Science.gov

Sample records for abundant active metabolite

  1. Anthocyanin metabolites are abundant and persistent in human urine.

    PubMed

    Kalt, Wilhelmina; Liu, Yan; McDonald, Jane E; Vinqvist-Tymchuk, Melinda R; Fillmore, Sherry A E

    2014-05-07

    LC-MS/MS revealed that metabolites of anthocyanins (Acn) were abundant in human urine (n = 17) even after 5 days with no dietary Acn. After intake of 250 mL of blueberry juice, parent Acn were 4% and Acn metabolites were 96% of the total urinary Acn for the following 24 h. Multiple reaction monitoring revealed 226 combinations of mass transition × retention times for known Acn and predicted Acn metabolites. These were dominated by aglycones, especially aglycone glucuronides. The diversity of Acn metabolites could include positional isomers of Acn conjugates and chalcones. The persistence of Acn metabolites suggested enterohepatic recycling leading to prolonged residence time. The prevalence of Acn metabolites based on pelargonidin, which is not present in blueberry juice, may reflect ongoing dehydroxylation and demethylation of other Acn via xenobiotic and colonic bacterial action. The results suggest that exposure to Acn-based flavonoid moieties is substantially greater than suggested by earlier research.

  2. Antifungal leaf-surface metabolites correlate with fungal abundance in sagebrush populations.

    PubMed

    Talley, Sharon M; Coley, Phyllis D; Kursar, Thomas A

    2002-11-01

    A central component in understanding plant-enemy interactions is to determine whether plant enemies, such as herbivores and pathogens, mediate the evolution of plant secondary metabolites. Using 26 populations of a broadly distributed plant species, sagebrush (Artemisia tridentata), we examined whether sagebrush populations in habitats with a greater prevalence of fungi contained antifungal secondary metabolites on leaf surfaces that were more active and diverse than sagebrush populations in habitats less favorable to fungi. Because moisture and temperature play a key role in the epidemiology of most plant-pathogen interactions, we also examined the relationship between the antifungal activity of secondary metabolites and the climate of a site. We evaluated the antifungal activity of sagebrush secondary metabolites against two fungi, a wild Penicillium sp. and a laboratory yeast, Saccharomyces cerevisiae, using a filter-paper disk assay and bioautography. Comparing the 26 sagebrush populations, we found that fungal abundance was a good predictor of both the activity (r2 = 0.36 for Saccharomyces, r2 = 0.37 for Penicillium) and number (r2 = 0.34 for Saccharomyces) of antifungal secondary metabolites. This suggests that selection imposed by fungal pathogens has led to more effective antifungal secondary metabolites. We found that the antifungal activity of sagebrush secondary metabolites was negatively related to average vapor pressure deficit of the habitat (r2 = 0.60 for Saccharomyces, r2 = 0.61 for Penicillium). Differences in antifungal activity among populations were not due to the amount of secondary metabolites, but rather to qualitative differences in the composition of antifungal compounds. Although all populations in habitats with high fungal prevalence had secondary metabolites with high antifungal activity, different suites of compounds were responsible for this activity, suggesting independent outcomes of selection on plants by fungal pathogens. The

  3. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites

    PubMed Central

    Sun, Jingzu; Pei, Yunfei; Li, Erwei; Li, Wei; Hyde, Kevin D.; Yin, Wen-Bing; Liu, Xingzhong

    2016-01-01

    Some species of Trichoderma are fungicolous on fungi and have been extensively studied and commercialized as biocontrol agents. Multigene analyses coupled with morphology, resulted in the discovery of T. hypoxylon sp. nov., which was isolated from surface of the stroma of Hypoxylon anthochroum. The new taxon produces Trichoderma- to Verticillium-like conidiophores and hyaline conidia. Phylogenetic analyses based on combined ITS, TEF1-α and RPB2 sequence data indicated that T. hypoxylon is a well-distinguished species with strong bootstrap support in the polysporum group. Chemical assessment of this species reveals a richness of secondary metabolites with trichothecenes and epipolythiodiketopiperazines as the major compounds. The fungicolous life style of T. hypoxylon and the production of abundant metabolites are indicative of the important ecological roles of this species in nature. PMID:27869187

  4. Fungal metabolites with anticancer activity.

    PubMed

    Evidente, Antonio; Kornienko, Alexander; Cimmino, Alessio; Andolfi, Anna; Lefranc, Florence; Mathieu, Véronique; Kiss, Robert

    2014-05-01

    Covering: 1964 to 2013. Natural products from bacteria and plants have played a leading role in cancer drug discovery resulting in a large number of clinically useful agents. In contrast, the investigations of fungal metabolites and their derivatives have not led to a clinical cancer drug in spite of significant research efforts revealing a large number of fungi-derived natural products with promising anticancer activity. Many of these natural products have displayed notable in vitro growth-inhibitory properties in human cancer cell lines and select compounds have been demonstrated to provide therapeutic benefits in mouse models of human cancer. Many of these compounds are expected to enter human clinical trials in the near future. The present review discusses the reported sources, structures and biochemical studies aimed at the elucidation of the anticancer potential of these promising fungal metabolites.

  5. Active Metabolites of Isoxazolylpenicillins in Humans

    PubMed Central

    Thijssen, H. H. W.; Mattie, H.

    1976-01-01

    Metabolites of the isoxazolylpenicillins that still possessed antibacterial activity were shown to be present in urine and serum. In healthy subjects, the amounts excreted in urine were low; 10 to 23% of the excreted penicillin activities represented the metabolites. The highest amount of metabolite in urine was found for oxacillin, and the lowest was found for flucloxacillin. No extreme differences in the amounts of metabolite excreted were observed when the compounds were administered orally or intravenously. In one healthy subject metabolite levels were estimated for cloxacillin in serum. Very low levels were found, i.e., about 9% of the activity. In subjects with highly impaired renal function, the metabolite may represent up to 50% of the total level of penicillin in serum. The antibacterial activities of the different metabolites were of the same order of magnitude as those of the respective parent compounds. Also, the activity against benzylpenicillin-resistant staphylococci was retained. It is not likely that the formation of the active metabolites should influence therapeutic results. PMID:825029

  6. [Biologically active metabolites of the marine actinobacteria].

    PubMed

    Sobolevskaia, M P; Kuznetsova, T A

    2010-01-01

    This review systematically data on the chemical structure and biological activity of metabolites of obligate and facultative marine actinobacteria, published from 2000 to 2007. We discuss some structural features of the five groups of metabolites related to macrolides and compounds containing lactone, quinone and diketopiperazine residues, cyclic peptides, alkaloids, and compounds of mixed biosynthesis. Survey shows a large chemical diversity of metabolites actinobacteria isolated from marine environment. It is shown that, along with metabolites, identical to previously isolated from terrestrial actinobacteria, marine actinobacteria synthesize unknown compounds not found in other natural sources, including micro organisms. Perhaps the biosynthesis of new chemotypes bioactive compounds in marine actinobacteria is one manifestation of chemical adaptation of microorganisms to environmental conditions at sea. Review stresses the importance of the chemical study of metabolites of marine actinobacteria. These studies are aimed at obtaining new data on marine microorganisms producers of biologically active compounds and chemical structure and biological activity of new low-molecular bioregulators of natural origin.

  7. The flavonoid pathway in tomato seedlings: transcript abundance and the modeling of metabolite dynamics.

    PubMed

    Groenenboom, Marian; Gomez-Roldan, Victoria; Stigter, Hans; Astola, Laura; van Daelen, Raymond; Beekwilder, Jules; Bovy, Arnaud; Hall, Robert; Molenaar, Jaap

    2013-01-01

    Flavonoids are secondary metabolites present in all terrestrial plants. The flavonoid pathway has been extensively studied, and many of the involved genes and metabolites have been described in the literature. Despite this extensive knowledge, the functioning of the pathway in vivo is still poorly understood. Here, we study the flavonoid pathway using both experiments and mathematical models. We measured flavonoid metabolite dynamics in two tissues, hypocotyls and cotyledons, during tomato seedling development. Interestingly, the same backbone of interactions leads to very different accumulation patterns in the different tissues. Initially, we developed a mathematical model with constant enzyme concentrations that described the metabolic networks separately in both tissues. This model was unable to fit the measured flavonoid dynamics in the hypocotyls, even if we allowed unrealistic parameter values. This suggested us to investigate the effect of transcript abundance on flavonoid accumulation. We found that the expression of candidate flavonoid genes varies considerably with time. Variation in transcript abundance results in enzymatic variation, which could have a large effect on metabolite accumulation. Candidate transcript abundance was included in the mathematical model as representative for enzyme concentration. We fitted the resulting model to the flavonoid dynamics in the cotyledons, and tested it by applying it to the data from hypocotyls. When transcript abundance is included, we are indeed able to explain flavonoid dynamics in both tissues. Importantly, this is possible under the biologically relevant restriction that the enzymatic properties estimated by the model are conserved between the tissues.

  8. KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities.

    PubMed

    Nakamura, Yukiko; Afendi, Farit Mochamad; Parvin, Aziza Kawsar; Ono, Naoaki; Tanaka, Ken; Hirai Morita, Aki; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2014-01-01

    Databases (DBs) are required by various omics fields because the volume of molecular biology data is increasing rapidly. In this study, we provide instructions for users and describe the current status of our metabolite activity DB. To facilitate a comprehensive understanding of the interactions between the metabolites of organisms and the chemical-level contribution of metabolites to human health, we constructed a metabolite activity DB known as the KNApSAcK Metabolite Activity DB. It comprises 9,584 triplet relationships (metabolite-biological activity-target species), including 2,356 metabolites, 140 activity categories, 2,963 specific descriptions of biological activities and 778 target species. Approximately 46% of the activities described in the DB are related to chemical ecology, most of which are attributed to antimicrobial agents and plant growth regulators. The majority of the metabolites with antimicrobial activities are flavonoids and phenylpropanoids. The metabolites with plant growth regulatory effects include plant hormones. Over half of the DB contents are related to human health care and medicine. The five largest groups are toxins, anticancer agents, nervous system agents, cardiovascular agents and non-therapeutic agents, such as flavors and fragrances. The KNApSAcK Metabolite Activity DB is integrated within the KNApSAcK Family DBs to facilitate further systematized research in various omics fields, especially metabolomics, nutrigenomics and foodomics. The KNApSAcK Metabolite Activity DB could also be utilized for developing novel drugs and materials, as well as for identifying viable drug resources and other useful compounds.

  9. Pharmaceutically active secondary metabolites of marine actinobacteria.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.

  10. Biologically Active Metabolites Synthesized by Microalgae

    PubMed Central

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences. PMID:26339647

  11. Marine Actinobacteria from the Gulf of California: diversity, abundance and secondary metabolite biosynthetic potential.

    PubMed

    Becerril-Espinosa, Amayaly; Freel, Kelle C; Jensen, Paul R; Soria-Mercado, Irma E

    2013-04-01

    The Gulf of California is a coastal marine ecosystem characterized as having abundant biological resources and a high level of endemism. In this work we report the isolation and characterization of Actinobacteria from different sites in the western Gulf of California. We collected 126 sediment samples and isolated on average 3.1-38.3 Actinobacterial strains from each sample. Phylogenetic analysis of 136 strains identified them as members of the genera Actinomadura, Micromonospora, Nocardiopsis, Nonomuraea, Saccharomonospora, Salinispora, Streptomyces and Verrucosispora. These strains were grouped into 26-56 operational taxonomic units (OTUs) based on 16S rRNA gene sequence identities of 98-100 %. At 98 % sequence identity, three OTUs appear to represent new taxa while nine (35 %) have only been reported from marine environments. Sixty-three strains required seawater for growth. These fell into two OTUs at the 98 % identity level and include one that failed to produce aerial hyphae and was only distantly related (≤95.5 % 16S identity) to any previously cultured Streptomyces sp. Phylogenetic analyses of ketosynthase domains associated with polyketide synthase genes revealed sequences that ranged from 55 to 99 % nucleotide identity to experimentally characterized biosynthetic pathways suggesting that some may be associated with the production of new secondary metabolites. These results indicate that marine sediments from the Gulf of California harbor diverse Actinobacterial taxa with the potential to produce new secondary metabolites.

  12. Marine Actinobacteria from the Gulf of California: diversity, abundance and secondary metabolite biosynthetic potential

    PubMed Central

    Becerril-Espinosa, Amayaly; Freel, Kelle C.; Jensen, Paul R.

    2015-01-01

    The Gulf of California is a coastal marine ecosystem characterized as having abundant biological resources and a high level of endemism. In this work we report the isolation and characterization of Actinobacteria from different sites in the western Gulf of California. We collected 126 sediment samples and isolated on average 3.1–38.3 Actinobacterial strains from each sample. Phylogenetic analysis of 136 strains identified them as members of the genera Actinomadura, Micromonospora, Nocardiopsis, Nonomuraea, Saccharomonospora, Salinispora, Streptomyces and Verrucosispora. These strains were grouped into 26–56 operational taxonomic units (OTUs) based on 16S rRNA gene sequence identities of 98–100 %. At 98 % sequence identity, three OTUs appear to represent new taxa while nine (35 %) have only been reported from marine environments. Sixty-three strains required seawater for growth. These fell into two OTUs at the 98 % identity level and include one that failed to produce aerial hyphae and was only distantly related (≤95.5 % 16S identity) to any previously cultured Streptomyces sp. Phylogenetic analyses of ketosynthase domains associated with polyketide synthase genes revealed sequences that ranged from 55 to 99 % nucleotide identity to experimentally characterized biosynthetic pathways suggesting that some may be associated with the production of new secondary metabolites. These results indicate that marine sediments from the Gulf of California harbor diverse Actinobacterial taxa with the potential to produce new secondary metabolites. PMID:23229438

  13. Biologically active secondary metabolites from Asphodelus microcarpus.

    PubMed

    Ghoneim, Mohammed M; Ma, Guoyi; El-Hela, Atef A; Mohammad, Abd-Elsalam I; Kottob, Saeid; El-Ghaly, Sayed; Cutler, Stephen J; Ross, Samir A

    2013-08-01

    Bioassay guided fractionation of the ethanolic extract of Asphodelus microcarpus Salzm.et Vivi (Asphodelaceae) resulted in the isolation of one new metabolite, 1,6-dimethoxy-3-methyl-2-naphthoic acid (1) as well as nine known compounds: asphodelin (2), chrysophanol (3), 8-methoxychrysophanol (4), emodin (5), 2-acetyl-1,8-dimethoxy-3-methylnaphthalene (6), 10-(chrysophanol-7'-yl)-10-hydroxychrysophanol-9-anthrone (7), aloesaponol-III-8-methyl ether (8), ramosin (9) and aestivin (10). The compounds were identified by 1D and 2D NMR and HRESIMS. Compounds 3, 6 and 10 were isolated for the first time from this species. Compounds 3 and 4 showed moderate to weak antileishmanial activity with IC50 values of 14.3 and 35.1 microg/mL, respectively. Compound 4 exhibited moderate antifungal activity against Cryptococcus neoformans with an IC50 value of 15.0 microg/mL, while compounds 5, 7 and 10 showed good to potent activity against methicillin resistant Staphylococcus aureus (MRSA) with IC50 values of 6.6, 9.4 microg/mL and 1.4 microg/mL respectively. Compounds 5, 8 and 9 displayed good activity against S. aureus with IC50 values of 3.2, 7.3 and 8.5 microg/mL, respectively. Compounds 7 and 9 exhibited a potent cytotoxic activity against leukemia LH60 and K562 cell lines. Compound 10 showed potent antimalarial activities against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum with IC50 values in the range of 0.8-0.7 microg/mL without showing any cytotoxicity to mammalian cells.

  14. Antibacterial metabolites secreted under glucose-limited environment of the mimicked proximal colon model by lactobacilli abundant in infant feces.

    PubMed

    Kanjan, Pochanart; Hongpattarakere, Tipparat

    2016-09-01

    The most abundance of anti-Salmonella lactic acid bacteria (LAB) was found in feces of naturally born, exclusively breastfed Thai infants. Six strains of Lactobacillus plantarum and one strain of Lactobacillus paracasei were selected and identified. In the co-cultivation assay, L. plantarum subsp. plantarum I62 showed the strongest and broadest antibacterial activity against Escherichia coli, Shigella sonnei, Salmonella Paratyphi A, and Salmonella Typhimurium SA 2093 under the mimicked proximal colon condition, in which glucose and other nutrients were limited. According to GC-MS analysis, the major antibacterial contribution of organic acids secreted by L. plantarum I62 grown in the presence of glucose was dramatically reduced from 95.8 to 41.9 % under glucose-limited niche. The production of low-pK a acids, such as lactic, 1,2-benzenedicarboxylic, and 3-phenyllactic acids, was remarkably dropped. Surprisingly, higher-pK a acids such as 5-chlorobenzimidazole-2-carboxylic, pyroglutamic, palmitic, and oleic acids were enhanced. Moreover, cyclic dipeptides, ketones, alkanes, alcohols, and miscellaneous compounds, which were pH-independent antibacterial metabolites, became dominant. The electron microscopy strongly supported the synergistic attacks of the multiple antibacterial components targeting outer and cytoplasmic membranes leading to severe leakage and cell disruption of Salmonella Typhimurium. This strain poses to be a potential probiotic candidate for effectively controlling and treating human foodborne bacterial infection.

  15. Medicinal chemistry of drugs with active metabolites following conjugation.

    PubMed

    Kalász, Huba; Petroianu, Georg; Hosztafi, Sándor; Darvas, Ferenc; Csermely, Tamás; Adeghate, Ernest; Siddiq, Afshan; Tekes, Kornélia

    2013-10-01

    Authorities of Drug Administration in the United States of America approved about 5000 drugs for use in the therapy or management of several diseases. About two hundred of these drugs have active metabolites and the knowledge of their medicinal chemistry is important both in medical practice and pharmaceutical research. This review gives a detailed description of the medicinal chemistry of drugs with active metabolites generated after conjugation. This review focused on glucuronide-, acetyl-, sulphate- and phosphate-conjugation of drugs, converting the drug into an active metabolite. This conversion essentially changed the lipophilicity of the drug.

  16. Biologically active secondary metabolites from Asphodelus microcarpus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassay guided fractionation of the ethanolic extract of Asphodelus microcarpus Salzm.et Vivi (Asphodelaceae) resulted in the isolation of one new metabolite, 1,6-dimethoxy-3-methyl-2-naphthoic acid (1) as well as nine known compounds: asphodelin (2), chrysophanol (3), 8-methoxychrysophanol (4), em...

  17. Integrative metabolomics for characterizing unknown low-abundance metabolites by capillary electrophoresis-mass spectrometry with computer simulations.

    PubMed

    Lee, Richard; Ptolemy, Adam S; Niewczas, Liliana; Britz-McKibbin, Philip

    2007-01-15

    Characterization of unknown low-abundance metabolites in biological samples is one the most significant challenges in metabolomic research. In this report, an integrative strategy based on capillary electrophoresis-electrospray ionization-ion trap mass spectrometry (CE-ESI-ITMS) with computer simulations is examined as a multiplexed approach for studying the selective nutrient uptake behavior of E. coli within a complex broth medium. On-line sample preconcentration with desalting by CE-ESI-ITMS was performed directly without off-line sample pretreatment in order to improve detector sensitivity over 50-fold for cationic metabolites with nanomolar detection limits. The migration behavior of charged metabolites were also modeled in CE as a qualitative tool to support MS characterization based on two fundamental analyte physicochemical properties, namely, absolute mobility (muo) and acid dissociation constant (pKa). Computer simulations using Simul 5.0 were used to better understand the dynamics of analyte electromigration, as well as aiding de novo identification of unknown nutrients. There was excellent agreement between computer-simulated and experimental electropherograms for several classes of cationic metabolites as reflected by their relative migration times with an average error of <2.0%. Our studies revealed differential uptake of specific amino acids and nucleoside nutrients associated with distinct stages of bacterial growth. Herein, we demonstrate that CE can serve as an effective preconcentrator, desalter, and separator prior to ESI-MS, while providing additional qualitative information for unambiguous identification among isobaric and isomeric metabolites. The proposed strategy is particularly relevant for characterizing unknown yet biologically relevant metabolites that are not readily synthesized or commercially available.

  18. Secondary metabolites from three Florida sponges with antidepressant activity.

    PubMed

    Kochanowska, Anna J; Rao, Karumanchi V; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R; Kelly, Michelle; Stewart, Gina S; Sufka, Kenneth J; Hamann, Mark T

    2008-02-01

    Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety-depression continuum model. Among the isolated compounds, 5,6-dibromo- N,N-dimethyltryptamine ( 1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo- N,N-dimethyltryptamine ( 2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs.

  19. Effects of metronidazole and its metabolites on histamine immunosuppression activity.

    PubMed

    Elizondo, G; Ostrosky-Wegman, P

    1996-01-01

    We have previously reported that metronidazole treatment increases human lymphocyte proliferation showing individual differences. This drug and its metabolites are imidazole compounds like histamine and cimetidine. The first is an endogenous amine that inhibits T-helper lymphocyte proliferation, and the second is a histamine antagonist. We presently report the in vitro effects of histamine, cimetidine, imidazole, metronidazole and its two principal metabolites (the acetic acid and hydroxy forms), on the mitogenic response to phytohemagglutinin (PHA) stimulation of human peripheral blood lymphocytes. Histamine decreased lymphocyte proliferation while (in order of potency) cimetidine, the hydroxy metabolite of metronidazole, imidazole and metronidazole, increased the mitogenic response to PHA in a dose-response fashion. The acetic acid metabolite lacked immunomodulatory effects. Competitive studies showed that cimetidine, metronidazole, and the hydroxy metabolite blocked the inhibitory effect of histamine on lymphocyte proliferation in a dose-related manner. This blockage was non-competitive, suggesting that the target of the imidazole compounds was not the active site of the H2 receptor.

  20. Metabolism of mometasone furoate and biological activity of the metabolites.

    PubMed

    Sahasranaman, S; Issar, M; Hochhaus, G

    2006-02-01

    To better evaluate the pharmacokinetic and pharmacodynamic properties of the new inhaled glucocorticoid mometasone furoate (MF), the metabolism of MF was evaluated in rat and human tissues and in rat after i.v. administration. Metabolic studies with 3H-MF in human and rat plasma and S9 fractions of human and rat lung showed relatively high stability and a degradation pattern similar to that seen in buffer systems. MF was efficiently metabolized into at least five metabolites in S9 fractions of both rat and human liver. There were, however, quantitative differences in the metabolites between the two species. The apparent half-life of MF in the S9 fraction of human liver was found to be 3 times greater compared with that in rat. MET1, the most polar metabolite, was the major metabolite in rat liver fractions, whereas both MET1 and MET2 were formed to an equal extent in human liver. Metabolism and distribution studies in rats after intravenous and intratracheal administration of [1,2-(3)H]MF revealed that most of the radioactivity (approximately 90%) was present in the stomach, intestines, and intestinal contents, suggesting biliary excretion of MF and its metabolites. Radiochromatography showed that most radioactivity was associated with MET1, MET2, and MET 3. Fractionation of the high-performance liquid chromatography eluate (MET1-5) revealed that only MF [relative binding affinity (RBA) 2900] and MET2 (RBA 700) had appreciable glucocorticoid receptor binding affinity. These results suggest that MF undergoes distinct extrahepatic metabolism but generates active metabolites that might be in part responsible for the systemic side effects of MF.

  1. In Vitro Cytochrome P450 Formation of a Mono-Hydroxylated Metabolite of Zearalenone Exhibiting Estrogenic Activities: Possible Occurrence of This Metabolite in Vivo

    PubMed Central

    Bravin, Frederique; Duca, Radu C.; Balaguer, Patrick; Delaforge, Marcel

    2009-01-01

    The mycoestrogen zearalenone (ZEN), as well as its reduced metabolites, which belong to the endocrine disruptor bio-molecule family, are substrates for various enzymes involved in steroid metabolism. In addition to its reduction by the steroid dehydrogenase pathway, ZEN also interacts with hepatic detoxification enzymes, which convert it into hydroxylated metabolites (OH-ZEN). Due to their structures to that of estradiol, ZEN and its derived metabolites bind to the estrogen receptors and are involved in endocrinal perturbations and are possibly associated with estrogen-dependent cancers. The primary aim of this present study was to identify the enzymatic cytochrome P450 isoforms responsible for the formation of the most abundant OH-ZEN. We thus studied its in vitro formation using hepatic microsomes in a range of animal model systems including man. OH-ZEN was also recovered in liver and urine of rats treated orally with ZEN. Finally we compared the activity of ZEN and its active metabolites (α-ZAL and OH-ZEN) on estrogen receptors using HeLa ER-α and ER-β reporter cell lines as reporters. OH-ZEN estrogenic activities were revealed to be limited and not as significant as those of ZEN or α-ZAL. PMID:19468341

  2. Monascus secondary metabolites: production and biological activity.

    PubMed

    Patakova, Petra

    2013-02-01

    The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.

  3. Investigations of fungal secondary metabolites with potential anticancer activity.

    PubMed

    Balde, ElHadj Saidou; Andolfi, Anna; Bruyère, Céline; Cimmino, Alessio; Lamoral-Theys, Delphine; Vurro, Maurizio; Damme, Marc Van; Altomare, Claudio; Mathieu, Véronique; Kiss, Robert; Evidente, Antonio

    2010-05-28

    Fourteen metabolites, isolated from phytopathogenic and toxigenic fungi, were evaluated for their in vitro antigrowth activity for six distinct cancer cell lines, using the MTT colorimetric assay. Bislongiquinolide (1) and dihydrotrichodimerol (5), which belong to the bisorbicillinoid structural class, displayed significant growth inhibitory activity against the six cancer cell lines studied, while the remaining compounds displayed weak or no activity. The data show that 1 and 5 have similar growth inhibitory activities with respect to those cancer cell lines that display certain levels of resistance to pro-apoptotic stimuli or those that are sensitive to apoptosis. Quantitative videomicroscopy analysis revealed that 1 and 5 exert their antiproliferative effect through cytostatic and not cytotoxic activity. The preliminary results from the current study have stimulated further structure-activity investigations with respect to the growth inhibitory activity of compounds belonging to the bisorbicillinoid group.

  4. Pharmacologically active plant metabolites as survival strategy products.

    PubMed

    Attardo, C; Sartori, F

    2003-01-01

    The fact that plant organisms produce chemical substances that are able to positively or negatively interfere with the processes which regulate human life has been common knowledge since ancient times. One of the numerous possible examples in the infusion of Conium maculatum, better known as Hemlock, a plant belonging to the family umbelliferae, used by the ancient Egyptians to cure skin diseases. The current official pharmacopoeia includes various chemical substances produced by secondary plant metabolisms. For example, the immunosuppressive drugs used to prevent organ transplant rejection and the majority of antibiotics are metabolites produced by fungal organisms, pilocarpin, digitalis, strophantus, salicylic acid and curare are examples of plant organism metabolites. For this reason, there has been an increase in research into plants, based on information on their medicinal use in the areas where they grow. The study of plants in relation to local culture and traditions is known as "ethnobotany". Careful study of the behaviour of sick animals has also led to the discovery of medicinal plants. The study of this subject is known as "zoopharmacognosy". The aim of this article is to discuss the fact that "ad hoc" production of such chemical substances, defined as "secondary metabolites", is one of the modes in which plant organisms respond to unfavourable environmental stimuli, such as an attack by predatory phytophagous animals or an excessive number of plant individuals, even of the same species, in a terrain. In the latter case, the plant organisms produce toxic substances, called "allelopathic" which limit the growth of other individuals. "Secondary metabolites" are produced by metabolic systems that are shunts of the primary systems which, when required, may be activated from the beginning, or increased to the detriment of others. The study of the manner in which such substances are produced is the subject of a new branch of learning called "ecological

  5. Biological activity of secondary metabolites from Peltostigma guatemalense.

    PubMed

    Cuca Suarez, Luis Enrique; Pattarroyo, Manuel Elkin; Lozano, Jose Manuel; Delle Monache, Franco

    2009-01-01

    Leaves and wood of Peltostigma guatemalense, a novel species of the family Rutaceae, yielded a total of 14 secondary metabolites, i.e. methyl p-hydroxy benzoate, phenylacetic acid, beta-sitosterol, lupeol, syringaresinol, scopoletin, gardenin B (1), and seven alkaloids: gamma-fagarine (2), skimmianine (3), kokusaginine (4), 7-O-isopentenyl-gamma-fagarine (5), anhydro-evoxine (6), evoxine (7) and 4-methoxy-1-methyl-quinolin-2-one (8). The compounds have been identified by spectroscopic methods. Antibacterial and antimalarial in vitro activity of the isolated compounds were also determined. Methyl p-hydroxy benzoate and quinolone (8) were the most effective on Plasmodium falciparium strains.

  6. Potential anticancer activity of lichen secondary metabolite physodic acid.

    PubMed

    Cardile, V; Graziano, A C E; Avola, R; Piovano, M; Russo, A

    2017-02-01

    Secondary metabolites present in lichens, which comprise aliphatic, cycloaliphatic, aromatic and terpenic compounds, are unique with respect to those of higher plants and show interesting biological and pharmacological activities. However, only a few of these compounds, have been assessed for their effectiveness against various in vitro cancer models. In the present study, we investigated the cytotoxicity of three lichen secondary metabolites (atranorin, gyrophoric acid and physodic acid) on A375 melanoma cancer cell line. The tested compounds arise from different lichen species collected in different areas of Continental and Antarctic Chile. The obtained results confirm the major efficiency of depsidones. In fact, depsides atranorin and gyrophoric acid, showed a lower activity inhibiting the melanoma cancer cells only at more high concentrations. Whereas the depsidone physodic acid, showed a dose-response relationship in the range of 6.25-50 μM concentrations in A375 cells, activating an apoptotic process, that probably involves the reduction of Hsp70 expression. Although the molecular mechanism, by which apoptosis is induced by physodic acid remains unclear, and of course further studies are needed, the results here reported confirm the promising biological properties of depsidone compounds, and may offer a further impulse to the development of analogues with more powerful efficiency against melanoma cells.

  7. Comparison of the circulating metabolite profile of PF-04991532, a hepatoselective glucokinase activator, across preclinical species and humans: potential implications in metabolites in safety testing assessment.

    PubMed

    Sharma, Raman; Litchfield, John; Bergman, Arthur; Atkinson, Karen; Kazierad, David; Gustavson, Stephanie M; Di, Li; Pfefferkorn, Jeffrey A; Kalgutkar, Amit S

    2015-02-01

    A previous report from our laboratory disclosed the identification of PF-04991532 [(S)-6-(3-cyclopentyl-2-(4-trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic acid] as a hepatoselective glucokinase activator for the treatment of type 2 diabetes mellitus. Lack of in vitro metabolic turnover in microsomes and hepatocytes from preclinical species and humans suggested that metabolism would be inconsequential as a clearance mechanism of PF-04991532 in vivo. Qualitative examination of human circulating metabolites using plasma samples from a 14-day multiple ascending dose clinical study, however, revealed a glucuronide (M1) and monohydroxylation products (M2a and M2b/M2c) whose abundances (based on UV integration) were greater than 10% of the total drug-related material. Based on this preliminary observation, mass balance/excretion studies were triggered in animals, which revealed that the majority of circulating radioactivity following the oral administration of [¹⁴C]PF-04991532 was attributed to an unchanged parent (>70% in rats and dogs). In contrast with the human circulatory metabolite profile, the monohydroxylated metabolites were not detected in circulation in either rats or dogs. Available mass spectral evidence suggested that M2a and M2b/M2c were diastereomers derived from cyclopentyl ring oxidation in PF-04991532. Because cyclopentyl ring hydroxylation on the C-2 and C-3 positions can generate eight possible diastereomers, it was possible that additional diastereomers may have also formed and would need to be resolved from the M2a and M2b/M2c peaks observed in the current chromatography conditions. In conclusion, the human metabolite scouting study in tandem with the animal mass balance study allowed early identification of PF-04991532 oxidative metabolites, which were not predicted by in vitro methods and may require additional scrutiny in the development phase of PF-04991532.

  8. Pharmacokinetic profiles of the active metamizole metabolites in healthy horses.

    PubMed

    Giorgi, M; Aupanun, S; Lee, H-K; Poapolathep, A; Rychshanova, R; Vullo, C; Faillace, V; Laus, F

    2017-04-01

    Metamizole (MT) is an analgesic and antipyretic drug labelled for use in humans, horses, cattle, swine and dogs. MT is rapidly hydrolysed to the active primary metabolite 4-methylaminoantipyrine (MAA). MAA is formed in much larger amounts compared with other minor metabolites. Among the other secondary metabolites, 4-aminoantipyrine (AA) is also relatively active. The aim of this research was to evaluate the pharmacokinetic profiles of MAA and AA after dose of 25 mg/kg MT by intravenous (i.v.) and intramuscular (i.m.) routes in healthy horses. Six horses were randomly allocated to two equally sized treatment groups according to a 2 × 2 crossover study design. Blood was collected at predetermined times within 24 h, and plasma was analysed by a validated HPLC-UV method. No behavioural changes or alterations in health parameters were observed in the i.v. or i.m. groups of animals during or after (up to 7 days) drug administration. Plasma concentrations of MAA after i.v. and i.m. administrations of MT were detectable from 5 min to 10 h in all the horses. Plasma concentrations of AA were detectable in the same range of time, but in smaller amounts. Maximum concentration (Cmax ), time to maximum concentration (Tmax ) and AUMC0-last of MAA were statistically different between the i.v. and i.m. groups. The AUCIM /AUCIV ratio of MAA was 1.06. In contrast, AUC0-last of AA was statistically different between the groups (P < 0.05) with an AUCIM /AUCIV ratio of 0.54. This study suggested that the differences in the MAA and AA plasma concentrations found after i.m. and i.v. administrations of MT might have minor consequences on the pharmacodynamics of the drug.

  9. Mutagenic activity of austocystins - secondary metabolites of Aspergillus ustus

    SciTech Connect

    Kfir, R.; Johannsen, E.; Vleggaar, R.

    1986-11-01

    Mycotoxins constitute a group of toxic secondary fungal metabolites. Fungi that produce these toxins frequently contaminate food and feed, creating a potential threat to human and animal health. Biological activities of mycotoxins include, amongst others: toxicity, mutagenicity and carcinogenicity, which can be expressed with or without metabolic activation. Austocystins are similar in structure to aflatoxin B/sup 1/ and are probably synthesized in a similar manner. The Ames Salmonella test, a widely accepted method employed for the detection of mutagenic activity of various chemical compounds was used for testing the mutagenic activity of different mycotoxins. As aflatoxin B/sup 1/ was found by the Ames test to be highly mutagenic, the same test was applied for the study of possible mutagenicity of the austocystins. The mutagenic activity of these compounds was studied with and without metabolic activation using two tester strains of S. typhimurium, one capable of detecting frame shift mutation (strain TA98) and the other capable of detecting base pair substitution (strain TA100).

  10. Antifouling activity of secondary metabolites isolated from chinese marine organisms.

    PubMed

    Li, Yong-Xin; Wu, Hui-Xian; Xu, Ying; Shao, Chang-Lun; Wang, Chang-Yun; Qian, Pei-Yuan

    2013-10-01

    Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml(-1). Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml(-1) and a safety ratio (LC50/EC50) higher than 400. A preliminary structure-activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity.

  11. Biologically Active Metabolites Produced by the Basidiomycete Quambalaria cyanescens

    PubMed Central

    Stodůlková, Eva; Císařová, Ivana; Kolařík, Miroslav; Chudíčková, Milada; Novák, Petr; Man, Petr; Kuzma, Marek; Pavlů, Barbora; Černý, Jan; Flieger, Miroslav

    2015-01-01

    Four strains of the fungus Quambalaria cyanescens (Basidiomycota: Microstromatales), were used for the determination of secondary metabolites production and their antimicrobial and biological activities. A new naphthoquinone named quambalarine A, (S)-(+)-3-(5-ethyl-tetrahydrofuran-2-yliden)-5,7,8-trihydroxy-2-oxo-1,4-naphthoquinone (1), together with two known naphthoquinones, 3-hexanoyl-2,5,7,8-tetrahydroxy-1,4-naphthoquinone (named here as quambalarine B, 2) and mompain, 2,5,7,8-tetrahydroxy-1,4-naphthoquinone (3) were isolated. Their structures were determined by single-crystal X-ray diffraction crystallography, NMR and MS spectrometry. Quambalarine A (1) had a broad antifungal and antibacterial activity and is able inhibit growth of human pathogenic fungus Aspergillus fumigatus and fungi co-occurring with Q. cyanescens in bark beetle galleries including insect pathogenic species Beauveria bassiana. Quambalarine B (2) was active against several fungi and mompain mainly against bacteria. The biological activity against human-derived cell lines was selective towards mitochondria (2 and 3); after long-term incubation with 2, mitochondria were undetectable using a mitochondrial probe. A similar effect on mitochondria was observed also for environmental competitors of Q. cyanescens from the genus Geosmithia. PMID:25723150

  12. Metabolism of 20(S)-Ginsenoside Rg₂ by Rat Liver Microsomes: Bioactivation to SIRT1-Activating Metabolites.

    PubMed

    Ma, Li-Yuan; Zhou, Qi-Le; Yang, Xin-Bao; Wang, Hong-Ping; Yang, Xiu-Wei

    2016-06-10

    20(S)-Ginsenoside Rg₂ (1) has recently become a hot research topic due to its potent bioactivities and abundance in natural sources such as the roots, rhizomes and stems-leaves of Panax ginseng. However, due to the lack of studies on systematic metabolic profiles, the prospects for new drug development of 1 are still difficult to predict, which has become a huge obstacle for its safe clinical use. To solve this problem, investigation of the metabolic profiles of 1 in rat liver microsomes was first carried out. To identify metabolites, a strategy of combined analyses based on prepared metabolites by column chromatography and ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) was performed. As a result, four metabolites M1-M4, including a rare new compound named ginsenotransmetin A (M1), were isolated and the structures were confirmed by spectroscopic analyses. A series of metabolites of 1, MA-MG, were also tentatively identified by UPLC-Q-TOF/MS in rat liver microsomal incubate of 1. Partial metabolic pathways were proposed. Among them, 1 and its metabolites M1, M3 and M4 were discovered for the first time to be activators of SIRT1. The SIRT1 activating effects of the metabolite M1 was comparable to those of 1, while the most interesting SIRT1 activatory effects of M3 and M4 were higher than that of 1 and comparable with that of resveratrol, a positive SIRT1 activator. These results indicate that microsome-dependent metabolism may represent a bioactivation pathway for 1. This study is the first to report the metabolic profiles of 1 in vitro, and the results provide an experimental foundation to better understand the in vivo metabolic fate of 1.

  13. Ergosteroids. II: Biologically active metabolites and synthetic derivatives of dehydroepiandrosterone.

    PubMed

    Lardy, H; Kneer, N; Wei, Y; Partridge, B; Marwah, P

    1998-03-01

    An improved procedure for the synthesis of 3 beta-hydroxyandrost-5-ene-7,17-dione, a natural metabolite of dehydroepiandrosterone (DHEA) is described. The synthesis and magnetic resonance spectra of several other related steroids are presented. Feeding dehydroepiandrosterone to rats induces enhanced formation of several liver enzymes among which are mitochondrial sn-glycerol 3-phosphate dehydrogenase (GPDH) and cytosolic malic enzyme. The induction of these two enzymes, that complete a thermogenic system in rat liver, was used as an assay to search for derivatives of DHEA that might be more active than the parent steroid. Activity is retained in steroids that are reduced to the corresponding 17 beta-hydroxy derivative, or hydroxylated at 7 alpha or 7 beta, and is considerably enhanced when the 17-hydroxy or 17-carbonyl steroid is converted to the 7-oxo derivative. Several derivatives of DHEA did not induce the thermogenic enzymes whereas the corresponding 7-oxo compounds did. Both short and long chain acyl esters of DHEA and of 7-oxo-DHEA are active inducers of the liver enzymes when fed to rats. 7-Oxo-DHEA-3-sulfate is as active as 7-oxo-DHEA or its 3-acetyl ester, whereas DHEA-3-sulfate is much less active than DHEA. Among many steroids tested, those possessing a carbonyl group at position 3, a methyl group at 7, a hydroxyl group at positions 1, 2, 4, 11, or 19, or a saturated B ring, with or without a 4-5 double bond, were inactive.

  14. Helium Line Formation and Abundance in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Mauas, P. J. D.; Andretta, V.; Falchi, A.; Falciani, R.; Teriaca, L.; Cauzzi, G.

    2005-01-01

    An observing campaign (SOHO JOP 139), coordinated between ground-based and Solar and Heliospheric Observatory (SOHO) instruments, has been planned to obtain simultaneous spectroheliograms of the same active region in several spectral lines. The chromospheric lines Ca II K, Hα, and Na I D, as well as He I 10830, 5876, 584, and He II 304 Å lines have been observed. The EUV radiation in the range λ<500 Å and in the range 260<λ<340 Å has also been measured at the same time. These simultaneous observations allow us to build semiempirical models of the chromosphere and low transition region of an active region, taking into account the estimated total number of photoionizing photons impinging on the target active region and their spectral distribution. We obtained a model that matches very well all the observed line profiles, using a standard value for the He abundance ([He]=0.1) and a modified distribution of microturbulence. For this model we study the influence of the coronal radiation on the computed helium lines. We find that, even in an active region, the incident coronal radiation has a limited effect on the UV He lines, while it is of fundamental importance for the D3 and 10830 Å lines. Finally, we build two more models, assuming values of He abundance [He]=0.07 and 1.5, only in the region where temperatures are >1×104 K. This region, between the chromosphere and transition region, has been indicated as a good candidate for processes that might be responsible for strong variations of [He]. The set of our observables can still be well reproduced in both cases, changing the atmospheric structure mainly in the low transition region. This implies that, to choose between different values of [He], it is necessary to constrain the transition region with different observables, independent of the He lines.

  15. Glucuronidation of active tamoxifen metabolites by the human UDP glucuronosyltransferases.

    PubMed

    Sun, Dongxiao; Sharma, Arun K; Dellinger, Ryan W; Blevins-Primeau, Andrea S; Balliet, Renee M; Chen, Gang; Boyiri, Telih; Amin, Shantu; Lazarus, Philip

    2007-11-01

    Tamoxifen (TAM) is an antiestrogen that has been widely used in the treatment and prevention of breast cancer in women. One of the major mechanisms of metabolism and elimination of TAM and its major active metabolites 4-hydroxytamoxifen (4-OH-TAM) and 4-OH-N-desmethyl-TAM (endoxifen; 4-hydroxy-N-desmethyl-tamoxifen) is via glucuronidation. Although limited studies have been performed characterizing the glucuronidation of 4-OH-TAM, no studies have been performed on endoxifen. In the present study, characterization of the glucuronidating activities of human UDP glucuronosyltransferases (UGTs) against isomers of 4-OH-TAM and endoxifen was performed. Using homogenates of individual UGT-overexpressing cell lines, UGTs 2B7 approximately 1A8 > UGT1A10 exhibited the highest overall O-glucuronidating activity against trans-4-OH-TAM as determined by Vmax/K(M), with the hepatic enzyme UGT2B7 exhibiting the highest binding affinity and lowest K(M) (3.7 microM). As determined by Vmax/K(M), UGT1A10 exhibited the highest overall O-glucuronidating activity against cis-4-OH-TAM, 10-fold higher than the next-most active UGTs 1A1 and 2B7, but with UGT1A7 exhibiting the lowest K(M). Although both N- and O-glucuronidation occurred for 4-OH-TAM in human liver microsomes, only O-glucuronidating activity was observed for endoxifen; no endoxifen-N-glucuronidation was observed for any UGT tested. UGTs 1A10 approximately 1A8 > UGT2B7 exhibited the highest overall glucuronidating activities as determined by Vmax/K(M) for trans-endoxifen, with the extrahepatic enzyme UGT1A10 exhibiting the highest binding affinity and lowest K(M) (39.9 microM). Similar to that observed for cis-4-OH-TAM, UGT1A10 also exhibited the highest activity for cis-endoxifen. These data suggest that several UGTs, including UGTs 1A10, 2B7, and 1A8 play an important role in the metabolism of 4-OH-TAM and endoxifen.

  16. Serum metabolites related to cardiorespiratory fitness, physical activity energy expenditure, sedentary time and vigorous activity.

    PubMed

    Wientzek, Angelika; Floegel, Anna; Knüppel, Sven; Vigl, Matthaeus; Drogan, Dagmar; Adamski, Jerzy; Pischon, Tobias; Boeing, Heiner

    2014-04-01

    The aim of our study was to investigate the relationship between objectively measured physical activity (PA) and cardiorespiratory fitness (CRF) and serum metabolites measured by targeted metabolomics in a population- based study. A total of 100 subjects provided 2 fasting blood samples and engaged in a CRF and PA measurement at 2 visits 4 months apart. CRF was estimated from a step test, whereas physical activity energy expenditure (PAEE), time spent sedentary and time spend in vigorous activity were measured by a combined heart rate and movement sensor for a total of 8 days. Serum metabolite concentrations were determined by flow injection analysis tandem mass spectrometry (FIA-MS/MS). Linear mixed models were applied with multivariable adjustment and p-values were corrected for multiple testing. Furthermore, we explored the associations between CRF, PA and two metabolite factors that have previously been linked to risk of Type 2 diabetes. CRF was associated with two phosphatidylcholine clusters independently of all other exposures. Lysophosphatidylcholine C14:0 and methionine were significantly negatively associated with PAEE and sedentary time. CRF was positively associated with the Type 2 diabetes protective factor. Vigorous activity was positively associated with the Type 2 diabetes risk factor in the mutually adjusted model. Our results suggest that CRF and PA are associated with serum metabolites, especially CRF with phosphatidylcholines and with the Type 2 diabetes protective factor. PAEE and sedentary time were associated with methionine. The identified metabolites could be potential mediators of the protective effects of CRF and PA on chronic disease risk.

  17. Firefighters' exposure biomonitoring: Impact of firefighting activities on levels of urinary monohydroxyl metabolites.

    PubMed

    Oliveira, Marta; Slezakova, Klara; Alves, Maria José; Fernandes, Adília; Teixeira, João Paulo; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2016-11-01

    The concentrations of six urinary monohydroxyl metabolites (OH-PAHs) of polycyclic aromatic hydrocarbons, namely 1-hydroxynaphthalene, 1-hydroxyacenaphthene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene (1OHPy), and 3-hydroxybenzo[a]pyrene, were assessed in the post-shift urine of wildland firefighters involved in fire combat activities at six Portuguese fire corporations, and compared with those of non-exposed subjects. Overall, median levels of urinary individual and total OH-PAHs (ΣOH-PAHs) suggest an increased exposure to polycyclic aromatic hydrocarbons during firefighting activities with ΣOH-PAH levels in exposed firefighters 1.7-35 times higher than in non-exposed ones. Urinary 1-hydroxynaphthalene and/or 1-hydroxyacenapthene were the predominant compounds, representing 63-98% of ΣOH-PAHs, followed by 2-hydroxyfluorene (1-17%), 1-hydroxyphenanthrene (1-13%), and 1OHPy (0.3-10%). A similar profile was observed when gender discrimination was considered. Participation in fire combat activities promoted an increase of the distribution percentage of 1-hydroxynaphthalene and 1-hydroxyacenaphthene, while contributions of 1-hydroxyphenanthrene and 1OHPy decreased. The detected urinary 1OHPy concentrations (1.73×10(-2) to 0.152μmol/mol creatinine in exposed subjects versus 1.21×10(-2) to 5.44×10(-2)μmol/mol creatinine in non-exposed individuals) were lower than the benchmark level (0.5μmol/mol creatinine) proposed by the American Conference of Governmental Industrial Hygienists. This compound, considered the biomarker of exposure to PAHs, was the less abundant one from the six analyzed biomarkers. Thus the inclusion of other metabolites, in addition to 1OHPy, in future studies is suggested to better estimate firefighters' occupational exposure to PAHs. Moreover, strong to moderate Spearman correlations were observed between individual compounds and ΣOH-PAHs corroborating the prevalence of an emission source.

  18. Antibacterial Activity of Metabolites Products of Vibrio Alginolyticus Isolated from Sponge Haliclona sp. Against Staphylococcus Aureus

    PubMed Central

    Nursyam, Happy

    2017-01-01

    The objective of this study was to investigate the antibacterial activity of primary and secondary metabolites from Vibrio alginoliticus isolated from sponge Haliclona sp. against Staphylococcus aureus. A descriptive method was used in this research. The antibacterial activity was analysed by paper disk method. The results showed that the primary metabolites produced by Vibrio alginoliticus that is in symbiosis with sponge Haliclona sp. were able to effectively inhibit Staphylococcus aureus growth with an inhibition zone diameter of 12.9 mm, while the secondary metabolites of 9.9 mm. Electrophoresis analysis of the primary metabolites showed that there were 11 protein bands which were not found in secondary metabolites. Protein bands with low molecular weights presumably had an inhibiting effect on the growth of Staphylococcus aureus. PMID:28299291

  19. Influence of military activities on raptor abundance and behavior

    USGS Publications Warehouse

    Schueck, Linda S.; Marzluff, J.M.; Steenhof, Karen

    2001-01-01

    We investigated the influence of military training on the abundance and behavior of raptors at a military training area in the Snake River Birds of Prey National Conservation Area in Idaho during the breeding seasons of 1991a??1994. Raptor counts on military training ranges did not differ when we compared all training days to all non-training days. However, during one period of intensive military training in one breeding season, raptor counts were lower during training than on non-training days. During training, Northern Harriers (Circus cyaneus) did not alter their behavior on training days. In years when prey numbers were low, falcons, hawks, and eagles perched and flew at low levels less often and flew at higher altitudes more often during training than they did when training did not occur. We observed fewer prey capture attempts on ranges on days with training than on days without training. Specific types of military training activity affected counts of raptors on ranges. The lowest raptor counts were associated with firing of artillery, small arms, and main turret guns or machine guns on tanks. Raptor counts associated with tank preparation (i.e., assembling and loading ammunition), driving, laser training, and convoy traffic were similar to non-training periods.

  20. Environmental distribution, abundance and activity of the Miscellaneous Crenarchaeotal Group

    NASA Astrophysics Data System (ADS)

    Lloyd, K. G.; Biddle, J.; Teske, A.

    2011-12-01

    Many marine sedimentary microbes have only been identified by 16S rRNA sequences. Consequently, little is known about the types of metabolism, activity levels, or relative abundance of these groups in marine sediments. We found that one of these uncultured groups, called the Miscellaneous Crenarchaeotal Group (MCG), dominated clone libraries made from reverse transcribed 16S rRNA, and 454 pyrosequenced 16S rRNA genes, in the White Oak River estuary. Primers suitable for quantitative PCR were developed for MCG and used to show that 16S rRNA DNA copy numbers from MCG account for nearly all the archaeal 16S rRNA genes present. RT-qPCR shows much less MCG rRNA than total archaeal rRNA, but comparisons of different primers for each group suggest bias in the RNA-based work relative to the DNA-based work. There is no evidence of a population shift with depth below the sulfate-methane transition zone, suggesting that the metabolism of MCG may not be tied to sulfur or methane cycles. We classified 2,771 new sequences within the SSU Silva 106 database that, along with the classified sequences in the Silva database was used to make an MCG database of 4,646 sequences that allowed us to increase the named subgroups of MCG from 7 to 19. Percent terrestrial sequences in each subgroup is positively correlated with percent of the marine sequences that are nearshore, suggesting that membership in the different subgroups is not random, but dictated by environmental selective pressures. Given their high phylogenetic diversity, ubiquitous distribution in anoxic environments, and high DNA copy number relative to total archaea, members of MCG are most likely anaerobic heterotrophs who are integral to the post-depositional marine carbon cycle.

  1. Identification and Mode of Inheritance of Quantitative Trait Loci for Secondary Metabolite Abundance in Tomato[OPEN

    PubMed Central

    Alseekh, Saleh; Tohge, Takayuki; Wendenberg, Regina; Scossa, Federico; Omranian, Nooshin; Li, Jie; Kleessen, Sabrina; Giavalisco, Patrick; Pleban, Tzili; Mueller-Roeber, Bernd; Zamir, Dani; Nikoloski, Zoran; Fernie, Alisdair R.

    2015-01-01

    A large-scale metabolic quantitative trait loci (mQTL) analysis was performed on the well-characterized Solanum pennellii introgression lines to investigate the genomic regions associated with secondary metabolism in tomato fruit pericarp. In total, 679 mQTLs were detected across the 76 introgression lines. Heritability analyses revealed that mQTLs of secondary metabolism were less affected by environment than mQTLs of primary metabolism. Network analysis allowed us to assess the interconnectivity of primary and secondary metabolism as well as to compare and contrast their respective associations with morphological traits. Additionally, we applied a recently established real-time quantitative PCR platform to gain insight into transcriptional control mechanisms of a subset of the mQTLs, including those for hydroxycinnamates, acyl-sugar, naringenin chalcone, and a range of glycoalkaloids. Intriguingly, many of these compounds displayed a dominant-negative mode of inheritance, which is contrary to the conventional wisdom that secondary metabolite contents decreased on domestication. We additionally performed an exemplary evaluation of two candidate genes for glycolalkaloid mQTLs via the use of virus-induced gene silencing. The combined data of this study were compared with previous results on primary metabolism obtained from the same material and to other studies of natural variance of secondary metabolism. PMID:25770107

  2. The TLR4-Active Morphine Metabolite Morphine-3-Glucuronide Does Not Elicit Macrophage Classical Activation In Vitro

    PubMed Central

    Khabbazi, Samira; Xie, Nan; Pu, Wenjun; Goumon, Yannick; Parat, Marie-Odile

    2016-01-01

    Macrophages are abundant in the tumor microenvironment where they adopt a pro-tumor phenotype following alternative polarization induced by paracrine factors from cancer and stromal cells. In contrast, classically activated macrophages have tumoricidal activities, such that the polarization of tumor-associated macrophages has become a novel therapeutic target. Toll-like receptor 4 engagement promotes classical activation of macrophages, and recent literature suggests TLR4 agonism to prevent metastasis and promote survival in experimental metastasis models. A growing number of studies indicate that TLR4 can respond to opioids, including the opioid receptor-inactive morphine metabolite morphine-3-glucuronide (M3G). We measured the activation of TLR4 in a reporter cell line exogenously expressing TLR4 and TLR4 co-receptors, and confirmed that M3G weakly but significantly activates TLR4. We hypothesized that M3G would promote the expression of classical activation signature genes in macrophages in vitro. We exposed mouse and human macrophage cell lines to M3G or the TLR4 activator lipopolysaccharide (LPS), alone or in combination with interferon gamma (IFN-γ). The classical macrophage activation markers tested were iNOS, CD86, IL-6, or TNF-α in RAW 264.7 cells and IL-6, IL-12, IL-23, TNF-α, CXCL10, and CXCL11 in THP1 cells. Our results show that despite exhibiting TLR4-activation ability, M3G does not elicit the expression of classical activation markers in LPS-responsive macrophages. PMID:27909407

  3. The TLR4-Active Morphine Metabolite Morphine-3-Glucuronide Does Not Elicit Macrophage Classical Activation In Vitro.

    PubMed

    Khabbazi, Samira; Xie, Nan; Pu, Wenjun; Goumon, Yannick; Parat, Marie-Odile

    2016-01-01

    Macrophages are abundant in the tumor microenvironment where they adopt a pro-tumor phenotype following alternative polarization induced by paracrine factors from cancer and stromal cells. In contrast, classically activated macrophages have tumoricidal activities, such that the polarization of tumor-associated macrophages has become a novel therapeutic target. Toll-like receptor 4 engagement promotes classical activation of macrophages, and recent literature suggests TLR4 agonism to prevent metastasis and promote survival in experimental metastasis models. A growing number of studies indicate that TLR4 can respond to opioids, including the opioid receptor-inactive morphine metabolite morphine-3-glucuronide (M3G). We measured the activation of TLR4 in a reporter cell line exogenously expressing TLR4 and TLR4 co-receptors, and confirmed that M3G weakly but significantly activates TLR4. We hypothesized that M3G would promote the expression of classical activation signature genes in macrophages in vitro. We exposed mouse and human macrophage cell lines to M3G or the TLR4 activator lipopolysaccharide (LPS), alone or in combination with interferon gamma (IFN-γ). The classical macrophage activation markers tested were iNOS, CD86, IL-6, or TNF-α in RAW 264.7 cells and IL-6, IL-12, IL-23, TNF-α, CXCL10, and CXCL11 in THP1 cells. Our results show that despite exhibiting TLR4-activation ability, M3G does not elicit the expression of classical activation markers in LPS-responsive macrophages.

  4. Larvicidal activity of some secondary lichen metabolites against the mosquito Culiseta longiareolata Macquart (Diptera: Culicidae).

    PubMed

    Cetin, H; Tufan-Cetin, O; Turk, A O; Tay, T; Candan, M; Yanikoglu, A; Sumbul, H

    2012-01-01

    The larvicidal activity of some lichen metabolites, (+)-usnic acid, atranorin, 3-hydroxyphysodic acid and gyrophoric acid, against the second and third instar larvae of the mosquito Culiseta longiareolata were studied. All metabolites caused high larvicidal activities. When metabolites were compared on the basis of their LC(50) values, the order of increasing toxicity was as follows: gyrophoric acid (0.41 ppm) > (+)-usnic acid (0.48 ppm) > atranorin (0.52 ppm) > 3-hydroxyphysodic acid (0.97 ppm). However, when LC(90) values were compared, the order of toxicity was (+)-usnic acid (1.54 ppm) > gyrophoric acid (1.93 ppm) > 3-hydroxyphysodic acid (4.33 ppm) > atranorin (5.63 ppm). In conclusion, our results found that lichen secondary metabolites may have a promising role as potential larvicides.

  5. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors.

    PubMed

    Kojima, Hiroyuki; Takeuchi, Shinji; Van den Eede, Nele; Covaci, Adrian

    2016-03-14

    Organophosphate flame retardants (OPFRs) have been used in a wide variety of applications and detected in several environmental matrices, including indoor air and dust. Continuous human exposure to these chemicals is of growing concern. In this study, the agonistic and/or antagonistic activities of 12 primary OPFR-metabolites against ten human nuclear receptors were examined using cell-based transcriptional assays, and compared to those of their parent compounds. As a result, 3-hydroxylphenyl diphenyl phosphate and 4-hydroxylphenyl diphenyl phosphate showed more potent estrogen receptor α (ERα) and ERβ agonistic activity than did their parent, triphenyl phosphate (TPHP). In addition, these hydroxylated TPHP-metabolites also showed ERβ antagonistic activity at higher concentrations and exhibited pregnane X receptor (PXR) agonistic activity as well as androgen receptor (AR) and glucocorticoid receptor (GR) antagonistic activities at similar levels to those of TPHP. Bis(2-butoxyethyl) 3'-hydroxy-2-butoxyethyl phosphate and 2-hydroxyethyl bis(2-butoxyethyl) phosphate act as PXR agonists at similar levels to their parent, tris(2-butoxyethyl) phosphate. On the other hand, seven diester OPFR-metabolites and 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate did not show any receptor activity. Taken together, these results suggest that hydroxylated TPHP-metabolites show increased estrogenicity compared to the parent compound, whereas the diester OPFR-metabolites may have limited nuclear receptor activity compared to their parent triester OPFRs.

  6. Garlic sprouting is associated with increased antioxidant activity and concomitant changes in the metabolite profile.

    PubMed

    Zakarova, Alexandra; Seo, Ji Yeon; Kim, Hyang Yeon; Kim, Jeong Hwan; Shin, Jung-Hye; Cho, Kye Man; Lee, Choong Hwan; Kim, Jong-Sang

    2014-02-26

    Although garlic (Allium sativum) has been extensively studied for its health benefits, sprouted garlic has received little attention. We hypothesized that sprouting garlic would stimulate the production of various phytochemicals that improve health. Ethanolic extracts from garlic sprouted for different periods had variable antioxidant activities when assessed with in vitro assays, including the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay and the oxygen radical absorbance capacity assay. Extracts from garlic sprouted for 5 days had the highest antioxidant activity, whereas extracts from raw garlic had relatively low antioxidant activity. Furthermore, sprouting changed the metabolite profile of garlic: the metabolite profile of garlic sprouted for 5-6 days was distinct from the metabolite profile of garlic sprouted for 0-4 days, which is consistent with the finding that garlic sprouted for 5 days had the highest antioxidant activity. Therefore, sprouting may be a useful way to improve the antioxidant potential of garlic.

  7. New brominated flame retardants and their metabolites as activators of the pregnane X receptor.

    PubMed

    Gramec Skledar, Darja; Tomašič, Tihomir; Carino, Adriana; Distrutti, Eleonora; Fiorucci, Stefano; Peterlin Mašič, Lucija

    2016-09-30

    The present study investigated the activities on different nuclear receptors of the new brominated flame retardants 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) and bis(2-ethylhexyl) 2,3,4,5-tetrabromophthalate (TBPH), and their main carboxylic acid metabolites 2,3,4,5-tetrabromobenzoic acid (TBBA) and mono(2-ethylhexyl) tetrabromophthalate (TBMEPH). None of selected chemicals exhibited marked activity towards PPARα and PPARγ by the use of transactivation assays in HepG2 cells transfected with peroxisome proliferator-activated receptors. In contrast, selected flame retardants all exhibited potent agonist activity on pregnane X receptor (PXR), with EC50 values of 5.5μM for TBPH and 2.0μM for its metabolite TBMEPH. Molecular docking of TBPH and TBMEPH to the PXR ligand binding site revealed similar interactions, with differences only for conformation and orientation of the alkyl chains. Additionally, TBPH showed antagonist activity on PXR (IC50, 13.9μM). Moreover, there was significant up-regulation of CYP3A4 expression via PXR activation for TBB and TBPH and their metabolites. Induction of CYP3A4 might cause undesired drug-drug interactions, lower bioavailability of pharmaceutical drugs, higher formation of reactive toxic metabolites, or enhanced elimination of endogenous hormones, such as T3/T4, to lead to endocrine disruption. These data provide new and important insights into the toxicity of these new polybrominated flame retardants, TBB and TBPH, and their metabolites.

  8. The photospheric abundances of active binaries. II. Atmospheric parameters and abundance patterns for 6 single-lined RS CVn systems

    NASA Astrophysics Data System (ADS)

    Morel, T.; Micela, G.; Favata, F.; Katz, D.; Pillitteri, I.

    2003-12-01

    Photospheric parameters and abundances are presented for a sample of single-lined chromospherically active binaries from a differential LTE analysis of high-resolution spectra. Abundances have been derived for 13 chemical species, including several key elements such as Li, Mg, and Ca. Two methods have been used. The effective temperatures, surface gravities and microturbulent velocities were first derived from a fully self-consistent analysis of the spectra, whereby the temperature is determined from the excitation equilibrium of the Fe I lines. The second approach relies on temperatures derived from the (B-V) colour index. These two methods give broadly consistent results for the stars in our sample, suggesting that the neutral iron lines are formed under conditions close to LTE. We discuss the reliability in the context of chromospherically active stars of various colour indices used as temperature indicators, and conclude that the (V-R) and (V-I) colours are likely to be significantly affected by activity processes. Irrespective of the method used, our results indicate that the X-ray active binaries studied are not as metal poor as previously claimed, but are at most mildly iron-depleted relative to the Sun (-0.41protect <~ [Fe/H]protect la +0.11). A significant overabundance of several chemical species is observed (e.g., the alpha -synthezised elements). These abundance patterns are discussed in relation to stellar activity. Based on observations collected at ESO (La Silla, Chile). Table A.1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/495

  9. O-Methylated Metabolite of 7,8-Dihydroxyflavone Activates TrkB Receptor and Displays Antidepressant Activity

    PubMed Central

    Liu, Xia; Qi, Qi; Xiao, Ge; Li, Jingyu; Luo, Hongbo R.; Ye, Keqiang

    2016-01-01

    7,8-Dihydroxyflavone (7,8-DHF) acts as a TrkB receptor-specific agonist. It mimics the physiological actions of brain-derived neurotrophic factor (BDNF) and demonstrates remarkable therapeutic efficacy in animal models of various neurological diseases. Nonetheless, its in vivo pharmacokinetic profiles and metabolism remain unclear. Here we report that 7,8-DHF and its O-methylated metabolites distribute in mouse brain after oral administration. Both hydroxy groups can be mono-methylated, and the mono-methylated metabolites activate TrkB in vitro and in vivo. Blocking methylation, using COMT inhibitors, diminishes the agonistic effect of TrkB activation by 7,8-DHF or 4′-dimethylamino-7,8-DHF, supporting the contribution of the methylated metabolite to TrkB activation in mouse brain. Moreover, we have synthesized several methylated metabolite derivatives, and they also potently activate the TrkB receptor and reduce immobility in both forced swim test and tail suspension test, indicating that these methylated metabolites may possess antidepressant activity. Hence, our data demonstrate that 7,8-DHF is orally bioavailable and can penetrate the brain-blood barrier. The O-methylated metabolites are implicated in TrkB receptor activation in the brain. PMID:23445871

  10. Membrane-active metabolites produced by soil actinomycetes using chromatic phospholipid/polydiacetylene vesicles.

    PubMed

    Mehravar, Maryam; Sardari, Soroush; Owlia, Parviz

    2011-12-01

    Increased resistance of pathogens toward existing antibiotics has compelled the research efforts to introduce new antimicrobial substances. Drugs with new and less resistant-prone targets to antimicrobial activity have a high priority for drug development activities. Cell membrane seems to be a potential target for new antibiotic agent development to overcome resistance. In this study, A total number of 67 actinomycetes were isolated from the soil samples collected from desert, farming and mineral parts of Iran. We used a chromatic sensor as a membrane model that was set up for the target of antimicrobial metabolites of actinomycetes isolated from the soil. The sensors particles were composed of phospholipid and polymerized polydiacetylene (PDA) lipids. These polymers exhibited color change following interaction with membrane-active metabolites. The color change was due to structural disorder in the lipids following their interaction with membrane-active metabolites. The resultant color change was recorded by fluorescent microscope and easily recognizable by naked eye as well. Sixteen strains were isolated which produced antimicrobial metabolites and were effective against test microorganisms (Escherichia coli, Candida albicans and Saccharomyces cerevisiae ). A total number of 3 out of 16 strains produced membrane-active metabolites. These 3 strains were identified using 16s rRNA as Streptomyces sp and submitted to GenBank (accession no. JN180853; JN180854; JN180855).

  11. Changing Dietary Calcium-Phosphorus Level and Cereal Source Selectively Alters Abundance of Bacteria and Metabolites in the Upper Gastrointestinal Tracts of Weaned Pigs

    PubMed Central

    Mann, Evelyne; Schmitz-Esser, Stephan; Wagner, Martin; Ritzmann, Mathias; Zebeli, Qendrim

    2013-01-01

    Several dietary ingredients may affect the bacterial community structure and metabolism in the porcine gut and may therefore influence animals' health and performance. This study investigated the effects of cereal source and calcium-phosphorus (CaP) level in the diet on bacterial microbiota and metabolites, nutrient intake, and gut environment in weaned pigs. Pigs (n = 8/treatment) were fed wheat-barley- or corn-based diets with an adequate or high CaP level for 14 days. Effects on microbiota in the stomach, ileum, and midcolon were assessed using quantitative PCR. Data showed that Enterobacteriaceae, Campylobacter spp., and Helicobacter spp., which all contain highly immune reactive lipopolysaccharide (LPS), were abundant at all gut sites. Diet effects on bacteria and metabolites were moderate and occurred mainly in the upper gut, whereas no effects on bacteria, fermentation products, and LPS could be observed in the colon. Differences in carbohydrate intake with corn versus wheat-barley diets selectively stimulated Bifidobacterium in the stomach and ileum. There was a growth advantage for a few bacterial groups in the stomach and ileum of pigs fed the high versus adequate CaP level (i.e., gastric Enterobacteriaceae and ileal Enterococcus, Bacteroides-Prevotella-Porphyromonas, and Campylobacter). Interestingly, gastrointestinal pH was not affected by dietary CaP level. The present findings demonstrate the stability of the bacterial community and gut environment toward dietary changes even in young pigs. The results on stimulation of gastric and ileal Bifidobacterium by corn diets may be employed in nutritional strategies to support gut health after weaning. PMID:24038702

  12. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  13. Metabolomics reveals a novel vitamin E metabolite and attenuated vitamin E metabolism upon PXR activation.

    PubMed

    Cho, Joo-Youn; Kang, Dong Wook; Ma, Xiaochao; Ahn, Sung-Hoon; Krausz, Kristopher W; Luecke, Hans; Idle, Jeffrey R; Gonzalez, Frank J

    2009-05-01

    Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.

  14. Evaluation of Bacillus cereus and Bacillus pumilus metabolites for anthelmintic activity

    PubMed Central

    Kumar, M. L. Vijaya; Thippeswamy, B.; Kuppust, I. L.; Naveenkumar, K. J.; Shivakumar, C. K.

