Science.gov

Sample records for abundant aliphatic hydrocarbon

  1. Aliphatic hydrocarbons of the fungi.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  2. Aliphatic hydrocarbons of the Murchison meteorite

    SciTech Connect

    Cronin, J.R.; Pizzarello, S. )

    1990-10-01

    The indigenous organic compounds of carbonaceous chondrites have been difficult to characterize because of problems arising from terrestrial contamination. The fall of the Murchison meteorite (CM2) provided pristine samples which allowed the resolution of some prior ambiguities as, for example, in the case of the amino acids. However, the nature of the aliphatic hydrocarbons has remained unclear. Shortly after the Murchison fall, one laboratory found them to be mainly cycloalkanes; another found, in order of abundance, branched alkanes, olefins, and cycloalkanes; while a third reported predominantly n-alkanes followed by methyl alkanes and olefins. The authors have reinvestigated this question using benzene-methanol as the extraction solvent, silica-gel chromatography for fractionation of the extract, and GC-MS, and IR and NMR spectroscopic techniques for the analyses. When interior samples were obtained and the analyses carried out under conditions that minimized environmental contaminants, they have found the principal aliphatic components of the Murchison meteorite to be a structurally diverse suite of C{sub 15} to C{sub 30} branched alkyl-substituted mono-, di-, and tricyclic alkanes. Comparative analyses were carried out on the Murray (CM2), Allende (CV3), and New Concord (L6) chondrites that illustrate the nature of the contamination problem encountered with carbonaceous chondrites.

  3. Aliphatic hydrocarbons of the Murchison meteorite.

    PubMed

    Cronin, J R; Pizzarello, S

    1990-01-01

    The indigenous organic compounds of carbonaceous chondrites have been difficult to characterize because of problems arising from terrestrial contamination. The fall of the Murchison meteorite (CM2) provided pristine samples which allowed the resolution of some prior ambiguities as, for example, in the case of the amino acids. However, the nature of the aliphatic hydrocarbons has remained unclear. Shortly after the Murchison fall, one laboratory found them to be mainly cycloalkanes; another found, in order of abundance, branched alkanes, olefins, and cycloalkanes; while a third reported predominantly n-alkanes followed by methyl alkanes and olefins. We have reinvestigated this question using benzene-methanol as the extraction solvent, silica-gel chromatography for fractionation of the extract, and GC-MS, and IR and NMR spectroscopic techniques for the analyses. When interior samples were obtained and the analyses carried out under conditions that minimized environmental contaminants, we have found the principal aliphatic components of the Murchison meteorite to be a structurally diverse suite of C15 to C30 branched alkyl-substituted mono-, di-, and tricyclic alkanes. Comparative analyses were carried out on the Murray (CM2), Allende (CV3), and New Concord (L6) chondrites that illustrate the nature of the contamination problem encountered with carbonaceous chondrites.

  4. Spreading coefficients of aliphatic hydrocarbons on water

    SciTech Connect

    Takii, Taichi; Mori, Y.H. . Dept. of Mechanical Engineering)

    1993-11-01

    Experiments have been performed to determine the equilibrium spreading coefficients of some aliphatic hydrocarbons (C[sub 6]C[sub 10]) on water. The thickness of a discrete lens of each hydrocarbon sample floating on a stagnant water pool was measured interferometrically and used to calculate the spreading coefficient of the hydrocarbon with the aid of Langmuir's capillarity theory. The dependences of the spreading coefficient, thus observed, on temperature (0--50 C) and on the number of carbon atoms in the hydrocarbon molecule are in qualitative agreement with the predictions based on the Lifshitz theory of van der Waals forces.

  5. Biofiltration of gasoline and diesel aliphatic hydrocarbons.

    PubMed

    Halecky, Martin; Rousova, Jana; Paca, Jan; Kozliak, Evguenii; Seames, Wayne; Jones, Kim

    2015-02-01

    The ability of a biofilm to switch between the mixtures of mostly aromatic and aliphatic hydrocarbons was investigated to assess biofiltration efficiency and potential substrate interactions. A switch from gasoline, which consisted of both aliphatic and aromatic hydrocarbons, to a mixture of volatile diesel n-alkanes resulted in a significant increase in biofiltration efficiency, despite the lack of readily biodegradable aromatic hydrocarbons in the diesel mixture. This improved biofilter performance was shown to be the result of the presence of larger size (C₉-C(12)) linear alkanes in diesel, which turned out to be more degradable than their shorter-chain (C₆-C₈) homologues in gasoline. The evidence obtained from both biofiltration-based and independent microbiological tests indicated that the rate was limited by biochemical reactions, with the inhibition of shorter chain alkane biodegradation by their larger size homologues as corroborated by a significant substrate specialization along the biofilter bed. These observations were explained by the lack of specific enzymes designed for the oxidation of short-chain alkanes as opposed to their longer carbon chain homologues.

  6. Stable isotope investigations of chlorinated aliphatic hydrocarbons.

    SciTech Connect

    Abrajano, T.; Heraty, L. J.; Holt, B. D.; Huang, L.; Sturchio, N. C.

    1999-06-01

    Stable isotope ratio measurements for carbon (C) and chlorine (Cl) can be used to elucidate the processes affecting transformation and transportation of chlorinated aliphatic hydrocarbons (CAHs) in the environment. Methods recently developed in our laboratory for isotopic analysis of CAHs have been applied to laboratory measurements of the kinetic isotope effects associated with aerobic degradation of dichloromethane (DCM) and with both anaerobic and aerobic cometabolic degradation of trichlomethene (TCE) in batch and column microbial cultures. These experimental determinations of fractionation factors are crucial for understanding the behavior of CAHs in complex natural systems, where the extent of biotransformation can be masked by dispersion and volatilization. We have also performed laboratory investigations of kinetic isotope effects accompanying evaporation of CAHs, as well as field investigations of natural attenuation and in situ remediation of CAHs in a number of contaminated shallow aquifers at sites operated by the federal government and the private sector.

  7. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    USGS Publications Warehouse

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  8. Determination of aliphatic hydrocarbons in the alga Himanthalia elongata.

    PubMed

    Punín Crespo, M O; Lage Yusty, M A

    2004-02-01

    The algae considered new foods according to Regulation CE 258/97 need a guarantee of their healthfulness before being in the European market. In this work ten samples of the brown alga Himanthalia elongata have been analyzed with the aim of verifying the absence of aliphatic hydrocarbons, due to the ability of the macroalgae to capture lipophilic organic compounds of the marine water coming from accidental or continuous leaks of raw oil and refined products, which happen each year with the growth of the industrialization and the demand of energy. The fat of the samples were Soxhlet extracted using hexane:dichloromethane (1:1) for 7h. The organic fractions were purified using silica microcolumns. The identification and quantification of the aliphatic hydrocarbons have been carried out using gas chromatography (GC) with flame ionization detector (FID). The total hydrocarbon content was between 14.8 and 40.2 microg g(-1) dry weight. PMID:14759670

  9. Aliphatics hydrocarbon content in surface sediment from Jakarta Bay, Indonesia

    NASA Astrophysics Data System (ADS)

    YAzis, M.; Asia, L.; Piram, A.; Doumenq, P.; Syakti, A. D.

    2016-02-01

    Sedimentary aliphatic hydrocarbons content have been studied quantitatively and qualitatively using GC/MS method in eight coastal stations located in the Jakarta Bay, North of Jakarta, Indonesia. The total concentrations n-alkanes have ranged from 480 μg.kg-1to 1,935 μg.kg-1sediment dry weight. Several ratios (e.g. CPI24-32, NAR, TAR, Pr/Phy, n-C17/Pr, n- C18/Phyt,n-C29/n-C17, Ʃn-alkanes/n-C16LMW/HMW, Paq and TMD) were used to evaluate the possible sources of terrestrial-marine inputs of these hydrocarbons in the sediments. The various origins of aliphatic hydrocarbons were generally biogenic, including both terrigenous and marine, with an anthropogenic pyrolytic contribution (petrogenic and biogenic combustion). Two stations (G,H) were thehighest concentration and had potential risk to environment

  10. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  11. Aliphatic hydrocarbons in Great Barrier Reef organisms and environment

    NASA Astrophysics Data System (ADS)

    Coates, M.; Connell, D. W.; Bodero, J.; Miller, G. J.; Back, R.

    1986-07-01

    This investigation was undertaken to assess the chemical nature, occurrence, and possible origin of petroleum hydrocarbons in the Great Barrier Reef ecosystem. Aliphatic hydrocarbons in surface sediments, water, and a suite of seven species from widely separated coral reefs in the Great Barrier Reef area were analysed by gas chromatography, and by gas chromatography coupled with mass spectrometry. The hydrocarbons found were substantially of biogenic origin. The major components were n-pentadecane, n-heptadecane, pristane and mono-alkenes based on heptadecane, and were believed to originate from benthic algae and phytoplankton. There was no evidence to suggest that lipid content had any influence on hydrocarbon content. Hydrocarbons from the organisms and sediments have characteristic composition patterns which would be altered by the presence of petroleum hydrocarbons. An unresolved complex mixture, usually considered indicative of petroleum contamination, was found in greater than trace amounts only in Holothuria (sea cucumber) and Acropora (coral) from the Capricorn Group, and in some sediment samples from the Capricorn Group and Lizard Island area.

  12. Aliphatic Hydrocarbons of Cladosporium resinae Cultured on Glucose, Glutamic Acid, and Hydrocarbons

    PubMed Central

    Walker, J. D.; Cooney, J. J.

    1973-01-01

    The carbon source markedly influenced the qualitative and quantitative composition of cellular hydrocarbons in Cladosporium resinae. Total lipid and hydrocarbon content was greater in cells grown on n-alkanes than in cells grown on glucose or glutamic acid. Glucose-grown cells contained a spectrum of aliphatic hydrocarbons from C7 to C36; pristane and n-hexadecane comprised 98% of the total. Cells grown on glutamic acid contained C7 to C23 hydrocarbons; n-tridecane, n-tetradecane, n-hexadecane, and pristane made up 74% of the total. n-Decane-grown cells yielded C8 to C32 compounds, and n-hexadecane (96%) was the major hydrocarbon. Cells grown on individual n-alkanes from C11 to C15 all contained C11 to C28 hydrocarbons, and cells grown on n-hexadecane contained C11 to C32 hydrocarbons. In n-undecane-grown cells, n-hexadecane and pristane made up 92% of the total, but in cells grown on C12 to C16 n-alkanes the major cellular hydrocarbon was the one on which the cells were grown. This suggests that cells cultured on n-alkanes of C12 or longer accumulate n-alkanes prior to oxidizing them. PMID:4762391

  13. Organochlorine compounds and aliphatic hydrocarbons in Pacific walrus blubber.

    PubMed

    Seagars, D J; Garlich-Miller, J

    2001-01-01

    Blubber samples were collected from 8 male and 19 female Pacific walrus (Odobenus rosmarus divergens) taken during a 1991 joint USA/USSR cruise traveling widely through the Bering Sea. Dieldrin was found at a level similar to that reported 10 years earlier; oxychlordane was found at a slightly higher concentration than reported previously (Taylor et aL, 1989). Heptachlor epoxide was detected for the first time and found at a low concentration. An initial testing for alpha-, beta- and gamma-HCH detected concentrations similar to those in other Bering Sea pinnipeds. Mean summation of PCB was 0.45 microg g(-1) wet weight in males and 0.16 microg g(-1) in females; only one sample was > 1 microg g(-1). Traces of aliphatic hydrocarbons were detected in all sampled animals, only pristane (x = 0.48 microg g(-1)) was found in concentrations > 1 microg g(-1). Small sample sizes, a lack of samples from immature animals, and uniformly low concentrations of contaminants precluded meaningful analysis of age-related effects and regional differences.

  14. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments from the Neuquen River, Argentine Patagonia.

    PubMed

    Monza, Liliana B; Loewy, Ruth M; Savini, Mónica C; Pechen de d'Angelo, Ana M

    2013-01-01

    Spatial distribution and probable sources of aliphatic and polyaromatic hydrocarbons (AHs, PAHs) were investigated in surface sediments collected along the bank of the Neuquen River, Argentina. Total concentrations of aliphatic hydrocarbons ranged between 0.41 and 125 μg/g dw. Six stations presented low values of resolved aliphatic hydrocarbons and the n-alkane distribution indexes applied suggested a clear biogenic source. These values can be considered the baseline levels of aliphatic hydrocarbons for the river sediments. This constitutes important information for the assessment of future impacts since a strong impulse in the exploitation of shale gas and shale oil in these zones is nowadays undergoing. For the other 11 stations, a mixture of aliphatic hydrocarbons of petrogenic and biogenic origin was observed. The spatial distribution reflects local inputs of these pollutants with a significant increase in concentrations in the lower course, where two major cities are located. The highest values of total aliphatic hydrocarbons were found in this sector which, in turn, was the only one where individual PAHs were detected.

  15. A statistical approach to the interpretation of aliphatic hydrocarbon distributions in marine sediments

    USGS Publications Warehouse

    Rapp, J.B.

    1991-01-01

    Q-mode factor analysis was used to quantitate the distribution of the major aliphatic hydrocarbon (n-alkanes, pristane, phytane) systems in sediments from a variety of marine environments. The compositions of the pure end members of the systems were obtained from factor scores and the distribution of the systems within each sample was obtained from factor loadings. All the data, from the diverse environments sampled (estuarine (San Francisco Bay), fresh-water (San Francisco Peninsula), polar-marine (Antarctica) and geothermal-marine (Gorda Ridge) sediments), were reduced to three major systems: a terrestrial system (mostly high molecular weight aliphatics with odd-numbered-carbon predominance), a mature system (mostly low molecular weight aliphatics without predominance) and a system containing mostly high molecular weight aliphatics with even-numbered-carbon predominance. With this statistical approach, it is possible to assign the percentage contribution from various sources to the observed distribution of aliphatic hydrocarbons in each sediment sample. ?? 1991.

  16. Aliphatic Hydrocarbons in Surface Sediments of Willapa Bay and Grays Harbor, Washington

    USGS Publications Warehouse

    Rapp, J.B.; Kvenvolden, K.A.; Clifton, H.E.

    1982-01-01

    Willapa Bay and Grays Harbor are two adjacent estuaries along the coast of Washington state. Willapa Bay is a recreational area minimally affected by industry; Grays Harbor, on the other hand, is moderately industrialized. Aliphatic hydrocarbons in surface sediments from these two estuaries reflect the differences in human activities. For example, the mean concentration of aliphatic hydrocarbons for seven stations in Willapa Bay is 1,000 ?g/g (relative to organic carbon) while in Grays Harbor this mean concentration for six stations is 1,900 ?g/g. The difference is attributed mainly to the greater urban and industrial pollution in Grays Harbor. The gas chromatographic records of aliphatic hydrocarbons also reflect the extent of hydrocarbon pollution by the presence of a chromatographically unresolved mixture of hydrocarbons. This kind of mixture is more evident in sediments from Grays Harbor, and in both estuaries it is more concentrated in sediments collected nearest to urban centers.

  17. Aliphatic and polycyclic aromatic hydrocarbons characterisation of Coimbra and Oporto PM2.5 urban aerosol

    NASA Astrophysics Data System (ADS)

    Rocha, A. C.; Mirante, F.; Gonçalves, C.; Nunes, T.; Alves, C.; Evtyugina, M.; Kowacz, M.; Pio, C.; Rocha, C.; Vasconcelos, T.

    2009-04-01

    The concentration of organic pollutants in urban areas is mostly due to incomplete combustion from vehicles, industries and domestic heating. Some of these compounds, principally the aliphatic (ALIPH) and polycyclic aromatic hydrocarbons (PAHs) promote harmful effects in human health. The determination of the ALIPH and PAHs concentration levels and their possible emission sources are useful for air quality management and source apportionment studies. In order to estimate and compare the ambient concentrations and establish the main sources of these compounds, the fine fraction of the atmospheric particulate matter (PM2.5) was collected simultaneously in Oporto and Coimbra during summer and winter seasons using a high volume sampler. The organic compounds were extracted from the particulate matter, under reflux with dichloromethane and the total organic extract (TOE) was fractionated by flash chromatography using five different eluents with increasing polarity. The hydrocarbon fractions were analysed by gas chromatography/mass spectrometry (GC/MS). Here we present and discuss the qualitative and quantitative composition of the aliphatic and aromatic fractions present in PM2.5 samples from both cities. The homologous series of C14 to C34 n-alkanes, isoprenoid hydrocarbons (pristane and phytane), PAHs and some petroleum markers have been identified and quantified. With the purpose of identifying the possible sources, various molecular diagnostic ratios were calculated. The global carbon preference index (CPI) closer to the unity, the large concentration of the unresolved complex mixture (UCM) and the presence of PAHs indicate that motor vehicle exhaust was the main emission source of the aliphatic and polycyclic aromatic fractions of Oporto and Coimbra aerosol, especially in the first city. Also, the remarkable presence of petroleum biomarkers such, as hopanes, confirms the previous results. Concentration ratios between PAHs were calculated and used to assign emission

  18. Seasonal distribution of aliphatic hydrocarbons in the Vaza Barris Estuarine System, Sergipe, Brazil.

    PubMed

    Barbosa, José Carlos S; Santos, Lukas G G V; Sant'Anna, Mércia V S; Souza, Michel R R; Damasceno, Flaviana C; Alexandre, Marcelo R

    2016-03-15

    The seasonal assessment of anthropogenic activities in the Vaza Barris estuarine river system, located in the Sergipe state, northeastern Brazil, was performed using the aliphatic hydrocarbon distribution. The aliphatic hydrocarbon and isoprenoid (Pristane and Phytane) concentrations ranged between 0.19 μg g(-1) and 8.5 μg g(-1) of dry weight. Data were analyzed using Kruskal-Wallis test, with significance level set at p<0.05, and no seasonality distribution change was observed. The Carbon Preference Index (CPI), associated with n-alkanes/n-C16, Low Molecular Weight/High Molecular Weight ratio (LMW/HMW) and Terrigenous to Aquatic Ratio (TAR) suggested biogenic input of aliphatic hydrocarbons for most samples, with significant contribution of higher plants.

  19. Biodegradation of aliphatic hydrocarbons in the presence of hydroxy cucurbit[6]uril.

    PubMed

    Pasumarthi, Rajesh; Kumar, Vikash; Chandrasekharan, Sivaraman; Ganguly, Anasuya; Banerjee, Mainak; Mutnuri, Srikanth

    2014-11-15

    Aliphatic hydrocarbons are one of the major environmental pollutants with reduced bioavailability. The present study focuses on the effect of hydroxy cucurbit[6]uril on the bioavailability of hydrocarbons. A bacterial consortium was used for biodegradation studies under saline and non-saline conditions. Based on denaturing gradient gel electrophoresis results it was found that the consortium under saline conditions had two different strains. The experiment was conducted in microcosms with tetradecane, hexadecane, octadecane and mixture of the mentioned hydrocarbons as the sole carbon source. The residual hydrocarbon was quantified using gas chromatography every 24h. It was found that biodegradation of tetradecane and hexadecane, as individual carbon source increased in the presence of hydroxy CB[6], probably due to the increase in their bioavailability. In case of octadecane this did not happen. Bioavailability of all three aliphatic hydrocarbons was increased when provided as a mixture to the consortium under saline conditions.

  20. Biodegradation of aliphatic hydrocarbons in the presence of hydroxy cucurbit[6]uril.

    PubMed

    Pasumarthi, Rajesh; Kumar, Vikash; Chandrasekharan, Sivaraman; Ganguly, Anasuya; Banerjee, Mainak; Mutnuri, Srikanth

    2014-11-15

    Aliphatic hydrocarbons are one of the major environmental pollutants with reduced bioavailability. The present study focuses on the effect of hydroxy cucurbit[6]uril on the bioavailability of hydrocarbons. A bacterial consortium was used for biodegradation studies under saline and non-saline conditions. Based on denaturing gradient gel electrophoresis results it was found that the consortium under saline conditions had two different strains. The experiment was conducted in microcosms with tetradecane, hexadecane, octadecane and mixture of the mentioned hydrocarbons as the sole carbon source. The residual hydrocarbon was quantified using gas chromatography every 24h. It was found that biodegradation of tetradecane and hexadecane, as individual carbon source increased in the presence of hydroxy CB[6], probably due to the increase in their bioavailability. In case of octadecane this did not happen. Bioavailability of all three aliphatic hydrocarbons was increased when provided as a mixture to the consortium under saline conditions. PMID:25277552

  1. Polymeric membrane and process for separation of aliphatically unsaturated hydrocarbons

    SciTech Connect

    Ho, W.S.W.

    1991-11-05

    This patent describes a process for separating at least one unsaturated hydrocarbon from a hydrocarbon feed steam containing the unsaturated hydrocarbon. It comprises contacting the feed stream against a first side of a solid, homogeneous membrane comprising a hydrophilic polymer selected from the group consisting of a polyvinylalcohol, polyvinylacetate, sulfonyl-containing polymers, polyvinylpyrrolidone, polyethylene oxide, polyacrylamide, copolymers thereof, and blends thereof a transition metal or transition metal ion capable of reversibly complexing with the unsaturated hydrocarbon, and a hydrophilic salt of a Group I metal; and withdrawing at a second side of the membrane a permeate comprising the unsaturated hydrocarbon in higher concentration than in the feed stream. This patent also describes a solid, homogeneous membrane for separating at least one unsaturated hydrocarbon from a hydrocarbon stream containing the unsaturated hydrocarbon. It comprises a hydrophilic polymer selected from the group consisting of polyvinylalcohol, polyvinylacetate, sulfonyl-containing polymers, polyvinylpyrrolidone, polyethylene oxide, polyacrylamide, copolymers thereof, and blends thereof, a transition metal or transition metal ion capable of reversibly complexing with the unsaturated hydrocarbon, and a hydrophilic salt of a Group I metal.

  2. Polymeric membrane and process for separating aliphatically unsaturated hydrocarbons

    SciTech Connect

    Ho, W.S.W.

    1991-05-14

    This patent describes a process for separating at least one unsaturated hydrocarbon from a hydrocarbon feed stream containing. It comprises: contacting the feed stream against a first side of a solid, homogeneous membrane consisting essentially of a hydrophilic polymer selected from the group consisting of polyvinylalcohol, polyvinylacetate, sulfonyl containing polymers, polyvinylpyrrolidone, polyethylene oxide, polyacrylamide, copolymers thereof, and blends thereof, and a metal or metal ion capable of reversibly complexing with the unsaturated hydrocarbon, the metal or metal ion is distributed homogeneously in the hydrophilic polymer; and withdrawing at a second side of the membrane a permeate comprising the unsaturated hydrocarbon in higher concentration than in the feed stream; whereby the membrane provides high permeability and selectivity for unsaturated hydrocarbons and substantially increases the rate at which the permeate is withdrawn.

  3. Distribution of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and organochlorinated pollutants in deep-sea sediments of the Southern Cretan margin, Eastern Mediterranean Sea: a baseline assessment.

    PubMed

    Mandalakis, Manolis; Polymenakou, Paraskevi N; Tselepides, Anastasios; Lampadariou, Nikolaos

    2014-07-01

    Deep sediments from the southern Cretan margin were analyzed to establish baseline levels for various types of organic pollutants before the anticipated intensification of anthropogenic activities. The total concentration of aliphatic hydrocarbons (ΣAH:326-3758ngg(-1), dry weight) was similar to those reported for deep sediments of the western Mediterranean Sea, while considerably lower levels were measured for polycyclic aromatic hydrocarbons (ΣPAH:9-60ngg(-1)). Source-diagnostic ratios suggested that the aliphatic hydrocarbons in sediments were mainly of terrestrial biogenic origin, while polycyclic aromatic hydrocarbons stemmed from the deposition of long-range transported combustion aerosols. Among the organochlorinated compounds analyzed, β-hexachlorocyclohexane (β-HCH:222-7052pgg(-1)), 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT:37-2236pgg(-1)) and polychlorinated biphenyls (ΣPCB:38-1182pgg(-1)) showed the highest abundance in sediments. The presence of HCHs and PCBs was attributed to historical inputs that have undergone extensive weathering, whereas an ongoing fresh input was suggested for p,p'-DDT. Multiple linear regression analysis revealed that the levels of the various pollutants in sediments were controlled by different factors, but with organic carbon content playing a prominent role in most cases.

  4. SELECTIVE ENUMERATION OF AROMATIC AND ALIPHATIC HYDROCARBON DEGRADING BACTERIA BY A MOST-PROBABLE-NUMBER PROCEDURE

    EPA Science Inventory

    A most-portable-number (MPN) procedure was developed to separately enumerate aliphatic and aromatic hydrocarbon degrading bacteria, because most of the currently available methods are unable to distinguish between these two groups. Separate 96-well microtiter plates are used to ...

  5. Microbiota associated with the migration and transformation of chlorinated aliphatic hydrocarbons in groundwater.

    PubMed

    Guan, Xiangyu; Liu, Fei; Xie, Yuxuan; Zhu, Lingling; Han, Bin

    2013-08-01

    Pollution of groundwater with chlorinated aliphatic hydrocarbons (CAHs) is a serious environmental problem which is threatening human health. Microorganisms are the major participants in degrading these contaminants. Here, groundwater contaminated for a decade with CAHs was investigated. Numerical simulation and field measurements were used to track and forecast the migration and transformation of the pollutants. The diversity, abundance, and possible activity of groundwater microbial communities at CAH-polluted sites were characterized by molecular approaches. The number of microorganisms was between 5.65E+05 and 1.49E+08 16S rRNA gene clone numbers per liter according to quantitative real-time PCR analysis. In 16S rRNA gene clone libraries constructed from samples along the groundwater flow, eight phyla were detected, and Proteobacteria were dominant (72.8 %). The microbial communities varied with the composition and concentration of pollutants. Meanwhile, toluene monooxygenases and methane monooxygenases capable of degradation of PCE and TCE were detected, demonstrating the major mechanism for PCE and TCE degradation and possibility for in situ remediation by addition of oxygen in this study.

  6. Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures.

    PubMed Central

    Chang, H L; Alvarez-Cohen, L

    1996-01-01

    The microbial degradation of chlorinated and nonchlorinated methanes, ethanes, and ethanes by a mixed methane-oxidizing culture grown under chemostat and batch conditions is evaluated and compared with that by two pure methanotrophic strains: CAC1 (isolated from the mixed culture) and Methylosinus trichosporium OB3b. With the exception of 1,1-dichloroethylene, the transformation capacity (Tc) for each chlorinated aliphatic hydrocarbon was generally found to be in inverse proportion to its chlorine content within each aliphatic group (i.e., methanes, ethanes, and ethenes), whereas similar trends were not observed for degradation rate constants. Tc trends were similar for all methane-oxidizing cultures tested. None of the cultures were able to degrade the fully chlorinated aliphatics such as perchloroethylene and carbon tetrachloride. Of the four cultures tested, the chemostat-grown mixed culture exhibited the highest Tc for trichloroethylene, cis-1,2-dichloroethylene, tetrachloroethane, 1,1,1-trichloroethane, and 1,2-dichloroethane, whereas the pure batch-grown OB3b culture exhibited the highest Tc for all other compounds tested. The product toxicity of chlorinated aliphatic hydrocarbons in a mixture containing multiple compounds was cumulative and predictable when using parameters measured from the degradation of individual compounds. The Tc for each chlorinated aliphatic hydrocarbon in a mixture (Tcmix) and the total Tc for the mixture (sigma Tcmix) are functions of the individual Tc, the initial substrate concentration (S0), and the first-order rate constant (k/Ks) of each compound in the mixture, indicating the importance of identifying the properties and compositions of all potentially degradable compounds in a contaminant mixture. PMID:8795228

  7. {Polycyclic aromatic hydrocarbons (PAHs) and aliphatic hydrocarbons in gas and particle phases in two sites of Mexico: MILAGRO project}

    NASA Astrophysics Data System (ADS)

    Amador-Muñoz, O.; Villalobos-Pietrini, R.; Castro, T.; Gaspariano-Larino, R.

    2009-04-01

    Aliphatic hydrocarbons are markers of anthropogenic and biogenic emission sources1; meanwhile PAHs are generated by incomplete combustion sources2. The last ones are important compounds due to their carcinogenic and mutagenic properties3,4. The aim of this study was to identify and quantify aliphatic hydrocarbons and PAHs in gas and particles phases of the atmospheric aerosol and to determine the day and night time behavior during the MILAGRO (Megacity Initiative: Local Global and Research Observations) campaign. The gas phase was collected on polyurethane foam, while particles less than 2.5 m (PM2.5) were collected on glass fiber filters covered with Teflon (TIGF, pallflex) of 8x10 in. Samplings were carried out with a high volume sampler (Tisch) with a flow of 1.13 m3 min-1 at two sites: Instituto Mexicano del Petróleo (T0) and Tecamac (T1) located at North and Northeast of Mexico City, respectively during day (7:00 am-7:00 pm) and night time (7:00 pm-7:00 am) from 1 to 29 of March, 2006. Ninteen PAHs and 23 aliphatic hydrocarbons from n-C13H28 to n-C35H72 were analyzed by gas chromatography coupled to mass spectrometry in impact mode. The samples were spiked with deuterads PAHs and aliphatics hydrocarbons before ultrasound extraction. Medians comparisons were made with Mann-Whitney U test. PAHs with molecular weight (MW) less than 228 g mol-1 were distributed in the gas phase, in both sites. Higher concentrations of PAHs ≥ 228 g mol-1 in PM2.5, were observed during night period (p

  8. Autothermal reforming of aliphatic and aromatic hydrocarbon liquids

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, M.; Voecks, G. E.

    1983-01-01

    Results are presented from a study of the autothermal reforming of paraffins and aromatics over nickel catalysts. The trials were performed to examine the carbon products that appear when steam is passed over hydrocarbon liquids to form H2-rich gases, i.e., the autothermal process (ATR). Attention was given to n-hexane, n-tetradecane, benzene, and benzene solutions of naphthalene with reactant preheat to 1000-1150 F. The carbon-formation limit was sought as a function of the steam-to-carbon and oxygen to carbon molar ratios at constant pressure and the preheat temperatures. The catalyst bed was examined after each trial to identify the locations and types of carbon formed using SEM, thermal gravimetric analysis, and X ray diffraction techniques. The hydrocarbon fuels each had a separate temperature and reaction profile, as well as carbon formation characteristics. No carbon formation was observed in the upper layer of the reactor bed, while both gas phase and surface-grown deposits were present in the lower part. The results are concluded of use in the study of No. 2 fuel oil for ATR feedstock.

  9. BIOTRANSFORMATION OF MIXTURES OF CHLORINATED ALIPHATIC HYDROCARBONS BY AN ACETATE-GROWN METHANOGENIC ENRICHMENT CULTURE. (R825549C053)

    EPA Science Inventory

    Biotransformation of chlorinated aliphatic hydrocarbons under anaerobic conditions has received considerable attention due to the prevalence of these compounds as groundwater contaminants. However, information concerning the impact of mixtures of chlorinated compounds on their...

  10. Unique gas and hydrocarbon adsorption in a highly porous metal-organic framework made of extended aliphatic ligands.

    PubMed

    Li, Kunhao; Lee, Jeongyong; Olson, David H; Emge, Thomas J; Bi, Wenhua; Eibling, Matthew J; Li, Jing

    2008-12-14

    High and unique gas and hydrocarbon adsorption in a highly stable guest-free microporous metal-organic framework constructed on rigid aliphatic ligands, H(2)bodc and ted, is reported in this work. PMID:19082093

  11. Hydrogen addition reactions of aliphatic hydrocarbons in comets

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi; Watanabe, N.; Watanabe, Y.; Fukushima, T.; Kawakita, H.

    2013-10-01

    Comets are thought as remnants of early solar nebula. Their chemical compositions are precious clue to chemical and physical evolution of the proto-planetary disk. Some hydrocarbons such as C2H6, C2H2 and CH4 in comets have been observed by using near-infrared spectroscopy. Although the compositions of C2H6 were about 1% relative to the water in normal comets, there are few reports on the detection of C2H6 in ISM. Some formation mechanisms of C2H6 in ISM have been proposed, and there are two leading hypotheses; one is the dimerizations of CH3 and another is the hydrogen addition reactions of C2H2 on cold icy grains. To evaluate these formation mechanisms for cometary C2H6 quantitatively, it is important to search the C2H4 in comets, which is the intermediate product of the hydrogen addition reactions toward C2H6. However, it is very difficult to detect the C2H4 in comets in NIR (3 microns) regions because of observing circumstances. The hydrogen addition reactions of C2H2 at low temperature conditions are not well characterized both theoretically and experimentally. For example, there are no reports on the reaction rate coefficients of those reaction system. To determine the production rates of those hydrogen addition reactions, we performed the laboratory experiments of the hydrogenation of C2H2 and C2H4. We used four types of the initial composition of the ices: pure C2H4, pure C2H2, C2H2 on amorphous solid water (ASW) and C2H4 on ASW at three different temperatures of 10, 20, and 30K. We found 1) reactions are more efficient when there are ASW in the initial compositions of the ice; 2) hydrogenation of C2H4 occur more rapid than that of C2H2.

  12. Atomic contributions to bond dissociation energies in aliphatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Matta, Chérif F.; Castillo, Norberto; Boyd, Russell J.

    2006-11-01

    This paper explores the atomic contributions to the electronic vibrationless bond dissociation enthalpy (BDE) at 0K of the central C-C bond in straight-chain alkanes (CnH2n+2) and trans-alkenes (CnH2n) with an even number of carbon atoms, where n =2, 4, 6, 8. This is achieved using the partitioning of the total molecular energy according to the quantum theory of atoms in molecules by comparing the atomic energies in the intact molecule and its dissociation products. The study is conducted at the MP2(full)/6-311++G(d,p) level of theory. It is found that the bulk of the electronic energy necessary to sever a single C-C bond is not supplied by these two carbon atoms (the α-carbons) but instead by the atoms directly bonded to them. Thus, the burden of the electronic part of the BDE is primarily carried by the two hydrogens attached to each of the α-carbons and by the β-carbons. The effect drops off rapidly with distance along the hydrocarbon chain. The situation is more complex in the case of the double bond in alkenes, since here the burden is shared between the α-carbons as well as the atoms directly bonded to them, namely, again the α-hydrogens and the β-carbons. These observations may lead to a better understanding of the bond dissociation process and should be taken into account when locally dense basis sets are introduced to improve the accuracy of BDE calculations.

  13. Spatial variations and chronologies of aliphatic hydrocarbons in Lake Michigan sediments.

    PubMed

    Doskey, P V

    2001-01-15

    Four sediment cores were collected in fine-grained depositional areas of the southern basin of Lake Michigan. Spatial variations of aliphatic hydrocarbons in surficial sediments were consistent with a lakeward movement of riverine sediments in a series of resuspension-settling cycles in which an unresolved complex mixture (UCM) of hydrocarbons associated with dense sediments is deposited in nearshore areas, fine-grained sediments of terrestrial origin accumulate in the deep basin, and planktonic hydrocarbons are depleted by microbial degradation during transport to the deep basin. The rate of accumulation of the UCM (a marker of petroleum residues) in deep basin sediments has increased by more than an order of magnitude since 1880, from 60 microg m(-2) x a(-1) to approximately 960 microg m(-2) x a(-1) in 1980. Crude estimates of the atmospheric loading of the UCM (1100 microg m(-2) x a(-1)) indicate that accumulations in deep-basin sediments might be supported by atmospheric deposition. Agreement was poor between the atmospheric flux of the terrestrial n-alkanes (sigmaC25, C27, C29, C31) to the deep basin (3200 microg m(-2) x a(-1)) and the sediment accumulation rate (660 microg m(-2) x a(-1)). Understanding of atmospheric fluxes, estimated from the very few available data, would be improved by more frequent measurement of the levels of aliphatic hydrocarbons in air and precipitation and a better knowledge of the particle deposition velocities and precipitation scavenging coefficients.

  14. IUPAC-NIST Solubility Data Series. 101. Alcohols + Hydrocarbons + Water. Part 2. C1-C3 Alcohols + Aliphatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Oracz, Paweł; Góral, Marian; Wiśniewska-Gocłowska, Barbara; Shaw, David G.; Mączyński, Andrzej

    2016-09-01

    The mutual solubilities and related liquid-liquid equilibria for 37 ternary systems of C1-C3 alcohols with aliphatic hydrocarbons and water are exhaustively and critically reviewed. Reports of experimental determination of solubility that appeared in the primary literature prior to the end of 2012 are compiled. For 14 systems, sufficient data are available (two or more independent determinations) to allow critical evaluation. All data are expressed as mass percent and mole fraction as well as the originally reported units. In addition to the standard evaluation criteria used throughout the Solubility Data Series, an additional criterion was used for each of the evaluated systems. These systems include one binary miscibility gap in the hydrocarbon + water subsystem and another one can be in the methanol + hydrocarbon subsystem. The binary tie lines were compared with the recommended values published previously.

  15. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    PubMed

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided.

  16. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    PubMed

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided. PMID:26874310

  17. Aliphatic hydrocarbons in sediment cores from the southern basin of Lake Michigan

    SciTech Connect

    Doskey, P.V.; Andren, A.W.

    1991-10-01

    Aliphatic hydrocarbons in sediments of the southern basin of Lake Michigan have planktonic, terrigenous, and petroleum residue origins. Surficial sediments collected near the eastern shore in 60-80 m of water contained more petroleum residue and planktonic hydrocarbons and exhibited less terrigenous character than sediments collected from the deepest location in the basin. Petroleum residue inputs have increased since 1900 as evidenced by a change in the flux of an unresolved complex mixture (UCM) of hydrocarbons from 6 ng/cm{sup 2}{center_dot}yr to a flux of approximately 100 ng/cm{sup 2}{center_dot}yr in 1980. Sediment profiles of the UCM exhibited subsurface concentration maxima that may be due to reduced inputs of combustion products or feeding by oligochaetes. Profiles of n-C{sub l7} and pristane indicated that planktonic n-alkanes undergo degradation in the aerobic, mixed zone of the sediments.

  18. Friction of iron lubricated with aliphatic and aromatic hydrocarbons and halogenated analogs

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    The influence of oxygen and various organic molecules on the reduction of the friction of an iron (011) single crystal surface was investigated. A comparison was made between aliphatic and aromatic structures, all of which contained six carbon atoms, and among various halogen atoms. Results of the investigation indicate that hexane and benzene give similar friction coefficients over a range of loads except at very light loads. At light loads, the friction decreased with an increase in the load where the halogens fluorine and chlorine are incorporated into the benzene molecular structure; however, over the same load range when bromine and iodine were present, the friction was relatively unchanged. The aliphatic compound chlorohexane exhibited lower friction coefficients than the aromatic structure chlorobenzene at very light loads. With the brominated benzene structures, however, friction was essentially the same. Oxygen was more effective in reducing friction than were the simple hydrocarbons.

  19. Marine organic pollutants of the Eastern Aegean: aliphatic and polycyclic aromatic hydrocarbons in Candarli Gulf surficial sediments.

    PubMed

    Kucuksezgin, Filiz; Pazi, Idil; Gonul, L Tolga

    2012-11-01

    Aliphatics and PAHs were determined in sediments from the Candarli Gulf in 2009. Aliphatics ranged from 3.88 to 24.7 μg g(-1) while aromatics varied between <4.15 and 405 ng g(-1) (dw). PAHs ranged from a relatively low to a moderate PAHs pollution compared to other urbanized coastal areas worldwide. 3-ring PAHs were most abundant in the sampling area. Both pyrolytic and petrogenic PAHs were present in most samples, although petroleum derived PAHs were dominant at the stations situated near the refinery and petrochemical, metal industry and pyrolytic sources were mainly prevalent in the estuary of Bakircay River. The ratio of UCM to n-alkanes and CPI values in station 6 indicate that the main contribution to petroleum hydrocarbon contamination is via oil and its products. PAH levels at all sites were below the ERL and ERM except fluorene. The results indicated that the sediments should have no potential biological impact except stations 6 and 14.

