in 1992 to provide a foraminiferal baseline for future studies of environmental change. Our study provides the first island-wide analysis of shallow benthic foraminifera from around Moorea (Society Archipelago). We analyzed the composition, species richness, patterns of distribution and abundance of unstained foraminiferal assemblages from bays, fringing reefs, nearshore and back- and fore-reef environments. A total of 380 taxa of foraminifera were recorded, a number that almost doubles previous species counts. Spatial patterns of foraminiferal assemblages are characterized by numerical abundances of individual taxa, cluster groups and gradients of species richness, as documented by cluster, Fisher α, ternary plot and Principal Component Analyses (PCA). The inner bay inlets are dominated by stress-tolerant, mostly thin-shelled taxa of Bolivina, Bolivinella, Nonionoides, Elongobula, and Ammonia preferring low-oxygen and/or nutrient-rich habitats influenced by coastal factors such as fresh-water runoff and overhanging mangroves. The larger symbiont-bearing foraminifera (Borelis, Amphistegina, Heterostegina, Peneroplis) generally live in the oligotrophic, well-lit back- and fore-reef environments. Amphisteginids and peneroplids were among the few taxa found in the bay environments, probably due to their preferences for phytal substrates and tolerance to moderate levels of eutrophication. The fringing reef environments along the outer bay are characterized by Borelis schlumbergeri, Heterostegina depressa, Textularia spp. and various miliolids which represent a hotspot of diversity within the complex reef-lagoon system of Moorea. The high foraminiferal Fisher α and species richness diversity in outer bay fringing reefs

  15. Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Now that the Messenger spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbital-phase searches for additional species in Mercury's exosphere.

  16. Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Astrophysics Data System (ADS)

    Vervack, R. J., Jr.; Killen, R. M.; Sprague, A. L.; Burger, M. H.; Merkel, A. W.; Sarantos, M.

    2011-10-01

    Now that the MESSENGER spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbitalphase searches for additional species in Mercury's exosphere.

  17. Scorpions from Mexico: From Species Diversity to Venom Complexity

    PubMed Central

    Santibáñez-López, Carlos E.; Francke, Oscar F.; Ureta, Carolina; Possani, Lourival D.

    2015-01-01

    Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world’s medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided. PMID:26712787

  18. Scorpions from Mexico: From Species Diversity to Venom Complexity.

    PubMed

    Santibáñez-López, Carlos E; Francke, Oscar F; Ureta, Carolina; Possani, Lourival D

    2016-01-01

    Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world's medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided. PMID:26712787

  19. Reduced Diversity and High Sponge Abundance on a Sedimented Indo-Pacific Reef System: Implications for Future Changes in Environmental Quality

    PubMed Central

    Powell, Abigail; Smith, David J.; Hepburn, Leanne J.; Jones, Timothy; Berman, Jade; Jompa, Jamaluddin; Bell, James J.

    2014-01-01

    Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning. PMID:24475041

  20. Design for mosquito abundance, diversity, and phenology sampling within the National Ecological Observatory Network

    USGS Publications Warehouse

    Hoekman, D.; Springer, Yuri P; Barker, C.M.; Barrera, R.; Blackmore, M.S.; Bradshaw, W.E.; Foley, D. H.; Ginsberg, Howard; Hayden, M. H.; Holzapfel, C. M.; Juliano, S. A.; Kramer, L. D.; LaDeau, S. L.; Livdahl, T. P.; Moore, C. G.; Nasci, R.S.; Reisen, W.K.; Savage, H. M.

    2016-01-01

    The National Ecological Observatory Network (NEON) intends to monitor mosquito populations across its broad geographical range of sites because of their prevalence in food webs, sensitivity to abiotic factors and relevance for human health. We describe the design of mosquito population sampling in the context of NEON’s long term continental scale monitoring program, emphasizing the sampling design schedule, priorities and collection methods. Freely available NEON data and associated field and laboratory samples, will increase our understanding of how mosquito abundance, demography, diversity and phenology are responding to land use and climate change.

  1. Decadal variability in abundances of the dominant euphausiid species in southern sectors of the California Current

    NASA Astrophysics Data System (ADS)

    Brinton, Edward; Townsend, Annie

    2003-08-01

    Euphausiid abundance data from broadly based California Cooperative Oceanic Fisheries Investigation surveys in California and Baja California sectors of the California Current provided a time series distinguishing periodic, rhythmic and irregular species patterns. Comparisons with environmental indexes indicate significant correlations with warm-water species, most notably in coastal Nyctiphanes simplex. Oceanic warm-water species were similarly, but less extremely, allied with an index. Coastal warm-water N. simplex was uncommon off southern California before the atmospheric regime shift of the 1970s. It assumed a post-1978 pattern of rhythmic biannual abundance increases and decreases during 1981-2000. The near-tropical oceanic Euphausia eximia and Pacific Central subtropicals patterned similarly, but was more periodic than rhythmic. Euphausia pacifica, the most dominant and broadly ranging Euphausia species, peaked at irregular but distinct bi-decadal abundances during 6 strong La Niña episodes. The peaks uniformly collapsed by 90%, becoming El Niño-associated minima. The cold-water coastal northern species Thysanoessa spinifera frequently ranged far south off Baja California before 1960 but became limited to Central California in the 1980s. The importance of T. spinifera off the Californias is small compared with northern regions, but it extends to southern upwelling centers contributing to dominance, here, by cold-water euphausiids. Decadal periodicity of species abundances decreased in the 1990s, when trends became more common. Differences among sectors were minimal between the two Californias, but were often distinct between southern California and Central Baja California. Species abundances, comparing pre- and post-climate shift species averages, differed insignificantly for all species when logarithmic values were used. With arithmetic values, most 1977-1998 average values were the greater, but with large standard deviations.

  2. Global patterns in sandy beach macrofauna: Species richness, abundance, biomass and body size

    NASA Astrophysics Data System (ADS)

    Defeo, Omar; McLachlan, Anton

    2013-10-01

    Global patterns in species richness in sandy beach ecosystems have been poorly understood until comparatively recently, because of the difficulty of compiling high-resolution databases at continental scales. We analyze information from more than 200 sandy beaches around the world, which harbor hundreds of macrofauna species, and explore latitudinal trends in species richness, abundance and biomass. Species richness increases from temperate to tropical sites. Abundance follows contrasting trends depending on the slope of the beach: in gentle slope beaches, it is higher at temperate sites, whereas in steep-slope beaches it is higher at the tropics. Biomass follows identical negative trends for both climatic regions at the whole range of beach slopes, suggesting decreasing rates in carrying capacity of the environment towards reflective beaches. Various morphodynamic variables determine global trends in beach macrofauna. Species richness, abundance and biomass are higher at dissipative than at reflective beaches, whereas a body size follows the reverse pattern. A generalized linear model showed that large tidal range (which determines the vertical dimension of the intertidal habitat), small size of sand particles and flat beach slope (a product of the interaction among wave energy, tidal range and grain size) are correlated with high species richness, suggesting that these parameters represent the most parsimonious variables for modelling patterns in sandy beach macrofauna. Large-scale patterns indicate a scaling of abundance to a body size, suggesting that dissipative beaches harbor communities with highest abundance and species with the smallest body sizes. Additional information for tropical and northern hemisphere sandy beaches (underrepresented in our compilation) is required to decipher more conclusive trends, particularly in abundance, biomass and body size. Further research should integrate meaningful oceanographic variables, such as temperature and primary

  3. Does species diversity limit productivity in natural grassland communities?

    USGS Publications Warehouse

    Grace, J.B.; Anderson, T.M.; Smith, M.D.; Seabloom, E.; Andelman, S.J.; Meche, G.; Weiher, E.; Allain, L.K.; Jutila, H.; Sankaran, M.; Knops, J.; Ritchie, M.; Willig, M.R.

    2007-01-01

    Theoretical analyses and experimental studies of synthesized assemblages indicate that under particular circumstances species diversity can enhance community productivity through niche complementarity. It remains unclear whether this process has important effects in mature natural ecosystems where competitive feedbacks and complex environmental influences affect diversity-productivity relationships. In this study, we evaluated diversity-productivity relationships while statistically controlling for environmental influences in 12 natural grassland ecosystems. Because diversity-productivity relationships are conspicuously nonlinear, we developed a nonlinear structural equation modeling (SEM) methodology to separate the effects of diversity on productivity from the effects of productivity on diversity. Meta-analysis was used to summarize the SEM findings across studies. While competitive effects were readily detected, enhancement of production by diversity was not. These results suggest that the influence of small-scale diversity on productivity in mature natural systems is a weak force, both in absolute terms and relative to the effects of other controls on productivity. ?? 2007 Blackwell Publishing Ltd/CNRS.

  4. Effect of Tillage and Planting Date on Seasonal Abundance and Diversity of Predacious Ground Beetles in Cotton

    PubMed Central

    Shrestha, R. B.; Parajulee, M. N.

    2010-01-01

    other species. Ground beetle species abundance, diversity, and species richness were significantly higher in conservation tillage plots. This suggests that field conditions arising from the practice of conservation tillage may support higher predacious ground beetle activity than might be observed under field conditions arising from conventional tillage practices. PMID:21062204

  5. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea.