    2015-01-01

    Objective: To assess the anthelmintic acivity of Bacillus cereus and Bacillus pumilus metabolites. Materials and Methods: The successive solvent extractions with petroleum ether, ethyl acetate and methanol. The solvent extracts were tested for anthelmintic activity against Pheretima posthuma at 20 mg/ml concentration. The time of paralysis and time of death of the worms was determined for all the extracts. Albendazole was taken as a standard reference and sterile water as a control. Results: All the sample extracts showed significant anthelmintic activity in paralyzing the worms comparable with that of the standard drug. The time of death exhibited by BP metabolites was close to the time exhibited by standard. Conclusion: The study indicates both bacteria Bacillus cereus and Bacillus pumilus have anthelmintic activity indicating potential metabolites in them. PMID:25598639

  15. Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters

    PubMed Central

    Mayer, F P; Wimmer, L; Dillon‐Carter, O; Partilla, J S; Burchardt, N V; Mihovilovic, M D; Baumann, M H

    2016-01-01

    Background and Purpose 4‐Methyl‐N‐methylcathinone (mephedrone) is a synthetic stimulant that acts as a substrate‐type releaser at transporters for dopamine (DAT), noradrenaline (NET) and 5‐HT (SERT). Upon systemic administration, mephedrone is metabolized to several phase I compounds: the N‐demethylated metabolite, 4‐methylcathinone (nor‐mephedrone); the ring‐hydroxylated metabolite, 4‐hydroxytolylmephedrone (4‐OH‐mephedrone); and the reduced keto‐metabolite, dihydromephedrone. Experimental Approach We used in vitro assays to compare the effects of mephedrone and synthetically prepared metabolites on transporter‐mediated uptake and release in HEK293 cells expressing human monoamine transporters and in rat brain synaptosomes. In vivo microdialysis was employed to examine the effects of i.v. metabolite injection (1 and 3 mg·kg−1) on extracellular dopamine and 5‐HT levels in rat nucleus accumbens. Key Results In cells expressing transporters, mephedrone and its metabolites inhibited uptake, although dihydromephedrone was weak overall. In cells and synaptosomes, nor‐mephedrone and 4‐OH‐mephedrone served as transportable substrates, inducing release via monoamine transporters. When administered to rats, mephedrone and nor‐mephedrone produced elevations in extracellular dopamine and 5‐HT, whereas 4‐OH‐mephedrone did not. Mephedrone and nor‐mephedrone, but not 4‐OH‐mephedrone, induced locomotor activity. Conclusions and Implications Our results demonstrate that phase I metabolites of mephedrone are transporter substrates (i.e. releasers) at DAT, NET and SERT, but dihydromephedrone is weak in this regard. When administered in vivo, nor‐mephedrone increases extracellular dopamine and 5‐HT in the brain whereas 4‐OH‐mephedrone does not, suggesting the latter metabolite does not penetrate the blood–brain barrier. Future studies should examine the pharmacokinetics of nor‐mephedrone to determine its possible

  16. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters

    USGS Publications Warehouse

    Writer, Jeffrey; Ferrer, Imma; Barber, Larry B.; Thurman, E. Michael

    2013-01-01

    Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations ± standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700 ± 1000 ng L−1, 2100 ± 1700 ng L−1, carbamazepine and 10-hydroxy-carbamazepine 480 ± 380 ng L−1, 360 ± 400 ng L−1, venlafaxine and O-desmethyl-venlafaxine 1400 ± 1300 ng L−1, 1800 ± 2300 ng L−1. Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that

  17. Examination of microsomal cytochrome P450-catalyzed in vitro activation of o-phenylphenol to DNA binding metabolite(s) by 32P-postlabeling technique.

    PubMed

    Pathak, D N; Roy, D

    1992-09-01

    It has been previously reported that the reactive metabolites phenylsemiquinone and phenylbenzoquinone are generated during microsomal cytochrome P450-catalyzed redox cycling of o-phenylphenol (OPP). However, covalent modification of DNA by OPP-reactive metabolites has yet not been demonstrated. In the present study we have investigated the covalent binding in DNA by OPP-reactive metabolites using 32P-postlabeling. Analysis of adducts by 32P-postlabeling in products of chemical reaction of DNA with phenylbenzoquinone revealed four major and several minor adducts. The chemical reaction of deoxyguanosine 3'-phosphate with phenylbenzoquinone also showed four major adducts. The chromatographic mobility of major adducts of deoxyguanosine 3'-phosphate-phenylbenzoquinone was identical to that of major adducts of DNA-phenylbenzoquinone. The major adducts are demonstrated to be stable. The total covalent binding in deoxyguanosine 3'-phosphate by phenylbenzoquinone (686,000-687,000 amol/nmol nucleotide) was higher than that observed in DNA (26,500-28,000 amol/nmol nucleotides). Reaction of DNA with OPP or a hydroxylated metabolite of OPP, phenylhydroquinone, in the presence of microsomes and NADPH or cumene hydroperoxide showed four major adducts. Adduct formation in DNA by OPP or phenylhydroquinone in the presence of the microsomal activation system was drastically decreased by known inhibitors of cytochrome P450. The chromatographic mobility of major adducts in DNA by OPP or phenylhydroquinone in the presence of microsomal activation system matched with those major adducts observed in deoxyguanosine 3'-phosphate or DNA reacted with pure phenylbenzoquinone. These data demonstrate that OPP or phenylhydroquinone, a hydroxylated metabolite of OPP, is able to bind covalently to DNA in the presence of a microsomal cytochrome P450 activation system. Phenylbenzoquinone is one of the DNA-binding metabolite(s) of OPP. It is concluded that OPP is genotoxic in an in vitro system and

  18. Effects of omeprazole and genetic polymorphism of CYP2C19 on the clopidogrel active metabolite.

    PubMed

    Boulenc, Xavier; Djebli, Nassim; Shi, Juan; Perrin, Laurent; Brian, William; Van Horn, Robert; Hurbin, Fabrice

    2012-01-01

    Clopidogrel is an antiplatelet agent widely used in cardiovascular diseases and an inactive prodrug that needs to be converted to an active metabolite in two sequential metabolic steps. Several CYP450 isoforms involved in these two steps have been described, although the relative contribution in vivo of each enzyme is still under debate. CYP2C19 is considered to be the major contributor to active metabolite formation. In the current study, net CYP2C19 contribution to the active metabolite formation was determined from exposure of the active metabolite in two clinical studies (one phase I study with well balanced genetic polymorphic populations and a meta-analysis with a total of 396 healthy volunteers) at different clopidogrel doses. CYP2C19 involvements were estimated to be from 58 to 67% in intermediate metabolizers (IMs), from 58 to 72% in extensive metabolizers (EMs), and from 56 to 74% in ultrarapid metabolizers (UMs), depending on the study and the dose. For this purpose, a static model was proposed to estimate the net contribution of a given enzyme to the secondary metabolite formation. This static model was compared with a dynamic approach (Simcyp model) and showed good consistency. In parallel, in vitro investigations showed that omeprazole is a mechanism-based inhibitor of CYP2C19 with K(I) of 8.56 μM and K(inact) of 0.156 min(-1). These values were combined with the net CYP2C19 contribution to the active metabolite formation, through a static approach, to predict the inhibitory effect at 80-mg omeprazole doses in EM, IM, and UM CYP2C19 populations, with good consistency, compared with observed clinical values.

  19. Anti-Oxidative Activity of Mytiloxanthin, a Metabolite of Fucoxanthin in Shellfish and Tunicates

    PubMed Central

    Maoka, Takashi; Nishino, Azusa; Yasui, Hiroyuki; Yamano, Yumiko; Wada, Akimori

    2016-01-01

    Anti-oxidative activities of mytiloxanthin, a metabolite of fucoxanthin in shellfish and tunicates, were investigated. Mytiloxanthin showed almost the same activities for quenching singlet oxygen and the inhibition of lipid peroxidation as those of astaxanthin, which is a well-known singlet oxygen quencher. Furthermore, mytiloxanthin showed excellent scavenging activity for hydroxyl radicals and this activity was markedly higher than that of astaxanthin. PMID:27187417

  20. Antifeedant Activity of Ginkgo biloba Secondary Metabolites against Hyphantria cunea Larvae: Mechanisms and Applications.

    PubMed

    Pan, Long; Ren, Lili; Chen, Fang; Feng, Yuqian; Luo, Youqing

    2016-01-01

    Ginkgo biloba is a typical relic plant that rarely suffers from pest hazards. This study analyzed the pattern of G. biloba pest hazards in Beijing; tested the antifeedant activity of G. biloba extracts, including ginkgo flavonoids, ginkgolide, and bilobalide, against Hyphantria cunea larvae; determined the activities of glutathione transferase (GSTs), acetylcholinesterase (AChE), carboxylesterase (CarE) and mixed-functional oxidase (MFO), in larvae after feeding on these G. biloba secondary metabolites; and screened for effective botanical antifeedants in the field. In this study, no indicators of insect infestation were found for any of the examined leaves of G. biloba; all tested secondary metabolites showed significant antifeedant activity and affected the activity of the four larval detoxifying enzymes. Ginkgolide had the highest antifeedant activity and the most significant effect on the detoxifying enzymes (P<0.05). Spraying leaves with G. biloba extracts or ginkgolide both significantly repelled H. cunea larvae in the field (P<0.05), although the former is more economical and practical. This study investigated the antifeedant activity of G. biloba secondary metabolites against H. cunea larvae, and the results provide new insights into the mechanism of G. biloba pest resistance. This study also developed new applications of G. biloba secondary metabolites for effective pest control.

  1. Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer.

    PubMed

    Lu, Wenjie Jessie; Desta, Zeruesenay; Flockhart, David A

    2012-01-01

    The mechanism of tamoxifen action in the treatment of breast cancer is believed to be via active metabolites that act as potent estrogen receptor antagonists. Attempts to identify relationships between active metabolite concentrations and clinical outcomes have produced mixed results. Since anti-estrogenic effects may be brought about not only by estrogen antagonism, but also by reduced estrogen synthesis, we tested the ability of tamoxifen and its principal metabolites to inhibit aromatase in vitro. The activity of human aromatase in both recombinant and placental microsomal preparations was measured using the rate of generation of a fluorescent metabolite in the presence and absence of multiple concentrations of tamoxifen, endoxifen, N-desmethyl-tamoxifen, and Z-4-hydroxy-tamoxifen. Aromatase inhibition was further characterized by measuring the inhibition of testosterone metabolism to estradiol. The biochemical mechanisms of inhibition were documented and their inhibitory potency was compared. Using recombinant human aromatase, endoxifen, and N-desmethyl-tamoxifen were able to inhibit aromatase activity with K (i) values of 4.0 and 15.9 μM, respectively. Detailed characterization of inhibition by endoxifen and N-desmethyl-tamoxifen indicated non-competitive kinetics for both inhibitors. Similarly, endoxifen-inhibited testosterone metabolism via a non-competitive mechanism. No appreciable inhibition by tamoxifen or Z-4-hydroxy-tamoxifen was observed at similar concentrations. The relative inhibitory potency was: endoxifen > N-desmethyl-tamoxifen > Z-4-hydroxy-tamoxifen > tamoxifen. Similar data were obtained in human placental microsomes. Endoxifen and N-desmethyl-tamoxifen were found to be potent inhibitors of aromatase. Inhibition by these tamoxifen metabolites may contribute to the variability in clinical effects of tamoxifen in patients with breast cancer. Relationships between tamoxifen metabolite concentrations and clinical outcomes may be complex

  2. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR.

    PubMed Central

    Kitareewan, S; Burka, L T; Tomer, K B; Parker, C E; Deterding, L J; Stevens, R D; Forman, B M; Mais, D E; Heyman, R A; McMorris, T; Weinberger, C

    1996-01-01

    RXR is a nuclear receptor that plays a central role in cell signaling by pairing with a host of other receptors. Previously, 9-cis-retinoic acid (9cRA) was defined as a potent RXR activator. Here we describe a unique RXR effector identified from organic extracts of bovine serum by following RXR-dependent transcriptional activity. Structural analyses of material in active fractions pointed to the saturated diterpenoid phytanic acid, which induced RXR-dependent transcription at concentrations between 4 and 64 microM. Although 200 times more potent than phytanic acid, 9cRA was undetectable in equivalent amounts of extract and cannot be present at a concentration that could account for the activity. Phytanic acid, another phytol metabolite, was synthesized and stimulated RXR with a potency and efficacy similar to phytanic acid. These metabolites specifically displaced [3H]-9cRA from RXR with Ki values of 4 microM, indicating that their transcriptional effects are mediated by direct receptor interactions. Phytol metabolites are compelling candidates for physiological effectors, because their RXR binding affinities and activation potencies match their micromolar circulating concentrations. Given their exclusive dietary origin, these chlorophyll metabolites may represent essential nutrients that coordinate cellular metabolism through RXR-dependent signaling pathways. PMID:8856661

  3. In Vitro Effect of Sulfasalazine and Its Metabolites on Human T Lymphocyte Activation

    DTIC Science & Technology

    1994-08-01

    sulfonamide used in the treatment of rheumatoid arthritis, ulcerative colitis and ankylosing spondylitis . Its mechanism of action is not fully...interventions for immune- mediated diseases . One such therapy invoivt %j,_ sulfonamide, sulfasalazine, an -- 4- 4-inflammatory drug used in the treatment of...rheumatoid arthritis, ulcerative colitis, and ankylosing spondylitis2 . The exact mode of action of sulfasalazine and its active metabolites, 5

  4. Rapidly Probing Antibacterial Activity of Graphene Oxide by Mass Spectrometry-based Metabolite Fingerprinting

    PubMed Central

    Zhang, Ning; Hou, Jian; Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Jin, Yulong; Wang, Jianing; He, Qing; Zhao, Rui; Nie, Zongxiu

    2016-01-01

    Application of nanomaterials as anti-bacteria agents has aroused great attention. To investigate the antibacterial activity and antibacterial mechanism of nanomaterials from a molecular perspective is important for efficient developing of nanomaterial antibiotics. In the current work, a new mass spectrometry-based method was established to investigate the bacterial cytotoxicity of graphene oxide (GO) by the metabolite fingerprinting of microbes. The mass spectra of extracted metabolites from two strains DH5α and ATCC25922 were obtained before and after the incubation with nanomaterials respectively. Then principal component analysis (PCA) of these spectra was performed to reveal the relationship between the metabolism disorder of microbes and bactericidal activity of GO. A parameter “D” obtained from PCA scores was proposed that is capable to quantitatively evaluate the antibacterial activity of GO in concentration and time-dependent experiments. Further annotation of the fingerprinting spectra shows the variabilities of important metabolites such as phosphatidylethanolamine, phosphatidylglycerol and glutathione. This metabolic perturbation of E. coli indicates cell membrane destruction and oxidative stress mechanisms for anti-bacteria activity of graphene oxide. It is anticipated that this mass spectrometry-based metabolite fingerprinting method will be applicable to other antibacterial nanomaterials and provide more clues as to their antibacterial mechanism at molecular level. PMID:27306507

  5. CHARACTERIZATION ADN BIOLOGICAL ACTIVITY OF SECONDARY METABOLITES FROM ARMILLARIA TABESCENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethyl acetate extracts from liquid cultures of Armillaria tabescens showed good antimicrobial activity against Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analyses of extract constituents led to the isolation and identification of two new co...

  6. Effects of Catechol O-Methyl Transferase Inhibition on Anti-Inflammatory Activity of Luteolin Metabolites.

    PubMed

    Ha, Sang Keun; Lee, Jin-Ah; Cho, Eun Jung; Choi, Inwook

    2017-02-01

    Although luteolin is known to have potent anti-inflammatory activities, much less information has been provided on such activities of its hepatic metabolites. Luteolin was subjected to hepatic metabolism in HepG2 cells either without or with catechol O-methyl transferase (COMT) inhibitor. To identify hepatic metabolites of luteolin without (luteolin metabolites, LMs) or with COMT inhibitor (LMs+CI), metabolites were treated by β-glucuronidase and sulfatase, and found that they were composed of glucuronide and sulfate conjugates of diosmetin in LMs or these conjugates of luteolin in LMs+CI. LMs and LMs+CI were examined for their anti-inflammatory activities on LPS stimulated Raw 264.7 cells. Expression of iNOS and production of nitric oxide and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 were suppressed more effectively by the treatment with LMs+CI than LMs. Our data provide a new insight on possible improvement in functional properties of luteolin on target cells by modifying their metabolic pathway in hepatocytes.

  7. Synaptic Activity Regulates the Abundance and Binding of Complexin

    PubMed Central

    Wragg, Rachel T.; Gouzer, Géraldine; Bai, Jihong; Arianna, Gianluca; Ryan, Timothy A.; Dittman, Jeremy S.

    2015-01-01

    Nervous system function relies on precise chemical communication between neurons at specialized junctions known as synapses. Complexin (CPX) is one of a small number of cytoplasmic proteins that are indispensable in controlling neurotransmitter release through SNARE and synaptic vesicle interactions. However, the mechanisms that recruit and stabilize CPX are poorly understood. The mobility of CPX tagged with photoactivatable green fluorescent protein (pGFP) was quantified in vivo using Caenorhabditis elegans. Although pGFP escaped the synapse within seconds, CPX-pGFP displayed both fast and slow decay components, requiring minutes for complete exchange of the synaptic pool. The longer synaptic residence time of CPX arose from both synaptic vesicle and SNARE interactions, and surprisingly, CPX mobility depended on synaptic activity. Moreover, mouse CPX-GFP reversibly dispersed out of hippocampal presynaptic terminals during stimulation, and blockade of vesicle fusion prevented CPX dispersion. Hence, synaptic CPX can rapidly redistribute and this exchange is influenced by neuronal activity, potentially contributing to use-dependent plasticity. PMID:25809246

  8. Bioequivalence of Two Intravenous Artesunate Products with Its Active Metabolite Following Single and Multiple Injections

    PubMed Central

    Li, Qigui; Xie, Lisa; Melendez, Victor; Weina, Peter

    2011-01-01

    In animal species and humans, artesunate (AS) undergoes extensive and complex biotransformation to an active metabolite, dihydroartemisinin (DHA). The bioequivalence of two intravenous AS pharmaceutical products with 5% NaHCO3 (China Formulation) or 0.3 M PBS (WRAIR Formulation) was determined in rats in a two-formulation, two-period, and two-sequence crossover experimental design. Following single and multiple intravenous administrations, a series of blood samples was collected by using an automated blood sampler and drug concentrations were analyzed by LC-MS/MS. The 90% CI of the difference between the two intravenous formulations was contained within 80–125% of the geometric mean of pharmacokinetic parameters for AS and DHA in all animals dosed. Hematological effects were studied on days 1 and 3 after the final dosing, and a rapidly reversible hematological toxicity (significant reductions in reticulocyte levels) was seen in the peripheral blood of the rats treated with each formulation. The results showed that bioequivalence with the parent compound and active metabolite was fulfilled in the 82.3–117.7% ranges of all parameters (AUC0−t, Cmax, concentration average and degree of fluctuation) in the two-period and two-sequence crossover studies following single and repeated intravenous injections. For the metabolite, the equivalence was satisfied in most pharmacokinetic parameters tested due to the variability in the hydrolysis rate of AS to DHA. The WRAIR formulation of AS was considered to be bioequivalent to the Chinese formulation at steady-state according to the total drug exposure, in terms of both parent drug and active metabolite, rapidly reversal in reticulocyte decline, and extension of single and multiple administrations. Therefore, the parent drug and active metabolites should play similar important roles in the determination of efficacy and safety of the drug.

  9. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity.

    PubMed

    Tsakiris, Stylianos; Giannoulia-Karantana, Aglaia; Simintzi, Irene; Schulpis, Kleopatra H

    2006-01-01

    Studies have implicated aspartame (ASP) with neurological problems. The aim of this study was to evaluate acetylcholinesterase (AChE) activity in human erythrocyte membranes after incubation with the sum of ASP metabolites, phenylalanine (Phe), methanol (met) and aspartic acid (aspt), or with each one separately. Erythrocyte membranes were obtained from 12 healthy individuals and were incubated with ASP hydrolysis products for 1 h at 37 degrees C. AChE was measured spectrophotometrically. Incubation of membranes with ASP metabolites corresponding with 34 mg/kg, 150 mg/kg or 200 mg/kg of ASP consumption resulted in an enzyme activity reduction by -33%, -41%, and -57%, respectively. Met concentrations 0.14 mM, 0.60 mM, and 0.80 mM decreased the enzyme activity by -20%, -32% or -40%, respectively. Aspt concentrations 2.80 mM, 7.60 mM or 10.0 mM inhibited membrane AChE activity by -20%, -35%, and -47%, respectively. Phe concentrations 0.14 mM, 0.35 mM or 0.50mM reduced the enzyme activity by -11%, -33%, and -35%, respectively. Aspt or Phe concentrations 0.82 mM or 0.07 mM, respectively, did not alter the membrane AChE activity. It is concluded that low concentrations of ASP metabolites had no effect on the membrane enzyme activity, whereas high or toxic concentrations partially or remarkably decreased the membrane AChE activity, respectively. Additionally, neurological symptoms, including learning and memory processes, may be related to the high or toxic concentrations of the sweetener metabolites.

  10. Direct evidence of plant-pathogenic activity of fungal metabolites of Trichothecium roseum on apple.

    PubMed

    Zabka, Martin; Drastichová, Kamila; Jegorov, Alexandr; Soukupová, Julie; Nedbal, Ladislav

    2006-07-01

    Apples were exposed to various concentrations of roseotoxins - metabolites of Trichothecium roseum and kinetic fluorescence imaging was used to detect the area influenced by the phytotoxin. Contrast was quantified within these images between the areas exposed to roseotoxins and the untreated areas. It was proved that roseotoxin B is able to penetrate apple peel and produce chlorotic lesions. Activity of roseotoxin B is similar as the activity of destruxins, host specific phytotoxins of Alternaria brassicae parasitic on canola.

  11. Sulfate Reduction at a Lignite Seam: Microbial Abundance and Activity.

    PubMed

    Detmers, J.; Schulte, U.; Strauss, H.; Kuever, J.

    2001-10-01

    In a combined isotope geochemical and microbiological investigation, a setting of multiple aquifers was characterized. Biologically mediated redox processes were observed in the aquifers situated in marine sands of Tertiary age and overlying Quaternary gravel deposits. Intercalated lignite seams define the aquitards, which separate the aquifers. Bacterial oxidation of organic matter is evident from dissolved inorganic carbon characterized by average carbon isotope values between ?18.4 per thousand and ?15.7 per thousand (PDB). Strongly positive sulfur isotope values of up to +50 per thousand (CTD) for residual sulfate indicate sulfate reduction under closed system conditions with respect to sulfate availability. Both, hydrochemical and isotope data are thus consistent with the recent activity of sulfate-reducing bacteria (SRB). Microbiological investigations revealed the presence of an anaerobic food chain in the aquifers. Most-probable-number (MPN) determinations for SRB and fermenting microorganisms reached highest values at the interface between aquifer and lignite seam (1.5 x 103 cells/g sediment dry mass). Five strains of SRB were isolated from highest MPN dilutions. Spore-forming bacteria appeared to dominate the SRB population. Sulfate reduction rates were determined by the 35S-radiotracer method. A detailed assessment indicates an increase in the reduction rate in proximity to the lignite seam, with a maximum turnover of 8.4 mM sulfate/a, suggesting that lignite-drived compounds represent the substrate for sulfate reduction.

  12. The activated sludge ecosystem contains a core community of abundant organisms.

    PubMed

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal.

  13. The activated sludge ecosystem contains a core community of abundant organisms

    PubMed Central

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal. PMID:26262816

  14. Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference.

    PubMed

    Pimentel-Elardo, Sheila M; Sørensen, Dan; Ho, Louis; Ziko, Mikaela; Bueler, Stephanie A; Lu, Stella; Tao, Joe; Moser, Arvin; Lee, Richard; Agard, David; Fairn, Greg; Rubinstein, John L; Shoichet, Brian K; Nodwell, Justin R

    2015-11-20

    Most existing antibiotics were discovered through screens of environmental microbes, particularly the streptomycetes, for the capacity to prevent the growth of pathogenic bacteria. This "activity-guided screening" method has been largely abandoned because it repeatedly rediscovers those compounds that are highly expressed during laboratory culture. Most of these metabolites have already been biochemically characterized. However, the sequencing of streptomycete genomes has revealed a large number of "cryptic" secondary metabolic genes that are either poorly expressed in the laboratory or that have biological activities that cannot be discovered through standard activity-guided screens. Methods that reveal these uncharacterized compounds, particularly methods that are not biased in favor of the highly expressed metabolites, would provide direct access to a large number of potentially useful biologically active small molecules. To address this need, we have devised a discovery method in which a chemical elicitor called Cl-ARC is used to elevate the expression of cryptic biosynthetic genes. We show that the resulting change in product yield permits the direct discovery of secondary metabolites without requiring knowledge of their biological activity. We used this approach to identify three rare secondary metabolites and find that two of them target eukaryotic cells and not bacterial cells. In parallel, we report the first paired use of cheminformatic inference and chemical genetic epistasis in yeast to identify the target. In this way, we demonstrate that oxohygrolidin, one of the eukaryote-active compounds we identified through activity-independent screening, targets the V1 ATPase in yeast and human cells and secondarily HSP90.

  15. Discovery of microsomal triglyceride transfer protein (MTP) inhibitors with potential for decreased active metabolite load compared to dirlotapide.

    PubMed

    Robinson, Ralph P; Bartlett, Jeremy A; Bertinato, Peter; Bessire, Andrew J; Cosgrove, Judith; Foley, Patrick M; Manion, Tara B; Minich, Martha L; Ramos, Brenda; Reese, Matthew R; Schmahai, Theodore J; Swick, Andrew G; Tess, David A; Vaz, Alfin; Wolford, Angela

    2011-07-15

    Analogues related to dirlotapide (1), a gut-selective inhibitor of microsomal triglyceride transfer protein (MTP) were prepared with the goal of further reducing the potential for unwanted liver MTP inhibition and associated side-effects. Compounds were designed to decrease active metabolite load: reducing MTP activity of likely human metabolites and increasing metabolite clearance to reduce exposure. Introduction of 4'-alkyl and 4'-alkoxy substituents afforded compounds exhibiting improved therapeutic index in rats with respect to liver triglyceride accumulation and enzyme elevation. Likely human metabolites of select compounds were prepared and characterized for their potential to inhibit MTP in vivo. Based on preclinical efficacy and safety data and its potential for producing short-lived, weakly active metabolites, compound 13 (PF-02575799) advanced into phase 1 clinical studies.

  16. Bioactivation of dibrominated biphenyls by cytochrome P450 activity to metabolites with estrogenic activity and estrogen sulfotransferase inhibition capacity.

    PubMed

    van Lipzig, Marola M H; Commandeur, Jan N; de Kanter, Frans J J; Damsten, Micaela C; Vermeulen, Nico P E; Maat, Evelina; Groot, Ed J; Brouwer, Abraham; Kester, Monique H A; Visser, Theo J; Meerman, John H N

    2005-11-01

    Exposure of humans and wildlife to xenobiotics, such as halogenated biphenyls, that interfere with the endogenous estrogen balance may lead to endocrine disruption. Such compounds may either mimic or block estradiol's action by agonistic or antagonistic action, respectively. They may also affect endogenous estradiol concentrations by induction or inhibition of enzymes that metabolize estradiol. In the present study, we demonstrate that estrogenic metabolites of two brominated biphenyls, 2,2'-dibromobiphenyl (2,2'-DBB) and 4,4'-dibromobiphenyl (4,4'-DBB), are formed by rat liver microsomal cytochrome P450 (CYP) activity. Bioactivation of 2,2'-DBB and 4,4'-DBB yielded various mono- and dihydroxylated bromobiphenyl metabolites, which were collected by preparative HPLC and analyzed by LC/MS. Several of the metabolites bound to the estrogen receptor (ER) activated the ER and inhibited human estrogen sulfotransferase (hEST). Seven monohydroxylated metabolites were positively identified using synthetic monohydroxylated reference compounds. These synthetic monohydroxylated bromobiphenyls also bound to and activated the ER and inhibited hEST. The highest ER affinity was observed for 4-OH-2,2'-DBB, with an EC50 of 6.6 nM. The highest ER activation was observed for 4-OH-3,4'-DBB (EC50 of 74 nM) while 4-OH-4'-MBB and 4-OH-2,2'-DBB induced a supramaximal (as compared to estradiol) ER activation. The strongest hEST inhibition was found with 4-OH-3,4'-DBB (EC50 = 40 nM). In conclusion, we show that two dibrominated biphenyls are bioactivated by CYP activity into very potent estrogenic metabolites and inhibitors of hEST. These findings are of vital importance for accurate risk assessment of exposure to environmental contaminants, such as halogenated biphenyls. Neglecting bioactivation through biotransformation will lead to underestimation of health risks of this class of xenobiotics.

  17. Network Analysis of Enzyme Activities and Metabolite Levels and Their Relationship to Biomass in a Large Panel of Arabidopsis Accessions[C][W][OA

    PubMed Central

    Sulpice, Ronan; Trenkamp, Sandra; Steinfath, Matthias; Usadel, Bjorn; Gibon, Yves; Witucka-Wall, Hanna; Pyl, Eva-Theresa; Tschoep, Hendrik; Steinhauser, Marie Caroline; Guenther, Manuela; Hoehne, Melanie; Rohwer, Johann M.; Altmann, Thomas; Fernie, Alisdair R.; Stitt, Mark

    2010-01-01

    Natural genetic diversity provides a powerful resource to investigate how networks respond to multiple simultaneous changes. In this work, we profile maximum catalytic activities of 37 enzymes from central metabolism and generate a matrix to investigate species-wide connectivity between metabolites, enzymes, and biomass. Most enzyme activities change in a highly coordinated manner, especially those in the Calvin-Benson cycle. Metabolites show coordinated changes in defined sectors of metabolism. Little connectivity was observed between maximum enzyme activities and metabolites, even after applying multivariate analysis methods. Measurements of posttranscriptional regulation will be required to relate these two functional levels. Individual enzyme activities correlate only weakly with biomass. However, when they are used to estimate protein abundances, and the latter are summed and expressed as a fraction of total protein, a significant positive correlation to biomass is observed. The correlation is additive to that obtained between starch and biomass. Thus, biomass is predicted by two independent integrative metabolic biomarkers: preferential investment in photosynthetic machinery and optimization of carbon use. PMID:20699391

  18. Reproductive activity in the peninsular pronghorn determined from excreted gonadal steroid metabolites.

    PubMed

    Kersey, David C; Holland, Jeff; Eng, Curtis

    2015-01-01

    Fecal hormone monitoring was employed to better define annual patterns of reproductive steroid metabolites from a breeding pair of peninsular pronghorn (Antilocapra americana peninsularis) maintained at the Los Angeles Zoo. Notably in the female, increased excretion of estrogen metabolites occurred during the breeding season (Jun-Aug), and a biphasic pattern in progestagen activity was measured during gestation. Of additional interest, a preterm increase in estrogen that continued for an additional 64 days post partum. Male androgen activity correlated with the female estrogen patterns, with a single successful copulation occurring during the breeding season; interestingly however, the male exhibited no reproductive behaviors during the female's preterm/post partum estrogen increase. These data are the first reproductive steroid profiles for the peninsular pronghorn and provide valuable insight that will aid efforts that link the species' reproductive physiology with conservation management.

  19. New metabolic and pharmacokinetic characteristics of thiocolchicoside and its active metabolite in healthy humans.

    PubMed

    Trellu, M; Filali-Ansary, A; Françon, D; Adam, R; Lluel, P; Dubruc, C; Thénot, J P

    2004-08-01

    Thiocolchicoside (TCC) has been prescribed for several years as a muscle relaxant drug, but its pharmacokinetic (PK) profile and metabolism still remain largely unknown. Therefore, we re-investigated its metabolism and PK, and we assessed the muscle relaxant properties of its metabolites. After oral administration of 8 mg (a therapeutic dose) of 14C-labelled TCC to healthy volunteers, we found no detectable TCC in plasma, urine or faeces. On the other hand, the aglycone derivative obtained after de-glycosylation of TCC (M2) was observed and, in addition, we identified, as the major circulating metabolic entity, 3-O-glucuronidated aglycone (M1) obtained after glucuro-conjugation of M2. One hour after oral administration, M1 plus M2 accounted for more than 75% of the circulating total radioactivity. The pharmacological activity of these metabolites was assessed using a rat model, the muscle relaxant activity of M1 was similar to that of TCC whereas M2 was devoid of any activity. Subsequently, to investigate the PK profile of TCC in human PK studies, we developed and validated a specific bioanalytical method that combines liquid chromatography and ultraviolet detection to assay both active entities. After oral administration, TCC was not quantifiable with an lower limit of quantification set at 1 ng/mL, whereas its active metabolite M1 was detected. M1 appeared rapidly in plasma (tmax=1 h) and was eliminated with an apparent terminal half-life of 7.3 h. In contrast, after intramuscular administration both active entities (TCC and M1) were present; TCC was rapidly absorbed (tmax=0.4 h) and eliminated with an apparent terminal half-life of 1.5 h. M1 concentration peaked at 5 h and this metabolite was eliminated with an apparent terminal half-life of 8.6 h. As TCC and M1 present an equipotent pharmacological activity, the relative oral pharmacological bioavailability of TCC vs. intramuscular administration was calculated and represented 25%. Therefore, to correctly

  20. [Mammals' camera-trapping in Sierra Nanchititla, Mexico: relative abundance and activity patterns].

    PubMed

    Monroy-Vilchis, Octavio; Zarco-González, Martha M; Rodríguez-Soto, Clarita; Soria-Díaz, Leroy; Urios, Vicente

    2011-03-01

    Species conservation and their management depend on the availability of their population behavior and changes in time. This way, population studies include aspects such as species abundance and activity pattern, among others, with the advantage that nowadays new technologies can be applied, in addition to common methods. In this study, we used camera-traps to obtain the index of relative abundance and to establish activity pattern of medium and large mammals in Sierra Nanchititla, Mexico. The study was conducted from December 2003 to May 2006, with a total sampling effort of 4 305 trap-days. We obtained 897 photographs of 19 different species. Nasua narica, Sylvilagus floridanus and Urocyon cinereoargenteus were the most abundant, in agreement with the relative abundance index (RAI, number of independent records/100 trap-days), and according to previous studies with indirect methods in the area. The activity patterns of the species showed that 67% of them are nocturnal, except Odocoileus virginianus, Nasua narica and others. Some species showed differences with previously reported patterns, which are related with seasonality, resources availability, organism sex, principally. The applied method contributed with reliable data about relative abundance and activity patterns.

  1. Polyphenol metabolites from colonic microbiota exert anti-inflammatory activity on different inflammation models.

    PubMed

    Larrosa, Mar; Luceri, Cristina; Vivoli, Elisa; Pagliuca, Chiara; Lodovici, Maura; Moneti, Gloriano; Dolara, Piero

    2009-08-01

    The polyphenols in fruits and vegetables may be partly responsible for the health-promoting effects attributed to fruit and vegetable intake. Although their properties have been relatively well studied, the activity of their metabolites, produced after ingestion, has been poorly investigated. Thus, the aim of this work was to study the potential anti-inflammatory effect of 18 polyphenol metabolites, derived from colon microbiota. They were screened by measuring prostaglandin E(2) (PGE(2)) production by CCD-18 colon fibroblast cells stimulated with IL-1beta. Metabolites that inhibited more than 50% PGE(2) production were hydrocaffeic (HCAF), dihydroxyphenyl acetic (dOHPA), and hydroferulic acid (HFER), that subsequently were tested with the writhing and paw pressure test in rodents where all three compounds showed an anti-inflammatory effect. The effect of HCAF administered orally (50 mg/kg) was also tested in the dextran sodium sulfate (DSS)-induced colitis model. Weight loss and fecal water content were more pronounced in DSS rats than in DSS-HCAF treated rats. HCAF treatment diminished the expression of the cytokines IL-1beta, IL-8, and TNF-alpha, reduced malonyldialdehyde (MDA) levels and oxidative DNA damage (measured as 8-oxo-2'-deoxyguanosine levels) in distal colon mucosa. These results indicate that HCAF, dOHPA, and HFER have anti-inflammatory activity in vitro and in vivo.

  2. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  3. Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites.

    PubMed

    Gliszczyńska, Anna; Łysek, Agnieszka; Janeczko, Tomasz; Świtalska, Marta; Wietrzyk, Joanna; Wawrzeńczyk, Czesław

    2011-04-01

    Six metabolites were obtained as a result of microbial transformation of (+)-nootkatone (1) by the fungal strains: Botrytis, Didymosphaeria, Aspergillus, Chaetomium and Fusarium. Their structure were established as (+)-(4R,5S,7R,9R)-9α-hydroxynootkatone (2), (+)-(4R,5S,7R)-13-hydroxynootkatone (3) and (+)-(4R,5S,7R,9R,11S)-11,12-epoxy-9α-hydroxynootkatone (4), (+)-(4R,5S,7R,11S)-11,12-epoksynootkatone (5), (+)-(4R,5S,7R)-11,12-dihydroxynootkatone (6) and (+)-(4R,5S,7R)-7,11,12-trihydroxynootkatone (7) on the basis of their spectral data. Two products: (4) and (7) were not previously reported in the literature. The antiproliferative activity of (+)-nootkatone (1) and isolated metabolites (2-7) of its biotransformation has been evaluated.

  4. Influence of Macrofaunal Burrows on Extracellular Enzyme Activity and Microbial Abundance in Subtropical Mangrove Sediment.

    PubMed

    Luo, Ling; Gu, Ji-Dong

    2016-09-13

    Bioturbation and bioirrigation induced by burrowing macrofauna are recognized as important processes in aquatic sediment since macrofaunal activities lead to the alteration of sediment characteristics. However, there is a lack of information on how macrofauna influence microbial abundance and extracellular enzyme activity in mangrove sediment. In this study, the environmental parameters, extracellular enzyme activities, and microbial abundance were determined and their relationships were explored. Sediment samples were taken from the surface (S) and lower layer (L) without burrow, as well as crab burrow wall (W) and bottom of crab burrow (B) located at the Mai Po Nature Reserve, Hong Kong. The results showed that the burrowing crabs could enhance the activities of oxidase and hydrolases. The highest activities of phenol oxidase and acid phosphatase were generally observed in B sediment, while the highest activity of N-acetyl-glucosaminidase was found in W sediment. The enzymatic stoichiometry indicated that the crab-affected sediment had similar microbial nitrogen (N) and phosphorous (P) availability relative to carbon (C), lower than S but higher than L sediment. Furthermore, it was found that the highest abundance of both bacteria and fungi was shown in S sediment, and B sediment presented the lowest abundance. Moreover, the concentrations of phosphorus and soluble phenolics in crab-affected sediment were almost higher than the non-affected sediment. The alterations of phenolics, C/P and N/P ratios as well as undetermined environmental factors by the activities of crabs might be the main reasons for the changes of enzyme activity and microbial abundance. Finally, due to the important role of phenol oxidase and hydrolases in sediment organic matter (SOM) decomposition, it is necessary to take macrofaunal activities into consideration when estimating the C budget in mangrove ecosystem in the future.

  5. Inhibition of cytochrome P450 activity enhances the systemic availability of triclabendazole metabolites in sheep.

    PubMed

    Virkel, G; Lifschitz, A; Sallovitz, J; Ballent, M; Scarcella, S; Lanusse, C

    2009-02-01

    Understanding the disposition kinetics and the pattern of metabolism is critical to optimise the flukicidal activity of triclabendazole (TCBZ) in ruminants. TCBZ is metabolised by both flavin-monooxygenase (FMO) and cytochrome P450 (P450) in the liver. Interference with these metabolic pathways may be useful to increase the systemic availabilities of TCBZ metabolites, which may improve the efficacy against Fasciola hepatica. The plasma disposition of TCBZ metabolites was evaluated following TCBZ co-administration with FMO [methimazole (MTZ)] and P450 [piperonyl butoxyde (PB) and ketoconazole (KTZ)] inhibitors in sheep. Twenty (20) healthy Corriedale x Merino weaned female lambs were randomly allocated into four experimental groups. Animals of each group were treated as follow: Group A, TCBZ alone (5 mg/kg, IV route); Group B, TCBZ (5 mg/kg, IV) + MTZ (3 mg/kg, IV); Group C, TCBZ (5 mg/kg, IV) + PB (30 mg/kg, IV) and Group D, TCBZ (5 mg/kg, IV) + KTZ (10 mg/kg, orally). Blood samples were taken over 240 h post-treatment and analysed by HPLC. TCBZ sulphoxide and sulphone were the main metabolites recovered in plasma. MTZ did not affect TCBZ disposition kinetics. TCBZ sulphoxide Cmax values were significantly increased (P < 0.05) after the TCBZ + PB (62%) and TCBZ + KTZ (37%) treatments compared to those measured in the TCBZ alone treatment. TCBZ sulphoxide plasma AUCs were higher (P < 0.05) in the presence of both PB (99%) and KTZ (41%). Inhibition of TCBZ P450-mediated oxidation in the liver accounted for the increased systemic availability of its active metabolite TCBZ sulphoxide. This work contributes to the search of different strategies to improve the use of this flukicidal drug in ruminants.

  6. Evaluation of the pharmacological activity of the major mexiletine metabolites on skeletal muscle sodium currents

    PubMed Central

    De Bellis, M; De Luca, A; Rana, F; Cavalluzzi, M M; Catalano, A; Lentini, G; Franchini, C; Tortorella, V; Conte Camerino, D

    2006-01-01

    Background and purpose: Mexiletine (Mex), an orally effective antiarrhythmic agent used to treat ventricular arrhythmias, has also been found to be effective for myotonia and neuropathic pain. It is extensively metabolized in humans but little information exists about the pharmacodynamic properties of its metabolites. Experimental approach: To determine their contribution to the clinical activity of Mex, p-hydroxy-mexiletine (PHM), hydroxy-methyl-mexiletine (HMM), N-hydroxy-mexiletine (NHM) (phase I reaction products) and N-carbonyloxy β-D-glucuronide (NMG) (phase II reaction product) were tested on sodium currents (INa) of frog skeletal muscle fibres. Sodium currents were elicited with depolarizing pulses from different holding potentials (HP=−140, −100, −70 mV) and stimulation frequencies (0.25, 0.5, 1, 2, 5, 10 Hz) using the vaseline-gap voltage-clamp method. Key results: All the hydroxylated derivatives blocked the sodium channel in a voltage- and use-dependent manner. The PHM, HMM and NHM metabolites were up to 10-fold less effective than the parent compound. However, HMM showed a greater use-dependent behaviour (10 Hz), compared to Mex and the other metabolites. Similar to Mex, these products behaved as inactivating channel blockers. Conjugation with glucuronic acid (NMG) resulted in almost complete abolition of the pharmacological activity of the parent compound. Conclusions and Implications: Thus, although less potent, the phase I metabolites tested demonstrated similar pharmacological behaviour to Mex and might contribute to its clinical profile. PMID:16921388

  7. Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment.

    PubMed

    Ferrando-Climent, Laura; Collado, Neus; Buttiglieri, Gianluigi; Gros, Meritxell; Rodriguez-Roda, Ignasi; Rodriguez-Mozaz, Sara; Barceló, Damià

    2012-11-01

    Even though Ibuprofen is one of the most studied pharmaceutical in the aquatic environment, there is still a lack of information about its fate and the generation of different transformation products along wastewater treatment plants (WWTPs). Ibuprofen biotransformation products can be generated by human metabolism or by microorganisms present in WWTPs and in natural waters, soils, and sediments, which increase the probability to find them in environment. In this work, the presence of ibuprofen and its main metabolites: ibuprofen carboxylic acid (CBX IBU), 2-hydroxylated ibuprofen (2-OH IBU) and 1-hydroxylated ibuprofen (1-OH IBU), was monitored quantitatively along the biodegradation processes occurring in different batch activated sludge (BAS) experiments under different working conditions. Total ibuprofen removal, achieved in almost all the experiments, was related in part to the formation of the metabolites mentioned. Another ibuprofen metabolite, 1,2-dihydroxy ibuprofen, was detected in BAS experiments for the first time. The metabolites 2-OH IBU and 1-OH IBU remained in solution at the end of ibuprofen biodegradation experiments whereas CBX IBU disappeared faster than hydroxylated metabolites. In addition, also the biodegradation of 1-OH IBU, 2-OH IBU and CBX IBU was evaluated in batch experiments: CBX IBU removal occurred at the highest rate followed by IBU, 2-OH IBU, and 1-OH IBU, which exhibited the lowest removal rate. Finally, Ibuprofen and ibuprofen metabolites were monitored in sewage and natural water samples, where they were found at higher levels than expected: the maximum concentration in influent wastewater samples were 13.74, 5.8, 38.4, 94.0μg/L for IBU, 1-OH IBU, CBX IBU and 2-OH IBU respectively; whereas maximum levels in effluent wastewater samples were 1.9, 1.4, 10.7, 5.9 μg/L for IBU, 1-OH IBU, CBX IBU and 2-OH IBU respectively. High levels of the compounds were also found in river samples, in particular for CBX IBU, which was detected up

  8. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi--Metabolites, enzymes and residual antibacterial activity.

    PubMed

    Čvančarová, Monika; Moeder, Monika; Filipová, Alena; Cajthaml, Tomáš

    2015-10-01

    A group of white rot fungi (Irpex lacteus, Panus tigrinus, Dichomitus squalens, Trametes versicolor and Pleurotus ostreatus) was investigated for the biodegradation of norfloxacin (NOR), ofloxacin (OF) and ciprofloxacin (CIP). The selected fluoroquinolones were readily degraded almost completely by I. lacteus and T. versicolor within 10 and 14 d of incubation in liquid medium, respectively. The biodegradation products were identified by liquid chromatography-mass spectrometry. The analyses indicated that the fungi use similar mechanisms to degrade structurally related antibiotics. The piperazine ring of the molecules is preferably attacked via either substitution or/and decomposition. In addition to the degradation efficiency, attention was devoted to the residual antibiotic activities estimated using Gram-positive and Gram-negative bacteria. Only I. lacteus was able to remove the antibiotic activity during the course of the degradation of NOR and OF. The product-effect correlations evaluated by Principal Component Analysis (PCA) enabled elucidation of the participation of the individual metabolites in the residual antibacterial activity. Most of the metabolites correlated with the antibacterial activity, explaining the rather high residual activity remaining after the biodegradation. PCA of ligninolytic enzyme activities indicated that manganese peroxidase might participate in the degradation.

  9. Clustering of 3D-Structure Similarity Based Network of Secondary Metabolites Reveals Their Relationships with Biological Activities.

    PubMed

    Ohtana, Yuki; Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Huang, Ming; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Horai, Hisayuki; Nakamura, Yukiko; Morita Hirai, Aki; Lange, Klaus W; Kibinge, Nelson K; Katsuragi, Tetsuo; Shirai, Tsuyoshi; Kanaya, Shigehiko

    2014-12-01

    Developing database systems connecting diverse species based on omics is the most important theme in big data biology. To attain this purpose, we have developed KNApSAcK Family Databases, which are utilized in a number of researches in metabolomics. In the present study, we have developed a network-based approach to analyze relationships between 3D structure and biological activity of metabolites consisting of four steps as follows: construction of a network of metabolites based on structural similarity (Step 1), classification of metabolites into structure groups (Step 2), assessment of statistically significant relations between structure groups and biological activities (Step 3), and 2-dimensional clustering of the constructed data matrix based on statistically significant relations between structure groups and biological activities (Step 4). Applying this method to a data set consisting of 2072 secondary metabolites and 140 biological activities reported in KNApSAcK Metabolite Activity DB, we obtained 983 statistically significant structure group-biological activity pairs. As a whole, we systematically analyzed the relationship between 3D-chemical structures of metabolites and biological activities.

  10. Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats.

    PubMed

    Jimenez, R; Lopez-Sepulveda, R; Romero, M; Toral, M; Cogolludo, A; Perez-Vizcaino, F; Duarte, J

    2015-02-01

    Quercetin, the most abundant dietary flavonol, exerts antioxidant effects reducing vascular superoxide (O2(-)) and improving endothelial function in animal models of cardiovascular disease. Herein we evaluated the effects of quercetin, and its plasma metabolites, on the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase activity, the main source of O2(-) in the vessel wall, in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Quercetin and its metabolites isorhamnetin and kaempferol inhibited the NADPH-stimulated lucigenin-chemiluminescence signal in VSMCs from both strains. The inhibitory effect of quercetin-3-glucuronide increased after prolonged incubation and was inhibited in the presence of the β-glucuronidase inhibitor saccharolactone. These effects were unrelated to their O2(-) scavenging properties, since they induced only a small inhibition of the rate of pyrogallol autoxidation at high concentrations. All bioflavonoids tested acted as non-competitive inhibitors with respect to NADPH. In conclusion, quercetin and its metabolites inhibit the NADPH oxidase activity in VSMCs reducing O2(-) generation more efficiently than their effect as O2(-) scavengers. The effect of quercetin-3-glucuronide was due to deconjugation and release of free quercetin. The effect is similar in VSMCs from normotensive and hypertensive animals.

  11. Solid-Phase Extraction of Sulfur Mustard Metabolites Using an Activated Carbon Fiber Sorbent.

    PubMed

    Lee, Jin Young; Lee, Yong Han

    2016-01-01

    A novel solid-phase extraction method using activated carbon fiber (ACF) was developed and validated. ACF has a vast network of pores of varying sizes and microporous structures that result in rapid adsorption and selective extraction of sulfur mustard metabolites according to the pH of eluting solvents. ACF could not only selectively extract thiodiglycol and 1-methylsulfinyl-2-[2-(methylthio)-ethylsulfonyl]ethane eluting a 9:1 ratio of dichloromethane to acetone, and 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] and 1,1'-sulfonylbis- [2-S-(N-acetylcysteinyl)ethane] eluting 3% hydrogen chloride in methanol, but could also eliminate most interference without loss of analytes during the loading and washing steps. A sample preparation method has been optimized for the extraction of sulfur mustard metabolites from human urine using an ACF sorbent. The newly developed extraction method was applied to the trace analysis of metabolites of sulfur mustard in human urine matrices in a confidence-building exercise for the analysis of biomedical samples provided by the Organisation for the Prohibition of Chemical Weapons.

  12. Biotransformation of dianabol with the filamentous fungi and β-glucuronidase inhibitory activity of resulting metabolites.

    PubMed

    Khan, Naik T; Zafar, Salman; Noreen, Shagufta; Al Majid, Abdullah M; Al Othman, Zeid A; Al-Resayes, Saud Ibrahim; Atta-ur-Rahman; Choudhary, M Iqbal

    2014-07-01

    Biotransformation of the anabolic steroid dianabol (1) by suspended-cell cultures of the filamentous fungi Cunninghamella elegans and Macrophomina phaseolina was studied. Incubation of 1 with C. elegans yielded five hydroxylated metabolites 2-6, while M. phaseolina transformed compound 1 into polar metabolites 7-11. These metabolites were identified as 6β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (2), 15α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (3), 11α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (4), 6β,12β,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (5), 6β,15α,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (6), 17β-hydroxy-17α-methylandrost-1,4-dien-3,6-dione (7), 7β,17β,-dihydroxy-17α-methylandrost-1,4-dien-3-one (8), 15β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (9), 17β-hydroxy-17α-methylandrost-1,4-dien-3,11-dione (10), and 11β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (11). Metabolite 3 was also transformed chemically into diketone 12 and oximes 13, and 14. Compounds 6 and 12-14 were identified as new derivatives of dianabol (1). The structures of all transformed products were deduced on the basis of spectral analyses. Compounds 1-14 were evaluated for β-glucuronidase enzyme inhibitory activity. Compounds 7, 13, and 14 showed a strong inhibition of β-glucuronidase enzyme, with IC50 values between 49.0 and 84.9 μM.

  13. Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi.

    PubMed

    Sepcic, Kristina; Zalar, Polona; Gunde-Cimerman, Nina

    2010-12-27

    The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity.

  14. Low Water Activity Induces the Production of Bioactive Metabolites in Halophilic and Halotolerant Fungi

    PubMed Central

    Sepcic, Kristina; Zalar, Polona; Gunde-Cimerman, Nina

    2011-01-01

    The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity. PMID:21339946

  15. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes.

    PubMed

    Tanaka, Yukinori; Kasahara, Ken; Hirose, Yutaka; Murakami, Kiriko; Kugimiya, Rie; Ochi, Kozo

    2013-07-01

    A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization.

  16. Temporal variability of local abundance, sex ratio and activity in the Sardinian chalk hill blue butterfly

    USGS Publications Warehouse

    Casula, P.; Nichols, J.D.

    2003-01-01

    When capturing and marking of individuals is possible, the application of newly developed capture-recapture models can remove several sources of bias in the estimation of population parameters such as local abundance and sex ratio. For example, observation of distorted sex ratios in counts or captures can reflect either different abundances of the sexes or different sex-specific capture probabilities, and capture-recapture models can help distinguish between these two possibilities. Robust design models and a model selection procedure based on information-theoretic methods were applied to study the local population structure of the endemic Sardinian chalk hill blue butterfly, Polyommatus coridon gennargenti. Seasonal variations of abundance, plus daily and weather-related variations of active populations of males and females were investigated. Evidence was found of protandry and male pioneering of the breeding space. Temporary emigration probability, which describes the proportion of the population not exposed to capture (e.g. absent from the study area) during the sampling process, was estimated, differed between sexes, and was related to temperature, a factor known to influence animal activity. The correlation between temporary emigration and average daily temperature suggested interpreting temporary emigration as inactivity of animals. Robust design models were used successfully to provide a detailed description of the population structure and activity in this butterfly and are recommended for studies of local abundance and animal activity in the field.

  17. Regulation of Nitrate Reductase Activity in Corn (Zea mays L.) Seedlings by Endogenous Metabolites 1

    PubMed Central

    Schrader, L. E.; Hageman, R. H.

    1967-01-01

    Primary and secondary metabolites of inorganic nitrogen metabolism were evaluated as inhibitors of nitrate reductase (EC 1.6.6.1) induction in green leaf tissue of corn seedlings. Nitrite, nitropropionic acid, ammonium ions, and amino acids were not effective as inhibitors of nitrate reductase activity or synthesis. Increasing α-amino nitrogen and protein content of intact corn seedlings by culture techniques significantly enhanced rather than decreased the potential for induction of nitrate reductase activity in excised seedlings. Secondary metabolites, derived from phenylalanine and tyrosine, were tested as inhibitors of induction of nitrate reductase. Of the 9 different phenylpropanoid compounds tested, only coumarin, trans-cinnamic and trans-o-hydroxycinnamic acids inhibited induction of nitrate reductase. While coumarin alone exhibited a relatively greater inhibitory effect on enzyme induction than on general protein synthesis (the latter measured by incorporation of labeled amino acids), this differential effect may have been dependent upon unequal rates of synthesis and accumulation with respect to the initial levels of nitrate reductase and general proteins. Because of the short half-life of nitrate reductase, inhibitors of protein synthesis in general could still achieve differential regulation of nitrogen metabolism. Coumarin did not inhibit nitrate reductase activity when added directly to the assay mixture at 5 mm. Carbamyl phosphate and its chemical derivative, cyanate, were found to be competitive (with nitrate) inhibitors of nitrate reductase. The data suggest that cyanate is the active inhibitor in the carbamyl phosphate preparations. PMID:16656715

  18. Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity.

    PubMed

    Wardecki, Tina; Brötz, Elke; De Ford, Christian; von Loewenich, Friederike D; Rebets, Yuriy; Tokovenko, Bogdan; Luzhetskyy, Andriy; Merfort, Irmgard

    2015-08-01

    Arnica montana L. is a medical plant of the Asteraceae family and grows preferably on nutrient poor soils in mountainous environments. Such surroundings are known to make plants dependent on symbiosis with other organisms. Up to now only arbuscular mycorrhizal fungi were found to act as endophytic symbiosis partners for A. montana. Here we identified five Streptomyces strains, microorganisms also known to occur as endophytes in plants and to produce a huge variety of active secondary metabolites, as inhabitants of A. montana. The secondary metabolite spectrum of these strains does not contain sesquiterpene lactones, but consists of the glutarimide antibiotics cycloheximide and actiphenol as well as the diketopiperazines cyclo-prolyl-valyl, cyclo-prolyl-isoleucyl, cyclo-prolyl-leucyl and cyclo-prolyl-phenylalanyl. Notably, genome analysis of one strain was performed and indicated a huge genome size with a high number of natural products gene clusters among which genes for cycloheximide production were detected. Only weak activity against the Gram-positive bacterium Staphylococcus aureus was revealed, but the extracts showed a marked cytotoxic activity as well as an antifungal activity against Candida parapsilosis and Fusarium verticillioides. Altogether, our results provide evidence that A. montana and its endophytic Streptomyces benefit from each other by completing their protection against competitors and pathogens and by exchanging plant growth promoting signals with nutrients.

  19. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity.

    PubMed

    Ahluwalia, Vivek; Kumar, Jitendra; Rana, Virendra S; Sati, Om P; Walia, S

    2015-01-01

    This investigation was undertaken to identify the major secondary metabolite, produced by two Trichoderma harzianum strains (T-4 and T-5) with their antifungal activity against phytopathogenic fungi using poison food technique. The ethyl acetate extract was subjected to column chromatography using n-hexane, ethyl acetate and methanol gradually. Chromatographic separation of ethyl acetate extract of T. harzianum (T-4) resulted in the isolation and identification of palmitic acid (1), 1,8-dihydroxy-3-methylanthraquinone (2), 6-pentyl-2H-pyran-2-one (3), 2(5H)-furanone (4), stigmasterol (5) and β-sitosterol (6), while T. harzianum (T-5) gave palmitic acid (1), 1-hydroxy-3-methylanthraquinone (7), δ-decanolactone (8), 6-pentyl-2H-pyran-2-one (3), ergosterol (9), harzianopyridone (10) and 6-methyl-1,3,8-trihydroxyanthraquinone (11) as major metabolites. Among compounds screened for antifungal activity, compound 10 was found to be most active (EC50 35.9-50.2 μg mL(-1)). In conclusion, the present investigation provided significant information about antifungal activity and compounds isolated from two different strains of T. harzianum obtained from two different Himalayan locations.

  20. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities.

    PubMed

    Kim, Yoon Hee; Won, Yeong-Seon; Yang, Xue; Kumazoe, Motofumi; Yamashita, Shuya; Hara, Aya; Takagaki, Akiko; Goto, Keiichi; Nanjo, Fumio; Tachibana, Hirofumi

    2016-05-11

    Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity.

  1. [The pharmacokinetics of the dipeptide analog of piracetam with nootropic activity GVS-111 and of its basic metabolites].

    PubMed

    Boĭko, S S; Zherdev, V P; Dvorianinov, A A; Gudasheva, T A; Ostrovskaia, R U; Voronina, T A; Rozantsev, G G; Seredenin, S B

    1997-01-01

    The pharmacokinetics of a new nootropic dipeptide analog of piracetam-N-phenylacetyl-L-prolylglycine (GWS-111) and its main metabolites were studied in rats by means of high performance liquid chromatography and gas-liquid chromatography. The compound under study showed a greater resistance to an enzymatic effect than natural neuropeptides. In addition to an unchanged compound three of its metabolites were found in the blood plasma of the rats. One of them, cyclo-Pro-Gly was an active metabolite of GWS-111.

  2. Antistaphylococcal activity and metabolite profiling of manuka honey (Leptospermum scoparium L.) after in vitro simulated digestion.

    PubMed

    Mannina, Luisa; Sobolev, Anatoly P; Coppo, Erika; Di Lorenzo, Arianna; Nabavi, Seyed Mohammad; Marchese, Anna; Daglia, Maria

    2016-03-01

    The antistaphylococcal activity against methicillin-susceptible and -resistant Staphylococcus aureus and the metabolite profiling of manuka honey (MH) were investigated before and after in vitro simulated gastric (GD) and gastroduodenal (GDD) digestions. Undigested manuka honey showed antibacterial activity against all the tested strains, the GD sample showed no activity against S. aureus, and the GDD honey showed an antistaphylococcal activity, which was slightly reduced in comparison with the undigested sample. To explain these results, methylglyoxal (MGO), to which most of the antibacterial activity of MH is ascribed, was subjected to in vitro simulated GD and GDD. After digestion, MGO showed antibacterial activity at concentrations definitively higher than those registered in digested MH samples. These results showed that the antistaphylococcal activity registered after digestion cannot be ascribed to MGO. Thus metabolite analysis, carried out using an explorative untargeted NMR-based approach and a targeted RP-HPLC-PAD-ESI-MSn analysis focused on bio-active substances, was used to highlight the chemical modifications occurring from digestion. The results showed that (1) the level of MGO decreases and (2) the content of aromatic compounds, such as leptosin and methyl syringate, markers of manuka honey, was stable under gastric and gastroduodenal conditions, whereas (3) the levels of acetic and lactic acids increase in particular after gastroduodenal digestion, being 1.5 and 2.8 times higher in GDD-MH than in UND-MH, respectively. Overall, the results obtained from chemical analysis provide at least a partial explanation of the registered antibacterial activity observed after gastroduodenal digestion.

  3. Community structure, abundance, and activity of methanotrophs in the Zoige wetland of the Tibetan Plateau.

    PubMed

    Yun, Juanli; Zhuang, Guoqiang; Ma, Anzhou; Guo, Hongguang; Wang, Yanfen; Zhang, Hongxun

    2012-05-01

    The Zoige wetland of the Tibetan Plateau is a high-altitude tundra wetland and one of the biggest methane emission centers in China. In this study, methanotrophs with respect to community structure, abundance, and activity were investigated in peat soils collected in the vicinity of different marshland plants that dominate different regions of the wetland, including Polygonum amphibium, Carex muliensis, and Eleocharis valleculosa (EV). 16S rRNA gene and particulate methane monooxygenase gene (pmoA) clone library sequence data indicated the presence of methanotrophs with two genera, Methylobacter and Methylocystis. Methylococcus, like pmoA gene sequences, were also retrieved and showed low similarity to those from Methylococcus spp. and thus indicates the existence of novel methanotrophs in the Zoige wetland. Quantitative polymerase chain reaction (qPCR) assays were used to measure the abundance of methantrophs and detected 10(7) to 10(8) of total pmoA gene copies per gram dry weight of soil in the three marshes. Group-specific qPCR and reverse transcriptase qPCR results found that the Methylobacter genus dominates the wetland, and Methylocystis methanotrophs were less abundant, although this group of methanotrophs was estimated to be more active according to mRNA/DNA ratio. Furthermore, EV marsh demonstrated the highest methanotrophs abundance and activity among the three marshes investigated. Our study suggests that both type I and type II methanotrophs contribute to the methane oxidation in the Zoige wetland.

  4. Abundance ratios of oxygen, neon, and magnesium in solar active regions and flares: The FIP effect

    NASA Technical Reports Server (NTRS)

    Widing, K. G.; Feldman, U.

    1995-01-01

    Relative abundances of oxygen, neon, and magnesium have been derived for a sample of nine solar active regions, flares, and an erupting prominance by combining plots of the ion differential emission measures. The observations were photographed in the 300-600 A range by the Naval Research Laboratory (NRL) spectroheliograph on Skylab. Methods for deriving the Mg/Ne abundance ratio-which measures the separation between the low- first ionization potential (FIP) and high-FIP abundnace plateaus-have been described in previous papers. In this paper we describe the spectroscopic methods for deriving the O/Ne abundance ratio, which gives the ratio between two high-FIP elements. The plot of the O/Ne ratio versus the Mg/Ne ratio in the sample of nine Skylab events is shown. The variation in the Mg/Ne ratio by a factor of 6 is associated with a much smaller range in the O/Ne ratio. This is broadly consistent with the presence of the standard FIP pattern of abundances in the outer atmosphere of the Sun. However, a real change in the relative abundances of oxygen and neon by a factor of 1.5 cannot be excluded.

  5. Cannabinoid inhibition of adenylate cyclase: relative activity of constituents and metabolites of marihuana.

    PubMed

    Howlett, A C

    1987-05-01

    delta 9Tetrahydrocannabinol (THC) has been shown to inhibit the activity of adenylate cyclase in the N18TG2 clone of murine neuroblastoma cells. The concentration of delta 9THC exhibiting half-maximal inhibition was 500 nM. delta 8Tetrahydrocannabinol was less active, and cannabinol was only partially active. Cannabidiol, cannabigerol, cannabichromene, olivetol and compounds having a reduced length of the C3 alkyl side chain were inactive. The metabolites of delta 8THC and delta 9THC hydroxylated at the C11 position were more potent than the parent drugs. However, hydroxylation at the C8 position of the terpenoid ring resulted in loss of activity. Compounds hydroxylated along the C3 alkyl side chain were equally efficacious but less potent than delta 9THC. These findings are compared to the pharmacology of cannabinoids reported for psychological effects in humans and behavioral effects in a variety of animal models.

  6. Free radical scavenging activity of erdosteine metabolite I investigated by electron paramagnetic resonance spectroscopy.

    PubMed

    Braga, Pier Carlo; Culici, Maria; Dal Sasso, Monica; Falchi, Mario; Spallino, Alessandra

    2010-01-01

    The aim of this study was to explore the antiradical activity of Met I (an active metabolite of erdosteine) containing a pharmacologically active sulphydryl group, by means of electron paramagnetic resonance (EPR) spectroscopy which has not previously been used to characterize the antiradical activity of Met I. The effects of concentrations of 20, 10, 5, 2.5, 1.25 and 0.625 microg/ml of Met I were tested against: (a) the Fenton reaction model system with EPR detection of HO.; (b) the KO2-crown ether system with EPR detection of O2-.; (c) the EPR assay based on the reduction of the Tempol radical, and (d) the EPR assay based on the reduction of Fremy's salt radical. Our findings show that the intensity of 4 different free radicals was significantly reduced in the presence of Met I, thus indicating the presence of a termination reaction between the free radicals and Met I.

  7. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development

    PubMed Central

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.

    2016-01-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography–mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage–dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  8. Functional significance of UDP-glucuronosyltransferase variants in the metabolism of active tamoxifen metabolites.

    PubMed

    Blevins-Primeau, Andrea S; Sun, Dongxiao; Chen, Gang; Sharma, Arun K; Gallagher, Carla J; Amin, Shantu; Lazarus, Philip

    2009-03-01

    Tamoxifen (TAM) is a selective estrogen receptor modulator widely used in the prevention and treatment of breast cancer. A major mode of metabolism of the major active metabolites of TAM, 4-OH-TAM and endoxifen, is by glucuronidation via the UDP-glucuronosyltransferase (UGT) family of enzymes. To examine whether polymorphisms in the UGT enzymes responsible for the glucuronidation of active TAM metabolites play an important role in interindividual differences in TAM metabolism, cell lines overexpressing wild-type or variant UGTs were examined for their activities against TAM metabolites in vitro. For variants of active extrahepatic UGTs, the UGT1A8(173Ala/277Tyr) variant exhibited no detectable glucuronidation activity against the trans isomers of either 4-OH-TAM or endoxifen. Little or no difference in TAM glucuronidating activity was observed for the UGT1A8(173Gly/277Cys) or UGT1A10(139Lys) variants compared with their wild-type counterparts. For active hepatic UGTs, the UGT2B7(268Tyr) variant exhibited significant (P < 0.01) 2- and 5-fold decreases in activity against the trans isomers of 4-OH-TAM and endoxifen, respectively, compared with wild-type UGT2B7(268His). In studies of 111 human liver microsomal specimens, the rate of O-glucuronidation against trans-4-OH-TAM and trans-endoxifen was 28% (P < 0.001) and 27% (P = 0.002) lower, respectively, in individuals homozygous for the UGT2B7 Tyr(268)Tyr genotype compared with subjects with the UGT2B7 His(268)His genotype, with a significant (P < 0.01) trend of decreasing activity against both substrates with increasing numbers of the UGT2B7(268His) allele. These results suggest that functional polymorphisms in TAM-metabolizing UGTs, including UGT2B7 and potentially UGT1A8, may be important in interindividual variability in TAM metabolism and response to TAM therapy.

  9. Vertical and horizontal distributions of microbial abundances and enzymatic activities in propylene-glycol-affected soils.

    PubMed

    Biró, Borbála; Toscano, Giuseppe; Horváth, Nikoletta; Matics, Heléna; Domonkos, Mónika; Scotti, Riccardo; Rao, Maria A; Wejden, Bente; French, Helen K

    2014-01-01

    The natural microbial activity in the unsaturated soil is vital for protecting groundwater in areas where high loads of biodegradable contaminants are supplied to the surface, which usually is the case for airports using aircraft de-icing fluids (ADF) in the cold season. Horizontal and vertical distributions of microbial abundance were assessed along the western runway of Oslo Airport (Gardermoen, Norway) to monitor the effect of ADF dispersion with special reference to the component with the highest chemical oxygen demand (COD), propylene glycol (PG). Microbial abundance was evaluated by several biondicators: colony-forming units (CFU) of some physiological groups (aerobic and anaerobic heterotrophs and microscopic fungi), most probable numbers (MPN) of PG degraders, selected catabolic enzymatic activities (fluorescein diacetate (FDA) hydrolase, dehydrogenase, and β-glucosidase). High correlations were found between the enzymatic activities and microbial counts in vertical soil profiles. All microbial abundance indicators showed a steep drop in the first meter of soil depth. The vertical distribution of microbial abundance can be correlated by a decreasing exponential function of depth. The horizontal trend of microbial abundance (evaluated as total aerobic CFU, MPN of PG-degraders, and FDA hydrolase activity) assessed in the surface soil at an increasing distance from the runway is correlated negatively with the PG and COD loads, suggesting the relevance of other chemicals in the modulation of microbial growth. The possible role of potassium formate, component of runway de-icers, has been tested in the laboratory by using mixed cultures of Pseudomonas spp., obtained by enrichment with a selective PG medium from soil samples taken at the most contaminated area near the runway. The inhibitory effect of formate on the growth of PG degraders is proven by the reduction of biomass yield on PG in the presence of formate.

  10. Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro.

    PubMed

    Tronina, Tomasz; Bartmańska, Agnieszka; Filip-Psurska, Beata; Wietrzyk, Joanna; Popłoński, Jarosław; Huszcza, Ewa

    2013-04-01

    Xanthohumol (1) and xanthohumol D (2) were isolated from spent hops. Isoxanthohumol (3) was obtained from xanthohumol by isomerisation in alkaline solution. Six metabolites were obtained as a result of transformation of xanthohumol (1) by selected fungal cultures. Their structures were established on the basis of their spectral data. One of them: 2″-(2'''-hydroxyisopropyl)-dihydrofurano-[4″,5″:3',4']-4',2-dihydroxy-6'-methoxy-α,β-dihydrochalcone (6) has not been previously reported in the literature. The antioxidant properties of hops flavonoids and xanthohumol derivatives were investigated using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The effects of these compounds on proliferation of MCF-7, PC-3 and HT-29 human cancer cell lines were determined by the SRB assay. With the exception of one metabolite, all tested compounds showed antiproliferative activity against the tested human cancer lines. α,β-Dihydroxanthohumol (4), obtained through the biotransformation of xanthohumol, showed higher antiproliferative activity against MCF-7 human breast carcinoma cell line than cisplatin, a widely used anticancer therapeutic agent, and a comparably high activity against PC-3 human prostate cancer cell line.