  20. Methyl oleate deoxygenation for production of diesel fuel aliphatic hydrocarbons over Pd/SBA-15 catalysts

    PubMed Central

    2013-01-01

    Background Catalytic deoxygenation is a prominent process for production of renewable fuels from vegetable oil. In this work, deoxygenation of technical grade methyl oleate to diesel fuel aliphatic hydrocarbons (C15 – C18) is evaluated with several parameters including temperature, hydrogen pressure and reaction time in a stirred batch reactor over Pd/SBA-15 catalysts. Results Two different SBA-15 morphologies i.e. spherelike and necklacelike structures have been synthesize as supports for Pd active metal. It is found that Pd dispersion on necklacelike SBA-15 is higher than that of spherelike SBA-15. Notably, higher Pd dispersion on necklacelike SBA-15 provides significant deoxygenation efficiency as compared to Pd/SBA-15-spherelike. Results show that H2 pressures greatly determine the total ester conversion and selectivity to C15 – C18 aliphatic hydrocarbons. Total ester conversions with 55< selectivity to n-heptadecane are achieved using Pd/SBA-15-necklacelike at 270°C and 60 bar H2 pressure within 6 h reaction time. Gas phase study reveals that formation of C17 is generated via indirect decarbonylation when the reaction time is prolonged. Conclusions Pd/SBA-15-necklacelike catalyst exhibits good catalytic performance with high selectivity to diesellike aliphatic hydrocarbons (C15 – C18). The physicochemical properties of the Pd supported on different SBA-15 morphologies influence the deoxygenation activity of the catalysts. Furthermore, the reaction pathways are governed by the H2 pressure as well as reaction duration. PMID:24011181

  1. External validation of a QSAR for the acute toxicity of halogenated aliphatic hydrocarbons

    SciTech Connect

    Eriksson, L.; Jonsson, J. . Dept. of Organic Chemistry); Berglind, R. . NBC-Defense Research)

    1993-07-01

    The validation of the predictive capability of a quantitative structure-activity relationship (QSAR) is a significant step toward the construction of a reliable model. This point is discussed and illustrated with data for a class of halogenated aliphatic hydrocarbons. For this class of compounds, a QSAR concerning their acute toxicity toward rate was recently published. This QSAR is verified in this by selecting and testing an external validation set comprising six compounds. The QSAR is also used for predicting the acute toxicity of 28 nontested members of this class.

  2. Brominated aliphatic hydrocarbons and sterols from the sponge Xestospongia testudinaria with their bioactivities.

    PubMed

    Zhou, Xuefeng; Lu, Yanan; Lin, Xiuping; Yang, Bin; Yang, Xianwen; Liu, Yonghong

    2011-10-01

    Four brominated aliphatic hydrocarbons (1-4), including a novel brominated ene-tetrahydrofuran named as mutafuran H (1), and five sterols (5-9) were isolated from the South China Sea sponge Xestospongia testudinaria. The structure of 1 was determined on the basis of NMR ((1)H, (13)C NMR, HSQC, HMBC, (1)H-(1)H COSY, and NOESY), MS, and optical rotation analysis. Known compounds were identified by comparison of their NMR data with those reported in the literature. Compounds 1-4, and 6-9 were evaluated for their toxicity against Artemia salina larvae, and anti-acetylcholinesterase activity.

  3. A molecular model for H(2) interactions in aliphatic and aromatic hydrocarbons.

    PubMed

    Figueroa-Gerstenmaier, Susana; Giudice, Simona; Cavallo, Luigi; Milano, Giuseppe

    2009-05-28

    A model for molecular hydrogen interacting with aliphatic and aromatic hydrocarbons is presented. The model has been derived using ab initio techniques and molecular dynamics simulations. In particular, quadrupole moments of hydrogen, and variation on energy with intermolecular distance of different conformations for the hydrogen-benzene couple were calculated using the Møller-Plesset method. Hydrogen was modelled using a two-centre Lennard-Jones potential plus electrostatic interactions. Lennard-Jones parameters were optimized on the basis of a correct reproduction of experimental data of hydrogen solubility in benzene and cyclohexane, calculated using the test particle insertion method. Different sets of parameters for specific interactions (hydrogen-aliphatic and hydrogen-aromatic systems) were considered avoiding the simple use of Lorentz-Berthelot combining rules. Additionally, structural and thermodynamic properties of hydrogen-benzene, hydrogen-cyclohexane and hydrogen in an equimolar mixture of benzene-cyclohexane at different low concentrations of hydrogen were investigated by means of molecular dynamics simulations. Electrostatic charges were taken from ab initio quantum mechanical calculations but after careful analysis of the calculated properties, their irrelevance was evidenced. Moreover, Coulombic interactions make simulations more expensive and, therefore, we do not recommend their inclusion in the modelling of hydrogen-aliphatic and aromatic interactions. PMID:19440622

  4. Spatial variations and chronologies of aliphatic hydrocarbons in Lake Michigan sediments.

    SciTech Connect

    Doskey, P. V.; Environmental Research

    2001-01-15

    Four sediment cores were collected in fine-grained depositional areas of the southern basin of Lake Michigan. Spatial variations of aliphatic hydrocarbons in surficial sediments were consistent with a lakeward movement of riverine sediments in a series of resuspension-settling cycles in which an unresolved complex mixture (UCM) of hydrocarbons associated with dense sediments is deposited in nearshore areas, fine-grained sediments of terrestrial origin accumulate in the deep basin, and planktonic hydrocarbons are depleted by microbial degradation during transport to the deep basin. The rate of accumulation of the UCM (a marker of petroleum residues) in deep basin sediments has increased by more than an order of magnitude since 1880, from 60 {mu}g m{sup -2}{center_dot}a{sup -1} to approximately 960 {mu}g m{sup -2}{center_dot}a{sup -1} in 1980. Crude estimates of the atmospheric loading of the UCM (1100 {mu}g m{sup -2}{center_dot}a{sup -1}) indicate that accumulations in deep-basin sediments might be supported by atmospheric deposition. Agreement was poor between the atmospheric flux of the terrestrial n-alkanes ({Sigma}C{sub 25}, C{sub 27}, C{sub 29}, C{sub 31}) to the deep basin (3200 {mu}g m{sup -2}{center_dot}a{sup -1}) and the sediment accumulation rate (660 {mu}g m{sup -2}{center_dot}a{sup -1}). Understanding of atmospheric fluxes, estimated from the very few available data, would be improved by more frequent measurement of the levels of aliphatic hydrocarbons in air and precipitation and a better knowledge of the particle deposition velocities and precipitation scavenging coefficients.

  5. Polycyclic aromatic and aliphatic hydrocarbons pollution at the coast of Aliağa (Turkey) ship recycling zone.

    PubMed

    Neşer, Gökdeniz; Kontas, Aynur; Unsalan, Deniz; Altay, Oya; Darılmaz, Enis; Uluturhan, Esin; Küçüksezgin, Filiz; Tekoğul, Nermin; Yercan, Funda

    2012-05-01

    Aliağa Bay is one of the most important maritime zones of Turkey where shipping activity, shipbreaking industry, steel works and petrochemical complexes exist together. Polycyclic aromatic hydrocarbons (PAHs) and aliphatic hydrocarbons in sediment of the Aliağa Bay were investigated to evaluate an environmental risk assessment from PAHs contamination in 2009-2010. Aliphatic and PAHs diagnostic ratios were showed to be mainly petroleum-originated and pyrolitic contaminations, respectively. The TEL/PEL analysis suggests that Aliağa sediments were likely to be contaminated by acutely toxic PAH compounds.

  6. Complete genome of Zhongshania aliphaticivorans SM-2(T), an aliphatic hydrocarbon-degrading bacterium isolated from tidal flat sediment.

    PubMed

    Jia, Baolei; Jeong, Hye Im; Kim, Kyung Hyun; Jeon, Che Ok

    2016-05-20

    Zhongshania aliphaticivorans SM-2(T), a degrader of aliphatic hydrocarbons, is a Gram-negative, rod-shaped, flagellated, facultatively aerobic bacterium. Here, we report the genome sequence of strain SM-2(T), which has a size of 4,204,359bp with 44 tRNAs, 9 rRNAs, and 3664 protein-coding genes. In addition, several genes encoding aliphatic hydrocarbon degraders (alkane 1-monooxygenase, haloalkane dehalogenase, and cytochrome P450) were detected in the genome shedding light on the function of pollutants degradation.

  7. Sources and distribution of aliphatic and polyaromatic hydrocarbons in coastal sediments from the Ushuaia Bay (Tierra del Fuego, Patagonia, Argentina).

    PubMed

    Commendatore, Marta G; Nievas, Marina L; Amin, Oscar; Esteves, José L

    2012-03-01

    The environmental quality of Ushuaia Bay, located at the southernmost tip of South America, is affected by the anthropogenic pressure of Ushuaia city. In this study, levels and sources of hydrocarbons in coastal sediments were assessed. Aliphatic hydrocarbon fractions ranged between 5.5 and 1185.3 μg/g dry weight and PAHs from not detected to 360 ng/g. Aliphatic diagnostic indices, the nalkanes homologous series occurrence, Aliphatic Unresolved Complex Mixtures (AliUCMs), and pristane and phytane isoprenoids indicated a petrogenic input. Some sites showed biogenic features masked by the anthropogenic signature. Particularly in port areas biodegradation processes were evident. PAH ratios showed a mixture of petrogenic and pyrogenic sources. Aliphatic and aromatic UCMs were strongly correlated, reflecting chronic pollution. Three areas were distinguished inside the bay: (1) east, with low hydrocarbons impact; (2) central, where hydrocarbons accumulation was related to source proximity and sediment characteristics; (3) south-west, where sediment characteristics and current circulation favour hydrocarbons accumulation.

  8. Source apportionment of sediment-associated aliphatic hydrocarbon in a eutrophicated shallow lake, China.

    PubMed

    Wang, Ji-Zhong; Yang, Ze-Yu; Chen, Tian-Hu

    2012-11-01

    Chaohu Lake, one of the most eutrophicated lakes in China, has been suffering from long-term outside pollution, urban sewage, river outflows, and agricultural runoff which expectedly have been the main contributors of hydrocarbons. However, the contributions from these various sources have not been specified. The present study is aimed at identifying the potential sources of hydrocarbons in surface sediment around the whole lake and assessing the relative contributions using principal components analysis-multiple linear regression (PCA-MLR). Sixty-one surface sediments covering the whole Chaohu Lake and three main estuaries of inflowing rivers were collected, dried, extracted, and analyzed for 27 normal alkanes (n-alkanes, from C(12) to C(38), defined Σ(27)AH) and unresolved complex mixture (UCM) by GC/MS. Diagnostic ratios and PCA-MLR were utilized to apportion their sources. The concentrations of Σ(27)AH and UCM ranged from 434 to 3,870 ng/g and 11.9 to 325 μg/g dry weight, respectively, for all samples. The concentrations of Σ(27)AH in western region and estuary of Nanfei River were slightly higher but without statistical significance than those from eastern region and estuaries of Yuxi River and Hangbu River. The concentration of UCM from western region was significantly higher than that obtained from eastern region. These results reflect the importance of input of urban runoff by Nanfei River and serious eutrophication in western region. Aliphatic hydrocarbons in Chaohu Lake were mainly derived from high plant wax with mixed sources of phytoplankton and petroleum. Weak microbial decomposition of n-alkanes would be expected to occur from the low ratios of isoprenoid hydrocarbons pristine (pri) and phytane (phy) to n-C(17) and n-C(18), respectively. Higher plant, fossil combustion, petroleum residue, and phytoplankton were proposed as the main origines of aliphatic hydrocarbons by PCA while the contributions of individual n-alkane homologues, pri and phy

  9. The Galactic Distribution of Aliphatic Hydrocarbons in the Diffuse Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Pendleton, Yvonne J.; Allamandola, Louis J.

    1995-01-01

    The infrared absorption feature near 2950/ cm (3.4 microns), characteristic of dust in the diffuse interstellar medium (ISM), is attributed to C-H stretching vibrations of aliphatic hydrocarbons. We show here that the strength of the band does not scale linearly with visual extinction everywhere, but instead increases more rapidly for objects near the center of the Galaxy, a behavior that parallels that of the Si-O stretching band due to silicate materials in the diffuse ISM. This implies that the grains responsible for the diffuse medium aliphatic C-H and silicate Si-O stretching bands are different from those responsible for much of the observed visual extinction. It also suggests that the distribution of the carbonaceous component of the diffuse ISM is not uniform throughout the Galaxy, but instead may increase in density toward the center of the Galaxy. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of silicate-core, organic-mantle grains. Several possible models of the distribution of this material are presented and it is demonstrated that the inner parts of the Galaxy has a carrier density that is 5 to 35 times higher than in the local ISM. Depending on the model used, the density of aliphatic material in the local ISM is found to be about 1 to 2 -CH3 groups /cc and about 2 to 5 -CH2- groups/cc. These densities are consistent with the strengths of the 2955 and 2925/ cm (3.38 and 3.42 microns) subfeatures (due to -CH3 and -CH2- groups, respectively) within the overall 2950/ cm (3.4 microns) band being described by the relations A(sub upsilon)/tau(sub 2925/cm) = 270 +/- 40 and A(sub upsilon)/tau(sub 2925/cm) = 250 +/- 40 in the local diffuse ISM.

  10. The galactic distribution of aliphatic hydrocarbons in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Pendleton, Yvonne J.; Allamandola, Louis J.

    1995-01-01

    The infrared absorption feature near 2950(exp -1) (3.4 micron), characteristic of dust in the diffuse interstellar medium (ISM), is attributed to C-H stretching vibrations of aliphatic hydrocarbons. We show here that the strength of the band does not scale linearly with visual extinction everywhere, but instead increases more rapidly for objects near the center of the Galaxy, a behavior that parallels that of the Si-O stretching band due to silicate materials in the diffuse ISM. This implies that the grains responsible for the diffuse medium aliphatic C-H and silicate Si-O stretching bands are different from those responsible for much of the observed visual extinction. It also suggests that the distribution of the carbonaceous component of the diffuse ISM is not uniform throughout the Galaxy, but instead may increase in density toward the center of the Galaxy. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of silicate-core, organic-mantle grains. Several possible models of the distribution of this material are presented and it is demonstrated that the inner parts of the Galaxy has a carrier density that is 5 to 35 times higher than in the local ISM. Depending on the model used, the density of aliphatic material in the local ISM is found to be about 1 to 2 -CH3 groups m(exp -3) and about 2 to 5 -CH2- groups m(exp -3). These densities are consistent with the strengths of the 2955 and 2925 cm(exp -1) (3.4 micron) band being described by the relations A(sub nu)/tau(sub 2955 cm(exp -1)) = 270 +/- 40 and A(sub nu)/tau(sub 2925 cm(exp -1)) = 250 +/- 40 in the local diffuse ISM.

  11. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin

    NASA Astrophysics Data System (ADS)

    Sicre, M. A.; Marty, J. C.; Saliot, A.; Aparicio, X.; Grimalt, J.; Albaiges, J.

    Marine aerosols were collected using a five-stage cascade impactor during the PHYCEMED II cruise in the Western Mediterranean Sea (October 1983). Their composition in aliphatic and aromatic hydrocarbons (HCs) was analyzed, representing the first time that concentrations of polynuclear aromatic HCs (PAH) are reported in relation to particle size for aerosols of remote marine areas. The HC concentrations were found to be dependent on the origin of the air masses. They were higher for air coming from North European countries than for air originating in the Atlantic and the South of Spain. The concentrations range between 7 and 14 ng m -3for n-alkanes and between 0.2 and 0.4 ng m -3for total PAH. Based on molecular criteria, several sources for these HCs have been identified: continental higher plant waxes, petroleum and pyrolysis (namely coal combustion and vehicular exhausts). Mass medium equivalent diameters (MMED) for the naturally derived n-alkanes are in the 1.79-2.53 μm range, indicating an origin related with the emission of large particles from higher plant waxes or from soil dusts. In contrast, MMED for the anthropogenic HCs, both aliphatic and aromatic, are smaller than the micron, suggesting initial emission of PAH through pyrolytic processes in the vapor phase followed by condensation onto larger sub-μm particles.

  12. Complexes of ruthenium and rhodium with aliphatic amines in the catalysis of hydrogenation of unsaturated hydrocarbons

    SciTech Connect

    Turisbekova, K.K.; Shuikina, L.P.; Parenago, O.P.; Frolov, V.F.

    1989-02-01

    The authors synthesized new catalysts highly active in the hydrogenations of unsaturated hydrocarbons, based on complexes of ruthenium and rhodium with higher aliphatic amines, which are soluble in aromatic solvents. The complexes acquired catalytic activity in hydrogenation as a result of their treatment with diisobutyl aluminum hydride. Olefins (1-hexene, cyclopentene, cyclohexene) or dienes (isoprene) were used as the unsaturated compounds. For the ruthenium based catalysts, the highest activity was observed during the hydrogenation of 1-hexene. For the rhodium-based catalysts, the activity in the hydrogenation of olefins and dienes was approximately the same. In the case of the rhodium complex catalysts, the hydrogenation of 1-hexene was accompanied by a side-reaction consisting in isomerization into olefins with inner double bonds.

  13. Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons.

    PubMed

    Hamonts, Kelly; Ryngaert, Annemie; Smidt, Hauke; Springael, Dirk; Dejonghe, Winnie

    2014-03-01

    Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater baseflow. As biotransformation of CAHs in the impacted river sediments might be an effective remediation strategy, we investigated the determinants of the microbial community structure of eutrophic, CAH-polluted sediments of the Zenne River. Based on PCR-DGGE analysis, a high diversity of Bacteria, sulfate-reducing bacteria, Geobacteraceae, methanogenic archaea, and CAH-respiring Dehalococcoides was found. Depth in the riverbed, organic carbon content, CAH content and texture of the sediment, pore water temperature and conductivity, and concentrations of toluene and methane significantly contributed to the variance in the microbial community structure. On a meter scale, CAH concentrations alone explained only 6% of the variance in the Dehalococcoides and sulfate-reducing communities. On a cm-scale, however, CAHs explained 14.5-35% of the variation in DGGE profiles of Geobacteraceae, methanogens, sulfate-reducing bacteria, and Bacteria, while organic carbon content explained 2-14%. Neither the presence of the CAH reductive dehalogenase genes tceA, bvcA, and vcrA, nor the community structure of the targeted groups significantly differed between riverbed locations showing either no attenuation or reductive dechlorination, indicating that the microbial community composition was not a limiting factor for biotransformation in the Zenne sediments.

  14. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots.

    PubMed

    Powell, C L; Goltz, M N; Agrawal, A

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~1.9mgL(-1), and initial aqueous [CAH] ~150μgL(-1); cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12±0.01 and 0.59±0.07d(-1), respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  15. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    NASA Astrophysics Data System (ADS)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  16. THE ABUNDANCES OF HYDROCARBON FUNCTIONAL GROUPS IN THE INTERSTELLAR MEDIUM INFERRED FROM LABORATORY SPECTRA OF HYDROGENATED AND METHYLATED POLYCYCLIC AROMATIC HYDROCARBONS

    SciTech Connect

    Steglich, M.; Jäger, C.; Huisken, F.; Friedrich, M.; Plass, W.; Räder, H.-J.; Müllen, K.; Henning, Th.

    2013-10-01

    Infrared (IR) absorption spectra of individual polycyclic aromatic hydrocarbons (PAHs) containing methyl (-CH{sub 3}), methylene (CH{sub 2}), or diamond-like CH groups and IR spectra of mixtures of methylated and hydrogenated PAHs prepared by gas-phase condensation were measured at room temperature (as grains in pellets) and at low temperature (isolated in Ne matrices). In addition, the PAH blends were subjected to an in-depth molecular structure analysis by means of high-performance liquid chromatography, nuclear magnetic resonance spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Supported by calculations at the density functional theory level, the laboratory results were applied to analyze in detail the aliphatic absorption complex of the diffuse interstellar medium at 3.4 μm and to determine the abundances of hydrocarbon functional groups. Assuming that the PAHs are mainly locked in grains, aliphatic CH {sub x} groups (x = 1, 2, 3) would contribute approximately in equal quantities to the 3.4 μm feature (N {sub CHx}/N {sub H} ≈ 10{sup –5}-2 × 10{sup –5}). The abundances, however, may be two to four times lower if a major contribution to the 3.4 μm feature comes from molecules in the gas phase. Aromatic ≅CH groups seem to be almost absent from some lines of sight, but can be nearly as abundant as each of the aliphatic components in other directions (N{sub ≅CH}/N {sub H} ∼< 2 × 10{sup –5}; upper value for grains). Due to comparatively low binding energies, astronomical IR emission sources do not display such heavy excess hydrogenation. At best, especially in protoplanetary nebulae, CH{sub 2} groups bound to aromatic molecules, i.e., excess hydrogens on the molecular periphery only, can survive the presence of a nearby star.

  17. A New, Rapid, Precise and Sensitive Method for Chlorine Stable Isotope Analysis of Chlorinated Aliphatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    van Acker, M. R.; Shahar, A.; Young, E. D.; Coleman, M. L.

    2005-12-01

    Chlorinated aliphatic hydrocarbons (CAH) are recognized common groundwater contaminants. Because of their physico-chemical properties, their lifespan in groundwater is in the order of decades (Pankow and Cherry, 1996). Stable isotopes can play a role in determining the rate and extent of CAH attenuation (Slater, 2003). The use of chlorine has been hampered by the current time consuming and insensitive analytical methods. We present a new analytical procedure to measure chlorine stable isotope values using a gas chromatograph coupled to a multi-collector inductively coupled mass spectrometer (GC-MC-ICP-MS). The GC has a Porapack Q packed column. The carrier gas was helium and the temperature was constant at 160°C. The GC was coupled to the MC-ICP-MS by heated stainless steel tubing. Our high resolution spectra showed that 37Cl is free of its main interference 36Ar-H over a range of 0.004 amu. Two pure CAH, trichloroethene (TCE) and tetrachloroethene (PCE), were used for zero enrichment (sample relative to itself) and standard-sample difference measurements. Integrations and background corrections of transient signals were performed using Microsoft Excel after import of the raw data from the MC-ICPMS acquisition software. Zero enrichment tests with TCE and PCE yielded δ37Cl of -0.04±0.16‰ and -0.03±0.17‰, respectively, results for sample injections of 0.12 to 0.02 microliters. Accuracy was tested by injecting 0.24 microliters of a 50/50 mixture of TCE and PCE of known isotopic compositions as the difference between the two solvents was of paramount interest. The δ37Cl(TCE) value of PCE was -1.99±0.16‰. A highly satisfactory comparison with the conventional method is shown by published values for TCE and PCE, -2.04±0.12‰ and -0.30±0.14‰, respectively (Jendrzejewski et al., 2001), giving a δ37Cl(TCE) value for PCE of -2.34±0.18‰. These tests of the GC-MC-ICP-MS method showed that we can obtain reproducible and accurate Cl isotope values using an

  18. Forensic investigation of aliphatic hydrocarbons in the sediments from selected mangrove ecosystems in the west coast of Peninsular Malaysia.

    PubMed

    Vaezzadeh, Vahab; Zakaria, Mohamad Pauzi; Shau-Hwai, Aileen Tan; Ibrahim, Zelina Zaiton; Mustafa, Shuhaimi; Abootalebi-Jahromi, Fatemeh; Masood, Najat; Magam, Sami Mohsen; Alkhadher, Sadeq Abdullah Abdo

    2015-11-15

    Peninsular Malaysia has gone through fast development during recent decades resulting in the release of large amounts of petroleum and its products into the environment. Aliphatic hydrocarbons are one of the major components of petroleum. Surface sediment samples were collected from five rivers along the west coast of Peninsular Malaysia and analyzed for aliphatic hydrocarbons. The total concentrations of C10 to C36 n-alkanes ranged from 27,945 to 254,463ng·g(-1)dry weight (dw). Evaluation of various n-alkane indices such as carbon preference index (CPI; 0.35 to 3.10) and average chain length (ACL; 26.74 to 29.23) of C25 to C33 n-alkanes indicated a predominance of petrogenic source n-alkanes in the lower parts of the Rivers, while biogenic origin n-alkanes from vascular plants are more predominant in the upper parts, especially in less polluted areas. Petrogenic sources of n-alkanes are predominantly heavy and degraded oil versus fresh oil inputs. PMID:26323864

  19. Forensic investigation of aliphatic hydrocarbons in the sediments from selected mangrove ecosystems in the west coast of Peninsular Malaysia.

    PubMed

    Vaezzadeh, Vahab; Zakaria, Mohamad Pauzi; Shau-Hwai, Aileen Tan; Ibrahim, Zelina Zaiton; Mustafa, Shuhaimi; Abootalebi-Jahromi, Fatemeh; Masood, Najat; Magam, Sami Mohsen; Alkhadher, Sadeq Abdullah Abdo

    2015-11-15

    Peninsular Malaysia has gone through fast development during recent decades resulting in the release of large amounts of petroleum and its products into the environment. Aliphatic hydrocarbons are one of the major components of petroleum. Surface sediment samples were collected from five rivers along the west coast of Peninsular Malaysia and analyzed for aliphatic hydrocarbons. The total concentrations of C10 to C36 n-alkanes ranged from 27,945 to 254,463ng·g(-1)dry weight (dw). Evaluation of various n-alkane indices such as carbon preference index (CPI; 0.35 to 3.10) and average chain length (ACL; 26.74 to 29.23) of C25 to C33 n-alkanes indicated a predominance of petrogenic source n-alkanes in the lower parts of the Rivers, while biogenic origin n-alkanes from vascular plants are more predominant in the upper parts, especially in less polluted areas. Petrogenic sources of n-alkanes are predominantly heavy and degraded oil versus fresh oil inputs.

  20. 40 CFR Table 2b to Subpart E of... - Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Alkanes (2 to 460-580 Alkanes (8 to 22% Aromatics) 1.49 * Average Boiling Point = (Initial Boiling Point + Dry Point) / 2 (b) Aromatic Hydrocarbon Solvents ... Hydrocarbon Solvent Mixtures Bin Averageboiling point * (degrees F) Criteria Reactivityfactor 1 80-205...

  1. 40 CFR Table 2b to Subpart E of... - Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-580 Alkanes (2 to 460-580 Alkanes (8 to 22% Aromatics) 1.49 * Average Boiling Point = (Initial Boiling Point + Dry Point)/2(b) Aromatic Hydrocarbon Solvents ... Hydrocarbon Solvent Mixtures Bin Averageboiling point* (degrees F) Criteria Reactivityfactor (g O3/g VOC) 1...

  2. 40 CFR Table 2b to Subpart E of... - Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-580 Alkanes (2 to 460-580 Alkanes (8 to 22% Aromatics) 1.49 * Average Boiling Point = (Initial Boiling Point + Dry Point)/2(b) Aromatic Hydrocarbon Solvents ... Hydrocarbon Solvent Mixtures Bin Averageboiling point* (degrees F) Criteria Reactivityfactor (g O3/g VOC) 1...

  3. 40 CFR Table 2b to Subpart E of... - Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-580 Alkanes (2 to 460-580 Alkanes (8 to 22% Aromatics) 1.49 * Average Boiling Point = (Initial Boiling Point + Dry Point)/2(b) Aromatic Hydrocarbon Solvents ... Hydrocarbon Solvent Mixtures Bin Averageboiling point* (degrees F) Criteria Reactivityfactor (g O3/g VOC) 1...

  4. 40 CFR Table 2b to Subpart E of... - Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Alkanes (2 to 460-580 Alkanes (8 to 22% Aromatics) 1.49 * Average Boiling Point = (Initial Boiling Point + Dry Point) / 2 (b) Aromatic Hydrocarbon Solvents ... Hydrocarbon Solvent Mixtures Bin Averageboiling point * (degrees F) Criteria Reactivityfactor 1 80-205...

  5. Presence of aliphatic and polycyclic aromatic hydrocarbons in near-surface sediments of an oil spill area in Bohai Sea.

    PubMed

    Li, Shuanglin; Zhang, Shengyin; Dong, Heping; Zhao, Qingfang; Cao, Chunhui

    2015-11-15

    In order to determine the source of organic matter and the fingerprint of the oil components, 50 samples collected from the near-surface sediments of the oil spill area in Bohai Sea, China, were analyzed for grain size, total organic carbon, aliphatic hydrocarbons (AHs), and polycyclic aromatic hydrocarbons (PAHs). The concentrations of C15-35 n-alkanes and 16 United States Environmental Protection Agency (US EPA) priority pollutant PAHs were found in the ranges of 0.88-3.48μg g(-1) and 9.97-490.13ng/g, respectively. The terrestrial organic matters characterized by C27-C35 n-alkanes and PAHs, resulting from the combustion of higher plants, are dominantly contributed from the transportation of these plants by rivers. Marine organic matters produced from plankton and aquatic plants were represented by C17-C26 n-alkanes in AHs. Crude oil, characterized by C17-C21 n-alkanes, unresolved complex mixture (UCM) with a mean response factor of C19 n-alkanes, low levels of perylene, and a high InP/(InP+BghiP) ratio, seeped into the oceans from deep hydrocarbon reservoirs, as a result of geological faults.

  6. Presence of aliphatic and polycyclic aromatic hydrocarbons in near-surface sediments of an oil spill area in Bohai Sea.

    PubMed

    Li, Shuanglin; Zhang, Shengyin; Dong, Heping; Zhao, Qingfang; Cao, Chunhui

    2015-11-15

    In order to determine the source of organic matter and the fingerprint of the oil components, 50 samples collected from the near-surface sediments of the oil spill area in Bohai Sea, China, were analyzed for grain size, total organic carbon, aliphatic hydrocarbons (AHs), and polycyclic aromatic hydrocarbons (PAHs). The concentrations of C15-35 n-alkanes and 16 United States Environmental Protection Agency (US EPA) priority pollutant PAHs were found in the ranges of 0.88-3.48μg g(-1) and 9.97-490.13ng/g, respectively. The terrestrial organic matters characterized by C27-C35 n-alkanes and PAHs, resulting from the combustion of higher plants, are dominantly contributed from the transportation of these plants by rivers. Marine organic matters produced from plankton and aquatic plants were represented by C17-C26 n-alkanes in AHs. Crude oil, characterized by C17-C21 n-alkanes, unresolved complex mixture (UCM) with a mean response factor of C19 n-alkanes, low levels of perylene, and a high InP/(InP+BghiP) ratio, seeped into the oceans from deep hydrocarbon reservoirs, as a result of geological faults. PMID:26375779

  7. Preliminary chemical analysis and biological testing of materials from the HRI catalytic two-stage liquefaction (CTSL) process. [Aliphatic hydrocarbons

    SciTech Connect

    Later, D.W.; Wilson, B.W.

    1985-01-01

    Coal-derived materials from experimental runs of Hydrocarbon Research Incorporated's (HRI) catalytic two-stage liquefaction (CTSL) process were chemically characterized and screened for microbial mutagenicity. This process differs from two-stage coal liquefaction processes in that catalyst is used in both stages. Samples from both the first and second stages were class-fractionated by alumina adsorption chromatography. The fractions were analyzed by capillary column gas chromatography; gas chromatography/mass spectrometry; direct probe, low voltage mass spectrometry; and proton nuclear magnetic resonance spectrometry. Mutagenicity assays were performed with the crude and class fractions in Salmonella typhimurium, TA98. Preliminary results of chemical analyses indicate that >80% CTSL materials from both process stages were aliphatic hydrocarbon and polynuclear aromatic hydrocarbon (PAH) compounds. Furthermore, the gross and specific chemical composition of process materials from the first stage were very similar to those of the second stage. In general, the unfractionated materials were only slightly active in the TA98 mutagenicity assay. Like other coal liquefaction materials investigated in this laboratory, the nitrogen-containing polycyclic aromatic compound (N-PAC) class fractions were responsible for the bulk of the mutagenic activity of the crudes. Finally, it was shown that this activity correlated with the presence of amino-PAH. 20 figures, 9 tables.

  8. Aliphatic Hydrocarbons and Fatty Acids of Some Marine and Freshwater Microorganisms

    PubMed Central

    Oró, J.; Tornabene, T. G.; Nooner, D. W.; Gelpi, E.

    1967-01-01

    Gas chromatography and combined gas chromatography-mass spectrometry have been used to study the fatty acids and hydrocarbons of a bacterium from the Pacific Ocean, Vibrio marinus, a freshwater blue-green alga, Anacystis nidulans, and algal mat communities from the Gulf of Mexico. Both types of microorganisms (bacteria and algae) showed relatively simple hydrocarbon and fatty acid patterns, the hydrocarbons predominating in the region of C-17 and the fatty acids in the range of C-14 to C-18. The patterns of V. marinus were more comparable to those of the algal populations than to patterns reported for other bacteria. An incomplete correlation between fatty acids and hydrocarbons in both types of organisms was observed, making it difficult to accept the concept that the biosynthesis of hydrocarbons follows a simple fatty acid decarboxylation process. PMID:6025301

  9. In-Situ Heating Decrease Kinetics of Aliphatic Hydrocarbons in Tagish Lake Meteorite by Micro-FTIR

    NASA Technical Reports Server (NTRS)

    Kebukawa, Y.; Nakashima, S.; Zolensky, M. E.

    2005-01-01

    Carbonaceous chondrites are known to contain up to 3wt.% C, the major part of which corresponds to a macromolecular organic fraction. Chondritic organic matter is based on small aromatic units, cross-linked by short aliphatic chains rather than large clusters of polyaromatic structures. Two main characteristic features of those organics measured by FTIR are: (1) an equivalent intensity of the asymmetric stretching mode absorptions for CH3 (2960/cm) and CH2 (2920/cm) and (2) a lack of aromatic CH-stretching mode (3040/cm). Tagish Lake is a new type of water- and carbon-rich type 2 carbonaceous chondrite. Its total carbon content is approx. 5 wt%, of which the organic carbon content reaches approx. 1.3 wt%. Tagish Lake may have never experienced temperatures higher than 120 C after formation of organics based on the disappearance of infrared (IR) organic peaks in step heating experiments. Here we report in-situ kinetic heating experiments of organics in Tagish Lake by micro-FTIR to characterize the nature of aliphatic hydrocarbons and their thermal stabilities.

  10. Catalytic C-H bond activation at nanoscale Lewis acidic aluminium fluorides: H/D exchange reactions at aromatic and aliphatic hydrocarbons.

    PubMed

    Prechtl, Martin H G; Teltewskoi, Michael; Dimitrov, Anton; Kemnitz, Erhard; Braun, Thomas

    2011-12-16

    Nanoscopic amorphous Lewis acidic aluminium fluorides, such as aluminium chlorofluoride (ACF) and high-surface aluminium fluoride (HS-AlF(3)), are capable of activating C-H bonds of aliphatic hydrocarbons. H/D exchange reactions are catalysed under mild conditions (40 °C).

  11. Fully Deuterated Aliphatic Hydrocarbons Obtained From Iron Carbide Treated with DCl and D2O

    NASA Technical Reports Server (NTRS)

    Marquez, C.; Lazcano, A.; Miller, S. L.; Oro, J.

    1966-01-01

    According to Oparin, Mendeleev thought that the origin of petroleum was the result of the hydrolysis of iron carbides by superheated steam under pressure from the deep interior of the Earth through geological formations where the metal carbides exist. As early as 1877, Mendeleev described the reaction leading to the synthesis of hydrocarbons according to the general equation 3Fe(sub m)C(sub n) + mH2O yields mFe3O4 + C(sub 3n)H(sub 8m). Other experimental studies on the production of hydrocarbons from cast iron have been reported. Because of the possibility that hydrocarbons may have been trapped within the carbon matrix of the cast iron, which usually has a high content of carbon, we have studied the reaction of pure iron carbide with deuterium chloride and deuterated water. This was done in order to distinguish any newly formed deuterated hydrocarbons from any possible impurities of trapped hydrocarbons. The experiments were carried out by simply allowing iron carbide to react with concentrated deuterium chloride in D2O. The volatile hydrocarbon fraction examined by gas chromatography-mass spectrometry (GC/MS), using a Finnigan 1020/OWA instrument. contained low molecular weight hydrocarbons in a range C3 to C7. Lower molecular weight hydrocarbons were not detected by GC/MS because the MS scanning mode was preset above mass 40 to exclude components of air. The identified hydrocarbons are similar to those obtained under prebiotic conditions using high frequency discharge. The hydrocarbons found in common were propane, butane, pentane, 3-methylpentane, hexane, and heptane. The percent yields decline with increasing carbon number (propane 11%, n-heptane 1%). Similar results have been obtained by the direct treatment of metal carbides by pulse laser vaporization mass spectrometry. These results show that the hydrolysis of iron carbides may have been a significant source of hydrocarbons on the primitive Earth. There appears to be a predominance of straight chain

  12. Polycyclic aromatic hydrocarbons, aliphatic hydrocarbons, trace elements, and monooxygenase activity in birds nesting on the North Platte River, Casper, Wyoming, USA.

    PubMed

    Custer, T W; Custer, C M; Dickerson, K; Allen, K; Melancon, M J; Schmidt, L J

    2001-03-01

    Tree swallow (Tachycineta bicolor) and house wren (Troglodytes aedon) eggs and chicks were collected near a refinery site on the North Platte River, Casper. Wyoming, USA and at a reference site 10 km upstream. Total polycyclic aromatic hydrocarbon (PAH) concentrations in swallow and wren chicks were higher at the refinery site than at the reference site. Polycyclic aromatic hydrocarbon concentrations in sediment and chick dietary samples were consistent with these findings. The general lack of methylated PAHs in sediment, diet, and bird carcasses suggested that the PAHs were derived from combustion and not from petroleum. The predominance of odd-numbered aliphatic hydrocarbons and the low ratios (< or =0.25) of pristane:n-C17 and phytane:n-C18 in chick and diet samples also suggested that swallow and wren chicks were not being chronically exposed to petroleum. Mean ethoxyresorufin-O-dealkylase and benzyloxyresorufin-O-dealkylase activities in tree swallow livers averaged nine times higher at the refinery site than at the reference site and were probably induced by exposure to PAHs. Trace element concentrations in eggs and livers of swallows and wrens were similar or greater at the reference site than at the refinery site. Selenium, strontium, and boron concentrations were elevated in eggs and livers of swallows and wrens at both the refinery and reference sites. PMID:11349865

  13. Polycyclic aromatic hydrocarbons, aliphatic hydrocarbons, trace elements and monooxygenase activity in birds nesting on the North Platte River, Casper, Wyoming, USA

    USGS Publications Warehouse

    Custer, T.W.; Custer, Christine M.; Dickerson, K.; Allen, K.; Melancon, M.J.; Schmidt, L.J.

    2001-01-01

    Tree swallow (Tachycineta bicolor) and house wren (Troglodytes aedon) eggs and chicks were collected near a refinery site on the North Platte River, Casper, Wyoming, USA and at a reference site 10 km upstream. Total polycylic aromatic hydrocarbon (PAH) concentrations in swallow and wren chicks were higher at the refinery site than at the reference site. Polycylic aromatic hydrocarbon concentrations in sediment and chick dietary samples were consistent with these findings. The general lack of methylated PAHs in sediment, diet, and bird carcasses suggested that the PAHs were derived from combustion and not from petroleum. The predominance of odd numbered aliphatic hydrocarbons and the low ratios (≤ 0.25) of pristane: n-C17 and phytane: n-C18 in chick and diet samples also suggested that swallow and wren chicks were not being chronically exposed to petroleum. Mean ethoxyresorufin-O-dealkylase and benzyloxyresorufin-O-dealkylase activities in tree swallow livers averaged nine times higher at the refinery site than at the reference site and were probably induced by exposure to PAHs. Trace element concentrations in eggs and livers of swallows and wrens were similar or greater at the reference site than at the refinery site. Selenium, strontium, and boron concentrations were elevated in eggs and livers of swallows and wrens at both the refinery and reference sites.

  14. Distributions and sources of petroleum, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Bohai Bay and its adjacent river, China.