    PubMed

    Lösekann, Tina; Knittel, Katrin; Nadalig, Thierry; Fuchs, Bernhard; Niemann, Helge; Boetius, Antje; Amann, Rudolf

    2007-05-01

    Submarine mud volcanoes are formed by expulsions of mud, fluids, and gases from deeply buried subsurface sources. They are highly reduced benthic habitats and often associated with intensive methane seepage. In this study, the microbial diversity and community structure in methane-rich sediments of the Haakon Mosby Mud Volcano (HMMV) were investigated by comparative sequence analysis of 16S rRNA genes and fluorescence in situ hybridization. In the active volcano center, which has a diameter of about 500 m, the main methane-consuming process was bacterial aerobic oxidation. In this zone, aerobic methanotrophs belonging to three bacterial clades closely affiliated with Methylobacter and Methylophaga species accounted for 56%+/-8% of total cells. In sediments below Beggiatoa mats encircling the center of the HMMV, methanotrophic archaea of the ANME-3 clade dominated the zone of anaerobic methane oxidation. ANME-3 archaea form cell aggregates mostly associated with sulfate-reducing bacteria of the Desulfobulbus (DBB) branch. These ANME-3/DBB aggregates were highly abundant and accounted for up to 94%+/-2% of total microbial biomass at 2 to 3 cm below the surface. ANME-3/DBB aggregates could be further enriched by flow cytometry to identify their phylogenetic relationships. At the outer rim of the mud volcano, the seafloor was colonized by tubeworms (Siboglinidae, formerly known as Pogonophora). Here, both aerobic and anaerobic methane oxidizers were found, however, in lower abundances. The level of microbial diversity at this site was higher than that at the central and Beggiatoa species-covered part of the HMMV. Analysis of methyl-coenzyme M-reductase alpha subunit (mcrA) genes showed a strong dominance of a novel lineage, mcrA group f, which could be assigned to ANME-3 archaea. Our results further support the hypothesis of Niemann et al. (54), that high methane availability and different fluid flow regimens at the HMMV provide distinct niches for aerobic and

  6. Copepod abundance and species composition in the Eastern subtropical/tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Schnack-Schiel, Sigrid B.; Mizdalski, Elke; Cornils, Astrid

    2010-12-01

    Abundance and species composition of copepods were studied during the expedition ANT XXI/1 on a latitudinal transect in the eastern Atlantic from 34°49.5'N to 27°28.1'S between 2-20 November 2002. Stratified zooplankton tows were carried out at 19 stations with a multiple opening-closing net between 300 m water depth and the surface. Cyclopoid and calanoid copepods showed similar patterns of distribution and abundance. Oithona was the most abundant cyclopoid genus, followed by Oncaea. A total of 149 calanoid copepod species were identified. Clausocalanus was by far the most abundant genus, comprising on average about 45% of all calanoids, followed by Calocalanus (13%), Delibus (9%), Paracalanus (6%), and Pleuromamma (5%). All other genera comprised on average less than 5% each, with 40 genera less than 1%. The calanoid copepod communities were distinguished broadly in accordance with sea surface temperature, separating the subtropical from the tropical stations, and were largely determined by variation in species composition and species abundance. Nine Clausocalanus species were identified. The most numerous Clausocalanus species was C. furcatus, which on average comprised half of all adult of this genus. C. pergens, C. paululus, and C. jobei, contributed an average of 19%, 9%, and 9%, respectively. The Clausocalanus species differed markedly in their horizontal and vertical distributions: C. furcatus, C. jobei, and C. mastigophorus had widespread distributions and inhabited the upper water layers. Major differences between the species were found in abundance. C. paululus and C. arcuicornis were biantitropical and were absent or occurred in very low numbers in the equatorial zone. C. parapergens was found at all stations and showed a bimodal distribution pattern with maxima in the subtropics. C. pergens occurred in higher numbers only at the southern stations, where it replaced C. furcatus in dominance. In contrast to the widespread species, the bulk of the C

  7. Diversity and abundance of uncultured cytophaga-like bacteria in the Delaware estuary.

    PubMed

    Kirchman, David L; Yu, Liying; Cottrell, Matthew T

    2003-11-01

    The Cytophaga-Flavobacterium group is known to be abundant in aquatic ecosystems and to have a potentially unique role in the utilization of organic material. However, relatively little is known about the diversity and abundance of uncultured members of this bacterial group, in part because they are underrepresented in clone libraries of 16S rRNA genes. To circumvent a suspected bias in PCR, a primer set was designed to amplify 16S rRNA genes from the Cytophaga-Flavobacterium group and was used to construct a library of these genes from the Delaware Estuary. This library had several novel Cytophaga-like 16S rRNA genes, of which about 40% could be grouped together into two clusters (DE clusters 1 and 2) defined by sequences initially observed only in the Delaware library; the other 16S rRNA genes were classified into an additional four clades containing sequences from other environments. An oligonucleotide probe was designed for the cluster with the most clones (DE cluster 2) and was used in fluorescence in situ hybridization assays. Bacteria in DE cluster 2 accounted for about 10% of the total prokaryotic abundance in the Delaware Estuary and in a depth profile of the Chukchi Sea (Arctic Ocean). The presence of DE cluster 2 in the Arctic Ocean was confirmed by results from 16S rRNA clone libraries. The contribution of this cluster to the total bacterial biomass is probably larger than is indicated by the abundance of its members, because the average cell volume of bacteria in DE cluster 2 was larger than those of other bacteria and prokaryotes in the Delaware Estuary and Chukchi Sea. DE cluster 2 may be one of the more abundant bacterial groups in the Delaware Estuary and possibly other marine environments. PMID:14602617

  8. Relating species and functional diversity using stable isotope probing

    NASA Astrophysics Data System (ADS)

    Prosser, J. I.; Rangel-Castro, J. I.; Mahmood, S.; Nicol, G.; Meharg, A. A.; Killham, K. S.

    2004-12-01

    Microbial communities play an essential role in biogeochemical cycles and analysis of laboratory cultures has provided much information on biochemical processes and physiological characteristics of functional groups of microorganisms responsible for these processes. However, the majority of microorganisms cannot be grown readily in laboratory culture and cultivation-independent molecular techniques are required for analysis of community structure and diversity. These techniques have demonstrated considerable microbial diversity in natural communities and have revealed the existence of abundant microorganisms belonging to novel, previously unsuspected microbial groups. Molecular analysis of natural communities typically provides little information on links between specific microorganisms and the biogeochemical processes that they carry out. We are therefore ignorant of the significance of microbial diversity for ecosystem processes and of the ecosystem function of uncultivated, but abundant microbial groups. Stable isotope probing enables identification of which members of a community are involved in the utilisation of specific substrates, particularly carbon substrates. It involves amendment of environmental samples, or field application with 13C-labelled carbon substrates and, after a period of exposure, extraction of nucleic acids and separation of 13C-labelled (heavy) and 12C-labelled (light) nucleic acid pools by density gradient centrifugation. The heavy nucleic acid pool will be derived only from organisms assimilating the labelled substrate.Molecular analysis of this pool provides information on identity and relative abundance of active members of the community. The technique therefore enables in situ functional analysis of microbial groups without the requirement for laboratory cultivation. Stable isotope probing has been used to determine which organisms are involved in the degradation of specific organic substrates, including recalcitrant compounds, and

  9. Origin matters: diversity affects the performance of alien invasive species but not of native species.

    PubMed

    Sun, Yan; Müller-Schärer, Heinz; Maron, John L; Schaffner, Urs

    2015-06-01

    At local scales, it has often been found that invasibility decreases with increasing resident plant diversity. However, whether resident community diversity similarly resists invasion by alien versus native species is seldom studied. We examined this issue by invading constructed native plant assemblages that varied in species and functional richness with invasive alien or native Asteraceae species. Assemblages were also invaded with spotted knapweed, Centaurea stoebe, a native European aster that has been previously used in diversity-invasibility experiments in North America. We also conducted a field survey to explore the generality of the patterns generated from our experimental study. Both experimental and observational work revealed that increasing diversity reduced the performance of alien but not native invaders. Centaurea stoebe invading its native community performed poorly regardless of resident diversity, whereas in a parallel, previously published study conducted in North America, C. stoebe easily invaded low-diversity but not high-diversity assemblages. Our results suggest that diversity is an attribute of resident communities that makes them more or less susceptible to invasion by novel invasive alien but not native plant species. PMID:25996858

  10. Host diversity affects the abundance of the extraradical arbuscular mycorrhizal network.

    PubMed

    Engelmoer, Daniel J P; Kiers, E Toby

    2015-03-01

    Arbuscular mycorrhizal fungi (AMF) can form complex networks in the soil that connect different host plants. Previous studies have focused on the effects of these networks on individual hosts and host communities. However, very little is known about how different host species affect the success of the fungal network itself. Given the potentially strong selection pressure against hosts that invest in a fungal network which benefits their competitors, we predict that the presence of multiple host species negatively affects the growth of the extraradical network. We designed an experiment using an in vitro culture approach to investigate the effect of different hosts (carrot, chichory and medicago) on the formation of a common mycelial network. In vitro root cultures, each inoculated with their own fungal network, were grown in a double split plate design with two host compartments and a common central compartment where fungal networks could form. We found that the size of fungal networks differs depending on the social environment of the host. When host species were propagated in a mixed species environment, the fungal abundance was significantly reduced compared to monoculture predictions. Our work demonstrates how host-to-host conflict can influence the abundance of the fungal partner. PMID:25297948

  11. Effects of urbanization on the distribution and abundance of amphibians and invasive species in southern California streams

    USGS Publications Warehouse

    Riley, S.P.D.; Busteed, G.T.; Kats, L.B.; Vandergon, T.L.; Lee, L.F.S.; Dagit, R.G.; Kerby, J.L.; Fisher, R.N.; Sauvajot, R.M.