  11. Hepatic cytochrome P450 activity, abundance, and expression throughout human development

    SciTech Connect

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo M.; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.; Wright, Aaron T.

    2016-07-01

    Cytochrome P450s are Phase I metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes can vary considerably throughout human development, especially when comparing fetal development to neonates, children, and adults. In an effort to develop a more comprehensive understanding of the ontogeny of P450 expression and activity we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. To quantify the functional activity of individual P450s we employ activity-based protein profiling, which uses modified mechanism-based inhibitors of P450s as chemical probes, in tandem with proteomic analyses to quantify activity. Our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. The results were used to distribute P450s into three general classes based upon developmental stage of expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that our ontogeny results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics.

  12. Estrogenic activity of estradiol and its metabolites in the ER-CALUX assay with human T47D breast cells.

    PubMed

    Hoogenboom LAP; de Haan, L; Hooijerink, D; Bor, G; Murk, A J; Brouwer, A

    2001-02-01

    A number of metabolites of 17beta-estradiol were tested for their estrogenic activity using the ER-CA-LUX assay based on the increased expression of luciferase in exposed T47D breast cancer cells. E2beta and estrone showed similar potencies in the test, whereas E2alpha was 100 times less active. Incubation of cells with estrone (0.35 microM) resulted in the formation of E2beta, whereas the reverse reaction was observed for E2beta. The resulting equilibrium may explain the similar estrogenic potency of estrone in the test. The synthetic 17-hydroxy benzoate ester of E2beta was 3 times less active than the parent compound. The 17-hydroxy palmitate and oleate esters of E2beta, were respectively 25 and 200 times less active than the parent compound. The 2-hydroxy metabolites of E2beta and estrone showed a 5,000 to 10,000 fold lower activity. The 4-hydroxy metabolites were more potent than the 2-hydroxy metabolites, showing only a 20-200 times lower activity. The 2- and 4-methoxyesters of estrone were 700 times less active. It is concluded that the estrogenic potency of metabolites formed in cattle after treatment with E2beta, like estrone, E2alpha and especially the esters of E2beta, may be significant with respect to the potential risk of the use of estradiol for growth promotion in domestic animals in certain countries.

  13. Elemental abundances in atmospheres of cool dwarfs with solar-like activity

    NASA Astrophysics Data System (ADS)

    Antipova, L. I.; Boyarchuk, A. A.

    2016-01-01

    The elemental abundances in the atmosphere of the red dwarf HD 32147, which belongs to the HR 1614 moving groups, are analyzed. The atmospheric parameters determined from spectroscopic data (the condition of equal abundances for neutral and ionized atoms of a given element) differ considerably from those derived from photometry and parallax data. The abundances of several elements are also anomalous, with the anomaly increasing with decreasing ionization potential. It is concluded that this star is a red dwarf displaying solar-like activity; i.e., having dark (cool) spots on its surface, which may sometimes be considerable in size. Modeling synthetic spectra of stars with cool spots on their surfaces, with the spectral lines consisting of two components formed in media with different temperatures, indicate that the spectroscopic atmospheric parameters derived in such cases are incorrect; this can also explain the observed dependence of the elemental abundances on the corresponding ionization potentials. This leads to the conclusion thatHD32147 is indeed a star with solar-like activity. Several other such stars considered as examples display the same anomalies as those of HD 32147. These modeling results are also valid for Ap and Am stars, and are able to explain short-wavelength observations of the Sun and some stars (the FIP effect).

  14. Antifungal, Phytotoxic, and Cytotoxic Activities of Metabolites from Epichloë bromicola, a Fungus Obtained from Elymus tangutorum Grass.

    PubMed

    Song, Qiu-Yan; Nan, Zhi-Biao; Gao, Kun; Song, Hui; Tian, Pei; Zhang, Xing-Xu; Li, Chun-Jie; Xu, Wen-Bo; Li, Xiu-Zhang

    2015-10-14

    The development of high-quality herbage is an important aspect of animal husbandry. Inoculating beneficial fungi onto inferior grass is a feasible strategy for producing new varieties of high-quality herbage. Epichloë bromicola is a candidate fungus that is isolated from Elymus tangutorum. A total of 17 metabolites, 1-17, were obtained from E. bromicola, and their biological activities were assayed. Metabolite 1 exhibited antifungal activities against Alternaria alternata, Fusarium avenaceum, Bipolaris sorokiniana, and Curvularia lunata. EC50 values ranged from 0.7 to 5.3 μM, which were better than the positive control, chlorothalonil. Metabolite 8 displayed obvious phytotoxic effects toward Lolium perenne and Poa crymophila seedlings, and it was as active as glyphosate. None of these isolated metabolites displayed cytotoxicity against Madin-Darby bovine kidney cells. The IC50 values were greater than 100 μM, and the metabolites increased the growth of the cells at a concentration of 12.5 μM. The bioassay indicated that E. bromicola may be a beneficial fungus for producing new varieties of herbage with various resistances. Additionally, metabolite 7, 3-(2'-(4″-hydroxyphenyl)acetoxy)-2S-methylpropanoic acid, is a new natural product, and its stereochemistry was determined by means of optical rotation computation and chemical reactions.

  15. In vitro metabolism of pyripyropene A and ACAT inhibitory activity of its metabolites.

    PubMed

    Matsuda, Daisuke; Ohshiro, Taichi; Ohtawa, Masaki; Yamazaki, Hiroyuki; Nagamitsu, Tohru; Tomoda, Hiroshi

    2015-01-01

    Pyripyropene A (PPPA, 1) of fungal origin, a selective inhibitor of acyl-CoA:cholesterol acyltransferase 2 (ACAT2), proved orally active in atherogenic mouse models. The in vitro metabolites of 1 in liver microsomes and plasma of human, rabbit, rat and mouse were analyzed by ultra fast liquid chromatography and liquid chromatography/tandem mass spectrometry. In the liver microsomes from all species, successive hydrolysis occurred at the 1-O-acetyl residue, then at the 11-O-acetyl residue of 1, while the 7-O-acetyl residue was resistant to hydrolysis. Furthermore, dehydrogenation of the newly generated 11-alcoholic hydroxyl residue occurred in human and mouse-liver microsomes, while oxidation of the pyridine ring occurred in human and rabbit liver microsomes. On the other hand, hydrolysis of the 7-O-acetyl residue proceeded only in the mouse plasma. These data indicated that the in vitro metabolic profiles of 1 have subtle differences among animal species. All of the PPPA metabolites observed in liver microsomes and plasma markedly decreased ACAT2 inhibitory activity. These findings will help us to synthesize new PPPA derivatives more effective in in vivo study than 1.

  16. Enantioselective determination of sibutramine and its active metabolites in human plasma.

    PubMed

    Kang, Wonku; Bae, Kyoungjin; Noh, Keumhan

    2010-01-05

    Although racemic sibutramine has been widely used for the treatment of obesity, its enantioselective detection method has not been elucidated in human plasma. In this report we introduce a validated analytical method for the determination of sibutramine and its two active metabolites, desmethylsibutramines using LC-MS/MS. R- and S-isomers of those compounds in human plasma were extracted using diethyl ether-hexane (4:1, v/v) followed by an addition of NaOH solution. After removing the organic layer, the residue was reconstituted in the mobile phase 10mM ammonium acetate solution adjusted to pH 4.0 with acetic acid-acetonitrile (94:6, v/v). Both isomers in the extract were separated on a Chiralcel AGP chiral stationary-phase column and were quantified in a tandem mass spectrometry. The assay method was in accordance with FDA regulations for the validation of bioanalytical methods. This method was successfully used to profile the plasma concentrations of the stereoisomers of sibutramine and its two active metabolites with time in healthy volunteers.

  17. Antimicrobial and Cytotoxic Activity of Extracts of Ferula heuffelii Griseb. ex Heuff. and Its Metabolites.

    PubMed

    Pavlović, Ivan; Petrović, Silvana; Milenković, Marina; Stanojković, Tatjana; Nikolić, Dejan; Krunić, Aleksej; Niketić, Marjan

    2015-10-01

    The antimicrobial and cytotoxic activities of isolates (CHCl3 and MeOH extracts and selected metabolites) obtained from the underground parts of the Balkan endemic plant Ferula heuffelii Griseb. ex Heuff. were assessed. The CHCl3 and MeOH extracts exhibited moderate antimicrobial activity, being more pronounced against Gram-positive than Gram-negative bacteria, especially against Staphylococcus aureus (MIC=12.5 μg/ml for both extracts) and Micrococcus luteus (MIC=50 and 12.5 μg/ml, resp.). Among the tested metabolites, (6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyldodeca-6,10-dien-1-one (2) and (2S*,3R*)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-2,3-dihydro-7-hydroxy-2,3-dimethylfuro[3,2-c]coumarin (4) demonstrated the best antimicrobial activity. Compounds 2 and 4 both strongly inhibited the growth of M. luteus (MIC=11.2 and 5.2 μM, resp.) and Staphylococcus epidermidis (MIC=22.5 and 10.5 μM, resp.) and compound 2 additionally also the growth of Bacillus subtilis (MIC=11.2 μM). The cytotoxic activity of the isolates was tested against three human cancer cell lines, viz., cervical adenocarcinoma (HeLa), chronic myelogenous leukemia (K562), and breast cancer (MCF-7) cells. The CHCl3 extract exhibited strong cytotoxic activity against all cell lines (IC50 <11.0 μg/ml). All compounds strongly inhibited the growth of the K562 and HeLa cell lines. Compound 4 exhibited also a strong activity against the MCF-7 cell line, comparable to that of cisplatin (IC50 =22.32±1.32 vs. 18.67±0.75μM).

  18. Seasonal profiles of ovarian activity in Iberian lynx (Lynx pardinus) based on urinary hormone metabolite analyses.

    PubMed

    Jewgenow, K; Göritz, F; Vargas, A; Dehnhard, M

    2009-07-01

    The Iberian Lynx Ex-Situ Conservation Programme is an essential part of a co-ordinated action plan to conserve the most endangered felid species of the world. Successful captive breeding demands reliable methods for reproduction monitoring including reliable non-invasive pregnancy diagnosis. During a 3-year study, urine samples from six captive Iberian lynx females were obtained (one non-pregnant, one pseudo-pregnant and 11 pregnant cycles). Progesterone, pregnanediol and oestradiol were determined in urinary extracts and relevant urinary oestrogen metabolites were characterized by high-performance liquid chromatography (HPLC). Urinary progestins did not follow the typical pregnancy-related course of felids. In the lynx, we failed to demonstrate an urinary progestin elevation during pregnancy. In contrast, urinary oestrogens increased from 3.8 +/- 0.6 to 8.6 +/- 0.5 ng/mg creatinine (p < 0.001) during the pregnancy. A comparison of pseudo-pregnant with pregnant cycles revealed a further increase of oestrogens caused by implantation (p < 0.05). In one female, which refused to mate, no difference was estimated between oestrogens levels during the breeding and non-breeding seasons. Almost 10-fold higher oestrogen concentrations were measured in urines of females that shared enclosures with males. HPLC analysis of oestrogens in urine samples collected from Iberian lynx during the pregnancy revealed that lynx urine is composed of two polar oestrogen metabolites in addition to oestrone and minor amounts of oestradiol. Oestrone was detectable in all urinary extracts (8-12% of metabolites), whereas oestradiol was elevated only during late pregnancy (18%). Thus, seasonal luteal activity in Iberian lynx can be monitored by urinary oestrogens. The increase of urinary oestradiol during late pregnancy might indicate an oestradiol secretion by the lynx placenta.

  19. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation.

    PubMed

    Kumar, Rakesh; Hazan, Adina; Geron, Matan; Steinberg, Rebbeca; Livni, Lital; Matzner, Henry; Priel, Avi

    2017-03-01

    Peripheral neuronal activation by inflammatory mediators is a multifaceted physiological response that involves a multitude of regulated cellular functions. One key pathway that has been shown to be involved in inflammatory pain is Gq/GPCR, whose activation by inflammatory mediators is followed by the regulated response of the cation channel transient receptor potential vanilloid 1 (TRPV1). However, the mechanism that underlies TRPV1 activation downstream of the Gq/GPCR pathway has yet to be fully defined. In this study, we employ pharmacological and molecular biology tools to dissect this activation mechanism via perforated-patch recordings and calcium imaging of both neurons and a heterologous system. We showed that TRPV1 activity downstream of Gq/GPCR activation only produced a subdued current, which was noticeably different from the robust current that is typical of TRPV1 activation by exogenous stimuli. Moreover, we specifically demonstrated that 2 pathways downstream of Gq/GPCR signaling, namely endovanilloid production by lipoxygenases and channel phosphorylation by PKC, converge on TRPV1 to evoke a tightly regulated response. Of importance, we show that only when both pathways are acting on TRPV1 is the inflammatory-mediated response achieved. We propose that the requirement of multiple signaling events allows subdued TRPV1 activation to evoke regulated neuronal response during inflammation.-Kumar R., Hazan, A., Geron, M., Steinberg, R., Livni, L., Matzner, H., Priel, A. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation.

  20. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health.

    PubMed

    Lv, Xinmiao; Zhao, Siyu; Ning, Zhangchi; Zeng, Honglian; Shu, Yisong; Tao, Ou; Xiao, Cheng; Lu, Cheng; Liu, Yuanyan

    2015-01-01

    Citrus fruits, which are cultivated worldwide, have been recognized as some of the most high-consumption fruits in terms of energy, nutrients and health supplements. What is more, a number of these fruits have been used as traditional medicinal herbs to cure diseases in several Asian countries. Numerous studies have focused on Citrus secondary metabolites as well as bioactivities and have been intended to develop new chemotherapeutic or complementary medicine in recent decades. Citrus-derived secondary metabolites, including flavonoids, alkaloids, limonoids, coumarins, carotenoids, phenolic acids and essential oils, are of vital importance to human health due to their active properties. These characteristics include anti-oxidative, anti-inflammatory, anti-cancer, as well as cardiovascular protective effects, neuroprotective effects, etc. This review summarizes the global distribution and taxonomy, numerous secondary metabolites and bioactivities of Citrus fruits to provide a reference for further study. Flavonoids as characteristic bioactive metabolites in Citrus fruits are mainly introduced.

  1. Estrogenic activity in vivo and in vitro of some diethylstilbestrol metabolites and analogs

    PubMed Central

    Korach, Kenneth S.; Metzler, Manfred; McLachlan, John A.

    1978-01-01

    The diethylstilbestrol (DES) metabolite (β-dienestrol), which had been identified in mouse, rat, monkey, and human urine, and two proposed metabolic intermediates (diethylstilbestrol α,α′-epoxide and α,α′-dihydroxy DES) were synthesized and their estrogenic activities determined. In addition, three DES analogs, α-dienestrol, DES-dihydroxy diethyl phenanthrene (DES-phenanthrene), and 1-(α-ethyl, 4α-hydroxyphenyl)indanyl-5-ol (indanyl-DES), were studied. Estrogenic activities of the compounds in vivo were determined by the immature mouse uterine weight bioassay; in vitro, their estradiol receptor binding activity (competitive equilibrium binding, sucrose gradient analysis, and association rate inhibition assays) was determined. Results of the mouse uterine weight bioassay gave the following order of estrogenicity: DES > α-dienestrol ≥ DES-epoxide > indanyl-DES > dihydroxy DES > β-dienestrol > DES-phenanthrene. Results of competitive equilibrium binding analyses of these compounds with estradiol-17β for the mouse uterine cytosol receptor followed the same order seen for the bioassay, except for indanyl-DES. DES, indanyl-DES, and α-dienestrol had the greatest affinities (Ka values approximately 0.5-19.1 × 1010 M-1), while DES-phenanthrene had the lowest (Ka = 3.5 × 107 M-1 ± 1.2). Sucrose gradient analysis of the above competition preparations illustrated the displacement of [3H]estradiol from the receptor peak. This displacement was receptor specific and concentration dependent and correlated with the equilibrium binding concentrations. In addition, the most hormonally active substances demonstrated the greatest rate inhibition in the estradiol cytosol receptor association rate reaction (V0). The rank order of estrogenicity of the compounds determined in this study should be useful in evaluating alternative metabolic pathways of DES as well as distinguishing biologically active metabolites from relatively inactive ones. PMID:272664

  2. Coronal abundances in solar active regions measured by the Solar Maximum Mission flat crystal spectrometer

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.; Strong, Keith T.

    1992-01-01

    High resolution soft X-ray spectra acquired by the Flat Crystal Spectrometer (FCS) on solar Maximum Mission provide an excellent data base to study the relative abundances of O, Ne, Mg, and Fe in solar active regions. The FCS data show significant variability for all combinations of these elements. The largest variation occurs for Fe:Ne, which shows region to region changes of up to a factor of 7, and frequent factor of 2 variations in day to day samples of a given region. The atomic data and the ionization balance calculations used to interpret the line ratios affect the actual abundance values obtained, but have little effect on the magnitude of the total range of variation inferred. Resonance scattering of Fe XVII could cause a systematic offset in the abundances determined, but cannot be responsbile for the bulk of the observed variability. While abundance variability complicates the derivation of plasma parameters from spectroscopic measurements, it should offer exciting new clues to the processes which form and heat the corona.

  3. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages

    PubMed Central

    Lescot, Magali; Hingamp, Pascal; Kojima, Kenji K; Villar, Emilie; Romac, Sarah; Veluchamy, Alaguraj; Boccara, Martine; Jaillon, Olivier; Iudicone, Daniele; Bowler, Chris; Wincker, Patrick; Claverie, Jean-Michel; Ogata, Hiroyuki

    2016-01-01

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage. PMID:26613339

  4. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages.

    PubMed

    Lescot, Magali; Hingamp, Pascal; Kojima, Kenji K; Villar, Emilie; Romac, Sarah; Veluchamy, Alaguraj; Boccara, Martine; Jaillon, Olivier; Iudicone, Daniele; Bowler, Chris; Wincker, Patrick; Claverie, Jean-Michel; Ogata, Hiroyuki

    2016-05-01

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.

  5. Specific activity and isotope abundances of strontium in purified strontium-82

    SciTech Connect

    Fitzsimmons, J. M.; Medvedev, D. G.; Mausner, L. F.

    2015-11-12

    A linear accelerator was used to irradiate a rubidium chloride target with protons to produce strontium-82 (Sr-82), and the Sr-82 was purified by ion exchange chromatography. The amount of strontium associated with the purified Sr-82 was determined by either: ICP-OES or method B which consisted of a summation of strontium quantified by gamma spectroscopy and ICP-MS. The summation method agreed within 10% to the ICP-OES for the total mass of strontium and the subsequent specific activities were determined to be 0.25–0.52 TBq mg-1. Method B was used to determine the isotope abundances by weight% of the purified Sr-82, and the abundances were: Sr-82 (10–20.7%), Sr-83 (0–0.05%), Sr-84 (35–48.5%), Sr-85 (16–25%), Sr-86 (12.5–23%), Sr-87 (0%), and Sr-88 (0–10%). The purified strontium contained mass amounts of Sr-82, Sr-84, Sr-85, Sr-86, and Sr-88 in abundances not associated with natural abundance, and 90% of the strontium was produced by the proton irradiation. A comparison of ICP-OES and method B for the analysis of Sr-82 indicated analysis by ICP-OES would be easier to determine total mass of strontium and comply with regulatory requirements. An ICP-OES analytical method for Sr-82 analysis was established and validated according to regulatory guidelines.

  6. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Gong, Jun; Zhang, Xiaoli; Yin, Guoyu; You, Li

    2013-07-01

    ammonium oxidation (anammox) as an important process of nitrogen cycle has been studied in estuarine environments. However, knowledge about the dynamics of anammox bacteria and their interactions with associated activity remains scarce in these environments. Here we report the anammox bacterial diversity, abundance, and activity in the Yangtze Estuary, using molecular and isotope-tracing techniques. The phylogenetic analysis of 16S rRNA indicated that high anammox bacterial diversity occurred in this estuary, including Scalindua, Brocadia, Kuenenia, and two novel clusters. The patterns of community composition and diversity of anammox bacteria differed across the estuary. Salinity was a key environmental factor defining the geographical distribution and diversity of the anammox bacterial community at the estuarine ecosystem. Temperature and organic carbon also had significant influences on anammox bacterial biodiversity. The abundance of anammox bacteria ranged from 2.63 × 106 and 1.56 × 107 gene copies g-1, and its spatiotemporal variations were related significantly to salinity, temperature, and nitrite content. The anammox activity was related to temperature, nitrite, and anammox bacterial abundance, with values of 0.94-6.61 nmol N g-1 h-1. The tight link between the anammox and denitrification processes implied that denitrifying bacteria may be a primary source of nitrite for the anammox bacteria in the estuarine marshes. On the basis of the 15N tracing experiments, the anammox process was estimated to contribute 6.6%-12.9% to the total nitrogen loss whereas the remainder was attributed to denitrification.

  7. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    USGS Publications Warehouse

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  8. In-stream attenuation of neuro-active pharmaceuticals and their metabolites.

    PubMed

    Writer, Jeffrey H; Antweiler, Ronald C; Ferrer, Imma; Ryan, Joseph N; Thurman, E Michael

    2013-09-03

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  9. Hypouricaemic action of mangiferin results from metabolite norathyriol via inhibiting xanthine oxidase activity.

    PubMed

    Niu, Yanfen; Liu, Jia; Liu, Hai-Yang; Gao, Li-Hui; Feng, Guo-Hua; Liu, Xu; Li, Ling

    2016-09-01

    Context Mangiferin has been reported to possess a potential hypouricaemic effect. However, the pharmacokinetic studies in rats showed that its oral bioavailability was only 1.2%, suggesting that mangiferin metabolites might exert the action. Objective The hypouricaemic effect and the xanthine oxidase inhibition of mangiferin and norathyriol, a mangiferin metabolite, were investigated. Inhibition of norathyriol analogues (compounds 3-9) toward xanthine oxidase was also evaluated. Materials and methods For a dose-dependent study, mangiferin (1.5-6.0 mg/kg) and norathyriol (0.92-3.7 mg/kg) were administered intragastrically to mice twice daily for five times. For a time-course study, mice received mangiferin and norathyriol both at a single dose of 7.1 μmol/kg. In vitro, inhibition of test compounds (2.4-2.4 mM) against xanthine oxidase activity was evaluated by the spectrophotometrical method. The inhibition type was identified from Lineweaver-Burk plots. Results Norathyriol (0.92, 1.85 and 3.7 mg/kg) dose dependently decreased the serum urate levels by 27.0, 33.6 and 37.4%, respectively. The action was more potent than that of mangiferin at the low dose, but was equivalent at the higher doses. Additionally, the hypouricaemic action of them exhibited a time dependence. In vitro, norathyriol markedly inhibited the xanthine oxidase activities, with the IC50 value of 44.6 μM, but mangiferin did not. The kinetic studies showed that norathyriol was an uncompetitive inhibitor by Lineweaver-Burk plots. The structure-activity relationships exhibited that three hydroxyl groups in norathyriol at the C-1, C-3 and C-6 positions were essential for maintaining xanthine oxidase inhibition. Discussion and conclusion Norathyriol was responsible for the hypouricaemic effect of mangiferin via inhibiting xanthine oxidase activity.

  10. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio).

    PubMed

    Liu, Zhenzhen; Wang, Yueyi; Zhu, Zhihong; Yang, Enlu; Feng, Xiayan; Fu, Zhengwei; Jin, Yuanxiang

    2016-04-01

    Atrazine (ATZ) and its main chlorometabolites, i.e., diaminochlorotriazine (DACT), deisopropylatrazine (DIP), and deethylatrazine (DE), have been widely detected in aquatic systems near agricultural fields. However, their possible effects on aquatic animals are still not fully understood. In this study, it was observed that several developmental endpoints such as the heart beat, hatchability, and morphological abnormalities were influenced by ATZ and its metabolites in different developmental stages. In addition, after 5 days of exposure to 30, 100, 300 μg L(-1) ATZ and its main chlorometabolites, the swimming behaviors of larval zebrafish were significantly disturbed, and the acetylcholinesterase (AChE) activities were consistently inhibited. Our results also demonstrate that ATZ and its main chlorometabolites are neuroendocrine disruptors that impact the expression of neurotoxicity-related genes such as Ache, Gap43, Gfap, Syn2a, Shha, Mbp, Elavl3, Nestin and Ngn1 in early developmental stages of zebrafish. According to our results, it is possible that not only ATZ but also its metabolites (DACT, DIP and DE) have the same or even more toxic effects on different endpoints of the early developmental stages of zebrafish.

  11. Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites.

    PubMed

    Masand, Meeta; Jose, Polpass Arul; Menghani, Ekta; Jebakumar, Solomon Robinson David

    2015-12-01

    Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes. In recent years, actinomycetes that inhabit unexplored environments have received significant attention due to their broad diversity and distinctive metabolic potential with medical, agricultural and industrial importance. In this scenario, endophytic actinomycetes that inhabit living tissues of plants are emerging as a potential source of novel bioactive compounds for the discovery of drug leads. Also, endophytic actinomycetes are considered as bio-inoculants to improve crop performance through organic farming practices. Further efforts on exploring the endophytic actinomycetes associated with the plants warrant the likelihood of discovering new taxa and their metabolites with novel chemical structures and biotechnological importance. This mini-review highlights the recent achievements in isolation of endophytic actinomycetes and an assortment of bioactive compounds.

  12. Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro

    PubMed Central

    Subedi, Lalita; Ji, Eunhee; Shin, Dongyun; Jin, Jongsik; Yeo, Joo Hong; Kim, Sun Yeou

    2017-01-01

    Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max) as primary isoflavones, possess anti-inflammatory activity, but the effect of its active metabolite Equol (7-hydroxy-3-(4′-hydroxyphenyl)-chroman) has not been well established. In this study, we investigated the anti-neuroinflammatory and neuroprotective effect of Equol in vitro. To evaluate the potential effects of Equol, three major types of central nervous system (CNS) cells, including microglia (BV-2), astrocytes (C6), and neurons (N2a), were used. Effects of Equol on the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), Mitogen activated protein kinase (MAPK) signaling proteins, and apoptosis-related proteins were measured by western blot analysis. Equol inhibited the lipopolysaccharide (LPS)-induced TLR4 activation, MAPK activation, NF-kB-mediated transcription of inflammatory mediators, production of nitric oxide (NO), release of prostaglandin E2 (PGE-2), secretion of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), in Lipopolysaccharide (LPS)-activated murine microglia cells. Additionally, Equol protects neurons from neuroinflammatory injury mediated by LPS-activated microglia through downregulation of neuronal apoptosis, increased neurite outgrowth in N2a cell and neurotrophins like nerve growth factor (NGF) production through astrocytes further supporting its neuroprotective potential. These findings provide novel insight into the anti-neuroinflammatory effects of Equol on microglial cells, which may have clinical significance in cases of neurodegeneration. PMID:28264445

  13. Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations.

    PubMed

    Krga, Irena; Monfoulet, Laurent-Emmanuel; Konic-Ristic, Aleksandra; Mercier, Sylvie; Glibetic, Maria; Morand, Christine; Milenkovic, Dragan

    2016-06-01

    An increasing number of evidence suggests a protective role of dietary anthocyanins against cardiovascular diseases. Anthocyanins' extensive metabolism indicates that their metabolites could be responsible for the protective effects associated with consumption of anthocyanin-rich foods. The aim of this work was to investigate the effect of plasma anthocyanins and their metabolites on the adhesion of monocytes to TNFα-activated endothelial cells and on the expression of genes encoding cell adhesion molecules. Human umbilical vein endothelial cells (HUVECs) were exposed to circulating anthocyanins: cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-glucoside, delphinidin-3-glucoside, peonidin-3-glucoside, anthocyanin degradation product: 4-hydroxybenzaldehyde, or to their gut metabolites: protocatechuic, vanillic, ferulic and hippuric acid, at physiologically-relevant concentrations (0.1-2 μM) and time of exposure. Both anthocyanins and gut metabolites decreased the adhesion of monocytes to HUVECs, with a magnitude ranging from 18.1% to 47%. The mixture of anthocyanins and that of gut metabolites also reduced monocyte adhesion. However, no significant effect on the expression of genes encoding E-selectin, ICAM1 and VCAM1 was observed, suggesting that other molecular targets are involved in the observed effect. In conclusion, this study showed the potency of anthocyanins and their gut metabolites to modulate the adhesion of monocytes to endothelial cells, the initial step in atherosclerosis development, under physiologically-relevant conditions.

  14. The antitumor activity study of ginsenosides and metabolites in lung cancer cell

    PubMed Central

    Xu, Feng-Yuan; Shang, Wen-Qing; Yu, Jia-Jun; Sun, Qian; Li, Ming-Qing; Sun, Jian-Song

    2016-01-01

    Ginseng and its components exert various biological effects, including antioxidant, anti-carcinogenic, anti-mutagenic, and antitumor activity. Ginsenosides are the main biological components of ginseng. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides. However, the difference between these compounds in anti-lung cancer is unclear. The present study aimed to evaluate the antitumor activity of PPD, PPT, Ginsenosides-Rg3 (G-Rg3) and Ginsenosides-Rh2 (G-Rh2) in lung cancer cell. After treatment with cisplatin, PPD, PPT, G-Rg3 or G-Rh2, the viability, apoptosis level and invasiveness of lung cell lines (A549 cell, a lung adenocarcinoma cell line and SK-MES-1 cell, a lung squamous cell line) in vitro were analyzed by Cell Counting Kit-8 (CCK8), Annexin V/PI apoptosis and Matrigel invasion assays, respectively. Here we found that all these compounds led to significant decreases of viability and invasiveness and an obvious increase of apoptosis of A549 and SK-MES-1 cells. Among these, the viability of SK-MES-1 cell treated with PPT was decreased to 66.8%, and this effect was closest to Cisplatin. G-Rg3 had the highest stimulatory effect on apoptosis, and PTT had the highest inhibitory effect on cell invasiveness in A549 and SK-MES-1 cells. These results indicate that both ginsenosides and two metabolites have antitumor activity on lung cancer cell in vitro. However, PPT is more powerful for inhibiting the viability and invasiveness of lung cancer cell, especially lung squamous cell. G-Rg3 has the best pro-apoptosis effects. This study provides a scientific basis for potential therapeutic strategies targeted to lung cancer by further structure modification. PMID:27186294

  15. Benzene's metabolites alter c-MYB activity via reactive oxygen species in HD3 cells

    SciTech Connect

    Wan, Joanne; Winn, Louise M. . E-mail: winnl@queensu.ca

    2007-07-15

    Benzene is a known leukemogen that is metabolized to form reactive intermediates and reactive oxygen species (ROS). The c-Myb oncoprotein is a transcription factor that has a critical role in hematopoiesis. c-Myb transcript and protein have been overexpressed in a number of leukemias and cancers. Given c-Myb's role in hematopoiesis and leukemias, it is hypothesized that benzene interferes with the c-Myb signaling pathway and that this involves ROS. To investigate our hypothesis, we evaluated whether benzene, 1,4-benzoquinone, hydroquinone, phenol, and catechol generated ROS in chicken erythroblast HD3 cells, as measured by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (DCFDA) and dihydrorhodamine-123 (DHR-123), and whether the addition of 100 U/ml of the antioxidating enzyme superoxide dismutase (SOD) could prevent ROS generation. Reduced to oxidized glutathione ratios (GSH:GSSG) were also assessed as well as hydroquinone and benzoquinone's effects on c-Myb protein levels and activation of a transiently transfected reporter construct. Finally we attempted to abrogate benzene metabolite mediated increases in c-Myb activity with the use of SOD. We found that benzoquinone, hydroquinone, and catechol increased DCFDA fluorescence, increased DHR-123 fluorescence, decreased GSH:GSSG ratios, and increased reporter construct expression after 24 h of exposure. SOD was able to prevent DCFDA fluorescence and c-Myb activity caused by benzoquinone and hydroquinone only. These results are consistent with other studies, which suggest metabolite differences in benzene-mediated toxicity. More importantly, this study supports the hypothesis that benzene may mediate its toxicity through ROS-mediated alterations in the c-Myb signaling pathway.

  16. Two chitinase-like proteins abundantly accumulated in latex of mulberry show insecticidal activity

    PubMed Central

    2010-01-01

    Background Plant latex is the cytoplasm of highly specialized cells known as laticifers, and is thought to have a critical role in defense against herbivorous insects. Proteins abundantly accumulated in latex might therefore be involved in the defense system. Results We purified latex abundant protein a and b (LA-a and LA-b) from mulberry (Morus sp.) and analyzed their properties. LA-a and LA-b have molecular masses of approximately 50 and 46 kDa, respectively, and are abundant in the soluble fraction of latex. Western blotting analysis suggested that they share sequence similarity with each other. The sequences of LA-a and LA-b, as determined by Edman degradation, showed chitin-binding domains of plant chitinases at the N termini. These proteins showed small but significant chitinase and chitosanase activities. Lectin RCA120 indicated that, unlike common plant chitinases, LA-a and LA-b are glycosylated. LA-a and LA-b showed insecticidal activities when fed to larvae of the model insect Drosophila melanogaster. Conclusions Our results suggest that the two LA proteins have a crucial role in defense against herbivorous insects, possibly by hydrolyzing their chitin. PMID:20109180

  17. Benthic microbial abundance and activities in an intensively trawled ecosystem (Thermaikos Gulf, Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Polymenakou, Paraskevi N.; Pusceddu, Antonio; Tselepides, Anastasios; Polychronaki, Thalia; Giannakourou, Antonia; Fiordelmondo, Carla; Hatziyanni, Eleni; Danovaro, Roberto

    2005-12-01

    Abundance of benthic bacteria, heterotrophic nanoflagellates and ciliates, extracellular enzymatic activities, bacterial C production, C mineralisation and sediment community oxygen consumption rates were measured in the Thermaikos Gulf (Northeastern Mediterranean), before (September 2001), and during intense trawling activities (October 2001 and February 2002). The biochemical composition of sedimentary organic matter has revealed that bottom trawling had an effect on the trophic state of Thermaikos Gulf. Changes on the benthic microbial food web were also recorded, during the three sampling seasons. Even though trawling-induced sediment resuspension did not alter significantly the abundance of the microbial components, with the exception of the most impacted station, it determined changes regarding their relative importance. Thus, the ratios of bacterium to nanoflagellates and ciliate to nanoflagellates abundance increased in the trawled stations, causing a sudden increase in bacterial C production, in comparison to the non-trawled station. Four months later, the effects of trawling on the microbial food web were less evident, masked possibly by the drastic decrease in the water temperature. The results of the present work suggest that bottom trawling induces alteration of the sedimentological variables and can be considered as a factor affecting the function of the microbial food web in marine coastal ecosystems. These alterations cause faster mobilisation of organic C buried in the sediment and increase nutrient concentrations and availability in the system, thus inducing an effect that could lead to coastal eutrophication.

  18. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a population-based study

    PubMed Central

    Floegel, A; Wientzek, A; Bachlechner, U; Jacobs, S; Drogan, D; Prehn, C; Adamski, J; Krumsiek, J; Schulze, M B; Pischon, T; Boeing, H

    2014-01-01

    Objective: It is not yet resolved how lifestyle factors and intermediate phenotypes interrelate with metabolic pathways. We aimed to investigate the associations between diet, physical activity, cardiorespiratory fitness and obesity with serum metabolite networks in a population-based study. Methods: The present study included 2380 participants of a randomly drawn subcohort of the European Prospective Investigation into Cancer and Nutrition-Potsdam. Targeted metabolomics was used to measure 127 serum metabolites. Additional data were available including anthropometric measurements, dietary assessment including intake of whole-grain bread, coffee and cake and cookies by food frequency questionnaire, and objectively measured physical activity energy expenditure and cardiorespiratory fitness in a subsample of 100 participants. In a data-driven approach, Gaussian graphical modeling was used to draw metabolite networks and depict relevant associations between exposures and serum metabolites. In addition, the relationship of different exposure metabolite networks was estimated. Results: In the serum metabolite network, the different metabolite classes could be separated. There was a big group of phospholipids and acylcarnitines, a group of amino acids and C6-sugar. Amino acids were particularly positively associated with cardiorespiratory fitness and physical activity. C6-sugar and acylcarnitines were positively associated with obesity and inversely with intake of whole-grain bread. Phospholipids showed opposite associations with obesity and coffee intake. Metabolite networks of coffee intake and obesity were strongly inversely correlated (body mass index (BMI): r=−0.57 and waist circumference: r=−0.59). A strong positive correlation was observed between metabolite networks of BMI and waist circumference (r=0.99), as well as the metabolite networks of cake and cookie intake with cardiorespiratory fitness and intake of whole-grain bread (r=0.52 and r=0

  19. Structural characterization of metabolites of the X-ray contrast agent iopromide in activated sludge using ion trap mass spectrometry.

    PubMed

    Pérez, Sandra; Eichhorn, Peter; Celiz, Mary Dawn; Aga, Diana S

    2006-03-15

    Identification of degradation products of environmental contaminants is a challenging task because not only are they present in very low concentrations but they are also mixed with complex matrixes that interfere with detection. This work illustrates a simple approach using ion trap mass spectrometry combined with H/D-exchange experiments to elucidate the structures of iopromide metabolites formed during biodegradation in activated sludge. Iopromide is an X-ray contrast agent that has been detected frequently in effluents of wastewater treatment plants and in surface waters due to its persistence and high usage. Three metabolites produced by oxidation of the primary alcohols (forming carboxylates) on the side chains of iopromide were identified in a batch reactor with mixed liquor from a conventional activated sludge. Derivatization of the carboxylic acid to form a methyl ester and interpretation of the MS2 data of this derivative aided in the confirmation of the identities of these metabolites. Furthermore, one metabolite formed by dehydroxylation at the two side chains was identified in a batch reactor with mixed liquor from a nitrifying activated sludge. The MS2 fragmentation pattern of iopromide and its metabolites revealed that the iodinated ring remains intact and that minor transformations in the structure occur during biodegradation of iopromide in biological wastewater treatment plants.

  20. Actions of incretin metabolites on locomotor activity, cognitive function and in vivo hippocampal synaptic plasticity in high fat fed mice.

    PubMed

    Porter, David; Faivre, Emilie; Flatt, Peter R; Hölscher, Christian; Gault, Victor A

    2012-05-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity-diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O(2) consumption, CO(2) production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet.

  1. Secondary Metabolites from the Marine-Derived Fungus Dichotomomyces sp. L-8 and Their Cytotoxic Activity.

    PubMed

    Huang, Li-Hong; Chen, Yan-Xiu; Yu, Jian-Chen; Yuan, Jie; Li, Hou-Jin; Ma, Wen-Zhe; Watanapokasin, Ramida; Hu, Kun-Chao; Niaz, Shah Iram; Yang, De-Po; Lan, Wen-Jian

    2017-03-11

    Bioassay-guided isolation of the secondary metabolites from the fungus Dichotomomyces sp. L-8 associated with the soft coral Lobophytum crassum led to the discovery of two new compounds, dichotones A and B (1 and 2), together with four known compounds including dichotocejpin C (3), bis-N-norgliovictin (4), bassiatin (5) and (3R,6R)-bassiatin (6). The structures of these compounds were determined by 1D, 2D NMR and mass spectrometry. (3R,6R)-bassiatin (6) displayed significant cytotoxic activities against the human breast cancer cell line MDA-MB-435 and the human lung cancer cell line Calu3 with IC50 values of 7.34 ± 0.20 and 14.54 ± 0.01 μM, respectively, while bassiatin (5), the diastereomer of compound 6, was not cytotoxic.

  2. Contamination of honey by the herbicide asulam and its antibacterial active metabolite sulfanilamide.

    PubMed

    Kaufmann, A; Kaenzig, A

    2004-06-01

    A number of antibacterial drugs (antibiotics) like sulfonamides, tetracyclines and streptomycin are used for the treatment of bacterial diseases in beehives. Yet, the finding of sulfanilamide residues in some 15 Swiss honeys out of some 350 samples could not be explained by such apicultural practice. Bees occasionally collect nectar from meadows treated with the herbicide asulam. Such honey is not only contaminated by asulam, but also by its degradation product sulfanilamide. This is the first report that the use of a herbicide causes the appearance of residues of an antibacterial active metabolite belonging to the category of sulfonamide drugs in food. The relevance of this finding lies in the fact that the use of the herbicide asulam might cause unacceptable residue levels of sulfanilamide in a product fbr human consumption.

  3. Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium.

    PubMed

    Min-Oo, Gundula; Ayi, Kodjo; Bongfen, Silayuv E; Tam, Mifong; Radovanovic, Irena; Gauthier, Susan; Santiago, Helton; Rothfuchs, Antonio Gigliotti; Roffê, Ester; Sher, Alan; Mullick, Alaka; Fortin, Anny; Stevenson, Mary M; Kain, Kevin C; Gros, Philippe

    2010-08-01

    In mice, loss of pantetheinase activity causes susceptibility to infection with Plasmodium chabaudi AS. Treatment of mice with the pantetheinase metabolite cysteamine reduces blood-stage replication of P. chabaudi and significantly increases survival. Similarly, a short exposure of Plasmodium to cysteamine ex vivo is sufficient to suppress parasite infectivity in vivo. This effect of cysteamine is specific and not observed with a related thiol (dimercaptosuccinic acid) or with the pantethine precursor of cysteamine. Also, cysteamine does not protect against infection with the parasite Trypanosoma cruzi or the fungal pathogen Candida albicans, suggesting cysteamine acts directly against the parasite and does not modulate host inflammatory response. Cysteamine exposure also blocks replication of P. falciparum in vitro; moreover, these treated parasites show higher levels of intact hemoglobin. This study highlights the in vivo action of cysteamine against Plasmodium and provides further evidence for the involvement of pantetheinase in host response to this infection.

  4. Isolation, antimicrobial activity, and metabolites of fungus Cladosporium sp. associated with red alga Porphyra yezoensis.

    PubMed

    Ding, Ling; Qin, Song; Li, Fuchao; Chi, Xiaoyuan; Laatsch, Hartmut

    2008-03-01

    Cladosporium sp. isolate N5 was isolated as a dominant fungus from the healthy conchocelis of Porphyra yezoensis. In the re-infection test, it did not cause any pathogenic symptoms in the alga. Twenty-one cultural conditions were chosen to test its antimicrobial activity in order to obtain the best condition for large-scale fermentation. Phenylacetic acid, p-hydroxyphenylethyl alcohol, and L-beta-phenyllactic acid were isolated from the crude extract as strong antimicrobial compounds and they are the first reported secondary metabolites for the genus Cladosporium. In addition, the Cladosporium sp. produced the reported Porphyra yezoensis growth regulators phenylacetic acid and p-hydroxyphenylacetic acid. No cytotoxicity was found in the brine shrimp lethality test, which indicated that the environmental-friendly Cladosporium sp. could be used as a potential biocontrol agent to protect the alga from pathogens.

  5. Secondary metabolites from Sida rhombifolia L. (Malvaceae) and the vasorelaxant activity of cryptolepinone.

    PubMed

    Chaves, Otemberg Souza; Gomes, Roosevelt Albuquerque; Tomaz, Anna Cláudia de Andrade; Fernandes, Marianne Guedes; das Graças Mendes, Leônidas; de Fátima Agra, Maria; Braga, Valdir Andrade; de Fátima Vanderlei de Souza, Maria

    2013-03-01

    The phytochemical study of Sida rhombifolia L. (Malvaceae) led to the isolation through chromatographic techniques of eleven secondary metabolites: sitosterol (1a) and stigmasterol (1b), sitosterol-3-O-b-D-glucopyranoside (2a) and stigmasterol-3-O-b-D-glucopyranoside (2b), phaeophytin A (3), 17³-ethoxypheophorbide A (4), 13²-hydroxy phaeophytin B (5), 17³-ethoxypheophorbide B (6), 5,7-dihydroxy-4'-methoxyflavone (7), cryptolepinone (8) and a salt of cryptolepine (9). Their structures were identified by ¹H- and ¹³C-NMR using one- and two-dimensional techniques. In addition, the vasorelaxant activity of cryptolepinone in rat mesenteric artery rings is reported herein for the first time.

  6. Biotransformation of finasteride by Ocimum sanctum L., and tyrosinase inhibitory activity of transformed metabolites: experimental and computational insights.

    PubMed

    Ali, Sajid; Nisar, Muhammad; Iriti, Marcello; Shah, Mohammad Raza; Mahmud, Maqsood; Ali, Ihsan; Khan, Inamullah

    2014-12-01

    Transformation of Finasteride (I) by cell suspension cultures of Ocimum sanctum L. was investigated. Fermentation of compound (I) with O. sanctum afforded three oxidized derivatives, 16β-hydroxyfinasteride (II), 11α-hydroxyfinasteride (III) and 15β-hydroxyfinasteride (IV). Among these metabolites, compound (II) was a new metabolite. Compound (I) and its derivatives were studied for their tyrosinase inhibition assay. All test compounds exhibited significant activity compared to standard drug kojic acid, with compound IV being the most potent member with an IC50 of 1.87μM. Molecular docking revealed significant molecular interactions behind the potent tyrosinase inhibitory activity of the tested compounds.

  7. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    PubMed Central

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-01-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography–mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos. PMID:25711705

  8. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    DOE PAGES

    Tsogtbaatar, Enkhtuul; Cocuron, Jean -Christophe; Sonera, Marcos Corchado; ...

    2015-02-22

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oilmore » synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. In conclusion, this study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos.« less

  9. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis.

    PubMed

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-07-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos.

  10. Laccase- and electrochemically mediated conversion of triclosan: Metabolite formation and influence on antibacterial activity.

    PubMed

    Jahangiri, Elham; Seiwert, Bettina; Reemtsma, Thorsten; Schlosser, Dietmar

    2017-02-01

    Metabolite formation from radical-based oxidation of the environmental pollutant triclosan (TCS) was compared using an ascomycete (Phoma sp. UHH 5-1-03) and a basidiomycete (Trametes versicolor) laccase, laccase-redox mediator systems, and electrochemical oxidation (EC). Laccase oxidation predominantly yielded TCS di- and trimers, but notably also caused TCS ether bond cleavage. The latter was more prominent during EC-catalysed TCS oxidation, which generally resulted in a broader and more divergent product spectrum. By contrast, only quantitative but not qualitative differences in TCS metabolite formation were observed for the two laccases. Application of the presumable natural laccase redox mediator syringaldehyde (SYD) shifted the TCS-transforming reactions of laccase systems from oligomerization more towards ether bond cleavage. However, the observed rapid removal of SYD from reaction systems caused by predominant adduct formation from SYD and TCS, and concomitant conversion of SYD into 2,6-dimethoxy-1,4-benzoquinone (DMBQ) clearly demonstrates that SYD does not function as a "true" laccase redox mediator in the sense of being recycled during TCS oxidation. Laccase treatment of TCS without SYD decreased the anti-bacterial TCS activity more than treatment employing SYD in addition, indicating that SYD and/or its transformation products contribute to bacterial toxicity. DMBQ was found to be about 80% more active in a bacterial growth inhibition test than its parent compound SYD in terms of IC20 values. These observations establish DMBQ as a potential cause of toxicity effects of SYD-laccase systems. They further illustrate that a natural origin of a redox mediator does not automatically qualify its use as environmentally benign or non-hazardous.

  11. 7-Dehydrocholesterol metabolites produced by sterol 27-hydroxylase (CYP27A1) modulate liver X receptor activity.

    PubMed

    Endo-Umeda, Kaori; Yasuda, Kaori; Sugita, Kazuyuki; Honda, Akira; Ohta, Miho; Ishikawa, Minoru; Hashimoto, Yuichi; Sakaki, Toshiyuki; Makishima, Makoto

    2014-03-01

    7-Dehydrocholesterol (7-DHC) is a common precursor of vitamin D3 and cholesterol. Although various oxysterols, oxygenated cholesterol derivatives, have been implicated in cellular signaling pathways, 7-DHC metabolism and potential functions of its metabolites remain poorly understood. We examined 7-DHC metabolism by various P450 enzymes and detected three metabolites produced by sterol 27-hydroxylase (CYP27A1) using high-performance liquid chromatography. Two were further identified as 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC. These 7-DHC metabolites were detected in serum of a patient with Smith-Lemli-Opitz syndrome. Luciferase reporter assays showed that 25-hydroxy-7-DHC activates liver X receptor (LXR) α, LXRβ and vitamin D receptor and that 26/27-hydroxy-7-DHC induces activation of LXRα and LXRβ, although the activities of both compounds on LXRs were weak. In a mammalian two-hybrid assay, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC induced interaction between LXRα and a coactivator fragment less efficiently than a natural LXR agonist, 22(R)-hydroxycholesterol. These 7-DHC metabolites did not oppose agonist-induced LXR activation and interacted directly to LXRα in a manner distinct from a potent agonist. These findings indicate that the 7-DHC metabolites are partial LXR activators. Interestingly, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC suppressed mRNA expression of sterol regulatory element-binding protein 1c, an LXR target gene, in HepG2 cells and HaCaT cells, while they weakly increased mRNA levels of ATP-binding cassette transporter A1, another LXR target, in HaCaT cells. Thus, 7-DHC is catabolized by CYP27A1 to metabolites that act as selective LXR modulators.

  12. Aboveground and belowground plant traits as drivers of microbial abundance and activity.

    NASA Astrophysics Data System (ADS)

    Baxendale, Catherine; Lavorel, Sandra; Grigulis, Karl; Legay, Nicolas; Krainer, Ute; Bahn, Michael; Kastl, Eva; Pommier, Thomas; Bardgett, Richard

    2013-04-01

    Although there is growing awareness of the roles that plant-soil interactions play in regulating ecosystem processes, our understanding of the role that specific aboveground and belowground plant traits play in defining them is limited. In this study, we aimed to develop a conceptual model linking plant functional trait impacts on soil microbial functional diversity and their coupled effects on ecosystem processes. This was done by replicating three mesocosm studies, based on model sub-alpine grasslands, across three sites in different parts of Europe as part of the pan-European project, VITAL. We manipulated community plant traits by planting communities of varying abundance and dominance of 4 common grassland species. After 1.5 years, we then measured aboveground traits (specific leaf area, leaf dry matter content, leaf nitrogen and carbon content and leaf C:N ratio), belowground traits (specific root length, average diameter, root dry matter content, root nitrogen and carbon content and root C:N ratio) microbial community abundance (using phospholipid fatty acid (PLFA) analysis and gene abundance of nitrifier and denitrifier communities), and microbial activity (via potential nitrification and denitrification rates). We present links between manipulated community traits, microbial properties and ecosystem processes, supporting the role of plant traits in driving microbial properties.

  13. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin.

    PubMed

    Wang, Chong-Zhi; Zhang, Chun-Feng; Chen, Lina; Anderson, Samantha; Lu, Fang; Yuan, Chun-Su

    2015-11-01

    Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal microbiota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anticancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis.

  14. Antiproliferative, Antibacterial and Antifungal Activity of the Lichen Xanthoria parietina and Its Secondary Metabolite Parietin

    PubMed Central

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-01-01

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances. PMID:25860944

  15. Peripheral distribution of kynurenine metabolites and activity of kynurenine pathway enzymes in renal failure.

    PubMed

    Pawlak, D; Tankiewicz, A; Matys, T; Buczko, W

    2003-06-01

    We investigated L-kynurenine distribution and metabolism in rats with experimental chronic renal failure of various severity, induced by unilateral nephrectomy and partial removal of contralateral kidney cortex. In animals with renal insufficiency the plasma concentration and the content of L-tryptophan in homogenates of kidney, liver, lung, intestine and spleen were significantly decreased. These changes were accompanied by increase activity of liver tryptophan 2,3-dioxygenase, the rate-limiting enzyme of kynurenine pathway in rats, while indoleamine 2,3-dioxygenase activity was unchanged. Conversely, the plasma concentration and tissue content of L-kynurenine, 3-hydroxykynurenine, and anthranilic, kynurenic, xanthurenic and quinolinic acids in the kidney, liver, lung, intestine, spleen and muscles were increased. The accumulation of L-kynurenine and the products of its degradation was proportional to the severity of renal failure and correlated with the concentration of renal insufficiency marker, creatinine. Kynurenine aminotransferase, kynureninase and 3-hydroxyanthranilate-3,4-dioxygenase activity was diminished or unchanged, while the activity of kynurenine 3-hydroxylase was significantly increased. We conclude that chronic renal failure is associated with the accumulation of L-kynurenine metabolites, which may be involved in the pathogenesis of certain uremic syndromes.

  16. Assessment of the Potential Biological Activity of Low Molecular Weight Metabolites of Freshwater Macrophytes with QSAR

    PubMed Central

    Fedorova, Elena V.; Krylova, Julia V.

    2016-01-01

    The paper focuses on the assessment of the spectrum of biological activities (antineoplastic, anti-inflammatory, antifungal, and antibacterial) with PASS (Prediction of Activity Spectra for Substances) for the major components of three macrophytes widespread in the Holarctic species of freshwater, emergent macrophyte with floating leaves, Nuphar lutea (L.) Sm., and two species of submergent macrophyte groups, Ceratophyllum demersum L. and Potamogeton obtusifolius (Mert. et Koch), for the discovery of their ecological and pharmacological potential. The predicted probability of anti-inflammatory or antineoplastic activities above 0.8 was observed for twenty compounds. The same compounds were also characterized by high probability of antifungal and antibacterial activity. Six metabolites, namely, hexanal, pentadecanal, tetradecanoic acid, dibutyl phthalate, hexadecanoic acid, and manool, were a part of the major components of all three studied plants, indicating their high ecological significance and a certain universalism in their use by various species of water plants for the implementation of ecological and biochemical functions. This report underlines the role of identified compounds not only as important components in regulation of biochemical and metabolic pathways and processes in aquatic ecological systems, but also as potential pharmacological agents in the fight against different diseases. PMID:27200207

  17. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin.

    PubMed

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-04-09

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances.

  18. Sequential first-pass metabolism of nortilidine: the active metabolite of the synthetic opioid drug tilidine.

    PubMed

    Hajda, Jacek Piotr; Jähnchen, Eberhard; Oie, Svein; Trenk, Dietmar

    2002-11-01

    The disposition of nortildine, the active metabolite of the synthetic opioid drug tilidine, was investigated in healthy volunteers in a randomized, single-dose, three-way crossover design. Three different treatments were administered: tilidine 50 mg intravenously, tilidine 50 mg orally, and nortilidine 10 mg intravenously. The plasma concentrations of tilidine, nortilidine, and bisnortilidine were determined and subjected to pharmacokinetic analysis using noncompartmental methods. The systemic bioavailability of tilidine was low (7.6% +/- 5.3%) due to a pronounced first-pass metabolism. The areas under the plasma concentration versus time curves (A UC) of nortilidine were similar following either oral or intravenous administration of tilidine 50 mg (375 +/- 184 vs. 364 +/- 124 ng.h.ml(-1)). AUC of nortilidine was 229 +/- 42 ng.h.ml(-1) after IV infusion of nortilidine 10 mg and thus much greater than after IV tilidine corrected for differences in dose. Nortilidine had a much lower volume of distribution (275 +/- 79 vs. 1326 +/- 477 L) and a somewhat lower clearance (749 +/- 119 vs. 1198 +/- 228 ml/min) than tilidine. About two-thirds of the dose of tilidine was metabolized to nortilidine, although only half of the latter fraction was available in the peripheral circulation. Nortilidine was subsequently metabolized to bisnortilidine. The mean ratio of the AUC of bisnortilidine to nortilidine was 0.65 +/- 0.14 following IV administration of nortilidine but 1.69 +/- 0.38 and 1.40 +/- 0.27 following oral and intravenous administration of tilidine, respectively. The shapes of the plasma concentration-time curves of the metabolites and parent drug declined in parallel, indicating that the disposition of the metabolites is formation rate limited. Thus, although two-thirds of the dose of tilidine is metabolized to nortilidine, only one-third of the dose is available systemically as nortilidine for interaction with the opiate receptors after both intravenous and oral dosing

  19. Formation of estrogenic metabolites of benzo[a]pyrene and chrysene by cytochrome P450 activity and their combined and supra-maximal estrogenic activity.

    PubMed

    van Lipzig, Marola M H; Vermeulen, Nico P E; Gusinu, Renato; Legler, Juliette; Frank, Heinz; Seidel, Albrecht; Meerman, John H N

    2005-01-01

    Metabolism of polycyclic aromatic hydrocarbons (PAHs) has been studied intensively, and potential metabolites with estrogenic activity have been identified previously. However, little attention has been paid to the metabolic pathways in mammalians and to the combined effect of individual metabolites. Several hydroxylated metabolites of benzo[a]pyrene (BaP) and chrysene (CHN) were formed by rat liver microsomal cytochrome P450 (CYP) activity, some of which possess estrogenic activity. All mono- and several dihydroxylated metabolites of BaP and CHN were tested for ER affinity and estrogenic activity in a proliferation assay (E-screen) and in a reporter-gene assay (ER-CALUX). Twelve estrogenic metabolites were identified with EC50 values ranging from 40nM to 0.15mM. The combined effect of a mixture of seven PAH-metabolites was also studied in the ER binding assay. At concentrations that show little activity themselves, their joint action clearly exhibited significant estrogenic activity. BaP itself exhibited estrogenicity in the ER-CALUX assay due to bio-activation into estrogenic metabolites, probably via aryl hydrocarbon receptor (AhR) induced CYP activity. Furthermore, 2-hydroxy-CHN (2-OHCHN) induced supra-maximal (400%) estrogenic effects in the ER-CALUX assay. This effect was entirely ER-mediated, since the response was completely blocked with the ER-antagonist ICI182,780. We showed that 2-OHCHN increased ER-concentration, using ELISA techniques, which may explain the observed supra-maximal effects. Co-treatment with the AhR-antagonist 3',4'-dimethoxyflavone (DMF) enhanced ER-signaling, possibly via blockage of AhR-ER inhibitory cross-talk.

  20. Abundance, diversity, and dynamics of viruses on microorganisms in activated sludge processes.

    PubMed

    Otawa, Kenichi; Lee, Sang Hyon; Yamazoe, Atsushi; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2007-01-01

    We examined the abundance of viruses on microorganisms in activated sludge and the dynamics of their community structure. Direct counting with epifluorescence microscopy and pulsed-field gel electrophoresis (PFGE) were applied to 20 samples from 14 full-scale wastewater treatment plants (wwtps) treating municipal, industrial, or animal wastewater. Furthermore, to observe the dynamics of viral community structure over time, a laboratory-scale sequencing batch reactor was operated for 58 days. The concentrations of virus particles in the wwtps, as quantified by epifluorescence microscopy, ranged from 4.2 x 10(7) to 3.0 x 10(9) mL-1. PFGE, improved by the introduction of a higher concentration of Tris-EDTA buffer in the DNA extraction step, was successfully used to profile DNA viruses in the activated sludge. Most of the samples from different wwtps commonly had bands in the 40-70 kb range. In the monitoring of viral DNA size distribution in the laboratory-scale reactor, some bands were observed stably throughout the experimental period, some emerged during the operation, and others disappeared. Rapid emergence and disappearance of two intense bands within 6 days was observed. Our data suggest that viruses--especially those associated with microorganisms--are abundant and show dynamic behavior in activated sludge.

  1. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils.

    PubMed

    Siles, José A; Cajthaml, Tomas; Minerbi, Stefano; Margesin, Rosa

    2016-03-01

    In the current context of climate change, the study of microbial communities along altitudinal gradients is especially useful. Only few studies considered altitude and season at the same time. We characterized four forest sites located in the Italian Alps, along an altitude gradient (545-2000 m a.s.l.), to evaluate the effect of altitude in spring and autumn on soil microbial properties. Each site in each season was characterized with regard to soil temperature, physicochemical properties, microbial activities (respiration, enzymes), community level physiological profiles (CLPP), microbial abundance and community structure (PLFA). Increased levels of soil organic matter (SOM) and nutrients were found at higher altitudes and in autumn, resulting in a significant increase of (soil dry-mass related) microbial activities and abundance at higher altitudes. Significant site- and season-specific effects were found for enzyme production. The significant interaction of the factors site and incubation temperature for soil microbial activities indicated differences in microbial communities and their responses to temperature among sites. CLPP revealed site-specific effects. Microbial community structure was influenced by altitudinal, seasonal and/or site-specific effects. Correlations demonstrated that altitude, and not season, was the main factor determining the changes in abiotic and biotic characteristics at the sites investigated.

  2. Impact of freshwater inflow on bacterial abundance and activity in the estuarine system Ria de Aveiro

    NASA Astrophysics Data System (ADS)

    Santos, Luísa; Vaz, Leandro; Marcial Gomes, Newton C.; Vaz, Nuno; Dias, João Miguel; Cunha, Ângela; Almeida, Adelaide

    2014-02-01

    The influence of freshwater flow on bacterial communities in the estuarine system Ria de Aveiro (Portugal) was investigated at two sites differently impacted by river inputs, representative of the marine and brackish water zones of the estuary. Sampling events were clustered based on hydrological features. The hydrodynamic was simulated with a Lagrangian model and related to microbiological parameters. Estuarine bacteria responded to different freshwater regimes developing distinct patterns of abundance and activity at the marine and brackish water zones. A circulation pattern induced by high river inflow produced vertical stratification in the marine zone, promoting a seaward flux of bacterioplankton, and stimulating the import of riverine phytoplankton and particle-attached bacteria to the brackish water zone. Advective transport and resuspension processes contributed to a 3-times increase in abundance of particle-attached bacteria during intense freshwater inputs. Additionally, bacterial activity in the estuary was controlled by inorganic nitrogen, responding to different freshwater inputs, which, in association with different prevailing sources of organic substrates induced significant changes in bacterial production. The dynamic and main controlling factors of bacterial communities are clearly impacted by freshwater inputs. Therefore, significant changes in the recycling of nutrients by microbial activities can be expected from alterations in freshwater inputs either related to global climate change or regional hydrological regimes.

  3. Structural characterization of a therapeutic anti-methamphetamine antibody fragment: oligomerization and binding of active metabolites.

    PubMed

    Peterson, Eric C; Celikel, Reha; Gokulan, Kuppan; Varughese, Kottayil I

    2013-01-01

    Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, K(D) = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or "ecstasy"). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni(2+). Two of the histidine residues of each C-terminal His-tag interact with Ni(2+) in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy.

  4. Liquid chromatography-mass spectrometric determination of losartan and its active metabolite on dried blood spots.

    PubMed

    Rao, R Nageswara; Raju, S Satyanarayana; Vali, R Mastan; Sankar, G Girija

    2012-08-01

    A simple and rapid quantitative bioanalytical liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for simultaneous determination of losartan and its active metabolite, losartan carboxylic acid on rat dried blood spots was developed and validated as per regulatory guidelines. Losartan and its metabolite were extracted from dried blood spots using 50% aqueous methanol and separated on Waters XTerra(®) RP18 (250 mm × 4.6 mm, 5 μm) column using mobile phase composed of 40% acetonitrile and 60% aqueous ammonium acetate (10mM). The eluents were monitored using ESI tandem mass spectrometric detection with negative polarity in MRM mode using ion transitions m/z 421.2→179.0, m/z 435.3→157.0 and m/z 427.3→193.0 for losartan, losartan carboxylic acid and Irbesartan (internal standard), respectively. The method was validated over the linear range of 1-200 ng/mL and 5-1000 ng/mL with lower limits of quantification of 1.0 ng/mL and 5.0 ng/mL for losartan and losartan carboxylic acid, respectively. Inter and intra-day precision and accuracy (Bias) were below 5.96% and between -2.8 and 1.5%, respectively. The mean recoveries of the analytes from dried blood spots were between 89% and 97%. No significant carry over and matrix effects were observed. The stability of stock solution, whole blood, dried blood spot and processed samples were tested under different conditions and the results were found to be well within the acceptable limits. Additional validation parameters such as influence of hematocrit and spot volume were also evaluated and found to be well within the acceptable limits.

  5. Monascus secondary metabolites monascin and ankaflavin inhibit activation of RBL-2H3 cells.

    PubMed

    Chang, Yu-Ying; Hsu, Wei-Hsuan; Pan, Tzu-Ming

    2015-01-14

    Monascus-fermented products have been used as dietary food and traditional medicine due to their beneficial effects on circulation and digestive systems in Asia for thousands of years. Besides, monascin and ankaflavin, secondary metabolites from Monascus-fermented products, have proven anti-inflammatory and immunomodulatory effects. In previous research, monascin and ankaflavin ameliorated ovalbumin-induced airway allergic reaction often used as a type I allergy asthma model. Additionally, mast cells play critical roles in type I allergy. Therefore, RBL-2H3 cells were used as the mast cell model to determine whether the improving effects on asthma of monascin and ankaflavin came from influencing mast cells. PMA and ionomycin are common activators of mast cells because they stimulate the main signaling molecules during mast cell activation. Forty micromolar monascin and ankaflavin inhibited PMA/ionomycin-induced mast cell degranulation and TNF-α secretion through suppressing the phosphorylation of PKC and MAPK family ERK, JNK, and p38. Consequently, monascin and ankaflavin affected the activation of mast cells and may have the potential to improve type I allergy.

  6. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic

    PubMed Central

    Shentu, Xuping; Zhan, Xiaohuan; Ma, Zheng; Yu, Xiaoping; Zhang, Chuanxi

    2014-01-01

    The endophytic fungus strain 0248, isolated from garlic, was identified as Trichoderma brevicompactum based on morphological characteristics and the nucleotide sequences of ITS1-5.8S- ITS2 and tef1. The bioactive compound T2 was isolated from the culture extracts of this fungus by bioactivity-guided fractionation and identified as 4β-acetoxy-12,13- epoxy-Δ9-trichothecene (trichodermin) by spectral analysis and mass spectrometry. Trichodermin has a marked inhibitory activity on Rhizoctonia solani, with an EC50 of 0.25 μgmL−1. Strong inhibition by trichodermin was also found for Botrytis cinerea, with an EC50 of 2.02 μgmL−1. However, a relatively poor inhibitory effect was observed for trichodermin against Colletotrichum lindemuthianum (EC50 = 25.60 μgmL−1). Compared with the positive control Carbendazim, trichodermin showed a strong antifungal activity on the above phytopathogens. There is little known about endophytes from garlic. This paper studied in detail the identification of endophytic T. brevicompactum from garlic and the characterization of its active metabolite trichodermin. PMID:24948941

  7. Endoxifen, the active metabolite of tamoxifen, inhibits cloned hERG potassium channels.

    PubMed

    Chae, Yun Ju; Lee, Keon Jin; Lee, Hong Joon; Sung, Ki-Wug; Choi, Jin-Sung; Lee, Eun Hui; Hahn, Sang June

    2015-04-05

    The effects of tamoxifen, and its active metabolite endoxifen (4-hydroxy-N-desmethyl-tamoxifen), on hERG currents stably expressed in HEK cells were investigated using the whole-cell patch-clamp technique and an immunoblot assay. Tamoxifen and endoxifen inhibited hERG tail currents at -50mV in a concentration-dependent manner with IC50 values of 1.2 and 1.6μM, respectively. The steady-state activation curve of the hERG currents was shifted to the hyperpolarizing direction in the presence of endoxifen. The voltage-dependent inhibition of hERG currents by endoxifen increased steeply in the voltage range of channel activation. The inhibition by endoxifen displayed a shallow voltage dependence (δ=0.18) in the full activation voltage range. A fast application of endoxifen induced a reversible block of hERG tail currents during repolarization in a concentration-dependent manner, which suggested an interaction with the open state of the channel. Endoxifen also decreased the hERG current elicited by a 5s depolarizing pulse to +60mV to inactivate the hERG currents, suggesting an interaction with the activated (open and/or inactivated) states of the channels. Tamoxifen and endoxifen inhibited the hERG channel protein trafficking to the plasma membrane in a concentration-dependent manner with endoxifen being more potent than tamoxifen. These results indicated that tamoxifen and endoxifen inhibited the hERG current by direct channel blockage and by the disruption of channel trafficking to the plasma membrane in a concentration-dependent manner. A therapeutic concentration of endoxifen inhibited the hERG current by preferentially interacting with the activated (open and/or inactivated) states of the channel.

  8. Plasma concentrations of amino acid and nicotinamide metabolites in rheumatoid arthritis--potential biomarkers of disease activity and drug treatment.

    PubMed

    Smolenska, Zaneta; Smolenski, Ryszard T; Zdrojewski, Zbigniew

    2016-01-01

    This study aimed to evaluate changes in plasma amino acid and nicotinamide metabolites concentrations in rheumatoid arthritis (RA) in a search for potential biomarkers of the disease activity and the effect treatment. Analysis of plasma metabolite patterns with liquid chromatography/mass spectrometry revealed specific changes in RA as well as correlations with clinical parameters. Combined concentration parameter calculated as [aspartic acid] + [threonine] + [tryptophan] - [histidine] - [phenylalanine] offered the strongest correlation (p < 0.001) with pain joint count, swollen joint count and DAS 28. Such analysis of amino acid and related metabolite pattern offers potential for diagnosis as well as for monitoring disease progression and therapy in RA.

  9. Anti-rheumatoid Activity of Secondary Metabolites Produced by Endophytic Chaetomium globosum

    PubMed Central

    Abdel-Azeem, Ahmed M.; Zaki, Sherif M.; Khalil, Waleed F.; Makhlouf, Noha A.; Farghaly, Lamiaa M.