    PubMed

    Wang, Min; Wang, Chuanyuan; Hu, Xiaoke; Zhang, Haijiang; He, Shijie; Lv, Shuangyan

    2015-01-15

    Surface sediment samples from Bohai Bay and its adjacent river, China, were analyzed for aliphatic hydrocarbon, PAHs and biomarkers in order to determine the distribution, composition and source of organic matter in a coastal environment. Results suggested that the input of organic matter from anthropogenic activities has a more significant influence on its distribution than that from natural processes. Petroleum contamination, mainly from offshore oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. PAHs were mostly of pyrogenic origin; while some sites in Yellow River Estuary were derived mainly from the petrogenic sources. The toxic assessment suggested that the PAHs in surface sediments will not cause immediately adverse biological effects in sediments from Bohai Bay and its adjacent river, China. PMID:25499964

  15. Distributions and sources of petroleum, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Bohai Bay and its adjacent river, China.

    PubMed

    Wang, Min; Wang, Chuanyuan; Hu, Xiaoke; Zhang, Haijiang; He, Shijie; Lv, Shuangyan

    2015-01-15

    Surface sediment samples from Bohai Bay and its adjacent river, China, were analyzed for aliphatic hydrocarbon, PAHs and biomarkers in order to determine the distribution, composition and source of organic matter in a coastal environment. Results suggested that the input of organic matter from anthropogenic activities has a more significant influence on its distribution than that from natural processes. Petroleum contamination, mainly from offshore oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. PAHs were mostly of pyrogenic origin; while some sites in Yellow River Estuary were derived mainly from the petrogenic sources. The toxic assessment suggested that the PAHs in surface sediments will not cause immediately adverse biological effects in sediments from Bohai Bay and its adjacent river, China.

  16. Controlled oxidation of aliphatic CH bonds in metallo-monooxygenases: mechanistic insights derived from studies on deuterated and fluorinated hydrocarbons.

    PubMed

    Chen, Yao-Sheng; Luo, Wen-I; Yang, Chung-Ling; Tu, Yi-Jung; Chang, Chun-Wei; Chiang, Chih-Hsiang; Chang, Chi-Yao; Chan, Sunney I; Yu, Steve S-F

    2014-05-01

    The control over the regio- and/or stereo-selective aliphatic CH oxidation by metalloenzymes is of great interest to scientists. Typically, these enzymes invoke host-guest chemistry to sequester the substrates within the protein pockets, exploiting sizes, shapes and specific interactions such as hydrogen-bonding, electrostatic forces and/or van der Waals interactions to control the substrate specificity, regio-specificity and stereo-selectivity. Over the years, we have developed a series of deuterated and fluorinated variants of these hydrocarbon substrates as probes to gain insights into the controlled CH oxidations of hydrocarbons facilitated by these enzymes. In this review, we illustrate the application of these designed probes in the study of three monooxygenases: (i) the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath), which oxidizes straight-chain C1-C5 alkanes and alkenes to form their corresponding 2-alcohols and epoxides, respectively; (ii) the recombinant alkane hydroxylase (AlkB) from Pseudomonas putida GPo1, which oxidizes the primary CH bonds of C5-C12 linear alkanes; and (iii) the recombinant cytochrome P450 from Bacillus megaterium, which oxidizes C12-C20 fatty acids at the ω-1, ω-2 or ω-3 CH positions.

  17. Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil.

    PubMed

    Covino, Stefano; D'Annibale, Alessandro; Stazi, Silvia Rita; Cajthaml, Tomas; Čvančarová, Monika; Stella, Tatiana; Petruccioli, Maurizio

    2015-02-01

    The present work was aimed at isolating and identifying the main members of the mycobiota of a clay soil historically contaminated by mid- and long-chain aliphatic hydrocarbons (AH) and to subsequently assess their hydrocarbon-degrading ability. All the isolates were Ascomycetes and, among them, the most interesting was Pseudoallescheria sp. 18A, which displayed both the ability to use AH as the sole carbon source and to profusely colonize a wheat straw:poplar wood chip (70:30, w/w) lignocellulosic mixture (LM) selected as the amendment for subsequent soil remediation microcosms. After a 60 d mycoaugmentation with Pseudoallescheria sp. of the aforementioned soil, mixed with the sterile LM (5:1 mass ratio), a 79.7% AH reduction and a significant detoxification, inferred by a drop in mortality of Folsomia candida from 90 to 24%, were observed. However, similar degradation and detoxification outcomes were found in the non-inoculated incubation control soil that had been amended with the sterile LM. This was due to the biostimulation exerted by the amendment on the resident microbiota, fungi in particular, the activity and density of which were low, instead, in the non-amended incubation control soil.

  18. Frequency of genes in aromatic and aliphatic hydrocarbon biodegradation pathways within bacterial populations from Alaskan sediments.

    PubMed

    Sotsky, J B; Greer, C W; Atlas, R M

    1994-11-01

    A significant proportion of the naturally occurring hydrocarbon-degrading populations within Alaskan sediments affected by the Exxon Valdez oil spill had both the xylE and alkB genes and could convert hexadecane and naphthalene to carbon dioxide; a greater proportion of the population had xylE than had alkB, reflecting the composition of the residual oil at the time of sampling; nearly equal populations with xylE alone, alkB alone, and xylE + alkB genes together were found after exposure to fresh crude oil; populations with xylE lacking alkB increased after enrichment on naphthalene. Thus, the genotypes of hydrocarbon-degrading populations reflected the composition of the hydrocarbons to which they were exposed. PMID:7804909

  19. The Abundances of Hydrocarbon Functional Groups in the Interstellar Medium Inferred from Laboratory Spectra of Hydrogenated and Methylated Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Steglich, M.; Jäger, C.; Huisken, F.; Friedrich, M.; Plass, W.; Räder, H.-J.; Müllen, K.; Henning, Th.

    2013-10-01

    Infrared (IR) absorption spectra of individual polycyclic aromatic hydrocarbons (PAHs) containing methyl (\\sbondCH3), methylene (\\protect{\\epsfbox{art/apjs484229un01.eps}}CH2), or diamond-like \\protect{\\epsfbox{art/apjs484229un02.eps}}CH groups and IR spectra of mixtures of methylated and hydrogenated PAHs prepared by gas-phase condensation were measured at room temperature (as grains in pellets) and at low temperature (isolated in Ne matrices). In addition, the PAH blends were subjected to an in-depth molecular structure analysis by means of high-performance liquid chromatography, nuclear magnetic resonance spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Supported by calculations at the density functional theory level, the laboratory results were applied to analyze in detail the aliphatic absorption complex of the diffuse interstellar medium at 3.4 μm and to determine the abundances of hydrocarbon functional groups. Assuming that the PAHs are mainly locked in grains, aliphatic CH x groups (x = 1, 2, 3) would contribute approximately in equal quantities to the 3.4 μm feature (N CHx /N H ≈ 10-5-2 × 10-5). The abundances, however, may be two to four times lower if a major contribution to the 3.4 μm feature comes from molecules in the gas phase. Aromatic \\epsfbox{art/apjs484229un03.eps} CH groups seem to be almost absent from some lines of sight, but can be nearly as abundant as each of the aliphatic components in other directions (N_{\\epsfbox{art/apjs484229un03.eps} CH}/N H lsim 2 × 10-5 upper value for grains). Due to comparatively low binding energies, astronomical IR emission sources do not display such heavy excess hydrogenation. At best, especially in protoplanetary nebulae, \\protect{\\epsfbox{art/apjs484229un01.eps}}CH2 groups bound to aromatic molecules, i.e., excess hydrogens on the molecular periphery only, can survive the presence of a nearby star.

  20. Abundances of Jupiter's Trace Hydrocarbons from Voyager and Cassini

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Romani, P. N.; Allen, M.; Zhang, X.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-01-01

    The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we model zonal averages of thermal infrared spectra from the two instruments, Voyager 1 IRIS and Cassini CIRS, to retrieve the vertical and meridional profiles of temperature, and the abundances of the two minor hydrocarbons, acetylene (C2H2) and ethane (C2H6). The spatial variation of these gases is controlled by both chemistry and dynamics, and therefore their observed distribution gives us an insight into both processes, We find that the two gases paint quite different pictures of seasonal change. Whilst the 2-D cross-section of C2H6 abundance is slightly increased and more symmetric in 2000 (northern summer solstice) compared to 1979 (northern fall equinox), the major trend of equator to pole increase remains. For C2H2 on tile other hand, the Voyager epoch exhibits almost no latitudinal variation, whilst the Cassini era shows a marked decrease polewards in both hemispheres. At the present time, these experimental findings are in advance of interpretation, as there are no published models of 2-D Jovian seasonal chemical variation available for comparison.

  1. Distribution and fate of aliphatic and aromatic hydrocarbons in Antarctic fauna and environment

    NASA Astrophysics Data System (ADS)

    Platt, H. M.; Mackie, P. R.

    1980-03-01

    With the depletion of oil resources in more accessible areas, those of remote regions are being considered or indeed are now being exploited. In many of these regions, especially the polar ones, little is known of the effects such exploitation will have on the environment. But it is known that the ecosystems are often subject to great stress by natural climatic conditions and additional burdens imposed by man may have catastrophic environmental effects. South Georgia, a sub-Antarctic island, has a history of industrial activity mainly concerned with whaling operations that peaked around 1925-1935 but has since declined to virtually nothing. Studies of the ecology of the area provided a unique opportunity to assess the long-term effects that such activities had on the ecosystem. Off the whaling stations a considerable amount of waste material, including fuel oil, was released into the bays and inevitably some of this material was deposited in the sediments. Chemical evidence in the form of both paraffinic and aromatic hydrocarbons still persists in the sediments. The implications of this persistence in relation to the possible influence of the low temperature conditions are discussed. The superficial sediments, marine biota and terrestrial plants, which since 1965 have returned virtually to a pristine state, contain hydrocarbons essentially similar to unpolluted areas around the coast of Britain. Relatively high levels of carcinogenic/mutagenic polynuclear aromatic hydrocarbons in surface sediments suggests a world-wide background of abiogenic hydrocarbons probably disseminated by airborne transport. This appears to indicate that contamination reaches even remote parts of the world in relatively undiminished quantities.

  2. Differential responses to branched and unsaturated aliphatic hydrocarbons in the rat olfactory system

    PubMed Central

    Ho, Sabrina L.; Johnson, Brett A.; Chen, Andrew L.; Leon, Michael

    2008-01-01

    In an effort to understand mammalian olfactory processing, we have been describing the responses to systematically different odorants in the glomerular layer of the main olfactory bulb of rats. Previously, we have demonstrated chemotopically organized and distinct olfactory responses to a homologous series of straight-chained alkanes that consisted of purely hydrocarbon structures, indicating that hydrocarbon chains could serve as molecular features in the combinatorial coding of odorant information. To better understand the processing of hydrocarbon odorants, we now have examined responses to other types of chemical changes in this kind of molecules, namely branching and carbon-carbon bond saturation. To this end, we used the [14C]2-deoxyglucose method to determine glomerular responses to a group of eight-carbon branched alkane isomers, unsaturated octenes (double-bonded), and octynes (triple-bonded). In contrast to the differential responses we observed previously for straight-chained alkanes of differing carbon number, the rat olfactory system was not particularly sensitive to these variations in branching and bond saturation. This result was unexpected, given the distinct molecular conformations and property profiles of the odorants. The similarity in activity patterns was paralleled by a similarity in spontaneous perceptual responses measured using a habituation assay. These results demonstrate again the functional relationship between bulbar activity patterns and odor perception. The results further suggest that the olfactory system does not respond equally to all aspects of odorant chemistry, functioning as a specific, rather than a general chemical analysis system. PMID:17029262

  3. Aliphatic hydrocarbon levels in turbot and salmon farmed close to the site of the Aegean Sea oil spill

    SciTech Connect

    Alvarez Pineiro, M.E.; Gonzalez-Barros, S.T.C.; Lozano, J.S.

    1996-12-31

    After the Andros Patria oil spill, the most serious oil tanker accident to occur off the coast of Galicia (N.W. Spain) was the running aground and subsequent conflagration of the Aegean Sea supertanker outside the northern Spanish port of La Coruna (December 3rd 1992). Approximately 60,000 tonnes of Brent oil were spilled into the Atlantic Ocean in the cited coastal region. Subsequently, an impropitious combination of a high tide and a change in wind direction caused the resulting slick to rapidly spread into the port. Measures aimed at cleaning up affected areas and evacuating the ca. 11,215 tonnes of oil remaining in the supertanker were immediately implemented. However, within just a few days the resulting contamination had killed some 15000 turbot juveniles and larvae, which are cultivated in fish farms close to the accident site. The environmental impact of major oil spillages has been widely studied. Several scientists have suggested that, in terms of the negative effects on the seawater quality and productive capacity of the affected maritime regions, the magnitudes of the Aegean Sea and Amoco Cadiz accidents are comparable. This paper reports variations over time of aliphatic hydrocarbon levels in turbot and Atlantic salmon sampled from fish farms close to the site of the Aegean Sea oil spill. 6 refs., 2 figs., 1 tab.

  4. Identifying sources of chlorinated aliphatic hydrocarbons in a residential area in Italy using the integral pumping test method

    NASA Astrophysics Data System (ADS)

    Alberti, Luca; Lombi, Silvia; Zanini, Andrea

    2011-09-01

    The results of integral pumping tests (IPTs) performed in the city of Fabriano, Italy, are presented. The IPT methodology was developed by the European Union project INCORE, as a tool for groundwater investigation and source localization in contaminated areas. This methodology consists of a multiple-well pumping test in which the wells are positioned along a control plane downstream of suspected contaminant source zones and perpendicular to the mean groundwater flow direction. During the pumping, concentration time series of target contaminants are measured. In Fabriano, two control planes were realized to identify a chlorinated aliphatic hydrocarbon plume, to estimate the mass fluxes and draw up a ranked list of the main contamination sources. A numerical flow model was implemented to support the IPT design and to interpret the results. This study revealed low-level trichloroethylene contamination (concentration below 8 μg/l), tetrachloroethylene contamination (mean concentration up to 500 μg/l) and a mass flow rate of about 300 g/day. Through the application of the IPT method, the mean contaminant concentrations, the spatial distribution of concentration values along the control planes, and the total contaminant mass flow rates were evaluated, and the investigation area was reduced for further and deeper investigation activities.

  5. Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons.

    PubMed

    Velimirovic, Milica; Larsson, Per-Olof; Simons, Queenie; Bastiaens, Leen

    2013-11-01

    Zerovalent iron (ZVI) abiotically degrades several chlorinated aliphatic hydrocarbons (CAHs) via reductive dechlorination, which offers perspectives for in situ groundwater remediation applications. The difference in reactivity between ZVI particles is often linked with their specific surface area. However, other parameters may influence the reactivity as well. Earlier, we reported for a set of microscale zerovalent iron (mZVI) particles the disappearance kinetic of different CAHs which were collected under consistent experimental conditions. In the present study, these kinetic data were correlated with the carbon, oxygen and sulfur content of mZVI particles. It was confirmed that not only the specific surface area affects the disappearance kinetic of CAHs, but also the chemical composition of the mZVI particles. The chemical composition, in addition, influences CAHs removal mechanism inducing sorption onto mZVI particles instead of dechlorination. Generally, high disappearance kinetic of CAHs was observed for particles containing less oxygen. A high carbon content, on the other hand, induced nonreactive sorption of the contaminants on the mZVI particles. To obtain efficient remediation of CAHs by mZVI particles, this study suggested that the carbon and oxygen content should not exceed 0.5% and 1% respectively. Finally, the efficiency of the mZVI particles may be improved to some extent by enriching them with sulfur. However, the impact of sulfur content on the reactivity of mZVI particles is less pronounced than that of the carbon and oxygen content.

  6. Ion-molecule reactions of ArN + 2 with simple aliphatic hydrocarbons at thermal energy

    NASA Astrophysics Data System (ADS)

    Tsuji, Masaharu; Matsumura, Ken-ichi; Kouno, Hiroyuki; Aizawa, Masato; Nishimura, Yukio

    1994-11-01

    The product ion distributions and rate constants are determined for ion-molecule reactions of ArN+2 with C2Hn (n=2,4,6) and C3Hn (n=6,8) by using a thermal ion-beam apparatus. Although charge-transfer channels leading to parent ions and/or fragment ions are found, no displacement reaction leading to ArCmH+n and N2CmH+n is detected. A comparison of the product ion distributions with breakdown patterns of the parent ions suggests that fragment ions, formed through cleavage of C-H and/or C-C bonds, are produced via near-resonant ionic states in the 13.1-13.4 eV range. The branching ratios of parent ions for C2H4 (68%) and C3H6 (20%) are larger than those for C2H6 (5%) and C3H8 (5%). The large branching ratios of the parent ions for the unsaturated hydrocarbons are explained as due to a strong interaction of a vacant orbital of ArN+2 with the highest occupied πC=C orbital of the unsaturated hydrocarbons which induces nonresonant charge transfer. The total rate constant for C2H2 is 6.8×10-10 cm3 s-1, while those for C2Hn (n=4,6) and C3Hn (n=6,8) are in the range (8.5-9.8)×10-10 cm3 s-1. The former and the latter values correspond to 69% and 77%-90% of the calculated values from Langevin or average dipole orientation (ADO) theory. The smaller kobs/kcalc ratio for C2H2 is attributed to the lack of near-resonant ionic states with favorable Franck-Condon factors for ionization.

  7. Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons.

    PubMed

    Song, Xiaohui; Xu, Yan; Li, Gangmin; Zhang, Ying; Huang, Tongwang; Hu, Zhong

    2011-10-01

    Rhodococcus sp. P14 was isolated from crude oil-contaminated sediments. This strain was capable of utilizing three to five rings polycyclic aromatic hydrocarbons (PAHs) including phenanthrene (Phe), pyrene (Pyr), and benzo[a]pyrene (BaP) as a sole carbon and energy source. After cultivated with 50mg/L of each PAH, strain P14 removed 43% Phe, 34% Pyr and 30% BaP in 30 d. Four different hydroxyphenanthrene products derived from Phe by strain P14 (1,2,3,4-hydroxyphenanthrene) were detected using SPME-GC-MS. Strain P14 also was capable of degrading mineral oil with n-alkanes of C17 to C21 carbon chain length. Compared with glucose-grown cells, PAHs-grown cells had decreased contents of shorter-chain length fatty acids (≤ C16:0), increased contents of C18:0, Me-C19:0 and disappeared odd-number carbon chain fatty acids. The contents of unsaturated C19:1, Me-C19:0 increased and C18:0 decreased in mineral oil-grown cells. At the same time, the strain P14 tended to float when cultivated in mineral oil-supplemented liquid medium. The degradation capability of P14 to alkane and PAHs and its floating characteristics will be very helpful for future's application in oil-spill bioremediation. PMID:21871639

  8. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  9. LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN'S UPPER ATMOSPHERE

    SciTech Connect

    Lopez-Puertas, M.; Funke, B.; Garcia-Comas, M.; Dinelli, B. M.; Adriani, A.; D'Aversa, E.; Moriconi, M. L.; Boersma, C.; Allamandola, L. J.

    2013-06-20

    In this paper, we analyze the strong unidentified emission near 3.28 {mu}m in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 {mu}m. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) Multiplication-Sign 10{sup 4} particles cm{sup -3}. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is {approx}430 u; the mean area is about 0.53 nm{sup 2}; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  10. Supra-Atomic Coarse-Grained GROMOS Force Field for Aliphatic Hydrocarbons in the Liquid Phase.

    PubMed

    Eichenberger, Andreas P; Huang, Wei; Riniker, Sereina; van Gunsteren, Wilfred F

    2015-07-14

    A supra-atomic coarse-grained (CG) force field for liquid n-alkanes is presented. The model was calibrated using experimental thermodynamic data and structural as well as energetic properties for 14 n-alkanes as obtained from atomistic fine-grained (FG) simulations of the corresponding hydrocarbons using the GROMOS 45A3 biomolecular force field. A variation of the nonbonded force-field parameters obtained from mapping the FG interactions onto the CG degrees of freedom to fit the density and heat of vaporization to experimental values turned out to be mandatory for a correct reproduction of these data by the CG model, while the bonded force-field parameters for the CG model could be obtained from a Boltzmann-weighted fit with some variations with respect to the corresponding properties from the FG simulations mapped onto the CG degrees of freedom. The model presents 6 different CG bead types, for bead sizes from 2 to 4 distinguishing between terminal and nonterminal beads within an alkane chain (end or middle). It contains different nonbonded Lennard-Jones parameters for the interaction of CG alkanes with CG water. The CG alkane model was further tested by comparing predictions of the excess free energy, the self-diffusion constant, surface tension, isothermal compressibility, heat capacity, thermal expansion coefficient, and shear viscosity for n-alkanes to experimental values. The CG model offers a thermodynamically calibrated basis for the development of CG models of lipids.

  11. Toxicity of jet fuel aliphatic and aromatic hydrocarbon mixtures on human epidermal keratinocytes: evaluation based on in vitro cytotoxicity and interleukin-8 release.

    PubMed

    Yang, Jen-Hung; Lee, Chia-Hue; Monteiro-Riviere, Nancy A; Riviere, Jim E; Tsang, Chau-Loong; Chou, Chi-Chung

    2006-08-01

    Jet fuels are complex mixtures of aliphatic (ALI) and aromatic (ARO) hydrocarbons that vary significantly in individual cytotoxicity and proinflammatory activity in human epidermal keratinocytes (HEK). In order to delineate the toxicological interactions among individual hydrocarbons in a mixture and their contributions to cutaneous toxicity, nine ALI and five ARO hydrocarbons were each divided into five (high/medium/low cytotoxic and strong/weak IL-8 induction) groups and intra/inter-mixed to assess for their mixture effects on HEK mortality and IL-8 release. Addition of single hydrocarbon to JP-8 fuel was also evaluated for their changes in fuel dermatotoxicity. The results indicated that when hydrocarbons were mixed, HEK mortality and IL-8 release were not all predictable by their individual ability affecting these two parameters. The lowest HEK mortality (7%) and the highest IL-8 production were induced with mixtures including high cytotoxic and weak IL-8 inductive ARO hydrocarbons. Antagonistic reactions not consistently correlated with ALI carbon chain length and ARO structure were evident and carried different weight in the overall mixture toxicities. Single addition of benzene, toluene, xylene or ethylbenzene for up to tenfold in JP-8 did not increase HEK mortality while single addition of ALI hydrocarbons exhibited dose-related differential response in IL-8. In an all ALI environment, no single hydrocarbon is the dominating factor in the determination of HEK cytotoxicity while deletion of hexadecane resulted in a 2.5-fold increase in IL-8 production. Overall, decane, undecane and dodecane were the major hydrocarbons associated with high cytotoxicity while tetradecane, pentadecane and hexadecane were those which had the greatest buffering effect attenuating dermatotoxicity. The mixture effects must be considered when evaluating jet fuel toxicity to HEK.

  12. Temporal variations in natural attenuation of chlorinated aliphatic hydrocarbons in eutrophic river sediments impacted by a contaminated groundwater plume.

    PubMed

    Hamonts, Kelly; Kuhn, Thomas; Vos, Johan; Maesen, Miranda; Kalka, Harald; Smidt, Hauke; Springael, Dirk; Meckenstock, Rainer U; Dejonghe, Winnie

    2012-04-15

    Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater baseflow. Biotransformation, sorption and dilution of CAHs in the impacted river sediments have been reported to reduce discharge, but the effect of temporal variations in environmental conditions on the occurrence and extent of those processes in river sediments is largely unknown. We monitored the reduction of CAH discharge into the Zenne River during a 21-month period. Despite a relatively stable influx of CAHs from the groundwater, the total reduction in CAH discharge from 120 to 20 cm depth in the river sediments, on average 74 ± 21%, showed moderate to large temporal variations, depending on the riverbed location. High organic carbon and anaerobic conditions in the river sediments allowed microbial reductive dechlorination of both chlorinated ethenes and chlorinated ethanes. δ(13)C values of the CAHs showed that this biotransformation was remarkably stable over time, despite fluctuating pore water temperatures. Daughter products of the CAHs, however, were not detected in stoichiometric amounts and suggested the co-occurrence of a physical process reducing the concentrations of CAHs in the riverbed. This process was the main process causing temporal variations in natural attenuation of the CAHs and was most likely dilution by surface water-mixing. However, higher spatial resolution monitoring of flow transients in the riverbed is required to prove dilution contributions due to dynamic surface water-groundwater flow exchanges. δ(13)C values and a site-specific isotope enrichment factor for reductive dechlorination of the main groundwater pollutant vinyl chloride (VC) allowed assessment of changes over time in the extent of both biotransformation and dilution of VC for different scenarios in which those processes either occurred consecutively or simultaneously between 120 and 20 cm depth in the riverbed. The extent of reductive dechlorination of VC ranged from 27

  13. The C-H Stretching Features at 3.2--3.5 μm of Polycyclic Aromatic Hydrocarbons with Aliphatic Sidegroups

    NASA Astrophysics Data System (ADS)

    Yang, X. J.; Li, Aigen; Glaser, R.; Zhong, J. X.

    2016-07-01

    The so-called “unidentified” infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm are ubiquitously seen in a wide variety of astrophysical regions. The UIE features are characteristic of the stretching and bending vibrations of aromatic hydrocarbon materials, e.g., polycyclic aromatic hydrocarbon (PAH) molecules. The 3.3 μm aromatic C-H stretching feature is often accompanied by a weaker feature at 3.4 μm. The latter is generally thought to result from the C-H stretch of aliphatic groups attached to the aromatic systems. The ratio of the observed intensity of the 3.3 μm aromatic C-H feature to that of the 3.4 μm aliphatic C-H feature allows one to estimate the aliphatic fraction of the UIE carriers, provided that the intrinsic oscillator strengths of the 3.3 μm aromatic C-H stretch ({A}3.3) and the 3.4 μm aliphatic C-H stretch ({A}3.4) are known. While previous studies on the aliphatic fraction of the UIE carriers were mostly based on the {A}3.4/{A}3.3 ratios derived from the mono-methyl derivatives of small PAH molecules, in this work we employ density functional theory to compute the infrared vibrational spectra of PAH molecules with a wide range of sidegroups including ethyl, propyl, butyl, and several unsaturated alkyl chains, as well as all the isomers of dimethyl-substituted pyrene. We find that, except for PAHs with unsaturated alkyl chains, the corresponding {A}3.4/{A}3.3 ratios are close to that of mono-methyl PAHs. This confirms the predominantly aromatic nature of the UIE carriers previously inferred from the {A}3.4/{A}3.3 ratio derived from mono-methyl PAHs.

  14. Particulate Fluxes of Aliphatic and Aromatic Hydrocarbons in Near-shore Waters to the Northwestern Mediterranean Sea, and the Effect of Continental Runoff

    NASA Astrophysics Data System (ADS)

    Raoux, C.; Boyona, J. M.; Miquel, J.-C.; Teyssie, J.-L.; Fowler, S. W.; Albaigés, J.

    1999-05-01

    Particulate fluxes of aliphatic and aromatic hydrocarbons were measured with a sediment trap moored at 80m depth offshore Monaco (200m water column) during an 18-month period. The highest fluxes of n -alkanes and polycyclic aromatic hydrocarbons (PAH) ( c . 300 and 10μg m -2day -1, respectively) were noted following a strong rainfall event (March-April 1989) and were mostly accounted for by continental runoff and river outflows. Fluxes during periods of low precipitation (August 1989-August 1990) were one order of magnitude lower for PAHs (1·51±1·40μg m -2day -1) or two orders of magnitude lower for n -alkanes (4·79±3·3μg m -2day -1) than during the earlier period (March-April 1989). The total PAH and total particle fluxes exhibited a positive linear correlation during the entire sampling period ( r =0·87, N =31, P< 0·05) underscoring the strong affinity of PAHs for particles. Examination of the seasonal variability of fecal pellet content, associated parameters (total organic carbon, total carbon, nitrogen), and individual hydrocarbon content of particles by Principal Component Analysis (PCA) showed that aliphatic and aromatic hydrocarbons were clustered in several subgroups in the PCA loading plots according to their origin. n -Alkanes were grouped in two clusters: (i) lower molecular weight ( n -C 16-19) and (ii) the higher molecular weight alkanes ( n -C 20-38) suggesting different pathways into the coastal zone (i.e. runoff vs atmospheric deposition). The distribution of lycopane, pristane and phytane indicated multiple origins. However, the closer location of the two isoprenoids, lycopane and pristane to fecal pellets, suggests a zooplanktonic origin but phytane to fossil fuel source. PAHs exhibited a variety of pyrolytic sources and only fluoranthene and pyrene were not grouped with the remaining PAHs suggesting multiple sources of pollution in these waters.

  15. Microbial abundance and degradation of polycyclic aromatic hydrocarbons in soil

    SciTech Connect

    Mahmood, S.K.; Rao, P.R. )

    1993-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of highly lipophilic chemicals that are generally formed during combustion, pyrolysis and pyrosynthesis of organic matter and are present ubiquitously in the urban environment as pollutants in very small quantities. The objective of the present study was to determine the activity of indigenous microbial populations of hazardous waste sites, their degree of adaptation, their ability to degrade toxic PAHs, and to study the potentials of different indigenous microbes to degrade the following selected PAHs from the polluted soil environment. PAHs selected for the study were anthracene, phenanthrene, chrysene, pyrene and fluoranthene. In this study, the indigenous contaminated soil populations were effective in removing the hydrocarbons and returning the soil to productivity. The biodegradation of PAHs in the selected soil was due to PAH degrader present in the bacterial as well as fungal communities. 13 refs., 2 tabs.

  16. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments.

    PubMed

    Kleindienst, Sara; Ramette, Alban; Amann, Rudolf; Knittel, Katrin

    2012-10-01

    Marine gas and hydrocarbon seeps are hot spots of sulfate reduction which is fuelled by methane, other short-chain alkanes or a complex mixture of hydrocarbons. In this study, we investigated the global distribution and abundance of sulfate-reducing bacteria (SRB) in eight gas and hydrocarbon seeps by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH). The majority of Deltaproteobacteria were assigned to specific SRB groups, i.e. 83 ± 14% at gas seeps and 61 ± 35% at hydrocarbon seeps, indicating that the probe set used was sufficient for classification of marine SRB. Statistical analysis showed that SRB abundance and distribution were significantly influenced by habitat type and sediment depth. Members of the Desulfosarcina/Desulfococcus (DSS) clade strongly dominated all sites. Our data indicated the presence of many diverse and highly specialized DSS species of low abundance rather than a single abundant subgroup. In addition, SEEP-SRB2, an uncultured deep-branching deltaproteobacterial group, was ubiquitously found in high abundances at all sites. SEEP-SRB2 members occurred either in a novel association with methanotrophic archaea in shell-type ANME-2/SEEP-SRB2 consortia, in association with ANME-1 archaea in Black Sea microbial mats or as single cells. Two other uncultured groups, SEEP-SRB3 and SEEP-SRB4, were preferentially detected in surface sediments from mud volcanoes.

  17. Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-Date Palm waste using Pyrolysis-GC/MS technique.

    PubMed

    El Fels, Loubna; Lemee, Laurent; Ambles, André; Hafidi, Mohamed

    2016-08-01

    The behavior of aliphatic hydrocarbons during co-composting of sewage sludge activated with palm tree waste was studied for 6 months using Py-GC/MS. The main aliphatic compounds represented as doublet alkenes/alkanes can be classified into three groups. The first group consists of 11 alkenes (undecene, tridecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uncosene, docosene, tricosene) and 15 alkanes (heptane, octane, nonane, decane, undecane, dodecane, tetradecane, pentadecane, heptadecane, octadecane, nonadecane, eicosane, uncosane, docosane, and tricosane), which remain stable during the co-composting process. The stability of these compounds is related to their recalcitrance behavior. The second group consists of five alkenes (heptene, octene, nonene, decene, dodecene) and tridecane as a single alkane that decreases during co-composting. The decrease in these compounds is the combined result of their metabolism and their conversion into other compounds. The third group is constituted with tetradecene and hexadecane that increase during composting, which could be explained by accumulation of these compounds, which are released by the partial breakdown of the substrate. As a result, these molecules are incorporated or adsorbed in the structure of humic substances. PMID:27197656

  18. Spatial and temporal distribution of aliphatic hydrocarbons and linear alkylbenzenes in the particulate phase from a subtropical estuary (Guaratuba Bay, SW Atlantic) under seasonal population fluctuation.

    PubMed

    Dauner, Ana Lúcia L; Martins, César C

    2015-12-01

    Guaratuba Bay, a subtropical estuary located in the SW Atlantic, is under variable anthropogenic pressure throughout the year. Samples of surficial suspended particulate matter (SPM) were collected at 22 sites during three different periods to evaluate the temporal and spatial variability of aliphatic hydrocarbons (AHs) and linear alkylbenzenes (LABs). These compounds were determined by gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS). The spatial distributions of both compound classes were similar and varied among the sampling campaigns. Generally, the highest concentrations were observed during the austral summer, highlighting the importance of the increased human influence during this season. The compound distributions were also affected by the natural geochemical processes of organic matter accumulation. AHs were associated with petroleum, derived from boat and vehicle traffic, and biogenic sources, related to mangrove forests and autochthonous production. The LAB composition evidenced preferential degradation processes during the austral summer.

  19. Assessment of the intrinsic bioremediation capacity of an eutrophic river sediment polluted by discharging chlorinated aliphatic hydrocarbons: a compound-specific isotope approach.

    PubMed

    Kuhn, Thomas K; Hamonts, Kelly; Dijk, John A; Kalka, Harald; Stichler, Willibald; Springael, Dirk; Dejonghe, Winnie; Meckenstock, Rainer U

    2009-07-15

    At a field site in the industrial area of Vilvoorde, Belgium, we investigated the capacity of the indigenous microbial community of a eutrophic river sediment to biodegrade chlorinated aliphatic hydrocarbons (CAHs) originating from discharging, polluted groundwater using a compound-specific isotope approach. We specifically targeted the site's major pollutants cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC). Analysis of Rayleigh correlation plots enabled us to assess the extent to which microbial and abiotic natural attenuation processes contributed to the mitigation of a pollution of the surface water due to discharging CAH-contaminated groundwater. Our results provide evidence for (i) the occurrence of biodegradation of cis-DCE and VC by reductive dechlorination in parts of the aquifer and at several positions in the river sediment (ii) the presence of river sediment zones exhibiting attenuation of chloroethenes by a combination of biodegradation and dilution through unpolluted water, (iii) the existence of zones in the river sediment lacking significant biodegradation, and thus (iv) a pronounced spatial heterogeneity in the occurrence and extent of biodegradation in the aquifer and river sediment. We conclude that at many investigated positions in the river sediment the indigenous microbial community failed to facilitate complete biodegradation of the groundwater-sourced chloroethenes. The overall intrinsic bioremediation capacity of the river sediment was thus not high enough to completely prevent the release of these pollutants into the surface water. These findings and conclusions are thus in agreement with those of our companion paper (1), which investigated the river sediments at the Vilvoorde study site by a combination of stable hydrogen and oxygen isotope analysis of water and the detection of chlorinated aliphatic hydrocarbons (CAHs) and their dechlorination products.

  20. Polycyclic aromatic and aliphatic hydrocarbons in Chukchi Sea biota and sediments and their toxicological response in the Arctic cod, Boreogadus saida

    NASA Astrophysics Data System (ADS)

    Harvey, H. Rodger; Taylor, Karen A.; Pie, Hannah V.; Mitchelmore, Carys L.

    2014-04-01

    As part of the Chukchi Sea Offshore Monitoring in Drilling Area-Chemical and Benthos (COMIDA CAB) project, we determined the distribution and concentrations of aliphatic n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in surface sediments (0-1 cm) among 52 sites across the Chukchi Sea and in muscle tissues of the benthic Northern whelk, Neptunea heros, collected opportunistically. In addition, downcore profiles of contaminants were determined at three targeted sites to establish historic patterns. Baseline responses of PAH exposure and its potential toxicological effects were examined in the common Arctic cod, Boreogadus saida, through measures of cytochrome P4501A/ ethoxyresorufin O-deethylase (CYP1A/EROD), glutathione-S-transferase (GST), and Cu/Zn superoxide dismutase (SOD) activity in liver tissue. The total concentration of PAHs in surface sediments throughout the study area, including parent and alkyl-homologs, were very low (<1600 ng g-1 dry wt) except for a single station, where values were 2-20-fold greater than at other baseline sites (2956 ng g-1 dry wt). Alkyl-substituted PAHs were the dominant form in all surface (54-93%) and subsurface sediments (50-81% of the total), with a general decrease in total PAH concentrations observed downcore. In biota, larger Neptunea showed lower total concentrations of PAHs in foot muscles (4.5-10.7 ng g-1 wet wt) compared to smaller animals; yet aliphatic n-alkane (C19-C33) concentrations (0.655-5.20 μg g-1 wet wt) increased in larger organisms with distributions dominated by long-chain (C23-C33) hydrocarbons. In B. saida, CYP1A1, GST, and SOD enzyme levels were comparable to baseline levels previously reported in other pristine systems. Of the three assays, only SOD had a significant correlation between gene expression and enzyme activity.

  1. Approach to estimation of absorption of aliphatic hydrocarbons diffusing from interior materials in an automobile cabin by inhalation toxicokinetic analysis in rats.

    PubMed

    Yoshida, Toshiaki

    2010-01-01

    The interior air of an automobile cabin has been demonstrated in our previous studies to be contaminated by high concentrations of a large variety of aliphatic hydrocarbons diffusing from the interior materials. In the present study, the amounts of seven selected aliphatic hydrocarbons absorbed by the car driver were estimated by evaluating their inhalation toxicokinetics in rats. Measured amounts of the substances were injected into a closed chamber system in which a rat had been placed, and the concentration changes in the chamber were examined. The toxicokinetics of the substances were evaluated based on concentration-time courses using a nonlinear compartment model. Their absorption amounts in humans at the levels of actual concentrations in the cabins without ventilation were extrapolated from the results found with the rats. The absorption amounts estimated for a driver during a 2 h drive were as follows: 6 microg/60 kg of human body weight for methylcyclopentane (interior concentration 23 microg/m(3) as median value in previous study), 5 microg for 2-methylpentane (36 microg/m(3)), 13 microg for n-hexane (65 microg/m(3)), 51 microg for n-heptane (150 microg/m(3)), 26 microg for 2,4-dimethylheptane (97 microg/m(3)), 17 microg for n-nonane (25 microg/m(3)) and 49 microg for n-decane (68 microg/m(3)). An inverse relationship was found between the exposure and absorption among the substances (e.g. between n-decane and 2,4-dimethylheptane). These findings suggest that not only the exposure concentrations but also the absorption amounts should be taken into account to evaluate the health effects of exposure to low concentrations of volatile compounds as environmental contaminants. PMID:19743389

  2. Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52.