    2005-01-01

    Urbanization negatively affects natural ecosystems in many ways, and aquatic systems in particular. Urbanization is also cited as one of the potential contributors to recent dramatic declines in amphibian populations. From 2000 to 2002 we determined the distribution and abundance of native amphibians and exotic predators and characterized stream habitat and invertebratecommunities in 35 streams in an urbanized landscape north of Los Angeles (U.S.A.). We measured watershed development as the percentage of area within each watershed occupied by urban land uses. Streams in more developed watersheds often had exotic crayfish (Procambarus clarkii) and fish, and had fewer native species such as California newts (Taricha torosa) and California treefrogs (Hyla cadaverina). These effects seemed particularly evident above 8% development, a result coincident with other urban stream studies that show negative impacts beginning at 10-15% urbanization. For Pacific treefrogs (H. regilla), the most widespread native amphibian, abundance was lower in the presence of exotic crayfish, although direct urbanization effects were not found. Benthic macroinvertebrate communities were also less diverse in urban streams, especially for sensitive species. Faunal community changes in urban streams may be related to changes in physical stream habitat, such as fewer pool and more run habitats and increased water depth and flow, leading to more permanent streams. Variation in stream permanence was particularly evident in 2002, a dry year when many natural streams were dry but urban streams were relatively unchanged. Urbanization has significantly altered stream habitat in this region and may enhance invasion by exotic species and negatively affect diversity and abundance of native amphibians. ??2005 Society for Conservation Biology.

  12. Synthetic riboswitches that induce gene expression in diverse bacterial species.

    PubMed

    Topp, Shana; Reynoso, Colleen M K; Seeliger, Jessica C; Goldlust, Ian S; Desai, Shawn K; Murat, Dorothée; Shen, Aimee; Puri, Aaron W; Komeili, Arash; Bertozzi, Carolyn R; Scott, June R; Gallivan, Justin P

    2010-12-01

    We developed a series of ligand-inducible riboswitches that control gene expression in diverse species of Gram-negative and Gram-positive bacteria, including human pathogens that have few or no previously reported inducible expression systems. We anticipate that these riboswitches will be useful tools for genetic studies in a wide range of bacteria. PMID:20935124

  13. Nutritive value in relation to plant species diversity of pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting forage mixtures may benefit pasture herbage production; however, changes in botanical composition could cause unstable nutritive value. Data from two grazing studies and a farm survey were used to examine how plant species diversity influenced herbage nutritive value. In one grazing study,...

  14. Conservation tillage affects species composition but not species diversity: a comparative study in Northern Italy.

    PubMed

    Boscutti, Francesco; Sigura, Maurizia; Gambon, Nadia; Lagazio, Corrado; Krüsi, Bertil O; Bonfanti, Pierluigi

    2015-02-01

    Conservation tillage (CT) is widely considered to be a practice aimed at preserving several ecosystem functions. In the literature, however, there seems to be no clear pattern with regard to its benefits on species diversity and species composition. In Northern Italy, we compared species composition and diversity of both vascular plants and Carabids under two contrasting tillage systems, i.e., CT and conventional tillage, respectively. We hypothesized a significant positive impact of CT on both species diversity and composition. We also considered the potential influence of crop type. The tillage systems were studied under open field conditions with three types of annual crops (i.e., maize, soybean, and winter cereals), using a split-plot design on pairs of adjacent fields. Linear mixed models were applied to test tillage system, crop, and interaction effects on diversity indices. Plant and Carabids communities were analyzed by multivariate methods (CCA). On the whole, 136 plant and 51 carabid taxa were recorded. The two tillage systems studied did not differ in floristic or carabid diversity. Species composition, by contrast, proved to be characteristic for each combination of tillage system and crop type. In particular, CT fields were characterized by nutrient demanding weeds and the associated Carabids. The differences were especially pronounced in fields with winter cereals. The same was true for the flora and Carabids along the field boundaries. For studying the effects of CT practices on the sustainability of agro-ecosystems, therefore, the focus should be on species composition rather than on diversity measures. PMID:25392019

  15. Conservation Tillage Affects Species Composition But Not Species Diversity: A Comparative Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Boscutti, Francesco; Sigura, Maurizia; Gambon, Nadia; Lagazio, Corrado; Krüsi, Bertil O.; Bonfanti, Pierluigi

    2015-02-01

    Conservation tillage (CT) is widely considered to be a practice aimed at preserving several ecosystem functions. In the literature, however, there seems to be no clear pattern with regard to its benefits on species diversity and species composition. In Northern Italy, we compared species composition and diversity of both vascular plants and Carabids under two contrasting tillage systems, i.e., CT and conventional tillage, respectively. We hypothesized a significant positive impact of CT on both species diversity and composition. We also considered the potential influence of crop type. The tillage systems were studied under open field conditions with three types of annual crops (i.e., maize, soybean, and winter cereals), using a split-plot design on pairs of adjacent fields. Linear mixed models were applied to test tillage system, crop, and interaction effects on diversity indices. Plant and Carabids communities were analyzed by multivariate methods (CCA). On the whole, 136 plant and 51 carabid taxa were recorded. The two tillage systems studied did not differ in floristic or carabid diversity. Species composition, by contrast, proved to be characteristic for each combination of tillage system and crop type. In particular, CT fields were characterized by nutrient demanding weeds and the associated Carabids. The differences were especially pronounced in fields with winter cereals. The same was true for the flora and Carabids along the field boundaries. For studying the effects of CT practices on the sustainability of agro-ecosystems, therefore, the focus should be on species composition rather than on diversity measures.

  16. Cryptic diversity revealed by DNA barcoding in Colombian illegally traded bird species.

    PubMed

    Mendoza, Ángela María; Torres, María Fernanda; Paz, Andrea; Trujillo-Arias, Natalia; López-Alvarez, Diana; Sierra, Socorro; Forero, Fernando; Gonzalez, Mailyn A

    2016-07-01

    Colombia is the country with the largest number of bird species worldwide, yet its avifauna is seriously threatened by habitat degradation and poaching. We built a DNA barcode library of nearly half of the bird species listed in the CITES appendices for Colombia, thereby constructing a species identification reference that will help in global efforts for controlling illegal species trade. We obtained the COI barcode sequence of 151 species based on 281 samples, representing 46% of CITES bird species registered for Colombia. The species analysed belong to nine families, where Trochilidae and Psittacidae are the most abundant ones. We sequenced for the first time the DNA barcode of 47 species, mainly hummingbirds endemic of the Northern Andes region. We found a correct match between morphological and genetic identification for 86-92% of the species analysed, depending on the cluster analysis performed (BIN, ABGD and TaxonDNA). Additionally, we identified eleven cases of high intraspecific divergence based on K2P genetic distances (up to 14.61%) that could reflect cryptic diversity. In these cases, the specimens were collected in geographically distant sites such as different mountain systems, opposite flanks of the mountain or different elevations. Likewise, we found two cases of possible hybridization and incomplete lineage sorting. This survey constitutes the first attempt to build the DNA barcode library of endangered bird species in Colombia establishing as a reference for management programs of illegal species trade, and providing major insights of phylogeographic structure that can guide future taxonomic research. PMID:26929271

  17. Skate assemblage on the eastern Patagonian Shelf and Slope: structure, diversity and abundance.

    PubMed

    Arkhipkin, A; Brickle, P; Laptikhovsky, V; Pompert, J; Winter, A

    2012-04-01

    The eastern Patagonian Shelf and continental slope of the south-west Atlantic Ocean support a high biodiversity and abundance of skates. In this study, meso-scale differences in the assemblages, spatial and seasonal distributions of skates are revealed among six habitat zones of the eastern Patagonian Shelf characterized by distinctive oceanographic conditions. Most skates belonged to temperate fauna, and their abundance was much greater in habitats occupied by temperate waters (north-western outer shelf) or mixed waters (northern slope) than in habitats occupied by sub-Antarctic waters (SASW) (south-eastern outer shelf and southern slope). Sub-Antarctic skates were not abundant on the shelf even in habitats occupied by SASW, occurring mainly in deep areas of the lower continental slope. The majority of temperate skates migrated seasonally, shifting northward in winter and spreading southward with warming waters in summer. Most temperate species had two peaks in female maturity (mainly spring and autumn) and spawned in the same habitats where they fed. It is hypothesized that the high biodiversity and abundance of skates on the Patagonian Shelf and Slope are due to the practical absence of their natural competitors, flatfishes, which occupy similar eco-niches elsewhere. PMID:22497404

  18. Orbital forcing of deep-sea benthic species diversity

    USGS Publications Warehouse

    Cronin, T. M.; Raymo, M.E.

    1997-01-01

    Explanations for the temporal and spatial patterns of species biodiversity focus on stability-time, disturbance-mosaic (biogenic microhabitat heterogeneity) and competition-predation (biotic interactions) hypotheses. The stability-time hypothesis holds that high species diversity in the deep sea and in the tropics reflects long-term climatic stability. But the influence of climate change on deep-sea diversity has not been studied and recent evidence suggests that deep-sea environments undergo changes in climatically driven temperature and flux of nutrients and organic-carbon during glacial-interglacial cycles. Here we show that Pliocene (2.85-2.40 Myr) deep-sea North Atlantic benthic ostracod (Crustacea) species diversity is related to solar insolation changes caused by 41,000-yr cycles of Earth's obliquity (tilt). Temporal changes in diversity, as measured by the Shannon- Weiner index, H(S), correlate with independent climate indicators of benthic foraminiferal oxygen-isotope ratios (mainly ice volume) and ostracod Mg:Ca ratios (bottomwater temperature). During glacial periods, H(S) = 0.2-0.6, whereas during interglacials, H(S) = 1.2-1.6, which is three to four times as high. The control of deep-sea benthic diversity by cyclic climate change at timescales of 103-104 yr does not support the stability-time hypothesis because it shows that the deep sea is a temporally dynamic environment. Diversity oscillations reflect large-scale response of the benthic community to climatically driven changes in either thermohaline circulation, bottom temperature (or temperature-related factors) and food, and a coupling of benthic diversity to surface productivity.

  19. Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas.