    2016-01-01

    The aim of the present study was to investigate the anti-rheumatoid activity of secondary metabolites produced by endophytic mycobiota in Egypt. A total of 27 endophytic fungi were isolated from 10 dominant medicinal plant host species in Wadi Tala, Saint Katherine Protectorate, arid Sinai, Egypt. Of those taxa, seven isolates of Chaetomium globosum (CG1–CG7), being the most frequent taxon, were recovered from seven different host plants and screened for production of active anti-inflammatory metabolites. Isolates were cultivated on half – strength potato dextrose broth for 21 days at 28°C on a rotatory shaker at 180 rpm, and extracted in ethyl acetate and methanol, respectively. The probable inhibitory effects of both extracts against an adjuvant induced arthritis (AIA) rat model were examined and compared with the effects of methotrexate (MTX) as a standard disease-modifying anti-rheumatoid drug. Disease activity and mobility scoring of AIA, histopathology and transmission electron microscopy (TEM) were used to evaluate probable inhibitory roles. A significant reduction (P < 0.05) in the severity of arthritis was observed in both the methanolic extract of CG6 (MCG6) and MTX treatment groups 6 days after treatment commenced. The average arthritis score of the MCG6 treatment group was (10.7 ± 0.82) compared to (13.8 ± 0.98) in the positive control group. The mobility score of the MCG6 treatment group (1.50 ± 0.55) was significantly lower than that of the positive control group (3.33 ± 0.82). In contrast, the ethyl acetate extract of CG6 (EACG6) treatment group showed no improvements in arthritis and mobility scores in AIA model rats. Histopathology and TEM findings confirmed the observation. Isolate CG6 was subjected to sequencing for confirmation of phenotypic identification. The internal transcribed spacer (ITS) 1–5.8 s – ITS2 rDNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number KC

  10. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger.

    PubMed Central

    Kudla, B; Caddick, M X; Langdon, T; Martinez-Rossi, N M; Bennett, C F; Sibley, S; Davies, R W; Arst, H N

    1990-01-01

    The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans has been sequenced and its transcript mapped and orientated. A single ORF can encode a protein of 719 amino acids. A 52 amino acid region including a putative 'zinc finger' strongly resembles putative DNA binding regions of the major regulatory protein of erythroid cells. The derived protein sequence also contains a highly acidic region possibly involved in gene activation and 22 copies of the motif S(T)PXX, abundant in DNA binding proteins. Analysis of chromosomal rearrangements and transformation with deletion clones identified 342 N-terminal and 124 C-terminal residues as inessential and localized a C-terminal region required for nitrogen metabolite repressibility. A -1 frameshift eliminating the inessential 122 C-terminal amino acids is a surprising loss-of-function mutation. Extraordinary basicity of the replacement C terminus might explain its phenotype. Mutant sequencing also identified a polypeptide chain termination and several missense mutations, but most interesting are sequence changes associated with specificity mutations. A mutation elevating expression of some structural genes under areA control whilst reducing or not affecting expression of others is a leucine to valine change in the zinc finger loop. It reverts to a partly reciprocal phenotype by replacing the mutant valine by methionine. Images Fig.2 Fig.4 Fig.5 Fig. 8. Fig. 9. PMID:1970293

  11. Monitoring testicular activity of male Eurasian (Lynx lynx) and Iberian (Lynx pardinus) lynx by fecal testosterone metabolite measurement.

    PubMed

    Jewgenow, K; Naidenko, S V; Goeritz, F; Vargas, A; Dehnhard, M

    2006-11-01

    The aim of the present study was to identify relevant fecal testosterone metabolites in the Eurasian lynx (Lynx lynx) using HPLC analysis and to evaluate the specificity of two testosterone immunoassays against these fecal metabolites. Finally, fecal hormone analysis was used to characterize seasonal reproductive activity of captive male Eurasian and Iberian (Lynx pardinus) lynx. Fecal samples from a male Eurasian lynx who received an i.v. injection of [3H]testosterone were subjected to HPLC analysis. All HPLC fractions were analyzed for radioactivity and androgen content by two testosterone immune assays (EIA and Testosterone-Immulite kits, DPC Biermann, Germany). Furthermore, fecal samples from four Eurasian lynx males (n=174) and three Iberian lynx (n=52) were collected throughout the year and fecal testosterone metabolites were determined with Testosterone-Immulite assay. HPLC separation of radiolabeled Eurasian lynx fecal extract indicated that the majority of testosterone metabolites are substances with a higher polarity than testosterone. Only minor proportion of radioactivity co-eluted with authentic testosterone and dihydrotestosterone. Enzymatic hydrolysis and solvolysis of the fecal extract were insufficient to liberate testosterone. After solvolysis relatively more activity was eluated the position of DHT, but the majority of metabolites remained unaffected. The EIA measured substantial amount of immunoreactivity, which corresponded with two radioactive peaks. Additionally, both immunoassays recognized two metabolites, which were only minor components according to their radioactivity. The Immulite assay was able to recognize a metabolite at the position of dihydrotestosterone. HPLC separation of Iberian lynx feces extracts revealed a similar metabolite pattern determined by EIA that were typical for Eurasian lynx fecal extracts. Simultaneous analyses of fecal samples with both testosterone assays provided comparative results for both lynx species

  12. Temperature and Abundance Variations of an Active Region in Three Solar Rotations

    NASA Astrophysics Data System (ADS)

    Ko, Y.; Fludra, A.; Raymond, J. C.

    2002-12-01

    Active region 9718 (AR 9718) appeared at the east limb on November 26, 2001 which was newly formed when it was at the backside of the Sun. It survives through three solar rotations -- AR 9755 and AR 9798 for subsequent rotations. AR 9798 decayed to no visible sunspot before it reached the west limb. SOHO/UVCS observed this region four times, as part of SOHO JOP 151, when it was at the limbs (AR 9718 at the west limb, AR 9755 at both the east and west limbs, and AR 9798 at the west limb). SOHO/CDS made observations when AR 9718 and AR 9755 were at the west limb. We investigate the temperature and abundance variations of this active region during its lifetime, and look for possible correlations between these physical parameters and its magnetic characteristics.

  13. Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites

    PubMed Central

    Chen, Xiao-Jia; Zhang, Xiao-Jing; Shui, Yan-Mei; Wan, Jian-Bo

    2016-01-01

    Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer. PMID:27446225

  14. Antiproliferative activity of phenylbutyrate ester of haloperidol metabolite II [(±)-MRJF4] in prostate cancer cells.

    PubMed

    Marrazzo, Agostino; Fiorito, Jole; Zappalà, Laura; Prezzavento, Orazio; Ronsisvalle, Simone; Pasquinucci, Lorella; Scoto, Giovanna M; Bernardini, Renato; Ronsisvalle, Giuseppe

    2011-01-01

    Complex mechanisms of prostate cancer progression prompt to novel therapeutic strategies concerning a combination of drugs or of single molecules able to interact with more crucial targets. Histone deacetylase inhibitors and sigma ligands with mixed σ(1) antagonist and σ(2) agonist properties were proposed as new potential tools for treatment of prostate cancer. (±)-MRJF4 was synthesized as phenylbutyrate ester of haloperidol metabolite II, which is a molecule consisting of a histone deacetilase inhibitor (4-phenylbutyric acid) and a sigma ligand (haloperidol metabolite II). Antiproliferatives activities of 4-phenylbutyric acid, haloperidol metabolite II, equimolar mixture of both compounds and (±)-MRJF4 were evaluated in vitro on LNCaP and PC3 prostate cancer cells. Preliminary binding studies of (±)-MRJF4 for σ(1), σ(2), D(2) and D(3) receptors and inhibition HDAC activity were reported. MTT cell viability assays highlighted a notable increase of antiproliferative activity of (±)-MRJF4 (IC(50) = 11 and 13 μM for LNCaP and PC3, respectively) compared to 4-phenylbutyric acid, haloperidol metabolite II and the respective equimolar pharmacological association. (±)-MRJF4 was also used in combination with σ(1) agonist (+)-pentazocine and σ(2) antagonist AC927 in order to evaluate the role of σ receptor subtypes in prostate cancer cell death.

  15. The Abundance and Activity of Nitrate-Reducing Microbial Populations in Estuarine Sediments

    NASA Astrophysics Data System (ADS)

    Cardarelli, E.; Francis, C. A.

    2014-12-01

    Estuaries are productive ecosystems that ameliorate nutrient and metal contaminants from surficial water supplies. At the intersection of terrestrial and aquatic environments, estuarine sediments host major microbially-mediated geochemical transformations. These include denitrification (the conversion of nitrate to nitrous oxide and/or dinitrogen) and dissimilatory nitrate reduction to ammonium (DNRA). Denitrification has historically been seen as the predominant nitrate attenuation process and functions as an effective sink for nitrate. DNRA has previously been believed to be a minor nitrate reduction process and transforms nitrate within the ecosystem to ammonium, a more biologically available N species. Recent studies have compared the two processes in coastal environments and determined fluctuating environmental conditions may suppress denitrification, supporting an increased role for DNRA in the N cycle. Nitrate availability and salinity are factors thought to influence the membership of the microbial communities present, and the nitrate reduction process that predominates. The aim of this study is to investigate how nitrate concentration and salinity alter the transcript abundances of N cycling functional gene markers for denitrification (nirK, nirS) and DNRA (nrfA) in estuarine sediments at the mouth of the hypernutrified Old Salinas River, CA. Short-term whole core incubations amended with artificial freshwater/artificial seawater (2 psu, 35 psu) and with varying NO3- concentrations (200mM, 2000mM) were conducted to assess the activity as well as the abundance of the nitrate-reducing microbial populations present. Gene expression of nirK, nirS, and nrfA at the conclusion of the incubations was quantified using reverse transcription quantitative polymerase chain reaction (RT-qPCR). High abundances of nirK, nirS, and nrfA under particular conditions coupled with the resulting geochemical data ultimately provides insight onto how the aforementioned factors

  16. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  17. On the abundance and activity pattern of zoobenthos inhabiting a tropical reef area, Cebu, Philippines

    NASA Astrophysics Data System (ADS)

    Faubel, A.

    1984-12-01

    A benthic faunal study was carried out in the tidal area of Mactan Island (Cebu, Philippines). The area was subdivided along a transect from the beach to the reef according to benthic assemblages. The sediments are largely composed of calcareous skeletal remains of the indigenous biota and surrounding calcareous rocks. The content of protein and carbohydrates of the sediment was estimated, providing an approximation of organic matter in terms of feeding efficiency. Total number of zoobenthos, both as regards the sediment samples and as to the epifaunal communities associated with seaweeds, is rather uniformly distributed justifying the 95% confidence level ( P>0.05). Distinct differences are apparent in abundance values of individual taxa. Although the study area showed the expected distribution pattern, with dominance of Nematoda (39%) living in sediment and Harpacticoida (36 66%) dwelling on Thalassia and algae, Polychaeta reveal a dominant attraction to both these habitats. The reasons for this phenomenon are discussed in relation to the absolute lack of macrofaunal predators The zoobenthos adjust their distribution and activity to fluctuating conditions of the environment. Light is mainly suggested as stimulating diel migration activities of the benthic fauna, moving upwards from the sediment to the algae and Thalassia during daytime. In a field experiment the zoobenthos was investigated for digestion activity over a diurnal cycle. The results reveal that feeding activity of zoobenthos follows a diel cycle showing maximum activity during the morning and evening obviously influenced by changes of light.

  18. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments

    PubMed Central

    Thomas, François; Giblin, Anne E.; Cardon, Zoe G.; Sievert, Stefan M.

    2014-01-01

    Salt marshes are highly productive ecosystems hosting an intense sulfur (S) cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB). Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT)-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere. PMID:25009538

  19. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders

    PubMed Central

    Liu, Ya-Jun; Zaprasis, Adrienne; Liu, Shuang-Jiang; Drake, Harold L; Horn, Marcus A

    2011-01-01

    2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic acid extract and indicated that copy numbers of tfdA-like and cadA genes (both encoding oxygenases initiating aerobic PAA degradation) in soil with earthworms were up to three and four times higher than without earthworms, respectively. tfdA-like and 16S rRNA gene transcript copy numbers in soil with earthworms were two and six times higher than without earthworms, respectively. Most probable numbers (MPNs) of MCPA degraders approximated 4 × 105 gdw−1 in soil before incubation and in soil treated without earthworms, whereas MPNs of earthworm-treated soils were approximately 150 × higher. The aerobic capacity of soil to degrade MCPA was higher in earthworm-treated soils than in earthworm-untreated soils. Burrow walls and 0–5 cm depth bulk soil displayed higher capacities to degrade MCPA than did soil from 5–10 cm depth bulk soil, expression of tfdA-like genes in burrow walls was five times higher than in bulk soil and MCPA degraders were abundant in burrow walls (MPNs of 5 × 107 gdw−1). The collective data indicate that earthworms stimulate abundance and activity of MCPA degraders endogenous to soil by their burrowing activities and might thus be advantageous for enhancing PAA degradation in soil. PMID:20740027

  20. Methods for determining the abundance, diversity and activity of soil microbial communities

    NASA Astrophysics Data System (ADS)

    Pereg, Lily

    2014-05-01

    The diversity and abundance of soil microbial communities play important roles in determining soil structure, quality and productivity. The past decade has seen an increase in the number and efficiency of methods for determining microbial diversity, abundance and function. Recognising that only a very small proportion of the soil microbial community can be cultured, most current studies use molecular techniques based on the 16S and 18S rRNA encoding sequences (DGGE, TRFLP, OFRG, ARISA, SSCP) as well as techniques based on the cellular composition of the microbes (PLFA composition). Recent developments include high-throughput sequencing and microarrays, representing major advances in microbial community analysis. While the diversity of microbes can be determined using DNA-based techniques, microbial activity changes under various conditions. Therefore, the analysis of soil function at any given time requires the analysis of gene expression using RNA-based techniques. Molecular techniques have tremendously advanced our knowledge in the field of soil microbiology, however, the limitations should not be underestimated. This presentation will critically review both the advantages and the limitations of techniques used in soil microbial analysis.

  1. An Invasive Plant Promotes Its Arbuscular Mycorrhizal Symbioses and Competitiveness through Its Secondary Metabolites: Indirect Evidence from Activated Carbon

    PubMed Central

    Yuan, Yongge; Tang, Jianjun; Leng, Dong; Hu, Shuijin; Yong, Jean W. H.; Chen, Xin

    2014-01-01

    Secondary metabolites released by invasive plants can increase their competitive ability by affecting native plants, herbivores, and pathogens at the invaded land. Whether these secondary metabolites affect the invasive plant itself, directly or indirectly through microorganisms, however, has not been well documented. Here we tested whether activated carbon (AC), a well-known absorbent for secondary metabolites, affect arbuscular mycorrhizal (AM) symbioses and competitive ability in an invasive plant. We conducted three experiments (experiments 1–3) with the invasive forb Solidago canadensis and the native Kummerowia striata. Experiment 1 determined whether AC altered soil properties, levels of the main secondary metabolites in the soil, plant growth, and AMF communities associated with S. canadensis and K. striata. Experiment 2 determined whether AC affected colonization of S. canadensis by five AMF, which were added to sterilized soil. Experiment 3 determined the competitive ability of S. canadensis in the presence and absence of AMF and AC. In experiment 1, AC greatly decreased the concentrations of the main secondary metabolites in soil, and the changes in concentrations were closely related with the changes of AMF in S. canadensis roots. In experiment 2, AC inhibited the AMF Glomus versiforme and G. geosporum but promoted G. mosseae and G. diaphanum in the soil and also in S. canadensis roots. In experiment 3, AC reduced S. canadensis competitive ability in the presence but not in the absence of AMF. Our results provided indirect evidence that the secondary metabolites (which can be absorbed by AC) of the invasive plant S. canadensis may promote S. canadensis competitiveness by enhancing its own AMF symbionts. PMID:24817325

  2. Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity.

    PubMed

    Suh, Dong Ho; Lee, Sunmin; Heo, Do Yeon; Kim, Young-Suk; Cho, Somi Kim; Lee, Sarah; Lee, Choong Hwan

    2014-08-27

    Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) was performed using gas chromatography-time-of-flight-mass spectrometry and ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry with multivariate analysis. Different species and parts of pitayas (red peel, RP; white peel, WP; red flesh, RF; and white flesh, WF) were clearly separated by partial least-squares discriminate analysis. Furthermore, betalain-related metabolites, such as betacyanins and betaxanthins, or their precursors were described on the basis of their metabolites. The results of antioxidant activity tests [1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing ability of plasma (FRAP)], total phenolic contents (TPC), total flavonoid contents (TFC), and total betacyanin contents (TBC) showed the following: RP ≥ WP > RF > WF. TPC, TFC, TBC, and betalain-related metabolites were higher in the peel than in the flesh and suggested to be the main contributors to antioxidant activity in pitayas. Therefore, peels as well as pulp of pitaya could beneficially help in the food industry.

  3. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling.

    PubMed

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-04-07

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions.

  4. Determination of the active metabolite of sibutramine by liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Chen, Jun; Lu, Wei; Zhang, Qizhi; Jiang, Xinguo

    2003-03-05

    A sensitive and specific method for the determination of the active primary amine metabolite of sibutramine, N-di-desmethylsibutramine (BTS 54,505), in human plasma was developed, based on high-performance liquid chromatography (HPLC)-electrospray ionization tandem mass spectrometry (MS-MS). The samples were extracted from plasma with methyl tert.-butyl ether, followed by separation and evaporation after addition of the internal standard, propranolol, and basification with sodium hydroxide. The residue was reconstituted in mobile phase and injected into the HPLC-MS-MS system. Chromatography was performed on an ODS MS column with a mobile phase consisting of acetonitrile (containing 0.1% trifluoroacetic acid, v/v)-0.1% trifluoroacetic acid (55:45, v/v) at a flow-rate of 0.3 ml/min. Multiple reaction monitoring using precursor-->product ion combinations at m/z 252.00-->125.00 and 260.00-->115.70 was applied to determine BTS 54,505 and propranolol, respectively. Linearity was confirmed in the concentration range 0.328-32.8 ng/ml in human plasma and the imprecision of this assay was less than 19.90% over the entire concentration range. The method is sufficiently sensitive and repeatable to be used in pharmacokinetic studies.

  5. Luteolibacter yonseiensis sp. nov., isolated from activated sludge using algal metabolites.

    PubMed

    Park, Joonhong; Baek, Gyu Seok; Woo, Sung-Geun; Lee, Jangho; Yang, Jihoon; Lee, Juyoun

    2013-05-01

    A Gram-negative, rod-shaped, aerobic bacterial strain, designated EBTL01(T), was isolated from activated sludge by using metabolites of microalgae Ankistrodesmus gracilis SAG278-2. Phylogenetic analyses based on 16S rRNA gene sequence showed that strain EBTL01(T) belongs to the family Verrucomicrobiaceae, class Verrucomicrobiae, and is related most closely to Luteolibacter pohnpeiensis A4T-83(T) (95.5 % sequence similarity) and Luteolibacter algae A5J-41-2(T) (95.2 %). The G+C content of the genomic DNA of strain EBTL01(T) was 56.3 mol% and the menaquinone MK-9 was detected as the predominant quinone. Major fatty acid components were iso-C14 : 0, C16 : 1ω7c and C16 : 0. The amino acids of the cell-wall peptidoglycan contained muramic acid and meso-diaminopimelic acid. These profile results supported the affiliation of strain EBTL01(T) to the genus Luteolibacter. On the other hand, based on chemotaxonomic properties and phenotypic characteristics, strain EBTL01(T) could be clearly differentiated from its phylogenetic neighbours. Therefore, strain EBTL01(T) represents a novel species of the genus Luteolibacter, for which the name Luteolibacter yonseiensis sp. nov. is proposed. The type strain is EBTL01(T) ( = KCTC 23678(T) = JCM 18052(T)).

  6. Prosthecobacter algae sp. nov., isolated from activated sludge using algal metabolites.

    PubMed

    Lee, Jangho; Park, Banghyo; Woo, Sung-Geun; Lee, Juyoun; Park, Joonhong

    2014-02-01

    A Gram-stain-negative, fusiform-shaped, facultatively anaerobic bacterial strain, designated EBTL04(T), was isolated from activated sludge using algal metabolites and taxonomically characterized through polyphasic investigation. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain EBTL04(T) belongs to the family Verrucomicrobiaceae, class Verrucomicrobiae, and is closely related to Prosthecobacter dejongeii DSM 12251(T) (98.6 % sequence similarity), Prosthecobacter fusiformis ATCC 25309(T) (97.9 %), Prosthecobacter debontii DSM 14044(T) (97.5%), Prosthecobacter vanneervenii DSM 12252(T) (94.7%) and Prosthecobacter fluviatilis KCTC 22182(T) (93.7%). The G+C content of the genomic DNA of strain EBTL04(T) was 62.7 mol%. The menaquinone MK-6 was detected as the predominant quinone. Strain EBTL04(T) contained phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine as major polar lipids. A fatty acid profile with C(16 : 1)ω5c, iso-C(14 : 0), C(16 : 0), anteiso-C(15 : 0) and C(14 : 0) as the major components supported the classification of strain EBTL04(T) in the genus Prosthecobacter. Based on several phenotypic, genotypic and chemotaxonomic features, strain EBTL04(T) was clearly differentiated from its phylogenetic neighbours. Therefore, strain EBTL04(T) should be considered to represent a novel species of the genus Prosthecobacter, for which the name Prosthecobacter algae sp. nov. is proposed. The type strain is EBTL04(T) ( = KCTC 23681(T) = JCM 18053(T)).

  7. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling

    PubMed Central

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-01-01

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions. PMID:27053227

  8. EGFR-activating mutations, DNA copy number abundance of ErbB family, and prognosis in lung adenocarcinoma.

    PubMed

    Chen, Hsuan-Yu; Liu, Chia-Hsin; Chang, Ya-Hsuan; Yu, Sung-Liang; Ho, Bing-Ching; Hsu, Chung-Ping; Yang, Tsung-Ying; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Tseng, Jeng-Sen; Hsia, Jiun-Yi; Chuang, Cheng-Yen; Chang, Chi-Sheng; Li, Yu-Cheng; Li, Ker-Chau; Chang, Gee-Chen; Yang, Pan-Chyr

    2016-02-23

    In this study, EGFR-activating mutation status and DNA copy number abundances of members of ErbB family were measured in 261 lung adenocarcinomas. The associations between DNA copy number abundances of ErbB family, EGFR-activating mutation status, and prognosis were explored. Results showed that DNA copy number abundances of EGFR, ERBB2, ERBB3, and ERBB4 had associations with overall survival in lung adenocarcinoma with EGFR-activating mutations. In the stratification analysis, only ERBB2 showed significant discrepancy in patients carrying wild type EGFR and other members of ErbB family in patients carrying EGFR-activating mutation. This indicated that CNAs of ErbB family had effect modifications of EGFR-activating mutation status. Findings of this study demonstrate potential molecular guidance of patient management of lung adenocarcinoma with or without EGFR-activating mutations.

  9. Effects of 3-O-methyldopa, L-3,4-dihydroxyphenylalanine metabolite, on locomotor activity and dopamine turnover in rats.

    PubMed

    Onzawa, Yoritaka; Kimura, Yasuhiro; Uzuhashi, Kengo; Shirasuna, Megumi; Hirosawa, Tasuku; Taogoshi, Takanori; Kihira, Kenji

    2012-01-01

    It has been well known that 3-O-methyldopa (3-OMD) is a metabolite of L-3,4-dihydroxyphenylalanine (L-DOPA) formed by catechol O-methyltransferase (COMT), and 3-OMD blood level often reaches higher than physiological level in Parkinson's disease (PD) patients receiving long term L-DOPA therapy. However, the physiological role of 3-OMD has not been well understood. Therefore, in order to clarify the effects of 3-OMD on physiological function, we examined the behavioral alteration in rats based on locomotor activity, and measured dopamine (DA) and its metabolites levels in rats at the same time after 3-OMD subchronic administration. The study results showed that repeated administrations of 3-OMD increased its blood and the striatum tissue levels in those rats, and decreased locomotor activity in a dose dependent manner. Although 3-OMD subchronic administration showed no significant change in DA level in the striatum, DA metabolite levels, such as 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA) were significantly decreased. After 3-OMD washout period (7 d), locomotor activity and DA turnover in those rats returned to normal levels. Furthermore, locomotor activity and DA turnover decreased by 3-OMD administration were recovered to normal level by acute L-DOPA administration. These results suggested that 3-OMD affect to locomotor activity via DA neuron system. In conclusion, 3-OMD itself may have a disadvantage in PD patients receiving L-DOPA therapy.

  10. [Secondary metabolites, lethality and antimicrobial activity of extracts from three corals and three marine mollusks from Sucre, Venezuela].

    PubMed

    Ordaz, Gabriel; D'Armas, Haydelba; Yáñez, Dayanis; Hernández, Juan; Camacho, Angel

    2010-06-01

    The study of biochemical activity of extracts obtained from marine organisms is gaining interest as some have proved to have efficient health or industrial applications. To evaluate lethality and antimicrobial activities, some chemical tests were performed on crude extracts of the octocorals Eunicea sp., Muricea sp. and Pseudopterogorgia acerosa and the mollusks Pteria colymbus, Phyllonotus pomum and Chicoreus brevifrons, collected in Venezuelan waters. The presence of secondary metabolites like alkaloids, unsaturated sterols and pentacyclic triterpenes in all invertebrates, was evidenced. Additionally, sesquiterpenlactones, saponins, tannins, cyanogenic and cardiotonic glycosides were also detected in some octocoral extracts, suggesting that biosynthesis of these metabolites is typical in this group. From the lethality bioassays, all extracts resulted lethal to Artemia salina (LC50<1000 microg/ml) with an increased of lethal activity with exposition time. P. pomum extract showed the highest lethality rate (LC50=46.8 microg/ml). Compared to the octocorals, mollusks extracts displayed more activity and a greater action spectrum against different bacterial strains, whereas octocorals also inhibited some fungi strains growth. Staphylococcus aureus was the most susceptible to the antimicrobial power of the extracts (66.7%), whereas Pseudomonas aeruginosa, Candida albicans and Aspergillus niger were not affected. The antibiosis shown by marine organisms extracts indicates that some of their biosynthesized metabolites are physiologically active, and may have possible cytotoxic potential or as a source of antibiotic components.

  11. Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1.

    PubMed

    Materazzi, Serena; Nassini, Romina; Andrè, Eunice; Campi, Barbara; Amadesi, Silvia; Trevisani, Marcello; Bunnett, Nigel W; Patacchini, Riccardo; Geppetti, Pierangelo

    2008-08-19

    Prostaglandins (PG) are known to induce pain perception indirectly by sensitizing nociceptors. Accordingly, the analgesic action of nonsteroidal anti-inflammatory drugs (NSAIDs) results from inhibition of cyclooxygenases and blockade of PG biosynthesis. Cyclopentenone PGs, 15-d-PGJ(2), PGA(2), and PGA(1), formed by dehydration of their respective parent PGs, PGD(2), PGE(2), and PGE(1), possess a highly reactive alpha,beta-unsaturated carbonyl group that has been proposed to gate the irritant transient receptor potential A1 (TRPA1) channel. Here, by using TRPA1 wild-type (TRPA1(+/+)) or deficient (TRPA1(-/-)) mice, we show that cyclopentenone PGs produce pain by direct stimulation of nociceptors via TRPA1 activation. Cyclopentenone PGs caused a robust calcium response in dorsal root ganglion (DRG) neurons of TRPA1(+/+), but not of TRPA1(-/-) mice, and a calcium-dependent release of sensory neuropeptides from the rat dorsal spinal cord. Intraplantar injection of cyclopentenone PGs stimulated c-fos expression in spinal neurons of the dorsal horn and evoked an instantaneous, robust, and transient nociceptive response in TRPA1(+/+) but not in TRPA1(-/-) mice. The classical proalgesic PG, PGE(2), caused a slight calcium response in DRG neurons, increased c-fos expression in spinal neurons, and induced a delayed and sustained nociceptive response in both TRPA1(+/+) and TRPA1(-/-) mice. These results expand the mechanism of NSAID analgesia from blockade of indirect nociceptor sensitization by classical PGs to inhibition of direct TRPA1-dependent nociceptor activation by cyclopentenone PGs. Thus, TRPA1 antagonism may contribute to suppress pain evoked by PG metabolites without the adverse effects of inhibiting cyclooxygenases.

  12. CSF Biomarkers of Monocyte Activation and Chemotaxis correlate with Magnetic Resonance Spectroscopy Metabolites during Chronic HIV Disease

    PubMed Central

    Anderson, Albert M.; Fennema-Notestine, Christine; Umlauf, Anya; Taylor, Michael J.; Clifford, David B.; Marra, Christina M.; Collier, Ann C.; Gelman, Benjamin B.; McArthur, Justin C.; McCutchan, J. Allen; Simpson, David M.; Morgello, Susan; Grant, Igor; Letendre, Scott L.

    2015-01-01

    Background HIV-associated neurocognitive disorders (HAND) persist despite combination antiretroviral therapy (cART), supporting the need to better understand HIV neuropathogenesis. Magnetic resonance spectroscopy (MRS) of the brain has demonstrated abnormalities in HIV-infected individuals despite cART. We examined the associations between MRS metabolites and selected cerebrospinal fluid (CSF) biomarkers reflecting monocyte/macrophage activation and chemotaxis. Methods A multicenter cross-sectional study involving five sites in the United States was conducted. The following CSF biomarkers were measured: soluble CD14 (sCD14), monocyte chemotactic protein 1 (MCP-1), interferon inducible protein 10 (IP-10), and stromal cell derived growth factor 1 alpha (SDF-1α). The following MRS metabolites were measured from basal ganglia (BG), frontal white matter (FWM) and frontal gray matter (FGM): N-acetyl-aspartate (NAA), Myo-inositol (MI), Choline (Cho), and Creatine (Cr). CSF biomarkers were compared to absolute MRS metabolites as well as metabolite/Cr ratios using linear regression. Results 83 HIV-infected individuals were included, 78% on cART and 37% with HAND. The most robust positive correlations were between MCP-1 and Cho in BG (R2 0.179, p<0.001) as well as MCP-1 and MI in FWM (R2 0.137, p=0.002). Higher Cr levels in FWM were associated with MCP-1 (R2 0. 075, p=0.01) and IP-10 (R2 0.106, p=0.003). Comparing biomarkers to MRS metabolite/Cr ratios impacted some relationships, e.g., higher sCD14 levels were associated with lower Cho/Cr ratios in FGM (R2 0.224, p<0.001), although higher MCP-1 levels remained associated with Cho/Cr in BG. Conclusion These findings provide evidence that monocyte activation and chemotaxis continue to contribute to HIV-associated brain abnormalities in cART-treated individuals. PMID:26069183

  13. The Relationship between Mitochondrial Respiratory Chain Activities in Muscle and Metabolites in Plasma and Urine: A Retrospective Study

    PubMed Central

    Alban, Corinne; Fatale, Elena; Joulani, Abed; Ilin, Polina; Saada, Ann

    2017-01-01

    The relationship between 114 cases with decreased enzymatic activities of mitochondrial respiratory chain (MRC) complexes I-V (C I-V) in muscle and metabolites in urine and plasma was retrospectively examined. Less than 35% disclosed abnormal plasma amino acids and acylcarnitines, with elevated alanine and low free carnitine or elevated C4-OH-carnitine as the most common findings, respectively. Abnormal urine organic acids (OA) were detected in 82% of all cases. In CI and CII defects, lactic acid (LA) in combination with other metabolites was the most common finding. 3-Methylglutaconic (3MGA) acid was more frequent in CIV and CV, while Tyrosine metabolites, mainly 4-hydroxyphenyllactate, were common in CI and IV defects. Ketones were present in all groups but more prominent in combined deficiencies. There was a significant strong correlation between elevated urinary LA and plasma lactate but none between urine Tyrosine metabolites and plasma Tyrosine or urinary LA and plasma Alanine. All except one of 14 cases showed elevated FGF21, but correlation with urine OA was weak. Although this study is limited, we conclude that urine organic acid test in combination with plasma FGF21 determination are valuable tools in the diagnosis of mitochondrial diseases. PMID:28287425

  14. Activation of dormant secondary metabolite production by introducing neomycin resistance into the deep-sea fungus, Aspergillus versicolor ZBY-3.

    PubMed

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-07-29

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(D-Pro-D-Phe) (1), cyclo(D-Tyr-D-Pro) (2), phenethyl 5-oxo-L-prolinate (3), cyclo(L-Ile-L-Pro) (4), cyclo(L-Leu-L-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1-6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent fungal

  15. Activation of Dormant Secondary Metabolite Production by Introducing Neomycin Resistance into the Deep-Sea Fungus, Aspergillus versicolor ZBY-3

    PubMed Central

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-01-01

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(d-Pro-d-Phe) (1), cyclo(d-Tyr-d-Pro) (2), phenethyl 5-oxo-l-prolinate (3), cyclo(l-Ile-l-Pro) (4), cyclo(l-Leu-l-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1–6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent

  16. Pre-systemic elimination of tilidine: localization and consequences for the formation of the active metabolite nortilidine.

    PubMed

    Eichbaum, Christine; Mathes, Kristin; Burhenne, Jürgen; Markert, Christoph; Blank, Antje; Mikus, Gerd

    2015-02-01

    The therapeutic activity of tilidine, an opioid analgesic, is mainly related to its active metabolite nortilidine. Nortilidine formation mainly occurs during the high intestinal first-pass metabolism of tilidine by N-demethylation. Elimination of the active nortilidine to the inactive bisnortilidine is also mediated by N-demethylation and is supposed to take place in the liver, probably at a smaller rate. The aim of this study was the investigation of the pre-systemic elimination of tilidine using grapefruit juice (GFJ) as an intestinal CYP3A4 inhibitor and efavirenz (EFV) as a CYP3A4 activator. A randomized, open, placebo-controlled, cross-over study was conducted in 12 healthy volunteers using 100 mg tilidine solution p.o., regular strength GFJ 250 mL (3 times at 12-hr intervals) and EFV 400 mg (12 hr before tilidine administration). Tilidine, nortilidine and bisnortilidine in plasma and urine were quantified by a validated LC/MS/MS analysis. GFJ did not change any pharmacokinetic parameter of tilidine and its metabolites, which suggests that intestinal CYP3A4 does not contribute to the first-pass metabolism of tilidine. No effect of EFV on the pharmacokinetics of the active nortilidine was observed except a significant reduction of the terminal elimination half-life by 15%. Overall elimination (renal and metabolic clearances) was unaffected by every treatment. CYP3A4 does not seem to play a major role in tilidine first-pass and overall metabolism. Other unknown metabolites and their enzymes responsible for their formation have to be investigated as they account for the majority of renally excreted metabolites.

  17. The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells.

    PubMed

    Rath, Alexander G; Rehberg, Markus; Janke, Robert; Genzel, Yvonne; Scholz, Sebastian; Noll, Thomas; Rose, Thomas; Sandig, Volker; Reichl, Udo

    2014-05-20

    Optimization of bioprocesses with mammalian cells mainly concentrates on cell engineering, cell screening and medium optimization to achieve enhanced cell growth and productivity. For improving cell lines by cell engineering techniques, in-depth understandings of the regulation of metabolism and product formation as well as the resulting demand for the different medium components are needed. In this work, the relationship of cell specific growth and uptake rates and of changes in maximum in vitro enzyme activities with intracellular metabolite pools of glycolysis, pentose phosphate pathway, citric acid cycle and energy metabolism were determined for batch cultivations with AGE1.HN.AAT cells. Results obtained by modeling cell growth and consumption of main substrates showed that the dynamics of intracellular metabolite pools is primarily linked to the dynamics of specific glucose and glutamine uptake rates. By analyzing maximum in vitro enzyme activities we found low activities of pyruvate dehydrogenase and pyruvate carboxylase which suggest a reduced metabolite transfer into the citric acid cycle resulting in lactate release (Warburg effect). Moreover, an increase in the volumetric lactate production rate during the transition from exponential to stationary growth together with a transient accumulation of fructose 1,6-bisphosphate, fructose 1-phosphate and ribose 5-phosphate point toward an upregulation of PK via FBP. Glutaminase activity was about 44-fold lower than activity of glutamine synthetase. This seemed to be sufficient for the supply of intermediates for biosynthesis but might lead to unnecessary dissipation of ATP. Taken together, our results elucidate regulation of metabolic networks of immortalized mammalian cells by changes of metabolite pools over the time course of batch cultivations. Eventually, it enables the use of cell engineering strategies to improve the availability of building blocks for biomass synthesis by increasing glucose as well as

  18. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells.

    PubMed

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-08-28

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  19. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression inJurkat Cells

    PubMed Central

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-01-01

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells. PMID:26343699

  20. Metabolites analysis, metabolic enzyme activities and bioaccumulation in the clam Ruditapes philippinarum exposed to benzo[a]pyrene.

    PubMed

    Liu, Dong; Pan, Luqing; Li, Zhen; Cai, Yuefeng; Miao, Jingjing

    2014-09-01

    A study was performed on clams (Ruditapes philippinarum) exposed to 0.03, 0.3 and 3μg/L benzo[a]pyrene (B[a]P) for 21 days. B[a]P metabolite contents, activities of aryl hydrocarbon hydroxylase (AHH), 7-ethoxyresorufin O-deethylase (EROD), epoxide hydrolase (EH), dihydrodiol dehydrogenase (DD), glutathione-S-transferase (GST), sulfotransferase (SULT) and uridinediphosphate glucuronyltransferase (UGT) and B[a]P bioaccumulation were assayed in gills and digestive glands. Results showed that the order of B[a]P phase I metabolite contents was 9-hydroxy-B[a]P>B[a]P-1,6-dione>B[a]P-7,8-dihydrodiol, and the concentration of B[a]P-7,8-dihydrodiol sulfate conjugates was higher than that of B[a]P-7,8-dihydrodiol glucuronide conjugates. B[a]P accumulation and the activities of AHH, EROD, EH, DD, SULT and UGT increased first and then reached equilibrium. GST activity was induced first and then depressed. The concentration of B[a]P was far higher than that of its metabolites. Besides, there were no significant differences between enzyme activities in gills and those in digestive glands. These results provided information on B[a]P metabolic mechanism in bivalve and scientific data for pollution monitoring and food security.

  1. Prokaryotic Abundance and Activity in Permafrost of the Northern Victoria Land and Upper Victoria Valley (Antarctica).

    PubMed

    La Ferla, Rosabruna; Azzaro, Maurizio; Michaud, Luigi; Caruso, Gabriella; Lo Giudice, Angelina; Paranhos, Rodolfo; Cabral, Anderson S; Conte, Antonella; Cosenza, Alessandro; Maimone, Giovanna; Papale, Maria; Rappazzo, Alessandro Ciro; Guglielmin, Mauro

    2017-03-13

    Victoria Land permafrost harbours a potentially large pool of cold-affected microorganisms whose metabolic potential still remains underestimated. Three cores (BC-1, BC-2 and BC-3) drilled at different depths in Boulder Clay (Northern Victoria Land) and one sample (DY) collected from a core in the Dry Valleys (Upper Victoria Valley) were analysed to assess the prokaryotic abundance, viability, physiological profiles and potential metabolic rates. The cores drilled at Boulder Clay were a template of different ecological conditions (different temperature regime, ice content, exchanges with atmosphere and with liquid water) in the same small basin while the Dry Valleys site was very similar to BC-2 conditions but with a complete different geological history and ground ice type. Image analysis was adopted to determine cell abundance, size and shape as well as to quantify the potential viable and respiring cells by live/dead and 5-cyano-2,3-ditolyl-tetrazolium chloride staining, respectively. Subpopulation recognition by apparent nucleic acid contents was obtained by flow cytometry. Moreover, the physiological profiles at community level by Biolog-Ecoplate™ as well as the ectoenzymatic potential rates on proteinaceous (leucine-aminopeptidase) and glucidic (ß-glucosidase) organic matter and on organic phosphates (alkaline-phosphatase) by fluorogenic substrates were tested. The adopted methodological approach gave useful information regarding viability and metabolic performances of microbial community in permafrost. The occurrence of a multifaceted prokaryotic community in the Victoria Land permafrost and a large number of potentially viable and respiring cells (in the order of 10(4)-10(5)) were recognised. Subpopulations with a different apparent DNA content within the different samples were observed. The physiological profiles stressed various potential metabolic pathways among the samples and intense utilisation rates of polymeric carbon compounds and carbohydrates

  2. LITHIUM ABUNDANCE IN SOLAR-TYPE STARS WITH LOW CHROMOSPHERIC ACTIVITY: APPLICATION TO THE SEARCH FOR MAUNDER MINIMUM ANALOGS

    SciTech Connect

    Lubin, Dan; Tytler, David; Kirkman, David

    2010-06-10

    We use measurements of lithium abundance to examine the evolutionary history of stars frequently believed to be in a Maunder minimum (MM) state due to their low chromospheric activity. In a sample whose main-sequence membership has been verified using Hipparcos parallax data, we find that stars with very low chromospheric activity log R'{sub HK} {<=} -5.0 have substantially depleted lithium compared with the full sample, with half of these lithium abundances lying more than one standard deviation below the sample mean for their range of color index. One interpretation is that these stars are near the end of their main-sequence lifetime, and therefore their low activity does not necessarily signify a transient MM state in a solar-age star. Conversely, using information in published activity time series for some stars, and combined lithium and activity measurements from the Ursa Major moving group and M67, we find limited evidence that a low-activity star having lithium abundance in the normal range for its color index may be a viable MM candidate. Thus, lithium abundance, which can be readily observed or even retrieved from some of the spectroscopic data collected by recent planet-search surveys, may have value for expanding and refining the program star lists for long-term MM searches. Finally, we find that the use of Hipparcos parallax data to ascertain main-sequence membership sharpens the distinction in sample-mean lithium abundance between stars with planet detections and comparison stars.

  3. Population pharmacokinetic modeling of oxcarbazepine active metabolite in Chinese patients with epilepsy.

    PubMed

    Yu, Yunli; Zhang, Quanying; Xu, Wenjun; Lv, Chengzhe; Hao, Gang

    2016-08-01

    The aim of the study was to develop a population pharmacokinetic (PPK) model of oxcarbazepine and optimize the treatment of oxcarbazepine in Chinese patients with epilepsy. A total of 108 oxcarbazepine therapeutic drug monitoring samples from 78 patients with epilepsy were collected in this study. The pharmacologically active metabolite 10,11-dihydro-10-hydrocarbamazepine (MHD) was used as the analytical target for monitoring therapy of oxcarbazepine. Patients' clinical data were retrospectively collected. The PPK model for MHD was developed using Phoenix NLME 1.2 with a non-linear mixed-effect model. MHD pharmacokinetics obeys a one-compartment model with first-order absorption and elimination. The effect of age, gender, red blood cell count, red blood cell specific volume, hemoglobin (HGB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatine were analyzed. Bootstrap and data splitting were used simultaneously to validate the final PPK models. The mean values of volume of distribution and clearance of MHD in the patients were 14.2 L and 2.38 L h(-1), respectively. BUN and HGB influenced the MHD volume of distribution according to the following equation: V = tvV × (BUN/4.76)(-0.007) × (HGB/140)(-0.001) × e (ηV) . The MHD clearance was dependent on ALT and gender as follows: CL = tvCL × (ALT/30)(0.181) × (gender) × 1.083 × e (ηCL). The final PPK model was demonstrated to be suitable and effective and it can be used to evaluate the pharmacokinetic parameters of MHD in Chinese patients with epilepsy and to choose an optimal dosage regimen of oxcarbazepine on the basis of these parameters.

  4. Antinociceptive activity of extracts and secondary metabolites from wild growing and micropropagated plants of Renealmia alpinia

    PubMed Central

    Gómez-Betancur, Isabel; Cortés, Natalie; Benjumea, Dora; Osorio, Edison; León, Francisco; Cutler, Stephen J.

    2015-01-01

    Ethnopharmacological relevance Renealmia alpinia is native to the American continent and can be found from Mexico to Brazil, and in the Caribbean islands. It is known as “matandrea” in Colombia, and it has been commonly used in traditional medicine to treat painful diseases and ailments. Based on its traditional uses, it is of interest to evaluate the pharmacologic effects of this plant and its secondary metabolites. Materials and methods Methanol and aqueous extracts of wild and micropropagated R. alpinia (leaves) were obtained and chemically compared by High Performance Thin Layer Chromatography (HPTLC). The antinociceptive activity of these extracts was examined using an in vivo assay (Siegmund test). Additionally, the dichloromethane extract of R. alpinia was fractionated and pure compounds were isolated by chromatographic methods. The structure elucidation of isolated compounds was performed by NMR experiments and spectroscopic techniques and comparison with the literature data. Purified compounds were evaluated for their in vitro binding affinity for opioids and cannabinoids receptors. Results The dichloromethane extract of the plant’s aerial part afforded sinostrobin (1), naringenin 7,4′-dimethyl ether (2), 2′,6′-dihydroxy-4′-methoxychalcone (3), 4-methoxy-6-(2-phenylethenyl)-2H-pyran-2-one (4), naringenin 7-methyl ether (5) and 3,5-heptanediol, 1,7-diphenyl (6), which were isolated using chromatographic methods. Their chemical structures were established by physical and spectroscopic techniques. The antinociceptive effects observed in mice by extracts of wild and micropropagated plants were similar. The compounds isolated from R. alpinia do not show affinity to opioid or cannabinoid receptors. Conclusion Aqueous and methanol extracts of R. alpinia provide antinociceptive and analgesic effects in an in vivo model. These results contribute additional insight as to why this plant is traditionally used for pain management. Also, this is the first

  5. Controversial alkoxyl and peroxyl radical scavenging activity of the tryptophan metabolite 3-hydroxy-anthranilic acid.

    PubMed

    Dorta, E; Aspée, A; Pino, E; González, L; Lissi, E; López-Alarcón, C

    2017-04-01

    3-Hydroxy-anthranilic acid (3-OHAA), a tryptophan metabolite produced in the kynurenine pathway, is an efficient antioxidant towards peroxyl radicals (ROO) derived from the AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride) thermolysis. However, self-reactions of ROO can give rise to alkoxyl radicals (RO), which could strongly affect the fate of scavenging reactions. In the present work, we studied the influence of RO in the scavenging activity of 3-OHAA in three different systems: i) Monitoring of the direct reaction between 3-OHAA and AAPH-derived free radicals (kinetic studies); ii) Evaluation of the protective effect of 3-OHAA on the AAPH-induced consumption of fluorescein; and, iii) Inhibition, given by 3-OHAA, of the AAPH-initiated lipid peroxidation of both, rat brain synaptosomes and homogenate preparations (assessed by chemiluminescence). For such purposes, the fraction of free radicals (f) trapped per 3-OHAA molecule was determined in each system. Kinetic results show that the oxidation of 3-OHAA follows a process dominated by ROO with a zero order kinetic limit in 3-OHAA, and a fraction (fri) equal to 0.88. From the induction times, elicited by 3-OHAA in the kinetic profiles of fluorescein consumption, a fraction (fT) of 0.28 was determined. 3-OHAA also generated induction times in the kinetic profiles of light emission during the AAPH-initiated lipid peroxidation of rat brain synaptosomes and homogenates. From such induction times, fractions of 0.61 and 0.63 were determined for rat brain synaptosomes (fsyn) and homogenates (fhom), respectively. These results show that during the incubation of 3-OHAA and AAPH, a low fraction of ROO self-reacts to generate RO. Nevertheless, when 3-OHAA is employed to protect particular targets, such as fluorescein, rat brain synaptosomes and homogenates, reactions of ROO and/or RO should be considered.

  6. DNA damage and estrogenic activity induced by the environmental pollutant 2-nitrotoluene and its metabolite

    PubMed Central

    Watanabe, Chigusa; Egami, Takashi; Midorikawa, Kaoru; Hiraku, Yusuke; Oikawa, Shinji; Kawanishi, Shosuke

    2010-01-01

    Objectives The environmental pollutant 2-nitrotoluene (2-NO2-T) is carcinogenic and reproductively toxic in animals. In this study, we elucidated the mechanisms of its carcinogenicity and reproductive toxicity. Methods We examined DNA damage induced by 2-NO2-T and its metabolite, 2-nitrosotoluene (2-NO-T), using 32P-5′-end-labeled DNA. We measured 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA and cellular DNA in cultured human leukemia (HL-60) cells treated with 2-NO2-T and 2-NO-T. 8-Oxoguanine DNA glycosylase (OGG1) gene expression in HL-60 cells was measured by real-time polymerase chain reaction (PCR). We examined estrogenic activity using an E-screen assay and a surface plasmon resonance (SPR) sensor. Results In experiments with isolated DNA fragments, 2-NO-T induced oxidative DNA damage in the presence of Cu (II) and β-nicotinamide adenine dinucleotide disodium salt (reduced form) (NADH), while 2-NO2-T did not. 2-NO-T significantly increased levels of 8-oxodG in HL-60 cells. Real-time polymerase chain reaction (PCR) analysis revealed upregulation of OGG1 gene expression induced by 2-NO-T. An E-screen assay using the human breast cancer cell line MCF-7 revealed that 2-NO2-T induced estrogen-dependent cell proliferation. In contrast, 2-NO-T decreased the cell number and suppressed 17β-estradiol-induced cell proliferation. The data obtained with the SPR sensor using estrogen receptor α and the estrogen response element supported the results of the E-screen assay. Conclusions Oxidative DNA damage caused by 2-NO-T and estrogen-disrupting effects caused by 2-NO2-T and 2-NO-T may play a role in the reproductive toxicity and carcinogenicity of these entities. PMID:21432561

  7. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  8. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  9. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils.

    PubMed

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-07

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  10. Recurrence and Frequency of Disturbance have Cumulative Effect on Methanotrophic Activity, Abundance, and Community Structure

    PubMed Central

    Ho, Adrian; van den Brink, Erik; Reim, Andreas; Krause, Sascha M. B.; Bodelier, Paul L. E.

    2016-01-01

    Alternate prolonged drought and heavy rainfall is predicted to intensify with global warming. Desiccation-rewetting events alter the soil quality and nutrient concentrations which drive microbial-mediated processes, including methane oxidation, a key biogeochemical process catalyzed by methanotrophic bacteria. Although aerobic methanotrophs showed remarkable resilience to a suite of physical disturbances induced as a single event, their resilience to recurring disturbances is less known. Here, using a rice field soil in a microcosm study, we determined whether recurrence and frequency of desiccation-rewetting impose an accumulating effect on the methanotrophic activity. The response of key aerobic methanotroph subgroups (type Ia, Ib, and II) were monitored using qPCR assays, and was supported by a t-RFLP analysis. The methanotrophic activity was resilient to recurring desiccation-rewetting, but increasing the frequency of the disturbance by twofold significantly decreased methane uptake rate. Both the qPCR and t-RFLP analyses were congruent, showing the dominance of type Ia/Ib methanotrophs prior to disturbance, and after disturbance, the recovering community was predominantly comprised of type Ia (Methylobacter) methanotrophs. Both type Ib and type II (Methylosinus/Methylocystis) methanotrophs were adversely affected by the disturbance, but type II methanotrophs showed recovery over time, indicating relatively higher resilience to the disturbance. This revealed distinct, yet unrecognized traits among the methanotroph community members. Our results show that recurring desiccation-rewetting before a recovery in community abundance had an accumulated effect, compromising methanotrophic activity. While methanotrophs may recover well following sporadic disturbances, their resilience may reach a ‘tipping point’ where activity no longer recovered if disturbance persists and increase in frequency. PMID:26779148

  11. Activity of benzo[a]pyrene and its hydroxylated metabolites in an estrogen receptor-alpha reporter gene assay.

    PubMed

    Charles, G D; Bartels, M J; Zacharewski, T R; Gollapudi, B B; Freshour, N L; Carney, E W

    2000-06-01

    A human breast cancer cell line, MCF-7, transiently transfected with a chimeric estrogen receptor (Gal4-HEG0) and a luciferase reporter plasmid (17m5-G-Luc), was used to investigate the estrogenic activity of benzo[a]pyrene (B[a]P), a prototypical polyaromatic hydrocarbon (PAH). B[a]P at concentrations > or = 1 microM produced responses comparable to that of 0.1 nM 17beta-estradiol (E2). The ER antagonist ICI 182,780 (ICI) completely inhibited the response to both E2 and B[a]P, indicating that the responses were ER-mediated. However, 2 microM alpha-napthoflavone (alpha-NF), an Ah receptor antagonist and P450 inhibitor, also decreased the response to B[a]P but not to E2. Analysis of the profile of B[a]P metabolites in the transfected MCF-7 cultures indicated that alpha-NF inhibited the production of the 3- and 9-hydroxy (3-OH and 9-OH), as well as the 7, 8- and 9,10-dihydroxy (7,8-OH and 9,10-OH) B[a]P species. In the ER-alpha reporter assay, the 3-OH and 9-OH metabolites produced maximal responses comparable to E2, with EC50 values of 1.2 microM and 0.7 microM, respectively. The 9,10-OH metabolite exhibited minimal activity in the assay. These responses were inhibited by ICI for both the 3-OH and the 9-OH species; however, alpha-NF inhibited only the response to the 9-OH metabolite. The 7,8-OH metabolite did not exhibit significant estrogenic activity. Furthermore, 7,8-OH B[a]P displayed observable cytotoxicity at concentrations > or = 10(-7) M. This cytotoxic response was completely inhibited by alpha-NF, suggesting that 7,8-OH B[a]P was being further metabolized to one or more cytotoxic metabolites.

  12. Non-targeted Metabolite Profiling and Scavenging Activity Unveil the Nutraceutical Potential of Psyllium (Plantago ovata Forsk)

    PubMed Central

    Patel, Manish K.; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Non-targeted metabolomics implies that psyllium (Plantago ovata) is a rich source of natural antioxidants, PUFAs (ω-3 and ω-6 fatty acids) and essential and sulfur-rich amino acids, as recommended by the FAO for human health. Psyllium contains phenolics and flavonoids that possess reducing capacity and reactive oxygen species (ROS) scavenging activities. In leaves, seeds, and husks, about 76, 78, 58% polyunsaturated, 21, 15, 20% saturated, and 3, 7, 22% monounsaturated fatty acids were found, respectively. A range of FAs (C12 to C24) was detected in psyllium and among different plant parts, a high content of the nutritive indicators ω-3 alpha-linolenic acid (57%) and ω-6 linoleic acid (18%) was detected in leaves. Similarly, total content of phenolics and the essential amino acid valine were also detected utmost in leaves followed by sulfur-rich amino acids and flavonoids. In total, 36 different metabolites were identified in psyllium, out of which 26 (13 each) metabolites were detected in leaves and seeds, whereas the remaining 10 were found in the husk. Most of the metabolites are natural antioxidants, phenolics, flavonoids, or alkaloids and can be used as nutrient supplements. Moreover, these metabolites have been reported to have several pharmaceutical applications, including anti-cancer activity. Natural plant ROS scavengers, saponins, were also detected. Based on metabolomic data, the probable presence of a flavonoid biosynthesis pathway was inferred, which provides useful insight for metabolic engineering in the future. Non-targeted metabolomics, antioxidants and scavenging activities reveal the nutraceutical potential of the plant and also suggest that psyllium leaves can be used as a green salad as a dietary supplement to daily food. PMID:27092153

  13. Increases in Calmodulin Abundance and Stabilization of Activated iNOS Mediate Bacterial Killing in RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Shi, Liang; Squier, Thomas C.

    2006-08-01

    The rapid activation of macrophages in response to bacterial antigens is central to the innate immune system that permits the recognition and killing of pathogens to limit infection. To understand regulatory mechanisms underlying macrophage activation, we have investigated changes in the abundance of calmodulin (CaM) and iNOS in response to the bacterial cell wall component lipopolysaccharide (LPS) using RAW 264.7 macrophages. Critical to these measurements was the ability to differentiate free iNOS from the CaM-bound (active) form of iNOS associated with nitric oxide generation. We observe a rapid two-fold increase in CaM abundance during the first 30 minutes that is blocked by inhibition of NF?B nuclear translocation or protein synthesis. A similar two-fold increase in the abundance of the complex between CaM and iNOS is observed with the same time dependence. In contrast, there are no detectable increases in the CaM-free (i.e., inactive) form of iNOS within the first hour; it remains at a very low abundance during the initial phase of macrophage activation. Increasing cellular CaM levels in stably transfected cells results in a corresponding increase in the abundance of the CaM/iNOS complex that promotes effective bacterial killing following challenge by Salmonella typhimurium. Thus, LPS-dependent increases in CaM abundance function in the stabilization and activation of iNOS on the rapid time-scale associated with macrophage activation and bacterial killing. These results explain how CaM and iNOS coordinately function to form a stable complex that is part of a rapid host-response that functions within the first 30 minutes following bacterial infection to up-regulate the innate immune system involving macrophage activation.

  14. Mixture toxicity of the antiviral drug Tamiflu((R)) (oseltamivir ethylester) and its active metabolite oseltamivir acid.

    PubMed

    Escher, Beate I; Bramaz, Nadine; Lienert, Judit; Neuwoehner, Judith; Straub, Jürg Oliver

    2010-02-18

    Tamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems. A previous environmental risk assessment has concluded that there is no bioaccumulation potential of either of the compounds. However, little was known about the ecotoxicity of the metabolite. Ester hydrolysis typically reduces the hydrophobicity and thus the toxicity of a compound. In this case, a zwitterionic, but overall neutral species is formed from the charged parent compound. If the speciation and predicted partitioning into biological membranes is considered, the metabolite may have a relevant contribution to the overall toxicity. These theoretical considerations triggered a study to investigate the toxicity of oseltamivir acid (OA), alone and in binary mixtures with its parent compound oseltamivir ethylester (OE). OE and OA were found to be baseline toxicants in the bioluminescence inhibition test with Vibrio fischeri. Their mixture effect lay between predictions for concentration addition and independent action for the mixture ratio excreted in urine and nine additional mixture ratios of OE and OA. In contrast, OE was an order of magnitude more toxic than OA towards algae, with a more pronounced effect when the direct inhibition of photosystem II was used as toxicity endpoint opposed to the 24h growth rate endpoint. The binary mixtures in this assay yielded experimental mixture effects that agreed with predictions for independent action. This is consistent with the finding that OE exhibits slightly enhanced toxicity, while OA acts as baseline toxicant. Therefore, with respect to mixture classification, the two compounds can be considered as acting according to different modes of toxic action, although there are

  15. The Effects of Site Characterization Activities on the Abundance of Ravens (Corvus corax) in the Yucca Mountain Area

    SciTech Connect

    P.E. Lederle

    1998-05-08

    In response to the Nuclear Waste Policy Act of 1982 and the Nuclear Waste Policy Amendments Act of 1987, the U.S. Department of Energy (DOE) developed and is implementing the Yucca Mountain Site Characterization Project. Raven abundance was measured from August 1991 through August 1995 along treatment and control routes to evaluate whether site characterization activities resulted in increased raven abundance at Yucca Mountain. This study fulfills the requirement set forth in the incidental take provisions of the Biological Opinion that DOE monitor the abundance of ravens at Yucca Mountain. Ravens were more abundant at Yucca Mountain than in the control area, and raven abundance in both areas increased over time. However, the magnitude of differences between Yucca Mountain and control surveys did not change over time, indicating that the increase in raven abundance observed during this study was not related to site characterization activities. Increases over time on both Yucca Mountain and control routes are consistent with increases in raven abundance in the Mojave Desert reported by the annual Breeding Bird Survey of the US. Fish and Wildlife Service. Evidence from the Desert Tortoise Monitoring Program at Yucca Mountain suggests that ravens are not a significant predator of small tortoises in this locale. Carcasses of small tortoises (less than 110 mm in length) collected during the study showed little evidence of raven predation, and 59 radiomarked hatchlings that were monitored on a regular basis were not preyed upon by ravens. Overall, no direct evidence of raven predation on tortoises was observed during this study. Small tortoises are probably encountered so infrequently by ravens that they are rarely exploited as a food source. This is likely due to the relatively low abundance of both desert tortoises and ravens in the Yucca Mountain area.

  16. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities.

    PubMed

    Li, Xiao-Jun; Zhang, Qiang; Zhang, An-Ling; Gao, Jin-Ming

    2012-04-04

    Thirty-nine fungal metabolites 1-39, including two new alkaloids, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6) and 3-hydroxyfumiquinazoline A (16), were isolated from the fermentation broth of Aspergillus fumigatus LN-4, an endophytic fungus isolated from the stem bark of Melia azedarach. Their structures were elucidated on the basis of detailed spectroscopic analysis (mass spectrometry and one- and two-dimensional NMR experiments) and by comparison of their NMR data with those reported in the literature. These isolated compounds were evaluated for in vitro antifungal activities against some phytopathogenic fungi, toxicity against brine shrimps, and antifeedant activities against armyworm larvae (Mythimna separata Walker). Among them, sixteen compounds showed potent antifungal activities against phytopathogenic fungi (Botrytis cinerea, Alternaria solani, Alternaria alternata, Colletotrichum gloeosporioides, Fusarium solani, Fusarium oxysporum f. sp. niveum, Fusarium oxysporum f. sp. vasinfectum, and Gibberella saubinettii), and four of them, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6), fumitremorgin B (7), verruculogen (8), and helvolic acid (39), exhibited antifungal activities with MIC values of 6.25-50 μg/mL, which were comparable to the two positive controls carbendazim and hymexazol. In addition, of eighteen that exerted moderate lethality toward brine shrimps, compounds 7 and 8 both showed significant toxicities with median lethal concentration (LC(50)) values of 13.6 and 15.8 μg/mL, respectively. Furthermore, among nine metabolites that were found to possess antifeedant activity against armyworm larvae, compounds 7 and 8 gave the best activity with antifeedant indexes (AFI) of 50.0% and 55.0%, respectively. Structure-activity relationships of the metabolites were also discussed.

  17. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    PubMed

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  18. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    PubMed Central

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites produced by microbial biofilms, which can drastically affect colony development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. “Images” over a 3.25 × 0.9 mm area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify, and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression. PMID:24510163

  19. The neurosteroid dehydroepiandrosterone (DHEA) and its metabolites alter 5-HT neuronal activity via modulation of GABAA receptors.

    PubMed

    Gartside, S E; Griffith, N C; Kaura, V; Ingram, C D

    2010-11-01

    Dehydroepiandrosterone (DHEA) and its metabolites, DHEA-sulphate (DHEA-S) and androsterone, have neurosteroid activity. In this study, we examined whether DHEA, DHEA-S and androsterone, can influence serotonin (5-HT) neuronal firing activity via modulation of γ-aminobutryic acid (GABA(A)) receptors. The firing of presumed 5-HT neurones in a slice preparation containing rat dorsal raphe nucleus was inhibited by the GABA(A) receptor agonists 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridinyl-3-ol (THIP) (25 μM) and GABA (100 μM). DHEA (100 and 300 μM) and DHEA-S (1, 10 and 100 μM) caused a rapid and reversible attenuation of the response to THIP. DHEA (100 μM) and DHEA-S (100 μM) also attenuated the effect of GABA. Androsterone (10 and 30 μM) markedly enhanced the inhibitory response to THIP (25 μM). The effect was apparent during androsterone administration but persisted and even increased in magnitude after drug wash-out. The data indicate that GABA(A) receptor-mediated regulation of 5-HT neuronal firing is sensitive to negative modulation by DHEA and its metabolite DHEA-S is sensitive to positive modulation by the metabolite androsterone. The effects of these neurosteroids on GABA(A) receptor-mediated regulation of 5-HT firing may underlie some of the reported behavioural and psychological effects of endogenous and exogenous DHEA.

  20. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    NASA Astrophysics Data System (ADS)

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-02-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. ‘Images’ over a 3.25 × 0.9 mm2 area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  1. Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield

    PubMed Central

    Brankatschk, Robert; Töwe, Stefanie; Kleineidam, Kristina; Schloter, Michael; Zeyer, Josef

    2011-01-01

    Glacier forefields are ideal ecosystems to study the development of nutrient cycles as well as single turnover processes during soil development. In this study, we examined the ecology of the microbial nitrogen (N) cycle in bulk soil samples from a chronosequence of the Damma glacier, Switzerland. Major processes of the N cycle were reconstructed on the genetic as well as the potential enzyme activity level at sites of the chronosequence that have been ice-free for 10, 50, 70, 120 and 2000 years. In our study, we focused on N fixation, mineralization (chitinolysis and proteolysis), nitrification and denitrification. Our results suggest that mineralization, mainly the decomposition of deposited organic material, was the main driver for N turnover in initial soils, that is, ice-free for 10 years. Transient soils being ice-free for 50 and 70 years were characterized by a high abundance of N fixing microorganisms. In developed soils, ice-free for 120 and 2000 years, significant rates of nitrification and denitrification were measured. Surprisingly, copy numbers of the respective functional genes encoding the corresponding enzymes were already high in the initial phase of soil development. This clearly indicates that the genetic potential is not the driver for certain functional traits in the initial phase of soil formation but rather a well-balanced expression of the respective genes coding for selected functions. PMID:21124490

  2. Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces.

    PubMed

    Smriga, Steven; Sandin, Stuart A; Azam, Farooq

    2010-07-01

    Feces and distal gut contents were collected from three coral reef fish species. Bacteria cell abundances, as determined via epifluorescence microscopy, ranged two orders of magnitude among the fishes. Mass-specific and apparent cell-specific hydrolytic enzyme activities in feces from Chlorurus sordidus were very high, suggesting that endogenous fish enzymes were egested into feces. Denaturing gradient gel electrophoresis profiles of 16S rRNA genes were more similar among multiple individuals of the surgeonfish Acanthurus nigricans than among individuals of the parrotfish C. sordidus or the snapper Lutjanus bohar. Analyses of feces-derived 16S rRNA gene clones revealed that at least five bacterial phyla were present in A. nigricans and that Vibrionaceae comprised 10% of the clones. Meanwhile, C. sordidus contained at least five phyla and L. bohar three, but Vibrionaceae comprised 71% and 76% of the clones, respectively. Many sequences clustered phylogenetically to cultured Vibrio spp. and Photobacterium spp. including Vibrio ponticus and Photobacterium damselae. Other Vibrionaceae-like sequences comprised a distinct phylogenetic group that may represent the presence of 'feces-specific' bacteria. The observed differences among fishes may reflect native gut microbiota and/or bacterial assemblages associated with ingested prey.

  3. Spectrofluorimetric determination of 3-methylflavone-8-carboxylic acid, the main active metabolite of flavoxate hydrochloride in human urine

    NASA Astrophysics Data System (ADS)

    Zaazaa, Hala E.; Mohamed, Afaf O.; Hawwam, Maha A.; Abdelkawy, Mohamed

    2015-01-01

    A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of 3-methylflavone-8-carboxylic acid as the main active metabolite of flavoxate hydrochloride in human urine. The proposed method was based on the measurement of the native fluorescence of the metabolite in methanol at an emission wavelength 390 nm, upon excitation at 338 nm. Moreover, the urinary excretion pattern has been calculated using the proposed method. Taking the advantage that 3-methylflavone-8-carboxylic acid is also the alkaline degradate, the proposed method was applied to in vitro determination of flavoxate hydrochloride in tablets dosage form via the measurement of its corresponding degradate. The method was validated in accordance with the ICH requirements and statistically compared to the official method with no significant difference in performance.

  4. Spectrofluorimetric determination of 3-methylflavone-8-carboxylic acid, the main active metabolite of flavoxate hydrochloride in human urine.

    PubMed

    Zaazaa, Hala E; Mohamed, Afaf O; Hawwam, Maha A; Abdelkawy, Mohamed

    2015-01-05

    A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of 3-methylflavone-8-carboxylic acid as the main active metabolite of flavoxate hydrochloride in human urine. The proposed method was based on the measurement of the native fluorescence of the metabolite in methanol at an emission wavelength 390 nm, upon excitation at 338 nm. Moreover, the urinary excretion pattern has been calculated using the proposed method. Taking the advantage that 3-methylflavone-8-carboxylic acid is also the alkaline degradate, the proposed method was applied to in vitro determination of flavoxate hydrochloride in tablets dosage form via the measurement of its corresponding degradate. The method was validated in accordance with the ICH requirements and statistically compared to the official method with no significant difference in performance.

  5. Solving the Jigsaw Puzzle of Wound-Healing Potato Cultivars: Metabolite Profiling and Antioxidant Activity of Polar Extracts

    PubMed Central

    2015-01-01

    Potato (Solanum tuberosum L.) is a worldwide food staple, but substantial waste accompanies the cultivation of this crop due to wounding of the outer skin and subsequent unfavorable healing conditions. Motivated by both economic and nutritional considerations, this metabolite profiling study aims to improve understanding of closing layer and wound periderm formation and guide the development of new methods to ensure faster and more complete healing after skin breakage. The polar metabolites of wound-healing tissues from four potato cultivars with differing patterns of tuber skin russeting (Norkotah Russet, Atlantic, Chipeta, and Yukon Gold) were analyzed at three and seven days after wounding, during suberized closing layer formation and nascent wound periderm development, respectively. The polar extracts were assessed using LC-MS and NMR spectroscopic methods, including multivariate analysis and tentative identification of 22 of the 24 biomarkers that discriminate among the cultivars at a given wound-healing time point or between developmental stages. Differences among the metabolites that could be identified from NMR- and MS-derived biomarkers highlight the strengths and limitations of each method, also demonstrating the complementarity of these approaches in terms of assembling a complete molecular picture of the tissue extracts. Both methods revealed that differences among the cultivar metabolite profiles diminish as healing proceeds during the period following wounding. The biomarkers included polyphenolic amines, flavonoid glycosides, phenolic acids and glycoalkaloids. Because wound healing is associated with oxidative stress, the free radical scavenging activities of the extracts from different cultivars were measured at each wounding time point, revealing significantly higher scavenging activity of the Yukon Gold periderm especially after 7 days of wounding. PMID:24998264

  6. Solving the jigsaw puzzle of wound-healing potato cultivars: metabolite profiling and antioxidant activity of polar extracts.