    PubMed

    Yang, Hai-Yan; Jia, Rui-Bao; Chen, Bin; Li, Li

    2014-09-01

    This study investigates the ability of Rhodococcus sp. strain p52, a dioxin degrader, to biodegrade petroleum hydrocarbons. Strain p52 can use linear alkanes (tetradecane, tetracosane, and dotriacontane), branched alkane (pristane), and aromatic hydrocarbons (naphthalene and phenanthrene) as sole carbon and energy sources. Specifically, the strain removes 85.7 % of tetradecane within 48 h at a degradation rate of 3.8 mg h(-1) g(-1) dry cells, and 79.4 % of tetracosane, 66.4 % of dotriacontane, and 63.9 % of pristane within 9-11 days at degradation rates of 20.5, 14.7, and 20.3 mg day(-1) g(-1) dry cells, respectively. Moreover, strain p52 consumes 100 % naphthalene and 55.3 % phenanthrene within 9-11 days at respective degradation rates of 16 and 12.9 mg day(-1) g(-1) dry cells. Metabolites of the petroleum hydrocarbons by strain p52 were analyzed. Genes encoding alkane-hydroxylating enzymes, including cytochrome P450 (CYP450) enzyme (CYP185) and two alkane-1-monooxygenases, were amplified by polymerase chain reaction. The transcriptional activities of these genes in the presence of petroleum hydrocarbons were detected by reverse transcription-polymerase chain reaction. The results revealed potential of strain p52 to degrade petroleum hydrocarbons. PMID:24859700

  3. Petroleum pollution in surface sediments of Daya Bay, South China, revealed by chemical fingerprinting of aliphatic and alicyclic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gao, Xuelu; Chen, Shaoyong

    2008-10-01

    Nine surface sediments collected from Daya Bay have been Soxhlet-extracted with 2:1 (v/v) dichloromethane-methanol. The non-aromatic hydrocarbon (NAH) fraction of solvent extractable organic matter (EOM) and some bulk geochemical parameters have been analyzed to determine petroleum pollution of the bay. The NAH content varies from 32 to 276 μg g -1 (average 104 μg g -1) dry sediment and accounts for 5.8-64.1% (average 41.6%) of the EOM. n-Alkanes with carbon number ranging from 15 to 35 are identified to be derived from both biogenic and petrogenic sources in varying proportions. The contribution of marine authigenic input to the sedimentary n-alkanes is lower than the allochthonous input based on the average n-C 31/ n-C 19 alkane ratio. 25.6-46.5% of the n-alkanes, with a mean of 35.6%, are contributed by vascular plant wax. Results of unresolved complex mixture, isoprenoid hydrocarbons, hopanes and steranes also suggest possible petroleum contamination. There is strong evidence of a common petroleum contamination source in the bay.

  4. Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment.

    PubMed

    Teramoto, Maki; Suzuki, Masahito; Okazaki, Fumiyoshi; Hatmanti, Ariani; Harayama, Shigeaki

    2009-10-01

    Petroleum-hydrocarbon-degrading bacteria were obtained after enrichment on crude oil (as a 'chocolate mousse') in a continuous supply of Indonesian seawater amended with nitrogen, phosphorus and iron nutrients. They were related to Alcanivorax and Marinobacter strains, which are ubiquitous petroleum-hydrocarbon-degrading bacteria in marine environments, and to Oceanobacter kriegii (96.4-96.5 % similarities in almost full-length 16S rRNA gene sequences). The Oceanobacter-related bacteria showed high n-alkane-degrading activity, comparable to that of Alcanivorax borkumensis strain SK2. On the other hand, Alcanivorax strains exhibited high activity for branched-alkane degradation and thus could be key bacteria for branched-alkane biodegradation in tropical seas. Oceanobacter-related bacteria became most dominant in microcosms that simulated a crude oil spill event with Indonesian seawater. The dominance was observed in microcosms that were unamended or amended with fertilizer, suggesting that the Oceanobacter-related strains could become dominant in the natural tropical marine environment after an accidental oil spill, and would continue to dominate in the environment after biostimulation. These results suggest that Oceanobacter-related bacteria could be major degraders of petroleum n-alkanes spilt in the tropical sea. PMID:19541999

  5. Zinc oxide/polypyrrole nanocomposite as a novel solid phase microextraction coating for extraction of aliphatic hydrocarbons from water and soil samples.

    PubMed

    Amanzadeh, Hatam; Yamini, Yadollah; Moradi, Morteza

    2015-07-16

    In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65±1°C; extraction time, 15 min; desorption temperature, 250°C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08-0.5 μg L(-1), whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4-7.6% and 8.6-10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85-108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results obtained in this work suggest that ZnO/PPy can be promising coating materials for future applications of SPME and related sample preparation techniques.

  6. Solubility of aliphatic hydrocarbons in piperidinium ionic liquids: measurements and modeling in terms of perturbed-chain statistical associating fluid theory and nonrandom hydrogen-bonding theory.

    PubMed

    Paduszyński, Kamil; Domańska, Urszula

    2011-11-01

    Ionic liquids (ILs) reveal many unique properties which make them very interesting for applications in modern "green" technologies. For that reason, detailed knowledge about correlations between the ions' structure, their combinations, and the bulk properties is of great importance. That knowledge can be accessed by reliable measurements and modeling of systems with ILs in terms of various theoretical approaches. In this paper we report new experimental results on liquid-liquid equilibrium (LLE) measurements of 10 binary systems composed of piperidinium ILs [namely, 1-propyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide and 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide] and aliphatic hydrocarbons (n-hexane, n-heptane, n-octane, cyclohexane, and cycloheptane). Moreover, new results on liquid density of pure 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide are presented. Upper critical solution temperature type of phase behavior for all studied systems was observed. Decrease of solubility of n-alkane with an increase of its alkyl chain length and increase of solubility when changing linear into cyclic structure of hydrocarbon were detected. LLE modeling of investigated systems was performed in terms of two modern theories, namely, perturbed-chain statistical associating fluid theory (PC-SAFT) and nonrandom hydrogen-bonding theory (NRHB). Pure fluid parameters of the models were obtained from fitting of experimental liquid density and solubility parameter data at ambient pressure and tested against high pressure densities. Then literature values of activity coefficients of n-alkanes and cycloalkanes at infinitely diluted mixtures with ILs were used to optimize binary interaction parameters of the models. Finally, the LLE phase diagrams were calculated with average absolute relative deviations of 4.1% and 3.4% of the IL mole fraction for PC-SAFT and NRHB, respectively. The PC-SAFT and NRHB models were both able to capture phase

  7. Solubility of aliphatic hydrocarbons in piperidinium ionic liquids: measurements and modeling in terms of perturbed-chain statistical associating fluid theory and nonrandom hydrogen-bonding theory.

    PubMed

    Paduszyński, Kamil; Domańska, Urszula

    2011-11-01

    Ionic liquids (ILs) reveal many unique properties which make them very interesting for applications in modern "green" technologies. For that reason, detailed knowledge about correlations between the ions' structure, their combinations, and the bulk properties is of great importance. That knowledge can be accessed by reliable measurements and modeling of systems with ILs in terms of various theoretical approaches. In this paper we report new experimental results on liquid-liquid equilibrium (LLE) measurements of 10 binary systems composed of piperidinium ILs [namely, 1-propyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide and 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide] and aliphatic hydrocarbons (n-hexane, n-heptane, n-octane, cyclohexane, and cycloheptane). Moreover, new results on liquid density of pure 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide are presented. Upper critical solution temperature type of phase behavior for all studied systems was observed. Decrease of solubility of n-alkane with an increase of its alkyl chain length and increase of solubility when changing linear into cyclic structure of hydrocarbon were detected. LLE modeling of investigated systems was performed in terms of two modern theories, namely, perturbed-chain statistical associating fluid theory (PC-SAFT) and nonrandom hydrogen-bonding theory (NRHB). Pure fluid parameters of the models were obtained from fitting of experimental liquid density and solubility parameter data at ambient pressure and tested against high pressure densities. Then literature values of activity coefficients of n-alkanes and cycloalkanes at infinitely diluted mixtures with ILs were used to optimize binary interaction parameters of the models. Finally, the LLE phase diagrams were calculated with average absolute relative deviations of 4.1% and 3.4% of the IL mole fraction for PC-SAFT and NRHB, respectively. The PC-SAFT and NRHB models were both able to capture phase

  8. Isolation and characterization of a Mycobacterium species capable of degrading three- and four-ring aromatic and aliphatic hydrocarbons

    SciTech Connect

    Churchill, S.A.; Harper, J.P.; Churchill, P.F.

    1999-02-01

    Mycobacterium sp. strain CH1 was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated freshwater sediments and identified by analysis of 16S rDNA sequences. Strain CH1 was capable of mineralizing three- and four-ring PAHs including phenanthrene, pyrene, and fluoranthene. In addition, strain CH1 could utilize phenanthrene or pyrene as a sole carbon and energy source. A lag phase of at least 3 days was observed during pyrene mineralization. This lag phase decreased to less than 1 day when strain CH1 was grown in the presence of phenanthrene or fluoranthene. Strain CH1 also was capable of using a wide range of alkanes as sole carbon and energy sources. No DNA hybridization was detected with the nahAc gene probe, indicating that enzymes involved in PAH metabolism are not related to the well-characterized naphthalene dioxygenase gene. DNA hybridization was not detected when the alkB gene from Pseudomonas oleovorans was used under high-stringency conditions. However, there was slight but detectable hybridization under low-stringency conditions. This suggests a distant relationship between genes involved in alkane oxidation.

  9. Isolation and Characterization of a Mycobacterium Species Capable of Degrading Three- and Four-Ring Aromatic and Aliphatic Hydrocarbons

    PubMed Central

    Churchill, Sharon A.; Harper, Jennifer P.; Churchill, Perry F.

    1999-01-01

    Mycobacterium sp. strain CH1 was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated freshwater sediments and identified by analysis of 16S rDNA sequences. Strain CH1 was capable of mineralizing three- and four-ring PAHs including phenanthrene, pyrene, and fluoranthene. In addition, strain CH1 could utilize phenanthrene or pyrene as a sole carbon and energy source. A lag phase of at least 3 days was observed during pyrene mineralization. This lag phase decreased to less than 1 day when strain CH1 was grown in the presence of phenanthrene or fluoranthene. Strain CH1 also was capable of using a wide range of alkanes as sole carbon and energy sources. No DNA hybridization was detected with the nahAc gene probe, indicating that enzymes involved in PAH metabolism are not related to the well-characterized naphthalene dioxygenase gene. DNA hybridization was not detected when the alkB gene from Pseudomonas oleovorans was used under high-stringency conditions. However, there was slight but detectable hybridization under low-stringency conditions. This suggests a distant relationship between genes involved in alkane oxidation. PMID:9925581

  10. Poster 12: Nitrile and Hydrocarbon Spatial Abundance Variations in Titan's Atmosphere

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander E.; Nixon, Conor A.; Molter, Edward; Serigano, Joseph; Cordiner, Martin A.; Charnley, Steven B.; Teanby, Nick; Chanover, Nancy

    2016-06-01

    Many minor constituents of Titan's atmosphere exhibit latitudinal variations in abundance as a result of atmospheric circulation, photochemical production and subsequent destruction throughout Titan's seasonal cycle [1,2]. Species with observed spatial abundance variations include hydrocarbons - such as CH3CCH - and nitriles - HCN, HC3N, CH3CN, and C2H5CN - as found by Cassini [3,4]. Recent calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) allow for measurements of rotational transition lines of these species in spatially resolved regions of Titan's disk [5]. Abundance profiles in Titan's lower/middle atmosphere are retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code [6]. We present continuous abundance profiles for various species in Titan's atmosphere obtained from ALMA data in 2014. These species show polar abundance enhancements which can be compared to studies using Cassini data [7]. Measurements in the mesosphere will constrain molecular photochemical and dynamical models, while temporal variations inform our knowledge of chemical lifetimes for the large inventory of organic species produced in Titan's atmosphere. The synthesis of the ALMA and Cassini datasets thus allow us to observe the important changes in production and circulation of numerous trace components of Titan's atmosphere, which are attributed to Titan's seasons.

  11. Retrievals of the Abundances of Acetylene and other Hydrocarbons in Titan's Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Fan, Siteng; Shemansky, D. E.; Yung, Yuk

    2016-10-01

    Acetylene abundance in the Titan upper atmosphere has been extracted from Cassini Ultraviolet Imaging Spectrograph (UVIS) stellar occultations. The data reduction process is based on simulation of the discrete spectral absorption in the far ultraviolet (FUV) region between 110 and 190 nm. Pointing drift is corrected by instrument simulation of the stellar image location on the instrument detector. Latitude and seasonal dependence of the vertical profiles has been examined. The observed spectra have been compared to atmospheric chemical model calculations (KINETICS) by predicting the occultation spectra, allowing the imposition of constraints on the model, and directly establishing the level of uncertainty in the extraction process. Hydrocarbon and nitrile vertical profiles have been extracted, with limits set on the precursors to aerosols. Aerosol continuum spectral structure is recognized in the extinction spectra, but physical chemistry modeling of aerosol precursors to date indicate higher abundances than the upper limits set by observation.

  12. Aliiglaciecola aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium, isolated from a sea-tidal flat and emended description of the genus Aliiglaciecola Jean et al. 2013.

    PubMed

    Jin, Hyun Mi; Jeong, Hye Im; Jeon, Che Ok

    2015-05-01

    A Gram-stain-negative heterotrophic bacterium, designated GSD6(T), capable of growth on aliphatic hydrocarbons as a sole carbon and energy source, was isolated from sea-tidal flat sediment of the Yellow Sea, South Korea. Cells were facultatively aerobic, catalase- and oxidase-positive, motile rods with a single polar flagellum. Growth of strain GSD6(T) was observed at 4-37 °C (optimum 30 °C), at pH 5.5-9.0 (optimum pH 6.5-7.5) and in the presence of 1-9% (w/v) NaCl (optimum 2%). Strain GSD6(T) contained ubiquinone-8 (Q-8) as the sole isoprenoid quinone and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0, C18 : 1ω7c, C17  : 0 10-methyl and C17 : 1ω8c as the major fatty acids. Phosphatidylethanolamine and phosphatidylglycerol were identified as the major polar lipids. The G+C content of the genomic DNA was 44.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain GSD6(T) formed a phylogenetic lineage with members of the genus Aliiglaciecola . Strain GSD6(T) was most closely related to Aliiglaciecola lipolytica E3(T) with a 16S rRNA gene sequence similarity of 97.4%, but their DNA-DNA hybridization value was 39.1 ± 7.1%. On the basis of phenotypic, chemotaxonomic and molecular features, strain GSD6(T) represents a novel species of the genus Aliiglaciecola , for which the name Aliiglaciecola aliphaticivorans sp. nov. is proposed. The type strain is GSD6(T) ( =KACC 18129(T) =JCM 30133(T)). An emended description of the genus Aliiglaciecola is also proposed. PMID:25713045

  13. Abundance and diversity of polycyclic aromatic hydrocarbon degradation bacteria in urban roadside soils in Shanghai.

    PubMed

    Li, Xiaofei; Hou, Lijun; Liu, Min; Zheng, Yanling; Li, Ye; Lin, Xianbiao

    2015-04-01

    Understanding the impact of polycyclic aromatic hydrocarbons (PAHs) on soil environments is of increasingly important concern. Therefore, the microbial degradation of PAHs in soils has drawn considerable attention, but little is known about the PAH degradation genes in urban soils. In this study, we examined the diversity and abundance of the PAH degradation bacteria and evaluated whether the specific bacteria can reflect PAH contents in the soils from urban roadsides directly receiving traffic emission. The results of phylogenetic analysis indicated that low PAH degradation bacterial diversity occurred in the urban roadside soils, only including Mycobacterium sp., Terrabacter sp., and one novel cluster. The community composition diversity of PAH degradation bacteria did not show a significant difference across the sampling sites. The abundance of PAH degradation genes ranged from 5.70 × 10(6) to 6.44 × 10(7) gene copies g(-1) dry soil, with an average abundance of 1.43 × 10(7) gene copies g(-1) dry soil, and their spatial variations were related significantly to PAH contents in the soils. The Mycobacterium sp. was the most widely detected and estimated to occupy 65.9-100 % of the total PAH degradation bacteria at most of the soil samples, implying that the Mycobacterium sp. might play a primary role in degrading PAHs in the contaminated urban soil environments.

  14. Distribution and sources of aliphatic hydrocarbons and fatty acids in surface sediments of a tropical estuary south west coast of India (Cochin estuary).

    PubMed

    Gireeshkumar, T R; Deepulal, P M; Chandramohanakumar, N

    2015-03-01

    Surface sediments samples from the Cochin estuary were measured for elemental, stable isotopic and molecular biomarkers (aliphatic hydrocarbons and fatty acids) to study the sources and distribution of sedimentary organic matter. Concentrations of total organic carbon (TOC), total nitrogen (TN) and stable isotopic ratios of carbon (δ(13)C) ranged from 0.62 to 2.74 %, 0.09 to 0.25 % and -27.5 to 21.7 ‰, respectively. Sedimentary n-alkanes ranged from 6.03 to 43.23 μg g(-1) with an average of 16.79 μg g(-1), while total fatty acids varied from 22.55 to 440.69 μg g(-1). The TOC/TN ratios and δ(13)C suggest a mixture of marine- and terrestrial-derived organic matter in the surface sediments with increasing contributions from marine-derived organic matter towards the seaward side. Long-chain n-alkanes derived from higher plants predominated the inner part of the estuary, while short-chain n-alkanes derived from planktonic sources predominated the bar mouth region. The even carbon preference of the C12-C22 n-alkanes may refer to the direct biogenic contribution from bacteria, fungi and yeast species and to the potential direct petroleum inputs. The presence of odd mid-chain n-alkanes in the sediments indicates the organic matter inputs from submerged and floating macrophytes (water hyacinth). Various molecular indices such as carbon preference index, terrestrial to aquatic ratio, average chain length and the ratios of mid-chain n-alkanes support the aforementioned inferences. The high contribution of odd and branched chain fatty acids along with very low contribution of polyunsaturated fatty acids, suggest the effective utilisation of algae-derived organic matter by bacteria and the effective recycling of labile organic matter in whole settling and deposition processes. The distributional variability of n-alkanes and fatty acids reveals the preferential utilisation of marine-derived organic matter and the selective preservation of terrestrial

  15. Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R. V.; Epstein, S.; Cronin, John R.; Pizzarello, Sandra; Yuen, George U.

    1992-01-01

    The monocarboxylic acids and hydrocarbons of the Murchison meteorite (CM2) were isolated for isotropic analysis. The nonvolatile hydrocarbons were analyzed as crude methanol and benzene-methanol extracts and also after separation by silica gel chromatography into predominantly aliphatic, aromatic, and polar hydrocarbon fractions. The volatile hydrocarbons were obtained after progressive decomposition of the meteorite matrix by freeze-thaw, hot water, and acid treatment. Molecular analyses of the aromatic hydrocarbons showed them to comprise a complex suite of compounds in which pyrene, fluoranthene, phenanthrene, and acenaphthene were the most abundant components, a result similar to earlier analyses. The polar hydrocarbons also comprise a very complex mixture in which aromatic ketones, nitrogen, and sulfur heterocycles were identified. The monocarboxylic acids, aliphatic, aromatic, and polar hydrocarbons, and the indigenous volatile hydrocarbons were found to be D-rich. The deuterium enrichment observed in these compounds is suggestive. In two separate analyses, the delta-D values of the nonvolatile hydrocarbons were observed to increase in the following order: aliphatic-aromatic-polar. This finding is consistent with an early solar system or parent body conversion of aromatic to aliphatic compounds as well as the suggestion of pyrolytic formation of aromatic from aliphatic compounds.

  16. Abundances of C3Hx Hydrocarbons in Titan's Stratosphere from Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Jennings, D. E.; Bezard, B.; Vinatier, S.; Teanby, N. A.; Sung, K.; Ansty, T. M.; Irwin, P. G.; Gorius, N.; Cottini, V.; Coustenis, A.; Flasar, F. M.

    2014-12-01

    During the ten years since entry into Saturn orbit in 2004, the Cassini spacecraft has made more than 100 close flybys of Titan, measuring the properties of the atmosphere by both in situ and remote sensing techniques. Cassini's Composite Infrared Spectrometer (CIRS) senses the infrared spectrum from 7-1000 μm (1400-10 cm-1), a region which exhibits the vibrational emissions of many different molecular species. CIRS has therefore been able to map the spatial distributions and temporal variations of hydrocarbons, nitriles and other gas species in Titan's atmosphere, yielding information about the chemistry and dynamics. Recently, Nixon et al. (2013) made the first detection of a new stratospheric gas species from Cassini using CIRS - the C3H6 molecule (propene). This filled in a long-time missing link in the chemical picture of Titan's lower atmosphere, since the C3H4 (propyne) and C3H8 (propane) molecules had been detected in 1981 by Voyager 1 IRIS. The inferred abundance of C3H6 is less than both C3H8 and C3H4, and this pattern is repeated also in the C2Hx molecules where C2H4 is less abundant than C2H2 and C2H6. Therefore a pattern emerges whereby: alkanes > alkynes > alkenes within the C2Hx and C3Hx chemical families in the lower stratosphere. We comment on how this trend compares to published photochemical model predictions, and also give updates on the search for C3Hx isomers (allene: CH2CCH2, and cyclopropane: c-C3H6) and C4Hx species using CIRS.

  17. Comparison of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenylethers, and organochlorine pesticides in Pacific sanddab (Citharichthys sordidus) from offshore oil platforms and natural reefs along the California coast

    USGS Publications Warehouse

    Gale, Robert W.; Tanner, Michael J.; Love, Milton S.; Nishimoto, Mary M.; Schroeder, Donna M.

    2013-01-01

    Recently, the relative exposure of Pacific sanddab (Citharichthys sordidus) to polycyclic aromatic hydrocarbons (PAHs) at oil-production platforms was reported, indicating negligible exposure to PAHs and no discernible differences between exposures at platforms and nearby natural areas sites. In this report, the potential for chronic PAH exposure in fish is reported, by measurement of recalcitrant, higher molecular weight PAHs in tissues of fish previously investigated for PAH metabolites in bile. A total of 34 PAHs (20 PAHs, 11 alkylated PAHs, and 3 polycyclic aromatic thiophenes) were targeted. In addition, legacy contaminants—polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs),—and current contaminants, polybrominated diphenylethers (PBDEs) linked to endocrine disruption, were measured by gas chromatography with electron-capture or mass spectrometric detection, to form a more complete picture of the contaminant-related status of fishes at oil production platforms in the Southern California Bight. No hydrocarbon profiles or unresolved complex hydrocarbon background were found in fish from platforms and from natural areas, and concentrations of aliphatics were low less than 100 nanograms per gram (ng/g) per component]. Total-PAH concentrations in fish ranged from 15 to 37 ng/g at natural areas and from 8.7 to 22 ng/g at platforms. Profiles of PAHs were similar at all natural and platform sites, consisting mainly of naphthalene and methylnaphthalenes, phenanthrene, fluoranthene, and pyrene. Total-PCB concentrations (excluding non-ortho-chloro-substituted congeners) in fish were low, ranging from 7 to 22 ng/g at natural areas and from 10 to 35 ng/g at platforms. About 50 percent of the total-PCBs at all sites consisted of 11 congeners: 153 > 138/163/164 > 110 > 118 > 15 > 99 > 187 > 149 > 180. Most OCPs, except dichlorodiphenyltrichloroethane (DDT)-related compounds, were not detectable or were at concentrations of less than 1 ng/g in fish. p

  18. Exploring petroleum hydrocarbons in groundwater by double solid phase extraction coupled to gas chromatography-flame ionization detector.

    PubMed

    Pindado Jiménez, Oscar; Pérez Pastor, Rosa Ma; Escolano Segovia, Olga; del Reino Querencia, Susana

    2015-01-01

    This work proposes an analytical procedure for measuring aliphatic and aromatic hydrocarbons fractions present in groundwater. In this method, hydrocarbons are solid phase extracted (SPE) twice from the groundwater and the resulting fractions are analyzed by gas chromatography with flame ionization detection. The first SPE disposes the hydrocarbons present in groundwater in organic solvents and the second SPE divides them into aliphatic and aromatic hydrocarbons. The validation study is carried out and its uncertainties are discussed. Identifying the main sources of uncertainty is evaluated through applying the bottom-up approach. Limits of detection for hydrocarbons ranges are below 5 µg L(-1), precision is not above of 30%, and acceptable recoveries are reached for aliphatic and aromatic fractions studied. The uncertainty due to volume of the sample, factor of calibration and recovery are the highest contributions. The expanded uncertainty range from 13% to 26% for the aliphatic hydrocarbons ranges and from 14% to 23% for the aromatic hydrocarbons ranges. As application, the proposed method is satisfactorily applied to a set of groundwater samples collected in a polluted area where there is evidence to present a high degree of hydrocarbons. The results have shown the range of aliphatic hydrocarbons >C21-C35 is the most abundant, with values ranging from 215 µg L(-1) to 354 µg L(-1), which it is associated to a contamination due to diesel.

  19. Hydrocarbons preserved in a ~2.7 Ga outcrop sample from the Fortescue Group, Pilbara Craton, Western Australia.

    PubMed

    Hoshino, Y; Flannery, D T; Walter, M R; George, S C

    2015-03-01

    The hydrocarbons preserved in an Archean rock were extracted, and their composition and distribution in consecutive slices from the outside to the inside of the rock were examined. The 2.7 Ga rock was collected from the Fortescue Group in the Pilbara region, Western Australia. The bitumen I (solvent-extracted rock) and bitumen II (solvent-extracted hydrochloric acid-treated rock) fractions have different hydrocarbon compositions. Bitumen I contains only trace amounts of aliphatic hydrocarbons and virtually no aromatic hydrocarbons. In contrast, bitumen II contains abundant aliphatic and aromatic hydrocarbons. The difference seems to reflect the weathering history and preservational environment of the investigated rock. Aliphatic hydrocarbons in bitumen I are considered to be mainly from later hydrocarbon inputs, after initial deposition and burial, and are therefore not indigenous. The lack of aromatic hydrocarbons in bitumen I suggests a severe weathering environment since uplift and exposure of the rock at the Earth's surface in the Cenozoic. On the other hand, the high abundance of aromatic hydrocarbons in bitumen II suggests that bitumen II hydrocarbons have been physically isolated from removal by their encapsulation within carbonate minerals. The richness of aromatic hydrocarbons and the relative scarcity of aliphatic hydrocarbons may reflect the original compositions of organic materials biosynthesised in ancient organisms in the Archean era, or the high thermal maturity of the rock. Cyanobacterial biomarkers were observed in the surficial slices of the rock, which may indicate that endolithic cyanobacteria inhabited the surface outcrop. The distribution of aliphatic and aromatic hydrocarbons implies a high thermal maturity, which is consistent with the lack of any specific biomarkers, such as hopanes and steranes, and the prehnite-pumpellyite facies metamorphic grade.

  20. Hydrocarbons preserved in a ~2.7 Ga outcrop sample from the Fortescue Group, Pilbara Craton, Western Australia.

    PubMed

    Hoshino, Y; Flannery, D T; Walter, M R; George, S C

    2015-03-01

    The hydrocarbons preserved in an Archean rock were extracted, and their composition and distribution in consecutive slices from the outside to the inside of the rock were examined. The 2.7 Ga rock was collected from the Fortescue Group in the Pilbara region, Western Australia. The bitumen I (solvent-extracted rock) and bitumen II (solvent-extracted hydrochloric acid-treated rock) fractions have different hydrocarbon compositions. Bitumen I contains only trace amounts of aliphatic hydrocarbons and virtually no aromatic hydrocarbons. In contrast, bitumen II contains abundant aliphatic and aromatic hydrocarbons. The difference seems to reflect the weathering history and preservational environment of the investigated rock. Aliphatic hydrocarbons in bitumen I are considered to be mainly from later hydrocarbon inputs, after initial deposition and burial, and are therefore not indigenous. The lack of aromatic hydrocarbons in bitumen I suggests a severe weathering environment since uplift and exposure of the rock at the Earth's surface in the Cenozoic. On the other hand, the high abundance of aromatic hydrocarbons in bitumen II suggests that bitumen II hydrocarbons have been physically isolated from removal by their encapsulation within carbonate minerals. The richness of aromatic hydrocarbons and the relative scarcity of aliphatic hydrocarbons may reflect the original compositions of organic materials biosynthesised in ancient organisms in the Archean era, or the high thermal maturity of the rock. Cyanobacterial biomarkers were observed in the surficial slices of the rock, which may indicate that endolithic cyanobacteria inhabited the surface outcrop. The distribution of aliphatic and aromatic hydrocarbons implies a high thermal maturity, which is consistent with the lack of any specific biomarkers, such as hopanes and steranes, and the prehnite-pumpellyite facies metamorphic grade. PMID:25393450

  1. Sediment-associated aliphatic and aromatic hydrocarbons in coastal British Columbia, Canada: concentrations, composition, and associated risks to protected sea otters.

    PubMed

    Harris, Kate A; Yunker, Mark B; Dangerfield, Neil; Ross, Peter S

    2011-10-01

    Sediment-associated hydrocarbons can pose a risk to wildlife that rely on benthic marine food webs. We measured hydrocarbons in sediments from the habitat of protected sea otters in coastal British Columbia, Canada. Alkane concentrations were dominated by higher odd-chain n-alkanes at all sites, indicating terrestrial plant inputs. While remote sites were dominated by petrogenic polycyclic aromatic hydrocarbons (PAHs), small harbour sites within sea otter habitat and sites from an urban reference area reflected weathered petroleum and biomass and fossil fuel combustion. The partitioning of hydrocarbons between sediments and adjacent food webs provides an important exposure route for sea otters, as they consume ∼25% of their body weight per day in benthic invertebrates. Thus, exceedences of PAH sediment quality guidelines designed to protect aquatic biota at 20% of the sites in sea otter habitat suggest that sea otters are vulnerable to hydrocarbon contamination even in the absence of catastrophic oil spills.

  2. Occurrence of aliphatic and polyaromatic hydrocarbons (PAHs) in Mytillus galloprovincialis from the traditional market in Marseille, France, by Gas Chromatography triplequadropole tandem Mass Spectrometry (GC-QQQ/MS)

    NASA Astrophysics Data System (ADS)

    Azis, M. Y.; Yelmiza; Asia, L.; Piram, A.; Bucharil, B.; Doumenq, P.; Syakti, A. D.

    2016-02-01

    Mediterranean mussel, Mytillusgalloprovincialis collected from the traditional market in Marseille, France,have been analysed using GC-QQQ/MS for their hydrocarbons (n-alkanes and polyaromatic hydrocarbons (PAHs)) extentwith two different solvent extraction, such as heptane:dichloromethane (HEP:DCM;1:1) and heptane:acetone (HEP:ACE; 1:1). The results showed hydrocarbons yielded from heptane:acetone extractionwere 28335 μg.kg- 1mussels dw (Ʃ n-alkanes C15-34) and 202 μg.kg-1mussels dw(ƩPAHs) while the yield from heptane:DCM extract was lower ca. 27026 μg.kg-1musselsdw and 133 μg.kg-1 mussels dw respectively from the Ʃn-alkanesC15-34and ƩPAHs. High hydrocarbon levels can be affected by the presence of lipids or other metabolites in mussels that have the same polarity with hydrocarbon compounds which has interferred the measurement. Several ratio parameter of n- alcanes and PAHs source in the mussels were evaluated to asses the origins of their hydrocarbons in mussels from which we suggested origins of hydrocarbons were pyrolytic and biogenic rather than petrogenic.

  3. Discovery of abundant, accessible hydrocarbons nearly everywhere in the solar system

    SciTech Connect

    Zuppero, A.

    1996-05-01

    analysis of the data gathered during the Comet Halley encounter during 1987 resulted in a body of literature asserting that all comets contain substantial percentages of hydrocarbon solids. These solids appear to have a strong similarity to petrochemicals. Arguments are made that the amount of hydrocarbon material in the accessible comets of the inner Solar system can substantially exceed the known reserves of hydrocarbons on Earth. An example is given of at least one conceptually simple method to use comet material as feedstock for space transportation schemes that can move masses through the solar system comparable to the mass carried by oil supertankers. The presentation concludes we need to send prospecting and assay probes to a sampling of the accessible comets to determine the amount of hydrocarbons and the form and location of materials needed for space transportation systems.

  4. Hydrocarbons on Phoebe, Iapetus, and Hyperion: Quantitative Analysis

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; MoreauDalleOre, Cristina; Pendleton, Yvonne J.; Clark, Roger Nelson

    2012-01-01

    We present a quantitative analysis of the hydrocarbon spectral bands measured on three of Saturn's satellites, Phoebe, Iaperus, and Hyperion. These bands, measured with the Cassini Visible-Infrared Mapping Spectrometer on close fly-by's of these satellites, are the C-H stretching modes of aromatic hydrocarbons at approximately 3.28 micrometers (approximately 3050 per centimeter), and the are four blended bands of aliphatic -CH2- and -CH3 in the range approximately 3.36-3.52 micrometers (approximately 2980- 2840 per centimeter) bably indicating the presence of polycyclic aromatic hydrocarbons (PAH), is unusually strong in comparison to the aliphatic bands, resulting in a unique signarure among Solar System bodies measured so far, and as such offers a means of comparison among the three satellites. The ratio of the C-H bands in aromatic molecules to those in aliphatic molecules in the surface materials of Phoebe, NAro:NAliph approximately 24; for Hyperion the value is approximately 12, while laperus shows an intermediate value. In view of the trend of the evolution (dehydrogenation by heat and radiation) of aliphatic complexes toward more compact molecules and eventually to aromatics, the relative abundances of aliphatic -CH2- and -CH3- is an indication of the lengths of the molecular chain structures, hence the degree of modification of the original material. We derive CH2:CH3 approximately 2.2 in the spectrum of low-albedo material on laperus; this value is the same within measurement errors to the ratio in the diffuse interstellar medium. The similarity in the spectral signatures of the three satellites, plus the apparent weak trend of aromatic/aliphatic abundance from Phoebe to Hyperion, is consistent with, and effectively confirms that the source of the hydrocarbon-bearing material is Phoebe, and that the appearance of that material on the other two satellites arises from the deposition of the inward-spiraling dust that populates the Phoebe ring.

  5. Hydrocarbons on Phoebe, Iapetus, and Hyperion: Quantitative Analysis

    NASA Astrophysics Data System (ADS)

    Cruikshank, D. P.; Dalle Ore, C. M.; Pendleton, Y. J.; Clark, R. N.

    2012-12-01

    We present a quantitative analysis of the hydrocarbon spectral bands measured on three of Saturn's satellites, Phoebe, Iapetus, and Hyperion. These bands, measured with the Cassini Visible-Infrared Mapping Spectrometer on close fly-bys of these satellites, are the C-H stretching modes of aromatic hydrocarbons at ~3.28 μm (~3050 cm-1), and the are four blended bands of aliphatic -CH2- and -CH3 in the range ~3.36-3.52 μm (~2980-2840 cm-1). In these data, the aromatic band, probably indicating the presence of polycyclic aromatic hydrocarbons (PAH), is unusually strong in comparison to the aliphatic bands, resulting in a unique signature among Solar System bodies measured so far, and as such offers a means of comparison among the three satellites. The ratio of the C-H bands in aromatic molecules to those in aliphatic molecules in the surface materials of Phoebe, NAro:NAliph ~24; for Hyperion the value is ~12, while Iapetus shows an intermediate value. In view of the trend of the evolution (dehydrogenation by heat and radiation) of aliphatic complexes toward more compact molecules and eventually to aromatics, the relative abundances of aliphatic -CH2- and -CH3- is an indication of the lengths of the molecular chain structures, hence the degree of modification of the original material. We derive CH2:CH3 ~2.2 in the spectrum of low-albedo material on Iapetus; this value is the same within measurement errors to the ratio in the diffuse interstellar medium. The similarity in the spectral signatures of the three satellites, plus the apparent weak trend of aromatic/aliphatic abundance from Phoebe to Hyperion, is consistent with, and effectively confirms that the source of the hydrocarbon-bearing material is Phoebe, and that the appearance of that material on the other two satellites arises from the deposition of the inward-spiraling dust that populates the Phoebe ring.

  6. Aliphatic and polycyclic aromatic hydrocarbons and trace elements as indicators of contamination status near oil and gas platforms in the Sergipe-Alagoas Basin (Southwest Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Lourenço, Rafael A.; Araujo Júnior, Marcus A. G.; Meireles Júnior, Ruy O.; Macena, Leandro F.; de A. Lima, Eleine Francioni; Carneiro, Maria Eulalia R.

    2013-12-01

    Oil and gas platforms from Sergipe-Alagoas Basin located in the northeastern region of Brazil do not discharge produced water. However, those platforms can be a potential source of contaminants to the marine environment due to their producing activities. In this study, sediment samples were collected in the vicinity of two offshore oil and gas platforms located in Sergipe-Alagoas Basin (PCM-9 and PGA-1) to evaluate the source and levels of hydrocarbons and trace elements (As, Fe, Al, Ti, Cu, Cd, Zn, Pb, Ni, Mn, Ba, V, Cr and Hg). Also, the potential impact of those platforms on the sediment quality was investigated. Polycyclic aromatic hydrocarbons diagnostic ratios observed in the sediment samples indicated hydrocarbons from pyrogenic source, specifically from biomass combustion. Trace elements As, Cd and Ba recorded concentrations higher than Threshold Effect Levels (TEL) in the sediment nearby the platforms. Also, there was evidence of some samples enriched by barium. Although As, Cd and Ba concentrations were higher than TEL, they most likely corresponded to background levels. The obtained results indicated that activities of the PCM-9 and PGA-1 platforms may not be affecting the quality of nearby sediment.

  7. Nitrogen incorporation in saturated aliphatic C6-C8 hydrocarbons and ethanol in low-pressure nitrogen plasma generated by a hollow cathode discharge ion source.

    PubMed

    Usmanov, Dilshadbek T; Chen, Lee Chuin; Hiraoka, Kenzo; Wada, Hiroshi; Nonami, Hiroshi; Yamabe, Shinichi

    2016-06-01

    Ion/molecule reactions of saturated hydrocarbons (n-hexane, cyclohexane, n-heptane, n-octane and isooctane) in 28-Torr N2 plasma generated by a hollow cathode discharge ion source were investigated using an Orbitrap mass spectrometer. It was found that the ions with [M+14](+) were observed as the major ions (M: sample molecule). The exact mass analysis revealed that the ions are nitrogenated molecules, [M+N](+) formed by the reactions of N3 (+) with M. The reaction, N3 (+) + M → [M+N](+) + N2 , were examined by the density functional theory calculations. It was found that N3 (+) abstracts the H atom from hydrocarbon molecules leading to the formation of protonated imines in the forms of R'R″CNH2 (+) (i.e. C-H bond nitrogenation). This result is in accord with the fact that elimination of NH3 is the major channel for MS/MS of [M+N](+) . That is, nitrogen is incorporated in the C-H bonds of saturated hydrocarbons. No nitrogenation was observed for benzene and acetone, which was ascribed to the formation of stable charge-transfer complexes benzene⋅⋅⋅⋅N3 (+) and acetone⋅⋅⋅⋅N3 (+) revealed by density functional theory calculations. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27270868

  8. Bacteria associated with arbuscular mycorrhizal fungi within roots of plants growing in a soil highly contaminated with aliphatic and aromatic petroleum hydrocarbons.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2014-09-01

    Arbuscular mycorrhizal fungi (AMF) belong to phylum Glomeromycota, an early divergent fungal lineage forming symbiosis with plant roots. Many reports have documented that bacteria are intimately associated with AMF mycelia in the soil. However, the role of these bacteria remains unclear and their diversity within intraradical AMF structures has yet to be explored. We aim to assess the bacterial communities associated within intraradical propagules (vesicles and intraradical spores) harvested from roots of plant growing in the sediments of an extremely petroleum hydrocarbon-polluted basin. Solidago rugosa roots were sampled, surface-sterilized, and microdissected. Eleven propagules were randomly collected and individually subjected to whole-genome amplification, followed by PCRs, cloning, and sequencing targeting fungal and bacterial rDNA. Ribotyping of the 11 propagules showed that at least five different AMF OTUs could be present in S. rugosa roots, while 16S rRNA ribotyping of six of the 11 different propagules showed a surprisingly high bacterial richness associated with the AMF within plant roots. Most dominant bacterial OTUs belonged to Sphingomonas sp., Pseudomonas sp., Massilia sp., and Methylobacterium sp. This study provides the first evidence of the bacterial diversity associated with AMF propagules within the roots of plants growing in extremely petroleum hydrocarbon-polluted conditions.

  9. Bacteria associated with arbuscular mycorrhizal fungi within roots of plants growing in a soil highly contaminated with aliphatic and aromatic petroleum hydrocarbons.