    PubMed

    Yang, Yuyin; Wang, Jie; Liao, Jingqiu; Xie, Shuguang; Huang, Yi

    2015-02-01

    Alkanes and polycyclic aromatic hydrocarbons (PAHs) are the commonly detected petroleum hydrocarbon contaminants in soils in oil exploring areas. Hydrocarbon-degrading genes are useful biomarks for estimation of the bioremediation potential of contaminated sites. However, the links between environmental factors and the distribution of alkane and PAH metabolic genes still remain largely unclear. The present study investigated the abundances and diversities of soil n-alkane and PAH-degrading bacterial communities targeting both alkB and nah genes in two oil exploring areas at different geographic regions. A large variation in the abundances and diversities of alkB and nah genes occurred in the studied soil samples. Various environmental variables regulated the spatial distribution of soil alkane and PAH metabolic genes, dependent on geographic location. The soil alkane-degrading bacterial communities in oil exploring areas mainly consisted of Pedobacter, Mycobacterium, and unknown alkB-harboring microorganisms. Moreover, the novel PAH-degraders predominated in nah gene clone libraries from soils of the two oil exploring areas. This work could provide some new insights towards the distribution of hydrocarbon-degrading microorganisms and their biodegradation potential in soil ecosystems. PMID:25236802

  20. A metagenomic survey of viral abundance and diversity in mosquitoes from Hubei province.

    PubMed

    Shi, Chenyan; Liu, Yi; Hu, Xiaomin; Xiong, Jinfeng; Zhang, Bo; Yuan, Zhiming

    2015-01-01

    Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process. PMID:26030271

  1. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China.

    PubMed

    Zhang, Si-Yu; Zhao, Fang-Jie; Sun, Guo-Xin; Su, Jian-Qiang; Yang, Xiao-Ru; Li, Hu; Zhu, Yong-Guan

    2015-04-01

    Microbe-mediated arsenic (As) biotransformation in paddy soils determines the fate of As in soils and its availability to rice plants, yet little is known about the microbial communities involved in As biotransformation. Here, we revealed wide distribution, high diversity, and abundance of arsenite (As(III)) oxidase genes (aioA), respiratory arsenate (As(V)) reductase genes (arrA), As(V) reductase genes (arsC), and As(III) S-adenosylmethionine methyltransferase genes (arsM) in 13 paddy soils collected across Southern China. Sequences grouped with As biotransformation genes are mainly from rice rhizosphere bacteria, such as some Proteobacteria, Gemmatimonadales, and Firmicutes. A significant correlation of gene abundance between arsC and arsM suggests that the two genes coexist well in the microbial As resistance system. Redundancy analysis (RDA) indicated that soil pH, EC, total C, N, As, and Fe, C/N ratio, SO4(2-)-S, NO3(-)-N, and NH4(+)-N were the key factors driving diverse microbial community compositions. This study for the first time provides an overall picture of microbial communities involved in As biotransformation in paddy soils, and considering the wide distribution of paddy fields in the world, it also provides insights into the critical role of paddy fields in the As biogeochemical cycle. PMID:25738639

  2. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems.

    PubMed

    Kandel, Prem P; Pasternak, Zohar; van Rijn, Jaap; Nahum, Ortal; Jurkevitch, Edouard

    2014-07-01

    Standard aquaculture generates large-scale pollution and strains water resources. In aquaculture using zero discharge systems (ZDS), highly efficient fish growth and water recycling are combined. The wastewater stream is directed through compartments in which beneficial microbial activities induced by creating suitable environmental conditions remove biological and chemical pollutants, alleviating both problems. Bacterial predators, preying on bacterial populations in the ZDS, may affect their diversity, composition and functional redundancy, yet in-depth understanding of this phenomenon is lacking. The dynamics of populations belonging to the obligate predators Bdellovibrio and like organisms (BALOs) were analyzed in freshwater and saline ZDS over a 7-month period using QPCR targeting the Bdellovibrionaceae, and the Bacteriovorax and Bacteriolyticum genera in the Bacteriovoracaeae. Both families co-existed in ZDS compartments, constituting 0.13-1.4% of total Bacteria. Relative predator abundance varied according to the environmental conditions prevailing in different compartments, most notably salinity. Strikingly, the Bdellovibrionaceae, hitherto only retrieved from freshwater and soil, also populated the saline system. In addition to the detected BALOs, other potential predators were highly abundant, especially from the Myxococcales. Among the general bacterial population, Flavobacteria, Bacteroidetes, Fusobacteriaceae and unclassified Bacteria dominated a well mixed but seasonally fluctuating diverse community of up to 238 operational taxonomic units, as revealed by 16S rRNA gene sequencing. PMID:24749684

  3. Habitat partitioning by five congeneric and abundant Choerodon species (Labridae) in a large subtropical marine embayment

    NASA Astrophysics Data System (ADS)

    Fairclough, D. V.; Clarke, K. R.; Valesini, F. J.; Potter, I. C.

    2008-04-01

    The habitats occupied by the juveniles and adults of five morphologically similar, diurnally active and abundant Choerodon species in the large subtropical environment of Shark Bay, a "World Heritage Property" on the west coast of Australia, have been determined. The densities of the two life cycle stages of each Choerodon species in those habitats were used in various analyses to test the hypotheses that: (1) habitats are partitioned among these species and between their juveniles and adults; (2) such habitat partitioning is greatest in the case of the two Western Australian endemic species, i.e. Choerodon rubescens and Choerodon cauteroma; and (3) the extent of habitat partitioning between both of these two species and the only species that is widely distributed in the Indo-West Pacific, i.e. Choerodon schoenleinii, will be less pronounced. Initially, catches of each of the five congeneric species, obtained during other studies in Shark Bay by angling, spearfishing and otter trawling, were collated to elucidate the broad distribution of these species in that embayment. Underwater visual census was then used to determine the densities of the juveniles and adults of each Choerodon species at sites representing the four habitat types in which one or more of these species had been caught, i.e. reefs in marine waters at the western boundary of the bay and seagrass, reefs and rocky shorelines in the two inner gulfs. The compositions of the Choerodon species over marine (entrance channel) reefs and in seagrass were significantly different and each differed significantly from those in both inner gulf reefs and rocky shorelines, which were, however, not significantly different. Choerodon rubescens was restricted to exposed marine reefs, and thus occupied a different habitat and location of the bay than C. cauteroma, the other endemic species, which was almost exclusively confined to habitats found in the inner gulfs. Choerodon cauteroma differed from other Choerodon

  4. Diversity of abundance patterns of neutron-capture elements in very metal-poor stars

    SciTech Connect

    Aoki, Misa; Ishimaru, Yuhri; Aoki, Wako; Wanajo, Shinya

    2014-05-02

    Observations of Very Metal-Poor stars indicate that there are at least two sites to r-process; “weak r-process” and “main r-process”. A question is whether these two are well separated or there exists a variation in the r-process. We present the results of abundance analysis of neutron-capture elements in the two Very Metal-Poor stars HD107752 and HD110184 in the Milky Way halo observed with the Subaru Telescope HDS. The abundance patterns show overabundace at light n-capture elements (e.g. Sr, Y), inferring the element yielding of weak r-process, while heavy neutron-capture elements (e.g. Ba, Eu) are deficient; however, the overabundance of light ones is not as significant as that previously found in stars representing the weak r-process (e.g. HD122563; Honda et al. 2006). Our study show diversity in the abundance patterns from light to heavy neutron-capture elements in VMP stars, suggesting a variation in r-process, which may depend on electron fraction of environment.

  5. Short-term effects of temperature on the abundance and diversity of magnetotactic cocci.

    PubMed

    Lin, Wei; Wang, Yinzhao; Pan, Yongxin

    2012-03-01

    Temperature is one of the most important climate factors that can regulate the activity and growth of organisms. However, it is so far unclear how temperature influences the abundance and community composition of magnetotactic bacteria (MTB) that mineralize intracellular magnetite and/or greigite magnetosomes and play significant roles in the global iron cycling and sediment magnetization. To address this specific problem, in this study we have assessed the impact of temperature on freshwater magnetotactic cocci through laboratory microcosm simulations. Microcosms containing MTB were exposed to four constant temperatures ranging from 9°C to 37°C. After 10 days and 28 days of incubation, no significant differences in abundance were detected in microcosms at 9°C, 15°C, and 26°C (Student's t-test, P > 0.05); however, microcosms exposed to 37°C exhibited a significant decrease of magnetotactic cocci abundance (P < 0.05). Dendrogram analysis of community-amplified ribosomal DNA restriction analysis (community ARDRA) banding patterns distinguished the 37°C samples from samples at lower temperatures regardless of incubation periods. Furthermore, clone library analysis revealed that most of the operational taxonomic units (OTUs) detected in samples from 9°C to 26°C were absent from the 37°C microcosms, whereas six OTUs were exclusively detected in the 37°C samples. Community compositions from four incubation temperatures were further compared using statistical phylogenetic methods (UniFrac and LIBSHUFF), which revealed that the 37°C samples harbored phylogenetically distinct MTB communities compared to those found in 9°C, 15°C, and 26°C samples. Taken together, our results indicate that elevated temperature can influence the abundance and diversity of dominant members of magnetotactic cocci. This linkage further infers that the abundance and diversity of MTB (e.g., based on the fossil magnetosomes) may be useful in reconstruction of paleotemperature. PMID

  6. Diversity, abundance, and activity of ammonia-oxidizing bacteria and archaea in Chongming eastern intertidal sediments.