    PubMed

    Dastmalchi, Keyvan; Cai, Qing; Zhou, Kevin; Huang, Wenlin; Serra, Olga; Stark, Ruth E

    2014-08-06

    Potato (Solanum tuberosum L.) is a worldwide food staple, but substantial waste accompanies the cultivation of this crop due to wounding of the outer skin and subsequent unfavorable healing conditions. Motivated by both economic and nutritional considerations, this metabolite profiling study aims to improve understanding of closing layer and wound periderm formation and guide the development of new methods to ensure faster and more complete healing after skin breakage. The polar metabolites of wound-healing tissues from four potato cultivars with differing patterns of tuber skin russeting (Norkotah Russet, Atlantic, Chipeta, and Yukon Gold) were analyzed at three and seven days after wounding, during suberized closing layer formation and nascent wound periderm development, respectively. The polar extracts were assessed using LC-MS and NMR spectroscopic methods, including multivariate analysis and tentative identification of 22 of the 24 biomarkers that discriminate among the cultivars at a given wound-healing time point or between developmental stages. Differences among the metabolites that could be identified from NMR- and MS-derived biomarkers highlight the strengths and limitations of each method, also demonstrating the complementarity of these approaches in terms of assembling a complete molecular picture of the tissue extracts. Both methods revealed that differences among the cultivar metabolite profiles diminish as healing proceeds during the period following wounding. The biomarkers included polyphenolic amines, flavonoid glycosides, phenolic acids and glycoalkaloids. Because wound healing is associated with oxidative stress, the free radical scavenging activities of the extracts from different cultivars were measured at each wounding time point, revealing significantly higher scavenging activity of the Yukon Gold periderm especially after 7 days of wounding.

  7. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  8. Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis.

    PubMed Central

    Ye, J J; Neal, J W; Cui, X; Reizer, J; Saier, M H

    1994-01-01

    Lactobacillus brevis takes up glucose and the nonmetabolizable glucose analog 2-deoxyglucose (2DG), as well as lactose and the nonmetabolizable lactose analoge thiomethyl beta-galactoside (TMG), via proton symport. Our earlier studies showed that TMG, previously accumulated in L. brevis cells via the lactose:H+ symporter, rapidly effluxes from L. brevis cells or vesicles upon addition of glucose and that glucose inhibits further accumulation of TMG. This regulation was shown to be mediated by a metabolite-activated protein kinase that phosphorylase serine 46 in the HPr protein. We have now analyzed the regulation of 2DG uptake and efflux and compared it with that of TMG. Uptake of 2DG was dependent on an energy source, effectively provided by intravesicular ATP or by extravesicular arginine which provides ATP via an ATP-generating system involving the arginine deiminase pathway. 2DG uptake into these vesicles was not inhibited, and preaccumulated 2DG did not efflux from them upon electroporation of fructose 1,6-diphosphate or gluconate 6-phosphate into the vesicles. Intravesicular but not extravesicular wild-type or H15A mutant HPr of Bacillus subtilis promoted inhibition (53 and 46%, respectively) of the permease in the presence of these metabolites. Counterflow experiments indicated that inhibition of 2DG uptake is due to the partial uncoupling of proton symport from sugar transport. Intravesicular S46A mutant HPr could not promote regulation of glucose permease activity when electroporated into the vesicles with or without the phosphorylated metabolites, but the S46D mutant protein promoted regulation, even in the absence of a metabolite. The Vmax but not the Km values for both TMG and 2DG uptake were affected. Uptake of the natural, metabolizable substrates of the lactose, glucose, mannose, and ribose permeases was inhibited by wild-type HPr in the presence of fructose 1,6-diphosphate or by S46D mutant HPr. These results establish that HPr serine

  9. Novel tryptophan metabolites, chromoazepinone A, B and C, produced by a blocked mutant of Chromobacterium violaceum, the biosynthetic implications and the biological activity of chromoazepinone A and B.

    PubMed

    Mizuoka, Takaaki; Toume, Kazufumi; Ishibashi, Masami; Hoshino, Tsutomu

    2010-07-21

    Chromobacterium violaceum produces tryptophan metabolites, purple pigments of violacein and deoxyviolacein. A blocked mutant was prepared with N-methyl-N'-nitrosoguanidine to gain insights into the biosynthetic mechanisms of the pigments. Five tryptophan metabolites were isolated: three novel compounds, named chromoazepinone A, B and C and two known compounds, chromopyrrolic acid and arcyriarubin A. The structure determinations of the three novel compounds are described. The biosynthetic pathways of these metabolites are proposed on the basis of the findings about violacein biosynthesis. Chromoazepinone A and B were found to have an interesting effect of inhibition of Wnt signal transcriptional activity, which is implicated in the formation of numerous tumors when aberrantly activated.

  10. [Simultaneous determination of erdosteine and its active metabolite in human plasma by liquid chromatography-tandem mass spectrometry with pre-column derivatization].

    PubMed

    Jin, Jing; Chen, Xiao-Yan; Zhang, Yi-Fan; Ma, Zhi-Yu; Zhong, Da-Fang

    2013-03-01

    A sensitive, rapid and accurate liquid chromatography-tandem mass spectrometric (LC-MS/MS) method with pre-column derivatization was developed for the simultaneous determination of erdosteine and its thiol-containing active metabolite in human plasma. Paracetamol and captopril were chosen as the internal standard of erdosteine and its active metabolite, respectively. Aliquots of 100 microL plasma sample were derivatized by 2-bromine-3'-methoxy acetophenone, then separated on an Agilent XDB-C18 (50 mm x 4.6 mm ID, 1.8 microm) column using 0.1% formic acid methanol--0.1% formic acid 5 mmol x L(-1) ammonium acetate as mobile phase, in a gradient mode. Detection of erdosteine and its active metabolite were achieved by ESI MS/MS in the positive ion mode. The linear calibration curves for erdosteine and its active metabolite were obtained in the concentration ranges of 5-3 000 ng x mL(-1) and 5-10 000 ng x mL(-1), respectively. The lower limit of quantification of erdosteine and its active metabolite were both 5.00 ng x mL(-1). The pharmacokinetic results of erdosteine and its thiol-containing active metabolite showed that the area under curve (AUC) of the thiol-containing active metabolite was 6.2 times of that of erdosteine after a single oral dose of 600 mg erdosteine tables in 32 healthy volunteers, The mean residence time (MRT) of the thiol-containing active metabolite was (7.51 +/- 0.788) h, which provided a pharmacokinetic basis for the rational dosage regimen.

  11. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics.

    PubMed

    Adomako-Bonsu, Amma G; Chan, Sue Lf; Pratten, Margaret; Fry, Jeffrey R

    2017-04-01

    Persistent accumulation of reactive oxygen species causes cellular oxidative stress which contributes strongly towards the induction and progression of various diseases. Therapeutic focus has therefore shifted towards the use of antioxidants, with recent interest in those of plant origin. In the current study, rosmarinic acid (RA) and its key metabolites were evaluated in non-cellular and cellular antioxidant assays, using quercetin (Q) as a positive control. The non-cellular assay was performed as scavenging of DPPH radical, whilst the cellular assay was performed as protection from an oxidant stress. Radical-scavenging activity of RA and two of its primary metabolites, CA and DHPLA, were comparable to that of Q, whilst FA was of lower potency and m-CoA was inactive. In the cellular assay, RA and CA were markedly less potent than Q, with DHPLA, FA and m-CoA being inactive, this being true in short-term (5-h) or long-term (20-h) exposure conditions. However, antioxidant potency of Q and methyl rosmarinate, a non-ionisable ester of RA, was similar in the non-cellular and short-term cellular assays. It is proposed that marked ionisation of organic acids such as RA and its metabolites at physiological pH greatly limits their intracellular accumulation, and so attenuates intrinsic antioxidant ability demonstrated in the non-cellular assay. This study demonstrates some of the factors that prevent well-known phytochemicals from progressing further along the drug discovery chain.

  12. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats.

    PubMed

    Lysne, Vegard; Strand, Elin; Svingen, Gard F T; Bjørndal, Bodil; Pedersen, Eva R; Midttun, Øivind; Olsen, Thomas; Ueland, Per M; Berge, Rolf K; Nygård, Ottar

    2016-01-05

    Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats.

  13. Relationship between PAH biotransformation as measured by biliary metabolites and EROD activity, and genotoxicity in juveniles of sole (Solea solea).

    PubMed

    Wessel, N; Santos, R; Menard, D; Le Menach, K; Buchet, V; Lebayon, N; Loizeau, V; Burgeot, T; Budzinski, H; Akcha, F

    2010-01-01

    Polycylic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in the marine environment. Their toxicity is mainly linked to the ability of marine species to biotransform them into reactive metabolites. PAHs are thus often detected at trace levels in animal tissues. For biomonitoring purposes, this findings have two main consequences, (i) the determination of the PAH tissue concentration is not suitable for the evaluation of individual exposure to PAHs (ii) it can explain sometimes the lack of correlations obtained with relevant markers of toxicity such as genotoxicity biomarkers. The aim of the present study was to better investigate the link between PAH exposure and genotoxicity in marine flatfish. During a laboratory experiment, juvenile soles were exposed for four weeks to a mixture of three PAHs, namely benzo[a]pyrene, fluoranthene and pyrene, followed by one week of depuration. Fish were exposed via the trophic route to a daily PAH concentration of 120 μg/g food. Fish were sampled at different time points. The bioavailability and the biotransformation of PAHs were assessed by the measurement of biliary metabolites using a sensitive UPLC MS/MS method. The 7-ethoxyresorufine-O-deethylase was also measured in liver subcellular fractions as a biomarker of phase I biotransformation activities. Genotoxicity was assessed in parallel by the measurement of DNA strand breaks in fish erythrocytes by the alkaline comet assay. During this study, the high amount of PAH metabolites produced in sole demonstrated the bioavailability of PAHs and their biotransformation by fish enzymes. A positive correlation was observed between the level of hydroxylated PAH metabolites and genotoxicity as measured by the alkaline comet assay.

  14. Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter

    NASA Astrophysics Data System (ADS)

    Gao, Jing-Feng; Fan, Xiao-Yan; Pan, Kai-Ling; Li, Hong-Yu; Sun, Li-Xin

    2016-12-01

    Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m‑3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]‑1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5.

  15. Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter

    PubMed Central

    Gao, Jing-Feng; Fan, Xiao-Yan; Pan, Kai-Ling; Li, Hong-Yu; Sun, Li-Xin

    2016-01-01

    Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m−3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]−1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5. PMID:27941955

  16. Microbial plankton abundance and heterotrophic activity across the Central Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Vázquez-Domínguez, Evaristo; Duarte, Carlos M.; Agustí, Susana; Jürgens, Klaus; Vaqué, Dolors; Gasol, Josep M.

    2008-10-01

    The role of microorganisms in the transfer of carbon of marine systems is very important in open oligotrophic oceans. Here, we analyze the picoplankton structure, the heterotrophic bacterioplankton activity, and the predator-prey relationships between heterotrophic bacteria and nanoflagellates during two large scale cruises in the Central Atlantic Ocean (∼29°N to ∼40°S). Latitud cruises were performed in 1995 between March-April and October-November. During both cruises we crossed the regions of different trophic statuses; where we measured different biological variables both at the surface and at the deep chlorophyll maximum (DCM). The concentration of chlorophyll a varied between 0.1 and 0.8 mg m -3, the abundance of heterotrophic bacteria varied between <1.0 × 10 5 and >1.0 × 10 6 cells ml -1, and that of heterotrophic nanoflagellates between <100 and >1.0 × 10 4 cells ml -1. The production of heterotrophic bacteria varied more than three orders of magnitude between <0.01 and 24 μgC L -1 d -1; and the growth rates were in the range <0.01-2.1 d -1. In the Latitud-II cruise, Prochlorococcus ranged between <10 3 and >3 × 10 5 cells ml -1, Synechococcus between <100 and >1.0 × 10 4 cells ml -1, and picoeukaryotes between <100 and >10 4 cells ml -1. Two empirical models were used to learn more about the relationship between heterotrophic bacteria and nanoflagellates. Most bacterial production was ingested when this production was low, the heterotrophic nanoflagellates could be controlled by preys during Latitud-I cruise at the DCM, and by predators in the surface and in the Latitud-II cruise. Our results were placed in context with others about the structure and function of auto- and heterotrophic picoplankton and heterotrophic nanoplankton in the Central Atlantic Ocean.

  17. Effects of long-term elevated CO2, warming, and prolonged drought on Pleurozium-associated diazotrophic activity and abundance

    NASA Astrophysics Data System (ADS)

    Dyrnum, Kristine; Priemé, Anders; Michelsen, Anders

    2014-05-01

    Nitrogen (N2) fixation is the primary natural influx of N to terrestrial ecosystems, and changes in N2 fixation may have consequences for primary productivity and thus ecosystem function. We studied the activity and abundance of diazotrophs associated with the feather moss Pleurozium schreberi in a temperate heathland, after seven years of global change manipulations, including elevated atmospheric CO2 (510 ppm), increased temperature (0.5-1.5 ° C), and prolonged pre-summer droughts (4-6 weeks /year). Acetylene reduction assay was carried out monthly to monitor N2 fixation rates throughout one year, while nif H copy abundance, serving as a diazotroph abundance estimate, was measured by quantitative polymerase chain reaction (q-PCR). Prolonged summer droughts significantly increased both N2 fixation and nif H copy abundance, contrasting previous studies that demonstrate a direct negative correlation between N2 fixation and water availability. A shift in the relative abundance of N2-fixing bacteria from the green, upper parts of the moss stem to the lower, brown parts was observed. This shift could make diazotrophs less sensitive to desiccation, enabling N2 fixation to be upheld for longer during drought and thus causing higher abundance. Increased temperature likewise had a positive effect on the diazotroph abundance, although this did not translate into increased activity. Possibly, warming protects diazotrophs during extreme cold events, while actual N2 fixation is limited by water, disregarding a rise in potential N2 fixation caused by higher abundance. Increased CO2 caused no significant diazotroph response. Our study showed that long-term increase in temperature and recurrent drought events cause higher diazotroph abundance in Pleurozium schreberi and thus enhance the potential N2 fixations rate. Furthermore, our results indicate that diazotrophs may alter colonization patterns and thereby actively remain in the moss fraction less likely affected by

  18. Activation of 3-nitrobenzanthrone and its metabolites to DNA-damaging species in human B lymphoblastoid MCL-5 cells.

    PubMed

    Arlt, Volker M; Cole, Kathleen J; Phillips, David H

    2004-03-01

    3-Nitrobenzanthrone (3-NBA) is one of the most potent mutagens in the Ames Salmonella typhimurium assay and a suspected human carcinogen recently identified in diesel exhaust and in airborne particulate matter. 3-Aminobenzanthrone (3-ABA), 3-acetylaminobenzanthrone (3-Ac-ABA) and N-acetyl-N-hydroxy-3-aminobenzanthrone (N-Ac-N-OH-ABA) have been identified as 3-NBA metabolites. In the present study we investigated the genotoxic effects of 3-NBA and its metabolites in the human B lymphoblastoid cell line MCL-5. DNA strand breaks were measured using the Comet assay, chromosomal damage was assessed using the micronucleus assay and DNA adduct formation was determined by 32P-post-labelling analysis. DNA strand-breaking activity was observed with each compound in a concentration-dependent manner (1-50 microM, 2 h incubation time). At 50 microM median comet tail lengths (CTLs) were 25.0 microm for 3-NBA, 48.0 microm for 3-ABA, 54.5 microm for 3-Ac-ABA and 65.0 microm for N-Ac-N-OH-ABA. Median CTLs in control incubations were in the range 7.7-13.1 micro m. Moreover, the strand-breaking activity of 3-NBA was more pronounced in the presence of a DNA repair inhibitor, hydroxyurea. Depending on the concentration used (1-20 microM, 24 h incubation time), 3-NBA and its metabolites also showed clastogenic activity in the micronucleus assay. 3-NBA and N-Ac-N-OH-ABA were the most active at low concentrations; at 1 microM the total number of micronuclei per 500 binucleate cells was 4.7 +/- 0.6 in both cases, compared with 1.7-3.0 for controls (P < 0.05). Furthermore, multiple DNA adducts were detected with each compound (1 microM, 24 h incubation time), essentially similar to those found recently in vivo in rats treated with 3-NBA or its metabolites. DNA adduct levels ranged from 1.3 to 42.8 and from 2.0 to 39.8 adducts/10(8) nt using the nuclease P1 and butanol enrichment procedures, respectively. DNA binding was highest for N-Ac-N-OH-ABA, followed by 3-NBA, and much lower for 3-ABA

  19. Prostaglandin endoperoxide synthetase and the activation of benzo(a)pyrene to reactive metabolites in vivo in guinea pigs

    SciTech Connect

    Garattini, E.; Coccia, P.; Romano, M.; Jiritano, L.; Noseda, A.; Salmona, M.

    1984-11-01

    The role of prostaglandin endoperoxide synthetase in the in vivo activation of benzo(a)pyrene to reactive metabolites capable of interacting irreversibly with cellular macromolecules was studied in guinea pig liver, lung, kidney, spleen, small intestine, colon, and brain. DNA and protein covalent binding experiments were made after systemic administration of acetylsalicylic acid (200 mg/kg) followed by radiolabeled benzo(a)pyrene (4 microgram/kg). Results are compared with a control situation in which the prostaglandin endoperoxide synthetase inhibitor (acetylsalicylic acid) was not administered. No decrease in the level of DNA or protein benzo(a)pyrene-derived covalent binding was observed in any of the tissues studied.

  20. Comparison of prorenoate potassium and spironolactone after repeated doses and steady state plasma levels of active metabolites.

    PubMed Central

    McInnes, G T; Shelton, J R; Harrison, I R; Perkins, R M; Palmer, R F

    1982-01-01

    1 After repeated single daily doses, the aldosterone antagonists prorenoate potassium and spironolactone were compared with regard to renal antimineralocorticoid activity, plasma potassium concentration and steady state plasma levels of their active metabolites, prorenone and canrenone respectively, in a balanced crossover study of twelve healthy subjects. 2 Following challenge with the mineralocorticoid, fludrocortisone, best estimates of the potency of prorenoate potassium relative to spironolactone were 3.6 (95% confidence limits 1.6-10.4) for urinary sodium excretion and 3.4 (95% confidence limits 2.0-6.5) for urinary log10 10Na/K. Estimates with respect to urinary potassium excretion and plasma potassium concentration were imprecise, confirming the limitations of the fludrocortisone model in the evaluation of aldosterone antagonists at steady state. 3 Both compounds exhibited directly proportional relationships between daily dose and steady state plasma levels of active metabolites. The approximate mean terminal elimination half-life of prorenone at steady state was 32.6 h (range 18-80 h). PMID:7059416

  1. Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells

    PubMed Central

    Groh, Isabel Anna Maria; Chen, Chen; Lüske, Claudia; Cartus, Alexander Thomas; Esselen, Melanie

    2013-01-01

    Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (−)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes. PMID:23476753

  2. Top-down Targeted Metabolomics Reveals a Sulfur-Containing Metabolite with Inhibitory Activity against Angiotensin-Converting Enzyme in Asparagus officinalis.

    PubMed

    Nakabayashi, Ryo; Yang, Zhigang; Nishizawa, Tomoko; Mori, Tetsuya; Saito, Kazuki

    2015-05-22

    The discovery of bioactive natural compounds containing sulfur, which is crucial for inhibitory activity against angiotensin-converting enzyme (ACE), is a challenging task in metabolomics. Herein, a new S-containing metabolite, asparaptine (1), was discovered in the spears of Asparagus officinalis by targeted metabolomics using mass spectrometry for S-containing metabolites. The contribution ratio (2.2%) to the IC50 value in the crude extract showed that asparaptine (1) is a new ACE inhibitor.

  3. Salinity-driven shifts in the activity, diversity, and abundance of anammox bacteria of estuarine and coastal wetlands

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaofen; Hou, Lijun; Zheng, Yanling; Liu, Min; Yin, Guoyu; Gao, Juan; Li, Xiaofei; Wang, Rong; Yu, Chendi; Lin, Xianbiao

    2017-02-01

    Anaerobic ammonium oxidation (anammox) plays a significant role in nitrogen removal in estuarine and coastal wetlands. However, the effects of changing salinity on anammox activity and anammox bacterial dynamics in these environments are not well understood. In this study, serial incubation experiments with a salinity gradient (0-40) were conducted to explore the responses of anammox bacterial activity, diversity and abundance to the changing salinity in the intertidal wetland of the Yangtze Estuary. Results show that activity and abundance of anammox bacteria firstly increased with the increase of salinity, but they were physiologically stressed by high-level salinity (>30) in a short-term incubation (<10 days). However, the treatment with salinity of 5 showed the maximal anammox activity and anammox bacterial abundance after a long-term incubation (60-120 days). In addition, Kuenenia (Kuenenia stuttgartiensis), Scalindua (Scalindua wagner, marina, and brodae), and three unknown anammox-like groups were observed, and anammox bacterial diversity increased along the salinity gradient. Anammox community structure varied slightly within the first 10-day incubation, but the dominant anammox bacterial group shifted from Kuenenia to Scalindua with increasing salinity after the long-term incubation. Overall, this study demonstrates the effects of salinity on anammox bacterial community and anammox activity, and suggests the importance of salinity in regulating the anammox process in estuarine and coastal wetlands with frequent salinity fluctuation.

  4. Activity and characterization of secondary metabolites produced by a new microorganism for control of plant diseases.

    PubMed

    Ko, Wen-Hsiung; Tsou, Yi-Jung; Lin, Mei-Ju; Chern, Lih-Ling

    2010-09-30

    Microorganisms capable of utilizing vegetable tissues for growth in soils were isolated and their vegetable broth cultures were individually sprayed directly on leaves to test their ability to control Phytophthora blight of bell pepper caused by Phytophthora capsici. Liquid culture of Streptomyces strain TKA-5, a previously undescribed species obtained in this study, displayed several desirable disease control characteristics in nature, including high potency, long lasting and ability to control also black leaf spot of spoon cabbage caused by Alternaria brassicicolca. The extract was fungicidal to P. capsici but fungistatic to A. brassicicola. It was stable at high temperature and high pH. However, after exposure to pH 2 for 24h, the extract was no longer inhibitory to P. capsici although it was still strongly inhibitory to A. brassicicola. After treatment with cation or anion exchange resins, the extract lost its inhibitory effect against P. capsici but not A. brassicicola. The results suggest that the extract contained two different kinds of inhibitory metabolites, one against P. capsici with both positive and negative charges on its molecule and another against A. brassicicola with no charges on its molecule. The inhibitory metabolites were soluble in ethanol or methanol but not in water, ether or chloroform. They were dialyzable in the membrane tubing with molecular weight cut-off of 10,000, 1000 or 500 but not 100, indicating that the inhibitors have a molecular weight between 500 and 100. Results also showed that both inhibitors are not proteins.

  5. Anticholestatic activity of flavonoids from artichoke (Cynara scolymus L.) and of their metabolites.

    PubMed

    Gebhardt, R

    2001-05-01

    It is well known that water-soluble extracts of artichoke (Cynara scolymus L.) leaves exert choleresis. When studying this effect in vitro using primary cultured rat hepatocytes and cholephilic fluorescent compounds, it was noticed that the artichoke leaf extracts not only stimulated biliary secretion, but that they also reestablished it when secretion was inhibited by addition of taurolithocholate to the culture medium. Furthermore, taurolithocholate-induced bizarre bile canalicular membrane distortions detectable by electron microscopy could be prevented by artichoke leaf extracts in a dose-dependent manner when added simultaneously with the bile acid. These effects were exerted by the flavonol luteolin and, to a lesser extent, by luteolin-7-O-glucoside, while chlorogenic acid and 1.5-dicaffeoyl quinic acid were almost ineffective. Surprisingly, metabolites produced by the cultured hepatocytes were able to stimulate biliary secretion substantially as well as prevent canalicular membrane deformation. These results demonstrate that artichoke leaf extracts exert a potent anticholestatic action at least in the case of taurolithocholate-induced cholestasis. Flavonoids and their metabolites may contribute significantly to this effect.

  6. Characterization of in vivo metabolites of WR319691, a novel compound with activity against Plasmodium falciparum.

    PubMed

    Milner, Erin; Sousa, Jason; Pybus, Brandon; Melendez, Victor; Gardner, Sean; Grauer, Kristina; Moon, Jay; Carroll, Dustin; Auschwitz, Jennifer; Gettayacamin, Montip; Lee, Patricia; Leed, Susan; McCalmont, William; Norval, Suzanne; Tungtaeng, Anchalee; Zeng, Qiang; Kozar, Michael; Read, Kevin D; Li, Qigui; Dow, Geoffrey

    2011-09-01

    WR319691 has been shown to exhibit reasonable Plasmodium falciparum potency in vitro and exhibits reduced permeability across MDCK cell monolayers, which as part of our screening cascade led to further in vivo analysis. Single-dose pharmacokinetics was evaluated after an IV dose of 5 mg/kg in mice. Maximum bound and unbound brain levels of WR319691 were 97 and 0.05 ng/g versus approximately 1,600 and 3.2 ng/g for mefloquine. The half-life of WR319691 in plasma was approximately 13 h versus 23 h for mefloquine. The pharmacokinetics of several N-dealkylated metabolites was also evaluated. Five of six of these metabolites were detected and maximum total and free brain levels were all lower after an IV dose of 5 mg/kg WR319691 compared to mefloquine at the same dose. These data provide proof of concept that it is feasible to substantially lower the brain levels of a 4-position modified quinoline methanol in vivo without substantially decreasing potency against P. falciparum in vitro.

  7. Antithrombotic and antiallergic activities of daidzein, a metabolite of puerarin and daidzin produced by human intestinal microflora.

    PubMed

    Choo, Min-Kyung; Park, Eun-Kyung; Yoon, Hae-Kyung; Kim, Dong-Hyun

    2002-10-01

    To evaluate the antithrombotic activities of puerarin and daidzin from the rhizome of Pueraria lobata, in vitro and ex vivo inhibitory activities of these compounds and their metabolite, daidzein, were measured. These compounds inhibited ADP- and collagen-induced platelet aggregation. Daidzein was the most potent. However, when puerarin and daidzin were intraperitoneally administered, their antiaggregation activities were weaker than when these compounds were administered orally. When in vivo antithrombotic activities of these compounds against collagen and epinephrine were measured, these compounds showed significant protection from death due to pulmonary thrombosis in mice. To evaluate the antiallergic activity of puerarin, daidzin, and daidzein, their inhibitory effects on the release of beta-hexosaminidase from RBL 2H3 cells and on the passive cutaneous anaphylaxis (PCA) reaction in mice were examined. Daidzein exhibited potent inhibitory activity on the beta-hexosaminidase release induced by DNP-BSA and potently inhibited the PCA reaction in rats. Daidzein administered intraperitoneally showed the strongest inhibitory activity and significantly inhibited the PCA reaction at doses of 25 and 50mg/kg with inhibitory activity of 37 and 73%, respectively. The inhibitory activity of intraperitoneally administered daidzein was stronger than those of intraperitoneally and orally administered puerarin and daidzin. Therefore we believe that puerarin and daidzin in the rhizome of Pueraria lobata are prodrugs, which have antiallergic and antithrombotic activities, produced by intestinal microflora.

  8. Modulation of macrophage activity by aflatoxins B1 and B2 and their metabolites aflatoxins M1 and M2.

    PubMed

    Bianco, G; Russo, R; Marzocco, S; Velotto, S; Autore, G; Severino, L

    2012-05-01

    Aflatoxins are natural contaminants frequently found both in food and feed. Many of them exert immunomodulatory properties in mammals; therefore, the aim of the current study was to investigate immune-effects of AFB1, AFB2, AFM1 and AFM2, alone and differently combined, in J774A.1 murine macrophages. MTT assay showed that AFB1, alone and combined with AFB2, possess antiproliferative activity only at the highest concentration; such effect was not shown by their hydroxylated metabolites, AFM1 and AFM2, respectively. However, the immunotoxic effects of the aflatoxins evaluated in the current study may be due to the inhibition of production of active oxygen metabolites such as NO. Cytofluorimetric assay in macrophages exposed to aflatoxins (10-100 μM) revealed that their cytoxicity is not related to apoptotic pathways. Nevertheless, a significant increase of the S phase cell population accompanied by a decrease in G0/G1 phase cell population was observed after AFB1 treatment. In conclusion, the results of the current study suggest that aflatoxins could compromise the macrophages functions; in particular, co-exposure to AFB1, AFB2, AFM1 and AFM2 may exert interactions which can significantly affect immunoreactivity.

  9. Possibility of influence of midazolam sedation on the diagnosis of brain death: concentrations of active metabolites after cessation of midazolam.

    PubMed

    Hirata, Kiyotaka; Matsumoto, Yoshiaki; Kurokawa, Akira; Onda, Miho; Shimizu, Makiko; Fukuoka, Masamichi; Hirano, Masaaki; Yamamoto, Yasuhiro

    2003-09-01

    Midazolam and its active metabolites have a depressant effect on respiration and consciousness level, and therefore their effects should be considered in all patients for whom brain death testing is contemplated. The concentrations of midazolam and its active metabolites were measured in critically ill patients on a ventilator during and after continuous intravenous infusion of midazolam. Three days after cessation of midazolam infusion, the concentrations of midazolam and 1-hydroxymidazolam decreased to below the therapeutic range (100-1000 ng/ml) in all patients, although the concentrations of 1-hydroxymidazolam glucuronide remained extremely high in a patient who showed deteriorating renal function. The concentrations of 1-hydroxymidazolam glucuronide (19,497-29,761 ng/ml) were measured in this patient. When it is impossible to confirm factors consistent with irreversible brain death, such as the lack of cerebral blood flow, until 3 days after cessation of midazolam infusion, monitoring of the concentration of these substances should be carried out in all patients in whom suspicion exists prior to the evaluation of brain death. It is particularly imperative that monitoring of the 1-hydroxymidazolam glucuronide concentration be carried out in patients with poor renal function.

  10. Mass spectrometry-based metabolite profiling and antioxidant activity of Aloe vera ( Aloe barbadensis Miller) in different growth stages.

    PubMed

    Lee, Sarah; Do, Seon-Gil; Kim, Sun Yeou; Kim, Jinwan; Jin, Yoojeong; Lee, Choong Hwan

    2012-11-14

    Metabolite profiling of four different-sized Aloe vera plants was performed using gas chromatography-ion trap-mass spectrometry (GC-IT-MS) and ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) with multivariate analysis. Amino acids, sugars, and organic acids related to growth and development were identified by sizes. In particular, the relative contents of glucose, fructose, alanine, valine, and aspartic acid increased gradually as the size of the aloe increased. Anthraquinone derivatives such as 7-hydroxy-8-O-methylaloin, 7-hydroxyaloin A, and 6'-malonylnataloins A and B increased gradually, whereas chromone derivatives decreased continuously as the size of the aloe increased. The A30 aloe (size = 20-30 cm) with relatively high contents of aloins A and B, was suggested to have antioxidant components showing the highest antioxidant activity among the four different sizes of aloe. These data suggested that MS-based metabolomic approaches can illuminate metabolite changes associated with growth and development and can explain their change of antioxidant activity.

  11. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and CNS inflammation via the aryl hydrocarbon receptor

    PubMed Central

    Rothhammer, Veit; Mascanfroni, Ivan D.; Bunse, Lukas; Takenaka, Maisa C.; Kenison, Jessica E.; Mayo, Lior; Chao, Chun-Cheih; Patel, Bonny; Yan, Raymond; Blain, Manon; Alvarez, Jorge I.; Kébir, Hania; Anandasabapathy, Niroshana; Izquierdo, Guillermo; Jung, Steffen; Obholzer, Nikolaus; Pochet, Nathalie; Clish, Clary B.; Prinz, Marco; Prat, Alexandre; Antel, Jack; Quintana, Francisco J.

    2016-01-01

    Astrocytes play important roles in the central nervous system (CNS) during health and disease. Through genome-wide analyses we detected a transcriptional response to type I interferons (IFN-I) in astrocytes during experimental CNS autoimmunity and also in CNS lesions from multiple sclerosis (MS) patients. IFN-I signaling in astrocytes reduces inflammation and experimental autoimmune encephalomyelitis (EAE) disease scores via the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) and suppressor of cytokine signaling 2 (SOCS2). The anti-inflammatory effects of nasally administered IFN-β are partly mediated by AhR. Dietary tryptophan is metabolized by the gut microbiota into AhR agonists that act on astrocytes to limit CNS inflammation. EAE scores were increased following ampicillin treatment during the recovery phase, and CNS inflammation was reduced in antibiotic-treated mice by supplementation with the tryptophan metabolites indole, indoxyl-3-sulfate (I3S), indole-3-propionic acid (IPA) and indole-3-aldehyde (IAld), or the bacterial enzyme tryptophanase. In individuals with MS, the circulating levels of AhR agonists were decreased. These findings suggest that IFN-I produced in the CNS act in combination with metabolites derived from dietary tryptophan by the gut flora to activate AhR signaling in astrocytes and suppress CNS inflammation. PMID:27158906

  12. Activation of the silent secondary metabolite production by introducing neomycin-resistance in a marine-derived Penicillium purpurogenum G59.

    PubMed

    Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao

    2015-04-22

    Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α, 6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1-5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1-5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways.

  13. Allocation of Secondary Metabolites, Photosynthetic Capacity, and Antioxidant Activity of Kacip Fatimah (Labisia pumila Benth) in Response to CO2 and Light Intensity

    PubMed Central

    Jaafar, Hawa Z. E.; Karimi, Ehsan; Ghasemzadeh, Ali

    2014-01-01

    A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μmol/mol) and four levels of light intensity (225, 500, 625, and 900 μmol/m2/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μmol/mol + light intensity at 225 μmol/m2/s. Meanwhile, at 400 μmol/mol CO2 + 900 μmol/m2/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μmol/mol the photosynthesis, stomatal conductance, fv/fm (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition. PMID:24683336

  14. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    PubMed

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions.

  15. The Abundances of Carbon and Nitrogen in the Photospheres of Active B Stars

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.

    2011-01-01

    Contemporary models for the structure and evolution of rapidly-rotating OB stars predict a photospheric enrichment of nitrogen due to the mixing of the CNO-processed material from the star's core with the original surface material. The predicted N-enhancement increases as the star approaches its critical rotational velocity. Alternatively the Algol primaries should have N-enriched photospheres if the material currently being transferred is from the mass loser's original core. To test these predictions, the C and N abundances in selected early Be stars and B-type mass gainers in Algol systems have been determined from spectroscopic data obtained with the IUE and FUSE spacecraft. The abundance analyses, carried through with the Hubeny/Lanz NLTE codes TLUSTY/SYNSPEC, were confronted with some challenges that are not encountered in abundance studies of sharp-lined, non-emission B stars including the treatment of shallow, blended rotationally-broadened lines, the appropriate value for the microturbulence parameter, correction for disk emission and possible shell absorption, and latitudinal variation of Teff and log g. The FUV offers an advantage over the optical region as there is far less influence from disk emission and the N lines are intrinsically stronger. Particularly useful are the features of C II 1324 Å, C III 1176 Å, 1247 Å, N I 1243 Å, and N III 1183,84 Å. Be stars with v sin i < 150 km s-1 were chosen to minimize the effect of latitudinal parameter variation. Given the errors it appears that the N abundance in the Be stars is normal. Expected mixing is apparently suppressed, and this study lends no support for Be star models based upon critical rotation. However, expected N-enhancement and a low C abundance are inferred for the B-type primaries in some interacting binaries. GJP is grateful for support from NASA Grants NNX07AH56G (ADP) and NNX07AF89G (FUSE), and the USC WiSE program.

  16. Spatiotemporal relationships between the abundance, distribution, and potential activities of ammonia-oxidizing and denitrifying microorganisms in intertidal sediments.

    PubMed

    Smith, Jason M; Mosier, Annika C; Francis, Christopher A

    2015-01-01

    The primary objective of this study was to gain an understanding of how key microbial communities involved in nitrogen cycling in estuarine sediments vary over a 12-month period. Furthermore, we sought to determine whether changes in the size of these communities are related to, or indicative of, seasonal patterns in fixed nitrogen dynamics in Elkhorn Slough--a small, agriculturally impacted estuary with a direct connection to Monterey Bay. We assessed sediment and pore water characteristics, abundance of functional genes for nitrification (bacterial and archaeal amoA, encoding ammonia monooxygenase subunit A) and denitrification (nirS and nirK, encoding nitrite reductase), and measurements of potential nitrification and denitrification activities at six sites. No seasonality in the abundance of denitrifier or ammonia oxidizer genes was observed. A strong association between potential nitrification activity and the size of ammonia-oxidizing bacterial communities was observed across the estuary. In contrast, ammonia-oxidizing archaeal abundances remained relatively constant in space and time. Unlike many other estuaries, salinity does not appear to regulate the distribution of ammonia-oxidizing communities in Elkhorn Slough. Instead, their distributions appear to be governed over two different time scales. Long-term niche characteristics selected for the gross size of archaeal and bacterial ammonia-oxidizing communities, yet covariation in their abundances between monthly samples suggests that they respond in a similar manner to short-term changes in their environment. Abundances of denitrifier and ammonia oxidizer genes also covaried, but site-specific differences in this relationship suggest differing levels of interaction (or coupling) between nitrification and denitrification.

  17. Biologically active new metabolites from a Florida collection of Moorea producens.

    PubMed

    Sabry, Omar M; Goeger, Douglas E; Gerwick, William H

    2017-03-01

    A bioassay-guided investigation (cancer cell cytotoxicity) of a Moorea producens collection from Key West, Florida, led to the discovery of two new bioactive natural products [(+)-malyngamide Y and a cyclic depsipeptide, (+)-floridamide]. Their planar structures were deduced through extensive analysis of 1D and 2D NMR spectroscopic data and supported by HRFAB mass spectrometry. The new cyclic depsipeptide contains four amino acids units, including N-methyl phenylalanine, proline, valine and alanine, beside the unique unit, 2,2-dimethyl-3-hydroxy-octanoic acid. In addition to the discovery of these two new compounds, two previously reported metabolites were also isolated and identified from this cyanobacterial collection; (-)-C-12 lyngbic acid and the antibacterial agent (-)-malyngolide.

  18. The structure of anticapsin, a new biologically active metabolite of Streptomyces griseoplanus

    PubMed Central

    Neuss, N.; Molloy, B. B.; Shah, R.; DeLaHiguera, N.

    1970-01-01

    1. Physical and analytical data obtained on crystalline anticapsin indicated the empirical formula C9H13NO4. Spectral data (u.v., i.r. and proton magnetic resonance) and formation of l-tyrosine on hydrolysis revealed the functionalities and carbon skeleton of the new epoxy keto amino acid. 2. The optical properties of anticapsin (optical rotatory dispersion and circular dichroism) permitted assignment of absolute configuration to the new metabolite. 3. Treatment of anticapsin with hot methanolic hydrochloric acid followed by acetylation gave C18H19NO5, the α-alkoxycyclohexenone derivative. Analysis of the nuclear-magnetic-resonance and mass spectra of the latter allowed its structure to be determined and confirmed the assigned structure of anticapsin. PMID:5481496

  19. Simulation of human plasma concentration-time profiles of the partial glucokinase activator PF-04937319 and its disproportionate N-demethylated metabolite using humanized chimeric mice and semi-physiological pharmacokinetic modeling.

    PubMed

    Kamimura, Hidetaka; Ito, Satoshi; Chijiwa, Hiroyuki; Okuzono, Takeshi; Ishiguro, Tomohiro; Yamamoto, Yosuke; Nishinoaki, Sho; Ninomiya, Shin-Ichi; Mitsui, Marina; Kalgutkar, Amit S; Yamazaki, Hiroshi; Suemizu, Hiroshi

    2016-07-07

    1. The partial glucokinase activator N,N-dimethyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (PF-04937319) is biotransformed in humans to N-methyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (M1), accounting for ∼65% of total exposure at steady state. 2. As the disproportionately abundant nature of M1 could not be reliably predicted from in vitro metabolism studies, we evaluated a chimeric mouse model with humanized liver on TK-NOG background for its ability to retrospectively predict human disposition of PF-04937319. Since livers of chimeric mice were enlarged by hyperplasia and contained remnant mouse hepatocytes, hepatic intrinsic clearances normalized for liver weight, metabolite formation and liver to plasma concentration ratios were plotted against the replacement index by human hepatocytes and extrapolated to those in the virtual chimeric mouse with 100% humanized liver. 3. Semi-physiological pharmacokinetic analyses using the above parameters revealed that simulated concentration curves of PF-04937319 and M1 were approximately superimposed with the observed clinical data in humans. 4. Finally, qualitative profiling of circulating metabolites in humanized chimeric mice dosed with PF-04937319 or M1 also revealed the presence of a carbinolamide metabolite, identified in the clinical study as a human-specific metabolite. The case study demonstrates that humanized chimeric mice may be potentially useful in preclinical discovery towards studying disproportionate or human-specific metabolism of drug candidates.

  20. Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea.

    PubMed

    Moitinho-Silva, Lucas; Bayer, Kristina; Cannistraci, Carlo V; Giles, Emily C; Ryu, Taewoo; Seridi, Loqmane; Ravasi, Timothy; Hentschel, Ute

    2014-03-01

    Marine sponges are generally classified as high microbial abundance (HMA) and low microbial abundance (LMA) species. Here, 16S rRNA amplicon sequencing was applied to investigate the diversity, specificity and transcriptional activity of microbes associated with an LMA sponge (Stylissa carteri), an HMA sponge (Xestospongia testudinaria) and sea water collected from the central Saudi Arabia coast of the Red Sea. Altogether, 887 068 denoised sequences were obtained, of which 806 661 sequences remained after quality control. This resulted in 1477 operational taxonomic units (OTUs) that were assigned to 27 microbial phyla. The microbial composition of S. carteri was more similar to that of sea water than to that of X. testudinaria, which is consistent with the observation that the sequence data set of S. carteri contained many more possibly sea water sequences (~24%) than the X. testudinaria data set (~6%). The most abundant OTUs were shared between all three sources (S. carteri, X. testudinaria, sea water), while rare OTUs were unique to any given source. Despite this high degree of overlap, each sponge species contained its own specific microbiota. The X. testudinaria-specific bacterial taxa were similar to those already described for this species. A set of S. carteri-specific bacterial taxa related to Proteobacteria and Nitrospira was identified, which are likely permanently associated with S. carteri. The transcriptional activity of sponge-associated microorganisms correlated well with their abundance. Quantitative PCR revealed the presence of Poribacteria, representing typical sponge symbionts, in both sponge species and in sea water; however, low transcriptional activity in sea water suggested that Poribacteria are not active outside the host context.

  1. A new natural spiro heterocyclic compound and the cytotoxic activity of the secondary metabolites from Juniperus brevifolia leaves.

    PubMed

    Moujir, Laila M; Seca, Ana M L; Araujo, Liliana; Silva, Artur M S; Barreto, M Carmo

    2011-03-01

    A new natural spiro compound 3,4-dehydrotheaspirone and the known arctiol [1β,6α-dihydroxy-4(14)-eudesmene] were isolated from Juniperus brevifolia. Arctiol is reported for the first time in the Juniperus genus. Their structures were established by 1D, and 2D NMR and MS spectra. Antimicrobial and cytotoxic activities of 1 and several secondary metabolites 3,4,5,6,7,8,9,10,11,12 previously isolated by our group from J. brevifolia were evaluated and some SAR has been established. The 18-hydroxydehydroabietane (4) displayed great antiproliferative activity against cancer cell lines tested, namely HeLa, A-549 and MCF-7. Compound 4 also presented a significant bactericidal effect against Bacillus cereus at different concentrations tested.

  2. Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy.

    PubMed

    Tagliapietra, V; Rosà, R; Arnoldi, D; Cagnacci, F; Capelli, G; Montarsi, F; Hauffe, H C; Rizzoli, A

    2011-12-29

    The wood tick Ixodes ricinus, one of the most common arthropod-borne disease vectors, is of increasing relevance for human and animal health in Europe. The aim of this study was to determine the relative contribution of several abiotic and biotic factors potentially affecting questing activity and local abundance of I. ricinus in Italy, considering the scale at which these factors interact with the host-seeking ticks. Within EDEN, a large-scale EU collaborative project on eco-epidemiology of vector-borne diseases, we collected questing ticks for three consecutive years using a standard protocol at eleven sites in the Italian Alps and Apennines. A total of 25 447 I. ricinus were collected. All sites showed the same annual pattern of tick activity (bimodal for nymphs and unimodal for larvae and adults), although the abundance of nymphs was statistically different between sites and years. A Generalized Linear Mixed Model and a Linear Mixed Model fitted to data for nymphs, showed that while the principal variables affecting the local abundance of questing ticks were saturation deficit (an index combining temperature and relative humidity) and red deer density, the most important variable affecting questing nymph activity was saturation deficit. As for the timing of seasonal emergence, we confirmed that the threshold temperature at this latitude for larvae is 10°C (mean maximum) while that for nymphs is 8°C.

  3. Significant difference in active metabolite levels of ginseng in humans consuming Asian or Western diet: The link with enteric microbiota.

    PubMed

    Wan, Jin-Yi; Wang, Chong-Zhi; Zhang, Qi-Hui; Liu, Zhi; Musch, Mark W; Bissonnette, Marc; Chang, Eugene B; Li, Ping; Qi, Lian-Wen; Yuan, Chun-Su

    2017-04-01

    After ingestion of ginseng, the bioavailability of its parent compounds is low and enteric microbiota plays an important role in parent compound biotransformation to their metabolites. Diet type can influence the enteric microbiota profile. When human subjects on different diets ingest ginseng, their different gut microbiota profiles may influence the metabolism of ginseng parent compounds. In this study, the effects of different diet type on gut microbiota metabolism of American ginseng saponins were investigated. We recruited six healthy adults who regularly consumed different diet types. These subjects received 7 days' oral American ginseng, and their biological samples were collected for LC-Q-TOF-MS analysis. We observed significant ginsenoside Rb1 (a major parent compound) and compound K (a major active metabolite) level differences in the samples from the subjects consuming different diets. Subjects on an Asian diet had much higher Rb1 levels but much lower compound K levels compared with those on a Western diet. Since compound K possesses much better cancer chemoprevention potential, our data suggested that consumers on a Western diet should obtain better cancer prevention effects with American ginseng intake compared with those on an Asian diet. Ginseng compound levels could be enhanced or reduced via gut microbiota manipulation for clinical utility.

  4. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments

    PubMed Central

    Musilova, Lucie; Ridl, Jakub; Polivkova, Marketa; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the “secondary compound hypothesis” and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes. PMID:27483244

  5. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert).

    PubMed

    Ahmad, Naveed; Rab, Abdur; Ahmad, Nisar

    2016-01-01

    Stevia rebaudiana (S. rebaudiana) is a very important species with worldwide medicinal and commercial uses. Light is one of the major elicitors that fluctuate morphogenic potential and biochemical responses. In the present study, we investigated the effect of various spectral lights on biomass accumulation and secondary metabolite production in callus cultures of S. rebaudiana. Leaf explants were placed on Murashige and Skoog (MS) medium and exposed to various spectral lights. 6-Benzyle adenine (BA) and 2, 4-dichlorophenoxy acetic acid (2, 4-D; 2.0 mgl(-1)) were used for callus induction. The control light (16/8h) produced optimum callogenic response (92.73%) than other colored lights. Compared to other colored lights, control grown cultures displayed maximum biomass accumulation (5.78 gl(-1)) during a prolonged log phase at the 18th day of growth kinetics. Cultures grown under blue light enhanced total phenolic content (TPC; 102.32 μg/g DW), total flavonoid content (TFC; 22.07 μg/g DW) and total antioxidant capacity (TAC; 11.63 μg/g DW). On the contrary, green and red lights improved reducing power assay (RPA; 0.71Fe(II)g(-1) DW) and DPPH-radical scavenging activity (DRSA; 80%). Herein, we concluded that the utilization of colored lights is a promising strategy for enhanced production of antioxidant secondary metabolites in callus cultures of S. rebaudiana.

  6. Estrogenic and androgenic activity of PCBs, their chlorinated metabolites and other endocrine disruptors estimated with two in vitro yeast assays.

    PubMed

    Svobodová, K; Placková, M; Novotná, V; Cajthaml, T

    2009-11-01

    Investigations of environmental pollution by endocrine-disrupting chemicals are now in progress. Up to now, several in vitro bioassays have been developed for evaluation of the endocrine disruptive activity; however, there is still a lack of comparative studies of their sensitivity. In this work comparison of the estrogen screening assay based on beta-galactosidase expression and a bioluminescent estrogen screen revealed differences in the sensitivity and specificity of the two tests. With the beta-galactosidase screen a slight estrogen-like activity of Delor 103, a commercial mixture of PCB congeners, and a fungicide triclosan was measured whereas no activity was detected using the bioluminescent assay. A bioluminescent androgen test negated previously suggested androgenic potential of triclosan. Further, this work demonstrates the androgenic activity of Delor 103, with an EC(50) value of 2.29 x 10(-2)mg/L. On the other hand, chlorobenzoic acids (CBAs), representing potential PCB degradation metabolites, exhibited no androgenic activity but were slightly estrogenic. Their estrogenicity varied with their chemical structure, with 2,3-CBA, 2,3,6-CBA, 2,4,6-CBA and monochlorinated compounds exhibiting the highest activity. Thus the results indicated possible transitions of the hormonal activity of PCBs during bacterial degradation.

  7. The interference of ethanol with heroin-stimulated psychomotor activation in mice is not related to changed brain concentrations of the active metabolites 6MAM or morphine.

    PubMed

    Andersen, Jannike M; Haugen, Karianne S; Ripel, Ase; Mørland, Jørg

    2014-02-01

    It has been suggested that the potentiating effect observed in human beings when combining alcohol and heroin may be due to an interference of ethanol with the pharmacokinetics of heroin, leading to accumulation of the biologically active metabolites, 6-monoacetylmorphine (6MAM) and morphine. However, experimental evidence for this hypothesis is lacking. In this study, we used mice and examined the effect of ethanol on the metabolism of heroin by combining a locomotor activity test, which is a behaviour model representative of psychomotor stimulation, with pharmacokinetic studies in blood and brain tissue. Pre-treatment with ethanol (1 and 2.5 g/kg, po) affected heroin-stimulated (2.5 and 15 μmol/kg, sc) locomotor activation significantly, resulting in a dose-dependent reduction in run distance. However, the change in the activity profiles did not indicate any increase in the concentration of active metabolites. Pharmacokinetic studies in blood and brain supported the behavioural findings, showing no change in the time-versus-concentration curves of either 6MAM or morphine after administration of heroin (15 μmol/kg, sc) to mice pre-treated with ethanol (2.5 g/kg, po). The concentration of heroin itself was elevated, but is probably of minor importance because heroin has low biological activity by itself. The in vivo pharmacokinetic findings were supported by experiments in vitro. In conclusion, studies in mice do not support the hypothesis from epidemiological studies of a pharmacokinetic interaction between alcohol and heroin.

  8. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.

    PubMed

    Nicol, Graeme W; Leininger, Sven; Schleper, Christa; Prosser, James I

    2008-11-01

    Autotrophic ammonia oxidation occurs in acid soils, even though laboratory cultures of isolated ammonia oxidizing bacteria fail to grow below neutral pH. To investigate whether archaea possessing ammonia monooxygenase genes were responsible for autotrophic nitrification in acid soils, the community structure and phylogeny of ammonia oxidizing bacteria and archaea were determined across a soil pH gradient (4.9-7.5) by amplifying 16S rRNA and amoA genes followed by denaturing gradient gel electrophoresis (DGGE) and sequence analysis. The structure of both communities changed with soil pH, with distinct populations in acid and neutral soils. Phylogenetic reconstructions of crenarchaeal 16S rRNA and amoA genes confirmed selection of distinct lineages within the pH gradient and high similarity in phylogenies indicated a high level of congruence between 16S rRNA and amoA genes. The abundance of archaeal and bacterial amoA gene copies and mRNA transcripts contrasted across the pH gradient. Archaeal amoA gene and transcript abundance decreased with increasing soil pH, while bacterial amoA gene abundance was generally lower and transcripts increased with increasing pH. Short-term activity was investigated by DGGE analysis of gene transcripts in microcosms containing acidic or neutral soil or mixed soil with pH readjusted to that of native soils. Although mixed soil microcosms contained identical archaeal ammonia oxidizer communities, those adapted to acidic or neutral pH ranges showed greater relative activity at their native soil pH. Findings indicate that different bacterial and archaeal ammonia oxidizer phylotypes are selected in soils of different pH and that these differences in community structure and abundances are reflected in different contributions to ammonia oxidizer activity. They also suggest that both groups of ammonia oxidizers have distinct physiological characteristics and ecological niches, with consequences for nitrification in acid soils.

  9. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes.

    PubMed

    Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut

    2015-08-01

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water.

  10. Observation of an Unusual Electronically Distorted Semiquinone Radical of PCB Metabolites in the Active Site of Prostaglandin H Synthase-2

    PubMed Central

    Wangpradit, Orarat; Moman, Edelmiro; Nolan, Kevin B.; Buettner, Garry R.; Robertson, Larry W.; Luthe, Gregor

    2013-01-01

    The activation of the metabolites of airborne polychlorinated biphenyls (PCBs) into highly reactive radicals is of fundamental importance. We found that human recombinant prostaglandin H synthase-2 (hPGHS-2) biotransforms dihydroxy-PCBs, such as 4-chlorobiphenyl-2′,5′-hydroquinone (4-CB-2′,5′H2Q), into semiquinone radicals via one-electron oxidation. Using electron paramagnetic resonance (EPR) spectroscopy, we observed the formation of the symmetric quartet spectrum (1:3:3:1 by area) of 4-chlorobiphenyl-2′,5′-semiquinone radical (4-CB-2′,5′-SQ•−) from 4-CB-2′,5′H2Q. This spectrum changed to an asymmetric spectrum with time: the change can be explained as the overlap of two different semiquinone radical species. Hindered rotation of the 4-CB-2′,5′-SQ•− appears not to be a major factor for the change in lineshape because increasing the viscosity of the medium with glycerol produced no significant change in lineshape. Introduction of a fluorine, which increases the steric hindrance for rotation of the dihydroxy-PCB studied, also produced no significant changes. An in silico molecular docking model of 4-CB-2′,5′H2Q in the peroxidase site of hPGHS-2 together with ab initio quantum mechanical studies indicate that the close proximity of a negatively charged carboxylic acid in the peroxidase active site may be responsible for the observed perturbation in the spectrum. This study provides new insights into the formation of semiquinones from PCB metabolites and underscores the potential role of PGHS-2 in the metabolic activation of PCBs. PMID:20843536

  11. Effects of the microbial secondary metabolite benzothiazole on the nutritional physiology and enzyme activities of Bradysia odoriphaga (Diptera: Sciaridae).

    PubMed

    Zhao, Yunhe; Xu, Chunmei; Wang, Qiuhong; Wei, Yan; Liu, Feng; Xu, Shuangyu; Zhang, Zhengqun; Mu, Wei

    2016-05-01

    Bradysia odoriphaga (Diptera: Sciaridae) is the major pest that damages Chinese chive production. As a volatile compound derived from microbial secondary metabolites, benzothiazole has been determined to possess fumigant activity against B. odoriphaga. However, the mechanism of action of benzothiazole is not well understood. In the present study, fourth-instar larvae of B. odoriphaga were exposed to LC10 and LC30 of benzothiazole. Sublethal concentrations (LC10 and LC30) of benzothiazole significantly reduced the food consumption of the larvae on the second day after treatment (2 DAT). However, there were no significant changes in pupal weight among the different treatments. We also measured the protein, lipid, carbohydrate, and trehalose contents and the digestive enzyme activities of the larvae, and the results suggest that benzothiazole reduced the nutrient accumulation and decreased the digestive enzyme activities of B. odoriphaga. In addition, the activity of glutathione S-transferase was significantly decreased at 6h after treatment with benzothiazole, whereas general esterase activities were significantly increased at 6 and 24h after treatment. The results of this study indicate that benzothiazole interferes in the normal food consumption and digestion process by decreasing the activities of digestive enzymes. These results provide valuable information for understanding the toxicity of benzothiazole and for exploring volatile compound for the control of this pest.

  12. Relating the Diversity, Abundance, and Activity of Ammonia-Oxidizing Archaeal Communities to Nitrification Rates in the Coastal Ocean

    NASA Astrophysics Data System (ADS)

    Tolar, B. B.; Smith, J. M.; Chavez, F.; Francis, C.

    2015-12-01

    Ammonia oxidation, the rate-limiting first step of nitrification, is an important link between reduced (ammonia) and oxidized (nitrate) nitrogen, and controls the relative distribution of these forms of inorganic nitrogen. This process is catalyzed via the ammonia monooxygenase enzyme of both ammonia-oxidizing Bacteria (AOB) and Archaea (AOA); the α subunit of this enzyme is encoded by the amoA gene and has been used as the molecular marker to detect this process. In the ocean, AOA are typically 10-1000 times more and are likely more active than AOB, and thus are key players in the marine nitrogen cycle. Monterey Bay is a dynamic site to study nitrification, as seasonal upwelling brings deep water and nutrients into surface waters, which can promote phytoplankton blooms and impact biogeochemical processes such as the nitrogen cycle. We have sampled two sites within Monterey Bay bimonthly for two years as part of the ongoing Monterey Bay Time Series (MBTS) to quantify AOA genes, transcripts, and nitrification rates. Two ecotypes of AOA are routinely found in Monterey Bay - the 'shallow' water column A (WCA) and 'deep' water column B (WCB) clades, which are thought to have distinct physiological properties and can be distinguished based on the amoA gene sequence. Previous work has shown a strong relationship between nitrification rates in Monterey Bay with the abundance of WCA amoA genes and transcripts. Additionally, we found a correlation between the relative abundance of Marine Group I (MGI) Thaumarchaeota 16S rRNA reads (as % of total) and the absolute abundance of AOA amoA genes (determined via qPCR) in Monterey Bay and the California Current System. AOA 16S rRNA gene abundances in turn correlated significantly with changes in nitrification rate with depth, while the relative abundance of genes and transcripts binned to a single AOA (Nitrosopumilus maritimus) was not significantly correlated to nitrification rate. Further analysis of the sequenced AOA

  13. Histopathology, enzyme activities, and PAH metabolites in English sole collected near coastal pulp mills

    SciTech Connect

    Brand, D.G.

    1995-12-31

    The bottom-feeding flatfish, English sole (Pleuronectes vetulus), is widely distributed along the B.C. Pacific coast and fulfills a majority of the requirements as a sentinel species for environmental effects monitoring programs. Studies involving the use of histopathological, biochemical, and chemical tools with English sole collected near the vicinity of B.C. pulp mills are currently being conducted. Analysis, to date, has revealed idiopathic liver lesions to be strongly dependent on location of capture with a prevalence of 30% preneoplastic and neoplastic lesions found in fish collected near pulp mills. All fish residing near pulp mills show hepatocellular hemosiderosis, an iron storage disorder. The mixed-function oxidizing enzyme, EROD, was found to be induced in fish collected near pulp mills. However, the levels of conjugating enzymes, GST and UDP-GT, were found to be unchanged when compared with reference fish. PAH metabolites, measured as FACs in bile, are also present in English sole collected from the mill sites and the conjugated derivatives are presently being identified by HPLC/ES-MS techniques, The relationships between these observations will be discussed.

  14. Terrestrial activity, abundance, diversity of amphibians in differently managed forest types

    SciTech Connect

    Bennett, S.H.; Gibbons, J.W.; Glanville, J.

    1980-04-01

    Diversity indices and relative abundances were determined for amphibians inhabiting three differently managed forest types in South Carolina. Study sites were contiguous around a small lake, and included a slash pine (Pinus ellioti) forest, a loblolly pine (Pinus taeda) forest and a hardwood (predominately oak-hickory) forest. Amphibians were collected using a drift fence and pitfall trap method. Captured animals were marked so that recaptures could be removed from calculations of indices. The dates of study were 30 June-10 August 1977 and 20 June-15 August 1978. The three study sites were similar in species diversity and the evenness component for combined summer data and for the summer of 1978. The hardwood forest had a higher diversity in the summer of 1977. The hardwood forest yielded approximately 50% more individual amphibians than either pine forest during both years.

  15. Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulking.

    PubMed

    Wágner, Dorottya S; Ramin, Elham; Szabo, Peter; Dechesne, Arnaud; Plósz, Benedek Gy

    2015-07-01

    The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient and compression settling velocity functions were estimated by carrying out biweekly batch settling tests using a novel column setup through a four-month long measurement campaign. To estimate viscosity model parameters, rheological experiments were carried out on the same sludge sample using a rotational viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that M. parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through altering the hindered settling velocity and yield stress parameter. Strikingly, this is not the case for Chloroflexi, occurring in more than double the abundance of M. parvicella, and forming filaments primarily protruding from the flocs. The transient and compression settling parameters show a comparably high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from explicitly accounting for filamentous bulking by calibrating the hindered settling velocity function. Furthermore, accounting for the transient and compression settling velocity in the computational domain is crucial to improve model accuracy when modelling filamentous bulking. However, the case-specific calibration of transient and compression settling parameters as well as yield stress is not necessary, and an average parameter set - obtained under bulking and good settling

  16. EFFECTS OF HABITAT CHARACTERIZATION ON THE ABUNDANCE AND ACTIVITY OF SUBTERRANEAN TERMITES IN ARID SOUTHEASTERN NEW MEXICO

    EPA Science Inventory

    Amitermes wheeleri was the most abundant termite species in most of the habitats. Gnathamitermes tubiformans was the most abundant subterranean termite species in habitats dominated by creosotebush, Larrea tridentata. Subterranean termite abundance measured by numbers of termit...

  17. In vitro estrogen receptor binding of PCBs: measured activity and detection of hydroxylated metabolites in a recombinant yeast assay.

    PubMed

    Layton, Alice C; Sanseverino, John; Gregory, Betsy W; Easter, James P; Sayler, Gary S; Schultz, T Wayne

    2002-05-01

    The estrogenic activities of 17beta-estradiol, biphenyl, chlorinated biphenyls, and Aroclor mixtures 1221, 1242, and 1248 were measured with a modified recombinant yeast estrogen assay (i.e., a Saccharomyces cerevisiae-based lac-Z (beta-galactosidase) reporter assay). Modifications of the assay included the use of glass vials instead of plastic microtiter plates and the addition of the medium and yeast before the test substrate. 14C-labeled compounds were used to follow improvements in the assay procedures. 14C-17beta-estradiol recovery from plastic microtiter plates and glass vials using the standard or the modified procedure was approximately 89%. However, 14C-4-CB (4-chlorobiphenyl) recovery was considerably less, ranging from 3% in plastic microtiter plates using the standard procedure to 26% in vials using the modified procedure. These results suggest that the toxicity of strongly hydrophobic chemicals may be underestimated. Using the modified yeast estrogen assay, full agonist activity was observed for 4-CB, 2,4,6-CB, and 2,5-CB while each of the Aroclor mixtures were only partial agonists. The equivalent EC50 values in ppm were in environmentally relevant concentrations for biphenyl (19 ppm), 4-CB (4.5 ppm), 2,5-CB (21 ppm), 2,4,6-CB (0.8 ppm), Aroclor 1221 (2.9 ppm), Aroclor 1242 (0.65 ppm), and Aroclor 1248 (2.3 ppm). Estrogen receptor binding for the individual PCB congeners was 25- to 650-fold less than the reported estrogen binding for the corresponding hydroxylated PCB metabolite. Gas chromatographic/mass spectrometric analysis of yeast extracts indicated that S. cerevisiae hydroxylated the individual PCB congeners in the ppb range. With the exception of biphenyl, the concentration of hydroxylated metabolites obtained from incubation of S. cerevisiae with PCB congeners was consistent with the concentration necessary to elicit a positive estrogen receptor-binding response. This work provides evidence that S. cerevisiae are capable of metabolic

  18. Thuringiensin: a thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity against a wide range of insects.

    PubMed

    Liu, Xiaoyan; Ruan, Lifang; Peng, Donghai; Li, Lin; Sun, Ming; Yu, Ziniu

    2014-07-25

    Thuringiensin (Thu), also known as β-exotoxin, is a thermostable secondary metabolite secreted by Bacillus thuringiensis. It has insecticidal activity against a wide range of insects, including species belonging to the orders Diptera, Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, and Isoptera, and several nematode species. The chemical formula of Thu is C22H32O19N5P, and it is composed of adenosine, glucose, phosphoric acid, and gluconic diacid. In contrast to the more frequently studied insecticidal crystal protein, Thu is not a protein but a small molecule oligosaccharide. In this review, a detailed and updated description of the characteristics, structure, insecticidal mechanism, separation and purification technology, and genetic determinants of Thu is provided.

  19. Thuringiensin: A Thermostable Secondary Metabolite from Bacillus thuringiensis with Insecticidal Activity against a Wide Range of Insects

    PubMed Central

    Liu, Xiaoyan; Ruan, Lifang; Peng, Donghai; Li, Lin; Sun, Ming; Yu, Ziniu

    2014-01-01

    Thuringiensin (Thu), also known as β-exotoxin, is a thermostable secondary metabolite secreted by Bacillus thuringiensis. It has insecticidal activity against a wide range of insects, including species belonging to the orders Diptera, Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, and Isoptera, and several nematode species. The chemical formula of Thu is C22H32O19N5P, and it is composed of adenosine, glucose, phosphoric acid, and gluconic diacid. In contrast to the more frequently studied insecticidal crystal protein, Thu is not a protein but a small molecule oligosaccharide. In this review, a detailed and updated description of the characteristics, structure, insecticidal mechanism, separation and purification technology, and genetic determinants of Thu is provided. PMID:25068925

  20. Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation.

    PubMed

    Garcia, Gonçalo; Nanni, Sara; Figueira, Inês; Ivanov, Ines; McDougall, Gordon J; Stewart, Derek; Ferreira, Ricardo B; Pinto, Paula; Silva, Rui F M; Brites, Dora; Santos, Cláudia N

    2017-01-15

    Neuroinflammation is an integral part of the neurodegeneration process inherent to several aging dysfunctions. Within the central nervous system, microglia are the effective immune cells, responsible for neuroinflammatory responses. In this study, raspberries were subjected to in vitro digestion simulation to obtain the components that result from the gastrointestinal (GI) conditions, which would be bioaccessible and available for blood uptake. Both the original raspberry extract and the gastrointestinal bioaccessible (GIB) fraction protected neuronal and microglia cells against H2O2-induced oxidative stress and lipopolysaccharide (LPS)-induced inflammation, at low concentrations. Furthermore, this neuroprotective capacity was independent of intracellular ROS scavenging mechanisms. We show for the first time that raspberry metabolites present in the GIB fraction significantly inhibited microglial pro-inflammatory activation by LPS, through the inhibition of Iba1 expression, TNF-α release and NO production. Altogether, this study reveals that raspberry polyphenols may present a dietary route to the retardation or amelioration of neurodegenerative-related dysfunctions.

  1. Irreversible Inhibition of EGFR: Modeling the Combined Pharmacokinetic-Pharmacodynamic Relationship of Osimertinib and Its Active Metabolite AZ5104.

    PubMed

    Yates, James W T; Ashton, Susan; Cross, Darren; Mellor, Martine J; Powell, Steve J; Ballard, Peter

    2016-10-01

    Osimertinib (AZD9291) is a potent, selective, irreversible inhibitor of EGFR-sensitizing (exon 19 and L858R) and T790M-resistant mutation. In vivo, in the mouse, it is metabolized to an active des-methyl metabolite, AZ5104. To understand the therapeutic potential in patients, this study aimed to assess the relationship between osimertinib pharmacokinetics, the pharmacokinetics of the active metabolite, the pharmacodynamics of phosphorylated EGFR reduction, and efficacy in mouse xenograft models of EGFR-driven cancers, including two NSCLC lines. Osimertinib was dosed in xenografted models of EGFR-driven cancers. In one set of experiments, changes in phosphorylated EGFR were measured to confirm target engagement. In a second set of efficacy studies, the resulting changes in tumor volume over time after repeat dosing of osimertinib were observed. To account for the contributions of both molecules, a mathematical modeling approach was taken to integrate the resulting datasets. The model was able to describe the pharmacokinetics, pharmacodynamics, and efficacy in A431, PC9, and NCI-H1975 xenografts, with the differences in sensitivity described by the varying potency against wild-type, sensitizing, and T790M-mutant EGFR and the phosphorylated EGFR reduction required to reduce tumor volume. It was inferred that recovery of pEGFR is slower after chronic dosing due to reduced resynthesis. It was predicted and further demonstrated that although inhibition is irreversible, the resynthesis of EGFR is such that infrequent intermittent dosing is not as efficacious as once daily dosing. Mol Cancer Ther; 15(10); 2378-87. ©2016 AACR.

  2. Arachidonic Acid Metabolite 19(S)-HETE Induces Vasorelaxation and Platelet Inhibition by Activating Prostacyclin (IP) Receptor

    PubMed Central

    Chennupati, Ramesh; Nüsing, Rolf M.; Offermanns, Stefan

    2016-01-01

    19(S)-hydroxy-eicosatetraenoic acid (19(S)-HETE) belongs to a family of arachidonic acid metabolites produced by cytochrome P450 enzymes, which play critical roles in the regulation of cardiovascular, renal and pulmonary functions. Although it has been known for a long time that 19(S)-HETE has vascular effects, its mechanism of action has remained unclear. In this study we show that 19(S)-HETE induces cAMP accumulation in the human megakaryoblastic leukemia cell line MEG-01. This effect was concentration-dependent with an EC50 of 520 nM, insensitive to pharmacological inhibition of COX-1/2 and required the expression of the G-protein Gs. Systematic siRNA-mediated knock-down of each G-protein coupled receptor (GPCR) expressed in MEG-01 followed by functional analysis identified the prostacyclin receptor (IP) as the mediator of the effects of 19(S)-HETE, and the heterologously expressed IP receptor was also activated by 19(S)-HETE in a concentration-dependent manner with an EC50 of 567 nM. Pretreatment of isolated murine platelets with 19(S)-HETE blocked thrombin-induced platelets aggregation, an effect not seen in platelets from mice lacking the IP receptor. Furthermore, 19(S)-HETE was able to relax mouse mesenteric artery- and thoracic aorta-derived vessel segments. While pharmacological inhibition of COX-1/2 enzymes had no effect on the vasodilatory activity of 19(S)-HETE these effects were not observed in vessels from mice lacking the IP receptor. These results identify a novel mechanism of action for the CYP450-dependent arachidonic acid metabolite 19(S)-HETE and point to the existence of a broader spectrum of naturally occurring prostanoid receptor agonists. PMID:27662627

  3. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    SciTech Connect

    Tsogtbaatar, Enkhtuul; Cocuron, Jean -Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-02-22

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. In conclusion, this study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos.