    PubMed

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2014-09-01

    Arbuscular mycorrhizal fungi (AMF) belong to phylum Glomeromycota, an early divergent fungal lineage forming symbiosis with plant roots. Many reports have documented that bacteria are intimately associated with AMF mycelia in the soil. However, the role of these bacteria remains unclear and their diversity within intraradical AMF structures has yet to be explored. We aim to assess the bacterial communities associated within intraradical propagules (vesicles and intraradical spores) harvested from roots of plant growing in the sediments of an extremely petroleum hydrocarbon-polluted basin. Solidago rugosa roots were sampled, surface-sterilized, and microdissected. Eleven propagules were randomly collected and individually subjected to whole-genome amplification, followed by PCRs, cloning, and sequencing targeting fungal and bacterial rDNA. Ribotyping of the 11 propagules showed that at least five different AMF OTUs could be present in S. rugosa roots, while 16S rRNA ribotyping of six of the 11 different propagules showed a surprisingly high bacterial richness associated with the AMF within plant roots. Most dominant bacterial OTUs belonged to Sphingomonas sp., Pseudomonas sp., Massilia sp., and Methylobacterium sp. This study provides the first evidence of the bacterial diversity associated with AMF propagules within the roots of plants growing in extremely petroleum hydrocarbon-polluted conditions. PMID:25039790

  10. Distributions and sources of persistent organic pollutants (aliphatic hydrocarbons, PAHs, PCBs and pesticides) in surface sediments of an industrialized urban river (Huveaune), France.

    PubMed

    Kanzari, F; Syakti, A D; Asia, L; Malleret, L; Piram, A; Mille, G; Doumenq, P

    2014-04-15

    Surface sediments from the Huveaune River were analyzed for n-alkanes, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine and organophosphorous pesticides (OCs and OPs) by using gas chromatography-mass spectrometry (GC-MS). Concentrations of total alkanes ranged from 184 to 26,780 μg·kg(-1) sediment dry weight (dw) with a mean concentration of 6,126 ± 8,006 μg·kg(-1)dw, concentrations of total PAHs ranged from 572 to 4,235 μg·kg(-1)dw with a mean concentration of 1966 ± 1,104 μg·kg(-1) dw, concentrations of total PCB ranged from 2.8 to 435 μg·kg(-1)dw with a mean concentration of 148 ± 164 μg·kg(-1)dw and concentrations of total pesticides ranged from 0.07 to 1.25 μg·kg(-1)dw with a mean concentration of 1.23 ± 1.29 μg·kg(-1)dw. The spatial distribution of POPs reveals that pollutant concentration is relatively higher at the mouth of the river. The molecular indices of specific n-alkanes (CPI, NAR and TAR) and molecular indices of PAHs (Ant/(Ant+Phe), Fl/(Fl+Pyr), BaA/(BaA+Chry), IPyr/(Ipyr+BghiP)) were calculated to evaluate the possible sources of hydrocarbons. These molecular indices suggest mainly pyrolytic inputs which are markedly biogenic. All contaminant levels were also compared with Sediments Quality Guidelines (SQG) showing that the contamination levels in all stations were most of the time lower than their respective SQG. While, for PCBs, five stations (H5, H6, H7, H8 and H9) were higher than their effect range median (ERM) values which may indicate high potential toxicity of the sediment with probable adverse effects to the living biota.

  11. Hydrocarbon analogs of cosmic dust to trace the solid carbon abundance in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Gadallah, Kamel A. K.

    2015-01-01

    The spectral changes of hydrogenated amorphous carbon (HAC) could show variable distributions of solid carbon abundance in the interstellar medium (ISM). The variable optical properties of HAC analogs, produced by the laser ablation in a high vacuum, depends on the variation in its atomic and electronic structures. The fraction of hydrogen atoms in HAC increases proportionally with the laser's power. The available solid carbon tied up in the interstellar HAC, being the carrier of the interstellar 3.4 μ m and 4.6 μ m-1 bands, is indicated by the strength of these bands. Comparing the strength of these bands with those of laboratory data indicates that the amount of carbon in HAC analogs is not inherently sufficient. The lack in the solid carbon (locked solid carbon) in these analogs can be analytically estimated to facilitate the simulation of cosmic carbon dust. The results show a reduction in the locked solid carbon when the fraction of hydrogen atoms in HAC analogs increases. When this fraction becomes approximately 0.52 relative to the total number of hydrogen and carbon atoms, there is no lack of carbon in HAC analogs. The interstellar distribution of variable solid carbon abundance is attributed to the modification of cosmic HAC, which occurs as a result of the variation in its hydrogen atom fraction and the UV processing taking place in the interstellar environments. This distribution reveals more solid carbon abundances reside in the dust phase and may assist in resolving the carbon crisis.

  12. Jovian Mid-Infrared Aurora, Hydrocarbon Abundances and Temperature Prior to Juno's Arrival

    NASA Astrophysics Data System (ADS)

    Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Kolasinski, John

    2016-10-01

    We report on ground-based measurements of Jupiter's thermal infrared aurora, ethane abundances and temperature prior to Juno's arrival at Jupiter in July 2016. Measurements covering spectral and altitude regions that will complement Juno observational capabilities were made April 18-22, 2016, with the GSFC Heterodyne Instrument for Planetary Wind And Composition (HIPWAC) on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The ultra-high spectral resolution infrared heterodyne spectroscopy (IRHS) measures fully resolved individual spectral lines whose shape provides unique information on variability of temperature and abundance. Ethane line spectra near 12-micrometer wavelength will be used to determine the intensities of auroral emission from Jupiter's polar regions and retrieve ethane abundance and temperature changes on and off the north polar "hot spot" region. Results will be compared to a 30-year study of this thermal infrared aurora with ground-based IRHS and with Voyager IRIS and Cassini CIRS measurements. Additional measurements during Juno's orbital mission phase are also planned. Analyses of the variability of the earlier measurements suggest that the thermal IR auroral emission may be low during the Juno –Jupiter encounter. Results will be useful for the Juno mission, since it does not have instrumentation in this spectral region and this work provides complementary information and diagnostic for studying Jupiter in a spectral region and altitude range not directly probed by Juno.

  13. Pyrostegia venusta heptane extract containing saturated aliphatic hydrocarbons induces apoptosis on B16F10-Nex2 melanoma cells and displays antitumor activity in vivo

    PubMed Central

    Figueiredo, Carlos R.; Matsuo, Alisson L.; Pereira, Felipe V.; Rabaça, Aline N.; Farias, Camyla F.; Girola, Nátalia; Massaoka, Mariana H.; Azevedo, Ricardo A.; Scutti, Jorge A.B.; Arruda, Denise C.; Silva, Luciana P.; Rodrigues, Elaine G.; Lago, João Henrique G.; Travassos, Luiz R.; Silva, Regildo M.G.

    2014-01-01

    Background: Pyrostegia venusta (Ker. Gawl.) Miers (Bignoniacea) is a medicinal plant from the Brazilian Cerrado used to treat leucoderma and common diseases of the respiratory system. Objective: To investigate the antitumor activity of P.venusta extracts against melanoma. Materials and Methods: The cytotoxic activity and tumor induced cell death of heptane extract (HE) from P. venusta flowers was evaluated against murine melanoma B16F10-Nex2 cells in vitro and in a syngeneic model in vivo. Results: We found that HE induced apoptosis in melanoma cells by disruption of the mitochondrial membrane potential, induction of reactive oxygen species and late apoptosis evidenced by plasma membrane blebbing, cell shrinkage, chromatin condensation and DNA fragmentation, exposure of phosphatidylserine on the cell surface and activation of caspase-2,-3,-8,-9. HE was also protective against singeneyc subcutaneous melanoma HE compounds were also able to induce cell cycle arrest at G2/M phases on tumor cells. On fractionation of HE in silica gel we isolated a cytotoxic fraction that contained a mixture of saturated hydrocarbons identified by 1H NMR and GC-MS analyses. Predominant species were octacosane (C28H58-36%) and triacontane (C30H62-13%), which individually showed significant cytotoxic activity against murine melanoma B16F10-Nex2 cells in vitro and a very promising antitumor protection against subcutaneous melanoma in vivo. Conclusion: The results suggest that the components of the heptane extract, mainly octasane and triacontane, which showed antitumor properties in experimental melanoma upon regional administration, might also be therapeutic in human cancer, such as in the mostly epidermal and slowly invasive melanomas, such as acral lentiginous melanoma, as an adjuvant treatment to surgical excision. PMID:24991116

  14. The Variation of Hydrocarbon Abundances with Latitude and Season in Saturn's Stratosphere

    NASA Technical Reports Server (NTRS)

    Moses, J. I.; Greathouse, T. K.

    2005-01-01

    We have developed a realistic, time-variable, one-dimensional, seasonal model for stratospheric photochemistry on Saturn using the Caltech/ JPL KINETICS code [1,2,3]. The model accounts for variations in ultraviolet flux due to orbital position, solar-cycle variations, and ring-shadowing effects. The results for two Saturnian years, starting at Ls = 0 in 1950 and running until the upcoming northern vernal equinox in 2009, are presented for numerous latitudes. The same two model years are run over and over again until the model convergences to make sure that high-altitude effects have had a chance to propagate down through the atmosphere. We use the SOLAR2000 model [4,5], in combination with the spectra presented in [6], to predict the ultraviolet flux at any wavelength and any point in time during the simulation. Saturn's orbital position during the simulation was taken from the ephemeris calculator at http://ssd.jpl.nasa.gov/horizons.html [7]. The photochemical model is derived from "Model C" of [8] and uses a hydrocarbon reaction list that has been extensively updated from that presented in [3].

  15. Influence of traffic conditions on polycyclic aromatic hydrocarbon abundance in street dust.

    PubMed

    Xiang, Li; Li, Yingxia; Yang, Zhifeng; Shi, Jianghong

    2010-01-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations were quantified in sieved street dusts from eight sampling sites with different traffic conditions in Beijing. The parent diagnostic ratio test and multi-regression analysis were used to identify the different PAH pollution sources. Results showed that more than 93% of the cumulative 16 priority pollutant PAHs (Sigma 16EPA-PAH) load was present in street dust with a diameter less than 300 microm across all the sampling sites. The concentration of Sigma 4-6 ring PAHs was 93 to 284% higher than that of Sigma 2-3 ring PAHs for most of the sites except the cycle lane site, indicating the dominance of pyrogenic inputs in street dusts at these sites. Cooking oil is an important PAH source in street dusts for all the sampling sites. Tire debris and vehicle emissions were also identified as significant contributors to the PAH loading in the heavy traffic zone, vehicle parking areas, the frequent brake usage zone, and the construction area.

  16. Abundances of polycyclic aromatic hydrocarbons (PAHs) in 14 chinese and american coals and their relation to coal rank and weathering

    USGS Publications Warehouse

    Wang, R.; Liu, Gaisheng; Zhang, Jiahua; Chou, C.-L.; Liu, J.

    2010-01-01

    The abundances of 16 polycyclic aromatic hydrocarbons (PAHs) on the priority list of the United States Environmental Protection Agency (U.S. EPA) have been determined in 14 Chinese and American coals. The ranks of the samples range from lignite, bituminous coal, anthracite, to natural coke. Soxhlet extraction was conducted on each coal for 48 h. The extract was analyzed on a gas chromatograph-mass spectrometer (GC-MS). The results show that the total PAH content ranged from 0.31 to 57.6 ??g/g of coal (on a dry basis). It varied with coal rank and is highest in the maturity range of bituminous coal rank. High-molecular-weight (HMW) PAHs are predominant in low-rank coals, but low-molecular-weight (LMW) PAHs are predominant in high-rank coals. The low-sulfur coals have a higher PAH content than high-sulfur coals. It may be explained by an increasing connection between disulfide bonds and PAHs in high-sulfur coal. In addition, it leads us to conclude that the PAH content of coals may be related to the depositional environment. ?? 2010 American Chemical Society.

  17. THE ABUNDANCE OF C{sub 3}H{sub 2} AND OTHER SMALL HYDROCARBONS IN THE DIFFUSE INTERSTELLAR MEDIUM

    SciTech Connect

    Liszt, Harvey; Sonnentrucker, Paule; Cordiner, Martin; Gerin, Maryvonne

    2012-07-10

    Hydrocarbons are ubiquitous in the interstellar medium, observed in diverse environments ranging from diffuse to molecular dark clouds and strong photon-dominated regions near H II regions. Recently, two broad diffuse interstellar bands (DIBs) at 4881 A and 5450 A were attributed to the linear version of propynylidene l-C{sub 3}H{sub 2}, a species whose more stable cyclic conformer c-C{sub 3}H{sub 2} has been widely observed in the diffuse interstellar medium at radio wavelengths. This attribution has already been criticized on the basis of indirect plausibility arguments because the required column densities are quite large, N(l-C{sub 3}H{sub 2})/E{sub B-V} =4 Multiplication-Sign 10{sup 14} cm{sup -2} mag{sup -1}. Here we present new measurements of N(l-C{sub 3}H{sub 2}) based on simultaneous 18-21 GHz Very Large Array absorption profiles of cyclic and linear C{sub 3}H{sub 2} taken along sight lines toward extragalactic radio-continuum background sources with foreground Galactic reddening E{sub B-V} = 0.1-1.6 mag. We find that N(l-C{sub 3}H{sub 2})/N(c-C{sub 3}H{sub 2}) Almost-Equal-To 1/15-1/40 and N(l-C{sub 3}H{sub 2})/E{sub B-V} Almost-Equal-To (2 {+-} 1) Multiplication-Sign 10{sup 11} cm{sup -2} mag{sup -1}, so that the column densities of l-C{sub 3}H{sub 2} needed to explain the DIBs are some three orders of magnitude higher than what is observed. We also find N(C{sub 4}H)/E{sub B-V} <1.3 Multiplication-Sign 10{sup 13} cm{sup -2} mag{sup -1} and N(C{sub 4}H{sup -})/E{sub B-V} <1 Multiplication-Sign 10{sup 11} cm{sup -2} mag{sup -1} (3{sigma}). Using available data for CH and C{sub 2}H we compare the abundances of small hydrocarbons in diffuse and dark clouds as a guide to their ability to contribute as DIB carriers over a wide range of conditions in the interstellar medium.

  18. Long-term Observations of Jovian Mid-Infrared Aurora, Hydrocarbon Abundances, and Temperature: Ground-based and Space-based Comparison and Preparation for Juno

    NASA Astrophysics Data System (ADS)

    Kostiuk, T.; Hewagama, T.; Livengood, T. A.; Fast, K. E.; Bjoraker, G. L.; Carlson, R. C.; Schmuelling, F.

    2015-12-01

    With Juno's approach to Jupiter in 2016 nearing, we report on long term measurements of Jupiter's thermal infrared aurora covering spectral and altitude regions that will complement Juno observational capabilities. Previously acquired spectral data from ground-based observatories as well as by Voyager IRIS and Cassini CIRS during Jupiter flybys will be investigated using current methods and capabilities. The thermal (mid-) IR aurora from Jupiter's polar regions, hydrocarbon abundances, and thermal structure retrieved from the ground and from space-based investigations will be compared and used to illustrate the different capabilities and complementarity of the measurement platforms. We report on the reexamination and re-analysis of hydrocarbon emission spectra from Jupiter obtained using ground-based ultra-high spectral resolution infrared heterodyne spectroscopy (IRHS) and Fourier transform spectroscopy (FTS) from Cassini CIRS during its flyby of Jupiter in 2000-2001 and Voyager IRIS data obtained during flybys in 1979. Measurements with IRHS have been made over 30 years, primarily of ethane near 12 micrometer wavelength. These measurements yield fully resolved individual spectral lines whose shape provides unique information on variability of temperature and abundance. CIRS and IRIS data at coarser spectral resolution provide extended spatial distributions covering a broad spectral region, including abundances and auroral response of hydrocarbon constituents in the 8-13 micrometer spectral region (ethane, methane, ethylene, and acetylene). Analysis shows detailed spatial variability of the primary hydrocarbons in northern latitudes. Temporal changes of the ethane line emission over three solar cycles and comparison of retrievals from ethane data taken contemporaneously during the Cassini flyby by both techniques will be compared and results discussed. From these analyses, the expectation is that the thermal IR auroral emission may be low during the Juno tour at

  19. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers.

    PubMed

    Tuomi, Pirjo M; Salminen, Jani M; Jørgensen, Kirsten S

    2004-12-27

    In this study, we evaluated whether the abundance of the functional gene nahAc reflects aerobic naphthalene degradation potential in subsurface and surface samples taken from three petroleum hydrocarbon contaminated sites in southern Finland. The type of the contamination at the sites varied from lightweight diesel oil to high molecular weight residuals of crude oil. Samples were collected from both oxic and anoxic soil layers. The naphthalene dioxygenase gene nahAc was quantified using a replicate limiting dilution-polymerase chain reaction (RLD-PCR) method with a degenerate primer pair. In the non-contaminated samples nahAc genes were not detected. In the petroleum hydrocarbon-contaminated oxic soil samples nahAc gene abundance [range 3 x 10(1)-9 x 10(4) copies (g dry wt soil)(-1)] was correlated (Kendall non-parametric correlation r2=0.459, p<0.01) with the aerobic 14C-naphthalene mineralization potential (range 1 x 10(-5)-0.1 d(-1)) measured in microcosms at in situ temperatures (8 degrees C for subsurface and 20 degrees C for surface soil samples). In these samples nahAc gene abundance was also correlated with total microbial cell counts (r2=0.471, p<0.01), respiration rate (r2=0.401, p<0.01) and organic matter content (r2=0.341, p<0.05). NahAc genes were amplified from anoxic soil layers indicating that, although involved in aerobic biodegradation of naphthalene, these genes or related sequences were also present in the anoxic subsurface. In the samples taken from the anoxic layers, the aerobic 14C-naphthalene mineralization rates were not correlated with nahAc gene abundance. In conclusion, current sequence information provides the basis for a robust tool to estimate the naphthalene degradation potential at oxic zones of different petroleum hydrocarbon-contaminated sites undergoing in situ bioremediation. PMID:16329859

  20. Combinations of Aromatic and Aliphatic Radiolysis.

    PubMed

    LaVerne, Jay A; Dowling-Medley, Jennifer

    2015-10-01

    The production of H(2) in the radiolysis of benzene, methylbenzene (toluene), ethylbenzene, butylbenzene, and hexylbenzene with γ-rays, 2-10 MeV protons, 5-20 MeV helium ions, and 10-30 MeV carbon ions is used as a probe of the overall radiation sensitivity and to determine the relative contributions of aromatic and aliphatic entities in mixed hydrocarbons. The addition of an aliphatic side chain with progressively from one to six carbon lengths to benzene increases the H(2) yield with γ-rays, but the yield seems to reach a plateau far below that found from a simple aliphatic such as cyclohexane. There is a large increase in H(2) with LET (linear energy transfer) for all of the substituted benzenes, which indicates that the main process for H(2) formation is a second-order process and dominated by the aromatic entity. The addition of a small amount of benzene to cyclohexane can lower the H(2) yield from the value expected from a simple mixture law. A 50:50% volume mixture of benzene-cyclohexane has essentially the same H(2) yield as cyclohexylbenzene at a wide variation in LET, suggesting that intermolecular energy transfer is as efficient as intramolecular energy transfer.

  1. THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS

    SciTech Connect

    Chiar, J. E.; Ricca, A.; Tielens, A. G. G. M.; Adamson, A. J. E-mail: Alessandra.Ricca@1.nasa.gov E-mail: aadamson@gemini.edu

    2013-06-10

    Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 {mu}m) and aliphatic (3.4 {mu}m) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp {sup 2} bonds can be measured in astronomical spectra using the 6.2 {mu}m CC aromatic stretch feature, whereas the 3.4 {mu}m aliphatic feature can be used to quantify the fraction of sp {sup 3} bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp {sup 3} content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

  2. Gaseous aliphatic aldehydes in Chinese incense smoke

    SciTech Connect

    Lin, J.M.; Wang, L.H. )

    1994-09-01

    Aliphatic aldehydes were found during the combustion of materials. Tobacco smoke contains aldehydes. Fire fighters were exposed to aldehydes when they conducted firefighting. Aldehydes in ambient air come mainly from the incomplete combustion of hydrocarbons and from photochemical reaction. Most aldehydes in ambient air are formaldehyde and acetaldehyde. Formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, and benzaldehyde were found in the atmosphere in Los Angeles. Burning Chinese incense for worshipping deities is a Chinese daily routine. It was suspected to be a factor causing nasopharynegeal cancer. Epidemiological studies correlated it with the high risk of childhood brain tumor and the high risk of childhood leukemia. Ames test identified the mutagenic effect of the smoke from burning Chinese incense. The smoke had bee proved to contain polycyclic aromatic hydrocarbons and aromatic aldehydes. Suspicion about formaldehyde and other alphatic aldehydes was evoked, when a survey of indoor air pollution was conducted in Taipei city. This study determined the presence of aliphatic aldehydes in the smoke from burning Chinese incense under a controlled atmosphere. 12 refs., 5 figs., 2 tabs.

  3. Catalytic Asymmetric Hydroamination of Unactivated Internal Olefins to Aliphatic Amines

    PubMed Central

    Yang, Yang; Shi, Shi-Liang; Niu, Dawen; Liu, Peng; Buchwald, Stephen L.

    2015-01-01

    Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. Herein, we describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins, an important yet unexploited class of abundant feedstock chemicals, into highly enantioenriched α-branched amines (≥ 96% enantiomeric excess) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas. PMID:26138973

  4. Hydrocarbon geochemistry of the Puget Sound region - II. Sedimentary diterpenoid, steroid and triterpenoid hydrocarbons

    NASA Astrophysics Data System (ADS)

    Barrick, Robert C.; Hedges, John I.

    1981-03-01

    Cyclic components of the 'aliphatic' hydrocarbon mixtures extracted from Puget Sound sediment cores include a suite of C 19 and C 20 diterpenoid hydrocarbons of which fichtelite. sandaracopimaradiene, and isopimaradiene have been identified. Although apparently also derived from vascular plants, these diterpenoid hydrocarbons have relative abundances distinctly different from the co-existing plant wax n-alkane suite. Five C 27, C 28 and C 29 diasteranes and four C 29, C 30 and C 31 17α(H), 21β(H) hopanes occur in relatively constant proportion as components of a highly weathered fossil hydrocarbon assemblage. These chromatographically resolved cycloalkanes. along with the strongly covarying unresolved complex mixture, have been introduced to Puget Sound sediments from adjacent urban centres at increasing levels over the last 100 yr in the absence of any major oil spill. Naturally-occurring triterpenoid hydrocarbons, including hop-22(29)-ene (diploptene), are also present. A new group of C 30 polyenes has been detected which contains compounds apparently structurally related to a co-existing bicyclic C 25 diene and to C 20 and C 25 acyclic multibranched hydrocarbons described in a previous paper ( BARRICK et al., 1980).

  5. Preferences in removal of aliphatic and aromatic gasoline components by biofiltration under varied loading.

    PubMed

    Halecky, Martin; Paca, Jan; Kozliak, Evguenii I

    2012-01-01

    Removal of gasoline vapors from waste air was investigated in a bench-scale perlite biofilter for three aromatic-to-aliphatic mass ratios (62/38, 92/8 and 44/56) under different loads, varied by changing both the substrate inlet concentration and air flow rate. The measurement of concentration profiles along the bed height allowed for an assessment of interactions between the aromatic and aliphatic fractions of gasoline. Variations in both the inlet concentrations and empty bed residence time significantly influenced the removal of aliphatic gasoline components. Except for the lowest organic loads, the whole biofilter bed was required for achieving an acceptable removal efficiency of aliphatic hydrocarbons. The presence of large amounts of aromatics negatively impacted the removal of aliphatics. By contrast, the aromatic gasoline components were near-completely removed from any mixtures; the bulk of them were degraded in the first (out of three) biofilter section, even at high concentrations of aliphatic hydrocarbons. The observed effect was shown to be due to competitive interactions of aliphatic and aromatic components, which is consistent with the biological steps being rate limiting. Mass transfer, particularly for aliphatic components due to their high Henry's law constants, was shown to be rate-limiting under extreme scenarios, such as low loading rates and EBRT.

  6. Ether and hydrocarbon production

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1991-03-19

    This patent describes a continuous process for converting lower aliphatic alkanol and olefinic hydrocarbon to alkyl tertiary-alkyl ethers and C{sub 5} + gasoline boiling range hydrocarbons. It comprises contacting alkanol and a light olefinic hydrocarbon stream rich in isobutylene and other C{sub 4} isomeric hydrocarbons under iso-olefin etherification conditions in an etherification reaction zone containing acid etherification catalyst; separating etherification effluent to recover a light stream comprising unreacted alkanol and light olefinic hydrocarbon and a liquid product stream containing alkyl tertiary-butyl ether; and contacting the light stream with acidic, medium pore metallosilicate catalyst under alkanol and hydrocarbon conversion conditions whereby C{sub 5} + gasoline boiling range hydrocarbons are produced.

  7. Anthropogenic and biogenic hydrocarbons in soils and vegetation from the South Shetland Islands (Antarctica).

    PubMed

    Cabrerizo, Ana; Tejedo, Pablo; Dachs, Jordi; Benayas, Javier

    2016-11-01

    Two Antarctic expeditions (in 2009 and 2011) were carried out to assess the local and remote anthropogenic sources of aliphatic and aromatic hydrocarbons, as well as potential biogenic hydrocarbons. Polycyclic aromatic hydrocarbons (PAHs), n-alkanes, biomarkers such as phytane (Ph) and pristane (Pr), and the aliphatic unresolved complex mixture (UCM), were analysed in soil and vegetation samples collected at Deception, Livingston, Barrientos and Penguin Islands (South Shetland Islands, Antarctica). Overall, the patterns of n-alkanes in lichens, mosses and grass were dominated by odd-over-even carbon number alkanes. Mosses and vascular plants showed high abundances of n-C21 to n-C35, while lichens also showed high abundances of n-C17 and n-C19. The lipid content was an important factor controlling the concentrations of n-alkanes in Antarctic vegetation (r(2)=0.28-0.53, p-level<0.05). n-C12 to n-C35 n-alkanes were analysed in soils with a predominance of odd C number n-alkanes (n-C25, n-C27, n-C29, and n-C31), especially in the background soils not influenced by anthropogenic sources. The large values for the carbon predominance index (CPI) and the correlations between odd alkanes and some PAHs suggest the potential biogenic sources of these hydrocarbons in Antarctica. Unresolved complex mixture and CPI values ~1 detected at soils collected at intertidal areas and within the perimeter of Juan Carlos research station, further supported the evidence that even a small settlement (20 persons during the austral summer) can affect the loading of aliphatic and aromatic hydrocarbons in nearby soils. Nevertheless, the assessment of Pr/n-C17 and Ph/n-C18 ratios showed that hydrocarbon degradation is occurring in these soils.

  8. Anthropogenic and biogenic hydrocarbons in soils and vegetation from the South Shetland Islands (Antarctica).

    PubMed

    Cabrerizo, Ana; Tejedo, Pablo; Dachs, Jordi; Benayas, Javier

    2016-11-01

    Two Antarctic expeditions (in 2009 and 2011) were carried out to assess the local and remote anthropogenic sources of aliphatic and aromatic hydrocarbons, as well as potential biogenic hydrocarbons. Polycyclic aromatic hydrocarbons (PAHs), n-alkanes, biomarkers such as phytane (Ph) and pristane (Pr), and the aliphatic unresolved complex mixture (UCM), were analysed in soil and vegetation samples collected at Deception, Livingston, Barrientos and Penguin Islands (South Shetland Islands, Antarctica). Overall, the patterns of n-alkanes in lichens, mosses and grass were dominated by odd-over-even carbon number alkanes. Mosses and vascular plants showed high abundances of n-C21 to n-C35, while lichens also showed high abundances of n-C17 and n-C19. The lipid content was an important factor controlling the concentrations of n-alkanes in Antarctic vegetation (r(2)=0.28-0.53, p-level<0.05). n-C12 to n-C35 n-alkanes were analysed in soils with a predominance of odd C number n-alkanes (n-C25, n-C27, n-C29, and n-C31), especially in the background soils not influenced by anthropogenic sources. The large values for the carbon predominance index (CPI) and the correlations between odd alkanes and some PAHs suggest the potential biogenic sources of these hydrocarbons in Antarctica. Unresolved complex mixture and CPI values ~1 detected at soils collected at intertidal areas and within the perimeter of Juan Carlos research station, further supported the evidence that even a small settlement (20 persons during the austral summer) can affect the loading of aliphatic and aromatic hydrocarbons in nearby soils. Nevertheless, the assessment of Pr/n-C17 and Ph/n-C18 ratios showed that hydrocarbon degradation is occurring in these soils. PMID:27450242

  9. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada - An alkaline, meromictic lake

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Des Marais, D. J.

    1983-01-01

    The study of the distribution and isotopic composition of low molecular weight hydrocarbon gases at the Big Soda Lake, Nevada, has shown that while neither ethylene nor propylene were found in the lake, ethane, propane, isobutane and n-butane concentrations all increased with water column depth. It is concluded that methane has a biogenic origin in both the sediments and the anoxic water column, and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in delta C-13/CH4/ and CH4/(C2H6 + C3H8) with depth in the water column and sedimeents are probably due to bacterial processes, which may include anaerobic methane oxidation and different rates of methanogenesis, and C2-to-C4 alkane production by microorganisms.

  10. Composition and sources of aliphatic lipids and sterols in sediments of a tropical island, southern South China Sea: preliminary assessment.

    PubMed

    Mohd Tahir, N; Pang, S Y; Abdullah, N A; Suratman, S

    2013-12-01

    Near-shore surface sediment was collected from five stations off Redang Island located on the eastern coast of Peninsular Malaysia. Freeze-dried sediments were Soxhlet extracted and then fractionated using column chromatography into aliphatic and polar fractions. Determination of these fractions was carried out using gas chromatography mass spectrometry. The concentration of total resolved aliphatic hydrocarbons in sediments ranged from 157 to 308 ng/g. The distribution of aliphatic fraction showed the presence of n-alkanes ranging from nC15 to nC33 with a minor odd-to-even predominance exhibiting carbon maximum, depending on station, at nC17, nC26, nC29 or nC31. Calculation of Carbon Preference Index (CPI) for CPI(15-33) gave values ranging from 1.09 to 1.46. n-Alkanol in all sediment exhibits even-to-odd carbon predominance ranging from nC16 to nC28 and maximising at nC22. n-Fatty acids distribution ranged from nC14 to nC24 with a dominant maximum at nC16 and exhibiting high values of short chain fatty acids (≤nC20) to long chain fatty acids (>nC20) ratios. Unsaturated fatty acids, particularly nC16:1 and nC18:1 is also ubiquitous in all samples. Cholesterol is the most abundant compound amongst the sterol group ranging from 42.8 to 62.6% of the total sterols. β-Sitosterol, brassicasterol and stigmasterol, are also present but of relatively lower amount. These observations suggest that the aliphatic lipids and sterols in the study area originate, mainly, from biogenic sources of marine microbial with minor contribution from epiticular waxes of terrestrial plants.

  11. Composition and sources of aliphatic lipids and sterols in sediments of a tropical island, southern South China Sea: preliminary assessment.

    PubMed

    Mohd Tahir, N; Pang, S Y; Abdullah, N A; Suratman, S

    2013-12-01

    Near-shore surface sediment was collected from five stations off Redang Island located on the eastern coast of Peninsular Malaysia. Freeze-dried sediments were Soxhlet extracted and then fractionated using column chromatography into aliphatic and polar fractions. Determination of these fractions was carried out using gas chromatography mass spectrometry. The concentration of total resolved aliphatic hydrocarbons in sediments ranged from 157 to 308 ng/g. The distribution of aliphatic fraction showed the presence of n-alkanes ranging from nC15 to nC33 with a minor odd-to-even predominance exhibiting carbon maximum, depending on station, at nC17, nC26, nC29 or nC31. Calculation of Carbon Preference Index (CPI) for CPI(15-33) gave values ranging from 1.09 to 1.46. n-Alkanol in all sediment exhibits even-to-odd carbon predominance ranging from nC16 to nC28 and maximising at nC22. n-Fatty acids distribution ranged from nC14 to nC24 with a dominant maximum at nC16 and exhibiting high values of short chain fatty acids (≤nC20) to long chain fatty acids (>nC20) ratios. Unsaturated fatty acids, particularly nC16:1 and nC18:1 is also ubiquitous in all samples. Cholesterol is the most abundant compound amongst the sterol group ranging from 42.8 to 62.6% of the total sterols. β-Sitosterol, brassicasterol and stigmasterol, are also present but of relatively lower amount. These observations suggest that the aliphatic lipids and sterols in the study area originate, mainly, from biogenic sources of marine microbial with minor contribution from epiticular waxes of terrestrial plants. PMID:23856812

  12. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with

  13. The relative abundance and seasonal distribution correspond with the sources of polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River, Pakistan.

    PubMed

    Hussain, Imran; Syed, Jabir Hussain; Kamal, Atif; Iqbal, Mehreen; Eqani, Syed-Ali-Mustjab-Akbar-Shah; Bong, Chui Wei; Taqi, Malik Mumtaz; Reichenauer, Thomas G; Zhang, Gan; Malik, Riffat Naseem

    2016-06-01

    Chenab River is one of the most important rivers of Punjab Province (Pakistan) that receives huge input of industrial effluents and municipal sewage from major cities in the Central Punjab, Pakistan. The current study was designed to evaluate the concentration levels and associated ecological risks of USEPA priority polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River. Sampling was performed from eight (n = 24) sampling stations of Chenab River and its tributaries. We observed a relatively high abundance of ∑16PAHs during the summer season (i.e. 554 ng g(-1)) versus that in the winter season (i.e. 361 ng g(-1)), with an overall abundance of two-, five- and six-ring PAH congeners. Results also revealed that the nitrate and phosphate contents in the sediments were closely associated with low molecular weight (LMW) and high molecular weight (HMW) PAHs, respectively. Source apportionment results showed that the combustion of fossil fuels appears to be the key source of PAHs in the study area. The risk quotient (RQ) values indicated that seven PAH congeners (i.e. phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene, chrysene and benzo(a)anthracene) could pose serious threats to the aquatic life of the riverine ecosystem in Pakistan. PMID:27234513

  14. Volatile hydrocarbons inhibit methanogenic crude oil degradation

    PubMed Central

    Sherry, Angela; Grant, Russell J.; Aitken, Carolyn M.; Jones, D. Martin; Head, Ian M.; Gray, Neil D.

    2014-01-01

    Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5–nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12–nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 μmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12–nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 μmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers. PMID:24765087

  15. Endothermic hydrocarbon upgrading process

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1991-07-09

    This patent describes a process for upgrading aliphatic hydrocarbons to aromatic hydrocarbons. It comprises burning a hydrogen-deficient fuel under oxygen-deficient conditions to evolve a hot flue gas containing essentially no oxygen; providing an aromatization reaction zone containing a zeolite catalyst; directly transferring a quantity of thermal energy from the hot flue gas to the aromatization reaction zone by flowing hot flue gas through the aromatization reaction zone, the quantity of thermal energy being sufficient to supply the endothermic heat of reaction to aromatize at least a portion of the aliphatic feedstream; contacting an aliphatic hydrocarbon feedstream with the zeolite catalyst under primary conversion conditions in the aromatization reaction zone to evolve an aromatization reaction zone effluent stream containing aromatics; withdrawing the aromatization reaction zone effluent stream from the aromatization reaction zone; separating the aromatization reaction zone effluent stream into a product stream, a secondary conversion feedstream comprising CO, CO{sub 2}, and H{sub 2} and a stream containing C{sub 3}-C{sub 5} aliphatics; and charging the secondary conversion feedstream.

  16. Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons.

    PubMed

    Wallisch, Stefanie; Gril, Tjasa; Dong, Xia; Welzl, Gerd; Bruns, Christian; Heath, Ester; Engel, Marion; Suhadolc, Marjetka; Schloter, Michael

    2014-01-01

    Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and

  17. Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons

    PubMed Central

    Wallisch, Stefanie; Gril, Tjasa; Dong, Xia; Welzl, Gerd; Bruns, Christian; Heath, Ester; Engel, Marion; Suhadolc, Marjetka; Schloter, Michael

    2014-01-01

    Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and

  18. Hydrocarbons on Saturns Satellites: Relationship to Interstellar Dust and the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    2012-01-01

    To understand the origin and evolution of our Solar System, and the basic components that led to life on Earth, we study interstellar and planetary spectroscopic signatures. The possible relationship of organic material detected in carbonaceous meteorites, interplanetary dust particles (IDPs), comets and the interstellar medium have been the source of speculation over the years as the composition and processes that governed the early solar nebula have been explored to understand the extent to which primitive material survived or became processed. The Cassini VIMS has provided new data relevant to this problem. Three of Saturn's satellites, Phoebe, Iapetus, and Hyperion, are found to have aromatic and aliphatic hydrocarbons on their surfaces. The aromatic hydrocarbon signature (C-H stretching mode at 3.28 micrometers) is proportionally significantly stronger (relative to the aliphatic bands) than that seen in other Solar System bodies (e.g., comets) and materials (Stardust samples, IDPs, meteorites) and the distinctive sub-features of the 3.4 micrometer aliphatic band (CH2 and CH3 groups) are reminiscent of those widely detected throughout the diffuse ISM. Phoebe may be a captured object that originated in the region beyond the present orbit of Neptune, where the solar nebula contained a large fraction of original interstellar ice and dust that was less processed than material closer to the Sun. Debris from Phoebe now resident on Iapetus and Hyperion, as well as o Phoebe itself, thus presents a unique blend of hydrocarbons, amenable to comparisons with interstellar hydrocarbons and other Solar System materials. The dust ring surrounding Saturn, in which Phoebe is embedded, probably originated from a collision with Phoebe. Dust ring particles are the likely source of the organic-bearing materials, and perhaps the recently identified small particles of Fe detected on Saturn's satellites. Lab measurements of the absolute band strengths of representative aliphatic and

  19. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake

    USGS Publications Warehouse

    Oremland, R.S.; Des Marais, D.J.

    1983-01-01

    Distribution and isotopic composition (??13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20-35 m), reached uniform concentrations (55 ??M/l) in the monimolimnion (35-64 m) and again increased with depth in monimolimnion bottom sediments (>400 ??M/kg below 1 m sub-bottom depth). The ??13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<-70 per mil) increased with vertical distance up the core (??13C[CH4] = -55 per mil at sediment surface). Monimolimnion ??13C[CH4] values (-55 to -61 per mil) were greater than most ??13C[CH4] values found in the anoxic mixolimnion (92% of samples had ??13C[CH4] values between -20 and -48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50-60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4 [C2H6 + C3H8] were high (250-620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in ??13C[CH4] and CH4 (C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms. ?? 1983.

  20. 40 CFR 721.3364 - Aliphatic ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic ether. 721.3364 Section 721... Aliphatic ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aliphatic ether (PMN P-93-1381) is subject to reporting under...

  1. 40 CFR 721.3364 - Aliphatic ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic ether. 721.3364 Section 721... Aliphatic ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aliphatic ether (PMN P-93-1381) is subject to reporting under...

  2. Tolerance of Antarctic soil fungi to hydrocarbons.

    PubMed

    Hughes, Kevin A; Bridge, Paul; Clark, Melody S

    2007-01-01

    Little is known about the effects of hydrocarbons and fuel oil on Antarctic filamentous fungi in the terrestrial Antarctic environment. Growth of fungi and bacteria from soils around Rothera Research Station (Adelaide Island, Antarctic Peninsula) was assessed in the presence of ten separate aromatic and aliphatic hydrocarbons [marine gas oil (MGO), dodecane, hexadecane, benzoic acid, p-hydroxybenzoic acid, toluene, phenol, biphenyl, naphthalene and m- and p-xylenes with ethylbenzene]. Aromatic hydrocarbons inhibited soil microbial growth more than aliphatic hydrocarbons. Soil microorganisms from a moss patch, where little previous impact or hydrocarbon contamination had occurred, were less tolerant of hydrocarbons than those from high impact sites. Fungal growth rates of Mollisia sp., Penicillium commune, Mortierella sp., Trichoderma koningii, Trichoderma sp. and Phoma herbarum were assessed in the presence of hydrocarbons. Generally, aromatic hydrocarbons inhibited or stopped hyphal extension, though growth rates increased with some aliphatic hydrocarbons. Hyphal dry weight measurements suggested that Mortierella sp. may be able to use dodecane as sole carbon and energy source. Hydrocarbon-degrading Antarctic fungi may have use in future hydrocarbon spill bioremediation.