    PubMed

    Zheng, Yanling; Hou, Lijun; Liu, Min; Lu, Min; Zhao, Hui; Yin, Guoyu; Zhou, Junliang

    2013-09-01

    Ammonia oxidation plays a pivotal role in the cycling and removal of nitrogen in aquatic sediments. Certain bacterial groups and a novel group of archaea, which is affiliated with the novel phylum Thaumarchaeota, can perform this initial nitrification step. We examined the diversity and abundance of ammonia-oxidizing β-Proteobacteria (β-AOB) and ammonia-oxidizing archaea (AOA) in the sediments of Chongming eastern tidal flat using the ammonia monooxygenase-α subunit (amoA) gene as functional markers. Clone library analysis showed that AOA had a higher diversity of amoA gene than β-AOB. The β-Proteobacterial amoA community composition correlated significantly with water soluble salts in the sediments, whereas the archaeal amoA community composition was correlated more with nitrate concentrations. Quantitative PCR (qPCR) results indicated that the abundance of β-AOB amoA gene (9.11 × 10(4)-6.47 × 10(5) copies g(-1) sediment) was always greater than that of AOA amoA gene (7.98 × 10(3)-3.51 × 10(5) copies g(-1) sediment) in all the samples analyzed in this study. The β-Proteobacterial amoA gene abundance was closely related to organic carbon, while no significant correlations were observed between archaeal amoA gene abundance and the environmental factors. Potential nitrification rates were significantly greater in summer than in winter and correlated strongly with the abundance of amoA genes. Additionally, a greater contribution of single amoA gene to potential nitrification occurred in summer (1.03-5.39 pmol N copy(-1) day(-1)) compared with winter (0.16-0.38 pmol N copy(-1) day(-1)), suggesting a higher activity of ammonia-oxidizing prokaryotes in warm seasons. PMID:23108528

  7. Short-term effects of temperature on the abundance and diversity of magnetotactic cocci

    PubMed Central

    Lin, Wei; Wang, Yinzhao; Pan, Yongxin

    2012-01-01

    Temperature is one of the most important climate factors that can regulate the activity and growth of organisms. However, it is so far unclear how temperature influences the abundance and community composition of magnetotactic bacteria (MTB) that mineralize intracellular magnetite and/or greigite magnetosomes and play significant roles in the global iron cycling and sediment magnetization. To address this specific problem, in this study we have assessed the impact of temperature on freshwater magnetotactic cocci through laboratory microcosm simulations. Microcosms containing MTB were exposed to four constant temperatures ranging from 9°C to 37°C. After 10 days and 28 days of incubation, no significant differences in abundance were detected in microcosms at 9°C, 15°C, and 26°C (Student's t-test, P > 0.05); however, microcosms exposed to 37°C exhibited a significant decrease of magnetotactic cocci abundance (P < 0.05). Dendrogram analysis of community-amplified ribosomal DNA restriction analysis (community ARDRA) banding patterns distinguished the 37°C samples from samples at lower temperatures regardless of incubation periods. Furthermore, clone library analysis revealed that most of the operational taxonomic units (OTUs) detected in samples from 9°C to 26°C were absent from the 37°C microcosms, whereas six OTUs were exclusively detected in the 37°C samples. Community compositions from four incubation temperatures were further compared using statistical phylogenetic methods (UniFrac and LIBSHUFF), which revealed that the 37°C samples harbored phylogenetically distinct MTB communities compared to those found in 9°C, 15°C, and 26°C samples. Taken together, our results indicate that elevated temperature can influence the abundance and diversity of dominant members of magnetotactic cocci. This linkage further infers that the abundance and diversity of MTB (e.g., based on the fossil magnetosomes) may be useful in reconstruction of paleotemperature. PMID

  8. Altitudinal Patterns of Species Diversity and Phylogenetic Diversity across Temperate Mountain Forests of Northern China.

    PubMed

    Zhang, Wenxin; Huang, Dizhou; Wang, Renqing; Liu, Jian; Du, Ning

    2016-01-01

    The spatial patterns of biodiversity and their underlying mechanisms have been an active area of research for a long time. In this study, a total of 63 samples (20m × 30m) were systematically established along elevation gradients on Mount Tai and Mount Lao, China. We explored altitudinal patterns of plant diversity in the two mountain systems. In order to understand the mechanisms driving current diversity patterns, we used phylogenetic approaches to detect the spatial patterns of phylogenetic diversity and phylogenetic structure along two elevation gradients. We found that total species richness had a monotonically decreasing pattern and tree richness had a unimodal pattern along the elevation gradients in the two study areas. However, altitudinal patterns in shrub richness and herbs richness were not consistent on the two mountains. At low elevation, anthropogenic disturbances contributed to the increase of plant diversity, especially for shrubs and herbs in understory layers, which are more sensitive to changes in microenvironment. The phylogenetic structure of plant communities exhibited an inverted hump-shaped pattern along the elevation gradient on Mount Tai, which demonstrates that environmental filtering is the main driver of plant community assembly at high and low elevations and inter-specific competition may be the main driver of plant community assembly in the middle elevations. However, the phylogenetic structure of plant communities did not display a clear pattern on Mount Lao where the climate is milder. Phylogenetic beta diversity and species beta diversity consistently increased with increasing altitudinal divergence in the two study areas. However, the altitudinal patterns of species richness did not completely mirror phylogenetic diversity patterns. Conservation areas should be selected taking into consideration the preservation of high species richness, while maximizing phylogenetic diversity to improve the potential for diversification in the

  9. Altitudinal Patterns of Species Diversity and Phylogenetic Diversity across Temperate Mountain Forests of Northern China

    PubMed Central

    Zhang, Wenxin; Huang, Dizhou; Wang, Renqing; Liu, Jian; Du, Ning

    2016-01-01

    The spatial patterns of biodiversity and their underlying mechanisms have been an active area of research for a long time. In this study, a total of 63 samples (20m × 30m) were systematically established along elevation gradients on Mount Tai and Mount Lao, China. We explored altitudinal patterns of plant diversity in the two mountain systems. In order to understand the mechanisms driving current diversity patterns, we used phylogenetic approaches to detect the spatial patterns of phylogenetic diversity and phylogenetic structure along two elevation gradients. We found that total species richness had a monotonically decreasing pattern and tree richness had a unimodal pattern along the elevation gradients in the two study areas. However, altitudinal patterns in shrub richness and herbs richness were not consistent on the two mountains. At low elevation, anthropogenic disturbances contributed to the increase of plant diversity, especially for shrubs and herbs in understory layers, which are more sensitive to changes in microenvironment. The phylogenetic structure of plant communities exhibited an inverted hump-shaped pattern along the elevation gradient on Mount Tai, which demonstrates that environmental filtering is the main driver of plant community assembly at high and low elevations and inter-specific competition may be the main driver of plant community assembly in the middle elevations. However, the phylogenetic structure of plant communities did not display a clear pattern on Mount Lao where the climate is milder. Phylogenetic beta diversity and species beta diversity consistently increased with increasing altitudinal divergence in the two study areas. However, the altitudinal patterns of species richness did not completely mirror phylogenetic diversity patterns. Conservation areas should be selected taking into consideration the preservation of high species richness, while maximizing phylogenetic diversity to improve the potential for diversification in the

  10. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    PubMed

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning. PMID:25860433

  11. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    PubMed

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. PMID:25588119

  12. Diversity and Abundance of a Tropical Fishery on the Pacific Shelf of Michoacán, México

    NASA Astrophysics Data System (ADS)

    Madrid, J.; Sánchez, P.; Ruiz, A.

    1997-10-01

    This study was undertaken on the Pacific coast of Mexico. Some 22 523 individual fish were sampled, representing two classes, 154 genera, 64 families and 257 species in a total area of 50 km 2. The species Lutjanus guttatus, Scomberomorus sierra, Cynoscion reticulatus, Sphyrna lewini, Arius platypogonand Caranx caninuswere the most numerically abundant, amounting to 53·2% of the whole sample. Two models for sample size analysis and richness prediction were used. From these, the forecast for a theoretical doubling of the level of sampling effort (90 days) was 297 and 331. The Shannon diversity indexes in summer (June-August) and winter (December-February) were significantly different (paired t-test, P<0·0005). Of four families compared, three gave significant differences in the summer and winter periods (the Carangidae, the Haemulidae and the Sciaenidae). The classification (Euclidean Distance and UPGMA) indicated two climatic periods and three species assemblages. In addition, the nodal fidelity analysis agreed with the importance of the winter season in the study area. Two El Niño/southern oscillation incidences from 1986-87 and 1991-93 occurred during the sampling period.

  13. Phylogenetic and biological species diversity within the Neurospora tetrasperma complex.

    PubMed

    Menkis, A; Bastiaans, E; Jacobson, D J; Johannesson, H

    2009-09-01

    The objective of this study was to explore the evolutionary history of the morphologically recognized filamentous ascomycete Neurospora tetrasperma, and to reveal the genetic and reproductive relationships among its individuals and populations. We applied both phylogenetic and biological species recognition to a collection of strains representing the geographic and genetic diversity of N. tetrasperma. First, we were able to confirm a monophyletic origin of N. tetrasperma. Furthermore, we found nine phylogenetic species within the morphospecies. When using the traditional broad biological species recognition all investigated strains of N. tetrasperma constituted a single biological species. In contrast, when using a quantitative measurement of the reproductive success, incorporating characters such as viability and fertility of offspring, we found a high congruence between the phylogenetic and biological species recognition. Taken together, phylogenetically and biologically defined groups of individuals exist in N. tetrasperma, and these should be taken into account in future studies of its life history traits. PMID:19682307

  14. The Distribution and Abundance of Bird Species: Towards a Satellite, Data Driven Avian Energetics and Species Richness Model

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2003-01-01

    This paper addresses the fundamental question of why birds occur where and when they do, i.e., what are the causative factors that determine the spatio-temporal distributions, abundance, or richness of bird species? In this paper we outline the first steps toward building a satellite, data-driven model of avian energetics and species richness based on individual bird physiology, morphology, and interaction with the spatio-temporal habitat. To evaluate our model, we will use the North American Breeding Bird Survey and Christmas Bird Count data for species richness, wintering and breeding range. Long term and current satellite data series include AVHRR, Landsat, and MODIS.