  4. The relative protein abundance of UGT1A alternative splice variants as a key determinant of glucuronidation activity in vitro.

    PubMed

    Rouleau, Mélanie; Roberge, Joannie; Falardeau, Sarah-Ann; Villeneuve, Lyne; Guillemette, Chantal

    2013-04-01

    Alternative splicing (AS) is one of the most significant components of the functional complexity of human UDP-glucuronosyltransferase enzymes (UGTs), particularly for the UGT1A gene, which represents one of the best examples of a drug-metabolizing gene regulated by AS. Shorter UGT1A isoforms [isoform 2 (i2)] are deficient in glucuronic acid transferase activity but function as negative regulators of enzyme activity through protein-protein interaction. Their abundance, relative to active UGT1A enzymes, is expected to be a determinant of the global transferase activity of cells and tissues. Here we tested whether i2-mediated inhibition increases with greater abundance of the i2 protein relative to the isoform 1 (i1) enzyme, using the extrahepatic UGT1A7 as a model and a series of 23 human embryonic kidney 293 clonal cell lines expressing variable contents of i1 and i2 proteins. Upon normalization for i1, a significant reduction of 7-ethyl-10-hydroxycamptothecin glucuronide formation was observed for i1+i2 clones (mean of 53%) compared with the reference i1 cell line. In these clones, the i2 protein content varied greatly (38-263% relative to i1) and revealed two groups: 17 clones with i2 < i1 (60% ± 3%) and 6 clones with i2 ≥ i1 (153% ± 24%). The inhibition induced by i2 was more substantial for clones displaying i2 ≥ i1 (74.5%; P = 0.001) compared with those with i2 < i1 (45.5%). Coimmunoprecipitation supports a more substantial i1-i2 complex formation when i2 exceeds i1. We conclude that the relative abundance of regulatory i2 proteins has the potential to drastically alter the local drug metabolism in the cells, particularly when i2 surpasses the protein content of i1.

  5. Secondary metabolite components of kiwifruit.

    PubMed

    McGhie, Tony K

    2013-01-01

    Both green and gold kiwifruit contain high concentrations of vitamin C, and much of the "health story" of kiwifruit involves this vitamin. Kiwifruit also contain other compounds that are bioactive and beneficial to health. In this chapter, the secondary metabolite composition of kiwifruit is presented. Although there are limited compositional data for kiwifruit published in the scientific literature, the concentrations of 42 compounds have been documented. Included are compounds that are often associated with "healthfulness," such as the vitamins (A, C, E, and K), carotenoids (lutein and β-carotene), folate, and antioxidant phenolic compounds. Metabolite discovery is advancing rapidly with the introduction of "metabolomic" studies where the goal is to identify and measure the complete metabolite composition of a sample. In a metabolomic experiment using liquid chromatography and high-resolution mass spectrometry, it was possible to measure more than 500 metabolites in kiwifruit extracts. The large number of detectable metabolites present suggests that there is an abundance of kiwifruit metabolites still to be discovered. Such studies will provide a more complete understanding of the metabolite composition of kiwifruit that will lead to new and improved hypotheses as to the function and effects of kiwifruit metabolites, including their relevance to human health.

  6. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    SciTech Connect

    Ribeiro, Mariana P.C.; Nunes-Correia, Isabel; Santos, Armanda E.; Custódio, José B.A.

    2014-02-15

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma.

  7. The impact of agricultural soil usage on activity and abundance of ammonifying bacteria in selected soils from Poland.

    PubMed

    Wolińska, Agnieszka; Szafranek-Nakonieczna, Anna; Banach, Artur; Błaszczyk, Mieczysław; Stępniewska, Zofia

    2016-01-01

    The aim of the study was to demonstrate the impact of soil agricultural usage on the abundance of ammonifying bacteria (AB) and their activity, expressed as arginine ammonification (AA). Five agriculturally exploited types of soils (FAO): Haplic Luvisol, Brunic Arenosol, Mollic Gleysol, Eutric Fluvisol, and Rendzina Leptosol were studied. The controls were non-agricultural soils of the same type located in close proximity to agricultural sites. The tested soils varied in terms of pH (4.18-7.08), total carbon (8.39-34.90 g kg(-1)), easily degradable carbon content (0.46-1.11 g kg(-1)), moisture (5.20-13.50 %), and nitrogen forms (mg kg(-1)): 1.68-27.17, 0.036-0.862, 0.012-3.389 for nitrate nitrogen, nitrite nitrogen, and ammonia nitrogen, respectively. The AB abundance in agricultural soils ranged from 1.1 to 6.4 × 10(4) cfu g(-1), while in the controls it was significantly higher-from 2.0 to 110 × 10(4) cfu g(-1) of soil. Also, AA in the controls was three-times higher than in the agricultural soils. Strong associations between AA and the abundance of AB in the control (r = 0.954***) and agricultural soils (r = 0.833***) were proved. In the agricultural soils, the AB abundance and AA were influenced by pH (r = 0.746*** and r = 0.520***) and carbon content (r = 0.488*** and r = 0.391***). The AB abundance was also affected by easily degradable carbon (r = 0.517**) and nitrite nitrogen (r = 0.376*), whilst ammonium nitrogen influenced AA (r = 0.451*). Our results indicate that the abundance of AB and AA may be good indicators of soil biological conditions.

  8. In Vitro Transformation of Chlorinated Parabens by the Liver S9 Fraction: Kinetics, Metabolite Identification, and Aryl Hydrocarbon Receptor Agonist Activity.

    PubMed

    Terasaki, Masanori; Wada, Takeshi; Nagashima, Satoshi; Makino, Masakazu; Yasukawa, Hiro

    2016-01-01

    We investigated the kinetics of in vitro transformation of a dichlorinated propyl paraben (2-propyl 3,5-dichloro-4-hydroxybenzoate; Cl2PP) by the rat liver S9 fraction and assessed the aryl hydrocarbon receptor (AhR) agonist activity of the metabolite products identified in HPLC and GC/MS analysis and by metabolite syntheses. The results indicated that the chlorination of Cl2PP reduced its degradation rate by approximately 40-fold. Two hydroxylated metabolite products showed AhR agonist activity of up to 39% of that of the parent Cl2PP when assessed in a yeast (YCM3) reporter gene assay. The determination of the metabolic properties of paraben bioaccumulation presented here provides further information on the value of risk assessments of chlorinated parabens as a means to ensure human health and environmental safety.

  9. Ringed-seal monitoring: Relationships of distribution and abundance to habitat attributes and industrial activities. Final report

    SciTech Connect

    Frost, K.J.; Lowry, L.F.; Gilbert, J.R.; Burns, J.J.

    1988-09-01

    The 3-year study intended to develop a program for monitoring the abundance of ringed seals in Alaska through aerial surveys. The report presents the results of aerial surveys of ringed seals on the shorefast ice of the eastern Chukchi Sea and Beaufort Sea in May-June 1987 and compares them with the results of similar surveys conducted in 1985 and 1986. Ringed seals (Phoca hispida) are a major ecological component of the arctic and subarctic marine fauna. In recognition of the ecological importance of ringed seals and the possibility that they may be impacted by human activites, the Outer Continental Shelf Environmental Assessment Program sponsored studies of the biology and ecology of ringed seals in Alaska. Ringed-seal aerial surveys based upon the 1985 research protocol were flown during May and June of 1985, 1986, and 1987. The surveys were satisfactorily completed and the data was analyzed to determine: factors affecting survey counts; regional and temporal trends in ringed-seal abundance; habitat factors affecting distribution and abundance; and the effects of industrial activities on seal density.

  10. Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region.

    PubMed

    Hofmann, Katrin; Praeg, Nadine; Mutschlechner, Mira; Wagner, Andreas O; Illmer, Paul

    2016-02-01

    Although methanogens were recently discovered to occur in aerated soils, alpine regions have not been extensively studied for their presence so far. Here, the abundance of archaea and the methanogenic guilds Methanosarcinales, Methanococcales, Methanobacteriales, Methanomicrobiales and Methanocella spp. was studied at 16 coniferous forest and 14 grassland sites located at the montane and subalpine belts of the Northern Limestone Alps (calcareous) and the Austrian Central Alps (siliceous) using quantitative real-time PCR. Abundance of archaea, methanogens and the methanogenic potentials were significantly higher in grasslands than in forests. Furthermore, methanogenic potentials of calcareous soils were higher due to pH. Methanococcales, Methanomicrobiales and Methanocella spp. were detected in all collected samples, which indicates that they are autochthonous, while Methanobacteriales were absent from 4 out of 16 forest soils. Methanosarcinales were absent from 10 out of 16 forest soils and 2 out of 14 grassland soils. Nevertheless, together with Methanococcales they represented the majority of the 16S rRNA gene copies quantified from the grassland soils. Contrarily, forest soils were clearly dominated by Methanococcales. Our results indicate a higher diversity of methanogens in well-aerated soils than previously believed and that pH mainly influences their abundances and activities.

  11. Seasonal abundance and activity of pill millipedes ( Arthrosphaera magna) in mixed plantation and semi-evergreen forest of southern India

    NASA Astrophysics Data System (ADS)

    Ashwini, Krishna M.; Sridhar, Kandikere R.

    2006-01-01

    Seasonal occurrence and activity of endemic pill millipedes ( Arthrosphaera magna) were examined in organically managed mixed plantation and semi-evergreen forest reserve in southwest India between November 1996 and September 1998. Abundance and biomass of millipedes were highest in both habitats during monsoon season. Soil moisture, conductivity, organic carbon, phosphate, potassium, calcium and magnesium were higher in plantation than in forest. Millipede abundance and biomass were about 12 and 7 times higher in plantation than in forest, respectively ( P < 0.001). Their biomass increased during post-monsoon, summer and monsoon in the plantation ( P < 0.001), but not in forest ( P > 0.05). Millipede abundance and biomass were positively correlated with rainfall ( P = 0.01). Besides rainfall, millipedes in plantation were positively correlated with soil moisture as well as temperature ( P = 0.001). Among the associated fauna with pill millipedes, earthworms rank first followed by soil bugs in both habitats. Since pill millipedes are sensitive to narrow ecological changes, the organic farming strategies followed in mixed plantation and commonly practiced in South India seem not deleterious for the endangered pill millipedes Arthrosphaera and reduce the risk of local extinctions.

  12. In silico Identification of Ergosterol as a Novel Fungal Metabolite Enhancing RuBisCO Activity in Lycopersicum esculentum.

    PubMed

    Mitra, Joyeeta; Narad, Priyanka; Sengupta, Abhishek; Sharma, P D; Paul, P K

    2016-09-01

    RuBisCO (EC 4.1.1.39), a key enzyme found in stroma of chloroplast, is important for fixing atmospheric CO2 in plants. Alterations in the activity of RuBisCO could influence photosynthetic yield. Therefore, to understand the activity of the protein, knowledge about its structure is pertinent. Though the structure of Nicotiana RuBisCO has been modeled, the structure of tomato RuBisCO is still unknown. RuBisCO extracted from chloroplasts of tomato leaves was subjected to MALDI-TOF-TOF followed by Mascot Search. The protein sequence based on gene identification numbers was subjected to in silico model construction, characterization and docking studies. The primary structure analysis revealed that protein was stable, neutral, hydrophilic and has an acidic pI. The result though indicates a 90 % homology with other members of Solanaceae but differs from the structure of Arabidopsis RuBisCO. Different ligands were docked to assess the activity of RuBisCO against these metabolite components. Out of the number of modulators tested, ergosterol had the maximum affinity (E = -248.08) with RuBisCO. Ergosterol is a major cell wall component of fungi and has not been reported to be naturally found in plants. It is a known immune elicitor in plants. The current study throws light on its role in affecting RuBisCO activity in plants, thereby bringing changes in the photosynthetic rate.

  13. Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2,3-butanedione fermentation.

    PubMed

    Whiteson, Katrine L; Meinardi, Simone; Lim, Yan Wei; Schmieder, Robert; Maughan, Heather; Quinn, Robert; Blake, Donald R; Conrad, Douglas; Rohwer, Forest

    2014-06-01

    The airways of cystic fibrosis (CF) patients are chronically colonized by patient-specific polymicrobial communities. The conditions and nutrients available in CF lungs affect the physiology and composition of the colonizing microbes. Recent work in bioreactors has shown that the fermentation product 2,3-butanediol mediates cross-feeding between some fermenting bacteria and Pseudomonas aeruginosa, and that this mechanism increases bacterial current production. To examine bacterial fermentation in the respiratory tract, breath gas metabolites were measured and several metagenomes were sequenced from CF and non-CF volunteers. 2,3-butanedione was produced in nearly all respiratory tracts. Elevated levels in one patient decreased during antibiotic treatment, and breath concentrations varied between CF patients at the same time point. Some patients had high enough levels of 2,3-butanedione to irreversibly damage lung tissue. Antibiotic therapy likely dictates the activities of 2,3-butanedione-producing microbes, which suggests a need for further study with larger sample size. Sputum microbiomes were dominated by P. aeruginosa, Streptococcus spp. and Rothia mucilaginosa, and revealed the potential for 2,3-butanedione biosynthesis. Genes encoding 2,3-butanedione biosynthesis were disproportionately abundant in Streptococcus spp, whereas genes for consumption of butanedione pathway products were encoded by P. aeruginosa and R. mucilaginosa. We propose a model where low oxygen conditions in CF lung lead to fermentation and a decrease in pH, triggering 2,3-butanedione fermentation to avoid lethal acidification. We hypothesize that this may also increase phenazine production by P. aeruginosa, increasing reactive oxygen species and providing additional electron acceptors to CF microbes.

  14. Effects of winter marsh burning on abundance and nesting activity of Louisiana seaside sparrows in the Gulf Coast Chenier Plain

    USGS Publications Warehouse

    Gabrey, S.W.; Afton, A.D.

    2000-01-01

    Louisiana Seaside Sparrows (Ammodramus maritimus fisheri) breed and winter exclusively in brackish and saline marshes along the northern Gulf of Mexico. Many Gulf Coast marshes, particularly in the Chenier Plain of southwestern Louisiana and southeastern Texas, are burned intentionally in fall or winter as part of waterfowl management programs. Fire reportedly has negatively affected two Seaside Sparrow subspecies (A. m. nigrescens and A. m. mirabilis) in Florida, but there is no published information regarding effects of fire on A. m. fisheri. We compared abundance of territorial male Louisiana Seaside Sparrows, number of nesting activity indicators, and vegetation structure in paired burned and unburned plots in Chenier Plain marshes in southwestern Louisiana during the 1996 breeding season (April-July) before experimental winter burns (January 1997) and again during two breeding seasons post-burn (1997-1998). We found that abundance of male sparrows decreased in burned plots during the first breeding season post-burn, but was higher than that of unburned plots during the second breeding season post-burn. Indicators of nesting activity showed a similar but non-significant pattern in response to burning. Sparrow abundance and nesting activity seemingly are linked to dead vegetation cover, which was lower in burned plots during the first breeding season post-burn, but did not differ from that in unburned plots during the second breeding season post-burn. We recommend that marsh management plans in the Gulf Coast Chenier Plain integrate waterfowl and Seaside Sparrow management by maintaining a mosaic of burned and unburned marshes and allowing vegetation to recover for at least two growing seasons before reburning a marsh.

  15. Sodium-pump gene-expression, protein abundance and enzyme activity in isolated nephron segments of the aging rat kidney

    PubMed Central

    Scherzer, Pnina; Gal-Moscovici, Anca; Sheikh-Hamad, David; Popovtzer, Mordecai M

    2015-01-01

    Aging is associated with alteration in renal tubular functions, including sodium handling and concentrating ability. Na-K-ATPase plays a key role in driving tubular transport, and we hypothesized that decreased concentrating ability of the aging kidney is due in part to downregulation of Na-K-ATPase. In this study, we evaluated Na and K balance, aldosterone levels, and Na-K-ATPase gene expression, protein abundance, and activity in aging rat kidney. Na-K-ATPase activity (assayed microfluorometrically), mRNA (RT-PCR), and protein abundance (immunoblotting) were quantitated in the following isolated nephron segments: PCT, PST, MTAL, DCT, and CCD from 2, 8, 15, and 24 month-old-rats. In the course of aging, creatinine clearance decreased from 0.48 ± 0.02 mL/min/100 g BW to 0.28 ± 0.06 (P < 0.001) and aldosterone decreased from 23.6 ± 0.8 ng/dL to 13.2 ± 0.6 (P < 0.001). Serum Na+ and K+ increased by 4.0% and 22.5%, respectively. Na-K-ATPase activity, mRNA, and protein abundance of the α1 subunit displayed similar trends in all assayed segments; increasing in PCT and PST; decreasing in MTAL and DCT; increasing in CCD: in PCT they increased by 40%, 75%, and 250%, respectively; while in PST they increased by 80%, 50%, and 100%, respectively (P < 0.001). In MTAL they declined by 36%, 24%, and 34%, respectively, and in DCT by 38%, 59%, and 60%, respectively (P < 0.001). They were higher in CCD by 110%, 115%, and 246%, respectively (P < 0.001). Rats maintained Na/K balance; however with a steady state elevated serum K+. These results reveal quantitative changes in axial distribution of Na-K-ATPase at the level of gene expression, protein abundance, and activity in the nephrons of aging animals and may explain, in part, the pathophysiology of the senescent kidney. PMID:26056060

  16. Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat.

    PubMed

    Hamonts, Kelly; Clough, Tim J; Stewart, Alison; Clinton, Peter W; Richardson, Alan E; Wakelin, Steven A; O'Callaghan, Maureen; Condron, Leo M

    2013-03-01

    Microbial denitrification plays a key role in determining the availability of soil nitrogen (N) to plants. However, factors influencing the structure and function of denitrifier communities in the rhizosphere remain unclear. Waterlogging can result in root anoxia and increased denitrification, leading to significant N loss from soil and potential nitrous oxide (N(2)O) emissions. This study investigated denitrifier gene abundance, community structure and activity in the rhizosphere of wheat in response to anoxia and N limitation. Denitrifier community structure in the rhizosphere differed from that in bulk soil, and denitrifier gene copy numbers (nirS, nirK, nosZ) and potential denitrification activity were greater in the rhizosphere. Anoxia and N limitation, and in particular a combination of both, reduced the magnitude of this effect on gene abundance (in particular nirS) and activity, with N limitation having greater impact than waterlogging in rhizosphere soil, in contrast to bulk soil where the impact of waterlogging was greater. Increased N supply to anoxic plants improved plant health and increased rhizosphere soil pH, which resulted in enhanced reduction of N(2)O. Both anoxia and N limitation significantly influenced the structure and function of denitrifier communities in the rhizosphere, with reduced root-derived carbon postulated to play an important role.

  17. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents.

    PubMed

    Pardo, Marta; Betz, Adrienne J; San Miguel, Noemí; López-Cruz, Laura; Salamone, John D; Correa, Mercè

    2013-01-01

    IT HAS BEEN POSTULATED THAT A NUMBER OF THE CENTRAL EFFECTS OF ETHANOL ARE MEDIATED VIA ETHANOL METABOLITES: acetaldehyde and acetate. Ethanol is known to produce a large variety of behavioral actions such anxiolysis, narcosis, and modulation of locomotion. Acetaldehyde contributes to some of those effects although the contribution of acetate is less known. In the present studies, rats and mice were used to assess the acute and chronic effects of acetate after central or peripheral administration. Male Sprague-Dawley rats were used for the comparison between central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of acute doses of acetate on locomotion. CD1 male mice were used to study acute IP effects of acetate on locomotion, and also the effects of chronic oral consumption of acetate (0, 500, or 1000 mg/l, during 7, 15, 30, or 60 days) on ethanol- (1.0, 2.0, 4.0, or 4.5 g/kg, IP) induced locomotion, anxiolysis, and loss of righting reflex (LORR). In rats, ICV acetate (0.7-2.8 μmoles) reduced spontaneous locomotion at doses that, in the case of ethanol and acetaldehyde, had previously been shown to stimulate locomotion. Peripheral acute administration of acetate also suppressed locomotion in rats (25-100 mg/kg), but not in mice. In addition, although chronic administration of acetate during 15 days did not have an effect on spontaneous locomotion in an open field, it blocked ethanol-induced locomotion. However, ethanol-induced anxiolysis was not affected by chronic administration of acetate. Chronic consumption of acetate (up to 60 days) did not have an effect on latency to, or duration of LORR induced by ethanol, but significantly increased the number of mice that did not achieve LORR. The present work provides new evidence supporting the hypothesis that acetate should be considered a centrally-active metabolite of ethanol that contributes to some behavioral effects of this alcohol, such as motor suppression.

  18. Synthesis and characterization of some abundant nanoparticles, their antimicrobial and enzyme inhibition activity.

    PubMed

    Khan, Shams T; Malik, Ajmaluddin; Wahab, Rizwan; Abd-Elkader, Omar H; Ahamed, Maqusood; Ahmad, Javed; Musarrat, Javed; Siddiqui, Maqsood A; Al-Khedhairy, Abdulaziz A

    2017-02-20

    Although the antimicrobial activity of the engineered nanoparticles (NPs) is well known, the biochemical mechanisms underlying this activity are not clearly understood. Therefore, four NPs with the highest global production, namely SiO2, TiO2, ZnO, and Ag, were synthesized and characterized. The synthesized SiO2, TiO2, ZnO, and Ag NPs exhibit an average size of 11.12, 13.4, 35, and 50 nm, respectively. The antimicrobial activity of the synthesized NPs against bacteria and fungi were also determined. NPs-mediated inhibition of two very important enzymes, namely urease and DNA polymerase, is also reported. The synthesized NPs especially Ag and ZnO show significant antimicrobial activity against bacteria and fungi including methicillin-resistant Staphylococcus aureus even at low concentration. The DNA polymerase activity was inhibited at a very low concentration range of 2-4 µg/ml, whereas the urease activity was inhibited at a high concentration range of 50-100 µg/ml. Based on their ability to inhibit the urease and DNA polymerase, NPs can be arranged in the following order: Ag > ZnO > SiO2 > TiO2 and Ag > SiO2 > ZnO > TiO2, respectively. As the synthesized NPs inhibit bacterial growth and suppress the activity of urease and DNA polymerase, the use of these NPs to control pathogens is proposed.

  19. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction.

    PubMed

    Kibsgaard, Jakob; Jaramillo, Thomas F

    2014-12-22

    Introducing sulfur into the surface of molybdenum phosphide (MoP) produces a molybdenum phosphosulfide (MoP|S) catalyst with superb activity and stability for the hydrogen evolution reaction (HER) in acidic environments. The MoP|S catalyst reported herein exhibits one of the highest HER activities of any non-noble-metal electrocatalyst investigated in strong acid, while remaining perfectly stable in accelerated durability testing. Whereas mixed-metal alloy catalysts are well-known, MoP|S represents a more uncommon mixed-anion catalyst where synergistic effects between sulfur and phosphorus produce a high-surface-area electrode that is more active than those based on either the pure sulfide or the pure phosphide. The extraordinarily high activity and stability of this catalyst open up avenues to replace platinum in technologies relevant to renewable energies, such as proton exchange membrane (PEM) electrolyzers and solar photoelectrochemical (PEC) water-splitting cells.

  20. Abundance, composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China.

    PubMed

    Liu, Yuan; Liu, Yongzhuo; Ding, Yuanjun; Zheng, Jinwei; Zhou, Tong; Pan, Genxing; Crowley, David; Li, Lianqing; Zheng, Jufeng; Zhang, Xuhui; Yu, Xinyan; Wang, Jiafang

    2014-01-01

    While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg-1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.

  1. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)--recent reports.

    PubMed

    El Kihel, Laïla

    2012-01-01

    Dehydroepiandrosterone (DHEA) is a multifunctional steroid with a broad range of biological effects in humans and animals. DHEA can be converted to multiple oxygenated metabolites in the brain and peripheral tissues. The mechanisms by which DHEA exerts its effects are not well understood. However, evidence that the effects of DHEA are mediated by its oxygenated metabolites has accumulated. This paper will review the panel of oxygenated DHEA metabolites (7, 16 and 17-hydroxylated derivatives) including a number of 5α-androstane derivatives, such as epiandrosterone (EpiA) metabolites. The most important aspects of the oxidative metabolism of DHEA in the liver, intestine and brain are described. Then, this article reviews the reported biological effects of oxygenated DHEA metabolites from recent findings with a specific focus on cancer, inflammatory and immune processes, osteoporosis, thermogenesis, adipogenesis, the cardiovascular system, the brain and the estrogen and androgen receptors.

  2. Antioxidant activity and metabolite profile of quercetion in vitamin E depleted rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary antioxidants interact in a dynamic fashion, including recycling and sparing one another, to decrease oxidative stress. Limited information is available regarding the interrelationships in vivo between quercetin and vitamin E. We investigated the antioxidant activity and metabolism of querc...

  3. Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus.

    PubMed

    Miao, Fang; Yang, Rui; Chen, Dong-Dong; Wang, Ying; Qin, Bao-Fu; Yang, Xin-Juan; Zhou, Le

    2012-11-28

    From the ethyl acetate extract of the culture broth of Talaromyces verruculosus, a rhizosphere fungus of Stellera chamaejasme L., (-)-8-hydroxy-3-(4-hydroxypentyl)-3,4-dihydroisocoumarin (1) and (E)-3-(2,5-dioxo-3-(propan-2-ylidene)pyrrolidin-1-yl)acrylic acid (2) were isolated and evaluated for their antimicrobial activities. Their structures were elucidated by UV, IR, MS, 1H-NMR, 13C-NMR and 2D NMR spectra. Compound 1 exhibited the significant activities in vitro against two strains of bacteria and four strains of fungi. Compound 2 gave slight activities on the fungi at 100 µg mL(-1), but no activities on the bacteria. Compound 1 should be considered as a new lead or model compound to develop new isocoumarin antimicrobial agents.

  4. Structural characteristics of compounds that can be activated to chemically reactive metabolites: use for a prediction of a carcinogenic potential.

    PubMed

    Lutz, W K

    1984-01-01

    Many mutagens and carcinogens act via covalent interaction of metabolic intermediates with DNA in the target cell. This report groups those structural elements which are often found to form the basis for a metabolism to such chemically reactive metabolites. Compounds which are chemically reactive per se and which do not require metabolic activation form group 1. Group 2 comprises of olefins and aromatic hydrocarbons where the oxidation via an epoxide can be responsible for the generation of reactive species. Aromatic amines, hydrazines, and nitrosamines form group 3 requiring an oxidation of a nitrogen atom or of a carbon atom in alpha position to a nitrosated amine. Group 4 compounds are halogenated hydrocarbons which can either give rise to radicals or can form an olefin (group 2) upon dehydrohalogenation. Group 5 compounds depend upon some preceding enzymatic activity either not available in the target cell or acting on positions in the molecule which are not directly involved in the subsequent formation of electrophilic atoms. Examples for each group are taken from the "List of Chemicals and Industrial Processes Associated with Cancer in Humans" as compiled by the International Agency for the Research on Cancer, and it is shown that 91% of the organic carcinogens would have been detected on the basis of structural elements characteristic for group 1-5. As opposed to this very high sensitivity, the specificity (the true negative fraction) of using this approach as a short-term test for carcinogenicity is shown to be bad because detoxification pathways have so far not been taken into account. These competing processes are so complex, however, that either only very extensive knowledge about pharmacokinetics, stability, and reactivity will be required or that in vivo systems have to be used to predict, on a quantitative basis, the damage expected on the DNA. DNA-binding experiments in vivo are presented with benzene and toluene to demonstrate one possible way for

  5. Activity, distribution, and abundance of methane-oxidizing bacteria in the near surface soils of onshore oil and gas fields.

    PubMed

    Xu, Kewei; Tang, Yuping; Ren, Chun; Zhao, Kebin; Wang, Wanmeng; Sun, Yongge

    2013-09-01

    Methane-oxidizing bacteria (MOB) have long been used as an important biological indicator for oil and gas prospecting, but the ecological characteristics of MOB in hydrocarbon microseep systems are still poorly understood. In this study, the activity, distribution, and abundance of aerobic methanotrophic communities in the surface soils underlying an oil and gas field were investigated using biogeochemical and molecular ecological techniques. Measurements of potential methane oxidation rates and pmoA gene copy numbers showed that soils inside an oil and gas field are hot spots of methane oxidation and MOB abundance. Correspondingly, terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of pmoA genes also revealed considerable differences in the methanotrophic community composition between oil and gas fields and the surrounding soils. Principal component analysis ordination furthermore indicated a coincidence between elevated CH4 oxidation activity and the methanotrophic community structure with type I methanotrophic Methylococcus and Methylobacter, in particular, as indicator species of oil and gas fields. Collectively, our results show that trace methane migrated from oil and gas reservoirs can considerably influence not only the quantity but also the structure of the methanotrophic community.

  6. Activity, abundance and expression of Ca²⁺-activated proteases in skeletal muscle of the aestivating frog, Cyclorana alboguttata.

    PubMed

    Reilly, Beau D; Cramp, Rebecca L; Franklin, Craig E

    2015-02-01

    In most mammals, prolonged muscle disuse (e.g. bed-rest, limb casting or spaceflight) results in atrophy of muscle fibres which is largely due to unregulated proteolysis. Although numerous proteolytic pathways are known to participate in muscle disuse atrophy, recent evidence suggests that activation of Ca²⁺-dependent cysteine proteases (calpains) is required for disuse atrophy in limb skeletal muscles. In contrast to typical models of muscle disuse (humans and rodents), animals that experience natural bouts of chronic muscle inactivity, such as hibernating mammals and aestivating frogs, consistently exhibit limited or no change in skeletal muscle size. In the current study, we examined enzyme activity, protein abundance and gene expression levels of calpain isoforms in gastrocnemius muscle of the aestivating frog, Cyclorana alboguttata. We predicted that in aestivating C. alboguttata there would be a downregulation of the abundance, activity and gene expression of calpain 1 and calpain 2. In contrast to our hypothesis, there was no significant decrease in the enzyme activity levels or the relative protein abundances of calpain 1 and calpain 2. Similarly, gene expression assays (both qRT-PCR and RNA Seq data) indicated that calpains were unaffected by aestivation. Western blotting of 'muscle-specific' calpain 3, which is consistently downregulated during atrophic conditions, indicated that this isoform is present in C. alboguttata muscle where it appears to be in its autolysed state. The absence of any increase in enzyme activity, protein and mRNA abundance of calpains in aestivators is consistent with the protection of gastrocnemius muscle against uncontrolled proteolysis throughout aestivation.

  7. Antimicrobial and antioxidant activities of a new metabolite from Quercus incana.

    PubMed

    Gul, Farah; Khan, Khalid Mohammed; Adhikari, Achyut; Zafar, Salman; Akram, Muhammad; Khan, Haroon; Saeed, Muhammad

    2016-12-21

    Phytochemical investigations of Quercus incana led to the isolation of a new catechin derivative quercuschin (1), along with six known compounds: quercetin (2), methyl gallate (3), gallic acid (4), betulinic acid (5), (Z)-9-octadecenoic acid methyl ester (6) and β-sitosterol glucoside (7) from the ethyl acetate fraction of methanolic extract of the bark. Compound 1 was screened for its antibacterial, antifungal and antioxidant potential. Antibacterial and antifungal activities of the compound were tested against different bacterial and fungal strains, employing the agar well diffusion methods. The antibacterial activity was the highest against Streptococcus pyogenes with 80.0% inhibition, while the antifungal activity of the compound was the highest against Candida glabrata with 80.5% inhibition. The results of the antioxidant activity indicated that the compound exhibited antioxidant activity comparable to that of standard, butylated hydroxyanisole (51.2 μg/10 μl versus 45.9 μg/10 μl).

  8. Induction of phase 2 enzymes by serum oxidized polyamines through activation of Nrf2: effect of the polyamine metabolite acrolein.

    PubMed

    Kwak, Mi-Kyoung; Kensler, Thomas W; Casero, Robert A

    2003-06-06

    The naturally occurring polycationic polyamines including putrescine, spermidine, and spermine play an important role in cell growth, differentiation, and gene expression. However, circulating polyamines are potential substrates for several oxidizing enzymes including copper-containing serum amine oxidase. These enzymes are capable of oxidizing serum polyamines to several toxic metabolites including aldehydes and H(2)O(2). In this study, we investigated the effects of polyamines as inducers of phase 2 enzymes and other genes that promote cell survival in a cell culture system in the presence of bovine serum. Spermidine and spermine (50 microM) increased NAD(P)H quinone oxidoreductase (NQO1) activity up to 3-fold in murine keratinocyte PE cells. Transcript levels for glutathione S-transferase (GST) A1, GST M1, NQO1, gamma-glutamylcysteine ligase regulatory subunit, and UDP-glucuronyltransferase 1A6 were significantly increased by spermidine and this effect was mediated through the antioxidant response element (ARE). The ARE from the mouse GST A1 promoter was activated about 9-fold by spermine and 5-fold by spermidine treatment, but could be inhibited by the amine oxidase inhibitor, aminoguanidine, suggesting that acrolein or hydrogen peroxide generated from polyamines by serum amine oxidase may be mediators for phase 2 enzyme induction. Elevations of ARE-luciferase expression and NQO1 enzyme activity by spermidine were not affected by catalase, while both were completely repressed by aldehyde dehydrogenase treatment. Direct addition of acrolein to PE cells induced multiple phase 2 genes and elevated nuclear levels of Nrf2, a transcription factor that binds to the ARE. Expression of mutant Nrf2 repressed the activation of the ARE-luciferase reporter by polyamines and acrolein. These results indicate that spermidine and spermine increase the expression of phase 2 genes in cells grown in culture through activation of the Nrf2-ARE pathway by generating the sulfhydryl

  9. Effect of phenylalanine metabolites on the activities of enzymes of ketone-body utilization in brain of suckling rats.

    PubMed Central

    Benavides, J; Gimenez, C; Valdivieso, F; Mayor, F

    1976-01-01

    1. The effects of phenylalanine and its metabolites (phenylacetate, phenethylamine, phenyl-lactate, o-hydroxyphenylacetate and phenylpyruvate) on the activity of 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) 3-oxo acid CoA-transferase (EC 2.8.3.5) and acetoacetyl-CoA thiolase (EC 2.3.1.9) in brain of suckling rats were investigated. 2. The 3-hydroxybutyrate dehydrogenase from the brain of suckling rats had a Km for 3-hydroxybutyrate of 1.2 mM. Phenylpyruvate, phenylacetate and o-hydroxyphenylacetate inhibited the enzyme activity with Ki values of 0.5, 1.3 and 4.7 mM respectively. 3. The suckling-rat brain 3-oxo acid CoA-transferase activity had a Km for acetoacetate of 0.665 mM and for succinyl (3-carboxypropionyl)-CoA of 0.038 mM. The enzyme was inhibited with respect to acetoacetate by phenylpyruvate (Ki equals 1.3 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). The reaction in the direction of acetoacetate was also inhibited by phenylpyruvate (Ki equals 1.6 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). 4. Phenylpyruvate inhibited with respect to acetoacetyl-CoA both the mitochondrial (Ki equals 3.2 mM) and cytoplasmic (Ki equals 5.2 mM) acetoacetyl-CoA thiolase activities. 5. The results suggest that inhibition of 3-hydroxybutyrate dehydrogenase and 3-oxo acid CoA-transferase activities may impair ketone-body utilization and hence lipid synthesis in the developing brain. This suggestion is discussed with reference to the pathogenesis of mental retardation in phenylketonuria. PMID:12750

  10. Effects of Metabolites Produced from (-)-Epigallocatechin Gallate by Rat Intestinal Bacteria on Angiotensin I-Converting Enzyme Activity and Blood Pressure in Spontaneously Hypertensive Rats.

    PubMed

    Takagaki, Akiko; Nanjo, Fumio

    2015-09-23

    Inhibitory activity of angiotensin I-converting enzyme (ACE) was examined with (-)-epigallocatechin gallate (EGCG) metabolites produced by intestinal bacteria, together with tea catechins. All of the metabolites showed ACE inhibitory activities and the order of IC50 was hydroxyphenyl valeric acids > 5-(3,4,5-trihydroxyphenyl)-γ-valerolactone (1) > trihydroxyphenyl 4-hydroxyvaleric acid ≫ dihydroxyphenyl 4-hydroxyvaleric acid ≫ 5-(3,5-dihydroxyphenyl)-γ-valerolactone (2). Among the catechins, galloylated catechins exhibited stronger ACE inhibitory activity than nongalloylated catechins. Furthermore, the effects of a single oral intake of metabolites 1 and 2 on systolic blood pressure (SBP) were examined with spontaneously hypertensive rats (SHR). Significant decreases in SBP were observed between 2 h after oral administration of 1 (150 mg/kg in SHR) and the control group (p = 0.002) and between 4 h after administration of 2 (200 mg/kg in SHR) and the control group (p = 0.044). These results suggest that the two metabolites have hypotensive effects in vivo.

  11. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma.

    PubMed

    Mürdter, T E; Schroth, W; Bacchus-Gerybadze, L; Winter, S; Heinkele, G; Simon, W; Fasching, P A; Fehm, T; Eichelbaum, M; Schwab, M; Brauch, H

    2011-05-01

    The therapeutic effect of tamoxifen depends on active metabolites, e.g., cytochrome P450 2D6 (CYP2D6) mediated formation of endoxifen. To test for additional relationships, 236 breast cancer patients were genotyped for CYP2D6, CYP2C9, CYP2B6, CYP2C19, CYP3A5, UGT1A4, UGT2B7, and UGT2B15; also, plasma concentrations of tamoxifen and 22 of its metabolites, including the (E)-, (Z)-, 3-, and 4'-hydroxymetabolites as well as their glucuronides, were quantified using liquid chromatography-tandem mass spectrometry (MS). The activity levels of the metabolites were measured using an estrogen response element reporter assay; the strongest estrogen receptor inhibition was found for (Z)-endoxifen and (Z)-4-hydroxytamoxifen (inhibitory concentration 50 (IC50) 3 and 7 nmol/l, respectively). CYP2D6 genotypes explained 39 and 9% of the variability of steady-state concentrations of (Z)-endoxifen and (Z)-4-hydroxytamoxifen, respectively. Among the poor metabolizers, 93% had (Z)-endoxifen levels below IC90 values, underscoring the role of CYP2D6 deficiency in compromised tamoxifen bioactivation. For other enzymes tested, carriers of reduced-function CYP2C9 (*2, *3) alleles had lower plasma concentrations of active metabolites (P < 0.004), pointing to the role of additional pathways.

  12. In vitro biological activity of secondary metabolites from Seseli rigidum Waldst. et Kit. (Apiaceae).

    PubMed

    Jakovljević, Dragana; Vasić, Sava; Stanković, Milan; Čomić, Ljiljana; Topuzović, Marina

    2015-12-01

    The antioxidant, antimicrobial activity, total phenolic content and flavonoid concentration of Seseli rigidum Waldst. et Kit. were evaluated. Five different extracts of the aboveground plant parts were obtained by extraction with distilled water, methanol, acetone, ethyl acetate and petroleum ether. Total phenols were determined using the Folin-Ciocalteu's reagent, with the highest values obtained in the acetone extract (102.13 mg GAE/g). The concentration of flavonoids, determined by using a spectrophotometric method with aluminum chloride and expressed in terms of rutin equivalent, was also highest in the acetone extracts (291.58 mg RUE/g). The antioxidant activity was determined in vitro using DPPH reagent. The greatest antioxidant activity was expressed in the aqueous extract (46.15 μg/ml). In vitro antimicrobial activities were determined using a microdilution analysis method; minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) were determined. Methanolic extract had the greatest influence on bacilli (MIC at 0.0391 mg/ml), but the best antimicrobial effect had acetone and ethyl acetate extracts considering their broad impact on bacteria. According to our research, S. rigidum can be regarded as promising candidate for natural plant source with high value of biological compounds.

  13. Antioxidant and anti-acetylcholinesterase activities of extracts and secondary metabolites from Acacia cyanophylla

    PubMed Central

    Ghribia, Lotfi; Ghouilaa, Hatem; Omrib, Amel; Besbesb, Malek; Janneta, Hichem Ben

    2014-01-01

    Objective To investigate the antioxidant potential and anti-acetycholinesterase activity of compounds and extracts from Acacia cyanophylla (A. cyanophylla). Methods Three polyphenolic compounds were isolated from ethyl acetate extract of A. cyanophylla flowers. They have been identified as isosalipurposide 1, quercetin 2 and naringenin 3. Their structures were elucidated by extensive spectroscopic methods including 1D and 2D NMR experiments as well as ES-MS. The prepared extracts and the isolated compounds 1-3 were tested for their antioxidant activity using 1′-1′-diphenylpicrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging assays and reducing power. They have been also investigated for inhibitory effect against acetylcholinesterase using the microplate assay. Results In the DPPH test, the EtOAc extract of flowers exhibited the highest antioxidant effect (67.26 µg/mL). Isosalipurposide 1 showed a significant antiradical power against DPPH (81.9 µg/mL). All extracts showed a dose-dependent acetylcholinesterase inhibition. In terms of the IC50 value, the butanolic extract (16.03 µg/mL) was the most potent sample. Isosalipurposide 1 was found to be active against AChE with an IC50 value of 52.04 µg/mL. Conclusions The results demonstrated the important antioxidant and anti-acetylcholinesterase activity of pure compounds and extracts from A. cyanophylla. PMID:25183120

  14. Agropyrenol, a phytotoxic fungal metabolite, and its derivatives: a structure-activity relationship study.

    PubMed

    Cimmino, Alessio; Zonno, Maria Chiara; Andolfi, Anna; Troise, Ciro; Motta, Andrea; Vurro, Maurizio; Evidente, Antonio

    2013-02-27

    Agropyrenol is a phytotoxic substituted salicylic aldehyde produced in liquid culture by Ascochyta agropyrina var. nana , a potential mycoherbicide proposed for the control of the perennial weed Elytrigia repens. In this study, six derivatives obtained by chemical modifications of the toxin were assayed for phytotoxic, antimicrobial, and zootoxic activities, and the structure-activity relationships were examined. Each compound was tested on non-host weedy and agrarian plants, fungi, Gram-positive and Gram-negative bacteria, and brine shrimp larvae. The results provide insights into the structure-activity relationships of agropyrenol. Both the double bond and the diol system of the 3,4-dihydroxypentenyl side chain as well as the aldehyde group at C-1 of the phenolic ring of agropyrenol proved to be important for the phytotoxicity. The lesser polar 3',4'-O,O'-isopropylidene of agropyrenol also showed significant zootoxic and slight antimicrobial activities. This finding could be useful in devising new natural herbicides for practical application in agriculture.

  15. Non-invasive monitoring of adrenocortical activity in captive African Penguin (Spheniscus demersus) by measuring faecal glucocorticoid metabolites.

    PubMed

    Ozella, L; Anfossi, L; Di Nardo, F; Pessani, D

    2015-12-01

    Measurement of faecal glucocorticoid metabolites (FGMs) has become a useful and widely-accepted method for the non-invasive evaluation of stress in vertebrates. In this study we assessed the adrenocortical activity of five captive African Penguins (Spheniscus demersus) by means of FGM evaluation following a biological stressor, i.e. capture and immobilization. In addition, we detected individual differences in secretion of FGMs during a stage of the normal biological cycle of penguins, namely the breeding period, without any external or induced causes of stress. Our results showed that FGM concentrations peaked 5.5-8h after the induced stress in all birds, and significantly decreased within 30 h. As predictable, the highest peak of FGMs (6591 ng/g) was reached by the youngest penguin, which was at its first experience with the stressor. This peak was 1.8-2.7-fold higher compared to those of the other animals habituated to the stimulus. For the breeding period, our results revealed that the increase in FGMs compared to ordinary levels, and the peaks of FGMs, varied widely depending on the age and mainly on the reproductive state of the animal. The bird which showed the lowest peak (2518 ng/g) was an old male that was not in a reproductive state at the time of the study. Higher FGM increases and peaks were reached by the two birds which were brooding (male: 5552%, 96,631 ng/g; female: 1438%, 22,846 ng/g) and by the youngest bird (1582%, 39,700 ng/g). The impact of the reproductive state on FGM levels was unexpected compared to that produced by the induced stress. The EIA used in this study to measure FGM levels proved to be a reliable tool for assessing individual and biologically-relevant changes in FGM concentrations in African Penguin. Moreover, this method allowed detection of physiological stress during the breeding period, and identification of individual differences in relation to the reproductive status. The increase in FGM levels as a response to capture and

  16. Estrogenic and androgenic activities of TBBA and TBMEPH, metabolites of novel brominated flame retardants, and selected bisphenols, using the XenoScreen XL YES/YAS assay.

    PubMed

    Fic, Anja; Žegura, Bojana; Gramec, Darja; Mašič, Lucija Peterlin

    2014-10-01

    The present study investigated and compared the estrogenic and androgenic activities of the three different classes of environmental pollutants and their metabolites using the XenoScreen XL YES/YAS assay, which has advantages compared with the original YES/YAS protocol. Contrary to the parent brominated flame retardants TBB and TBPH, which demonstrated no or very weak (anti)estrogenic or (anti)androgenic activities, their metabolites, TBBA and TBMEPH, exhibited anti-estrogenic (IC50 for TBBA=31.75 μM and IC50 for TBMEPH=0.265 μM) and anti-androgenic (IC50 for TBBA=73.95 μM and IC50 for TBMEPH=2.92 μM) activities. These results reveal that metabolism can enhance the anti-estrogenic and anti-androgenic effects of these two novel brominated flame retardants. Based on the activities of BPAF, BPF, BPA and MBP, we can conclude that the XenoScreen XL YES/YAS assay gives comparable results to the (anti)estrogenic or (anti)androgenic assays that are reported in the literature. For BPA, it was confirmed previously that the metabolite formed after an ipso-reaction (hydroxycumyl alcohol) exhibited higher estrogenic activity compared with the parent BPA, but this was not confirmed for BPAF and BPF ipso-metabolites, which were not active in the XenoScreen YES/YAS assay. Among the substituted BPA analogues, bis-GMA exhibited weak anti-estrogenic activity, BADGE demonstrated weak anti-estrogenic and anti-androgenic activities (IC50=13.73 μM), and the hydrolysed product BADGE·2H2O demonstrated no (anti)estrogenic or (anti)androgenic activities.

  17. Secondary metabolites from the unripe pulp of Persea americana and their antimycobacterial activities.

    PubMed

    Lu, Ying-Chen; Chang, Hsun-Shuo; Peng, Chien-Fang; Lin, Chu-Hung; Chen, Ih-Sheng

    2012-12-15

    The fruits of Persea americana (Avocado) are nowadays used as healthy fruits in the world. Bioassay-guided fractionation of the active ethyl acetate soluble fraction has led to the isolation of five new fatty alcohol derivatives, avocadenols A-D (1-4) and avocadoin (5) from the unripe pulp of P. americana, along with 12 known compounds (6-17). These structures were elucidated by spectroscopic analysis. Among the isolates, avocadenol A (1), avocadenol B (2), (2R,4R)-1,2,4-trihydroxynonadecane (6), and (2R,4R)-1,2,4-trihydroxyheptadec-16-ene (7) showed antimycobacterial activity against Mycobacterium tuberculosis H(37)R(V)in vitro, with MIC values of 24.0, 33.8, 24.9, and 35.7 μg/ml, respectively.

  18. INNATE IMMUNITY. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity.

    PubMed

    Gaudet, Ryan G; Sintsova, Anna; Buckwalter, Carolyn M; Leung, Nelly; Cochrane, Alan; Li, Jianjun; Cox, Andrew D; Moffat, Jason; Gray-Owen, Scott D

    2015-06-12

    Host recognition of pathogen-associated molecular patterns (PAMPs) initiates an innate immune response that is critical for pathogen elimination and engagement of adaptive immunity. Here we show that mammalian cells can detect and respond to the bacterial-derived monosaccharide heptose-1,7-bisphosphate (HBP). A metabolic intermediate in lipopolysaccharide biosynthesis, HBP is highly conserved in Gram-negative bacteria, yet absent from eukaryotic cells. Detection of HBP within the host cytosol activated the nuclear facto κB pathway in vitro and induced innate and adaptive immune responses in vivo. Moreover, we used a genome-wide RNA interference screen to uncover an innate immune signaling axis, mediated by phosphorylation-dependent oligomerization of the TRAF-interacting protein with forkhead-associated domain (TIFA) that is triggered by HBP. Thus, HBP is a PAMP that activates TIFA-dependent immunity to Gram-negative bacteria.

  19. Trypanocidal activity of a new pterocarpan and other secondary metabolites of plants from Northeastern Brazil flora.

    PubMed

    Vieira, Nashira Campos; Espíndola, Laila Salmen; Santana, Jaime Martins; Veras, Maria Leopoldina; Pessoa, Otília Deusdênia Loiola; Pinheiro, Sávio Moita; de Araújo, Renata Mendonça; Lima, Mary Anne Sousa; Silveira, Edilberto Rocha

    2008-02-15

    Two hundred fifteen compounds isolated from plants of Northeastern Brazil flora have been assayed against epimastigote forms of Trypanosoma cruzi, using the tetrazolium salt MTT as an alternative method. Eight compounds belonging to four different species: Harpalyce brasiliana (Fabaceae), Acnistus arborescens and Physalis angulata (Solanaceae), and Cordia globosa (Boraginaceae) showed significant activity. Among them, a novel and a known pterocarpan, a chalcone, four withasteroids, and a meroterpene benzoquinone were the represented chemical classes.

  20. Allosteric Activation of Escherichia coli Glucosamine-6-Phosphate Deaminase (NagB) In Vivo Justified by Intracellular Amino Sugar Metabolite Concentrations

    PubMed Central

    Álvarez-Añorve, Laura I.; Gaugué, Isabelle; Link, Hannes; Marcos-Viquez, Jorge; Díaz-Jiménez, Dana M.; Zonszein, Sergio; Bustos-Jaimes, Ismael; Schmitz-Afonso, Isabelle; Calcagno, Mario L.

    2016-01-01

    ABSTRACT We have investigated the impact of growth on glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) on cellular metabolism by quantifying glycolytic metabolites in Escherichia coli. Growth on GlcNAc increased intracellular pools of both GlcNAc6P and GlcN6P 10- to 20-fold compared to growth on glucose. Growth on GlcN produced a 100-fold increase in GlcN6P but only a slight increase in GlcNAc6P. Changes to the amounts of downstream glycolytic intermediates were minor compared to growth on glucose. The enzyme glucosamine-6P deaminase (NagB) is required for growth on both GlcN and GlcNAc. It is an allosteric enzyme in E. coli, displaying sigmoid kinetics with respect to its substrate, GlcN6P, and is allosterically activated by GlcNAc6P. The high concentration of GlcN6P, accompanied by the small increase in GlcNAc6P, drives E. coli NagB (NagBEc) into its high activity state, as observed during growth on GlcN (L. I. Álvarez-Añorve, I. Bustos-Jaimes, M. L. Calcagno, and J. Plumbridge, J Bacteriol 191:6401–6407, 2009, http://dx.doi.org/10.1128/JB.00633-09). The slight increase in GlcNAc6P during growth on GlcN is insufficient to displace NagC, the GlcNAc6P-responsive repressor of the nag genes, from its binding sites, so there is only a small increase in nagB expression. We replaced the gene for the allosteric NagBEc enzyme with that of the nonallosteric, B. subtilis homologue, NagBBs. We detected no effects on growth rates or competitive fitness on glucose or the amino sugars, nor did we detect any effect on the concentrations of central metabolites, thus demonstrating the robustness of amino sugar metabolism and leaving open the question of the role of allostery in the regulation of NagB. IMPORTANCE Chitin, the polymer of N-acetylglucosamine, is an abundant biomaterial, and both glucosamine and N-acetylglucosamine are valuable nutrients for bacteria. The amino sugars are components of numerous essential macromolecules, including bacterial peptidoglycan and

  1. Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.

    PubMed

    Lee, Seung-Hoon; Jang, Inyoung; Chae, Namyi; Choi, Taejin; Kang, Hojeong

    2013-02-01

    Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.

  2. Antibacterial Activities of Metabolites from Platanus occidentalis (American sycamore) against Fish Pathogenic Bacteria

    PubMed Central

    Schrader, Kevin K; Hamann, Mark T; McChesney, James D; Rodenburg, Douglas L; Ibrahim, Mohamed A

    2016-01-01

    One approach to the management of common fish diseases in aquaculture is the use of antibiotic-laden feed. However, there are public concerns about the use of antibiotics in agriculture and the potential development of antibiotic resistant bacteria. Therefore, the discovery of other environmentally safe natural compounds as alternatives to antibiotics would benefit the aquaculture industries. Four natural compounds, commonly called platanosides, [kaempferol 3-O-α-L-(2″,3″-di-E-p-coumaroyl)rhamnoside (1), kaempferol 3-O-α-L-(2″-E-p-coumaroyl-3″-Z-p-coumaroyl)rhamnoside (2), kaempferol 3-O-α-L-(2″-Z-p-coumaroyl-3″-E-p-coumaroyl)rhamnoside (3), and kaempferol 3-O-α-L-(2″,3″-di-Z-p-coumaroyl)rhamnoside (4)] isolated from the leaves of the American sycamore (Platanus occidentalis) tree were evaluated using a rapid bioassay for their antibacterial activities against common fish pathogenic bacteria including Flavobacterium columnare, Edwardsiella ictaluri, Aeromonas hydrophila, and Streptococcus iniae. The four isomers and a mixture of all four isomers were strongly antibacterial against isolates of F. columnare and S. iniae. Against F. columnare ALM-00-173, 3 and 4 showed the strongest antibacterial activities, with 24-h 50% inhibition concentration (IC50) values of 2.13 ± 0.11 and 2.62 ± 0.23 mg/L, respectively. Against S. iniae LA94-426, 4 had the strongest antibacterial activity, with 24-h IC50 of 1.87 ± 0.23 mg/L. Neither a mixture of the isomers nor any of the individual isomers were antibacterial against isolates of E. ictaluri and A. hydrophila at the test concentrations used in the study. Several of the isomers appear promising for the potential management of columnaris disease and streptococcosis in fish. PMID:27790379

  3. New acyclic secondary metabolites from the biologically active fraction of Albizia lebbeck flowers.

    PubMed

    Al-Massarani, Shaza M; El Gamal, Ali A; Abd El Halim, Mohamed F; Al-Said, Mansour S; Abdel-Kader, Maged S; Basudan, Omer A; Alqasoumi, Saleh I

    2017-01-01

    The total extract of Albizia lebbeck flowers was examined in vivo for its possible hepatoprotective activity in comparison with the standard drug silymarin at two doses. The higher dose expressed promising activity especially in reducing the levels of AST, ALT and bilirubin. Fractionation via liquid-liquid partition and reexamination of the fractions revealed that the n-butanol fraction was the best in improving liver biochemical parameters followed by the n-hexane fraction. However, serum lipid parameters were best improved with CHCl3 fraction. The promising biological activity results initiated an intensive chromatographic purification of A. lebbeck flowers fractions. Two compounds were identified from natural source for the first time, the acyclic farnesyl sesquiterpene glycoside1-O-[6-O-α-l-arabinopyranosyl-β-d-glucopyranoside]-(2E,6E-)-farnesol (6) and the squalene derivative 2,3-dihydroxy-2,3-dihydrosqualene (9), in addition to eight compounds reported here for the first time from the genus Albizia; two benzyl glycosides, benzyl 1-O-β-d-glucopyranoside (1) and benzyl 6-O-α-l-arabinopyranosyl β-d-glucopyranoside (2); three acyclic monoterpene glycosides, linalyl β-d-glucopyranoside (3) and linalyl 6-O-α-l-arabinopyranosyl-β-d-glucopyranoside (4); (2E)-3,7-dimethylocta-2,6-dienoate-6-O-α-l arabinopyranosyl-β-d-glucopyranoside (5), two oligoglycosides, n-hexyl-α-l arabinopyranosyl-(1 → 6)-β-d-glucopyranoside (creoside) (7) and n-octyl α-l-arabinopyranosyl-(1 → 6)-β-d-glucopyranoside (rhodiooctanoside) (8); and ethyl fructofuranoside (10). The structures of the isolated compounds were elucidated based on extensive examination of their spectroscopic 1D and 2D-NMR, MS, UV, and IR data. It is worth mentioning that, some of the isolated linalol glycoside derivatives were reported as aroma precursors.

  4. Secondary metabolites from the stems of Engelhardia roxburghiana and their antitubercular activities.

    PubMed

    Wu, Ho-Chen; Cheng, Ming-Jen; Peng, Chien-Fang; Yang, Shyh-Chyun; Chang, Hsun-Shuo; Lin, Chu-Hung; Wang, Chyi-Jia; Chen, Ih-Sheng

    2012-10-01

    Bioassay-guided fractionation of stems of Engelhardia roxburghiana led to isolation of: four diarylheptanoids, engelheptanoxides A-D (1-4); two cyclic diarylheptanoids, engelhardiols A (5) and B (6); one naphthoquinone dimer, engelharquinonol (7); and one 1-tetralone, (4S)-4,6-dihydroxy-1-tetralone (8), along with 24 known compounds (9-32). The structures of 1-8 were by spectroscopic analysis. Compounds 5, 6, 13, 22, and 23 showed antitubercular activity against Mycobacterium tuberculosis H(37)Rv with MIC values of 72.7, 62.1, 9.1, 15.3, and 70.1μM, respectively.

  5. Lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells

    SciTech Connect

    Zhao, Yu; Wang, Wenhui; Wang, Qi; Zhang, Xiaodong; Ye, Lihong

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer 5-LOX is able to upregulate expression of NF-{kappa}B p65. Black-Right-Pointing-Pointer 5-LOX enhances nuclear translocation of NF-{kappa}B p65 via increasing p-I{kappa}B-{alpha} level. Black-Right-Pointing-Pointer 5-LOX stimulates transcriptional activity of NF-{kappa}B in hepatoma cells. Black-Right-Pointing-Pointer LTB4 activates transcriptional activity of NF-{kappa}B in hepatoma cells. -- Abstract: The issue that lipid metabolism enzyme and its metabolites regulate transcription factors in cancer cell is not fully understood. In this study, we first report that the lipid metabolism enzyme 5-Lipoxygenase (5-LOX) and its metabolite leukotriene B4 (LTB4) are capable of activating nuclear factor-{kappa}B (NF-{kappa}B) in hepatoma cells. We found that the treatment of MK886 (an inhibitor of 5-LOX) or knockdown of 5-LOX was able to downregulate the expression of NF-{kappa}B p65 at the mRNA level and decreased the phosphorylation level of inhibitor {kappa}B{alpha} (I{kappa}B{alpha}) in the cytoplasm of hepatoma HepG2 or H7402 cells, which resulted in the decrease of the level of nuclear NF-{kappa}B p65. These were confirmed by immunofluorescence staining in HepG2 cell. Moreover, the above treatments were able to decrease the transcriptional activity of NF-{kappa}B in the cells. The LTB4, one of metabolites of 5-LOX, is responsible for 5-LOX-activated NF-{kappa}B in a dose-dependent manner. Thus, we conclude that the lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells. Our finding provides new insight into the significance of lipid metabolism in activation of transcription factors in cancer.

  6. Natural phenolic metabolites from endophytic Aspergillus sp. IFB-YXS with antimicrobial activity.

    PubMed

    Zhang, Wenjing; Wei, Wei; Shi, Jing; Chen, Chaojun; Zhao, Guoyan; Jiao, Ruihua; Tan, Renxiang

    2015-07-01

    Prompted by the pressing necessity to conquer phytopathogenic infections, the antimicrobial compounds were characterized with bioassay-guided method from the ethanol extract derived from the solid-substrate fermentation of Aspergillus sp. IFB-YXS, an endophytic fungus residing in the apparently healthy leave of Ginkgo biloba L. The aim of this work was to evaluate the antimicrobial activity and mechanism(s) of these bioactive compounds against phytopathogens. Among the compounds, xanthoascin (1) is significantly inhibitory on the growth of the phytopathogenic bacterium Clavibacter michiganense subsp. Sepedonicus with a minimum inhibitory concentration (MIC) value of 0.31μg/ml, which is more potent than streptomycin (MIC 0.62μg/ml), an antimicrobial drug co-assayed herein as a positive reference. Moreover, terphenyl derivatives 3, 5 and 6 are also found to be active against other phytopathogens including Xanthomonas oryzae pv. oryzae Swings, Xanthomonas oryzae pv. oryzicola Swings, Erwinia amylovora and Pseudomonas syringae pv. lachrymans etc. The antibacterial mechanism of xanthoascin (1) was addressed to change the cellular permeability of the phytopathogens, leading to the remarkable leakage of nucleic acids out of the cytomembrane. The work highlights the possibility that xanthoascin (1), an analogue of xanthocillin which is used to be an approved antibiotic, may find its renewed application as a potent antibacterial agrichemical. This study contributes to the development of new antimicrobial drugs, especially against C. michiganense subsp. Sepedonicus.

  7. Characterization of two water-soluble lignin metabolites with antiproliferative activities from Inonotus obliquus.

    PubMed

    Wang, Qingjie; Mu, Haibo; Zhang, Lin; Dong, Dongqi; Zhang, Wuxia; Duan, Jinyou

    2015-03-01

    The chaga mushroom, Inonotus obliquus has long been recognized as a remedy for cancer, gastritis, ulcers, and tuberculosis of the bones since the 16th century. Herein we reported the identification of two homogenous biological macromolecules, designated as IOW-S-1 and IOW-S-2 with anti-tumor activities from the hot-water extract of I. obliquus. Their molecular weights were determined to be 37.9 and 24.5kDa by high performance gel permeation chromatography (HPGPC) respectively. Chemical and spectral analysis indicated that both IOW-S-1 and IOW-S-2 were predominant in lignin, along with ∼20% carbohydrates. Examination of cytotoxicity showed that these two lignin-carbohydrate complexes induced cell death in a concentration dependent manner, while this apoptosis induction was largely cell-cycle independent. Further investigation demonstrated that IOW-S-1 or IOW-S-2 inhibited the activation of the nuclear transcription factor in cancer cells. These findings implied that soluble lignin derivatives were one of bioactive components in I. obliquus, and further provided insights into the understanding of molecular basis for diverse medicinal and nutritional values of this mushroom.

  8. Secondary metabolites of ponderosa lemon (Citrus pyriformis) and their antioxidant, anti-inflammatory, and cytotoxic activities.

    PubMed

    Hamdan, Dalia; El-Readi, Mahmoud Zaki; Tahrani, Ahmad; Herrmann, Florian; Kaufmann, Dorothea; Farrag, Nawal; El-Shazly, Assem; Wink, Michael

    2011-01-01

    Column chromatography of the dichloromethane fraction from an aqueous methanolic extract of fruit peel of Citrus pyriformis Hassk. (Rutaceae) resulted in the isolation of seven compounds including one coumarin (citropten), two limonoids (limonin and deacetylnomilin), and four sterols (stigmasterol, ergosterol, sitosteryl-3-beta-D-glucoside, and sitosteryl-6'-O-acyl-3-beta-D-glucoside). From the ethyl acetate fraction naringin, hesperidin, and neohesperidin were isolated. The dichloromethane extract of the defatted seeds contained three additional compounds, nomilin, ichangin, and cholesterol. The isolated compounds were identified by MS (EI, CI, and ESI), 1H, 13C, and 2D-NMR spectral data. The limonoids were determined qualitatively by LC-ESI/MS resulting in the identification of 11 limonoid aglycones. The total methanolic extract of the peel and the petroleum ether, dichloromethane, and ethyl acetate fractions were screened for their antioxidant and anti-inflammatory activities. The ethyl acetate fraction exhibited a significant scavenging activity for DPPH free radicals (IC50 = 132.3 microg/mL). The petroleum ether fraction inhibited 5-lipoxygenase with IC50 = 30.6 microg/mL indicating potential anti-inflammatory properties. Limonin has a potent cytotoxic effect against COS7 cells [IC50 = (35.0 +/- 6.1) microM] compared with acteoside as a positive control [IC50 = (144.5 +/- 10.96) microM].

  9. Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior1[W

    PubMed Central

    Carrari, Fernando; Baxter, Charles; Usadel, Björn; Urbanczyk-Wochniak, Ewa; Zanor, Maria-Ines; Nunes-Nesi, Adriano; Nikiforova, Victoria; Centero, Danilo; Ratzka, Antje; Pauly, Markus; Sweetlove, Lee J.; Fernie, Alisdair R.

    2006-01-01

    Tomato (Solanum lycopersicum) is a well-studied model of fleshy fruit development and ripening. Tomato fruit development is well understood from a hormonal-regulatory perspective, and developmental changes in pigment and cell wall metabolism are also well characterized. However, more general aspects of metabolic change during fruit development have not been studied despite the importance of metabolism in the context of final composition of the ripe fruit. In this study, we quantified the abundance of a broad range of metabolites by gas chromatography-mass spectrometry, analyzed a number of the principal metabolic fluxes, and in parallel analyzed transcriptomic changes during tomato fruit development. Metabolic profiling revealed pronounced shifts in the abundance of metabolites of both primary and secondary metabolism during development. The metabolite changes were reflected in the flux analysis that revealed a general decrease in metabolic activity during ripening. However, there were several distinct patterns of metabolite profile, and statistical analysis demonstrated that metabolites in the same (or closely related) pathways changed in abundance in a coordinated manner, indicating a tight regulation of metabolic activity. The metabolite data alone allowed investigations of likely routes through the metabolic network, and, as an example, we analyze the operational feasibility of different pathways of ascorbate synthesis. When combined with the transcriptomic data, several aspects of the regulation of metabolism during fruit ripening were revealed. First, it was apparent that transcript abundance was less strictly coordinated by functional group than metabolite abundance, suggesting that posttranslational mechanisms dominate metabolic regulation. Nevertheless, there were some correlations between specific transcripts and metabolites, and several novel associations were identified that could provide potential targets for manipulation of fruit compositional traits

  10. Identification and characterization of jute LTR retrotransposons:: Their abundance, heterogeneity and transcriptional activity.

    PubMed

    Ahmed, Salim; Shafiuddin, Md; Azam, Muhammad Shafiul; Islam, Md Shahidul; Ghosh, Ajit; Khan, Haseena

    2011-05-01

    Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome.

  11. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents

    PubMed Central

    Pardo, Marta; Betz, Adrienne J.; San Miguel, Noemí; López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2013-01-01

    It has been postulated that a number of the central effects of ethanol are mediated via ethanol metabolites: acetaldehyde and acetate. Ethanol is known to produce a large variety of behavioral actions such anxiolysis, narcosis, and modulation of locomotion. Acetaldehyde contributes to some of those effects although the contribution of acetate is less known. In the present studies, rats and mice were used to assess the acute and chronic effects of acetate after central or peripheral administration. Male Sprague-Dawley rats were used for the comparison between central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of acute doses of acetate on locomotion. CD1 male mice were used to study acute IP effects of acetate on locomotion, and also the effects of chronic oral consumption of acetate (0, 500, or 1000 mg/l, during 7, 15, 30, or 60 days) on ethanol- (1.0, 2.0, 4.0, or 4.5 g/kg, IP) induced locomotion, anxiolysis, and loss of righting reflex (LORR). In rats, ICV acetate (0.7–2.8 μmoles) reduced spontaneous locomotion at doses that, in the case of ethanol and acetaldehyde, had previously been shown to stimulate locomotion. Peripheral acute administration of acetate also suppressed locomotion in rats (25–100 mg/kg), but not in mice. In addition, although chronic administration of acetate during 15 days did not have an effect on spontaneous locomotion in an open field, it blocked ethanol-induced locomotion. However, ethanol-induced anxiolysis was not affected by chronic administration of acetate. Chronic consumption of acetate (up to 60 days) did not have an effect on latency to, or duration of LORR induced by ethanol, but significantly increased the number of mice that did not achieve LORR. The present work provides new evidence supporting the hypothesis that acetate should be considered a centrally-active metabolite of ethanol that contributes to some behavioral effects of this alcohol, such as motor suppression. PMID:23847487

  12. First syntheses of the biologically active fungal metabolites pestalotiopsones A, B, C and F.

    PubMed

    Beekman, Andrew Michael; Castillo Martinez, Edwin; Barrow, Russell Allan

    2013-02-21

    A synthetic approach accessing the pestalotiopsones, fungal chromones possessing a rare skeletal subtype, is reported for the first time. The synthesis of pestalotiopsone A (1) has been achieved in 7 linear steps (28%), from commercially available 3,5-dimethoxybenzoic acid and subsequently the first syntheses of pestalotiopsone B (2), C (3) and F (4) were performed utilising this chemistry. The key steps include a newly described homologation of a substituted benzoic acid to afford phenylacetate derivatives utilising Birch reductive alkylation conditions, a microwave mediated chromanone formation proceeding through an oxa-Michael cyclisation, and an IBX induced dehydrogenation to the desired chromone skeleton. The synthetic natural products were completely characterised for the first time, confirming their structures and their biological activities evaluated against a panel of bacterial pathogens.

  13. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-09

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  14. In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: A novel mechanism of action?