  3. Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols

    PubMed Central

    Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Wang, Yan-Jing; Lan, Xing-Wang; Xing, Yalan; Li, Yi-He; Wen, Jia-Long

    2015-01-01

    Alcohols and alkenes are the most abundant and commonly used organic building blocks in the large-scale chemical synthesis. Herein, this is the first time to report a novel and operationally simple coupling reaction of vinylarenes and aliphatic alcohols catalyzed by manganese in the presence of TBHP (tert-butyl hydroperoxide). This coupling reaction provides the oxyalkylated products of vinylarenes with good regioselectivity and accomplishes with the principles of step-economies. A possible reaction mechanism has also been proposed. PMID:26470633

  4. Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols.

    PubMed

    Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Wang, Yan-Jing; Lan, Xing-Wang; Xing, Yalan; Li, Yi-He; Wen, Jia-Long

    2015-01-01

    Alcohols and alkenes are the most abundant and commonly used organic building blocks in the large-scale chemical synthesis. Herein, this is the first time to report a novel and operationally simple coupling reaction of vinylarenes and aliphatic alcohols catalyzed by manganese in the presence of TBHP (tert-butyl hydroperoxide). This coupling reaction provides the oxyalkylated products of vinylarenes with good regioselectivity and accomplishes with the principles of step-economies. A possible reaction mechanism has also been proposed. PMID:26470633

  5. Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Wang, Yan-Jing; Lan, Xing-Wang; Xing, Yalan; Li, Yi-He; Wen, Jia-Long

    2015-10-01

    Alcohols and alkenes are the most abundant and commonly used organic building blocks in the large-scale chemical synthesis. Herein, this is the first time to report a novel and operationally simple coupling reaction of vinylarenes and aliphatic alcohols catalyzed by manganese in the presence of TBHP (tert-butyl hydroperoxide). This coupling reaction provides the oxyalkylated products of vinylarenes with good regioselectivity and accomplishes with the principles of step-economies. A possible reaction mechanism has also been proposed.

  6. Hydrocarbons emissions from Cerro Prieto Geothermal Power Plant, Mexico

    NASA Astrophysics Data System (ADS)

    Navarro, Karina; Navarro-González, Rafael; de la Rosa, José; Peralta, Oscar; Castro, Telma; Imaz, Mireya

    2014-05-01

    One of the most important environmental issues related to the use of geothermal fluids to generate electricity is the emission of non-condensable gases to the atmosphere. Mexico has one of the largest geothermal plants in the world. The facility is located at Cerro Prieto, Baja California, roughly 30 km south of Mexicali and the international boundary between Mexico and United States. The Cerro Prieto power plant has 13 units grouped on four individual powerhouses. Gas samples from 9 units of the four powerhouses were collected during 4 campaigns conducted in May-July, 2010, February, 2012, December, 2012, and May, 2013. Gas samples from the stacks were collected in 1000 ml Pyrex round flasks with Teflon stopcocks, and analyzed by gas chromatography-mass spectrometry. Methane was the most abundant aliphatic hydrocarbon, with a concentration that ranged from less than 1% up to 3.5% of the total gas mixture. Normal alkanes represented the second most abundant species, and displayed a decreasing abundance with increasing carbon number in the homologous series. Isoalkanes were also present as isobutane and isopentane. Cycloalkanes occurring as cyclopentane and cyclohexane, were detected only at trace level. Unsaturated hydrocarbons (alkenes and alkynes) were not detected. Benzene was detected at levels ranging from less than 1% up to 3.4% of the total gas mixture. Other aromatic hydrocarbons detected were toluene, and xylenes, and were present at lower concentrations (

  7. Using microorganisms to aid in hydrocarbon degradation

    SciTech Connect

    Black, W.; Zamora, J. )

    1993-04-01

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO[sub 2] evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans.

  8. Endothermic hydrocarbon upgrading process

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1990-08-21

    This patent describes a process for upgrading aliphatic hydrocarbons to aromatic hydrocarbons. It comprises: burning a hydrogen-deficient fuel under oxygen-deficient conditions to evolve a hot gas containing essentially no oxygen; providing an aromatization reaction zone containing a zeolite catalyst; directly transferring a quantity of thermal energy from the hot flue gas to the aromatization reaction zone by flowing hot flue gas through the aromatization reaction zone; contacting an aliphatic hydrocarbon feedstream with the zeolite catalyst under primary conversion conditions in the aromatization reaction zone to evolve an aromatization reaction zone effluent stream containing aromatics; withdrawing the aromatization reaction zone effluent stream from the aromatization zone; separating the aromatization reaction zone effluent stream into a product stream, a secondary conversion feedstream comprising CO, CO{sub 2}, and H{sub i} and a stream containing C{sub 3}-C{sub 5} aliphatics; and charging the secondary conversion feedstream to a methanol synthesis reaction zone to convert at least a portion of the secondary conversion feedstream to methanol.

  9. Guided desaturation of unactivated aliphatics

    NASA Astrophysics Data System (ADS)

    Voica, Ana-Florina; Mendoza, Abraham; Gutekunst, Will R.; Fraga, Jorge Otero; Baran, Phil S.

    2012-08-01

    The excision of hydrogen from an aliphatic carbon chain to produce an isolated olefin (desaturation) without overoxidation is one of the most impressive and powerful biosynthetic transformations for which there are no simple and mild laboratory substitutes. The versatility of olefins and the range of reactions they undergo are unsurpassed in functional group space. Thus, the conversion of a relatively inert aliphatic system into its unsaturated counterpart could open new possibilities in retrosynthesis. In this article, the invention of a directing group to achieve such a transformation under mild, operationally simple, metal-free conditions is outlined. This ‘portable desaturase’ (TzoCl) is a bench-stable, commercial entity (Aldrich, catalogue number L510092) that is facile to install on alcohol and amine functionalities to ultimately effect remote desaturation, while leaving behind a synthetically useful tosyl group.

  10. Guided Desaturation of Unactivated Aliphatics

    PubMed Central

    Voica, Ana-Florina; Mendoza, Abraham; Gutekunst, Will R.; Fraga, Jorge Otero; Baran, Phil S.

    2012-01-01

    The excision of hydrogen from an aliphatic carbon chain to produce an isolated olefin (desaturation) without over-oxidation is one of the most impressive and powerful biosynthetic transformations for which there are no simple and mild laboratory substitutes. The versatility of olefins and the range of reactions they undergo is unsurpassed in functional group space. Thus, the conversion of a relatively inert aliphatic system to its unsaturated counterpart can open new possibilities in retrosynthesis. In this article, the invention of a directing group to achieve such a transformation under mild, operationally simple, metal-free conditions is outlined. This “portable desaturase” (TzoCl) is a bench-stable, commercial entity (Aldrich, cat # L510092) that is facile to install on alcohol and amine functionalities to ultimately effect remote desaturation, while leaving behind a synthetically useful tosyl group. PMID:22824894

  11. Combinatorics of aliphatic amino acids.

    PubMed

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  12. THE CARRIERS OF THE INTERSTELLAR UNIDENTIFIED INFRARED EMISSION FEATURES: AROMATIC OR ALIPHATIC?

    SciTech Connect

    Li Aigen; Draine, B. T. E-mail: draine@astro.princeton.edu

    2012-12-01

    The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m, commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules, have been recently ascribed to coal- or kerogen-like organic nanoparticles with a mixed aromatic-aliphatic structure. However, we show in this Letter that this hypothesis is inconsistent with observations. We estimate the aliphatic fraction of the UIE carriers based on the observed intensities of the 3.4 {mu}m and 6.85 {mu}m emission features by attributing them exclusively to aliphatic C-H stretch and aliphatic C-H deformation vibrational modes, respectively. We derive the fraction of carbon atoms in aliphatic form to be <15%. We conclude that the UIE emitters are predominantly aromatic, with aliphatic material at most a minor part of the UIE carriers. The PAH model is consistent with astronomical observations and PAHs dominate the strong UIE bands.

  13. ORGANIC CHEMISTRY. Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines.

    PubMed

    Yang, Yang; Shi, Shi-Liang; Niu, Dawen; Liu, Peng; Buchwald, Stephen L

    2015-07-01

    Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. Here, we describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins—an important yet unexploited class of abundant feedstock chemicals—into highly enantioenriched α-branched amines (≥96% enantiomeric excess) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas.

  14. Hydrocarbon and chlorinated hydrocarbon-soluble magnesium dialkoxides

    SciTech Connect

    Kamienski, C.W.

    1988-05-31

    This patent describes a process for the preparation of hydrocarbon or chlorinated hydrocarbon solvent solutions of magnesium dialkoxides, which comprises reacting a suspension of magnesium metal or magnesium amide, or a solution of a dialkyimagnesium compound, in a volatile hydrocarbon or chlorinated hydrocarbon solvent with an alcohol selected from the group of (a) aliphatic, cycloaliphatic and acyclic C/sub 5/-C/sub 18/ beta- and gamma-alkyl-substituted secondary and tertiary monohydric alcohols; or (b) mixtures of the (a) alcohols with C/sub 3/-C/sub 18/ aliphatic or cycloaliphatic beta- and gamma-alkyl-unsubstituted secondary or tertiary alcohols; or (c) mixtures of the (a) alcohols with C/sub 1/-C/sub 18/ aliphatic primary unsubstituted and 2-alkyl-substituted alcohols; the mole ratios of the (a) to the (b), and the (a) to the (c), alcohols being 1 of the (a) alcohols to 0.1 to 2 of the (b) and/or the (c) alcohols.

  15. Bacterial isolates degrading aliphatic polycarbonates.

    PubMed

    Suyama, T; Hosoya, H; Tokiwa, Y

    1998-04-15

    Bacteria that degrade an aliphatic polycarbonate, poly(hexamethylene carbonate), were isolated from river water in Ibaraki. Prefecture, Japan, after enrichment in liquid medium containing poly(hexamethylene carbonate) suspensions as carbon source, and dilution to single cells. Four of the strains, 35L, WFF52, 61A and 61B2, degraded poly(hexamethylene carbonate) on agar plate containing suspended poly(hexamethylene carbonate). Degradation of poly(hexamethylene carbonate) was confirmed by gel permeation chromatography. Besides poly(hexamethylene carbonate), the strains were found to degrade poly(tetramethylene carbonate). The strains were characterized morphologically, physiologically, and by 16S rDNA sequence analysis. Strains 35L and WFF52 were tentatively identified as Pseudomonas sp. and Variovorax sp., respectively, while strains 61A and 61B2 constitute an unidentified branch within the beta subclass of the Proteobacteria.

  16. Foaming of mixtures of pure hydrocarbons

    NASA Technical Reports Server (NTRS)

    Robinson, J. V.; Woods, W. W.

    1950-01-01

    Mixtures of pure liquid hydrocarbons are capable of foaming. Nine hydrocarbons were mixed in pairs, in all possible combinations, and four proportions of each combination. These mixtures were sealed in glass tubes, and the foaming was tested by shaking. Mixtures of aliphatic with other aliphatic hydrocarbons, or of alkyl benzenes with other alkyl benzenes, did not foam. Mixtures of aliphatic hydrocarbons with alkyl benzenes did foam. The proportions of the mixtures greatly affected the foaming, the maximum foaming of 12 of 20 pairs being at the composition 20 percent aliphatic hydrocarbon, 80 percent alkyl benzene. Six seconds was the maximum foam lifetime of any of these mixtures. Aeroshell 120 lubricating oil was fractionated into 52 fractions and a residue by extraction with acetone in a fractionating extractor. The index of refraction, foam lifetime, color, and viscosity of these fractions were measured. Low viscosity and high index fractions were extracted first. The viscosity of the fractions extracted rose and the index decreased as fractionation proceeded. Foam lifetimes and color were lowest in the middle fractions. Significance is attached to the observation that none of the foam lifetimes of the fractions or residue is as high as the foam lifetime of the original Aeroshell, indicating that the foaming is not due to a particular foaming constituent, but rather to the entire mixture.

  17. Mantle hydrocarbons: abiotic or biotic?

    PubMed

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10. PMID:11541663

  18. Mantle hydrocarbons: Abiotic or biotic?

    SciTech Connect

    Sugisaki, Ryuichi; Mimura, Koichi

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) and peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro and granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from field contamination; these compounds found in the mantle-derived rocks are called here {open_quotes}mantle hydrocarbons.{close_quotes} The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) {delta}{sup 13}C of the mantle hydrocarbons is uniform (about {minus}27{per_thousand}). Possible origins for the mantle hydrocarbons are as follows. (1) They were inorganically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH{sub 4} at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C{sub 4}H{sub 10}. 76 refs., 5 figs., 3 tabs.

  19. Mantle hydrocarbons: abiotic or biotic?

    PubMed

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10.

  20. Distribution and abundance of zooplankton in relation to petroleum hydrocarbon content along the coast of Kollam (Quilon), south west coast of India.

    PubMed

    Sharma, B S; Cyril, Wilma

    2007-01-01

    In the present study we examine status, impact and trends in prevailing situation of coastal ecosystem of Chavara, Neendakara, Tangasseri and Paravur zones of Kollam coast in terms of zooplankton density and petroleum hydrocarbon content (PHC). Zooplankton samples and water samples were collected during the period May 2003 to June 2004. The numerical count of zooplankton made and PHC content estimated. Paravur offshore recorded the maximum zooplankton count (1390 no./m3) and Tangasseri nearshore the lowest (700.5 no/m3). The petroleum hydrocarbon content was highest at Tangasseri nearshore (21.95 microg/l) and lowest at Paravur offshore (9.40 microg/l). We also observe statistically significant negative correlation between zooplankton density and PHC for a few organisms. The overall impact appears minor, yet, coastal ocean monitoring imperative for sustainable development. PMID:17717986

  1. Anaerobic digestion of aliphatic polyesters.

    PubMed

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry.

  2. Anaerobic digestion of aliphatic polyesters.

    PubMed

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry. PMID:27191559

  3. Coefficients of caffeine distribution in aliphatic alcohol-ammonium sulfate-water systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Krivosheeva, O. A.; Mokshina, N. Ya.

    2012-11-01

    The extraction of caffeine with aliphatic alcohols C3-C9 from aqueous solutions in the presence of a salting-out agent (ammonium sulfate) is studied. Quantitative characteristics of extraction are calculated: the distribution coefficients ( D) and the degree of recovery ( R, %). Relations are found between log D of caffeine and the length of the hydrocarbon radical in the alcohol molecule, along with certain physicochemical properties of the extragents.

  4. Hydrocarbon pneumonia

    MedlinePlus

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  5. Mass spectrometry study of the sublimation of aliphatic dipeptides

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, E. Yu.; Krasnov, A. V.; Tyunina, V. V.; Giricheva, N. I.; Girichev, A. V.

    2012-03-01

    The sublimation of glycyl-L-α-alanine (Gly-Ala), L-α-alanyl-L-α-alanine (Ala-Ala), and DL-α-alanyl-DL-α-valine (Ala-Val) aliphatic dipeptides is studied by electron ionization mass spectrometry in combination with Knudsen effusion. The temperature range in which substances sublime as monomer molecular forms is determined. Enthalpies of sublimation Δs H°( T) are determined for Gly-Ala, Ala-Ala, and Ala-Val. It is shown that the enthalpy of sublimation of dipeptides increases with an increase in the side hydrocarbon radical. The unknown Δs H°(298) values for 17 amino acids and nine dipeptides are estimated using the proposed "structure-property" correlation model, in which the geometry and electron characteristics of molecules are used as structural descriptors.

  6. On the aliphatic versus aromatic content of the carriers of the `unidentified' infrared emission features

    NASA Astrophysics Data System (ADS)

    Yang, X. J.; Glaser, R.; Li, Aigen; Zhong, J. X.

    2016-10-01

    Although it is generally accepted that the unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm are characteristic of the stretching and bending vibrations of aromatic hydrocarbon materials, the exact nature of their carriers remains unknown: whether they are free-flying, predominantly aromatic gas-phase molecules, or amorphous solids with a mixed aromatic/aliphatic composition are being debated. Recently, the 3.3 and 3.4 μm features which are commonly respectively attributed to aromatic and aliphatic C-H stretches have been used to place an upper limit of ˜2 per cent on the aliphatic fraction of the UIE carriers (i.e. the number of C atoms in aliphatic chains to that in aromatic rings). Here we further explore the aliphatic versus aromatic content of the UIE carriers by examining the ratio of the observed intensity of the 6.2 μm aromatic C-C feature (I6.2) to that of the 6.85 μm aliphatic C-H deformation feature (I6.85). To derive the intrinsic oscillator strengths of the 6.2 μm stretch (A6.2) and the 6.85 μm deformation (A6.85), we employ density functional theory to compute the vibrational spectra of seven methylated polycyclic aromatic hydrocarbon molecules and their cations. By comparing I6.85/I6.2 with A6.85/A6.2, we derive the fraction of C atoms in methyl(ene) aliphatic form to be at most ˜10 per cent, confirming the earlier finding that the UIE emitters are predominantly aromatic. We have also computed the intrinsic strength of the 7.25 μm feature (A7.25), another aliphatic C-H deformation band. We find that A6.85 appreciably exceeds A7.25. This explains why the 6.85 μm feature is more frequently detected in space than the 7.25 μm feature.

  7. Measurement of hydrocarbon transport in bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic, volatility, and relatively low aqueous solubility of aliphatic and aromatic hydrocarbons, transport of these chemicals by bacteria has not been extensively studied. These issues make transport assays difficult to carry out, and as a result, strong evidence for the active tran...

  8. Distribution and occurrence of aliphatic acid anions in deep subsurface waters

    SciTech Connect

    Fisher, J.B.

    1987-09-01

    This study reports 144 new analyses of short-chain aliphatic acid anions (acetate, propionate, butyrate, and valerate) in formation waters from eight localities: Eastern Venezuelan Basin, Denver Basin, Eastern Green River Basin, San Juan Basin, Piceance Basin, Raton Basin, Gulf Coast Basin, and the Western Overthrust. Reservoir temperature does not predict total or relative abundance of aliphatic acid anions, but does predict maximum total concentrations of these species. Maximum concentrations increase to approx. 90/sup 0/C. Above approx. 90/sup 0/C, maximum concentrations decrease. Above approx. 250/sup 0/C, maximum concentrations should not exceed approx. 1 mg/l. The general order of dominance is acetate >> propionate > butyrate > valerate, but for coal-associated waters is propionate greater than or equal to acetate > butyrate > valerate. Lack of longer-chain aliphatic acid anion dominance over acetate at low reservoir temperatures may suggest hydrologic communication with deeper reservoirs.

  9. DESTRUCTION OF HALOGENATED HYDROCARBONS WITH SOLVATED ELECTRONS IN THE PRESENCE OF WATER. (R826180)

    EPA Science Inventory

    Model halogenated aromatic and aliphatic hydrocarbons and halogenated phenols were dehalogenated in seconds by solvated electrons generated from sodium in both anhydrous liquid ammonia and ammonia/water solutions. The minimum sodium required to completely dehalogenate these mo...

  10. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    PubMed

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  11. Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleum from Escanaba Trough, Northeastern Pacific Ocean

    USGS Publications Warehouse

    Simoneit, B.R.T.; Schoell, M.; Kvenvolden, K.A.

    1997-01-01

    We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7%, respectively) reflect a primarily terrestrial organic matter source.We submitted individual aliphatic and polycyclic aromatic hydrocarbons in samples of hydrothermal petroleum from Escanaba Trough to compound specific isotope analysis to trace their origins. The carbon isotope compositions of the alkanes and polycyclic aromatic hydrocarbons (means -27.5 and -24.7 per mill, respectively) reflect a primarily terrestrial organic matter source.

  12. Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system.

    PubMed

    Ding, Guo-Chun; Heuer, Holger; Zühlke, Sebastian; Spiteller, Michael; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2010-07-01

    A novel PCR primer system that targets a wide range of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD(alpha)) genes of both Gram-positive and Gram-negative bacteria was developed and used to study their abundance and diversity in two different soils in response to phenanthrene spiking. The specificities and target ranges of the primers predicted in silico were confirmed experimentally by cloning and sequencing of PAH-RHD(alpha) gene amplicons from soil DNA. Cloning and sequencing showed the dominance of phnAc genes in the contaminated Luvisol. In contrast, high diversity of PAH-RHD(alpha) genes of Gram-positive and Gram-negative bacteria was observed in the phenanthrene-spiked Cambisol. Quantitative real-time PCR based on the same primers revealed that 63 days after phenanthrene spiking, PAH-RHD(alpha) genes were 1 order of magnitude more abundant in the Luvisol than in the Cambisol, while they were not detected in both control soils. In conclusion, sequence analysis of the amplicons obtained confirmed the specificity of the novel primer system and revealed a soil type-dependent response of PAH-RHD(alpha) gene-carrying soil bacteria to phenanthrene spiking.

  13. Amino acids and hydrocarbons approximately 3,800-Myr old in the Isua rocks, southwestern Greenland

    NASA Technical Reports Server (NTRS)

    Nagy, B.; Engel, M. H.; Zumberge, J. E.; Ogino, H.; Chang, S. Y.

    1981-01-01

    Results of an analysis of amino acids and hydrocarbons found in the Isua banded iron formation, which contains the oldest known rocks on earth, are discussed. Similarities are pointed out between the relative amino acid abundances of the Isua rocks and those of lichens found on their surfaces, and a lack of substantial racemization indicated by the low D/L ratios in the 3800-million year old rock samples is noted. Experimental results showing the possibility of amino acid diffusion from lichens into the rocks are presented. Comparisons of the Isua rock amino acid D/L ratios with those reported for samples from other regions indicates that none of the Isua amino acids are older than a few tens of thousands to a few hundred thousand years. Analyses of the saturated hydrocarbons of the Isua samples reveals no odd carbon number preference, which may indicate antiquity, however laboratory experiments have shown that amino acids and aromatic and saturated aliphatic hydrocarbons could not have survived the metamorphic history of the Isua rocks. The evidence presented thus suggests that the amino acids and hydrocarbons found are not of the age of the sediments.

  14. CCN activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  15. Hydrocarbon components in carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Kissin, Y. V.

    2003-05-01

    Currently, the presence of free n-alkanes and isoprenoid alkanes in carbonaceous meteorites is usually explained either by microbial contamination during the period between the meteorite fall and collection or by contamination from the environment of analytical laboratories and museums. The goal of this research was to repeat analysis of hydrocarbon components in meteorites and to investigate possible meteorite contamination routes discussed in the literature. Experimental analysis of free organic constituents in five carbonaceous meteorites by infrared spectroscopy (IR) and gas chromatographic (GC) methods confirmed the presence of extractable aliphatic components, n-alkanes in the C 15H 32-C 27H 56 range and isoprenoid alkanes (phytane, pristane, and norpristane), in some of these meteorites. The contents of these compounds vary depending on the source. Insoluble organic components of two meteorites (meteorite kerogens) were isolated, and their composition was analyzed by IR and cracking/GC methods. Comparison with the data on several terrestrial contamination sources proposed in the literature shows that the presence of free saturated hydrocarbons in meteorites and the composition of the meteorite kerogen could not be explained either by microbial contamination or by contamination from the laboratory environment. The types of the hydrocarbons in meteorites resemble those typical of ancient terrestrial deposits of organic-rich sediments, except for the absence of lighter hydrocarbons, which apparently slowly evaporated in space, and multi-ring naphthenic compounds of the biologic origin, steranes, terpanes, etc. The prevailing current explanation for the presence of free linear saturated hydrocarbons in carbonaceous meteorites, apart from contamination, is the abiotic route from hydrogen and carbon monoxide. However, the data on the structure of meteorite kerogens require a search for different routes that initially produce complex polymeric structures containing

  16. 40 CFR 721.10534 - Brominated aliphatic alcohol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aliphatic alcohol (generic... Specific Chemical Substances § 721.10534 Brominated aliphatic alcohol (generic). (a) Chemical substance and... aliphatic alcohol (PMN P-12-260) is subject to reporting under this section for the significant new...

  17. 40 CFR 721.10534 - Brominated aliphatic alcohol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aliphatic alcohol (generic... Specific Chemical Substances § 721.10534 Brominated aliphatic alcohol (generic). (a) Chemical substance and... aliphatic alcohol (PMN P-12-260) is subject to reporting under this section for the significant new...

  18. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  19. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  20. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  1. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  2. 40 CFR 721.3520 - Aliphatic polyglycidyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic polyglycidyl ether. 721.3520... Substances § 721.3520 Aliphatic polyglycidyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance aliphatic polyglycidyl ether (PMN P-89-1036) is subject...

  3. 40 CFR 721.3520 - Aliphatic polyglycidyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic polyglycidyl ether. 721.3520... Substances § 721.3520 Aliphatic polyglycidyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance aliphatic polyglycidyl ether (PMN P-89-1036) is subject...

  4. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  5. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  6. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  7. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  8. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  9. In-situ micro-FTIR Study of Thermal Changes of Organics in Tagish Lake Meteorite: Behavior of Aliphatic Oxygenated Functions and Effects of Minerals

    NASA Technical Reports Server (NTRS)

    Kebukawa, Yoko; Nakashima, Satoru; Nakamura-Messenger, Keiko; Zolensky, Michael E.

    2007-01-01

    Systematic in-situ FTIR heating experiments of Tagish Lake meteorite grains have been performed in order to study thermal stability of chondritic organics. Some aliphatic model organic substances have also been used to elucidate effects of hydrous phyllosilicate minerals on the thermal stability of organics. The experimental results indicated that organic matter in the Tagish Lake meteorite might contain oxygenated aliphatic hydrocarbons which are thermally stable carbonyls such as ester and/or C=O in ring compounds. The presence of hydrous phyllosilicate minerals has a pronounced effect on the increase of the thermal stability of aliphatic and oxygenated functions. These oxygenated aliphatic organics in Tagish Lake can be formed during the aqueous alteration in the parent body and the formation temperature condition might be less than 200 C, based especially on the thermal stability of C-O components. The hydrous phyllosilicates might provide sites for organic globule formation and protected some organic decomposition

  10. Mixed aliphatic and aromatic composition of evaporating very small grains in NGC 7023 revealed by the 3.4/3.3 μm ratio

    PubMed Central

    Pilleri, P.; Joblin, C.; Boulanger, F.; Onaka, T.

    2015-01-01

    Context A chemical scenario was proposed for photon-dominated regions (PDRs) according to which UV photons from nearby stars lead to the evaporation of very small grains (VSGs) and the production of gas-phase polycyclic aromatic hydrocarbons (PAHs). Aims Our goal is to achieve better insight into the composition and evolution of evaporating very small grains (eVSGs) and PAHs through analyzing the infrared (IR) aliphatic and aromatic emission bands. Methods We combined spectro-imagery in the near- and mid-IR to study the spatial evolution of the emission bands in the prototypical PDR NGC 7023. We used near-IR spectra obtained with the IRC instrument onboard AKARI to trace the evolution of the 3.3 μm and 3.4 μm bands, which are associated with aromatic and aliphatic C–H bonds on PAHs. The spectral fitting involved an additional broad feature centered at 3.45 μm that is often referred to as the plateau. Mid-IR observations obtained with the IRS instrument onboard the Spitzer Space Telescope were used to distinguish the signatures of eVSGs and neutral and cationic PAHs. We correlated the spatial evolution of all these bands with the intensity of the UV field given in units of the Habing field G0 to explore how their carriers are processed. Results The intensity of the 3.45 μm plateau shows an excellent correlation with that of the 3.3 μm aromatic band (correlation coefficient R = 0.95) and a relatively poor correlation with the aliphatic 3.4 μm band (R=0.77). This indicates that the 3.45 μm feature is dominated by the emission from aromatic bonds. We show that the ratio of the 3.4 μm and 3.3 μm band intensity (I3.4/I3.3) decreases by a factor of 4 at the PDR interface from the more UV-shielded layers (G0 ~ 150, I3.4/I3.3 = 0.13) to the more exposed layers (G0 > 1 × 104, I3.4/I3.3 = 0.03). The intensity of the 3.3 μm band relative to the total neutral PAH intensity shows an overall increase with G0, associated with an increase of both the hardness of the UV

  11. Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications

    PubMed Central

    Xu, Jianwen; Feng, Ellva; Song, Jie

    2014-01-01

    Aliphatic polycarbonates were discovered a long time ago, with their conventional applications mostly limited to low molecular weight oligomeric intermediates for copolymerization with other polymers. Recent developments in polymerization techniques have overcome the difficulty in preparing high molecular weight aliphatic polycarbonates. These in turn, along with new functional monomers, have enabled the preparation of a wide range of aliphatic polycarbonates with diverse chemical compositions and structures. This review summarizes the latest polymerization techniques for preparing well-defined functional aliphatic polycarbonates, as well as the new applications of those aliphatic polycarbonates, esecially in the biomedical field. PMID:24994939

  12. Effects of ryegrass on biodegradation of hydrocarbons in soil.

    PubMed

    Günther, T; Dornberger, U; Fritsche, W

    1996-07-01

    The effects of growing ryegrass (Lolium perenne L.) on the biodegradation of hydrocarbons was studied in laboratory scale soil columns. Degradation of hydrocarbons as well as bacterial numbers, soil respiration rates and soil dehydrogenase activities were determined. In the rhizosphere soil system, aliphatic hydrocarbons disappeared faster than in unvegetated columns. Abiotic loss by evaporation was of minor significance. Elimination of pollutants was accompanied by an increase in microbial numbers and activities. The microbial plate counts and soil respiration rates were substantially higher in the rhizosphere than in the bulk soil. The results indicate that biodegradation of hydrocarbons in the rhizosphere is stimulated by plant roots.

  13. A study of hydrocarbons associated with brines from DOE geopressured wells. Final report

    SciTech Connect

    Keeley, D.F.

    1993-07-01

    Accomplishments are summarized on the following tasks: distribution coefficients and solubilities, DOE design well sampling, analysis of well samples, review of theoretical models of geopressured reservoir hydrocarbons, monitor for aliphatic hydrocarbons, development of a ph meter probe, DOE design well scrubber analysis, removal and disposition of gas scrubber equipment at Pleasant Bayou Well, and disposition of archived brines.

  14. A study of hydrocarbons associated with brines from DOE geopressured wells

    SciTech Connect

    Keeley, D.F.

    1993-01-01

    Accomplishments are summarized on the following tasks: distribution coefficients and solubilities, DOE design well sampling, analysis of well samples, review of theoretical models of geopressured reservoir hydrocarbons, monitor for aliphatic hydrocarbons, development of a ph meter probe, DOE design well scrubber analysis, removal and disposition of gas scrubber equipment at Pleasant Bayou Well, and disposition of archived brines.

  15. PRODUCTION OF FLUORINE-CONTAINING HYDROCARBON

    DOEpatents

    Sarsfield, N.F.

    1949-08-01

    This patent relates to improvements in the production of fluorine- containing hydrocarbon derivatives. The process for increasing the degree of fluorination of a fluorochlorohydrocarbon comprises subjecting a highly fluorinated fluorochlorohydrocarbon to the action of a dehydrochlorinating agent, and treating the resulting unsaturated body with fluorine, cobalt trifluoride, or silver difluoride. A number of reagents are known as dehydrochlorinaling agents, including, for example, the caustic alkalies, either in an anhydrous condition or dissolved in water or a lower aliphatic alcohol.

  16. Encephalopathy and vestibulopathy following short-term hydrocarbon exposure.

    PubMed

    Hodgson, M J; Furman, J; Ryan, C; Durrant, J; Kern, E

    1989-01-01

    Dizziness, headaches, and weakness occurred among three men after short-term hydrocarbon exposure during improper welding procedures in a closed container. Symptoms were related to objective evidence of vestibular and cognitive dysfunction. Symptoms and abnormal test results persisted for 6 to 18 months. Simulation of the accident failed to demonstrate likely exposures except aliphatic hydrocarbons, well within the permissible exposure levels. Short-term exposures to neurotoxins may lead to long-term central nervous system abnormalities.

  17. Encephalopathy and vestibulopathy following short-term hydrocarbon exposure

    SciTech Connect

    Hodgson, M.J.; Furman, J.; Ryan, C.; Durrant, J.; Kern, E.

    1989-01-01

    Dizziness, headaches, and weakness occurred among three men after short-term hydrocarbon exposure during improper welding procedures in a closed container. Symptoms were related to objective evidence of vestibular and cognitive dysfunction. Symptoms and abnormal test results persisted for 6 to 18 months. Simulation of the accident failed to demonstrate likely exposures except aliphatic hydrocarbons, well within the permissible exposure levels. Short-term exposures to neurotoxins may lead to long-term central nervous system abnormalities.

  18. Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features.

    PubMed

    Kwok, Sun; Zhang, Yong

    2011-11-01

    Unidentified infrared emission bands at wavelengths of 3-20 micrometres are widely observed in a range of environments in our Galaxy and in others. Some features have been identified as the stretching and bending modes of aromatic compounds, and are commonly attributed to polycyclic aromatic hydrocarbon molecules. The central argument supporting this attribution is that single-photon excitation of the molecule can account for the unidentified infrared emission features observed in 'cirrus' clouds in the diffuse interstellar medium. Of the more than 160 molecules identified in the circumstellar and interstellar environments, however, not one is a polycyclic aromatic hydrocarbon molecule. The detections of discrete and broad aliphatic spectral features suggest that the carrier of the unidentified infrared emission features cannot be a pure aromatic compound. Here we report an analysis of archival spectroscopic observations and demonstrate that the data are most consistent with the carriers being amorphous organic solids with a mixed aromatic-aliphatic structure. This structure is similar to that of the organic materials found in meteorites, as would be expected if the Solar System had inherited these organic materials from interstellar sources.

  19. A fatty acyl-CoA reductase highly expressed in the head of honey bee (Apis mellifera) involves biosynthesis of a wide range of aliphatic fatty alcohols.

    PubMed

    Teerawanichpan, Prapapan; Robertson, Albert J; Qiu, Xiao

    2010-09-01

    Honey bees (Apis mellifera) are social insects which have remarkable complexity in communication pheromones. These chemical signals comprise a mixture of hydrocarbons, wax esters, fatty acids, aldehydes and alcohols. In this study, we detected several long chain aliphatic alcohols ranging from C18-C32 in honey bees and the level of these alcohols varied in each body segment. C18:0Alc and C20:0Alc are more pronounced in the head, whereas C22:0Alc to C32Alc are abundant in the abdomen. One of the cDNAs coding for a fatty acyl-CoA reductase (AmFAR1) involved in the synthesis of fatty alcohols was isolated and characterized. AmFAR1 was ubiquitously expressed in all body segments with the predominance in the head of honey bees. Heterologous expression of AmFAR1 in yeast revealed that AmFAR1 could convert a wide range of fatty acids (14:0-22:0) to their corresponding alcohols, with stearic acid 18:0 as the most preferred substrate. The substrate preference and the expression pattern of AmFAR1 were correlated with the level of total fatty alcohols in bees. Reconstitution of the wax biosynthetic pathway by heterologous expression of AmFAR1, together with Euglena wax synthase led to the high level production of medium to long chain wax monoesters in yeast.

  20. Biodegradation of aliphatic and aromatic polycarbonates.

    PubMed

    Artham, Trishul; Doble, Mukesh

    2008-01-01

    Polycarbonate is one of the most widely used engineering plastics because of its superior physical, chemical, and mechanical properties. Understanding the biodegradation of this polymer is of great importance to answer the increasing problems in waste management of this polymer. Aliphatic polycarbonates are known to biodegrade either through the action of pure enzymes or by bacterial whole cells. Very little information is available that deals with the biodegradation of aromatic polycarbonates. Biodegradation is governed by different factors that include polymer characteristics, type of organism, and nature of pretreatment. The polymer characteristics such as its mobility, tacticity, crystallinity, molecular weight, the type of functional groups and substituents present in its structure, and plasticizers or additives added to the polymer all play an important role in its degradation. The carbonate bond in aliphatic polycarbonates is facile and hence this polymer is easily biodegradable. On the other hand, bisphenol A polycarbonate contains benzene rings and quaternary carbon atoms which form bulky and stiff chains that enhance rigidity. Even though this polycarbonate is amorphous in nature because of considerable free volume, it is non-biodegradable since the carbonate bond is inaccessible to enzymes because of the presence of bulky phenyl groups on either side. In order to facilitate the biodegradation of polymers few pretreatment techniques which include photo-oxidation, gamma-irradiation, or use of chemicals have been tested. Addition of biosurfactants to improve the interaction between the polymer and the microorganisms, and blending with natural or synthetic polymers that degrade easily, can also enhance the biodegradation.

  1. An abiotic origin for hydrocarbons in the Allan Hills 84001 martian meteorite through cooling of magmatic and impact-generated gases

    NASA Technical Reports Server (NTRS)

    Shock, E. L.

    2000-01-01

    Thermodynamic calculations of metastable equilibria were used to evaluate the potential for abiotic synthesis of aliphatic and polycyclic aromatic hydrocarbons (PAHs) in the martian meteorite Allan Hills (ALH) 84001. The calculations show that PAHs and normal alkanes could form metastably from CO, CO2, and H2 below approximately 250-300 degrees C during rapid cooling of trapped magmatic or impact-generated gases. Depending on temperature, bulk composition, and oxidation-reduction conditions, PAHs and normal alkanes can form simultaneously or separately. Moreover, PAHs can form at lower H/C ratios, higher CO/CO2 ratios, and higher temperatures than normal alkanes. Dry conditions with H/C ratios less than approximately 0.01-0.001 together with high CO/CO2 ratios also favor the formation of unalkylated PAHs. The observed abundance of PAHs, their low alkylation, and a variable but high aromatic to aliphatic ratio in ALH 84001 all correspond to low H/C and high CO/CO2 ratios in magmatic and impact gases and can be used to deduce spatial variations of these ratios. Some hydrocarbons could have been formed from trapped magmatic gases, especially if the cooling was fast enough to prevent reequilibration. We propose that subsequent impact heating(s) in ALH 84001 could have led to dissociation of ferrous carbonates to yield fine-grain magnetite, formation of a CO-rich local gas phase, reduction of water vapor to H2, reequilibration of the trapped magmatic gases, aromatization of hydrocarbons formed previously, and overprinting of the synthesis from magmatic gases, if any. Rapid cooling and high-temperature quenching of CO-, H2-rich impact gases could have led to magnetite-catalyzed hydrocarbon synthesis.

  2. Crosslinked structurally-tuned polymeric ionic liquids as stationary phases for the analysis of hydrocarbons in kerosene and diesel fuels by comprehensive two-dimensional gas chromatography.