  15. Deep-sea ostracode species diversity: Response to late Quaternary climate change

    USGS Publications Warehouse

    Cronin, T. M.; DeMartino, D.M.; Dwyer, G.S.; Rodriguez-Lazaro, J.

    1999-01-01

    Late Quaternary ostracode assemblages from the North Atlantic Ocean were studied to establish the effect of climatic changes of the past 210,000 yr (marine oxygen isotope stages 7-1) on deep-sea benthic biodiversity and faunal composition. Two-hundred and twenty five samples from the Chain 82-24 Core 4PC (41??43'N, 32??51'W, 3427 m water depth) on the western Mid-Atlantic Ridge revealed high amplitude fluctuations in ostracode abundance and diversity coincident with orbital and suborbital scale climate oscillations measured by several paleoceanographic proxy records. During the past 210,000 yr, ostracode biodiversity as measured by species number (S) and the Shannon-Weaver index, H(S), oscillated from H(S) = 0.4 during glacial periods (marine isotope stages 6, 5d, 5b, 4, and 2) to H(S) = 1.1 during interglacial and interstadial periods (stages 7, 5e, 5c, 5a, 3 and 1). A total of 23 diversity peaks could be recognized. Eleven of these signify major periods of high diversity [H(S) > 0.8, S = 10-21] occurring every 15-20 ka. Twelve were minor peaks which may represent millennial-scale diversity oscillations. The composition of ostracode assemblages varies with Krithe-dominated assemblages characterizing glacial intervals, and Argilloecia-Cytheropteron characterizing deglacials, and trachyleberid genera (Poseidonamicus, Echinocythereis, Henryhowella, Oxycythereis) abundant during interglacials. Diversity and faunal composition changes can be matched to independent deep-sea paleoceanographic tracers such as benthic foraminiferal carbon isotopes, Krithe trace elements (Mg/Ca ratios), and to North Atlantic region climate records such as Greenland ice cores. When interpreted in light of ostracode species' ecology, these faunal and diversity patterns provide evidence that deep-sea benthic ecosystems experience significant reorganization in response to climate changes over orbital to millennial timescales.

  16. Uncovering cryptic species diversity of a termite community in a West African savanna.

    PubMed

    Hausberger, Barbara; Kimpel, Dorothea; van Neer, Abbo; Korb, Judith

    2011-12-01

    To uncover the termite species diversity of a natural African savanna ecosystem, we combined morphological analyses and sequencing of three gene fragments (cytochrome oxidase I, cytochrome oxidase II and 28SrDNA, total length about 2450 bp) to infer putative species from phylogenetic trees. We identified 18 putative species clusters with high support values and which we retrieved consistently. Samples from two genera (Ancistrotermes and Microcerotermes) were excluded from the mitochondrial phylogenetic analyses as they might represent nuclear mitochondrial sequences (NUMTs). In total, our data suggest a species richness of at least 20 species, all but one belonging to the Termitidae (higher termites), and among them the fungus-growing Macrotermitinae were most prevalent with at least nine putative species. Within the fungus-growers the most species-rich genus was Microtermes and its four putative species were all cryptic species. Their abundance in the samples suggests that they play an important ecological role which is completely unstudied also due to the lack of reliable identification means. Our study shows that morphological traits are unreliable means of species identification for several termite taxa. Yet reliable and consistent identification is necessary for studying the functional role of termites in ecosystem and global processes. PMID:21896335

  17. Genetically Diverse Clostridium difficile Strains Harboring Abundant Prophages in an Estuarine Environment

    PubMed Central

    Hargreaves, K. R.; Colvin, H. V.; Patel, K. V.; Clokie, J. J. P.

    2013-01-01

    Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in health care settings across the world. Despite its pathogenic capacity, it can be carried asymptomatically and has been found in terrestrial and marine ecosystems outside hospital environments. Little is known about these environmental strains, and few studies have been conducted on estuarine systems. Although prophage abundance and diversity are known to occur within clinical strains, prophage carriage within environmental strains of C. difficile has not previously been explored. In this study, we isolated C. difficile from sites sampled in two consecutive years in an English estuarine system. Isolates were characterized by PCR ribotype, antibiotic resistance, and motility. The prevalence and diversity of prophages were detected by transmission electron microscopy (TEM) and a phage-specific PCR assay. We show that a dynamic and diverse population of C. difficile exists within these sediments and that it includes isolates of ribotypes which are associated with severe clinical infections and those which are more frequently isolated from outside the hospital environment. Prophage carriage was found to be high (75%), demonstrating that phages play a role in the biology of these strains. PMID:23913427

  18. Does beach nourishment have long-term effects on intertidal macroinvertebrate species abundance?

    NASA Astrophysics Data System (ADS)

    Leewis, Lies; van Bodegom, Peter M.; Rozema, Jelte; Janssen, Gerard M.

    2012-11-01

    Coastal squeeze is the largest threat for sandy coastal areas. To mitigate seaward threats, erosion and sea level rise, sand nourishment is commonly applied. However, its long-term consequences for macroinvertebrate fauna, critical to most ecosystem services of sandy coasts, are still unknown. Seventeen sandy beaches - nourished and controls - were sampled along a chronosequence to investigate the abundance of four dominant macrofauna species and their relations with nourishment year and relevant coastal environmental variables. Dean's parameter and latitude significantly explained the abundance of the spionid polychaete Scolelepis squamata, Beach Index (BI), sand skewness, beach slope and latitude explained the abundance of the amphipod Haustorius arenarius and Relative Tide Range (RTR), recreation and sand sorting explained the abundance of Bathyporeia sarsi. For Eurydice pulchra, no environmental variable explained its abundance. For H. arenarius, E. pulchra and B. sarsi, there was no relation with nourishment year, indicating that recovery took place within a year after nourishment. Scolelepis squamata initially profited from the nourishment with "over-recolonisation". This confirms its role as an opportunistic species, thereby altering the initial community structure on a beach after nourishment. We conclude that the responses of the four dominant invertebrates studied in the years following beach nourishment are species specific. This shows the importance of knowing the autecology of the sandy beach macroinvertebrate fauna in order to be able to mitigate the effects of beach nourishment and other environmental impacts.

  19. Plankton studies in San Francisco Bay; IV, Phytoplankton abundance and species composition, January 1980 - February 1981

    USGS Publications Warehouse

    Wong, R.L.; Cloern, J.E.

    1982-01-01

    Data are presented on the phytoplankton species composition and abundance in San Francisco Bay from January 1980 through February 1981. Phytoplankton were identified and enumerated in surface samples collected approximately every two weeks at selected stations in the main channel of the Bay, and at shoal stations in the central portion of South San Francisco Bay, San Pablo Bay, and Suisun Bay. Also reported are separate species lists for microphytoplankton (< 60 micrometers) and macrophytoplankton (> 60 micrometers). (Author 's abstract)

  20. Individualistic sensitivities and exposure to climate change explain variation in species' distribution and abundance changes.

    PubMed

    Palmer, Georgina; Hill, Jane K; Brereton, Tom M; Brooks, David R; Chapman, Jason W; Fox, Richard; Oliver, Tom H; Thomas, Chris D

    2015-10-01

    The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population "forcing" (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species' responses to recent climate change may be more predictable than previously recognized. PMID:26601276

  1. Estimating species - area relationships by modeling abundance and frequency subject to incomplete sampling.

    PubMed

    Yamaura, Yuichi; Connor, Edward F; Royle, J Andrew; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-07-01

    Models and data used to describe species-area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species-area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species-area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density-area relationships and occurrence probability-area relationships can alter the form of species-area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a

  2. Neotropical Bats: Estimating Species Diversity with DNA Barcodes

    PubMed Central

    Clare, Elizabeth L.; Lim, Burton K.; Fenton, M. Brock; Hebert, Paul D. N.

    2011-01-01

    DNA barcoding using the cytochrome c oxidase subunit 1 gene (COI) is frequently employed as an efficient method of species identification in animal life and may also be used to estimate species richness, particularly in understudied faunas. Despite numerous past demonstrations of the efficiency of this technique, few studies have attempted to employ DNA barcoding methodologies on a large geographic scale, particularly within tropical regions. In this study we survey current and potential species diversity using DNA barcodes with a collection of more than 9000 individuals from 163 species of Neotropical bats (order Chiroptera). This represents one of the largest surveys to employ this strategy on any animal group and is certainly the largest to date for land vertebrates. Our analysis documents the utility of this tool over great geographic distances and across extraordinarily diverse habitats. Among the 163 included species 98.8% possessed distinct sets of COI haplotypes making them easily recognizable at this locus. We detected only a single case of shared haplotypes. Intraspecific diversity in the region was high among currently recognized species (mean of 1.38%, range 0–11.79%) with respect to birds, though comparable to other bat assemblages. In 44 of 163 cases, well-supported, distinct intraspecific lineages were identified which may suggest the presence of cryptic species though mean and maximum intraspecific divergence were not good predictors of their presence. In all cases, intraspecific lineages require additional investigation using complementary molecular techniques and additional characters such as morphology and acoustic data. Our analysis provides strong support for the continued assembly of DNA barcoding libraries and ongoing taxonomic investigation of bats. PMID:21818359

  3. New species from Ethiopia further expands Middle Pliocene hominin diversity.

    PubMed

    Haile-Selassie, Yohannes; Gibert, Luis; Melillo, Stephanie M; Ryan, Timothy M; Alene, Mulugeta; Deino, Alan; Levin, Naomi E; Scott, Gary; Saylor, Beverly Z