    SciTech Connect

    Canton, Rocio F. . E-mail: r.Fernandezcanton@iras.uu.nl; Sanderson, J. Thomas; Nijmeijer, Sandra; Bergman, Ake; Letcher, Robert J.; Berg, Martin van den

    2006-10-15

    Fire incidents have decreased significantly over the last 20 years due, in part, to regulations requiring addition of flame retardants (FRs) to consumer products. Five major classes of brominated flame retardants (BFRs) are hexabromocyclododecane isomers (HBCDs), tetrabromobisphenol-A (TBBPA) and three commercial mixtures of penta-, octa- and deca-polybrominated diphenyl ether (PBDE) congeners, which are used extensively as commercial FR additives. Furthermore, concentrations of PBDEs have been rapidly increasing during the 1999s in human breast milk and a number of endocrine effects have been reported. We used the H295R human adrenocortical carcinoma cell line to assess possible effects of some of these BFRs (PBDEs and several of their hydroxylated (OH) and methoxylated (CH{sub 3}O) metabolites or analogues), TBBPA and brominated phenols (BPs) on the combined 17{alpha}-hydroxylase and 17,20-lyase activities of CYP17. CYP17 enzyme catalyzes an important step in sex steroidogenesis and is responsible for the biosynthesis of dehydroepiandrosterone (DHEA) and androstenedione in the adrenals. In order to study possible interactions with BFRs, a novel enzymatic method was developed. The precursor substrate of CYP17, pregnenolone, was added to control and exposed H295R cells, and enzymatic production of DHEA was measured using a radioimmunoassay. In order to avoid pregnenolone metabolism via different pathways, specific chemical inhibitor compounds were used. None of the parent/precursor BFRs had a significant effect (P < 0.05) on CYP17 activity except for BDE-183, which showed significant inhibition of CYP17 activity at the highest concentration tested (10 {mu}M), with no signs of cytotoxicity as measured by mitochondrial toxicity tests (MTT). A strong inhibition of CYP17 activity was found for 6-OH-2,2',4,4'-tetrabromoDE (6-OH-BDE47) with a concentration-dependent decrease of almost 90% at 10 {mu}M, but with a concurrent decrease in cell viability at the higher

  15. The Ratio of a Urinary Tobacco-Specific Lung Carcinogen Metabolite to Cotinine is Significantly Higher in Passive than in Active Smokers

    PubMed Central

    Vogel, Rachel Isaksson; Carmella, Steven G.; Stepanov, Irina; Hatsukami, Dorothy K.; Hecht, Stephen S.

    2011-01-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol plus its glucuronides (total NNAL), metabolites of the lung carcinogen NNK, and total cotinine, metabolites of nicotine, are biomarkers of active and passive cigarette smoking. We calculated the total NNAL: total cotinine (× 103) ratio in 408 passive (infants, children, adults) and 1088 active smokers. The weighted averages were 0.73 (95% CI 0.71, 0.76) for passive smokers and 0.07 (0.06, 0.08) for active smokers (p<0.0001). These results demonstrate that cotinine measurements may underestimate exposure of passive smokers to the lung carcinogen NNK in secondhand cigarette smoke. The total NNAL:total cotinine (× 103) ratio may provide an improved biomarker for evaluating the health effects of passive smoking. PMID:21812592

  16. Methylphenidate and its ethanol transesterification metabolite ethylphenidate: brain disposition, monoamine transporters and motor activity.

    PubMed

    Williard, Robin L; Middaugh, Lawrence D; Zhu, Hao-Jie B; Patrick, Kennerly S

    2007-02-01

    Ethylphenidate is formed by metabolic transesterification of methylphenidate and ethanol. Study objectives were to (a) establish that ethylphenidate is formed in C57BL/6 (B6) mice; (b) compare the stimulatory effects of ethylphenidate and methylphenidate enantiomers; (c) determine methylphenidate and ethylphenidate plasma and brain distribution and (d) establish in-vitro effects of methylphenidate and ethylphenidate on monoamine transporter systems. Experimental results were that: (a) coadministration of ethanol with the separate methylphenidate isomers enantioselectively produced l-ethylphenidate; (b) d and dl-forms of methylphenidate and ethylphenidate produced dose-responsive increases in motor activity with stimulation being less for ethylphenidate; (c) plasma and whole-brain concentrations were greater for ethylphenidate than methylphenidate and (d) d and DL-methylphenidate and ethylphenidate exhibited comparably potent low inhibition of the dopamine transporter, whereas ethylphenidate was a less potent norepinephrine transporter inhibitor. These experiments establish the feasibility of the B6 mouse model for examining the interactive effects of ethanol and methylphenidate. As reported for humans, concurrent exposure of B6 mice to methylphenidate and ethanol more readily formed l-ethylphenidate than d-ethylphenidate, and the l-isomers of both methylphenidate and ethylphenidate were biologically inactive. The observed reduced stimulatory effect of d-ethylphenidate relative to d-methylphenidate appears not to be the result of brain dispositional factors, but rather may be related to its reduced inhibition of the norepinephrine transporter, perhaps altering the interaction of dopaminergic and noradrenergic neural systems.

  17. [Relative abundance, population structure, habitat preferences and activity patterns of Tapirus bairdii (Perissodactyla: Tapiridae), in Chimalapas forest, Oaxaca, Mexico].

    PubMed

    Lira-Torres, Iván; Briones-Salas, Miguel; Sánchez-Rojas, Gerardo

    2014-12-01

    Baird's tapir (Tapirus bairdii) is endangered primarily because of habitat loss and fragmentation, and overhunting throughout its distribution range. One of the priority land areas for the conservation of this species is the Northern part of its range in the Chimalapas forest, Oaxaca. The aim of this research was to determine the relative abundance, population struc- ture, habitat preferences and activity patterns of Baird's tapir (Tapirus bairdii) in the Chimalapas forest, Oaxaca, Mexico, through the non-invasive technique of camera-trap sampling. A total of five sampling sessions were undertaken among 2009-2013, and used a total of 30 camera-traps in each period. The determinant factor of the sampling design was the hunting between two study areas. A total sampling effort of 9000 trap-days allowed to estimate an index of relative abundance (IRA) of 6.77 tapir photographs/1,000 trap-days (n = 61). IRA varied significantly between sampling stations (Mann-Whitney, p < 0.01). The frequency of Baird's tapir photos was higher in the dry season in tropical rain forest without hunting (χ2, p < 0.5). In the rainy season, the tropical rain forest and secondary vegetation habitats showed higher photo frequency than expected from random (χ2, p < 0.5). Considering population structure, a 95.08% of adult animals was obtained in photographic records (n = 58). Three types of activity pattern were observed, with more nocturnal records (88.33%; Kruskal-Wallis, p < 0.05). The Chimalapas forest appears to be the second most important terrestrial priority ecoregion, just after the Mayan Forest (Campeche, Chiapas, Quintana Roo), for the conservation of tapir populations, not only for Mexico but also for Central America.

  18. Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya.

    PubMed

    Braña, Alfredo F; Rodríguez, Miriam; Pahari, Pallab; Rohr, Jurgen; García, Luis A; Blanco, Gloria

    2014-05-01

    Activation and silencing of antibiotic production was achieved in Streptomyces albus J1074 and Streptomyces lividans TK21 after introduction of genes within the thienamycin cluster from S. cattleya. Dramatic phenotypic and metabolic changes, involving activation of multiple silent secondary metabolites and silencing of others normally produced, were found in recombinant strains harbouring the thienamycin cluster in comparison to the parental strains. In S. albus, ultra-performance liquid chromatography purification and NMR structural elucidation revealed the identity of four structurally related activated compounds: the antibiotics paulomycins A, B and the paulomenols A and B. Four volatile compounds whose biosynthesis was switched off were identified by gas chromatography-mass spectrometry analyses and databases comparison as pyrazines; including tetramethylpyrazine, a compound with important clinical applications to our knowledge never reported to be produced by Streptomyces. In addition, this work revealed the potential of S. albus to produce many others secondary metabolites normally obtained from plants, including compounds of medical relevance as dihydro-β-agarofuran and of interest in perfume industry as β-patchoulene, suggesting that it might be an alternative model for their industrial production. In S. lividans, actinorhodins production was strongly activated in the recombinant strains whereas undecylprodigiosins were significantly reduced. Activation of cryptic metabolites in Streptomyces species might represent an alternative approach for pharmaceutical drug discovery.

  19. Algicidal Activity of Streptomyces eurocidicus JXJ-0089 Metabolites and Their Effects on Microcystis Physiology

    PubMed Central

    Zhang, Bing-Huo; Ding, Zhang-Gui; Li, Han-Quan; Zhang, Yu-Qin; Yang, Jian-Yuan; Zhou, En-Min

    2016-01-01

    ABSTRACT Copper sulfate (CuSO4) has been widely used as an algicide to control harmful cyanobacterial blooms (CyanoHABs) in freshwater lakes. However, there are increasing concerns about this application, due mainly to the general toxicity of CuSO4 to other aquatic species and its long-term persistence in the environment. This study reported the isolation and characterization of two natural algicidal compounds, i.e., tryptamine and tryptoline, from Streptomyces eurocidicus JXJ-0089. At a concentration of 5 μg/ml, both compounds showed higher algicidal efficiencies than CuSO4 on Microcystis sp. FACHB-905 and some other harmful cyanobacterial strains. Tryptamine and tryptoline treatments induced a degradation of chlorophyll and cell walls of cyanobacteria. These two compounds also significantly increased the intracellular oxidant content, i.e., superoxide anion radical (O2−) and malondialdehyde (MDA), but reduced the activity of intracellular reductants, i.e., superoxide dismutase (SOD), of cyanobacteria. Moreover, tryptamine and tryptoline treatments significantly altered the internal and external contents of microcystin-LR (MC-LR), a common cyanotoxin. Like CuSO4, tryptamine and tryptoline led to releases of intracellular MC-LR from Microcystis, but with lower rates than CuSO4. Tryptamine and tryptoline (5 μg/ml) in cyanobacterial cultures were completely degraded within 8 days, while CuSO4 persisted for months. Overall, our results suggest that tryptamine and tryptoline could potentially serve as more efficient and environmentally friendly alternative algicides than CuSO4 in controlling harmful cyanobacterial blooms. IMPORTANCE Cyanobacterial harmful algal blooms (CyanoHABs) in aquatic environments have become a worldwide problem. Numerous efforts have been made to seek means to prevent, control, and mitigate CyanoHABs. Copper sulfate (CuSO4), was once a common algicide to treat and control CyanoHABs. However, its application has become limited due to concerns

  20. Substitution of Wheat for Corn in Beef Cattle Diets: Digestibility, Digestive Enzyme Activities, Serum Metabolite Contents and Ruminal Fermentation

    PubMed Central

    Liu, Y. F.; Zhao, H. B.; Liu, X. M.; You, W.; Cheng, H. J.; Wan, F. C.; Liu, G. F.; Tan, X. W.; Song, E. L.; Zhang, X. L.

    2016-01-01

    The objective of this study was to evaluate the effect of diets containing different amounts of wheat, as a partial or whole substitute for corn, on digestibility, digestive enzyme activities, serum metabolite contents and ruminal fermentation in beef cattle. Four Limousin×LuXi crossbred cattle with a body weight (400±10 kg), fitted with permanent ruminal, proximal duodenal and terminal ileal cannulas, were used in a 4×4 Latin square design with four treatments: Control (100% corn), 33% wheat (33% substitution for corn), 67% wheat (67% substitution for corn), and 100% wheat (100% substitution for corn) on a dry matter basis. The results showed that replacing corn with increasing amounts of wheat increased the apparent digestibility values of dry matter, organic matter, and crude protein (p<0.05). While the apparent digestibility of acid detergent fiber and neutral detergent fiber were lower with increasing amounts of wheat. Digestive enzyme activities of lipase, protease and amylase in the duodenum were higher with increasing wheat amounts (p<0.05), and showed similar results to those for the enzymes in the ileum except for amylase. Increased substitution of wheat for corn increased the serum alanine aminotransferase concentration (p<0.05). Ruminal pH was not different between those given only corn and those given 33% wheat. Increasing the substitution of wheat for corn increased the molar proportion of acetate and tended to increase the acetate-to-propionate ratio. Cattle fed 100% wheat tended to have the lowest ruminal NH3-N concentration compared with control (p<0.05), whereas no differences were observed among the cattle fed 33% and 67% wheat. These findings indicate that wheat can be effectively used to replace corn in moderate amounts to meet the energy and fiber requirements of beef cattle. PMID:26954111

  1. Isothermal microcalorimetry to study the activity of triclabendazole and its metabolites on juvenile and adult Fasciola hepatica.

    PubMed

    Keiser, Jennifer; Manneck, Theresia; Kirchhofer, Carla; Braissant, Olivier

    2013-03-01

    Isothermal microcalorimetry (IMC) is an analytical tool that continuously measures the heat flow generated by chemical, physical or biological processes. We have demonstrated that IMC is a useful tool to analyze drug effects on helminths, including adult Fasciola hepatica. Here, we used IMC to examine the activity of triclabendazole and its metabolites triclabendazole sulphone and triclabendazole sulphoxide on juvenile and adult F. hepatica. Worms (one adult or 2-3 juveniles) were placed in 4 or 20 ml glass ampoules containing RPMI 1640 and the test compound (25-100 μg/ml) and the heat flow and motility of worms was examined with TAM48 and TAMIII isothermal microcalorimetry instruments. IMC was found to be precisely document drug effects on juvenile F. hepatica and confirmed the pronounced effect of the benzimidazole derivatives on the motor activity of F. hepatica. Juvenile F. hepatica incubated with 100 μg/ml triclabendazole, triclabendazole sulphone and triclabendazole sulphoxide showed no movements 8.3, 35 and 6h post-incubation (all p<0.001). The metabolic heat of triclabendazole sulphoxide treated worms (100 μg/ml) was reduced by 50% and 76% 24 and 120 h post-incubation, respectively. Limitations of calorimetric measurements were observed using adult F. hepatica as only three worms could be measured simultaneously and also control worms showed a considerable decrease in heat flow. Adult F. hepatica exposed to triclabendazole, triclabendazole sulphone and triclabendazole sulphoxide showed no movements after 31 (p=0.009), 49 (p>0.05) and 88 (p>0.05)h. In conclusion, IMC is useful to document drug effects on juvenile F. hepatica and since rapid technological developments in this field are occurring IMC might also hold promise to study adult F. hepatica in the near future.

  2. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats

    PubMed Central

    Wong, Richard G.; Norman, Anthony W.; Reddy, Chilumula R.; Coburn, Jack W.

    1972-01-01

    The development of a vitamin D-resistant state in the course of renal failure may be responsible for reduced intestinal absorption of calcium and an impaired response of skeletal tissue. Moreover, the kidney has been shown to carry out the conversion of 25-hydroxycholecalciferol (25-OH-CC) to a highly biologically active metabolite, 1,25-dihydroxycholecalciferol (1,25-diOH-CC). In the present studies, vitamin D-deficient rats, made acutely uremic by either bilateral nephrectomy or urethral ligation, received physiological doses of cholecalciferol (vitamin D3) (CC), 25-OH-CC or 1,25-diOH-CC; 24 hr later intestinal calcium transport, in vitro, and bone calcium mobilization, in vivo, were assessed. Whereas CC and 25-OH-CC stimulated calcium transport in sham-operated controls, they were without effect in the uremic animals. In contrast, administration of 1,25-diOH-CC stimulated calcium transport in both groups of uremic animals. Administration of 1,25-diOH-CC also stimulated calcium mobilization from bone in each group of animals. However, CC and 25-OH-CC were only effective in the sham controls and the uremic group produced by urethral ligation and had little or no effect in animals without kidneys. These results indicate that renal conversion of calciferol to a more biologically active form is necessary for the stimulation of intestinal calcium absorption and calcium mobilization from bone, and that 1,25-diOH-CC may bypass a possible defect in vitamin D metabolism in uremia. From these studies it is likely that uremia, per se, may also impair intestinal calcium transport. PMID:4341503

  3. Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes.

    PubMed Central

    Sanderson, J T; Letcher, R J; Heneweer, M; Giesy, J P; van den Berg, M

    2001-01-01

    We investigated a potential mechanism for the estrogenic properties of three chloro-s-triazine herbicides and six metabolites in vitro in several cell systems. We determined effects on human aromatase (CYP19), the enzyme that converts androgens to estrogens, in H295R (adrenocortical carcinoma), JEG-3 (placental choriocarcinoma), and MCF-7 (breast cancer) cells; we determined effects on estrogen receptor-mediated induction of vitellogenin in primary hepatocyte cultures of adult male carp (Cyprinus carpio). In addition to atrazine, simazine, and propazine, two metabolites--atrazine-desethyl and atrazine-desisopropyl--induced aromatase activity in H295R cells concentration-dependently (0.3-30 microM) and with potencies similar to those of the parent triazines. After a 24-hr exposure to 30 microM of the triazines, an apparent maximum induction of about 2- to 2.5-fold was achieved. The induction responses were confirmed by similar increases in CYP19 mRNA levels, determined by reverse-transcriptase polymerase chain reaction. In JEG-3 cells, where basal aromatase expression is about 15-fold greater than in H295R cells, the induction responses were similar but less pronounced; aromatase expression in MCF-7 cells was neither detectable nor inducible under our culture conditions. The fully dealkylated metabolite atrazine-desethyl-desisopropyl and the three hydroxylated metabolites (2-OH-atrazine-desethyl, -desisopropyl, and -desethyl-desisopropyl) did not induce aromatase activity. None of the triazine herbicides nor their metabolites induced vitellogenin production in male carp hepatocytes; nor did they antagonize the induction of vitellogenin by 100 nM (EC(50) 17beta-estradiol. These findings together with other reports indicate that the estrogenic effects associated with the triazine herbicides in vivo are not estrogen receptor-mediated, but may be explained partly by their ability to induce aromatase in vitro. PMID:11675267

  4. Annual ovarian activity monitored by the noninvasive measurement of fecal concentrations of progesterone and 17β-estradiol metabolites in rusa deer (Rusa timorensis)

    PubMed Central

    SUDSUKH, Apichaya; TAYA, Kazuyoshi; WATANABE, Gen; WAJJWALKU, Worawidh; THONGPHAKDEE, Ampika; THONGTIP, Nikorn

    2016-01-01

    To clarify the reproductive cycle of female Rusa deer (Rusa timorensis), the fecal concentrations of progesterone and 17β-estradiol metabolites were measured. Fecal samples were collected on a weekly basis for one year (between October, 2012 and September, 2013) from five healthy adult hinds in Thailand. At the beginning of the study, three hinds were pregnant. Two hinds delivered one healthy offspring, and one hind delivered a stillborn calf. The mating period of Rusa hinds in Thailand is from November to April. In pregnant hinds, fecal progesterone metabolite concentration was high in late pregnancy and abruptly declined to the baseline around parturition, suggesting that the placenta secretes a large amount of progesterone. Fecal 17β-estradiol metabolite concentration remained elevated around the day of parturition. Both concentrations of fecal progesterone and 17β-estradiol metabolites in non-lactating hinds were significantly higher than those in lactating hinds, indicating that ovarian activity of lactating hinds is suppressed by the suckling stimulus of fawn during lactation. The present study demonstrated that monitoring of fecal steroid hormones is useful method for assessing ovarian function in this species. PMID:27570098

  5. Nuclear Hormone Receptor Activity of Polybrominated Diphenyl Ethers and Their Hydroxylated and Methoxylated Metabolites in Transactivation Assays Using Chinese Hamster Ovary Cells

    PubMed Central

    Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Sugihara, Kazumi; Yoshida, Takahiko; Kitamura, Shigeyuki

    2009-01-01

    Background An increasing number of studies are reporting the existence of polybrominated diphenyl ethers (PBDEs) and their hydroxylated (HO) and methoxylated (MeO) metabolites in the environment and in tissues from wildlife and humans. Objective Our aim was to characterize and compare the agonistic and antagonistic activities of principle PBDE congeners and their HO and MeO metabolites against human nuclear hormone receptors. Methods We tested the hormone receptor activities of estrogen receptor α (ERα), ERβ, androgen receptor (AR), glucocorticoid receptor (GR), thyroid hormone receptor α1 (TRα1), and TRβ1 against PBDE congeners BDEs 15, 28, 47, 85, 99, 100, 153, and 209, four para-HO-PBDEs, and four para-MeO-PBDEs by highly sensitive reporter gene assays using Chinese hamster ovary cells. Results Of the 16 compounds tested, 6 and 2 showed agonistic activities in the ERα and ERβ assays, respectively, and 6 and 6 showed antagonistic activities in these assays. 4′-HO-BDE-17 showed the most potent estrogenic activity via ERα/β, and 4′-HO-BDE-49 showed the most potent anti estrogenic activity via ERα/β. In the AR assay, 13 compounds showed antagonistic activity, with 4′-HO-BDE-17 in particular inhibiting AR-mediated transcriptional activity at low concentrations in the order of 10−8 M. In the GR assay, seven compounds, including two HO-PBDEs and two MeO-PBDEs, showed weak antagonistic activity. In the TRα1 and TRβ1 assays, only 4-HO-BDE-90 showed weak antagonistic activity. Conclusions Taken together, these results suggest that PBDEs and their metabolites might have multiple endocrine-disrupting effects via nuclear hormone receptors, and para-HO-PBDEs, in particular, possess more potent receptor activities compared with those of the parent PBDEs and corresponding para-MeO-PBDEs. PMID:19672399

  6. 15-Deoxy-Δ12,14-prostaglandin J2-Glycerol Ester, a Putative Metabolite of 2-Arachidonyl Glycerol, Activates Peroxisome Proliferator Activated Receptor γ

    PubMed Central

    Raman, Priyadarshini; Kaplan, Barbara L. F.; Thompson, Jerry T.; Vanden Heuvel, John P.

    2011-01-01

    2-Arachidonyl glycerol (2-AG) is an endogenous arachidonic acid derivative capable of suppressing interleukin (IL)-2 production by activated T cells. 2-AG-mediated IL-2 suppression is dependent on cyclooxygenase-2 (COX-2) metabolism and peroxisome proliferator activated receptor γ (PPARγ) activation. The objective of the present studies was to examine whether 15-deoxy-Δ12,14-PGJ2-glycerol ester (15d-PGJ2-G), a putative metabolite of 2-AG, can mimic the actions of 2-AG on IL-2 regulation through PPARγ activation. 15d-PGJ2-G bound PPARγ-ligand binding domain in a PPARγ competitive binding assay. 15d-PGJ2-G treatment activated PPARγ in a reporter assay, and PPARγ activation was attenuated when a PPARγ antagonist, 2-chloro-5-nitro-N-4-pyridinylbenzamide (T0070907), was present. 15d-PGJ2-G treatment suppressed IL-2 production by activated Jurkat cells, which was partially attenuated when pretreated with T0070907. Moreover, IL-2 suppression was pronounced when 15d-PGJ2-G was present 30 min before or after T-cell activation. Concordant with IL-2 suppression, 15d-PGJ2-G treatment decreased nuclear factor of activated T cells (NFAT) transcriptional activity in transiently transfected Jurkat cells. It is noteworthy that T0070907 alone markedly increased NFAT reporter activity, suggesting the existence of endogenous PPARγ activation and modulation of NFAT. Because COX-2 metabolism of 2-AG is important for IL-2 suppression, the effect of 2-AG on COX-2 and PPARγ mRNA expression was investigated. 2-AG treatment decreased the up-regulation of COX-2 mRNA after T-cell activation, which suggests negative feedback limiting COX-2-mediated metabolism of 2-AG. PPARγ mRNA expression was increased upon activation, and 2-AG treatment produced a modest decrease in PPARγ mRNA expression. Collectively, our findings suggest that 15d-PGJ2-G activates PPARγ to decrease NFAT transcriptional activity and IL-2 expression in activated T cells. PMID:21511917

  7. The metabolite profiling of coastal coccolithophorid species Pleurochrysis carterae (Haptophyta)

    NASA Astrophysics Data System (ADS)

    Zhou, Chengxu; Luo, Jie; Ye, Yangfang; Yan, Xiaojun; Liu, Baoning; Wen, Xin

    2016-07-01

    Pleurochrysis carterae is a calcified coccolithophorid species that usually blooms in the coastal area and causes aquaculture losses. The cellular calcification, blooming and many other critical species specific eco-physiological processes are closely related to various metabolic pathways. The purpose of this study is to apply the unbiased and non-destructive method of nuclear magnetic resonance (NMR) to detect the unknown holistic metabolite of P. carterae. The results show that NMR spectroscopic method is practical in the analysis of metabolites of phytoplankton. The metabolome of P. carterae was dominated by 26 metabolites involved in a number of different primary and secondary metabolic pathways. Organic acids and their derivatives, amino acids, sugars, nucleic aides were mainly detected. The abundant metabolites are that closely related to the process of cellular osmotic adjustment, which possibly reflect the active ability of P. carterae to adapt to the versatile coastal niche. DMSP (dimethylsulphoniopropionate) was the most dominant metabolite in P. carterae, up to 2.065±0.278 mg/g lyophilized cells, followed by glutamate and lactose, the contents were 0.349±0.035 and 0.301±0.073 mg/g lyophilized cells respectively. Other metabolites that had the content ranged between 0.1-0.2 mg/g lyophilized cells were alanine, isethionate and arabinose. Amino acid (valine, phenylalanine, isoleucine, tyrosine), organic acid salts (lactate, succinate), scyllitol and uracil had content ranged from 0.01 to below 0.1 mg/g lyophilized cells. Trigonelline, fumarate and formate were detected in very low content (only thousandths of 1 mg per gram of lyophilized cells or below). Our results of the holistic metabolites of P. carterae are the basic references for the further studies when multiple problems will be addressed to this notorious blooming calcifying species.

  8. Bioanalytical Method to Determine the Effects of Cyanide, Cyanide Metabolites and Cyanide Antidotes on the Activity of Cytochrome C Oxidase Immobilized in an Electrode Supported Lipid Bilayer Membrane

    DTIC Science & Technology

    2006-06-01

    relation to their toxicity and antidotal activity against hydrocyanic acid . Archs. int. Pharmacodyn. 1962, 139, 99-108. 42. Evans, C. L., Cobalt...compounds as antidotes for hydrocyanic acid . Brit. J. Pharmac. Chemother. 1964, 23, 455-475. 43. Friedberg, K. D.; Shukla, U. R., The efficiency of...affected by cyanide,9, 19, 20 and there is recent evidence that the cyanide metabolite 2-aminothiazoline-4-carboxylic acid (ATCA) is also toxic. ATCA is

  9. Carboxymefloquine, the major metabolite of the antimalarial drug mefloquine, induces drug-metabolizing enzyme and transporter expression by activation of pregnane X receptor.

    PubMed

    Piedade, Rita; Traub, Stefanie; Bitter, Andreas; Nüssler, Andreas K; Gil, José P; Schwab, Matthias; Burk, Oliver

    2015-01-01

    Malaria patients are frequently coinfected with HIV and mycobacteria causing tuberculosis, which increases the use of coadministered drugs and thereby enhances the risk of pharmacokinetic drug-drug interactions. Activation of the pregnane X receptor (PXR) by xenobiotics, which include many drugs, induces drug metabolism and transport, thereby resulting in possible attenuation or loss of the therapeutic responses to the drugs being coadministered. While several artemisinin-type antimalarial drugs have been shown to activate PXR, data on nonartemisinin-type antimalarials are still missing. Therefore, this study aimed to elucidate the potential of nonartemisinin antimalarial drugs and drug metabolites to activate PXR. We screened 16 clinically used antimalarial drugs and six major drug metabolites for binding to PXR using the two-hybrid PXR ligand binding domain assembly assay; this identified carboxymefloquine, the major and pharmacologically inactive metabolite of the antimalarial drug mefloquine, as a potential PXR ligand. Two-hybrid PXR-coactivator and -corepressor interaction assays and PXR-dependent promoter reporter gene assays confirmed carboxymefloquine to be a novel PXR agonist which specifically activated the human receptor. In the PXR-expressing intestinal LS174T cells and in primary human hepatocytes, carboxymefloquine induced the expression of drug-metabolizing enzymes and transporters on the mRNA and protein levels. The crucial role of PXR for the carboxymefloquine-dependent induction of gene expression was confirmed by small interfering RNA (siRNA)-mediated knockdown of the receptor. Thus, the clinical use of mefloquine may result in pharmacokinetic drug-drug interactions by means of its metabolite carboxymefloquine. Whether these in vitro findings are of in vivo relevance has to be addressed in future clinical drug-drug interaction studies.

  10. Effect of bovine ABCG2 Y581S polymorphism on concentrations in milk of enrofloxacin and its active metabolite ciprofloxacin.

    PubMed

    Otero, J A; García-Mateos, D; de la Fuente, A; Prieto, J G; Álvarez, A I; Merino, G

    2016-07-01

    The ATP-binding cassette transporter G2 (ABCG2) is involved in the secretion of several drugs into milk. The bovine Y581S ABCG2 polymorphism increases the secretion into milk of the fluoroquinolone danofloxacin in Holstein cows. Danofloxacin and enrofloxacin are the fluoroquinolones most widely used in veterinary medicine. Both enrofloxacin (ENRO) and its active metabolite ciprofloxacin (CIPRO) reach milk at relatively high concentrations. The aim of this work was to study the effect of the bovine Y581S ABCG2 polymorphism on in vitro transport as well as on concentrations in plasma and in milk of ENRO and CIPRO. Experiments using cells overexpressing bovine ABCG2 showed the effects of ABCG2 on the transport of CIPRO, demonstrating more efficient in vitro transport of this antimicrobial by the S581 variant as compared with the Y581 variant. Animal studies administering 2.5mg/kg of ENRO subcutaneously to Y/Y 581 and Y/S 581 cows revealed that concentrations in plasma of ENRO and CIPRO were significantly lower in Y/S animals. Regardless of the genotype, the antimicrobial profile in milk after the administration of ENRO was predominantly of CIPRO. With respect to the genotype effects on the amounts of drugs present in milk, AUC0-24 values were more than 1.2 times higher in Y/S cows for ENRO and 2.2 times for CIPRO, indicating a greater capacity of Y581S to transfer these drugs into milk. These results emphasize the clinical relevance of this polymorphism as a factor affecting the concentrations in plasma and in milk of drugs of importance in veterinary medicine.

  11. Cangrelor inhibits the binding of the active metabolites of clopidogrel and prasugrel to P2Y12 receptors in vitro.

    PubMed

    Judge, Heather M; Buckland, Robert J; Jakubowski, Joseph A; Storey, Robert F

    2016-01-01

    Cangrelor is a rapid-acting, direct-binding, and reversible P2Y12 antagonist which has been studied for use during percutaneous coronary intervention (PCI) in patients with or without pretreatment with an oral P2Y12 antagonist. As cangrelor is administered intravenously, it is necessary to switch to an oral P2Y12 antagonist following PCI, such as the thienopyridines clopidogrel, and prasugrel or the non-pyridine ticagrelor. Previous studies have suggested a negative pharmacodynamic interaction between cangrelor and thienopyridines. This in vitro study evaluated the receptor-level interaction between cangrelor and the active metabolite (AM) of clopidogrel or prasugrel by assessing functional P2Y12 receptor number using a (33)P-2MeSADP binding assay. All P2Y12 antagonists studied resulted in strong P2Y12 receptor blockade (cangrelor: 93.6%; clopidogrel AM: 93.0%; prasugrel AM: 97.9%). Adding a thienopyridine AM in the presence of cangrelor strongly reduces P2Y12 receptor blockade by the AM (clopidogrel AM: 7%, prasugrel AM: 3.2%). The thienopyridine AMs had limited ability to compete with cangrelor for binding to P2Y12 (% P2Y12 receptor blockade after co-incubation with cangrelor 1000 nmol/L: 11.7% for clopidogrel AM 3 µmol/L; 34.1% for prasugrel AM 3 µmol/L). In conclusion, in vitro cangrelor strongly inhibits the binding of clopidogrel and prasugrel AMs to the P2Y12 receptor, consistent with the previous observation of a negative pharmacodynamic interaction. Care may need to be taken to not overlap exposure to thienopyridine AMs and cangrelor in order to reduce the risk of thrombotic complications following PCI.

  12. Assessment of adrenocortical activity by non-invasive measurement of faecal cortisol metabolites in dromedary camels (Camelus dromedarius).

    PubMed

    Sid-Ahmed, Omer-Elfaroug; Sanhouri, Ahmed; Elwaseela, Badr-Eldin; Fadllalah, Imad; Mohammed, Galal-Eldin Elazhari; Möstl, Erich

    2013-08-01

    The aim of this study was to determine whether glucocorticoid production could be monitored non-invasively in dromedary camels by measuring faecal cortisol metabolites (FCMs). Five Sudanese dromedaries, two males and three females, were injected with a synthetic adrenocorticotropic hormone (ACTH) analogue. Blood samples were collected pre- and post-ACTH injection. Faeces were sampled after spontaneous defecation for five consecutive days (2 days before and 3 days after ACTH injection). Baseline plasma cortisol values ranged from 0.6 to 10.8 ng/ml in males and from 1.1 to 16.6 ng/ml in females, while peak values after ACTH injection were 10.9-41.9 in males and 10-42.2 ng/ml in females. Peak blood cortisol values were reached between 1.5 and 2.0 h after ACTH injection. The concentration of FCMs increased after ACTH injection in the faeces of both sexes, although steroid levels peaked earlier in males [24 h; (286.7-2,559.7 ng/g faeces)] than in females [36-48 h; (1,182.6-5,169.1 ng/g faeces)], reflecting increases of 3.1-8.3- and 4.3-8-fold above baseline levels. To detect chromatographic patterns of immunoreactive FCMs, faecal samples with high FCM concentrations from both sexes were pooled and subjected to reverse phase high performance liquid chromatography (RP-HPLC). RP-HPLC analysis revealed sex differences in the polarity of FCMs, with females showing more polar FCMs than males. We concluded that stimulation of adrenocortical activity by ACTH injection resulted in a measurable increase in blood cortisol that was reliably paralleled by increases in FCM levels. Thus, measurement of FCMs is a powerful tool for monitoring the adrenocortical responses of dromedaries to stressors in field conditions.

  13. Which platelet function test best reflects the in vivo plasma concentrations of ticagrelor and its active metabolite? The HARMONIC study.

    PubMed

    Koziński, Marek; Ostrowska, Małgorzata; Adamski, Piotr; Sikora, Joanna; Sikora, Adam; Karczmarska-Wódzka, Aleksandra; Marszałł, Michał Piotr; Boinska, Joanna; Laskowska, Ewa; Obońska, Ewa; Fabiszak, Tomasz; Kubica, Jacek

    2016-11-30

    Aim of this study was assessment of the relationship between concentrations of ticagrelor and its active metabolite (AR-C124910XX) and results of selected platelet function tests. In a single-centre, cohort study, patients with myocardial infarction underwent blood sampling following a 180 mg ticagrelor loading dose intake (predose, 1, 2, 3, 4, 6, 12, 24 hours postdose) to perform pharmacokinetic and pharmacodynamic assessments. Platelet reactivity was evaluated using the VASP-assay, the VerifyNow device and the Multiplate analyzer. Analysis of 36 patients revealed high negative correlations between ticagrelor concentrations and platelet reactivity evaluated with all three platelet function tests (the VASP-assay: RS=-0.722; p<0.0001; the VerifyNow device: RS=-0.715; p<0.0001; the Multiplate analyzer: RS=-0.722; p<0.0001), with no significant differences between correlation coefficients. Similar results were found for AR-C124910XX. Platelet reactivity values assessed with all three methods generally correlated well with each other; however, a significantly higher correlation (p<0.02) was demonstrated between the VerifyNow and Multiplate tests (RS=0.707; p<0.0001) than in other assay combinations (the VASP-assay and the VerifyNow device: RS=0.595; p<0.0001; the VASP-assay and the Multiplate analyzer: RS=0.588; p<0.0001). With respect to the recognition of high platelet reactivity, we found higher measurement concordance between the VerifyNow and Multiplate tests compared with other assay combinations, while for low platelet reactivity, only results of the VerifyNow and Multiplate assay were related to each other. Platelet reactivity measurements performed with the VASP, VerifyNow and Multiplate tests show comparably strong negative correlations with ticagrelor and AR-C124910XX concentrations.

  14. Relation between clopidogrel active metabolite levels and different platelet aggregation methods in patients receiving clopidogrel and aspirin.

    PubMed

    Liang, Yan; Johnston, Marilyn; Hirsh, Jack; Pare, Guillaume; Li, Chunjian; Mehta, Shamir; Teo, Koon K; Sloane, Debi; Yi, Qilong; Zhu, Jun; Eikelboom, John W

    2012-11-01

    Clopidogrel is a prodrug that undergoes bioconversion via cytochrome P450 system to form an active metabolite (AM) that binds to the platelet ADP receptor. The antiplatelet effect of clopidogrel is commonly assessed by measuring the aggregatory response to 5 μM ADP by light transmission aggregation (LTA) or multiple electrode aggregometry (MEA) or by the vasodilator-stimulated phosphoprotein platelet reactivity index (VASP-PRI). To determine which of these three tests of platelet ADP receptor pathway inhibition most closely correlates with clopidogrel AM levels. We analyzed blood samples from 82 patients with coronary artery disease who were randomized to receive double-dose or standard dose clopidogrel for 2 weeks. We measured peak clopidogrel AM levels, platelet aggregation in response to ADP and VASP-PRI on days 1, and repeated all the measures on days 7 and 14. Linear regression analysis was used to examine the correlation between clopidogrel AM and LTA, MEA and VASP-PRI. Bland-Altman plots were used to explore the agreement between tests of the antiplatelet effects of clopidogrel. Clopidogrel AM on day 1 correlated most closely with VASP-PRI (r = -0.5767) and demonstrated weaker correlations with LTA (r = -0.4656) and MEA (r = -0.3384) (all p < 0.01). Intra-class correlation (ICC) between VASP-PRI and LTA was 0.6446; VASP-PRI and MEA was 0.4720; and LTA and MEA was 0.4693. Similar results were obtained on days 7 and 14. Commonly used pharmacodynamic measures of clopidogrel response are only moderately correlated with clopidogrel AM levels and may not be suitable to measure the adequacy of clopidogrel therapy.

  15. Determination of loratadine and its active metabolite in human plasma by high-performance liquid chromatography with mass spectrometry detection.

    PubMed

    Vlase, Laurian; Imre, Silvia; Muntean, Dana; Leucuta, Sorin E

    2007-07-27

    A new sensitive and selective liquid chromatography coupled with mass spectrometry (LC/MS/MS) method for quantification of loratadine (LOR) and its active metabolite descarboethoxyloratadine (DSL) in human plasma was validated. After addition of the internal standard, metoclopramide, the human plasma samples (0.3 ml) were precipitated using acetonitrile (0.75 ml) and the centrifuged supernatants were partially evaporated under nitrogen at 37 degrees C at approximately 0.3 ml volume. The LOR, DSL and internal standard were separated on a reversed phase column (Zorbax SB-C18, 100 mmx3.0 mm i.d., 3.5 microm) under isocratic conditions using a mobile phase of an 8:92(v/v) mixture of acetonitrile and 0.4% (v/v) formic acid in water. The flow rate was 1 ml/min and the column temperature 45 degrees C. The detection of LOR, DSL and internal standard was in MRM mode using an ion trap mass spectrometer with electrospray positive ionisation. The ion transitions were monitored as follows: 383-->337 for LOR, 311-->(259+294+282) for DSL and 300-->226.8 for internal standard. Calibration curves were generated over the range of 0.52-52.3 ng/ml for both LOR and DSL with values for coefficient of determination greater than 0.994 by using a weighted (1/y) quadratic regression. The lower limits of quantification were established at 0.52 ng/ml LOR and DSL, respectively, with an accuracy and precision less than 20%. Both analytes demonstrated good short-term, long-term, post-preparative and freeze-thaw stability. Besides its simplicity, the sample treatment allows obtaining a very good recovery of both analytes, around 100%. The validated LC/MS/MS method has been applied to a pharmacokinetic study of loratadine tablets on healthy volunteers.

  16. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  17. Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094

    PubMed Central

    Ehteshami, Maryam; Tao, Sijia; Ozturk, Tugba; Zhou, Longhu; Cho, Jong Hyun; Zhang, Hongwang; Amiralaei, Sheida; Shelton, Jadd R.; Lu, Xiao; Khalil, Ahmed; Domaoal, Robert A.; Stanton, Richard A.; Suesserman, Justin E.; Lin, Biing; Lee, Sam S.; Amblard, Franck; Whitaker, Tony; Coats, Steven J.

    2016-01-01

    Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on β-d-2′-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2′-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2′-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo. Finally, we found that although both 2′-C-methyl-GTP and 2′-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2′-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2′-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites. PMID:27216050

  18. Lowland tapir (Tapirus terrestris) distribution, activity patterns and relative abundance in the Greater Madidi-Tambopata Landscape.

    PubMed

    Wallace, Robert; Ayala, Guido; Viscarra, Maria

    2012-12-01

    Lowland tapir distribution is described in northwestern Bolivia and southeastern Peru within the Greater Madidi-Tambopata Landscape, a priority Tapir Conservation Unit, using 1255 distribution points derived from camera trapping efforts, field research and interviews with park guards from 5 national protected areas and hunters from 19 local communities. A total of 392 independent camera trapping events from 14 camera trap surveys at 11 sites demonstrated the nocturnal and crepuscular activity patterns (86%) of the lowland tapir and provide 3 indices of relative abundance for spatial and temporal comparison. Capture rates for lowland tapirs were not significantly different between camera trapping stations placed on river beaches versus those placed in the forest. Lowland tapir capture rates were significantly higher in the national protected areas of the region versus indigenous territories and unprotected portions of the landscape. Capture rates through time suggested that lowland tapir populations are recovering within the Tuichi Valley, an area currently dedicated towards ecotourism activities, following the creation (1995) and subsequent implementation (1997) of the Madidi National Park in Bolivia. Based on our distributional data and published conservative estimates of population density, we calculated that this transboundary landscape holds an overall lowland tapir population of between 14 540 and 36 351 individuals, of which at least 24.3% are under protection from national and municipal parks. As such, the Greater Madidi-Tambopata Landscape should be considered a lowland tapir population stronghold and priority conservation efforts are discussed in order to maintain this population.

  19. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production.

    PubMed

    Zheng, Weifa; Miao, Kangjie; Liu, Yubing; Zhao, Yanxia; Zhang, Meimei; Pan, Shenyuan; Dai, Yucheng

    2010-07-01

    Inonotus obliquus (Fr.) Pilat is a white rot fungus belonging to the family Hymenochaetaceae in the Basidiomycota. In nature, this fungus rarely forms a fruiting body but usually an irregular shape of sclerotial conk called 'Chaga'. Characteristically, I. obliquus produces massive melanins released to the surface of Chaga. As early as in the sixteenth century, Chaga was used as an effective folk medicine in Russia and Northern Europe to treat several human malicious tumors and other diseases in the absence of any unacceptable toxic side effects. Chemical investigations show that I. obliquus produces a diverse range of secondary metabolites including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are the active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Geographically, however, this fungus is restricted to very cold habitats and grows very slowly, suggesting that Chaga is not a reliable source of these bioactive compounds. Attempts for culturing this fungus axenically all resulted in a reduced production of bioactive metabolites. This review examines the current progress in the discovery of chemical diversity of Chaga and their biological activities and the strategies to modulate the expression of desired pathways to diversify and up-regulate the production of bioactive metabolites by the fungus grown in submerged cultures for possible drug discovery.

  20. Estrogenic activity of 7-hydroxymatairesinol potassium acetate (HMR/lignan) from Norway spruce (Picea abies) knots and of its active metabolite enterolactone in MCF-7 cells.

    PubMed

    Cosentino, Marco; Marino, Franca; Ferrari, Marco; Rasini, Emanuela; Bombelli, Raffaella; Luini, Alessandra; Legnaro, Massimiliano; Delle Canne, Marco Gioacchino; Luzzani, Marcello; Crema, Francesca; Paracchini, Silvano; Lecchini, Sergio

    2007-08-01

    Lignans are plant polyphenols which may possess anticancer, antioxidant, antimicrobial, anti-inflammatory and immunomodulatory activities. In particular, the lignan 7-hydroxymatairesinol (HMR/lignan, HMR) is a novel precursor of the mammalian lignan enterolactone (EL). In the present study, we investigated the estrogenicity of HMR and of EL in comparison to estradiol (E2), by measuring their effects on growth and apoptotic markers in the human estrogen-sensitive cell line MCF-7. HMR, EL and E2 concentration-dependently increased the percentage of MCF-7 cells in the S phase of the cell cycle, with the following relative potencies: E2 congruent with EL>HMR, and efficacies: E2>HMR>EL. Treatment of MCF-7 cells with either HMR, EL or E2 also increased the Bcl-2/Bax mRNA ratio. The effects of HMR and EL were reduced in the presence of the estrogen receptor (ER) antagonist tamoxifene. We conclude that both HMR and its metabolite EL are endowed with estrogenic activity, which is likely to be exerted through the contribution of ER-dependent pathways and to target the same intracellular mechanisms acted upon by E2. The estrogenicity of HMR and EL is however milder than that of E2, as indicated by the lower potencies and efficacies of both lignans. The present results support the notion that dietary supplementation with HMR may result in a mild estrogenic activity, both directly and by providing a suitable source for endogenous EL.

  1. The Relative Abundance and Transcriptional Activity of Marine Sponge-Associated Microorganisms Emphasizing Groups Involved in Sulfur Cycle.

    PubMed

    Jensen, Sigmund; Fortunato, Sofia A V; Hoffmann, Friederike; Hoem, Solveig; Rapp, Hans Tore; Øvreås, Lise; Torsvik, Vigdis L

    2017-04-01

    During the last decades, our knowledge about the activity of sponge-associated microorganisms and their contribution to biogeochemical cycling has gradually increased. Functional groups involved in carbon and nitrogen metabolism are well documented, whereas knowledge about microorganisms involved in the sulfur cycle is still limited. Both sulfate reduction and sulfide oxidation has been detected in the cold water sponge Geodia barretti from Korsfjord in Norway, and with specimens from this site, the present study aims to identify extant versus active sponge-associated microbiota with focus on sulfur metabolism. Comparative analysis of small subunit ribosomal RNA (16S rRNA) gene (DNA) and transcript (complementary DNA (cDNA)) libraries revealed profound differences. The transcript library was predominated by Chloroflexi despite their low abundance in the gene library. An opposite result was found for Acidobacteria. Proteobacteria were detected in both libraries with representatives of the Alpha- and Gammaproteobacteria related to clades with presumably thiotrophic bacteria from sponges and other marine invertebrates. Sequences that clustered with sponge-associated Deltaproteobacteria were remotely related to cultivated sulfate-reducing bacteria. The microbes involved in sulfur cycling were identified by the functional gene aprA (adenosine-5'-phosphosulfate reductase) and its transcript. Of the aprA sequences (DNA and cDNA), 87 % affiliated with sulfur-oxidizing bacteria. They clustered with Alphaproteobacteria and with clades of deep-branching Gammaproteobacteria. The remaining sequences clustered with sulfate-reducing Archaea of the phylum Euryarchaeota. These results indicate an active role of yet uncharacterized Bacteria and Archaea in the sponge's sulfur cycle.

  2. In vivo estrogenic potential of 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene, an active metabolite of bisphenol A, in uterus of ovariectomized rat.

    PubMed

    Okuda, Katsuhiro; Takiguchi, Masufumi; Yoshihara, Shin'ichi

    2010-08-01

    4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite of bisphenol A (BPA), has more potent estrogenic activity than BPA in vitro, but its activity in vivo is not established. Here, we examined in vivo estrogenic activity of MBP by means of uterotrophic assay in ovariectomized (OVX) female rats. MBP exhibited dose-dependent estrogenic activity, as evaluated in terms of effects on uterus weight, uterine luminal epithelial cell height and myometrium thickness. The highest concentration of MBP (10 mg/kg/day) completely reversed the changes caused by OVX, and its activity was equivalent to that of 5 microg/kg/day 17beta-estradiol (E2). We also investigated the effects of MBP on transcription of several estrogen-related genes. The changes of mRNA levels of estrogen receptors alpha and beta, c-fos and insulin-like growth factor 1 in MBP-treated OVX rats were qualitatively similar to those in E2-treated rats. BPA did not show any significant effect on OVX rat in these conditions. This study is the first to demonstrate that MBP, an active metabolite of BPA, has potent in vivo estrogenic activity, being about 500-fold more potent than BPA in OVX rats.

  3. Effects of biochar and elevated soil temperature on soil microbial activity and abundance in an agricultural system

    NASA Astrophysics Data System (ADS)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2014-05-01

    As a consequence of Global Warming, rising surface temperatures will likely cause increased soil temperatures. Soil warming has already been shown to, at least temporarily, increase microbial activity and, therefore, the emissions of greenhouse gases like CO2 and N2O. This underlines the need for methods to stabilize soil organic matter and to prevent further boost of the greenhouse gas effect. Plant-derived biochar as a soil amendment could be a valuable tool to capture CO2 from the atmosphere and sequestrate it in soil on the long-term. During the process of pyrolysis, plant biomass is heated in an oxygen-low atmosphere producing the highly stable solid matter biochar. Biochar is generally stable against microbial degradation due to its chemical structure and it, therefore, persists in soil for long periods. Previous experiments indicated that biochar improves or changes several physical or chemical soil traits such as water holding capacity, cation exchange capacity or soil structure, but also biotic properties like microbial activity/abundance, greenhouse gas emissions and plant growth. Changes in the soil microbial abundance and community composition alter their metabolism, but likely also affect plant productivity. The interaction of biochar addition and soil temperature increase on soil microbial properties and plant growth was yet not investigated on the field scale. To investigate whether warming could change biochar effects in soil, we conducted a field experiment attached to a soil warming experiment on an agricultural experimental site near the University of Hohenheim, already running since July 2008. The biochar field experiment was set up as two-factorial randomized block design (n=4) with the factors biochar amendment (0, 30 t ha-1) and soil temperature (ambient, elevated=ambient +2.5° C) starting from August 2013. Each plot has a dimension of 1x1m and is equipped with combined soil temperature and moisture sensors. Slow pyrolysis biochar from the C

  4. Compartmentation of Metabolites in Regulating Epigenomes of Cancer

    PubMed Central

    Zhao, Zhiqiang; Wang, Li; Di, Li-jun

    2016-01-01

    Covalent modifications of DNA and histones are important epigenetic events and the genomewide reshaping of epigenetic markers is common in cancer. Epigenetic markers are produced by enzymatic reactions, and some of these reactions require the presence of metabolites, specifically Epigenetic Enzyme Required Metabolites (EERMs), as cofactors. Recent studies found that the abundance of these EERMs correlates with epigenetic enzyme activities. Also, the subcellular compartmentation, especially the nuclear localization of these EERMs, may play a role in regulating the activities of epigenetic enzymes. Moreover, gene-specific recruitment of enzymes that produce the EERMs in the proximity of the epigenetic modification events accompanying the regulation of gene expression, were proposed. Therefore, it is important to summarize findings of EERMs in regulating epigenetic modifications at both the DNA and histone levels, and to understand how EERMs contribute to cancer development by addressing their global versus local distribution. PMID:27258652

  5. In vitro hepatic biotransformation of aspalathin and nothofagin, dihydrochalcones of rooibos (Aspalathus linearis), and assessment of metabolite antioxidant activity.

    PubMed

    van der Merwe, J Debora; Joubert, Elizabeth; Manley, Marena; de Beer, Dalene; Malherbe, Christiaan J; Gelderblom, Wentzel C A

    2010-02-24

    Aspalathin (2',3,4,4',6'-pentahydroxy-3'-C-beta-d-glucopyranosyldihydrochalcone) is the major flavonoid present in the South African herbal tea rooibos. In vitro metabolism of aspalathin and a structural analogue nothofagin, lacking the A ring catechol group, was investigated by monitoring the formation of glucuronyl and sulfate conjugates using Aroclor 1254 induced and uninduced rat liver microsomal and cytosolic subcellular fractions. Following glucuronidation of both aspalathin and nothofagin, HPLC-DAD, LC-MS, and LC-MS/MS analyses indicated the presence of two metabolites: one major and one minor. Only one aspalathin metabolite was obtained after sulfation, while no metabolites were observed for nothofagin. Two likely sites of conjugation for aspalathin are 4-OH or 3-OH on the A-ring. For nothofagin, the 4-OH (A-ring) and 6'-OH (B-ring) seem to be involved. The glucuronyl conjugates of aspalathin lack any radical scavenging properties in online postcolumn DPPH radical and ABTS radical cation assays. Deconjugation assays utilizing glucuronidase and sulfatase resulted in the disappearance of the metabolites, with the concomitant formation of the unconjugated form in the case of the glucuronidated product. The balance between conjugated and unconjugated forms of aspalathin could have important implications regarding its role in affecting oxidative status in intra- and extracellular environments in vivo.

  6. In vitro fermentation of prebiotics by Lactobacillus plantarum CFR 2194: selectivity, viability and effect of metabolites on β-glucuronidase activity.

    PubMed

    Arenahalli Ningegowda, Madhu; Siddalingaiya Gurudutt, Prapulla

    2012-03-01

    Prebiotic Fructooligosaccharides (FOS) escape metabolism in upper GI tract undergo microbial metabolism in colon and thereby influence the nature, type and number of intestinal microbiota to improve host's health. The present study focuses on the ability of Lactobacillus plantarum CFR 2194 to utilize FOS as a selective carbon and energy source. The effect of fermentative metabolites of L. plantarum on the β-glucuronidase was also investigated. A total of 16 strains of lactobacilli were assessed for their ability to ferment oligosaccharides. L. plantarum CFR 2194, an isolate from kanjika was found to utilize FOS effectively. Lactic acid was the main metabolic end product, followed by acetic acid, butyric acid, formic acid and ethanol. The inhibitory effects of these metabolites have been confirmed through the reduction of β-glucuronidase activity. L. plantarum when co-cultured with β-glucuronidase producing E. coli, in a basal media containing FOS as an energy source, could inhibit the growth of the pathogen during the course of fermentation. The results showed that L. plantarum CFR 2194 has the ability to utilize the prebiotic FOS as a selective carbon and energy source. The organism could inhibit the growth of the pathogen which produces β-glucuronidase and lowered its activity by the metabolites of FOS which indicates the probable use of L. plantarum through dietary intervention in combating colon carcinogenesis.

  7. Effects of warm winter temperature on the abundance and gonotrophic activity of Culex (Diptera: Culicidae) in California.

    PubMed

    Reisen, William K; Thiemann, Tara; Barker, Christopher M; Lu, Helen; Carroll, Brian; Fang, Ying; Lothrop, Hugh D

    2010-03-01

    Culex tarsalis Coquillett, Cx. quinquefasciatus Say, and Cx. pipiens L. were collected during the warm winter of 2009 using dry ice-baited and gravid traps and walk-in red boxes positioned in desert, urban, and agricultural habitats in Riverside, Los Angeles, Kern, and Yolo Counties. Temperatures exceeded the preceding 50 yr averages in all locations for most of January, whereas rainfall was absent or below average. Abundance of Culex species in traps during January ranged from 83 to 671% of the prior 5 yr average in all locations. Few females collected resting were in diapause during January based on follicular measurements. Evidence for early season gonotrophic activity included the detection of freshly bloodfed, gravid, and parous females in resting collections, gravid oviposition site-seeking females in gravid female traps, and nulliparous and parous host-seeking females at dry ice-baited traps. Female Culex seemed to employ multiple overwintering strategies in California, including larval and adult quiescence, adult female diapause, and an intermediate situation with adult females collected with enlarged follicles, but without evident vitellogenesis. West Nile, St. Louis, or western equine encephalitis viruses were not detected in 198 pools of adults or 56 pools of adults reared from field-collected immatures collected during January and February 2009. Our preliminary data may provide insight into how climate change may extend the mosquito season in California.

  8. Comparison of distribution, abundance, and activities of deep subsurface microorganisms. Progress report, 1 September 1992--31 August 1993

    SciTech Connect

    Ghiorse, W.C.; Madsen, E.L.

    1993-12-31

    This project has provided DOE with basic information on the abundance, distribution and activities of aerobic heterotrophs in subsurface sediments from the Southeastern Coastal Plain (Savannah River Site -- SRS) and the Western Rockies Intermountain (Idaho National Engineering Laboratory -- INEL) and Columbia Plateau (Hanford Site). We have developed a new replica plating technique for determining numbers of microaerophiles and facultatively hypoaerobic bacteria in subsurface sediment samples. We have applied the technique to vadose zone samples from INEL and Hanford (Data submitted to database at Investigator`s Meeting, Chelan, WA, September 1991). The replica planting data suggest that most of the aerobic heterotrophic bacteria isolated from these boreholes grow at in wide range of oxygen concentrations from full saturation to one or to percent of saturation. We have tested several INEL and Hanford isolates for growth rate and growth yield at both low and high oxygen concentration. All isolates grew equally well at both oxygen concentrations regardless of whether they were isolated under low or high oxygen concentrations.

  9. Characterization of Tunisian Bacillus thuringiensis strains with abundance of kurstaki subspecies harbouring insecticidal activities against the lepidopteran insect Ephestia kuehniella.

    PubMed

    Saadaoui, Imen; Al-Thani, Roda; Al-Saadi, Fatma; Belguith-Ben Hassan, Najeh; Abdelkefi-Mesrati, Lobna; Schultz, Patrick; Rouis, Souad; Jaoua, Samir

    2010-12-01

    The study of 257 crystal-producing Bacillus thuringiensis isolates from bioinsecticide free soil samples collected from different sites in Tunisia, was performed by PCR amplification, using six primer pairs specific for cry1, cry2, cry3, cry4, and vip3A genes, by the investigation of strain plasmid pattern, crystal morphology and delta-endotoxin content and by the assessment of insecticidal activities against the lepidopteran insect Ephestia kuehniella. Based on plasmid pattern study, 11 representative strains of the different classes were subjected to morphological and molecular analyses. The comparison of the PFGE fingerprints confirmed the heterogeneity of these strains. B. thuringiensis kurstaki strains, harbouring at the same time the genes cry1A, cry2, cry1Ia, and vip3A, were the most abundant (65.4%). 33.34% of the new isolates showed particular delta-endotoxin profiles but no PCR products with the used primer sets. B. thuringiensis israelensis was shown to be also very rare among the Tunisian B. thuringiensis isolates diversity. These findings could have considerable impacts for the set up of new pest control biological agents.

  10. Monitoring of cytochrome P-450 1A activity by determination of the urinary pattern of caffeine metabolites in Wistar and hyperbilirubinemic Gunn rats.

    PubMed

    Jorritsma, U; Schrader, E; Klaunick, G; Kapitulnik, J; Hirsch-Ernst, K I; Kahl, G F; Foth, H

    2000-04-03

    Various studies suggest that induction of cytochrome P-450 1A (CYP1A) might be a valuable therapeutic modality for reducing the hyperbilirubinemia of infants with Crigler-Najjar syndrome type I (CNS-I), a severe form of congenital jaundice. To evaluate inducers of CYP1A as possible tools in the treatment of hyperbilirubinemia, a novel assay was established, based on the analysis of the urinary pattern of caffeine metabolites in rats. Wistar rats received [1-Me-(14)C]-caffeine (10 mg/kg i.p.), before and 48h after administration of the potent CYP1A inducer 5,6-benzoflavone (BNF) (80 mg/kg, i.p.). A substantial increase in the fractions of the terminal caffeine metabolites 1-methyluric acid (1-U), 1-methylxanthine (1-X), and a concomitant decrease in the caffeine demethylation product 1,7-dimethylxanthine (1,7-X) was observed after application of BNF. The ratio of the caffeine metabolites (1-U+1-X)/1,7-X may serve as an index of CYP1A activity in rats in vivo. Hyperbilirubinemic, homozygous (jj) Gunn rats are an accepted model for human CNS-I. In male jj Gunn rats treated with BNF or with indole-3-carbinol (I3C, 80 mg/kg, oral gavage), the inducing effect of BNF and 13C on CYP1A activity was confirmed by the urinary pattern of caffeine metabolites, and was parallelled by a decrease in plasma bilirubin levels. These data demonstrate the usefulness of the established caffeine assay for the evaluation of inducers of CYP1A as tools for reducing hyperbilirubinemia and further confirm the potential value of I3C in the treatment of CNS-I.

  11. Environmental variability in a transitional Mediterranean system (Oliveri-Tindari, Italy): Focusing on the response of microbial activities and prokaryotic abundance

    NASA Astrophysics Data System (ADS)

    Caruso, Gabriella; Azzaro, Filippo; Azzaro, Maurizio; Decembrini, Franco; La Ferla, Rosabruna; Maimone, Giovanna; De Pasquale, Francesca; Monticelli, Luis Salvador; Zaccone, Renata; Zappalà, Giuseppe; Leonardi, Marcella

    2013-12-01

    The response of both microbial activities and prokaryotic abundances to environmental variability was studied in a transitional Mediterranean system (Oliveri-Tindari, Italy) during two yearly surveys (1997-'98 and 2005-'06). The total enzymatic (leucine aminopeptidase, β-glucosidase, alkaline phosphatase) and respiratory activity rates as well as of the abundances of total prokaryotes, culturable heterotrophic bacteria, faecal coliforms and enterococci were measured in surface waters of four brackish ponds, together with temperature, salinity, dissolved oxygen, pH, inorganic nutrients, chlorophyll-a and particulate organic carbon and particulate nitrogen determinations. The seasonal and interannual patterns of microbial parameters were investigated in relation to environmental variations.

  12. Terracidiphilus gabretensis gen. nov., sp. nov., an Abundant and Active Forest Soil Acidobacterium Important in Organic Matter Transformation

    PubMed Central

    García-Fraile, Paula; Benada, Oldrich; Cajthaml, Tomáš; Baldrian, Petr

    2015-01-01

    Understanding the activity of bacteria in coniferous forests is highly important, due to the role of these environments as a global carbon sink. In a study of the microbial biodiversity of montane coniferous forest soil in the Bohemian Forest National Park (Czech Republic), we succeeded in isolating bacterial strain S55T, which belongs to one of the most abundant operational taxonomic units (OTUs) in active bacterial populations, according to the analysis of RNA-derived 16S rRNA amplicons. The 16S rRNA gene sequence analysis showed that the species most closely related to strain S55T include Bryocella elongata SN10T (95.4% identity), Acidicapsa ligni WH120T (95.2% identity), and Telmatobacter bradus TPB6017T (95.0% identity), revealing that strain S55T should be classified within the phylum Acidobacteria, subdivision 1. Strain S55T is a rod-like bacterium that grows at acidic pH (3 to 6). Its phylogenetic, genotypic, phenotypic, and chemotaxonomic characteristics indicate that strain S55T corresponds to a new genus within the phylum Acidobacteria; thus, we propose the name Terracidiphilus gabretensis gen. nov., sp. nov. (strain S55T = NBRC 111238T = CECT 8791T). This strain produces extracellular enzymes implicated in the degradation of plant-derived biopolymers. Moreover, analysis of the genome sequence of strain S55T also reveals the presence of enzymatic machinery required for organic matter decomposition. Soil metatranscriptomic analyses found 132 genes from strain S55T being expressed in the forest soil, especially during winter. Our results suggest an important contribution of T. gabretensis S55T in the carbon cycle in the Picea abies coniferous forest. PMID:26546425

  13. Diversity, Abundance, and Potential Activity of Nitrifying and Nitrate-Reducing Microbial Assemblages in a Subglacial Ecosystem ▿ †

    PubMed Central

    Boyd, Eric S.; Lange, Rachel K.; Mitchell, Andrew C.; Havig, Jeff R.; Hamilton, Trinity L.; Lafrenière, Melissa J.; Shock, Everett L.; Peters, John W.; Skidmore, Mark

    2011-01-01

    Subglacial sediments sampled from beneath Robertson Glacier (RG), Alberta, Canada, were shown to harbor diverse assemblages of potential nitrifiers, nitrate reducers, and diazotrophs, as assessed by amoA, narG, and nifH gene biomarker diversity. Although archaeal amoA genes were detected, they were less abundant and less diverse than bacterial amoA, suggesting that bacteria are the predominant nitrifiers in RG sediments. Maximum nitrification and nitrate reduction rates in microcosms incubated at 4°C were 280 and 18.5 nmol of N per g of dry weight sediment per day, respectively, indicating the potential for these processes to occur in situ. Geochemical analyses of subglacial sediment pore waters and bulk subglacial meltwaters revealed low concentrations of inorganic and organic nitrogen compounds. These data, when coupled with a C/N atomic ratio of dissolved organic matter in subglacial pore waters of ∼210, indicate that the sediment communities are N limited. This may reflect the combined biological activities of organic N mineralization, nitrification, and nitrate reduction. Despite evidence of N limitation and the detection of nifH, we were unable to detect biological nitrogen fixation activity in subglacial sediments. Collectively, the results presented here suggest a role for nitrification and nitrate reduction in sustaining microbial life in subglacial environments. Considering that ice currently covers 11% of the terrestrial landmass and has covered significantly greater portions of Earth at times in the past, the demonstration of nitrification and nitrate reduction in subglacial environments furthers our understanding of the potential for these environments to contribute to global biogeochemical cycles on glacial-interglacial timescales. PMID:21622799

  14. Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem.

    PubMed

    Boyd, Eric S; Lange, Rachel K; Mitchell, Andrew C; Havig, Jeff R; Hamilton, Trinity L; Lafrenière, Melissa J; Shock, Everett L; Peters, John W; Skidmore, Mark

    2011-07-01

    Subglacial sediments sampled from beneath Robertson Glacier (RG), Alberta, Canada, were shown to harbor diverse assemblages of potential nitrifiers, nitrate reducers, and diazotrophs, as assessed by amoA, narG, and nifH gene biomarker diversity. Although archaeal amoA genes were detected, they were less abundant and less diverse than bacterial amoA, suggesting that bacteria are the predominant nitrifiers in RG sediments. Maximum nitrification and nitrate reduction rates in microcosms incubated at 4°C were 280 and 18.5 nmol of N per g of dry weight sediment per day, respectively, indicating the potential for these processes to occur in situ. Geochemical analyses of subglacial sediment pore waters and bulk subglacial meltwaters revealed low concentrations of inorganic and organic nitrogen compounds. These data, when coupled with a C/N atomic ratio of dissolved organic matter in subglacial pore waters of ~210, indicate that the sediment communities are N limited. This may reflect the combined biological activities of organic N mineralization, nitrification, and nitrate reduction. Despite evidence of N limitation and the detection of nifH, we were unable to detect biological nitrogen fixation activity in subglacial sediments. Collectively, the results presented here suggest a role for nitrification and nitrate reduction in sustaining microbial life in subglacial environments. Considering that ice currently covers 11% of the terrestrial landmass and has covered significantly greater portions of Earth at times in the past, the demonstration of nitrification and nitrate reduction in subglacial environments furthers our understanding of the potential for these environments to contribute to global biogeochemical cycles on glacial-interglacial timescales.

  15. Major Elements Abundances in Chang'E-3 Landing Site from Active Particle-induced X-ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping; Xie, Minggang; Zhu, Meng-Hua; Dong, Wudong; Tang, Zesheng; Xu, Aoao

    2015-04-01

    Chang'E-3, China's first Moon lander and rover mission, was launched at 17:30 on 1st December 2013 (UTC) and successfully landed on Moon surface at 13:11 on 14th December 2013 (UTC). About 8 hours later after the soft landing, the rover, named "Yutu' after a mythological rabbit that lives on the Moon as a pet of the Moon goddess, was successfully separated from the lander and started its adventure on the Moon. The success of this mission marks the first soft-landing on the Moon since 1976. The landing site is in northern Mare Imbrium (N44.12, W19.51), close to the boundary of two different geologic units and sits on 'young' Eratoshenian lava flows which spread several hundreds to thousands of kilometers. The mare basalts in the landing site are believed to be formed from the lava flows ~2.5 billion years ago, which are significantly younger than all of the returned lunar samples, dating from 3.1 to 3.8 billion years ago. This makes the landing site a very interesting place for exploring geochemical characteristics of the young lava flows and lunar evolution in a later stage. Active Particle-induced X-ray Spectrometer (APXS) is the only payload on the robotic arm of Yutu rover. It was designed to measure the intensities of characteristic fluorescent X-rays produced by interactions of lunar sample with incident X-rays. Major elements abundances of Mg, Al, Si, Ca, Ti, Fe on the lunar surface were expected to be detected after the exploration. On December 24th (UTC), 2013 and January 14th (UTC), 2014, APXS performed 4 successful measurements on lunar soils along Yutu's track. Characteristic peaks of Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Sr and Zr could be clearly seen from the measured spectra. A global fit based on minimum chi-square method has been performed to disentangle different components in the measured spectra. These components include Kα and/or Kβ peaks of each element, escape peaks, exponential and shelf tail of major peaks and electronic noises, etc

  16. Definitive Metabolite Identification Coupled with Automated Ligand Identification System (ALIS) Technology: A Novel Approach to Uncover Structure-Activity Relationships and Guide Drug Design in a Factor IXa Inhibitor Program.

    PubMed

    Zhang, Ting; Liu, Yong; Yang, Xianshu; Martin, Gary E; Yao, Huifang; Shang, Jackie; Bugianesi, Randal M; Ellsworth, Kenneth P; Sonatore, Lisa M; Nizner, Peter; Sherer, Edward C; Hill, Susan E; Knemeyer, Ian W; Geissler, Wayne M; Dandliker, Peter J; Helmy, Roy; Wood, Harold B

    2016-03-10

    A potent and selective Factor IXa (FIXa) inhibitor was subjected to a series of liver microsomal incubations, which generated a number of metabolites. Using automated ligand identification system-affinity selection (ALIS-AS) methodology, metabolites in the incubation mixture were prioritized by their binding affinities to the FIXa protein. Microgram quantities of the metabolites of interest were then isolated through microisolation analytical capabilities, and structurally characterized using MicroCryoProbe heteronuclear 2D NMR techniques. The isolated metabolites recovered from the NMR experiments were then submitted directly to an in vitro FIXa enzymatic assay. The order of the metabolites' binding affinity to the Factor IXa protein from the ALIS assay was completely consistent with the enzymatic assay results. This work showcases an innovative and efficient approach to uncover structure-activity relationships (SARs) and guide drug design via microisolation-structural characterization and ALIS capabilities.