    PubMed

    Zhang, Cheng; Park, Rodney A; Anderson, Jared L

    2016-04-01

    Structurally-tuned ionic liquids (ILs) have been previously applied as the second dimension column in comprehensive two-dimensional gas chromatography (GC×GC) and have demonstrated high selectivity in the separation of individual aliphatic hydrocarbons from other aliphatic hydrocarbons. However, the maximum operating temperatures of these stationary phases limit the separation of analytes with high boiling points. In order to address this issue, a series of polymeric ionic liquid (PIL)-based stationary phases were prepared in this study using imidazolium-based IL monomers via in-column free radical polymerization. The IL monomers were functionalized with long alkyl chain substituents to provide the needed selectivity for the separation of aliphatic hydrocarbons. Columns were prepared with different film thicknesses to identify the best performing stationary phase for the separation of kerosene. The bis[(trifluoromethyl)sulfonyl]imide ([NTf2](-))-based PIL stationary phase with larger film thickness (0.28μm) exhibited higher selectivity for aliphatic hydrocarbons and showed a maximum allowable operating temperature of 300°C. PIL-based stationary phases containing varied amount of IL-based crosslinker were prepared to study the effect of the crosslinker on the selectivity and thermal stability of the resulting stationary phase. The optimal resolution of aliphatic hydrocarbons was achieved when 50% (w/w) of crosslinker was incorporated into the PIL-based stationary phase. The resulting stationary phase exhibited good selectivity for different groups of aliphatic hydrocarbons even after being conditioned at 325°C. Finally, the crosslinked PIL-based stationary phase was compared with SUPELCOWAX 10 and DB-17 columns for the separation of aliphatic hydrocarbons in diesel fuel. Better resolution of aliphatic hydrocarbons was obtained when employing the crosslinked PIL-based stationary phase as the second dimension column. PMID:26916595

  3. Crosslinked structurally-tuned polymeric ionic liquids as stationary phases for the analysis of hydrocarbons in kerosene and diesel fuels by comprehensive two-dimensional gas chromatography.

    PubMed

    Zhang, Cheng; Park, Rodney A; Anderson, Jared L

    2016-04-01

    Structurally-tuned ionic liquids (ILs) have been previously applied as the second dimension column in comprehensive two-dimensional gas chromatography (GC×GC) and have demonstrated high selectivity in the separation of individual aliphatic hydrocarbons from other aliphatic hydrocarbons. However, the maximum operating temperatures of these stationary phases limit the separation of analytes with high boiling points. In order to address this issue, a series of polymeric ionic liquid (PIL)-based stationary phases were prepared in this study using imidazolium-based IL monomers via in-column free radical polymerization. The IL monomers were functionalized with long alkyl chain substituents to provide the needed selectivity for the separation of aliphatic hydrocarbons. Columns were prepared with different film thicknesses to identify the best performing stationary phase for the separation of kerosene. The bis[(trifluoromethyl)sulfonyl]imide ([NTf2](-))-based PIL stationary phase with larger film thickness (0.28μm) exhibited higher selectivity for aliphatic hydrocarbons and showed a maximum allowable operating temperature of 300°C. PIL-based stationary phases containing varied amount of IL-based crosslinker were prepared to study the effect of the crosslinker on the selectivity and thermal stability of the resulting stationary phase. The optimal resolution of aliphatic hydrocarbons was achieved when 50% (w/w) of crosslinker was incorporated into the PIL-based stationary phase. The resulting stationary phase exhibited good selectivity for different groups of aliphatic hydrocarbons even after being conditioned at 325°C. Finally, the crosslinked PIL-based stationary phase was compared with SUPELCOWAX 10 and DB-17 columns for the separation of aliphatic hydrocarbons in diesel fuel. Better resolution of aliphatic hydrocarbons was obtained when employing the crosslinked PIL-based stationary phase as the second dimension column.

  4. 40 CFR 721.4497 - Aliphatic polyisocyanates (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic polyisocyanates (generic name). 721.4497 Section 721.4497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.4497 Aliphatic polyisocyanates (generic name). (a) Chemical...

  5. Metalloradical-catalyzed aliphatic carbon-carbon activation of cyclooctane.

    PubMed

    Chan, Yun Wai; Chan, Kin Shing

    2010-05-26

    The aliphatic carbon-carbon activation of c-octane was achieved via the addition of Rh(ttp)H to give Rh(ttp)(n-octyl) in good yield under mild reaction conditions. The aliphatic carbon-carbon activation was Rh(II)(ttp)-catalyzed and was very sensitive to porphyrin sterics.

  6. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses... salt (PMN P-92-1352) is subject to reporting under this section for the significant new uses...

  7. Apparent contradiction: psychrotolerant bacteria from hydrocarbon-contaminated arctic tundra soils that degrade diterpenoids synthesized by trees.

    PubMed

    Yu, Z; Stewart, G R; Mohn, W W

    2000-12-01

    Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82 degrees N, 62 degrees W). According to most-probable-number assays, resin acid degraders were abundant (10(3) to 10(4) propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (<3 propagules/g of soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (10(6) to 10(7) propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4 degrees C to 30 degrees C (DhA-91 and DhA-95) or 4 degrees C to 22 degrees C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22 degrees C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill

  8. Apparent Contradiction: Psychrotolerant Bacteria from Hydrocarbon-Contaminated Arctic Tundra Soils That Degrade Diterpenoids Synthesized by Trees

    PubMed Central

    Yu, Zhongtang; Stewart, Gordon R.; Mohn, William W.

    2000-01-01

    Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82°N, 62°W). According to most-probable-number assays, resin acid degraders were abundant (103 to 104 propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (<3 propagules/g of soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (106 to 107 propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4°C to 30°C (DhA-91 and DhA-95) or 4°C to 22°C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22°C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents. PMID:11097882

  9. Aryl isomerization during aliphatic CH bond activation

    SciTech Connect

    Chamberlain, L.R.; Rothwell, I.P.

    1983-03-23

    The transition-metal-stablized benzyne or o-phenylene (n/sup 2/-C/sub 6/H/sub 4/) ligand has been shown to be both an interesting and reactive group. The ligand is normally generated in mononuclear systems by ..beta..- (ortho-) hydrogen abstraction from an aryl group, and this synthetic approach has allowed a stable example to be isolated and structurally characterized. Here the conclusive identification of a benzyne intermediate during the isomerization of a tantalum-aryl compound is reported. The reaction is interesting in that the ortho hydrogen is transferred to the carbon atom of a cyclometalated chelate, the reverse (isomerization) step thus involving the activation of an aliphatic CH bond by the intermediate benzyne.

  10. Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Curran, Jerome

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Headquarters chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethane coatings. Successful completion of this project will result in one or more isocyanate-free coating systems qualified for use at Air Force Space Command (AFSPC) and NASA centers participating in this study. The objective of this project is to qualify the candidates under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  11. Development of aliphatic biodegradable photoluminescent polymers

    PubMed Central

    Yang, Jian; Zhang, Yi; Gautam, Santosh; Liu, Li; Dey, Jagannath; Chen, Wei; Mason, Ralph P.; Serrano, Carlos A.; Schug, Kevin A.; Tang, Liping

    2009-01-01

    None of the current biodegradable polymers can function as both implant materials and fluorescent imaging probes. The objective of this study was to develop aliphatic biodegradable photoluminescent polymers (BPLPs) and their associated cross-linked variants (CBPLPs) for biomedical applications. BPLPs are degradable oligomers synthesized from biocompatible monomers including citric acid, aliphatic diols, and various amino acids via a convenient and cost-effective polycondensation reaction. BPLPs can be further cross-linked into elastomeric cross-linked polymers, CBPLPs. We have shown representatively that BPLP-cysteine (BPLP-Cys) and BPLP-serine (BPLP-Ser) offer advantages over the traditional fluorescent organic dyes and quantum dots because of their preliminarily demonstrated cytocompatibility in vitro, minimal chronic inflammatory responses in vivo, controlled degradability and high quantum yields (up to 62.33%), tunable fluorescence emission (up to 725 nm), and photostability. The tensile strength of CBPLP-Cys film ranged from 3.25 ± 0.13 MPa to 6.5 ± 0.8 MPa and the initial Modulus was in a range of 3.34 ± 0.15 MPa to 7.02 ± 1.40 MPa. Elastic CBPLP-Cys could be elongated up to 240 ± 36%. The compressive modulus of BPLP-Cys (0.6) (1:1:0.6 OD:CA:Cys) porous scaffold was 39.60 ± 5.90 KPa confirming the soft nature of the scaffolds. BPLPs also possess great processability for micro/nano-fabrication. We demonstrate the feasibility of using BPLP-Ser nanoparticles (“biodegradable quantum dots”) for in vitro cellular labeling and noninvasive in vivo imaging of tissue engineering scaffolds. The development of BPLPs and CBPLPs represents a new direction in developing fluorescent biomaterials and could impact tissue engineering, drug delivery, bioimaging. PMID:19506254

  12. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    PubMed Central

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  13. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    PubMed

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-11-10

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  14. Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter.

    PubMed

    Sagan, C; Khare, B N; Thompson, W R; McDonald, G D; Wing, M R; Bada, J L; Vo-Dinh, T; Arakawa, E T

    1993-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are important components of the interstellar medium and carbonaceous chondrites, but have never been identified in the reducing atmospheres of the outer solar system. Incompletely characterized complex organic solids (tholins) produced by irradiating simulated Titan atmospheres reproduce well the observed UV/visible/IR optical constants of the Titan stratospheric haze. Titan tholin and a tholin generated in a crude simulation of the atmosphere of Jupiter are examined by two-step laser desorption/multiphoton ionization mass spectrometry. A range of two- to four-ring PAHs, some with one to four alkylation sites are identified, with net abundance approximately 10(-4) g g-1 (grams per gram) of tholins produced. Synchronous fluorescence techniques confirm this detection. Titan tholins have proportionately more one- and two-ring PAHs than do Jupiter tholins, which in turn have more four-ring and larger PAHs. The four-ringed PAH chrysene, prominent in some discussions of interstellar grains, is found in Jupiter tholins. Solid state 13C NMR spectroscopy suggests approximately equal to 25% of the total C in both tholins is tied up in aromatic and/or aliphatic alkenes. IR spectra indicate an upper limit in both tholins of approximately equal to 6% by mass in benzenes, heterocyclics, and PAHs with more than four rings. Condensed PAHs may contribute at most approximately 10% to the observed detached limb haze layers on Titan. As with interstellar PAHs, the synthesis route of planetary PAHs is likely to be via acetylene addition reactions.

  15. Hydrocarbon biomarkers, thermal maturity, and depositional setting of tasmanite oil shales from Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Revill, A. T.; Volkman, J. K.; O'Leary, T.; Summons, R. E.; Boreham, C. J.; Banks, M. R.; Denwer, K.

    1994-09-01

    This study represents the first geological and organic geochemical investigation of samples of tasmanite oil shale representing different thermal maturities from three separate locations in Tasmania, Australia. The most abundant aliphatic hydrocarbon in the immature oil shale from Latrobe is a C 19 tricyclic alkane, whereas in the more mature samples from Oonah and Douglas River low molecular weight n- alkanes dominate the extractable hydrocarbon distribution. The aromatic hydrocarbons are predominantly derivatives of tricyclic compounds, with 1,2,8-trimethylphenanthrene increasing in relative abundance with increasing maturity. Geological and geochemical evidence suggests that the sediments were deposited in a marine environment of high latitude with associated cold waters and seasonal seaice. It is proposed that the organism contributing the bulk of the kerogen, Tasmanites, occupied an environmental niche similar to that of modern sea-ice diatoms and that bloom conditions coupled with physical isolation from atmospheric CO 2 led to the distinctive "isotopically heavy" δ 13C values (-13.5‰ to -11.7‰) for the kerogen. δ 13C data from modern sea-ice diatoms (-7‰) supports this hypothesis. Isotopic analysis of n- alkanes in the bitumen (-13.5 to -31‰) suggest a multiple source from bacteria and algae. On the other hand, the n- alkanes generated from closed-system pyrolysis of the kerogen (-15‰) are mainly derived from the preserved Tasmanites biopolymer algaenan. The tricyclic compounds (mean -8‰) both in the bitumen and pyrolysate, have a common precursor. They are consistently enriched in 13C compared with the kerogen and probably have a different source from the n- alkanes. The identification of a location where the maturity of the tasmanite oil shale approaches the "oil window" raises the possibility that it may be a viable petroleum source rock.

  16. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials.

    PubMed

    Zhou, Yang; Apul, Onur Guven; Karanfil, Tanju

    2015-08-01

    In this study, adsorption of ten environmentally halogenated aliphatic synthetic organic compounds (SOCs) by a pristine graphene nanosheet (GNS) and a reduced graphene oxide (rGO) was examined, and their adsorption behaviors were compared with those of a single-walled carbon nanotube (SWCNT) and a granular activated carbon (GAC). In addition, the impacts of background water components (i.e., natural organic matter (NOM), ionic strength (IS) and pH) on the SOC adsorption behavior were investigated. The results indicated HD3000 and SWCNT with higher microporous volumes exhibited higher adsorption capacities for the selected aliphatic SOCs than graphenes, demonstrating microporosity of carbonaceous adsorbents played an important role in the adsorption. Analysis of adsorption isotherms demonstrated that hydrophobic interactions were the dominant contributor to the adsorption of aliphatic SOCs by graphenes. However, π-π electron donor-acceptor and van der Waals interactions are likely the additional mechanisms contributing to the adsorption of aliphatic SOCs on graphenes. Among the three background solution components examined, NOM showed the most influential effect on adsorption of the selected aliphatic SOCs, while pH and ionic strength had a negligible effects. The NOM competition on aliphatic adsorption was less pronounced on graphenes than SWCNT. Overall, in terms of adsorption capacities, graphenes tested in this study did not exhibit a major advantage over SWCNT and GAC for the adsorption of aliphatic SOCs.

  17. Occurrence, sources and transport pathways of natural and anthropogenic hydrocarbons in deep-sea sediments of the Eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Parinos, C.; Gogou, A.; Bouloubassi, I.; Pedrosa-Pàmies, R.; Hatzianestis, I.; Sànchez-Vidal, A.; Rousakis, G.; Velaoras, D.; Krokos, G.; Lykousis, V.

    2012-12-01

    Surface sediments collected from deep basins (22 stations, 1018-4087 m depth) of the Eastern Mediterranean Sea (EMS) were analyzed for aliphatic, triterpenoid and polycyclic aromatic hydrocarbons (PAHs) as tracers of natural and anthropogenic inputs. Concentrations of total aliphatic hydrocarbons (TAHC), n-alkanes (NA) and the Unresolved Complex Mixture (UCM) of aliphatic hydrocarbons ranged from 1.34 to 49.2 µg g-1, 145 to 4810 ng g-1 and 0.73 to 36.7 µg g-1, respectively, while total PAHs (TPAH25) concentrations ranged from 11.6 to 223 ng g-1. Molecular profiles of aliphatic hydrocarbons and PAHs reflect the contribution of both natural (epicuticular plant waxes) and anthropogenic (degraded petroleum products, unburned fossil fuels and combustion of petroleum, grass, wood and coal) compounds in deep EMS sediments, with hydrocarbon mixtures displaying significant regional variability. Hydrocarbon concentrations correlated significantly with the Total Organic Carbon (TOC) content of sediments, indicating that organic carbon exerts an important control on their transport and fate in the study area, while strong sub-basin and mesoscale variability of water masses also impact their regional characteristics. Major findings of this study support that deep basins/canyons of the EMS could act as traps of both natural and anthropogenic hydrocarbons.

  18. The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana

    PubMed Central

    Martínez-Ballesta, Mcarmen; Moreno-Fernández, Diego A.; Castejón, Diego; Ochando, Cristina; Morandini, Piero A.; Carvajal, Micaela

    2015-01-01

    Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. Exposure to salinity increases the levels of several of these compounds, but their role in abiotic stress response is unclear. The effect of aliphatic glucosinolates on plant water balance and growth under salt stress, involving aquaporins, was investigated by means of Arabidopsis thaliana mutants impaired in aliphatic glucosinolate biosynthesis, which is controlled by two transcription factors: Myb28 and Myb29. The double mutant myb28myb29, completely lacking aliphatic glucosinolates, was compared to wild type Col-0 (WT) and the single mutant myb28. A greater reduction in the hydraulic conductivity of myb28myb29 was observed under salt stress, when compared to the WT and myb28; this correlated with the abundance of both PIP1 and PIP2 aquaporin subfamilies. Also, changes in root architecture in response to salinity were genotype dependent. Treatment with NaCl altered glucosinolates biosynthesis in a similar way in WT and the single mutant and differently in the double mutant. The results indicate that short-chain aliphatic glucosinolates may contribute to water saving under salt stress. PMID:26236322

  19. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  20. Phenylethanoid and aliphatic alcohol glycosides from Acanthus ilicifolius.

    PubMed

    Wu, Jun; Zhang, Si; Xiao, Qiang; Li, Qingxin; Huang, Jianshe; Long, Lijuan; Huang, Liangmin

    2003-06-01

    A phenylethanoid glycoside (ilicifolioside A) and an aliphatic alcohol glycoside (ilicifolioside B), have been isolated from the aerial parts of Acanthus ilicifolius, together with eight known compounds. Their structures were determined from spectroscopic analyses.

  1. Comparative Genomics of the Ubiquitous, Hydrocarbon-degrading Genus Marinobacter

    NASA Astrophysics Data System (ADS)

    Singer, E.; Webb, E.; Edwards, K. J.

    2012-12-01

    The genus Marinobacter is amongst the most ubiquitous in the global oceans and strains have been isolated from a wide variety of marine environments, including offshore oil-well heads, coastal thermal springs, Antarctic sea water, saline soils and associations with diatoms and dinoflagellates. Many strains have been recognized to be important hydrocarbon degraders in various marine habitats presenting sometimes extreme pH or salinity conditions. Analysis of the genome of M. aquaeolei revealed enormous adaptation versatility with an assortment of strategies for carbon and energy acquisition, sensation, and defense. In an effort to elucidate the ecological and biogeochemical significance of the Marinobacters, seven Marinobacter strains from diverse environments were included in a comparative genomics study. Genomes were screened for metabolic and adaptation potential to elucidate the strategies responsible for the omnipresence of the Marinobacter genus and their remedial action potential in hydrocarbon-polluted waters. The core genome predominantly encodes for key genes involved in hydrocarbon degradation, biofilm-relevant processes, including utilization of external DNA, halotolerance, as well as defense mechanisms against heavy metals, antibiotics, and toxins. All Marinobacter strains were observed to degrade a wide spectrum of hydrocarbon species, including aliphatic, polycyclic aromatic as well as acyclic isoprenoid compounds. Various genes predicted to facilitate hydrocarbon degradation, e.g. alkane 1-monooxygenase, appear to have originated from lateral gene transfer as they are located on gene clusters of 10-20% lower GC-content compared to genome averages and are flanked by transposases. Top ortholog hits are found in other hydrocarbon degrading organisms, e.g. Alcanivorax borkumensis. Strategies for hydrocarbon uptake encoded by various Marinobacter strains include cell surface hydrophobicity adaptation via capsular polysaccharide biosynthesis and attachment

  2. Microbial activity and soil organic matter decay in roadside soils polluted with petroleum hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mykhailova, Larysa; Fischer, Thomas; Iurchenko, Valentina

    2015-04-01

    positively correlated with the carbohydrate fraction and negatively correlated with the aliphatic fraction of the soil C, while carbohydrate-C and alkyl-C increased and decreased with distance from the road, respectively. It is proposed that petroleum hydrocarbons supress soil biological activity at concentrations above 1500 mg kg-1, and that soil organic matter priming primarily affects the carbohydrate fraction of soil organic matter. It can be concluded that the abundance of solid carbohydrates (O-alkyl C) is of paramount importance for the hydrocarbon mineralization under natural conditions, compared to more recalcitrant SOM fractions (mainly aromatic and alkyl C). References Mykhailova, L., Fischer, T., Iurchenko, V. (2013) Distribution and fractional composition of petroleum hydrocarbons in roadside soils. Applied and Environmental Soil Science, vol. 2013, Article ID 938703, 6 pages, DOI 10.1155/2013/938703 Mykhailova, L., Fischer, T., Iurchenko, V. (2014) Deposition of petroleum hydrocarbons with sediment trapped in snow in roadside areas. Journal of Environmental Engineering and Landscape Management 22(3):237-244, DOI 10.3846/16486897.2014.889698 Nelson P.N. and Baldock J.A. (2005) Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses, 2005, Biogeochemistry (2005) 72: 1-34, DOI 10.1007/s10533-004-0076-3 Zyakun, A., Nii-Annang, S., Franke, G., Fischer, T., Buegger, F., Dilly, O. (2011) Microbial Actvity and 13C/12C Ratio as Evidence of N-Hexadecane and N-Hexadecanoic Acid Biodegradation in Agricultural and Forest Soils. Geomicrobiology Journal 28:632-647, DOI 10.1080/01490451.2010.489922

  3. Evaluation of antibacterial activity of synthetic aliphatic and aromatic monoacylglycerols.

    PubMed

    Batovska, Daniela; Todorova, Iva; Parushev, Stoyan; Tsvetkova, Iva; Najdenski, Hristo; Ubukata, Makoto

    2008-01-01

    The antibacterial activity of synthetic aliphatic and aromatic monoacylglycerols (MAGs) was studied against two human pathogens: Staphylococcus aureus and Escherichia coli. The active compounds inhibited selectively S. aureus. The most active compounds amongst them were those with medium size aliphatic chain and aromatic MAGs with electron withdrawing substituents at the aryl ring. The introduction of one or two-carbon spacer between the aryl ring and the carboxylic function did not influence antibacterial effectiveness. PMID:19004249

  4. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, H.L.; Palasz, P.D.; Ratcliff, M.A.

    1984-12-20

    A process is described for producing peracids from lactic acid-containing solutions derived from biomass processing systems. It consists of adjusting the pH of the solution to about 8 to 9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids. The solution is oxidized to produce volatile lower aliphatic aldehydes. The aldehydes are removed as they are generated and converted to peracids.

  5. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, Helena L.; Ratcliff, Matthew A.; Palasz, Peter D.

    1986-01-01

    A process for producing peracids from lactic acid-containing solutions derived from biomass processing systems comprising: adjusting the pH of the solution to about 8-9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids; oxidizing the solution to produce volatile lower aliphatic aldehydes; removing said aldehydes as they are generated; and converting said aldehydes to peracids.

  6. Atmospheric chemistry of toxic contaminants 4. Saturated halogenated aliphatics: Methyl bromide, epichlorhydrin, phosgene

    SciTech Connect

    Grosjean, D. )

    1991-01-01

    Mechanisms are outlined for the reactions that contribute to in-situ formation and atmospheric removal of the saturated halogenated aliphatic contaminants methyl bromide, epichlorhydrin, and phosgene. In-situ formation is important only for phosgene and involves the reaction of OH with chloroethenes and other chlorinated hydrocarbons. A ranking of these phosgene precursors is given using data for precursor ambient concentrations and chemical reactivity. The three toxic compounds studied are long-lived in the atmosphere, where removal of phosgene and methyl bromide by chemical reactions is negligibly slow. Epichlorhydrin is removed slowly by reaction with OH, leading to formaldehyde, chloroacetaldehyde, and the chlorinated peroxyacyl nitrate CH{sub 2}ClC(O)OONO{sub 2}.

  7. Atmospheric chemistry of toxic contaminants. 3. Unsaturated aliphatics: Acrolein, acrylonitrile, maleic anhydride

    SciTech Connect

    Grosjean, D. )

    1990-12-01

    Detailed mechanisms are outlined for the chemical reactions that contribute to in-situ formation and atmospheric removal of the unsaturated aliphatic contaminants acrolein, acrylonitrile, and maleic anhydride. In-situ formation of small amounts of acrolein and maleic anhydride may involve the reaction of OH (and O{sub 3}) with 1,3-dienes and the reaction of OH with aromatic hydrocarbons, respectively. There is no known pathway for in-situ formation of acrylonitrile. Rapid removal of acrolein (half-life = less than one day) and of maleic anhydride (half-life = several hours) is expected from their rapid reactions with OH (major), O{sub 3}, and NO{sub 3}. These reactions lead to formaldehyde and glyoxal from acrolein and to dicarbonyls from maleic anhydride. Acrylonitrile is removed at a slower rate (half-life = 2-7 days) by reaction with OH, leading to formaldehyde and formyl cyanide.

  8. Occurrence, sources and transport pathways of natural and anthropogenic hydrocarbons in deep-sea sediments of the eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Parinos, C.; Gogou, A.; Bouloubassi, I.; Pedrosa-Pàmies, R.; Hatzianestis, I.; Sanchez-Vidal, A.; Rousakis, G.; Velaoras, D.; Krokos, G.; Lykousis, V.

    2013-09-01

    Surface sediments collected from deep basins (1018-4087 m depth) of the eastern Mediterranean Sea (Ionian Sea, southern Aegean Sea and northwestern Levantine Sea) were analyzed for aliphatic and polycyclic aromatic hydrocarbons as tracers of natural and anthropogenic inputs. Concentrations of total aliphatic hydrocarbons, n-alkanes and the unresolved complex mixture (UCM) of aliphatic hydrocarbons varied significantly, ranging from 1.34 to 49.2 μg g-1, 145 to 4810 ng g-1 and 0.73 to 36.7 μg g-1, respectively, while concentrations of total polycyclic aromatic hydrocarbons (PAHs) ranged between 11.6 and 223 ng g-1. Molecular profiles of determined hydrocarbons reflect a mixed contribution from both natural and anthropogenic sources in deep-sea sediments of the eastern Mediterranean Sea, i.e., terrestrial plant waxes, degraded petroleum products, unburned fossil fuels and combustion of grass, wood and coal. Hydrocarbon mixtures display significant variability amongst sub-regions, reflecting differences in the relative importance of inputs from various sources and phase associations/transport pathways of individual hydrocarbons that impact on their overall distribution and fate. Hydrocarbon concentrations correlated significantly with the organic carbon content of sediments, indicating that the latter exerts an important control on their transport and ultimate accumulation in deep basins. Additionally, water masses' circulation characteristics also seem to influence the regional features and distribution patterns of hydrocarbons. Our findings highlight the role of deep basins/canyons as repositories of both natural and anthropogenic chemical species.

  9. Investigation of the toxicokinetics of petroleum hydrocarbon distillates with the earthworm Eisenia andrei.

    PubMed

    Cermak, Janet; Stephenson, Gladys; Birkholz, Detlef; Dixon, D George

    2013-04-01

    The Canada-wide standards for petroleum hydrocarbons in soils regulate petroleum hydrocarbons based on four distillate ranges: F1 (C6-C10), F2 (>C10-C16), F3 (>C16-C34), and F4 (>C34). Previous toxicity tests with earthworms and F2, as well as two subfractions of F3, F3a (>C16-C23) and F3a (>C23-C34), indicate that test durations might not be sufficiently long to reach threshold effect concentrations, likely because of the differing toxicokinetics for each distillate. A study was conducted to determine the toxicokinetics of both aliphatic and aromatic fractions of F2, F3a, and F3b with the earthworm Eisenia andrei. Peak accumulation curves were observed for F2 aliphatics and aromatics and F3a aromatics, likely as a result of changes in exposure concentration over the test duration via loss or a decrease in the bioavailable fraction. Biota-soil accumulation factors were >1 for total F2 aliphatics and aromatics and F3a aromatics as well as for several individual polyaromatic hydrocarbons for each distillate. Aromatics were disproportionately accumulated over aliphatics and were the main contributors to toxicity; therefore, aromatics and aliphatics should be regulated separately. The toxicokinetics were used to interpret previous toxicity data. Higher molecular weight distillates need longer-than-standard test durations to determine toxicity, so toxicity test results from fixed, standard-duration tests are not strictly comparable for these petroleum distillates.

  10. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  11. Hydrocarbon biological markers in Carboniferous coals of different maturities from the Ruhr area (northwest Germany)

    SciTech Connect

    ten Haven, H.L.; Littke, R.; Rullkoetter, J. , Juelich )

    1989-03-01

    A great variety of biological markers has been found in Carboniferous coal samples. Changes in the paleo-depositional environment are reflected by the distribution of bacterial derived hydrocarbons. These biological markers contribute to a significant extent to the aliphatic hydrocarbon fraction of low-maturity coal samples; their absolute contribution to total organic matter has yet not been estimated. Biological markers for gymnosperm were observed, which is in accordance with the phylogenetic evolution of the plant kingdom during the Carboniferous.

  12. Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary

    USGS Publications Warehouse

    Lorenson, T.D.; Kvenvolden, K.A.; Hostettler, F.D.; Rosenbauer, R.J.; Orange, D.L.; Martin, J.B.

    2002-01-01

    Samples from four geographically and tectonically discrete cold seeps named Clam Flat, Clamfield, Horseshoe Scarp South, and Tubeworm City, within the Monterey Bay National Marine Sanctuary were analyzed for their hydrocarbon content. The sediment contains gaseous hydrocarbons and CO2, as well as high molecular weight aliphatic and aromatic hydrocarbons with various combinations of thermogenic and biogenic contributions from petroleum, marine, and terrigenous sources. Of particular interest is the cold seep site at Clamfield which is characterized by the presence of thermogenic hydrocarbons including oil that can likely be correlated with oil-saturated strata at Majors Creek near Davenport, CA, USA. At Clam Flat, the evidence for thermogenic hydrocarbons is equivocal. At Horseshoe Scarp South and Tubeworm City, hydrocarbon gases, mainly methane, are likely microbial in origin. These varied sources of hydrocarbon gases highlight the diverse chemical systems that appear at cold seep communities. ?? 2002 Elsevier Science B.V. All rights reserved.

  13. Carbon-rich dust past the asymptotic giant branch: Aliphatics, aromatics, and fullerenes in the Magellanic Clouds

    SciTech Connect

    Sloan, G. C.; Lagadec, E.; Zijlstra, A. A.; Kraemer, K. E.; Weis, A. P.; Matsuura, M.; Volk, K.; Peeters, E.; Cami, J.; Duley, W. W.; Bernard-Salas, J.; Kemper, F.

    2014-08-10

    Infrared spectra of carbon-rich objects that have evolved off the asymptotic giant branch reveal a range of dust properties, including fullerenes, polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons, and several unidentified features, including the 21 μm emission feature. To test for the presence of fullerenes, we used the position and width of the feature at 18.7-18.9 μm and examined other features at 17.4 and 6-9 μm. This method adds three new fullerene sources to the known sample, but it also calls into question three previous identifications. We confirm that the strong 11 μm features seen in some sources arise primarily from SiC, which may exist as a coating around carbonaceous cores and result from photo-processing. Spectra showing the 21 μm feature usually show the newly defined Class D PAH profile at 7-9 μm. These spectra exhibit unusual PAH profiles at 11-14 μm, with weak contributions at 12.7 μm, which we define as Class D1, or show features shifted to ∼11.4, 12.4, and 13.2 μm, which we define as Class D2. Alkyne hydrocarbons match the 15.8 μm feature associated with 21 μm emission. Sources showing fullerene emission but no PAHs have blue colors in the optical, suggesting a clear line of sight to the central source. Spectra with 21 μm features and Class D2 PAH emission also show photometric evidence for a relatively clear line of sight to the central source. The multiple associations of the 21 μm feature with aliphatic hydrocarbons suggest that the carrier is related to this material in some way.

  14. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    PubMed

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  15. Compounds in airborne particulates - Salts and hydrocarbons. [at Cleveland, OH

    NASA Technical Reports Server (NTRS)

    King, R. B.; Antoine, A. C.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.

    1977-01-01

    Concentrations of 10 polycyclic aromatic hydrocarbons (PAH), the aliphatics as a group, sulfate, nitrate, fluoride, acidity, and carbon in the airborne particulate matter were measured at 16 sites in Cleveland, OH over a 1-year period during 1971 and 1972. Analytical methods used included gas chromatography, colorimetry, and combustion techniques. Uncertainties in the concentrations associated with the sampling procedures, and the analytical methods are evaluated. The data are discussed relative to other studies and source origins. High concentrations downwind of coke ovens for 3,4 benzopyrene are discussed. Hydrocarbon correlation studies indicated no significant relations among compounds studied.

  16. Apparatus for hydrocarbon extraction

    SciTech Connect

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  17. Stratospheric benzene and hydrocarbon aerosols detected in Saturn's auroral regions

    NASA Astrophysics Data System (ADS)

    Guerlet, S.; Fouchet, T.; Vinatier, S.; Simon, A. A.; Dartois, E.; Spiga, A.

    2015-08-01

    Context. Saturn's polar upper atmosphere exhibits significant auroral activity; however, its impact on stratospheric chemistry (i.e. the production of benzene and heavier hydrocarbons) and thermal structure remains poorly documented. Aims: We aim to bring new constraints on the benzene distribution in Saturn's stratosphere, to characterize polar aerosols (their vertical distribution, composition, thermal infrared optical properties), and to quantify the aerosols' radiative impact on the thermal structure. Methods: Infrared spectra acquired by the Composite Infrared Spectrometer (CIRS) on board Cassini in limb viewing geometry are analysed to derive benzene column abundances and aerosol opacity profiles over the 3 to 0.1 mbar pressure range. The spectral dependency of the haze opacity is assessed in the ranges 680-900 and 1360-1440 cm-1. Then, a radiative climate model is used to compute equilibrium temperature profiles, with and without haze, given the haze properties derived from CIRS measurements. Results: On Saturn's auroral region (80°S), benzene is found to be slightly enhanced compared to its equatorial and mid-latitude values. This contrasts with the Moses & Greathouse (2005, J. Geophys. Res., 110, 9007) photochemical model, which predicts a benzene abundance 50 times lower at 80°S than at the equator. This advocates for the inclusion of ion-related reactions in Saturn's chemical models. The polar stratosphere is also enriched in aerosols, with spectral signatures consistent with vibration modes assigned to aromatic and aliphatic hydrocarbons, and presenting similarities with the signatures observed in Titan's stratosphere. The aerosol mass loading at 80°S is estimated to be 1-4 × 10-5 g cm-2, an order of magnitude less than on Jupiter, which is consistent with the order of magnitude weaker auroral power at Saturn. We estimate that this polar haze warms the middle stratosphere by 6 K in summer and cools the upper stratosphere by 5 K in winter. Hence

  18. Indigenous aliphatic amines in the aqueously altered Orgueil meteorite

    NASA Astrophysics Data System (ADS)

    Aponte, José C.; Dworkin, Jason P.; Elsila, Jamie E.

    2015-10-01

    The CI1 Orgueil meteorite is a highly aqueously altered carbonaceous chondrite. It has been extensively studied, and despite its extensive degree of aqueous alteration and some documented instances of contamination, several indigenous organic compounds including amino acids, carboxylic acids, and nucleobases have been detected in its carbon-rich matrix. We recently developed a novel gas chromatographic method for the enantiomeric and compound-specific isotopic analyses of meteoritic aliphatic monoamines in extracts and have now applied this method to investigate the monoamine content in Orgueil. We detected 12 amines in Orgueil, with concentrations ranging from 1.1 to 332 nmol g-1 of meteorite and compared this amine content in Orgueil with that of the CM2 Murchison meteorite, which experienced less parent-body aqueous alteration. Methylamine is four times more abundant in Orgueil than in Murchison. As with other species, the amine content in Orgueil extracts shows less structural diversity than that in Murchison extracts. We measured the compound-specific stable carbon isotopic ratios (δ13C) for 5 of the 12 monoamines detected in Orgueil and found a range of δ13C values from -20 to +59‰. These δ13C values fall into the range of other meteoritic organic compounds, although they are 13C-depleted relative to their counterparts extracted from the Murchison meteorite. In addition, we measured the enantiomeric composition for the chiral monoamines (R)- and (S)-sec-butylamine in Orgueil, and found it was racemic within experimental error, in contrast with the L-enantiomeric excess found for its amino acid structural analog isovaline. The racemic nature of sec-butylamine in Orgueil was comparable to that previously observed in Murchison, and to other CM2 and CR2 carbonaceous chondrites measured in this work (ALH 83100 [CM1/2], LON 94101 [CM2], LEW 90500 [CM2], LAP 02342 [CR2], and GRA 95229 [CR2]). These results allow us to place some constraints on the effects of

  19. Hydrocarbons in the ISM: Their Evolution and the Grain-to-Molecule Transition

    NASA Astrophysics Data System (ADS)

    Jones, Anthony P.

    The evolution of hydrocarbon grains in the ISM is determined, principally, by the effects of photo-processing (annealing) which lead to a progressive loss of hydrogen from the structure and an associated 'graphitisation' of the material. Eventually this 'graphitisation' results in a low-density, highly aromatic material that can disaggregate into its aromatic-rich molecular components. These changes are followed through the use of an extended random covalent network (RCN) model for the hydrocarbon structure. This type of 'top down' process could be a significant source of the large molecular infrared band carriers in photon dominated regions. On the basis of this simple model there should thus be a relationship between the small grain and large molecule infrared emission bands across, and within, astrophysical boundaries such as photo-dissociation regions. 1. Introduction Carbon is the most abundant dust-forming element in the ISM and a large fraction of this carbon is in the form of grains comprised, principally, of hydrocarbon materials, including those where the hydrogen content is minimal. Interstellar hydrocarbon grains include: graphite, hydrogenated amorphous aliphatic and/or aromatic hydrocarbons (a-C, a-C:H) and (nano)diamond. These hydrocarbon dusts play a pivotal role in determining, amongst other things, the interstellar extinction, the dust thermal emission and the photo-electric heating of the gas in the ISM. 2. Hydrocarbon grains in the ISM Hydrocarbon grains are formed in the circumstellar shells around C-rich evolved stars, in supernova ejecta and also in the ISM itself via accretion and solid-state chemistry. The physical and chemical properties of hydrocarbon grains are indeed complex and vary in response to the ambient conditions (density, temperature, radiation field, ...). For example they can undergo both chemical and physical processing (growth and changes in chemical composition through accretion and reaction, erosion via inertial or chemi

  20. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  1. Selective stabilization of aliphatic organic carbon by iron oxide

    PubMed Central

    Adhikari, Dinesh; Yang, Yu

    2015-01-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter. PMID:26061259

  2. Triphosgene–Amine Base Promoted Chlorination of Unactivated Aliphatic Alcohols

    PubMed Central

    Villalpando, Andrés; Ayala, Caitlan E.; Watson, Christopher B.; Kartika, Rendy

    2014-01-01

    Unactivated α-branched primary and secondary aliphatic alcohols have been successfully transformed into their corresponding alkyl chlorides in high yields upon treatment with a mixture of triphosgene and pyridine in dichloromethane at reflux. These mild chlorination conditions are high yielding, stereospecific, and well tolerated by numerous sensitive functionalities. Furthermore, no nuisance waste products are generated in the course of the reactions. PMID:23496045

  3. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  4. Selective stabilization of aliphatic organic carbon by iron oxide.

    PubMed

    Adhikari, Dinesh; Yang, Yu

    2015-01-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter. PMID:26061259

  5. Introducing Aliphatic Substitution with a Discovery Experiment Using Competing Electrophiles

    ERIC Educational Resources Information Center

    Curran, Timothy P.; Mostovoy, Amelia J.; Curran, Margaret E.; Berger, Clara

    2016-01-01

    A facile, discovery-based experiment is described that introduces aliphatic substitution in an introductory undergraduate organic chemistry curriculum. Unlike other discovery-based experiments that examine substitution using two competing nucleophiles with a single electrophile, this experiment compares two isomeric, competing electrophiles…

  6. A thermostable transketolase evolved for aliphatic aldehyde acceptors.

    PubMed

    Yi, Dong; Saravanan, Thangavelu; Devamani, Titu; Charmantray, Franck; Hecquet, Laurence; Fessner, Wolf-Dieter

    2015-01-11

    Directed evolution of the thermostable transketolase from Geobacillus stearothermophilus based on a pH-based colorimetric screening of smart libraries yielded several mutants with up to 16-fold higher activity for aliphatic aldehydes and high enantioselectivity (>95% ee) in the asymmetric carboligation step. PMID:25415647

  7. Dissociative charge-transfer reactions of Ar + with simple aliphatic hydrocarbons at thermal energy

    NASA Astrophysics Data System (ADS)

    Tsuji, Masaharu; Kouno, Hiroyuki; Matsumura, Ken-ichi; Funatsu, Tsuyoshi; Nishimura, Yukio; Obase, Hiroshi; Kugishima, Hirofumi; Yoshida, Kouichi

    1993-02-01

    A flowing-afterglow apparatus coupled with a low pressure chamber has been used to measure product ion distributions and rate constants in the charge-transfer reactions of Ar+ with CH4, C2Hn(n=2,4,6), and C3Hn(n=6,8) at thermal energy. Only parent cation is formed for C2H2 due to energy restriction. Major product channels are dissociative charge transfer followed by cleavage of C-H bond(s) for CH4, C2H4, C2H6, and C3H6, while by cleavage of a C-C bond for C3H8. A comparison of the product ion distributions with the photoelectron-photoion coincidence data for CH4, C2H4, and C2H6 leads us to conclude that the mean energies of precursor (pre)dissociative states are 15.3-15.5 eV, which are 0.3-0.5 eV below the resonance states. Thus the fractions of available energy deposited into internal modes of precursor parent ions at the instant of charge transfer are estimated to be 85%-95%, indicating that most of the CT reactions occurs without significant momentum transfer. The total rate constants for CH4, C2Hn(n=4,6), and C3Hn(n=6,8) are (0.78-1.1)×10-9 cm3 s-1, corresponding to 60%-92% of the calculated values from the Langevin theory. The rate constant for C2H2, 4.2×10-10 cm3 s-1, amounts to 38% of the kcalcd value. The small kobsd/kcalcd ratio is attributed to the lack of ionic states with favorable Franck-Condon factors for ionization.