    2015-05-28

    Middle Pliocene hominin species diversity has been a subject of debate over the past two decades, particularly after the naming of Australopithecus bahrelghazali and Kenyanthropus platyops in addition to the well-known species Australopithecus afarensis. Further analyses continue to support the proposal that several hominin species co-existed during this time period. Here we recognize a new hominin species (Australopithecus deyiremeda sp. nov.) from 3.3-3.5-million-year-old deposits in the Woranso-Mille study area, central Afar, Ethiopia. The new species from Woranso-Mille shows that there were at least two contemporaneous hominin species living in the Afar region of Ethiopia between 3.3 and 3.5 million years ago, and further confirms early hominin taxonomic diversity in eastern Africa during the Middle Pliocene epoch. The morphology of Au. deyiremeda also reinforces concerns related to dentognathic (that is, jaws and teeth) homoplasy in Plio-Pleistocene hominins, and shows that some dentognathic features traditionally associated with Paranthropus and Homo appeared in the fossil record earlier than previously thought. PMID:26017448

  4. Diversity of Fusarium Species from Highland Areas in Malaysia

    PubMed Central

    Manshor, Nurhazrati; Rosli, Hafizi; Ismail, Nor Azliza; Salleh, Baharuddin; Zakaria, Latiffah

    2012-01-01

    Fusarium is a cosmopolitan and highly diversified genus of saprophytic, phytopathogenic and toxigenic fungi. However, the existence and diversity of a few species of Fusarium are restricted to a certain area or climatic condition. The present study was conducted to determine the occurrence and diversity of Fusarium species in tropical highland areas in Malaysia and to compare with those in temperate and subtropical regions. A series of sampling was carried out in 2005 to 2009 at several tropical highland areas in Malaysia that is: Cameron Highlands, Fraser Hills and Genting Highlands in Pahang; Penang Hill in Penang; Gunung Jerai in Kedah; Kundasang and Kinabalu Park in Sabah; Kubah National Park and Begunan Hill in Sarawak. Sampling was done randomly from various hosts and substrates. Isolation of Fusarium isolates was done by using pentachloronitrobenzene (PCNB) agar and 1449 isolates of Fusarium were successfully recovered. Based on morphological characteristics, 20 species of Fusarium were identified. The most prevalent species occurring on the highlands areas was F. solani (66.1%) followed by F. graminearum (8.5%), F. oxysporum (7.8%), F. semitectum (5.7%), F. subglutinans (3.5%) and F. proliferatum (3.4%). Other Fusarium species, namely F. avenaceum, F. camptoceras, F. chlamydosporum, F. compactum, F. crookwellense, F. culmorum, F. decemcellulare, F. equiseti, F. nygamai, F. poae, F. proliferatum, F. sacchari, F. sporotrichioides, F. sterilihyphosum and F. verticillioides accounted for 1% recoveries. The present study was the first report on the occurrences of Fusarium species on highland areas in Malaysia. PMID:24575229

  5. An exactly solvable coarse-grained model for species diversity

    NASA Astrophysics Data System (ADS)

    Suweis, Samir; Rinaldo, Andrea; Maritan, Amos

    2012-07-01

    We present novel analytical results concerning ecosystem species diversity that stem from a proposed coarse-grained neutral model based on birth-death processes. The relevance of the problem lies in the urgency for understanding and synthesizing both theoretical results from ecological neutral theory and empirical evidence on species diversity preservation. The neutral model of biodiversity deals with ecosystems at the same trophic level, where per capita vital rates are assumed to be species independent. Closed-form analytical solutions for the neutral theory are obtained within a coarse-grained model, where the only input is the species persistence time distribution. Our results pertain to: the probability distribution function of the number of species in the ecosystem, both in transient and in stationary states; the n-point connected time correlation function; and the survival probability, defined as the distribution of time spans to local extinction for a species randomly sampled from the community. Analytical predictions are also tested on empirical data from an estuarine fish ecosystem. We find that emerging properties of the ecosystem are very robust and do not depend on specific details of the model, with implications for biodiversity and conservation biology.

  6. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA

    USGS Publications Warehouse

    Knutson, M.G.; Sauer, J.R.; Olsen, D.A.; Mossman, M.J.; Hemesath, L.M.; Lannoo, M.J.

    1999-01-01

    Management of amphibian populations to reverse recent declines will require defining high-quality habitat for individual species or groups of species, followed by efforts to retain or restore these habitats on the landscape. We examined landscape-level habitat relationships for frogs and toads by measuring associations between relative abundance and species richness based on survey data derived from anuran calls and features of land-cover maps for Iowa and Wisconsin. The most consistent result across all anuran guilds was a negative association with the presence of urban land. Upland and wetland forests and emergent wetlands tended to be positively associated with anurans. Landscape metrics that represent edges and patch diversity also had generally positive associations, indicating that anurans benefit from a complex of habitats that include wetlands. In Iowa the most significant associations with relative abundance were the length of the edge between wetland and forest (positive) and the presence of urban land (negative). In Wisconsin the two most significant associations with relative abundance were forest area and agricultural area (both positive). Anurans had positive associations with agriculture in Wisconsin but not in Iowa. Remnant forest patches in agricultural landscapes may be providing refuges for some anuran species. Differences in anuran associations with deep water and permanent wetlands between the two states suggest opportunities for management action. Large-scale maps can contribute to predictive models of amphibian habitat use, but water quality and vegetation information collected from individual wetlands will likely be needed to strengthen those predictions. Landscape habitat analyses provide a framework for future experimental and intensive research on specific factors affecting the health of anurans.

  7. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam

    USGS Publications Warehouse

    Campbell, Earl W., III; Yackel Adams, Amy A.; Converse, Sarah J.; Fritts, Thomas H.; Rodda, Gordon H.

    2012-01-01

    The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout–vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.

  8. Free-Nematodes in the NW Black Sea meiobenthos - diversity, abundance, distribution and importance as indicator of hypoxic waters

    NASA Astrophysics Data System (ADS)

    Muresan, M.; Gomoiu, M.-T.

    2012-04-01

    The aim of this study performed within EU FP7 Hypox Project was to get deeper knowledge about species of nematodes that could be indicators for stressful biotic conditions as low oxygen concentration due to phenomena of seasonal hypoxia. The Nematodes come from meiobenthos sampling (using a multi corer with 4 tubes, Mark II type, lowered into the sea from R/V "Mare Nigrum" board) performed in May and September 2010 and April 2011 along four transects crossing the Romanian continental shelf from where 87 meiobenthos samples were collected. In the studied area 96 species of nematodes were found. The authors analyzed the nematodes populations' distribution on four profiles: Sf. Gheorghe, Portita, Constanta and Mangalia. The qualitative and quantitative structure of nematodes populations was compared. 41 species were found on Mangalia profile, 47 species on Portita profile, 48 species on Constanta profile and 85 species on Sf. Gheorghe profile. The greatest densities were found on Constanta profile with an average of 369.607indvs/m-2. The most frequent and abundant species were: Sabatieria pulchra, Sabatieria abyssalis, Terschellingia longicaudata, Viscosia cobbi, Axonolaimus ponticus. The species assemblages were assessed for depth gradient distribution, 7 depth intervals being set from 20 to 210 m. The greatest diversity was noted in 61-100 m depth interval, while the lowest between 0-20 m. On the contrary, in terms of density of individuals (indvs/m-2), highest densities were obtained in shallow waters between 21-30 m. As far as the depth increases, the species assemblages change, becoming more favorable to species like Halalaimus ponticus, Metachromadora macrouthera, Halanonchus bullatus, Linhomoneidae species. However, on the first place still remained Sabatieria abyssalis. The vertical distribution of nematodes in sediments was analyzed for the surface layer 0-5 cm and sub-surface layer 5-10 cm, the dominant species in both layers being: Sabatieria pulchra, S

  9. High abundance and diversity of consumers associated with eutrophic areas in a semi-desert macrotidal coastal ecosystem in Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Martinetto, Paulina; Daleo, Pedro; Escapa, Mauricio; Alberti, Juan; Isacch, Juan Pablo; Fanjul, Eugenia; Botto, Florencia; Piriz, Maria Luz; Ponce, Gabriela; Casas, Graciela; Iribarne, Oscar

    2010-07-01

    Here we evaluated the response to eutrophication in terms of abundance and diversity of flora and fauna in a semi-desert macrotidal coastal system (San Antonio bay, Patagonia, Argentina, 40° 48' S) where signs of eutrophication (high nutrient concentration, seaweed blooms, high growth rate of macroalgae) have been reported. We compared abundances and species composition of macroalgae, small infaunal and epifaunal invertebrates, and birds associated with tidal channels of the San Antonio Bay subject to contrasting anthropogenic influence. Macroalgae were more abundant and diverse in the channel closer to human activity where nutrient concentrations were also higher. In contrast to what others have observed in eutrophic sites, small invertebrates and birds were also more abundant and diverse in the channel with macroalgal blooms and high nutrient concentration. The large water flushing during the tidal cycle could prevent anoxic or hypoxic events, making the environment suitable for consumers. Thus, this could be a case in which eutrophication supports high densities of consumers by increasing food availability, rather than negatively affecting the survival of organisms.

  10. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone

    PubMed Central

    Amon, Diva J.; Ziegler, Amanda F.; Dahlgren, Thomas G.; Glover, Adrian G.; Goineau, Aurélie; Gooday, Andrew J.; Wiklund, Helena; Smith, Craig R.