  17. Activated sludge filterability improvement by nitrifying bacteria abundance regulation in an adsorption membrane bioreactor (Ad-MBR).

    PubMed

    Sun, Fei-yun; Lv, Xiao-mei; Li, Ji; Peng, Zhong-yi; Li, Pu; Shao, Ming-fei

    2014-10-01

    Autotrophic nitrifying bacteria have its intrinsic properties including low EPS production, dense colonial structure and slow-growth rate, favoring the sludge filterability improvement. An adsorption-MBR (Ad-MBR) was developed to enrich nitrifier abundance in the MBR chamber by inlet C/N regulation, and its possible positive effect on sludge filterability and underlying mechanisms were investigated. By DNA extraction, PCR amplification and Illumina high-throughput pyrosequencing, the abundance of nitrifying bacteria was accurately quantified. More than 8.29% nitrifier abundance was achieved in Ad-MBR sludge, which was above three times of that in conventional MBR. Regulated C/N ratio and thereafter nitrifier abundance enrichment improved sludge filterability by altering sludge mixture and its supernatant properties, reflected by a good sludge settleability, a low supernatant viscosity and turbidity, a low supernatant organic substances concentration, and a small amount of strong hydrophobic fractional components, thus to profoundly improve sludge filterability and decelerate membrane fouling.

  18. Advances in Marine Microbial Symbionts in the China Sea and Related Pharmaceutical Metabolites

    PubMed Central

    Li, Zhiyong

    2009-01-01

    Marine animals and plants such as sponges, sea squirts, corals, worms and algae host diverse and abundant symbiotic microorganisms. Marine microbial symbionts are possible the true producers or take part in the biosynthesis of some bioactive marine natural products isolated from the marine organism hosts. Investigation of the pharmaceutical metabolites may reveal the biosynthesis mechanisms of related natural products and solve the current problem of supply limitation in marine drug development. This paper reviews the advances in diversity revelation, biological activity and related pharmaceutical metabolites, and functional genes of marine microbial symbionts from the China Sea. PMID:19597576

  19. Ginsenoside Metabolite Compound K Promotes Recovery of Dextran Sulfate Sodium-Induced Colitis and Inhibits Inflammatory Responses by Suppressing NF-κB Activation

    PubMed Central

    Li, Juan; Zhong, Wei; Wang, Weiwei; Hu, Shaoping; Yuan, Jiahui; Zhang, Bing; Hu, Tianhui; Song, Gang

    2014-01-01

    Phytogenic compounds with anti-oxidant and anti-inflammatory properties, such as ginsenoside metabolite compound K (CK) or berberine (BBR), are currently discussed as promising complementary agents in the prevention and treatment of cancer and inflammation. The latest study showed that ginsenoside Rb1 and its metabolites could inhibit TNBS-induced colitis injury. However, the functional mechanisms of anti-inflammation effects of ginsenoside, particularly its metabolite CK are still not clear. Here, using dextran sulfate sodium (DSS)-induced colitis in mice, clinical parameters, intestinal integrity, pro-inflammatory cytokines production, and signaling pathways in colonic tissues were determined. In mild and sever colitis mice, CK and BBR (as a positive agent) alleviated colitis histopathology injury, ameliorated myeloperoxidase (MPO) activity, reduced pro-inflammatory cytokines production, such as, IL-6, IL-1β, TNF-α, and increased anti-inflammatory cytokine IL-10 production in both mice colon tissues and blood. Nevertheless, the results revealed that CK and BBR inhibited NF-κB p65 nuclear translocation, downregulated p-IκBα and upregulated IκBα, indicating that CK, as well as BBR, suppressed the activation of the NF-κB pathway in the progression of colitis with immunofluorescence, immunohistochemical and western blotting analysis. Furthermore, CK inhibited pro-inflammatory cytokines production in LPS-activated macrophages via down-regulation of NF-κB signaling pathway. Taken together, our results not only reveal that CK promotes the recovery of the progression of colitis and inhibits the inflammatory responses by suppressing NF-κB activation, but also suggest that CK downregulates intestinal inflammation through regulating the activation of macrophages and pro-inflammatory cytokines production. PMID:24504372

  20. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species.

    PubMed

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability.

  1. Development, validation and clinical application of a LC-MS/MS method for the simultaneous quantification of hydroxychloroquine and its active metabolites in human whole blood.

    PubMed

    Soichot, Marion; Mégarbane, Bruno; Houzé, Pascal; Chevillard, Lucie; Fonsart, Julien; Baud, Frédéric J; Laprévote, Olivier; Bourgogne, Emmanuel

    2014-11-01

    A rapid, sensitive and specific method using liquid chromatography coupled to tandem mass spectrometry was developed for the simultaneous quantification of hydroxychloroquine (HCQ) and its three major metabolites in human whole blood. The assay, using a sample volume of 100μL, was linear in a dynamic 25-2000ng/mL range (R(2)>0.99) for all four compounds and suitable for the determination of elevated HCQ concentrations up to 20,000ng/mL, after appropriate sample dilution. Inter- and intra-assay precisions were <18.2% and accuracies were between 84% and 113% for any analyte. No matrix effects were observed. The assay was successfully applied to a blood sample obtained from one poisoned patient following a massive HCQ self-ingestion resulting in an estimated concentration of 19,500ng/mL on hospital admission. In this patient, HCQ metabolites were identified and quantified at 1123, 465 and 91ng/mL for monodesethylhydroxychloroquine, desethylchloroquine and bisdesethylchloroquine, respectively. Further investigations are still required to assess the usefulness of the simultaneous measurement of blood concentrations of HCQ and its three active metabolites for monitoring HCQ treatment and managing HCQ poisoning.

  2. Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes in vitro.

    PubMed

    Kim, Tae-Kang; Lin, Zongtao; Tidwell, William J; Li, We; Slominski, Andrzej T

    2015-03-15

    Melatonin and its metabolites including 6-hydroxymelatonin (6(OH)M), N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) and 5-methoxytryptamine (5MT) are endogenously produced in human epidermis. This production depends on race, gender and age. The highest melatonin levels are in African-Americans. In each racial group they are highest in young African-Americans [30-50 years old (yo)], old Caucasians (60-90 yo) and Caucasian females. AFMK levels are the highest in African-Americans, while 6(OH)M and 5MT levels are similar in all groups. Testing of their phenotypic effects in normal human melanocytes show that melatonin and its metabolites (10(-5) M) inhibit tyrosinase activity and cell growth, and inhibit DNA synthesis in a dose dependent manner with 10(-9) M being the lowest effective concentration. In melanoma cells, they inhibited cell growth but had no effect on melanogenesis, except for 5MT which enhanced L-tyrosine induced melanogenesis. In conclusion, melatonin and its metabolites [6(OH)M, AFMK and 5MT] are produced endogenously in human epidermis and can affect melanocyte and melanoma behavior.

  3. Marine-derived myxobacteria of the suborder Nannocystineae: An underexplored source of structurally intriguing and biologically active metabolites

    PubMed Central

    Schäberle, Till F

    2016-01-01

    Summary Myxobacteria are famous for their ability to produce most intriguing secondary metabolites. Till recently, only terrestrial myxobacteria were in the focus of research. In this review, however, we discuss marine-derived myxobacteria, which are particularly interesting due to their relatively recent discovery and due to the fact that their very existence was called into question. The to-date-explored members of these halophilic or halotolerant myxobacteria are all grouped into the suborder Nannocystineae. Few of them were chemically investigated revealing around 11 structural types belonging to the polyketide, non-ribosomal peptide, hybrids thereof or terpenoid class of secondary metabolites. A most unusual structural type is represented by salimabromide from Enhygromyxa salina. In silico analyses were carried out on the available genome sequences of four bacterial members of the Nannocystineae, revealing the biosynthetic potential of these bacteria. PMID:27340488

  4. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite.

    PubMed

    Agarwal, Varsha; Kommaddi, Reddy P; Valli, Khader; Ryder, Daniel; Hyde, Thomas M; Kleinman, Joel E; Strobel, Henry W; Ravindranath, Vijayalakshmi

    2008-06-11

    Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

  5. Metabolism of the vitamin D analog EB 1089: identification of in vivo and in vitro liver metabolites and their biological activities.

    PubMed

    Kissmeyer, A M; Binderup, E; Binderup, L; Mørk Hansen, C; Andersen, N R; Makin, H L; Schroeder, N J; Shankar, V N; Jones, G

    1997-04-25

    1(S),3(R)-dihydroxy-20(R)-(5'-ethyl-5'-hydroxy-hepta-1'(E),3'(E)-dien -1'-yl)-9,10-secopregna-5(Z),7(E),10(19)-triene (EB 1089) is a novel analog of the vitamin D hormone, calcitriol that has been modified in the side-chain resulting in an increased metabolic stability relative to other side-chain modified analogs (e.g. calcipotriol and 22-oxacalcitriol). To further investigate the metabolism of EB 1089, we set out to study this metabolism both in the rat in vivo as well as in the postmitochondrial liver fractions from rat, man, and minipig in vitro. The same pattern of metabolism was observed in all biological systems employed, both in vivo and in vitro, namely 26- and 26a-hydroxylation of EB 1089. The same metabolites were produced using cultured cell systems (Shankar et al., see this issue). All the possible isomers of 26- and 26a-hydroxy EB 1089 were synthesised and these were compared to biologically generated material using HPLC, NMR, and GC-MS techniques. The predominant natural isomer observed in vitro and in vivo in rats as well as in vitro in humans was identified to be (25S),26R-hydroxy EB 1089. The biological activities of the EB 1089 metabolites on cell growth regulation were 10- to 100-fold lower than that of EB 1089. The effects of the metabolites on calcium metabolism in vivo were comparable to the effect of EB 1089; however, these effects were reduced for the major metabolite in rat and man and for the isomers of 26a-hydroxy EB 1089. We conclude that EB 1089 is metabolised by a different route of side-chain metabolism than calcitriol and that this may explain its relative metabolic stability in pharmacokinetic experiments in vivo compared to that of other vitamin D analogs.

  6. Escape Mutations in NS4B Render Dengue Virus Insensitive to the Antiviral Activity of the Paracetamol Metabolite AM404.

    PubMed

    van Cleef, Koen W R; Overheul, Gijs J; Thomassen, Michael C; Marjakangas, Jenni M; van Rij, Ronald P

    2016-04-01

    Despite the enormous disease burden associated with dengue virus infections, a licensed antiviral drug is lacking. Here, we show that the paracetamol (acetaminophen) metabolite AM404 inhibits dengue virus replication. Moreover, we find that mutations in NS4B that were previously found to confer resistance to the antiviral compounds NITD-618 and SDM25N also render dengue virus insensitive to AM404. Our work provides further support for NS4B as a direct or indirect target for antiviral drug development.

  7. Metabolites related to gut bacterial metabolism, peroxisome proliferator-activated receptor-alpha activation, and insulin sensitivity are associated with physical function in functionally-limited older adults

    PubMed Central

    Lustgarten, Michael S; Price, Lori L; Chalé, Angela; Fielding, Roger A

    2014-01-01

    Identification of mechanisms underlying physical function will be important for addressing the growing challenge that health care will face with physical disablement in the expanding aging population. Therefore, the goals of the current study were to use metabolic profiling to provide insight into biologic mechanisms that may underlie physical function by examining the association between baseline and the 6-month change in serum mass spectrometry-obtained amino acids, fatty acids, and acylcarnitines with baseline and the 6-month change in muscle strength (leg press one repetition maximum divided by total lean mass, LP/Lean), lower extremity function [short physical performance battery (SPPB)], and mobility (400 m gait speed, 400-m), in response to 6 months of a combined resistance exercise and nutritional supplementation (whey protein or placebo) intervention in functionally-limited older adults (SPPB ≤ 10; 70–85 years, N = 73). Metabolites related to gut bacterial metabolism (cinnamoylglycine, phenol sulfate, p-cresol sulfate, 3-indoxyl sulfate, serotonin, N-methylproline, hydrocinnamate, dimethylglycine, trans-urocanate, valerate) that are altered in response to peroxisome proliferator-activated receptor-alpha (PPAR-α) activation (α-hydroxyisocaproate, α-hydroxyisovalerate, 2-hydroxy-3-methylvalerate, indolelactate, serotonin, 2-hydroxypalmitate, glutarylcarnitine, isobutyrylcarnitine, cinnamoylglycine) and that are related to insulin sensitivity (monounsaturated fatty acids: 5-dodecenoate, myristoleate, palmitoleate; γ-glutamylamino acids: γ-glutamylglutamine, γ-glutamylalanine, γ-glutamylmethionine, γ-glutamyltyrosine; branched-chain amino acids: leucine, isoleucine, valine) were associated with function at baseline, with the 6-month change in function or were identified in backward elimination regression predictive models. Collectively, these data suggest that gut microbial metabolism, PPAR-α activation, and insulin sensitivity may be involved in

  8. Abundance and single-cell activity of heterotrophic bacterial groups in the western Arctic Ocean in summer and winter.

    PubMed

    Nikrad, Mrinalini P; Cottrell, M T; Kirchman, D L

    2012-04-01

    Environmental conditions in the western Arctic Ocean range from constant light and nutrient depletion in summer to complete darkness and sea ice cover in winter. This seasonal environmental variation is likely to have an effect on the use of dissolved organic matter (DOM) by heterotrophic bacteria in surface water. However, this effect is not well studied and we know little about the activity of specific bacterial clades in the surface oceans. The use of DOM by three bacterial subgroups in both winter and summer was examined by microautoradiography combined with fluorescence in situ hybridization. We found selective use of substrates by these groups, although the abundances of Ant4D3 (Antarctic Gammaproteobacteria), Polaribacter (Bacteroidetes), and SAR11 (Alphaproteobacteria) were not different between summer and winter in the Beaufort and Chukchi Seas. The number of cells taking up glucose within all three bacterial groups decreased significantly from summer to winter, while the percentage of cells using leucine did not show a clear pattern between seasons. The uptake of the amino acid mix increased substantially from summer to winter by the Ant4D3 group, although such a large increase in uptake was not seen for the other two groups. Use of glucose by bacteria, but not use of leucine or the amino acid mix, related strongly to inorganic nutrients, chlorophyll a, and other environmental factors. Our results suggest a switch in use of dissolved organic substrates from summer to winter and that the three phylogenetic subgroups examined fill different niches in DOM use in the two seasons.

  9. Abundance, diversity, and activity of ammonia-oxidizing prokaryotes in the coastal Arctic ocean in summer and winter.

    PubMed

    Christman, Glenn D; Cottrell, Matthew T; Popp, Brian N; Gier, Elizabeth; Kirchman, David L

    2011-03-01

    Ammonia oxidation, the first step in nitrification, is performed by certain Beta- and Gammaproteobacteria and Crenarchaea to generate metabolic energy. Ammonia monooxygenase (amoA) genes from both Bacteria and Crenarchaea have been found in a variety of marine ecosystems, but the relative importance of Bacteria versus Crenarchaea in ammonia oxidation is unresolved, and seasonal comparisons are rare. In this study, we compared the abundance of betaproteobacterial and crenarchaeal amoA genes in the coastal Arctic Ocean during summer and winter over 2 years. Summer and winter betaproteobacterial amoA clone libraries were significantly different, although the gene sequences were similar to those found in temperate and polar environments. Betaproteobacterial and crenarchaeal amoA genes were 30- to 115-fold more abundant during the winter than during the summer in both years of the study. Archaeal amoA genes were more abundant than betaproteobacterial amoA genes in the first year, but betaproteobacterial amoA was more abundant than archaeal amoA the following year. The ratio of archaeal amoA gene copies to marine group I crenarchaeal 16S rRNA genes averaged 2.9 over both seasons and years, suggesting that ammonia oxidation was common in Crenarchaea at this location. Potential nitrification rates, as well as the total amoA gene abundance, were highest in the winter when competition with phytoplankton was minimal and ammonium concentrations were the highest. These results suggest that ammonium concentrations were important in determining the rates of ammonia oxidation and the abundance of ammonia-oxidizing Betaproteobacteria and Crenarchaea.

  10. A sensitive radioisotopic method for the measurement of NAD(P)H: Its application to the assay of metabolites and enzymatic activities

    SciTech Connect

    Sener, A.; Malaisse, W.J. )

    1990-05-01

    A radioisotopic method for the assay of NADH or NADPH is presented, which is based on the conversion of 2-(U-{sup 14}C)ketoglutarate to {sup 14}C-labeled glutamate in the reaction catalyzed by glutamate dehydrogenase. The efficiency of the method is close to 75%, its precision (coefficient of variation) close to 5%, and its sensitivity close to 0.1 pmol/sample. This simple and rapid method can be applied to the measurement of several metabolites and enzymatic activities. In the present study, its application to the assay of sorbitol, 3-hydroxybutyrate, glutamate dehydrogenase, 3-hydroxybutyrate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase is documented.

  11. Marine litter abundance and distribution on beaches on the Isle of Rügen considering the influence of exposition, morphology and recreational activities.

    PubMed

    Hengstmann, Elena; Gräwe, Dennis; Tamminga, Matthias; Fischer, Elke Kerstin

    2017-02-15

    The abundance, weight and composition of marine debris were determined at the northwest coast of the Isle of Rügen in 2015. A total number of 1115 macrolitter items were registered, resulting in an abundance of 304±88.96 items per 100m of beach length and therefore being greater than the abundances found for other beaches at the Baltic Sea. Macrolitter items were predominantly composed of plastic, on average 83%. The four beaches under investigation have different exposition as well as touristic levels. The differing influence of wind and water currents as well as recreational activities on the macrolitter at these beaches was detectable. The distribution of items within a beach segment was analyzed by implementing D-GPS and drone aerial photography. The results of this analysis suggested that the identity of the substrate as well as the presence of vegetation are both major influencing factors in the macrolitter distribution.

  12. Escape Mutations in NS4B Render Dengue Virus Insensitive to the Antiviral Activity of the Paracetamol Metabolite AM404

    PubMed Central

    van Cleef, Koen W. R.; Overheul, Gijs J.; Thomassen, Michael C.; Marjakangas, Jenni M.

    2016-01-01

    Despite the enormous disease burden associated with dengue virus infections, a licensed antiviral drug is lacking. Here, we show that the paracetamol (acetaminophen) metabolite AM404 inhibits dengue virus replication. Moreover, we find that mutations in NS4B that were previously found to confer resistance to the antiviral compounds NITD-618 and SDM25N also render dengue virus insensitive to AM404. Our work provides further support for NS4B as a direct or indirect target for antiviral drug development. PMID:26856827

  13. Comparison of different extraction methods for the analysis of volatile secondary metabolites of Lippia alba (Mill.) N.E. Brown, grown in Colombia, and evaluation of its in vitro antioxidant activity.

    PubMed

    Stashenko, Elena E; Jaramillo, Beatriz E; Martínez, Jairo René

    2004-01-30

    Hydrodistillation (HD), simultaneous distillation solvent extraction (SDE), microwave-assisted hydrodistillation (MWHD), and supercritical fluid (CO2) extraction (SFE) were employed to isolate volatile secondary metabolites from fresh leaves and stems of Colombian Lippia alba (Mill.) N.E. Brown. Kovàts indices, mass spectra or standard compounds were used to identify around 40 components in the various volatile fractions. Carvone (40-57%) was the most abundant component, followed by limonene (24-37%), bicyclosesquiphellandrene (5-22%), piperitenone (1-2%), piperitone (ca. 1.0%), and beta-bourbonene (0.6-1.5%), in the HD, SDE, MWHD, and SFE volatile fractions. Static headspace (S-HS), simultaneous purge and trap in solvent (CH2Cl2) (P&T), and headspace solid-phase microextraction (HS-SPME) were used to sample volatiles from fresh L. alba stems and leaves. The main components isolated from the headspace of the fresh plant material were limonene (27-77%), carvone (14-30%), piperitone (0.3-0.5%), piperitenone (ca. 0.4%), and beta-bourbonene (0.5-6.5%). The in vitro antioxidant activity of L. alba essential oil, obtained by hydrodistillation was evaluated by determination of hexanal, the main carbonyl compound released by linoleic acid subjected to peroxidation (1 mm Fe2+, 37 degrees C, 12 h), and by quantification of this acid as its methyl ester. Under the same conditions, L. alba HD-essential oil and Vitamin E exhibited similar antioxidant effects.

  14. Exposure to a metabolite of the environmental toxicant, trichloroethylene, attenuates CD4+ T cell activation-induced cell death by metalloproteinase-dependent FasL shedding.

    PubMed

    Blossom, Sarah J; Gilbert, Kathleen M

    2006-07-01

    Long-term exposure to the environmental contaminant trichloroethylene (TCE) in drinking water has been shown to promote autoimmune disease in association with the expansion of activated CD4+ T cells. The effects of TCE on CD4+ T cells were linked in the present study to the ability of TCE metabolite, trichloroacetaldehyde hydrate (TCAH), to inhibit activation-induced cell death (AICD) in CD4+ T cells. TCAH attenuated AICD in CD4+ T cells by decreasing FasL (CD178) expression but not by altering Fas (CD95) expression or by interfering with Fas-signaling events following direct engagement of the Fas receptor. The TCAH-induced decrease in FasL expression did not appear to be mediated at the transcriptional level but was instead due to increased shedding of FasL from the surface of the CD4+ T cells. The ability of TCAH to cleave FasL and thereby decrease AICD appeared to be mediated by metalloproteinases and correlated with a TCAH-induced increase in matrix metalloproteinase-7. Thus, this study presents the novel finding that the environmental contaminant TCE works via its metabolite TCAH to attenuate AICD by increasing metalloproteinase activity that cleaves FasL from CD4+ T cells. This represents a mechanism by which an environmental trigger inhibits AICD in CD4+ T cells and may thereby promote CD4+ T cell-mediated autoimmune disease.

  15. Distribution and abundance of host-seeking Culex species at three proximate locations with different levels of West Nile virus activity

    USGS Publications Warehouse

    Rochlin, I.; Ginsberg, H.S.; Campbell, S.R.

    2009-01-01

    Culex species were monitored at three proximate sites with historically different West Nile virus (WNV) activities. The site with human WNV transmission (epidemic) had the lowest abundance of the putative bridge vectors, Culex pipiens and Cx. salinarius. The site with horse cases but not human cases (epizootic) had the highest percent composition of Cx. salinarius, whereas the site with WNV-positive birds only (enzootic) had the highest Cx. pipiens abundance and percent composition. A total of 29 WNV-positive Culex pools were collected at the enzootic site, 17 at the epidemic site, and 14 at the epizootic site. Published models of human risk using Cx. pipiens and Cx. salinarius as the primary bridge vectors did not explain WNV activity at our sites. Other variables, such as additional vector species, environmental components, and socioeconomic factors, need to be examined to explain the observed patterns of WNV epidemic activity.

  16. Variability of a Stellar Corona on a Time Scale of Days: Evidence for Abundance Fractionation in an Emerging Coronal Active Region

    NASA Technical Reports Server (NTRS)

    Nordon, R.; Behar, E.; Drake, S. A.

    2013-01-01

    Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae.

  17. Cytokinin metabolism in maize: Novel evidence of cytokinin abundance, interconversions and formation of a new trans-zeatin metabolic product with a weak anticytokinin activity.

    PubMed

    Hluska, Tomáš; Dobrev, Petre I; Tarkowská, Dana; Frébortová, Jitka; Zalabák, David; Kopečný, David; Plíhal, Ondřej; Kokáš, Filip; Briozzo, Pierre; Zatloukal, Marek; Motyka, Václav; Galuszka, Petr

    2016-06-01

    Cytokinins (CKs) are an important group of phytohormones. Their tightly regulated and balanced levels are essential for proper cell division and plant organ development. Here we report precise quantification of CK metabolites and other phytohormones in maize reproductive organs in the course of pollination and kernel maturation. A novel enzymatic activity dependent on NADP(+) converting trans-zeatin (tZ) to 6-(3-methylpyrrol-1-yl)purine (MPP) was detected. MPP shows weak anticytokinin properties and inhibition of CK dehydrogenases due to their ability to bind to an active site in the opposite orientation than substrates. Although the physiological significance of tZ side-chain cyclization is not anticipated as the MPP occurrence in maize tissue is very low, properties of the novel CK metabolite indicate its potential for utilization in plant in vitro tissue culture. Furthermore, feeding experiments with different isoprenoid CKs revealed distinct preferences in glycosylation of tZ and cis-zeatin (cZ). While tZ is preferentially glucosylated at the N9 position, cZ forms mainly O-glucosides. Since O-glucosides, in contrast to N9-glucosides, are resistant to irreversible cleavage catalyzed by CK dehydrogenases, the observed preference of maize CK glycosyltransferases to O-glycosylate zeatin in the cis-position might be a reason why cZ derivatives are over-accumulated in different maize tissues and organs.

  18. High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA.

    PubMed

    Hayden, Curtis J; Beman, J Michael

    2014-01-01

    Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems--and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA) and bacteria (AOB) in 9 high-altitude lakes (2289-3160 m) in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA) genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate) were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r(2) = 0.32, p<0.1), whereas AOA abundance was inversely correlated with lake elevation (r(2) = 0.43, p<0.05). We also measured low rates of ammonia oxidation--indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes.

  19. High Abundances of Potentially Active Ammonia-Oxidizing Bacteria and Archaea in Oligotrophic, High-Altitude Lakes of the Sierra Nevada, California, USA

    PubMed Central

    Hayden, Curtis J.; Beman, J. Michael

    2014-01-01

    Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems—and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA) and bacteria (AOB) in 9 high-altitude lakes (2289–3160 m) in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA) genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate) were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r2 = 0.32, p<0.1), whereas AOA abundance was inversely correlated with lake elevation (r2 = 0.43, p<0.05). We also measured low rates of ammonia oxidation—indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes. PMID:25402442

  20. Abundance and activity of 16S rRNA, amoA and nifH bacterial genes during assisted phytostabilization of mine tailings

    PubMed Central

    Nelson, Karis N.; Neilson, Julia W.; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings. PMID:25495940

  1. Cyclic metabolites: chemical and biological considerations.

    PubMed

    Erve, John C L

    2008-02-01

    Metabolism of xenobiotics can sometimes generate cyclic metabolites. Such metabolites are usually the result of intramolecular reactions occurring within a primary or secondary metabolite and this chemistry may lead to unexpected structures. Intramolecular chemistry is often driven by nucleophilic groups reacting with electrophilic atoms, often carbon, although radical processes also occur. Conjugation of xenobiotics or their metabolites with endogenous thiols, such as glutathione or cysteine, introduce a reactive amino group that can lead to the formation of cyclic structures. Less common than chemically driven cyclizations are enzymatically mediated ring-closures, although this may reflect our incomplete recognition of enzymatic involvement in this step of cyclic metabolite formation. While some cyclic metabolites are biologically inactive, others are biologically active. Thus, a cyclic metabolite may display desirable pharmacology, or, contribute to toxicology. When a cyclic metabolite is identified, it is important to consider the possibility that it is an artifact, i.e. metabonate, that was formed during processing of the sample, for example, through degradation or by chemical reactions with other components present in the matrix. From a medicinal chemistry perspective, a cyclic metabolite with a different chemical scaffold from the parent structure may lead to a new series of structurally novel, biologically active molecules with the same, or different, pharmacology from the parent. This review will cover a selection of cyclic metabolites from a mechanistic point of view, and when possible, discuss their biological relevance.

  2. Evidence for biological denitrification inhibition (BDI) by plant secondary metabolites.

    PubMed

    Bardon, Clément; Piola, Florence; Bellvert, Floriant; Haichar, Feth el Zahar; Comte, Gilles; Meiffren, Guillaume; Pommier, Thomas; Puijalon, Sara; Tsafack, Noelline; Poly, Franck

    2014-11-01

    Previous studies on the effect of secondary metabolites on the functioning of rhizosphere microbial communities have often focused on aspects of the nitrogen (N) cycle but have overlooked biological denitrification inhibition (BDI), which can affect plant N-nutrition. Here, we investigated the BDI by the compounds of Fallopia spp., an invasive weed shown to be associated with a low potential denitrification of the soil. Fallopia spp. extracts were characterized by chromatographic analysis and were used to test the BDI effects on the metabolic and respiratory activities of denitrifying bacteria, under aerobic and anaerobic (denitrification) conditions. The BDI of Fallopia spp. extracts was tested on a complex soil community by measuring denitrification enzyme activity (DEA), substrate induced respiration (SIR), as well as abundances of denitrifiers and total bacteria. In 15 strains of denitrifying bacteria, extracts led to a greater BDI (92%) than respiration inhibition (50%). Anaerobic metabolic activity reduction was correlated with catechin concentrations and the BDI was dose dependent. In soil, extracts reduced the DEA/SIR ratio without affecting the denitrifiers: total bacteria ratio. We show that secondary metabolite(s) from Fallopia spp. inhibit denitrification. This provides new insight into plant-soil interactions and improves our understanding of a plant's ability to shape microbial soil functioning.

  3. The colonic metabolites dihydrocaffeic acid and dihydroferulic acid are more effective inhibitors of in vitro platelet activation than their phenolic precursors.

    PubMed

    Baeza, Gema; Bachmair, Eva-Maria; Wood, Sharon; Mateos, Raquel; Bravo, Laura; de Roos, Baukje

    2017-03-22

    Cardiovascular disease (CVD) is the major cause of morbidity and mortality worldwide. The consumption of a healthy diet rich in polyphenols has been inversely associated with the development of CVD. This study evaluated the effects of green coffee bean extract (GCBE) and yerba mate phenolic extract (YMPE), the main phenolic and methylxanthine constituents (5-caffeoylquinic acid, 3,5-dicaffeoylquinic acid, caffeine, and theobromine), and their main metabolites (caffeic acid, ferulic acid, dihydrocaffeic acid (DHCA) and dihydroferulic acid (DHFA)) on platelet activation in vitro. Upon incubation with different doses (0.01-100 μg mL(-1) or μM) of each compound, adenosine 5'-diphosphate-induced P-selectin expression and fibrinogen binding were determined using whole blood flow cytometry. Platelet P-selectin expression was significantly decreased by YMPE and all phenolic and methylxanthine constituents at physiological concentrations, compared with control, whereas fibrinogen binding on platelets was significantly increased. The colonic metabolites (DHCA and DHFA) had stronger inhibitory effects on P-selectin expression than their phenolic precursors, suggesting an increase in the efficacy to modulate platelet activation with the metabolism of the phenolic compounds.

  4. Novel, unifying mechanism for mescaline in the central nervous system: electrochemistry, catechol redox metabolite, receptor, cell signaling and structure activity relationships.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2009-01-01

    A unifying mechanism for abused drugs has been proposed previously from the standpoint of electron transfer. Mescaline can be accommodated within the theoretical framework based on redox cycling by the catechol metabolite with its quinone counterpart. Electron transfer may play a role in electrical effects involving the nervous system in the brain. This approach is in accord with structure activity relationships involving mescaline, abused drugs, catecholamines, and etoposide. Inefficient demethylation is in keeping with the various drug properties, such as requirement for high dosage and slow acting. There is a discussion of receptor binding, electrical effects, cell signaling and other modes of action. Mescaline is a nonselective, seretonin receptor agonist. 5-HTP receptors are involved in the stimulus properties. Research addresses the aspect of stereochemical requirements. Receptor binding may involve the proposed quinone metabolite and/or the amino sidechain via protonation. Electroencephalographic studies were performed on the effects of mescaline on men. Spikes are elicited by stimulation of a cortical area. The potentials likely originate in nonsynaptic dendritic membranes. Receptor-mediated signaling pathways were examined which affect mescaline behavior. The hallucinogen belongs to the class of 2AR agonists which regulate pathways in cortical neurons. The research identifies neural and signaling mechanisms responsible for the biological effects. Recently, another hallucinogen, psilocybin, has been included within the unifying mechanistic framework. This mushroom constituent is hydrolyzed to the phenol psilocin, also active, which is subsequently oxidized to an ET o-quinone or iminoquinone.

  5. Effect of Food on the Single-dose Pharmacokinetics and Tolerability of Subutinib and its Active Metabolite in Chinese Healthy Volunteers.

    PubMed

    Ding, L-K; Jia, N; Yang, L; Li, J-K; Song, W; Wang, M-H; Wang, C; Gao, X-H; Wen, A-D

    2016-03-01

    The aim of this study is to investigate a food effect on the single-dose pharmacokinetics and tolerability of subutinib maleate capsules in healthy Chinese volunteers. The author evaluated the effect of being under a fasting or fed state at the time of drug intake on the single-dose of subutinib maleate capsules in a randomized, balanced, single-dose, 2-treatment (fasting and fed), 2-period design with a 3-week washout period. The end points were the maximum plasma drug concentration (Cmax) and areas under the plasma-concentration curve (AUC) for 336 h exposure (AUC0-336) and total exposure (AUC0-∞). All volunteers completed the whole study without side effects being observed. For subutinib, Cmax were 6.13 and 5.04 ng·mL(-1), and AUC0-336 were 278.4 and 304.5 h·ng·mL(-1) in the fasting and the fed state, respectively. For active metabolite, Cmax were 0.90 and 0.61 ng·mL(-1), and AUC0-336 were 65.5 and 56.4 h·ng·mL(-1) in the fasting and the fed state, respectively. The authors showed that food intake was associated with a slight increase in AUC values but decrease in Cmax of subutinib, and it was associated with a decrease both in AUC and Cmax of active metabolite.

  6. Evaluating the Effects of Tetrachloro-1,4-benzoquinone, an Active Metabolite of Pentachlorophenol, on the Growth of Human Breast Cancer Cells

    PubMed Central

    Ling, Binbing; Gao, Bosong; Yang, Jian

    2016-01-01

    Tetrachloro-1,4-benzoquinone (TCBQ), an active metabolite of pentachlorophenol (PCP), is genotoxic and potentially carcinogenic. As an electrophilic and oxidative molecule, TCBQ can conjugate with deoxyguanosine in DNA molecules and/or impose oxidative stress in cells. In the current study, we investigated the effects of TCBQ on intracellular ROS production, apoptosis, and cytotoxicity against three different subtypes of human breast cancer cells. Luminal A subtype MCF7 (ER+, PR+, HER2−) cells maintained the highest intracellular ROS level and were subjected to TCBQ-induced ROS reduction, apoptosis, and cytotoxicity. HER2 subtype Sk-Br-3 (ER−, PR−, HER2+) cells possessed the lowest intracellular ROS level. TCBQ promoted ROS production, inhibited apoptosis, and elevated cytotoxicity (due to necrosis) against Sk-Br-3 cells. Triple-negative/basal-like subtype MDA-MB-231 cells were less sensitive towards TCBQ treatment. Therefore, the effect of prolonged exposure to PCP and its active metabolites on cancer growth is highly cancer-cell-type specific. PMID:26981120

  7. Influence of climatic conditions on the distribution, abundance and activity of Agriotes lineatus L. adults in sex pheromone traps in Croatia

    NASA Astrophysics Data System (ADS)

    Kozina, Antonela; Čačija, Maja; Igrc Barčić, Jasminka; Bažok, Renata

    2013-07-01

    The aims of this work were: (i) to determine the distribution and abundance of Agriotes lineatus, (ii) correlate the abundance with the prevailing climatic conditions to establish how temperature and rainfall are influencing the dominance, and (iii) to determine the activity characteristics of the adults. Investigations were conducted in 17 fields grouped in four regions characterized by different climatic conditions. Using sex pheromone traps the most important Agriotes species ( A. lineatus L., A. sputator L., A. obscurus L., A. brevis Cand. and A. ustulatus Schall.) were collected. The monitoring period for A. brevis, A. sputator, A. lineatus and A. obscurus was from the 18th to the 32nd, and for A. ustulatus from the 23rd to the 32nd week of the year. A total of 61,247 individuals Agriotes were captured, of which 24,916 individuals were A. lineatus. Abundance and dominance of A. lineatus were significantly higher in the region of Zagreb compared to other regions. Moving east, rainfall decreased and temperatures increased and associated with that the abundance and dominance indices were lower. It was determined that the abundance of A. lineatus was negatively correlated with average air temperature ( r = -0.5201; p < 0.0001). Compared to earlier data from the region of Zagreb the dominance index decreased. This might be a result of climate change as established average yearly temperature in these regions increased for 1.04 °C compared to the average data for the period 1961-1990. Other potentially damaging Agriotes species ( A. brevis and A. ustulatus) were also present in high abundances in some micro-regions.

  8. Biotransformation of a potent anabolic steroid, mibolerone, with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina, and biological activity evaluation of its metabolites

    PubMed Central

    Siddiqui, Mahwish; Ahmad, Malik Shoaib; Wahab, Atia-tul-; Yousuf, Sammer; Fatima, Narjis; Naveed Shaikh, Nimra; Rahman, Atta-ur-; Choudhary, M. Iqbal

    2017-01-01

    Seven metabolites were obtained from the microbial transformation of anabolic-androgenic steroid mibolerone (1) with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina. Their structures were determined as 10β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (2), 6β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (3), 6β,10β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (4), 11β,17β-dihydroxy-(20-hydroxymethyl)-7α,17α-dimethylestr-4-en-3-one (5), 1α,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (6), 1α,11β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (7), and 11β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (8), on the basis of spectroscopic studies. All metabolites, except 8, were identified as new compounds. This study indicates that C. blakesleeana, and C. echinulata are able to catalyze hydroxylation at allylic positions, while M. phaseolina can catalyze hydroxylation of CH2 and CH3 groups of substrate 1. Mibolerone (1) was found to be a moderate inhibitor of β-glucuronidase enzyme (IC50 = 42.98 ± 1.24 μM) during random biological screening, while its metabolites 2–4, and 8 were found to be inactive. Mibolerone (1) was also found to be significantly active against Leishmania major promastigotes (IC50 = 29.64 ± 0.88 μM). Its transformed products 3 (IC50 = 79.09 ± 0.06 μM), and 8 (IC50 = 70.09 ± 0.05 μM) showed a weak leishmanicidal activity, while 2 and 4 were found to be inactive. In addition, substrate 1 (IC50 = 35.7 ± 4.46 μM), and its metabolite 8 (IC50 = 34.16 ± 5.3 μM) exhibited potent cytotoxicity against HeLa cancer cell line (human cervical carcinoma). Metabolite 2 (IC50 = 46.5 ± 5.4 μM) also showed a significant cytotoxicity, while 3 (IC50 = 107.8 ± 4.0 μM) and 4 (IC50 = 152.5 ± 2.15 μM) showed weak cytotoxicity against HeLa cancer cell line. Compound 1 (IC50 = 46.3 ± 11.7 μM), and its transformed products 2 (IC50 = 43.3 ± 7.7 μM), 3 (IC50 = 65.6 ± 2.5 μM), and 4 (IC50 = 89.4 ± 2

  9. Biotransformation of a potent anabolic steroid, mibolerone, with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina, and biological activity evaluation of its metabolites.

    PubMed

    Siddiqui, Mahwish; Ahmad, Malik Shoaib; Wahab, Atia-Tul-; Yousuf, Sammer; Fatima, Narjis; Naveed Shaikh, Nimra; Rahman, Atta-Ur-; Choudhary, M Iqbal

    2017-01-01

    Seven metabolites were obtained from the microbial transformation of anabolic-androgenic steroid mibolerone (1) with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina. Their structures were determined as 10β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (2), 6β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (3), 6β,10β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (4), 11β,17β-dihydroxy-(20-hydroxymethyl)-7α,17α-dimethylestr-4-en-3-one (5), 1α,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (6), 1α,11β,17β-trihydroxy-7α,17α-dimethylestr-4-en-3-one (7), and 11β,17β-dihydroxy-7α,17α-dimethylestr-4-en-3-one (8), on the basis of spectroscopic studies. All metabolites, except 8, were identified as new compounds. This study indicates that C. blakesleeana, and C. echinulata are able to catalyze hydroxylation at allylic positions, while M. phaseolina can catalyze hydroxylation of CH2 and CH3 groups of substrate 1. Mibolerone (1) was found to be a moderate inhibitor of β-glucuronidase enzyme (IC50 = 42.98 ± 1.24 μM) during random biological screening, while its metabolites 2-4, and 8 were found to be inactive. Mibolerone (1) was also found to be significantly active against Leishmania major promastigotes (IC50 = 29.64 ± 0.88 μM). Its transformed products 3 (IC50 = 79.09 ± 0.06 μM), and 8 (IC50 = 70.09 ± 0.05 μM) showed a weak leishmanicidal activity, while 2 and 4 were found to be inactive. In addition, substrate 1 (IC50 = 35.7 ± 4.46 μM), and its metabolite 8 (IC50 = 34.16 ± 5.3 μM) exhibited potent cytotoxicity against HeLa cancer cell line (human cervical carcinoma). Metabolite 2 (IC50 = 46.5 ± 5.4 μM) also showed a significant cytotoxicity, while 3 (IC50 = 107.8 ± 4.0 μM) and 4 (IC50 = 152.5 ± 2.15 μM) showed weak cytotoxicity against HeLa cancer cell line. Compound 1 (IC50 = 46.3 ± 11.7 μM), and its transformed products 2 (IC50 = 43.3 ± 7.7 μM), 3 (IC50 = 65.6 ± 2.5 μM), and 4 (IC50 = 89.4 ± 2.7

  10. Inhibition of p70 S6 kinase (S6K1) activity by A77 1726, the active metabolite of leflunomide, induces autophagy through TAK1-mediated AMPK and JNK activation.

    PubMed

    Xu, Xiulong; Sun, Jing; Song, Ruilong; Doscas, Michelle E; Williamson, Ashley J; Zhou, Jingsong; Sun, Jun; Jiao, Xinan; Liu, Xiufan; Li, Yi

    2017-03-31

    mTOR activation suppresses autophagy by phosphorylating ULK1 at S757 and suppressing its enzymatic activity. Here we report that feedback activation of mTOR in the PI-3 kinase pathway by two p70 S6 kinase (S6K1) inhibitors (PF-4708671 and A77 1726, the active metabolite of an immunosuppressive drug leflunomide) or by S6K1 knockdown did not suppress but rather induced autophagy. Suppression of S6K1 activity led to the phosphorylation and activation of AMPK, which then phosphorylated ULK1 at S555. While mTOR feedback activation led to increased phosphorylation of ULK1 at S757, this modification did not the disrupt ULK1-AMPK interaction nor dampen ULK1 S555 phosphorylation and the induction of autophagy. In addition, inhibition of S6K1 activity led to JNK activation, which also contributed to autophagy. 5Z-7-oxozeaenol, a specific inhibitor of TAK1, or TAK1 siRNA blocked A77 1726-induced activation of AMPK and JNK, and LC3 lipidation. Taken together, our study establishes S6K1 as a key player in the PI-3 kinase pathway to suppress autophagy through inhibiting AMPK and JNK in a TAK1-dependent manner.

  11. Potential roles for autophosphorylation, kinase activity, and abundance of a CDK-activating kinase (Ee;CDKF;1) during growth in leafy spurge.

    PubMed

    Chao, Wun S; Serpe, Marcelo D; Jia, Ying; Shelver, Weilin L; Anderson, James V; Umeda, Masaaki

    2007-02-01

    Leafy spurge (Euphorbia esula L.) is a deep-rooted perennial weed that propagates both by seeds and underground adventitious buds located on the crown and roots. To enhance our understanding of growth and development during seed germination and vegetative propagation, a leafy spurge gene (Accession No. AF230740) encoding a CDK-activating kinase (Ee;CDKF;1) involved in cell-cycle progression was identified, and its function was confirmed based on its ability to rescue a yeast temperature-sensitive CAK mutant (GF2351) and through in vitro kinase assays. Site-directed mutagenesis of Ee;CDKF;1 indicated that two threonine residues (Thr291 and Thr296) were mutually responsible for intra-molecular autophosphorylation and for phosphorylating its substrate protein, cyclin-dependent kinase (CDK). Polyclonal antibodies generated against the Ee;CDKF;1 protein or against a phosphorylated Ee;CDKF;1 peptide [NERYGSL(pT)SC] were used to examine abundance and phosphorylation of CDKF;1 during seed germination and bud growth. The levels of CDKF;1 were lower in dry or imbibed seeds than in germinating seeds or seedlings. Differences in CDKF;1 were also observed during adventitious bud development; small buds appeared to have greater levels of CDKF;1 than large buds. Similar patterns of CDKF;1 expression were detected with either the polyclonal antibody developed using the CDKF;1 protein or the phosphorylated peptide. These results indicated that Thr291 is constitutively phosphorylated in vivo and associated with Ee;CDKF;1 activity. Our results further suggest that a certain level of CDKF;1 activity is maintained in most tissues and may be an important phenomenon for enzymes that regulate early steps in cell-cycle signaling pathways.

  12. Oxidized linoleic acid metabolite-cytochrome P450 system (OLAM-CYP) is active in biopsy samples from patients with inflammatory dental pain.

    PubMed

    Ruparel, Shivani; Hargreaves, Kenneth M; Eskander, Michael; Rowan, Spencer; de Almeida, Jose F A; Roman, Linda; Henry, Michael A

    2013-11-01

    Endogenous TRPV1 agonists such as oxidized linoleic acid metabolites (OLAMs) and the enzymes releasing them [eg, cytochrome P450 (CYP)] are up-regulated after inflammation in the rat. However, it is not known whether such agonists are elevated in human inflammatory pain conditions. Because TRPV1 is expressed in human dental pulp nociceptors, we hypothesized that OLAM-CYP machinery is active in this tissue type and is increased under painful inflammatory conditions such as irreversible pulpitis (IP). The aim of this study was to compare CYP expression and linoleic acid (LA) metabolism in normal vs inflamed human dental pulp. Our data showed that exogenous LA metabolism was significantly increased in IP tissues compared to normal tissues and that pretreatment with a CYP inhibitor, ketoconazole, significantly inhibited LA metabolism. Additionally, extracts obtained from LA-treated inflamed tissues evoked significant inward currents in trigeminal ganglia neurons and were blocked by pretreatment with the TRPV1 antagonist IRTX. Moreover, extracts obtained from ketoconazole-pretreated inflamed tissues significantly reduced inward currents in trigeminal ganglia neurons. These data suggest that LA metabolites produced in human inflamed tissues act as TRPV1 agonists and that the metabolite production can be targeted by CYP inhibition. In addition, immunohistochemical analysis of 2 CYP isoforms, CYP2J and CYP3A1, were shown to be predominately expressed in immune cells infiltrating the inflamed dental pulp, emphasizing the paracrine role of CYP enzymes in OLAM regulation. Collectively, our data indicate that the machinery responsible for OLAM production is up-regulated during inflammation and can be targeted to develop potential analgesics for inflammatory-induced dental pain.

  13. DNA Interstrand Cross-Linking Activity of (1-Chloroethenyl)oxirane, a Metabolite of β-chloroprene

    PubMed Central

    Wadugu, Brian A.; Ng, Christopher; Bartley, Bethany L.; Rowe, Rebecca J.; Millard, Julie T.

    2010-01-01

    With the goal of elucidating the molecular and cellular mechanisms of chloroprene toxicity, we examined the potential DNA cross-linking of the bifunctional chloroprene metabolite, (1-chloroethenyl)oxirane (CEO). We used denaturing polyacrylamide gel electrophoresis to monitor possible formation of interstrand cross-links by CEO within synthetic DNA duplexes. Our data suggest interstrand cross-linking at deoxyguanosine residues within 5′-GC and 5′-GGC sites, with the rate of cross-linking depending on pH (pH 5.0 > pH 6.0 > pH 7.0). A comparison of the cross-linking efficiencies of CEO and the structurally similar cross-linkers diepoxybutane (DEB) and epichlorohydrin (ECH) revealed that DEB > CEO ≥ ECH. Furthermore, we found that cytotoxicity correlates with cross-linking efficiency, supporting a role for interstrand cross-links in the genotoxicology of chloroprene. PMID:20030381

  14. Accelerator mass spectrometry measurement of intracellular concentrations of active drug metabolites in human target cells in vivo.

    PubMed

    Chen, J; Garner, R C; Lee, L S; Seymour, M; Fuchs, E J; Hubbard, W C; Parsons, T L; Pakes, G E; Fletcher, C V; Flexner, C

    2010-12-01

    Accelerator mass spectrometry (AMS) is an ultrasensitive technique to detect radiolabeled compounds. We administered a microdose (100 µg) of (14)C-labeled zidovudine (ZDV) with or without a standard unlabeled dose (300 mg) to healthy volunteers. Intracellular ZDV-triphosphate (ZDV-TP) concentration was measured using AMS and liquid chromatography-tandem mass spectrometry (LC/MS/MS). AMS analysis yielded excellent concordance with LC/MS/MS and was 30,000-fold more sensitive. The kinetics of intracellular ZDV-TP formation changed several-fold over the dose range studied (100 µg-300 mg). AMS holds promise as a tool for quantifying intracellular drug metabolites and other biomediators in vivo.

  15. The Active Tamoxifen Metabolite Endoxifen (4OHNDtam) Strongly Down-Regulates Cytokeratin 6 (CK6) in MCF-7 Breast Cancer Cells

    PubMed Central

    Dankel, Simon; Fenne, Ingvild S.; Skartveit, Linn; Drangevåg, Andreas; Bozickovic, Olivera; Flågeng, Marianne Hauglid; Søiland, Håvard; Mellgren, Gunnar; Lien, Ernst A.

    2015-01-01

    Introduction Tamoxifen is an anti-estrogen drug used in treatment of Estrogen Receptor (ER) positive breast cancer. Effects and side effects of tamoxifen is the sum of tamoxifen and all its metabolites. 4-Hydroxytamoxifen (4OHtam) and 4-hydroxy-N-demethyltamoxifen (4OHNDtam, endoxifen) both have ER affinity exceeding that of the parent drug tamoxifen. 4OHNDtam is considered the main active metabolite of tamoxifen. Ndesmethyltamoxifen (NDtam) is the major tamoxifen metabolite. It has low affinity to the ER and is not believed to influence tumor growth. However, NDtam might mediate adverse effects of tamoxifen treatment. In this study we investigated the gene regulatory effects of the three metabolites of tamoxifen in MCF-7 breast cancer cells. Material and Methods Using concentrations that mimic the clinical situation we examined effects of 4OHtam, 4OHNDtam and NDtam on global gene expression in 17β-estradiol (E2) treated MCF-7 cells. Transcriptomic responses were assessed by correspondence analysis, differential expression, gene ontology analysis and quantitative real time PCR (Q-rt-PCR). E2 deprivation and knockdown of Steroid Receptor Coactivator-3 (SRC-3)/Amplified in Breast Cancer 1 (AIB1) mRNA in MCF-7 cells were performed to further characterize specific effects on gene expression. Results 4OHNDtam and 4OHtam caused major changes in gene expression compared to treatment with E2 alone, with a stronger effect of 4OHNDtam. NDtam had nearly no effect on the global gene expression profile. Treatment of MCF-7 cells with 4OHNDtam led to a strong down-regulation of the CytoKeratin 6 isoforms (KRT6A, KRT6B and KRT6C). The CytoKeratin 6 mRNAs were also down-regulated in MCF-7 cells after E2 deprivation and after SRC-3/AIB1 knockdown. Conclusion Using concentrations that mimic the clinical situation we report global gene expression changes that were most pronounced with 4OHNDtam and minimal with NDtam. Genes encoding CytoKeratin 6, were highly down-regulated by 4

  16. Correlation between the sensitivity of tumors to treatment with CZ48 and local concentrations of the active metabolite CPT within the tumors

    PubMed Central

    LIU, XING; CAO, ZHISONG; MENDOZA, JOHN; VARDEMAN, DANA; GIOVANELLA, BEPPINO

    2013-01-01

    Crystalline camptothecin-20-O-propionate hydrate (CZ48) is an esterification product from the reaction of natural camptothecin with propionic anhydride. CZ48 has been tested against 29 human tumor lines grown in nude mice as xenografts. Of the tested tumor lines, 28 were found to be responsive to CZ48, by regression or significant inhibition. The total response rate was 97%. However, the effective dose required to achieve the positive response varied from 100 to 2000 mg/kg/day depending on the tumor type. Thus, the sensitivity of tumors to CZ48 treatment varied from tumor to tumor. The most sensitive CLO-breast carcinoma achieved regression when treated with 100 mg/kg/day, while PC3-prostate carcinoma required as high as 1000 mg/kg/day to achieve a definitive response. To determine the reason for these differences in sensitivities among the tumors, we treated 9 human xenografts grown in nude mice with 1000 mg/kg/day CZ48 until saturation and measured the local concentrations of the parental CZ48 as well as the corresponding metabolite camptothecin (CPT) in the tumors with the established high-performance liquid chromatography procedure. Results showed that the sensitivities of these tumors to CZ48 treatment were not affected by local concentrations of the active metabolite CPT in the tumors, but instead by the types of tumors. PMID:24648919

  17. Sensitive liquid chromatography-tandem mass spectrometry method for the determination of loratadine and its major active metabolite descarboethoxyloratadine in human plasma.

    PubMed

    Sutherland, F C; de Jager, A D; Badenhorst, D; Scanes, T; Hundt, H K; Swart, K J; Hundt, A F

    2001-04-20

    A sensitive method for the simultaneous determination of loratadine and its major active metabolite descarboethoxyloratadine (DCL) in plasma was developed, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. The samples were extracted from plasma with toluene followed by back-extraction into formic acid (2%) for DCL after which the toluene containing the loratadine was evaporated, the analyte reconstituted and combined with the DCL back-extract. Chromatography was performed on a Phenomenex Luna C18 (2) 5-microm, 150x2.1-mm column with a mobile phase consisting of acetonitrile-0.1% formic acid using gradient elution (10 to 90% acetonitrile in 2 min) at a flow-rate of 0.3 ml/min. Detection was achieved by a Perkin-Elmer API 2000 mass spectrometer (LC-MS-MS) set at unit resolution in the multiple reaction monitoring mode. TurbolonSpray ionisation was used for ion production. The mean recovery for loratadine and descarboethoxyloratadine was 61 and 100%, respectively, with a lower limit of quantification at 0.10 ng/ml for both the analyte and its metabolite. This is the first assay method described for the simultaneous determination of loratadine and descarboethoxyloratadine in plasma using one chromatographic run. The method is sensitive and reproducible enough to be used in pharmacokinetic studies.

  18. Simultaneous determination of morniflumate and its major active metabolite, niflumic acid, in human plasma by high-performance liquid chromatography in stability and pharmacokinetic studies.

    PubMed

    Cho, Hea-Young; Park, Geun-Kyeong; Lee, Yong-Bok

    2013-11-01

    A rapid, sensitive and stable high-performance liquid chromatography (HPLC) method was developed and validated for the simultaneous determination of morniflumate and its major active metabolite, niflumic acid, in human plasma. HPLC analysis was carried out using a 5 µm particle size, C18 -bonded silica column with a mixture of acetonitrile and 0.005 m potassium phosphate monobasic in water (60:40, v/v) as the mobile phase and UV detection at 287 nm. The method involved the treatment with 50 μL of 0.4 m hydrochloric acid for the stability of morniflumate, extraction with diethylether and evaporation to dryness under a nitrogen stream. The lower limit of quantitation for morniflumate and niflumic acid was 50 and 500 ng/mL, respectively. The calibration curves for morniflumate and niflumic acid were linear over the concentration range of 50-20,000 ng/mL and 500-50,000 ng/mL, respectively, with correlation coefficients greater than 0.9995 and inter- or intra-batch coefficients of variation not exceeding 13.79%. The variability (percentage difference) of incurred sample re-analysis did not exceed 11.72% and all of the repeat samples fell within 20% of the mean value. This assay procedure was applied successfully to an examination of the pharmacokinetics of morniflumate and its metabolite, niflumic acid, in human subjects.

  19. The influence of salinity on the abundance, transcriptional activity, and diversity of AOA and AOB in an estuarine sediment: a microcosm study.

    PubMed

    Zhang, Yan; Chen, Lujun; Dai, Tianjiao; Tian, Jinping; Wen, Donghui

    2015-11-01

    Estuarine sediment-seawater microcosms were established to evaluate the influence of salinity on the population, transcriptional activity, and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB). AOA was found to show the most abundant and the highest transcriptional activity under moderate salinity; on the other hand, AOB abundance was not sensitive to salinity variation but showed the highest transcriptional activity in the low-salinity microcosms. AOA exhibited more advantages than AOB on growth and ammonia-oxidizing activity under moderate- and high-salinity environments. The highest richness and diversity of active AOA were found under salinity of 15 psu. All the active AOA detected under the salinities studied were clustered into Nitrosopumilus maritimus linage, with the composition shifted from N. maritimus C12 cluster, N. maritimus like 1.1 cluster, N. maritimus SCM1 cluster, and N. maritimus like 1.2 cluster to N. maritimus C12 and N. maritimus A10 clusters when salinity was increased from 5 to 30 psu.

  20. Quaternary ammonium-linked glucuronidation of trans-4-hydroxytamoxifen, an active metabolite of tamoxifen, by human liver microsomes and UDP-glucuronosyltransferase 1A4.

    PubMed

    Ogura, Kenichiro; Ishikawa, Yuko; Kaku, Teppei; Nishiyama, Takahito; Ohnuma, Tomokazu; Muro, Kei; Hiratsuka, Akira

    2006-04-28

    Tamoxifen (TAM), a nonsteroidal antiestrogen, is the most widely used drug for chemotherapy of hormone-dependent breast cancer in women. Trans-4-hydroxy-TAM (trans-4-HO-TAM), one of the TAM metabolites in humans, has been considered to be an active metabolite of TAM because of its higher affinity toward estrogen receptors (ERs) than the parent drug and other side-chain metabolites. In the present study, we found a new potential metabolic pathway of trans-4-HO-TAM and its geometrical isomer, cis-4-HO-TAM, via N-linked glucuronic acid conjugation for excretion in humans. N+-Glucuronides of 4-HO-TAM isomers were isolated along with O-glucuronides from a reaction mixture consisting of trans- or cis-4-HO-TAM and human liver microsomes fortified with UDP-glucuronic acid and identified with their respective synthetic specimens by high performance liquid chromatography-electrospray ionization time-of-flight mass spectrometry. Although N- and O-glucuronidating activities of human liver microsomes toward trans-4-HO-TAM were nearly comparable, O-glucuronidation was predominant for cis-4-HO-TAM conjugation. Only UGT1A4 catalyzed the N-linked glucuronidation of 4-HO-TAM among recombinant human UGT isoforms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17) expressed in insect cells. In contrast, all UGT isoforms, except for UGT1A3 and UGT1A4, catalyzed O-glucuronidation of 4-HO-TAM. Although O-glucuronidation of 4-HO-TAM greatly decreased binding affinity for human ERs, 4-HO-TAM N+-glucuronide still had binding affinity similar to 4-HO-TAM itself, suggesting that N+-glucuronide might contribute to the biological activity of TAM in vivo.

  1. Activity of rifapentine and its metabolite 25-O-desacetylrifapentine compared with rifampicin and rifabutin against Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis and M. bovis BCG.

    PubMed

    Rastogi, N; Goh, K S; Berchel, M; Bryskier, A

    2000-10-01

    The in vitro activity of rifapentine and its metabolite, 25-O:-desacetylrifapentine, as compared with that of rifampicin and rifabutin, was determined against Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis and M. bovis BCG. MICs were determined radiometrically and by the 1% proportional method using Middlebrook 7H11 agar. The bactericidal effect of the drugs was determined in parallel at selected concentrations. For drugsusceptible isolates of M. tuberculosis, the Bactec MICs of rifapentine and 25-O:-desacetylrifapentine were 0.03-0.06 mg/L and 0. 125-0.25 mg/L, respectively. Similar MICs were obtained for M. africanum (0.03-0.125 and 0.125-0.50 mg/L, respectively), and M. bovis (0.063-0.25 and 0.125-1.0 mg/L, respectively), but MICs were considerably lower for M. bovis BCG (0.008-0.063 mg/L for rifapentine and 0.016-0.125 mg/L for its metabolite). In general, MICs determined using 7H11 agar medium were usually one or two dilutions higher than those obtained using Bactec broth. When compared with rifampicin and rifabutin, the inhibitory activity of rifapentine for drug-susceptible isolates was roughly equal to that of rifabutin, and the inhibitory activity of 25-O:-desacetylrifapentine was comparable to that of rifampicin; however, rifapentine was somewhat more bactericidal than rifabutin at equal concentrations. Clinical isolates of M. tuberculosis with a high degree of resistance to rifampicin (MIC >/= 32 mg/L) were also highly resistant to rifabutin, rifapentine and 25-O:-desacetylrifapentine, although the MICs of rifabutin in this case were somewhat lower than the MICs of rifapentine.

  2. alpha-Adrenergic activity and cardiovascular effects of besipirdine HCl (HP 749) and metabolite P7480 in vitro and in the conscious rat and dog.

    PubMed

    Hubbard, J W; Nordstrom, S T; Smith, C P; Brooks, K M; Laws-Ricker, L; Zhou, L; Vargas, H M

    1997-04-01

    Besipirdine displays potent adrenergic activity in a variety of pharmacological and behavioral tests. Based on this property, we evaluated the effects of besipirdine and its N-despropyl metabolite N-despropyl-besipirdine (P7480) on cardiovascular function in rats and dogs. Besipirdine and P7480 bind alpha-2 adrenoceptors (K(I): 380 and 10 nM, respectively) and facilitate the stimulated release of [3H]norepinephrine from rat cortical slices due to presynaptic autoreceptor blockade. In rat aorta rings and the pithed rat, P7480, but not besipirdine, also behaved as a postsynaptic alpha-1 adrenoceptor agonist. In conscious rats, besipirdine (2-10 mg/kg, p.o.) and P7480 (3-10 mg/kg, p.o.) produced dose-related increases in mean arterial pressure. Inhibition of hepatic cytochrome P-450 enzyme activity blocked the pressor effect of besipirdine, but not of P7480; therefore, P7480 mediated besipirdine's pressor effect. The bradycardia after either agent was unaffected. In conscious dogs, besipirdine (0.1-2 mg/kg, p.o.) also produced dose-related hypertension and bradycardia. The hypertension, but not the bradycardia, were sensitive to prazosin (3 mg/kg, p.o.), but not hexamethonium (10 mg/kg, p.o.). Muscarinic and beta-adrenergic receptor blockade studies in anesthetized dogs demonstrated the bradycardia to be due to withdrawal of cardiac sympathetic tone. These findings suggest that besipirdine's peripheral hypertensive effect is primarily mediated by the pressor metabolite P7480, although facilitated norepinephrine release may contribute. Besipirdine's bradycardic action appears to be centrally mediated, because both compounds lacked direct negative chronotropic activity on spontaneously beating guinea pig atria in vitro.

  3. Induction of UDP-glucuronosyltransferase 2B15 gene expression by the major active metabolites of tamoxifen, 4-hydroxytamoxifen and endoxifen, in breast cancer cells.

    PubMed

    Chanawong, Apichaya; Hu, Dong Gui; Meech, Robyn; Mackenzie, Peter I; McKinnon, Ross A

    2015-06-01

    We previously reported upregulation of UGT2B15 by 17β-estradiol in breast cancer MCF7 cells via binding of the estrogen receptor α (ERα) to an estrogen response unit (ERU) in the proximal UGT2B15 promoter. In the present study, we show that this ERα-mediated upregulation was significantly reduced by two ER antagonists (fulvestrant and raloxifene) but was not affected by a third ER antagonist, 4-hydroxytamoxifen (4-OHTAM), a major active tamoxifen (TAM) metabolite. Furthermore, we found that, similar to 17β-estradiol, 4-OHTAM and endoxifen (another major active TAM metabolite) elevated UGT2B15 mRNA levels, and that this stimulation was significantly abrogated by fulvestrant. Further experiments using 4-OHTAM revealed a critical role for ERα in this regulation. Specifically; knockdown of ERα expression by anti-ERα small interfering RNA reduced the 4-OHTAM-mediated induction of UGT2B15 expression; 4-OHTAM activated the wild-type but not the ERU-mutated UGT2B15 promoter; and chromatin immunoprecipitation assays showed increased ERα occupancy at the UGT2B15 ERU in MCF7 cells upon exposure to 4-OHTAM. Together, these data indicate that both 17β-estradiol and the antiestrogen 4-OHTAM upregulate UGT2B15 in MCF7 cells via the same ERα-signaling pathway. This is consistent with previous observations that both 17β-estradiol and TAM upregulate a common set of genes in MCF7 cells via the ER-signaling pathway. As 4-OHTAM is a UGT2B15 substrate, the upregulation of UGT2B15 by 4-OHTAM in target breast cancer cells is likely to enhance local metabolism and inactivation of 4-OHTAM within the tumor. This represents a potential mechanism that may reduce TAM therapeutic efficacy or even contribute to the development of acquired TAM resistance.

  4. Effect of sublethal preculturing on the survival of probiotics and metabolite formation in set-yoghurt.

    PubMed

    Settachaimongkon, Sarn; van Valenberg, Hein J F; Winata, Vera; Wang, Xiaoxi; Nout, M J Robert; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J

    2015-08-01

    The objective of this study was to investigate the effect of preculturing of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB12 under sublethal stress conditions on their survival and metabolite formation in set-yoghurt. Prior to co-cultivation with yoghurt starters in milk, the two probiotic strains were precultured under sublethal stress conditions (combinations of elevated NaCl and low pH) in a batch fermentor. The activity of sublethally precultured probiotics was evaluated during fermentation and refrigerated storage by monitoring bacterial population dynamics, milk acidification and changes in volatile and non-volatile metabolite profiles of set-yoghurt. The results demonstrated adaptive stress responses of the two probiotic strains resulting in their viability improvement without adverse influence on milk acidification. A complementary metabolomic approach using SPME-GC/MS and (1)H-NMR resulted in the identification of 35 volatiles and 43 non-volatile polar metabolites, respectively. Principal component analysis revealed substantial impact of the activity of sublethally precultured probiotics on metabolite formation demonstrated by distinctive volatile and non-volatile metabolite profiles of set-yoghurt. Changes in relative abundance of various aroma compounds suggest that incorporation of stress-adapted probiotics considerably influences the organoleptic quality of product. This study provides new information on the application of stress-adapted probiotics in an actual food-carrier environment.

  5. The Microbiota and Abundance of the Class 1 Integron-Integrase Gene in Tropical Sewage Treatment Plant Influent and Activated Sludge.

    PubMed

    Paiva, Magna C; Ávila, Marcelo P; Reis, Mariana P; Costa, Patrícia S; Nardi, Regina M D; Nascimento, Andréa M A

    2015-01-01

    Bacteria are assumed to efficiently remove organic pollutants from sewage in sewage treatment plants, where antibiotic-resistance genes can move between species via mobile genetic elements known as integrons. Nevertheless, few studies have addressed bacterial diversity and class 1 integron abundance in tropical sewage. Here, we describe the extant microbiota, using V6 tag sequencing, and quantify the class 1 integron-integrase gene (intI1) in raw sewage (RS) and activated sludge (AS). The analysis of 1,174,486 quality-filtered reads obtained from RS and AS samples revealed complex and distinct bacterial diversity in these samples. The RS sample, with 3,074 operational taxonomic units, exhibited the highest alpha-diversity indices. Among the 25 phyla, Proteobacteria, Bacteroidetes and Firmicutes represented 85% (AS) and 92% (RS) of all reads. Increased relative abundance of Micrococcales, Myxococcales, and Sphingobacteriales and reduced pathogen abundance were noted in AS. At the genus level, differences were observed for the dominant genera Simplicispira and Diaphorobacter (AS) as well as for Enhydrobacter (RS). The activated sludge process decreased (55%) the amount of bacteria harboring the intI1 gene in the RS sample. Altogether, our results emphasize the importance of biological treatment for diminishing pathogenic bacteria and those bearing the intI1 gene that arrive at a sewage treatment plant.

  6. The Microbiota and Abundance of the Class 1 Integron-Integrase Gene in Tropical Sewage Treatment Plant Influent and Activated Sludge

    PubMed Central

    Paiva, Magna C.; Ávila, Marcelo P.; Reis, Mariana P.; Costa, Patrícia S.; Nardi, Regina M. D.; Nascimento, Andréa M. A.

    2015-01-01

    Bacteria are assumed to efficiently remove organic pollutants from sewage in sewage treatment plants, where antibiotic-resistance genes can move between species via mobile genetic elements known as integrons. Nevertheless, few studies have addressed bacterial diversity and class 1 integron abundance in tropical sewage. Here, we describe the extant microbiota, using V6 tag sequencing, and quantify the class 1 integron-integrase gene (intI1) in raw sewage (RS) and activated sludge (AS). The analysis of 1,174,486 quality-filtered reads obtained from RS and AS samples revealed complex and distinct bacterial diversity in these samples. The RS sample, with 3,074 operational taxonomic units, exhibited the highest alpha-diversity indices. Among the 25 phyla, Proteobacteria, Bacteroidetes and Firmicutes represented 85% (AS) and 92% (RS) of all reads. Increased relative abundance of Micrococcales, Myxococcales, and Sphingobacteriales and reduced pathogen abundance were noted in AS. At the genus level, differences were observed for the dominant genera Simplicispira and Diaphorobacter (AS) as well as for Enhydrobacter (RS). The activated sludge process decreased (55%) the amount of bacteria harboring the intI1 gene in the RS sample. Altogether, our results emphasize the importance of biological treatment for diminishing pathogenic bacteria and those bearing the intI1 gene that arrive at a sewage treatment plant. PMID:26115093

  7. Identification of citrinin as the defence metabolite of Penicillium corylophilum stressed with the antagonist fungus Beauveria bassiana.

    PubMed

    Dos Santos, Claudia Maria Campinha; da Costa, Gisela Lara; Figueroa-Villar, José Daniel

    2012-01-01

    Penicillium corylophilum isolated from mosquitoes was cultivated in liquid media leading to the first reported identification of citrinin (1a) as one metab