    2016-01-01

    There is growing interest in mining polymetallic nodules in the abyssal Clarion-Clipperton Zone (CCZ) in the Pacific. Nonetheless, benthic communities in this region remain poorly known. The ABYSSLINE Project is conducting benthic biological baseline surveys for the UK Seabed Resources Ltd. exploration contract area (UK-1) in the CCZ. Using a Remotely Operated Vehicle, we surveyed megafauna at four sites within a 900 km2 stratum in the UK-1 contract area, and at a site ~250 km east of the UK-1 area, allowing us to make the first estimates of abundance and diversity. We distinguished 170 morphotypes within the UK-1 contract area but species-richness estimators suggest this could be as high as 229. Megafaunal abundance averaged 1.48 ind. m−2. Seven of 12 collected metazoan species were new to science, and four belonged to new genera. Approximately half of the morphotypes occurred only on polymetallic nodules. There were weak, but statistically significant, positive correlations between megafaunal and nodule abundance. Eastern-CCZ megafaunal diversity is high relative to two abyssal datasets from other regions, however comparisons with CCZ and DISCOL datasets are problematic given the lack of standardised methods and taxonomy. We postulate that CCZ megafaunal diversity is driven in part by habitat heterogeneity. PMID:27470484

  11. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone.

    PubMed

    Amon, Diva J; Ziegler, Amanda F; Dahlgren, Thomas G; Glover, Adrian G; Goineau, Aurélie; Gooday, Andrew J; Wiklund, Helena; Smith, Craig R

    2016-01-01

    There is growing interest in mining polymetallic nodules in the abyssal Clarion-Clipperton Zone (CCZ) in the Pacific. Nonetheless, benthic communities in this region remain poorly known. The ABYSSLINE Project is conducting benthic biological baseline surveys for the UK Seabed Resources Ltd. exploration contract area (UK-1) in the CCZ. Using a Remotely Operated Vehicle, we surveyed megafauna at four sites within a 900 km(2) stratum in the UK-1 contract area, and at a site ~250 km east of the UK-1 area, allowing us to make the first estimates of abundance and diversity. We distinguished 170 morphotypes within the UK-1 contract area but species-richness estimators suggest this could be as high as 229. Megafaunal abundance averaged 1.48 ind. m(-2). Seven of 12 collected metazoan species were new to science, and four belonged to new genera. Approximately half of the morphotypes occurred only on polymetallic nodules. There were weak, but statistically significant, positive correlations between megafaunal and nodule abundance. Eastern-CCZ megafaunal diversity is high relative to two abyssal datasets from other regions, however comparisons with CCZ and DISCOL datasets are problematic given the lack of standardised methods and taxonomy. We postulate that CCZ megafaunal diversity is driven in part by habitat heterogeneity. PMID:27470484

  12. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone

    NASA Astrophysics Data System (ADS)

    Amon, Diva J.; Ziegler, Amanda F.; Dahlgren, Thomas G.; Glover, Adrian G.; Goineau, Aurélie; Gooday, Andrew J.; Wiklund, Helena; Smith, Craig R.

    2016-07-01

    There is growing interest in mining polymetallic nodules in the abyssal Clarion-Clipperton Zone (CCZ) in the Pacific. Nonetheless, benthic communities in this region remain poorly known. The ABYSSLINE Project is conducting benthic biological baseline surveys for the UK Seabed Resources Ltd. exploration contract area (UK-1) in the CCZ. Using a Remotely Operated Vehicle, we surveyed megafauna at four sites within a 900 km2 stratum in the UK-1 contract area, and at a site ~250 km east of the UK-1 area, allowing us to make the first estimates of abundance and diversity. We distinguished 170 morphotypes within the UK-1 contract area but species-richness estimators suggest this could be as high as 229. Megafaunal abundance averaged 1.48 ind. m‑2. Seven of 12 collected metazoan species were new to science, and four belonged to new genera. Approximately half of the morphotypes occurred only on polymetallic nodules. There were weak, but statistically significant, positive correlations between megafaunal and nodule abundance. Eastern-CCZ megafaunal diversity is high relative to two abyssal datasets from other regions, however comparisons with CCZ and DISCOL datasets are problematic given the lack of standardised methods and taxonomy. We postulate that CCZ megafaunal diversity is driven in part by habitat heterogeneity.

  13. Spider Diversity on the Oceanic Island of Fernando De Noronha, Brazil, and Implications for Species Conservation

    PubMed Central

    Freitas, Gilson Carlos da Conceição; Brescovit, Antonio Domingos; Vasconceloslc, Simao Dias

    2013-01-01

    Fernando de Noronha is an oceanic archipelago in Brazil that has been subjected to major alterations in its natural habitat, as it is exposed to increasing rates of tourism. This research aimed at performing the first survey of spider species on the main island, focusing on the environmental occupation and conservation status of local species. Spiders were sampled through pitfall traps, beating sheets, and active collection in the dry (October 2005) and rainy (April 2006) seasons in several parts of the island, such as urban and protected areas. A total of 1,532 adult spiders from 44 species distributed in 20 families were collected. Forty-two species are newly recorded on the archipelago, of which 10 appear to be native. Theridiidae and Salticidae were the richest families, with seven and five species respectively. Hogna sp., probably an endemic Lycosidae species, had the highest abundance throughout the study (17%). Several non-native species were found, especially in the surroundings of human habitations. Areas exposed to human settlements had higher diversity indices and evenness values when compared to preserved areas. Most species were classified as being diurnal space web-weavers. The results suggest that non-native species seemed to be established on the island, due mainly to the traffic of people and goods from the continent.

  14. [Species diversity and colony characteristics of bumblebees in the Hebei region of North China].

    PubMed

    An, Jian-Dong; Huang, Jia-Xing; Williams, Paul H; Wu, Jie; Zhou, Bing-Feng

    2010-06-01

    Based on the 1893 specimens collected from Hebei Province, Beijing City, and Tianjin City in 2005-2009, and the specimens deposited in the Institute of Zoology, Chinese Academy of Sciences, this paper analyzed the species diversity and colony characteristics of bumblebees in the Hebei region of North China. A total of 32 species belonging to 8 subgenera of Bombus were recorded, with 32 species in Hebei Province, 18 species in Beijing, and 5 species in Tianjin. The bumblebee in Taihang Mountains, Yanshan Mountains, and Bashang Plateau had the highest richness and abundance, and its food-plant included 80 species of 21 families, among which, Compositae, Leguminosae, and Labiatae were most important. Five bumblebee species, i. e., Bombus hypocrita, B. ignitus, B. patagiatus, B. pyrosoma, and B. picipes, had the largest colony, with more than 110 workers, 160 drones, and 30 young queens produced per colony. The success in rearing colonies of each of the 5 species by queens was > 50%, demonstrating that these 5 species had the potential to be mass-reared, with important applied value for crop pollination. PMID:20873633

  15. Sequence Diversity, Reproductive Isolation and Species Concepts in Saccharomyces

    PubMed Central

    Liti, Gianni; Barton, David B. H.; Louis, Edward J.

    2006-01-01

    Using the biological species definition, yeasts of the genus Saccharomyces sensu stricto comprise six species and one natural hybrid. Previous work has shown that reproductive isolation between the species is due primarily to sequence divergence acted upon by the mismatch repair system and not due to major gene differences or chromosomal rearrangements. Sequence divergence through mismatch repair has also been shown to cause partial reproductive isolation among populations within a species. We have surveyed sequence variation in populations of Saccharomyces sensu stricto yeasts and measured meiotic sterility in hybrids. This allows us to determine the divergence necessary to produce the reproductive isolation seen among species. Rather than a sharp transition from fertility to sterility, which may have been expected, we find a smooth monotonic relationship between diversity and reproductive isolation, even as far as the well-accepted designations of S. paradoxus and S. cerevisiae as distinct species. Furthermore, we show that one species of Saccharomyces—S. cariocanus—differs from a population of S. paradoxus by four translocations, but not by sequence. There is molecular evidence of recent introgression from S. cerevisiae into the European population of S. paradoxus, supporting the idea that in nature the boundary between these species is fuzzy. PMID:16951060

  16. Diversity and Significance of Mold Species in Norwegian Drinking Water▿

    PubMed Central

    Hageskal, Gunhild; Knutsen, Ann Kristin; Gaustad, Peter; de Hoog, G. Sybren; Skaar, Ida

    2006-01-01

    In order to determine the occurrence, distribution, and significance of mold species in groundwater- and surface water-derived drinking water in Norway, molds isolated from 273 water samples were identified. Samples of raw water, treated water, and water from private homes and hospital installations were analyzed by incubation of 100-ml membrane-filtered samples on dichloran-18% glycerol agar. The total count (number of CFU per 100 ml) of fungal species and the species diversity within each sample were determined. The identification of mold species was based on morphological and molecular methods. In total, 94 mold species belonging to 30 genera were identified. The mycobiota was dominated by species of Penicillium, Trichoderma, and Aspergillus, with some of them occurring throughout the drinking water system. Several of the same species as isolated from water may have the potential to cause allergic reactions or disease in humans. Other species are common contaminants of food and beverages, and some may cause unwanted changes in the taste or smell of water. The present results indicate that the mycobiota of water should be considered when the microbiological safety and quality of drinking water are assessed. In fact, molds in drinking water should possibly be included in the Norwegian water supply and drinking water regulations. PMID:17028226

  17. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans.

    PubMed

    Sellers, Andrew J; Ruiz, Gregory M; Leung, Brian; Torchin, Mark E

    2015-01-01

    Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively

  18. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans

    PubMed Central

    2015-01-01

    Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively

  19. Species richness and relative species abundance of Nymphalidae (Lepidoptera) in three forests with different perturbations in the North-Central Caribbean of Costa Rica.

    PubMed

    Stephen, Carolyn; Sánchez, Ragde

    2014-09-01

    Measurements of species richness and species abundance can have important implications for regulations and conservation. This study investigated species richness and abundance of butterflies in the family Nymphalidae at undisturbed, and disturbed habitats in Tirimbina Biological Reserve and Nogal Private Reserve, Sarapiquí, Costa Rica. Traps baited with rotten banana were placed in the canopy and the understory of three habitats: within mature forest, at a river/forest border, and at a banana plantation/forest border. In total, 71 species and 487 individuals were caught and identified during May and June 2011 and May 2013. Species richness and species