  8. Aqueous solubility and octan-1-ol to water partition coefficients of aliphatic hydrocarbons

    SciTech Connect

    Coates, M.; Connell, D.W.; Barron, D.M.

    1985-07-01

    The aqueous solubility (S) and octanol-water partition coefficients (P) of homologous series of n-, 2-methyl-, and 3-methylalkanes, as well as 1-alkenes, have been determined by extrapolation of known results, direct measurement, and high-pressure liquid chromatography (HP-LC). Long-term equilibration experiments, used to reduce aggregate formation, indicated that n-dodecane and n-tetradecane have S values in agreement with those obtained by extrapolation of the data on lower members. HPLC data from reverse-phase columns further validated the use of extrapolation. By use of published values for P and S for lower n-alkanes, the relationships between log P, log S, and N/sub c/ were obtained. Cochromatography of n-alkanes with members of the other series then allowed these relationships to be determined for the 2- and 3-methylalkanes and the 1-alkenes. The derived S values were in reasonable agreement with values from previous work and those obtained by extrapolation. The log P values have not been previously determined for these compounds.

  9. ANAEROBIC BIOTRANSFORMATION OF CHLORINATED ALIPHATIC HYDROCARBONS: UGLY DUCKLING TO BEAUTIFUL SWAN. (R825549C053)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. ANAEROBIC BIOTRANSFORRNATION OF CHLORINATED ALIPHATIC HYDROCARBONS: UGLY DUCKLING TO BEAUTIFUL SWAN. (R825549C044)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. Use of aliphatic hydrocarbons to infer terrestrial organic matter in coastal marine sediments off China.

    PubMed

    Liu, Liang-Ying; Wang, Ji-Zhong; Guan, Yu-Feng; Zeng, Eddy Y

    2012-09-01

    Sediment samples from the marine systems along the coast of China, covering Yellow Sea, inner shelf of the East China Sea (ECS) and the South China Sea (SCS), were analyzed for n-alkanes and organic carbon. The concentrations of Σn-C(15-35) were 120-1680 ng g(-1) dry weight with an average of 560 ng g(-1). Short-chain n-alkanes (C(21)) were mainly derived from terrestrial higher plants. Organic carbon deposited into Yellow Sea and Southeast Hainan within the SCS was mainly of terrestrial (13-110%; mean: 58%) and marine (48-110%; mean: 86%) sources, respectively. On the other hand, organic carbon accumulated in the SCS adjacent to the Pearl River Estuary was derived from both terrestrial and marine sources.

  12. 40 CFR 721.10608 - Aliphatic diisocyanate polymer with alkanediol and alkylglycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic diisocyanate polymer with... Significant New Uses for Specific Chemical Substances § 721.10608 Aliphatic diisocyanate polymer with.... (1) The chemical substance identified generically as aliphatic diisocyanate polymer with...

  13. 40 CFR 721.10608 - Aliphatic diisocyanate polymer with alkanediol and alkylglycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic diisocyanate polymer with... Significant New Uses for Specific Chemical Substances § 721.10608 Aliphatic diisocyanate polymer with.... (1) The chemical substance identified generically as aliphatic diisocyanate polymer with...

  14. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyaziridinyl ester of an aliphatic... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  15. From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to the Origin of Life

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis

    2004-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, abundances, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the presolar nebula, the materials frozen into the interstellar/precometary ices are photoprocessed by ultraviolet light and produce more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex materials on the early

  16. Aerobic degradation of a hydrocarbon mixture in natural uncontaminated potting soil by indigenous microorganisms at 20 degrees C and 6 degrees C.

    PubMed

    Eriksson, M; Dalhammar, G; Borg-Karlson, A K

    1999-04-01

    A hydrocarbon mixture containing p-xylene, naphthalene, Br-naphthalene and straight aliphatic hydrocarbons (C14 to C17) was aerobically degraded without lag phase by a natural uncontaminated potting soil at 20 degrees C and 6 degrees C. Starting concentrations were approximately 46 ppm for the aromatic and 13 ppm for the aliphatic compounds. All aliphatic hydrocarbons were degraded within 5 days at 20 degrees C, to levels below detection (ppb levels) but only down to 10% of initial concentration at 6 degrees C. Naphthalene was degraded within 12 days at 20 degrees C and unaffected at 6 degrees C. At 20 degrees C p-xylene was degraded within 20 days, but no degradation occurred at 6 degrees C. Br-naphthalene was only removed down to 30% of initial concentration at 20 degrees C, with no significant effect at 6 degrees C. The biodegradation was monitored with head space solid-phase microextraction and gas chromatography-mass spectrometry.

  17. Hydrocarbons on Saturn's satellites Iapetus and Phoebe

    USGS Publications Warehouse

    Cruikshank, D.P.; Wegryn, E.; Dalle, Ore C.M.; Brown, R.H.; Bibring, J.-P.; Buratti, B.J.; Clark, R.N.; McCord, T.B.; Nicholson, P.D.; Pendleton, Y.J.; Owen, T.C.; Filacchione, G.; Coradini, A.; Cerroni, P.; Capaccioni, F.; Jaumann, R.; Nelson, R.M.; Baines, K.H.; Sotin, C.; Bellucci, G.; Combes, M.; Langevin, Y.; Sicardy, B.; Matson, D.L.; Formisano, V.; Drossart, P.; Mennella, V.

    2008-01-01

    Material of low geometric albedo (pV ??? 0.1) is found on many objects in the outer Solar System, but its distribution in the saturnian satellite system is of special interest because of its juxtaposition with high-albedo ice. In the absence of clear, diagnostic spectral features, the composition of this low-albedo (or "dark") material is generally inferred to be carbon-rich, but the form(s) of the carbon is unknown. Near-infrared spectra of the low-albedo hemisphere of Saturn's satellite Iapetus were obtained with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft at the fly-by of that satellite of 31 December 2004, yielding a maximum spatial resolution on the satellite's surface of ???65 km. The spectral region 3-3.6 ??m reveals a broad absorption band, centered at 3.29 ??m, and concentrated in a region comprising about 15% of the low-albedo surface area. This is identified as the C{single bond}H stretching mode vibration in polycyclic aromatic hydrocarbon (PAH) molecules. Two weaker bands attributed to {single bond}CH2{single bond} stretching modes in aliphatic hydrocarbons are found in association with the aromatic band. The bands most likely arise from aromatic and aliphatic units in complex macromolecular carbonaceous material with a kerogen- or coal-like structure, similar to that in carbonaceous meteorites. VIMS spectra of Phoebe, encountered by Cassini on 11 June 2004, also show the aromatic hydrocarbon band, although somewhat weaker than on Iapetus. The origin of the PAH molecular material on these two satellites is unknown, but PAHs are found in carbonaceous meteorites, cometary dust particles, circumstellar dust, and interstellar dust. ?? 2007 Elsevier Inc. All rights reserved.

  18. A biotechnological approach to the synthesis of epoxides: bioconversion of hydrocarbons by Pseudomonas oleovorans during growth in a multiphase system

    SciTech Connect

    De Smet, M.J.

    1983-04-01

    This communication examines the oxidation of alkanes and alkenes by Pseudomonas oleovorans. A variety of substrates were tested in order to extend the practical use of P. oleovorans for the synthesis of chiral epoxides. Concludes that hydrocarbon fermentations of P. oleovorans might be an important tool not only in the production of epoxides but also in the production of aliphatic polyesters and biosurfactants.

  19. Lipstick dermatitis due to C18 aliphatic compounds.

    PubMed

    Hayakawa, R; Matsunaga, K; Suzuki, M; Arima, Y; Ohkido, Y

    1987-04-01

    An 18-year-old girl developed cheilitis. She had a past history of lip cream dermatitis, but the cause was not found. Patch tests with 2 lipsticks were strongly positive. Tests with the ingredients were positive to 2 aliphatic compounds, glyceryl diisostearate and diisostearyl malate. Impurities in the materials were suspected as the cause. Analysis by gas chromatography detected 3 chemicals in glyceryl diisostearate and 1 in diisostearyl malate as impurities. Patch testing with the impurities and glyceryl monoisostearate 0.01% pet in glyceryl diisostearate and isostearyl alcohol 0.25% pet in diisostearyl malate were strongly positive. The characteristics common to the 2 chemicals were liquidity at room temperature, branched C18 aliphatic compound and primary alcohol. Chemicals lacking any of the above 3 features did not react.

  20. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    NASA Technical Reports Server (NTRS)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  1. Room Temperature, Metal-Free Arylation of Aliphatic Alcohols

    PubMed Central

    Ghosh, Raju; Lindstedt, Erik; Jalalian, Nazli; Olofsson, Berit

    2014-01-01

    Diaryliodonium salts are demonstrated as efficient arylating agents of aliphatic alcohols under metal-free conditions. The reaction proceeds at room temperature within 90 min to give alkyl aryl ethers in good to excellent yields. Aryl groups with electron-withdrawing substituents are transferred most efficiently, and unsymmetric iodonium salts give chemoselective arylations. The methodology has been applied to the formal synthesis of butoxycaine. PMID:24808991

  2. Marine organic geochemistry in industrially affected coastal areas in Greece: Hydrocarbons in surface sediments

    NASA Astrophysics Data System (ADS)

    Hatzianestis, Ioannis

    2015-04-01

    Hydrocarbons are abundant components of the organic material in coastal zones. Their sources are mainly anthropogenic, but several natural ones have also been recognized. Among hydrocarbons, the polycyclic aromatic ones (PAHs) have received special attention since they considered as hazardous environmental chemicals and are included in priority pollutant lists. The purpose of this study was to investigate the distribution, sources and transport pathways of hydrocarbons in marine areas in Greece directly influenced from the operation of major industrial units in the coastal zone by using a molecular marker approach, characteristic compositional patterns and related indices and also to evaluate their potential toxicity. Thirty two surface sediment samples were collected from three marine areas: a) Antikyra bay in Korinthiakos gulf, affected from the operation of an alumina and production plant b) Larymna bay in Noth Evoikos, affected from the operation of a nickel production plant and c) Aliveri bay in South Evoikos Gulf, affected from a cement production plant. In all the studied areas aquaculture and fishing activities have been also developed in the coastal zone. High aliphatic hydrocarbon (AHC) concentrations (~500 μg/g), indicating significant petroleum related inputs, were measured only in Antikyra bay. In all the other samples, AHC values were below 100 μg/g. N-alkanes were the most prominent resolved components (R) with an elevated odd to even carbon number preference, revealing the high importance of terrestrial inputs in the study areas. The unresolved complex mixture (UCM) was the major component of the aliphatic fraction (UCM/R > 4), indicating a chronic oil pollution. A series of hopanes were also identified, with patterns characteristic of oil-derived hydrocarbons, further confirming the presence of pollutant inputs from fossil fuel products. Extremely high PAH concentrations (> 100,000 ng/g) were found in the close vicinity of the alumina production

  3. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (Hn-PAHs) and their Relation to the 3.4 and 6.9 µm PAH Emission Features

    PubMed Central

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are likely responsible for the family of infrared emission features seen in a wide variety of astrophysical environments. A potentially important subclass of these materials are PAHs whose edges contain excess H atoms (Hn-PAHs). This type of compound may be present in space, but it has been difficult to assess this possibility because of a lack of suitable laboratory spectra to assist with analysis of astronomical data. We present 4000-500 cm−1 (2.5–20 µm) infrared spectra of 23 Hn-PAHs and related molecules isolated in argon matrices under conditions suitable for interpretation of astronomical data. Spectra of molecules with mixed aromatic and aliphatic domains show characteristics that distinguish them from fully aromatic PAH equivalents. Two major changes occur as PAHs become more hydrogenated: (1) aromatic C-H stretching bands near 3.3 µm weaken and are replaced with stronger aliphatic bands near 3.4 µm, and (2) aromatic C-H out-of-plane bending mode bands in the 11–15 µm region shift and weaken concurrent with growth of a strong aliphatic -CH2-deformation mode near 6.9 µm. Implications for interpreting astronomical spectra are discussed with emphasis on the 3.4 and 6.9 µm features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, and IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 µm features. We show that ‘normal’ PAH emission objects contain relatively few Hn-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules. PMID:26435553

  4. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH EXCESS PERIPHERAL H ATOMS (H {sub n} -PAHs) AND THEIR RELATION TO THE 3.4 AND 6.9 {mu}m PAH EMISSION FEATURES

    SciTech Connect

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are likely responsible for the family of infrared emission features seen in a wide variety of astrophysical environments. A potentially important subclass of these materials are PAHs whose edges contain excess H atoms (H {sub n} -PAHs). This type of compound may be present in space, but it has been difficult to assess this possibility because of a lack of suitable laboratory spectra to assist with analysis of astronomical data. We present 4000-500 cm{sup -1} (2.5-20 {mu}m) infrared spectra of 23 H {sub n} -PAHs and related molecules isolated in argon matrices under conditions suitable for interpretation of astronomical data. Spectra of molecules with mixed aromatic and aliphatic domains show characteristics that distinguish them from fully aromatic PAH equivalents. Two major changes occur as PAHs become more hydrogenated: (1) aromatic C-H stretching bands near 3.3 {mu}m weaken and are replaced with stronger aliphatic bands near 3.4 {mu}m, and (2) aromatic C-H out-of-plane bending mode bands in the 11-15 {mu}m region shift and weaken concurrent with growth of a strong aliphatic -CH{sub 2}- deformation mode near 6.9 {mu}m. Implications for interpreting astronomical spectra are discussed with emphasis on the 3.4 and 6.9 {mu}m features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, and IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 {mu}m features. We show that 'normal' PAH emission objects contain relatively few H {sub n} -PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  5. Cost-Benefit Analysis for Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    NASA and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This Cost-Benefit Analysis (CBA) quantifies the estimated capital and process costs of coating alternatives and cost savings relative to the current coatings. The estimates in this CBA are to be used for assessing the relative merits of the selected alternatives. The actual economic effects at any specific facility will depend on the alternative material or technology implemented, the number of actual applications converted, future workloads, and other factors . The participants initially considered eighteen (18) alternative coatings as described in the Potential Alternatives Report entitled Potential Alternatives Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB. Of those, 8 alternatives were selected for testing in accordance with the Joint Test Protocol entitled Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, and the Field Test Plan entitled Field Evaluations Test Plan for Validation of Alternatives 10 Aliphatic Isocyanate Polyurethanes, both of which were prepared by ITB. A joint Test Report entitled Joint Test Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB, documents the results of the laboratory and field testing, as well as any

  6. Road tunnel, roadside, and urban background measurements of aliphatic compounds in size-segregated particulate matter

    NASA Astrophysics Data System (ADS)

    Alves, Célia A.; Oliveira, César; Martins, Natércia; Mirante, Fátima; Caseiro, Alexandre; Pio, Casimiro; Matos, Manuel; Silva, Hugo F.; Oliveira, Cristina; Camões, Filomena

    2016-02-01

    Particulate matter samples were collected in a road tunnel in Lisbon (PM0.5, PM0.5-1, PM1-2.5, and PM2.5-10) and at two urban locations representing roadside and background stations (PM2.5 and PM2.5-10). Samples were analysed for organic and elemental carbon (OC and EC), n-alkanes, n-alkenes, hopanes, some isoprenoid compounds, and steranes. Particulate matter concentrations in the tunnel were 17-31 times higher than at roadside in the vicinity, evidencing an aerosol origin almost exclusively in fresh vehicle emissions. PM0.5 in the tunnel comprised more than 60% and 80% of the total OC and EC mass in PM10, respectively. Concentrations of the different aliphatic groups of compounds in the tunnel were up to 89 times higher than at roadside and 143 times higher than at urban background. Based on the application of hopane-to-OC or hopanes-to-EC ratios obtained in the tunnel, it was found that vehicle emissions are the dominant contributor to carbonaceous particles in the city but do not represent the only source of these triterpenic compounds. Contrary to what has been observed in other studies, the Σhopane-to-EC ratios were higher in summer than in winter, suggesting that other factors (e.g. biomass burning, dust resuspension, and different fuels/engine technologies) prevail in relation to the photochemical decay of triterpenoid hydrocarbons from vehicle exhaust.

  7. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle.

    PubMed

    Lea-Smith, David J; Biller, Steven J; Davey, Matthew P; Cotton, Charles A R; Perez Sepulveda, Blanca M; Turchyn, Alexandra V; Scanlan, David J; Smith, Alison G; Chisholm, Sallie W; Howe, Christopher J

    2015-11-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2-540 pg alkanes per mL per day, which translates into a global ocean yield of ∼ 308-771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities.

  8. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle

    PubMed Central

    Lea-Smith, David J.; Biller, Steven J.; Davey, Matthew P.; Cotton, Charles A. R.; Perez Sepulveda, Blanca M.; Turchyn, Alexandra V.; Scanlan, David J.; Smith, Alison G.; Chisholm, Sallie W.; Howe, Christopher J.

    2015-01-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2–540 pg alkanes per mL per day, which translates into a global ocean yield of ∼308–771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  9. The Exobiological Role of Interstellar Polycyclic Aromatic Hydrocarbons and Ices

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Before this time, the composition of interstellar dust was largely guessed-at, the presence of ices in interstellar clouds ignored, and the notion that large, gas phase, carbon rich molecules might be abundant and widespread throughout the interstellar medium (ISM) considered impossible. Today, the composition of dust in the ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these cold dust particles secrete mantles of mixed molecular ices whose compositions are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by the standards of interstellar chemistry, the telltale infrared spectral signature of which is now recognized throughout the Universe. In the first part of this talk, we will review the spectroscopic evidence that forms the basis for the currently accepted abundance and ubiquity of PANs in the ISM. We will then look at a few specific examples which illustrate how experimental and theoretical data can be applied to interpret the interstellar spectra and track how the PAN population evolves as it passes from its formation site in the circumstellar outflows of dying stars, through the various phases of the ISM, and into forniing planetary systems. Nevertheless, despite the fact that PANs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered

  10. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation.

    PubMed

    Jiang, Ying; Brassington, Kirsty J; Prpich, George; Paton, Graeme I; Semple, Kirk T; Pollard, Simon J T; Coulon, Frédéric

    2016-10-01

    The potential for biotransformation of weathered hydrocarbon residues in soils collected from two commercial oil refinery sites (Soil A and B) was studied in microcosm experiments. Soil A has previously been subjected to on-site bioremediation and it was believed that no further degradation was possible while soil B has not been subjected to any treatment. A number of amendment strategies including bioaugmentation with hydrocarbon degrader, biostimulation with nutrients and soil grinding, were applied to the microcosms as putative biodegradation improvement strategies. The hydrocarbon concentrations in each amendment group were monitored throughout 112 days incubation. Microcosms treated with biostimulation (BS) and biostimulation/bioaugmentation (BS + BA) showed the most significant reductions in the aliphatic and aromatic hydrocarbon fractions. However, soil grinding was shown to reduce the effectiveness of a nutrient treatment on the extent of biotransformation by up to 25% and 20% for the aliphatic and aromatic hydrocarbon fractions, respectively. This is likely due to the disruption to the indigenous microbial community in the soil caused by grinding. Further, ecotoxicological responses (mustard seed germination and Microtox assays) showed that a reduction of total petroleum hydrocarbon (TPH) concentration in soil was not directly correlable to reduction in toxicity; thus monitoring TPH alone is not sufficient for assessing the environmental risk of a contaminated site after remediation. PMID:27441989

  11. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation.

    PubMed

    Jiang, Ying; Brassington, Kirsty J; Prpich, George; Paton, Graeme I; Semple, Kirk T; Pollard, Simon J T; Coulon, Frédéric

    2016-10-01

    The potential for biotransformation of weathered hydrocarbon residues in soils collected from two commercial oil refinery sites (Soil A and B) was studied in microcosm experiments. Soil A has previously been subjected to on-site bioremediation and it was believed that no further degradation was possible while soil B has not been subjected to any treatment. A number of amendment strategies including bioaugmentation with hydrocarbon degrader, biostimulation with nutrients and soil grinding, were applied to the microcosms as putative biodegradation improvement strategies. The hydrocarbon concentrations in each amendment group were monitored throughout 112 days incubation. Microcosms treated with biostimulation (BS) and biostimulation/bioaugmentation (BS + BA) showed the most significant reductions in the aliphatic and aromatic hydrocarbon fractions. However, soil grinding was shown to reduce the effectiveness of a nutrient treatment on the extent of biotransformation by up to 25% and 20% for the aliphatic and aromatic hydrocarbon fractions, respectively. This is likely due to the disruption to the indigenous microbial community in the soil caused by grinding. Further, ecotoxicological responses (mustard seed germination and Microtox assays) showed that a reduction of total petroleum hydrocarbon (TPH) concentration in soil was not directly correlable to reduction in toxicity; thus monitoring TPH alone is not sufficient for assessing the environmental risk of a contaminated site after remediation.

  12. Hydrocarbons on the Icy Satellites of Saturn

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2010-01-01

    The Visible-Infrared Mapping Spectrometer on the Cassini Spacecraft has obtained spectral reflectance maps of the satellites of Saturn in the wavelength region 0.4-5.1 micrometers since its insertion into Saturn orbit in late 2004. We have detected the spectral signature of the C-H stretching molecular mode of aromatic and aliphatic hydrocarbons in the low albedo material covering parts of several of Saturn's satellites, notably Iapetus and Phoebe (Cruikshank et al. 2008). The distribution of this material is complex, and in the case of Iapetus we are seeking to determine if it is related to the native grey-colored materials left as lag deposits upon evaporation of the ices, or represents in-fall from an external source, notably the newly discovered large dust ring originating at Phoebe. This report covers our latest exploration of the nature and source of this organic material.

  13. Method and apparatus for synthesizing hydrocarbons

    DOEpatents

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1985-04-16

    A method and apparatus for synthesizing a mixture of aliphatic alcohols having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further optionally includes Na ions present as substitutional cations in an amount of about 5 to 10 atom %. At a temperature of about 570 to 630/sup 0/K, and at pressures of about 20 to 50 atm, methanol and isobutanol are the predominant products and are produced in amounts of about 90 wt % of the total hydrocarbon mixture. 6 figs.

  14. Production of liquid hydrocarbon and ether mixtures

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1989-05-16

    An integrated process is described for the production of ether-rich liquid fuels, comprising: (a) etherifying a mixture of excess lower alkyl alcohol and aliphatic hydrocarbon feedstock rich in C/sub 4/+isoalkenes in the presence of acid etherification catalyst whereby lower alkyl tertiary alkyl ethers are produced; (b) separating etherification effluent from step(a) to provide a gasoline stream rich in C/sub 5/+ ethers and a stream comprising unreacted alcohol and alkenes; (c) contacting the unreacted alcohol and alkenes with an acidic metallosilicate zeolite conversion catalyst under olefinic and oxygenates conversion conditions at a temperature of at least 200/sup 0/C (392/sup 0/F) whereby a conversion effluent stream rich in C/sub 4/+ isoalkenes is produced; (d) recycling at least a portion of the conversion effluent stream to step (a) for etherification.

  15. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (H(sub n)-PAHs) and their Relation to the 3.4 and 6.9 Micrometer PAH Emission Features

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-01-01

    A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  16. Aliphatic polyesters: great degradable polymers that cannot do everything.

    PubMed

    Vert, Michel

    2005-01-01

    Nowadays the open and the patent literatures propose a large number of polymers whose main chains can be degraded usefully. Among these degradable polymers, aliphatic polyester-based polymeric structures are receiving special attention because they are all more or less sensitive to hydrolytic degradation, a feature of interest when compared with the fact that living systems function in aqueous media. Only some of these aliphatic polyesters are enzymatically degradable. A smaller number is biodegradable, and an even more limited number is biorecyclable. To be of practical interest, a degradable polymer must fulfill many requirements that depend very much on the targeted application, on the considered living system, and on living conditions. It is shown that aliphatic polyester structures made of repeating units that can generate metabolites upon degradation or biodegradation like poly(beta-hydroxy alkanoate)s and poly(alpha-hydroxy alkanoate)s are of special interest. Their main characteristics are confronted to the specifications required by various potential sectors of applications, namely, surgery, pharmacology, and the environment. It is shown that degradation, bioresorption, and biorecycling that are targets when one wants to respect living systems are also drastic limiting factors when one wants to achieve a device of practical interest. Finding a universal polymer that would be the source of all the polymeric biomaterials needed to work in contact with living organisms of the various life kingdoms and respect them remains a dream. On the other hand, finding one polymeric structure than can fulfill the requirements of one niche application remains a big issue.

  17. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis

    PubMed Central

    Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.

    2016-01-01

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929

  18. Aliphatic Polyethers: Classical Polymers for the 21st Century.

    PubMed

    Klein, Rebecca; Wurm, Frederik R

    2015-06-01

    Polyethers-polymers with the structural element (R'-O-R)n in their backbone--are an old class of polymers which were already used at the time of the ancient Egyptians. However, still today these materials are highly important with applications in all areas of our life, reaching from the automotive and paper industry to cosmetics and biomedical applications. In this Review, different aliphatic polyethers like poly(epoxide)s, poly(oxetane)s, and poly(tetrahydrofuran) are discussed. Special emphasis is placed on the history, the polymerization techniques (industrially and in academia), the properties, the applications as well as recent developments of these materials.

  19. Aromatic and aliphatic organic materials on Iapetus: Analysis of Cassini VIMS data

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Dalle Ore, Cristina M.; Clark, Roger N.; Pendleton, Yvonne J.

    2014-05-01

    We present a quantitative analysis of the hydrocarbon and other organic molecular inventory as a component of the low-albedo material of Saturn’s satellite Iapetus, based on a revision of the calibration of the Cassini VIMS instrument. Our study uses hyperspectral data from a mosaic of Iapetus’ surface (Pinilla-Alonso, N., Roush, T.L., Marzo, G.A., Cruikshank, D.P., Dalle Ore, C.M. [2011]. Icarus 215, 75-82) constructed from VIMS data on a close fly-by of the satellite. We extracted 2235 individual spectra of the low-albedo regions, and with a clustering analysis tool (Dalle Ore, C.M., Cruikshank, D.P., Clark, R.N. [2012]. Icarus 221, 735-743), separated them into two spectrally distinct groups, one concentrated on the leading hemisphere of Iapetus, and the other group on the trailing. This distribution is broadly consistent with that found from Cassini ISS data analyzed by Denk et al. (Denk, T. et al. [2010]. Science 327, 435-439). We modeled the average spectra of the two geographic regions using the materials and techniques described by Clark et al. (Clark, R.N., Cruikshank, D.P., Jaumann, R., Brown, R.H., Stephan, K., Dalle Ore, C.M., Livio, K.E., Pearson, N., Curchin, J.M., Hoefen, T.M., Buratti, B.J., Filacchione, G., Baines, K.H., Nicholson, P.D. [2012]. Icarus 218, 831-860), and after dividing the Iapetus spectrum by the model for each case, we extracted the resulting spectra in the interval 2.7-4.0 μm for analysis of the organic molecular bands. The spectra reveal the Csbnd H stretching modes of aromatic hydrocarbons at ∼3.28 μm (∼3050 cm-1), plus four blended bands of aliphatic sbnd CH2sbnd and sbnd CH3 in the range ∼3.36-3.52 μm (∼2980-2840 cm-1). In these data, the aromatic band, probably indicating the presence of polycyclic aromatic hydrocarbons (PAH), is unusually strong in comparison to the aliphatic bands, as was found for Hyperion (Dalton, J.B., Cruikshank, D.P., Clark, R.N. [2012]. Icarus 220, 752-776; Dalle Ore, C.M., Cruikshank

  20. Hydrocarbon product stripping

    SciTech Connect

    Harandi, M.N.; Owen, H.; Siuta, M.T.

    1989-04-18

    A method is described for stripping light gasiform components from the liquid effluent of a catalytic hydrodesulfurization process, which comprises separating the liquid effluent containing relatively low boiling hydrocarbon components, relatively high boiling hydrocarbon components, hydrogen, and hydrogen sulfide.

  1. Polarized Raman spectra and intensities of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Himmler, Hans J.; Eysel, Hans H.

    1989-01-01

    Raman spectra of aliphatic α- L-amino acids, glycine, alanine, and valine were re-investigated both in aqueous solution and deuterium oxide solution. The spectra were taken of the zwitterionic and of the completely deprotonated form of the amino acids. Spectra of leucine and isoleucine were studied in water at the isoelectric point. Spectra were recorded both with parallel and perpendicular polarization and the isotropic and anisotropic scattering components were isolated. The integrated intensities of CH stretch, CC stretch and carboxylate bend vibrations are discussed. Linear relations between the number of CC and CH bonds and the total scattered intensity in the appropriate spectral regions are observed. The sum over the carboxylate modes shows characteristic intensities for the first three members of the aliphatic amino acids. An increase of isotropic scattering of ϱ co 2 near 510 cm -1 with increasing chain length of the amino acid (or with increasing concentration) is interpreted as the result of micelle formation.

  2. Terrestrial ecotoxicity of short aliphatic protic ionic liquids.

    PubMed

    Peric, Brezana; Martí, Esther; Sierra, Jordi; Cruañas, Robert; Iglesias, Miguel; Garau, Maria Antonia

    2011-12-01

    A study of the ecotoxicity of different short aliphatic protic ionic liquids (PILs) on terrestrial organisms was conducted. Tests performed within the present study include those assessing the effects of PILs on soil microbial functions (carbon and nitrogen mineralization) and terrestrial plants. The results show that the nominal lowest-observed-adverse-effect concentration (LOAEC) values were 5,000 mg/kg (dry soil) for the plant test in two species (Lolium perenne, Allium cepa), 1,000 mg/kg (dry soil) for the plant test in one species (Raphanus sativus), and 10,000 mg/kg (dry soil) for carbon and nitrogen microbial transformation tests (all concentrations are nominal). Most of the median effective concentration values (EC50) were above 1,000 mg/kg (dry soil). Based on the obtained results, these compounds can be described as nontoxic for soil microbiota and the analyzed plants, and potentially biodegradable in soils, as can be deduced from the respirometric experiment. The toxicity rises with the increase of complexity of the PILs molecule (branch and length of aliphatic chain) among the three PILs analyzed. PMID:21935980

  3. Irresolvable complex mixture of hydrocarbons in soybean oil deodorizer distillate.

    PubMed

    Ju, Yi-Hsu; Huynh, Lien-Huong; Gunawan, Setiyo; Chern, Yaw-Terng; Kasim, Novy S

    2012-01-01

    Aliphatic hydrocarbons (HCs) can be used as a fingerprint of a given seed oil. Only by characterization of aliphatic HCs could contamination by mineral oil in that seed oil be confirmed. During the isolation of squalene from soybean oil deodorizer distillate, a significant amount of unknown HCs, ca. 44 wt%, was obtained. These seemingly-easy-to-identify HCs turned out to be much more difficult to elucidate due to the presence of an irresolvable complex mixture (ICM). The objective of this study was to purify and identify the unknown ICM of aliphatic HCs from soybean oil deodorizer distillate. Purification of the ICM was successfully achieved by using modified Soxhlet extraction, followed by modified preparative column chromatography, and finally by classical preparative column chromatography. FT-IR, TLC, elemental analysis, GC/FID, NMR and GC-MS analyses were then performed on the purified HCs. The GC chromatogram detected the presence of ICM peaks comprising two major peaks and a number of minor peaks. Validation methods such as IR and NMR justified that the unknowns are saturated HCs. This work succeeded in tentatively identifying the two major peaks in the ICM as cycloalkane derivatives. PMID:22162261

  4. Radiation induced dechlorination of some chlorinated hydrocarbons in aqueous suspensions of various solid particles

    NASA Astrophysics Data System (ADS)

    Múčka, V.; Buňata, M.; Čuba, V.; Silber, R.; Juha, L.

    2015-07-01

    Radiation induced dechlorination of trichloroethylene (TCE) and tetrachloroethylene (PCE) in aqueous solutions containing the active carbon (AC) or cupric oxide (CuO) as the modifiers was studied. The obtained results were compared to the previously studied dechlorination of polychlorinated biphenyls (PCBs). Both modifiers were found to decrease the efficiency of dechlorination. The AC modifier acts mainly via adsorption of the aliphatic (unlike the aromatic) hydrocarbons and the CuO oxide mainly inhibits the mineralization of the perchloroethylene. The results presented in this paper will be also helpful for the studies of the impact of chlorinated hydrocarbons on the membrane permeability of living cells.

  5. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties.

    PubMed

    Abdallah, Ikram Bou; Tlili, Nizar; Martinez-Force, Enrique; Rubio, Ana Gracia Pérez; Perez-Camino, Maria Carmen; Albouchi, Ali; Boukhchina, Sadok

    2015-04-15

    The aim of this work was to study the content of tocopherols, sterols, triterpenic and aliphatic alcohols, carotenoids, and volatile compounds in the kernel oils from six walnut (Juglans regia L.) varieties. The levels of β-carotene ranged between 0.22 and 0.62 mg/kg, followed by lutein (0.01-0.06 mg/kg). The total content of tocopherol ranged from 186.5 to 436.2 mg/kg of the extracted oil and the major isoform in all samples was γ-tocopherol. The most abundant phytosterol was β-sitosterol (974-1494 mg/kg) followed by campesterol then Δ-5-avenasterol. The major triterpenic alcohol was cycloartenol (226.4-532.1 mg/kg). Hexacosanol (9.71-28.15 mg/kg) was the major aliphatic alcohol. The detected volatile compounds were pentanal, hexanal, nonanal, 2-decenal and hexanol. The statistical analysis showed significant differences between varieties, which are probably due to genetic factors.

  6. Insights into the Reaction Mechanism of Ethanol Conversion into Hydrocarbons on H-ZSM-5.

    PubMed

    Van der Borght, Kristof; Batchu, Rakesh; Galvita, Vladimir V; Alexopoulos, Konstantinos; Reyniers, Marie-Françoise; Thybaut, Joris W; Marin, Guy B

    2016-10-01

    Ethanol dehydration to ethene is mechanistically decoupled from the production of higher hydrocarbons due to complete surface coverage by adsorbed ethanol and diethyl ether (DEE). The production of C3+ hydrocarbons was found to be unaffected by water present in the reaction mixture. Three routes for the production of C3+ hydrocarbons are identified: the dimerization of ethene to butene and two routes involving two different types of surface species categorized as aliphatic and aromatic. Evidence for the different types of species involved in the production of higher hydrocarbons is obtained via isotopic labeling, continuous flow and transient experiments complemented by UV/Vis characterization of the catalyst and ab initio microkinetic modeling.

  7. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is...

  8. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is...

  9. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  10. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  11. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  12. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  13. 40 CFR 721.9952 - Alkoxylated aliphatic diisocyanate allyl ether (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... allyl ether (generic). 721.9952 Section 721.9952 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.9952 Alkoxylated aliphatic diisocyanate allyl ether... identified generically as alkoxylated aliphatic diisocyanate allyl ether (PMN P-00-0353) is subject...

  14. 40 CFR 721.9952 - Alkoxylated aliphatic diisocyanate allyl ether (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... allyl ether (generic). 721.9952 Section 721.9952 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.9952 Alkoxylated aliphatic diisocyanate allyl ether... identified generically as alkoxylated aliphatic diisocyanate allyl ether (PMN P-00-0353) is subject...

  15. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  16. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  17. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  18. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  19. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  20. Aliphatic peptidyl hydroperoxides as a source of secondary oxidation in hydroxyl radical protein footprinting

    PubMed Central

    Saladino, Jessica; Liu, Mian; Live, David; Sharp, Joshua S.

    2009-01-01

    Hydroxyl radical footprinting is a technique for studying protein structure and binding that entails oxidizing a protein system of interest with diffusing hydroxyl radicals, and then measuring the amount of oxidation of each amino acid. One important issue in hydroxyl radical footprinting is limiting amino acid oxidation by secondary oxidants to prevent uncontrolled oxidation which can cause amino acids to appear more solvent accessible than they really are. Previous work suggested that hydrogen peroxide was the major secondary oxidant of concern in hydroxyl radical footprinting experiments; however, even after elimination of all hydrogen peroxide, some secondary oxidation was still detected. Evidence is presented for the formation of peptidyl hydroperoxides as the most abundant product upon oxidation of aliphatic amino acids. Both reverse phase liquid chromatography and catalase treatment were shown to be ineffective at eliminating peptidyl hydroperoxides. The ability of these peptidyl hydroperoxides to directly oxidize methionine is demonstrated, suggesting the value of methionine amide as an in situ protectant. Hydroxyl radical footprinting protocols require the use of an organic sulfide or similar peroxide scavenger in addition to removal of hydrogen peroxide in order to successfully eradicate all secondary oxidizing species and prevent uncontrolled oxidation of sulfur-containing residues. PMID:19278868

  1. Surface Characterization of Aliphatic Polyester -g- Phosphorylcholine Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongfei; Emrick, Todd; Hsu, Shaw L.

    2007-03-01

    In order to control biodegradation behavior of a class of polyesters, hydrophilic functional groups were grafted onto the main chains. Phosphorylcholine (PC) molecules with azide attached at the end were synthesized. Due to their excellent biocompatibility and hydrophilicity, they have been covalently coupled to biodegradable aliphatic polyesters via a ``click'' cycloaddition reaction to produce amphiphilic graft copolymers. A series of copolymers were prepared by varying the molar incorporation of PC groups. Surface properties of the copolymers were examined to further explore their applications in drug delivery systems. Grazing angle reflection infrared spectroscopy was employed to determine segmental orientation at the film surface. XPS was used to verify surface composition. A water adsorption experiment was carried out to determine the water permeation rate. The improvement in hydrophilicity was confirmed by a water contact experiment. Results indicate that the graft copolymers were promising in drug delivery systems.

  2. A Bio-Catalytic Approach to Aliphatic Ketones

    PubMed Central

    Xiong, Mingyong; Deng, Jin; Woodruff, Adam P.; Zhu, Minshan; Zhou, Jun; Park, Sun Wook; Li, Hui; Fu, Yao; Zhang, Kechun

    2012-01-01

    Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid “Bio-Catalytic conversion” approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals. PMID:22416247

  3. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  4. Aliphatic long-chain C20 polyesters from olefin metathesis.

    PubMed

    Trzaskowski, Justyna; Quinzler, Dorothee; Bährle, Christian; Mecking, Stefan

    2011-09-01

    Self-metathesis of undecenoic acid with [(PCy3)2Cl2Ru=CHPh] (2), followed by exhaustive hydrogenation yielded pure 1,20-eicosanedioic acid (5) (>99%) free of side-products from isomerization. Polycondensation with eicosane-1,20-diol (6), formed by reduction of the diol, yielded polyester 20,20 (Tm = 108 °C). By comparison, the known ADMET polymerization of undec-10-enyl undec-10-enoate (7), and subsequent exhaustive polymer-analogous hydrogenation yielded a polyester (poly-8) with irregular structure of the ester groups in the polymer chain (-O(C=O)- vs. -C(=O)O-) (Tm = 103 °C). Hydrogenation of secondary dispersions of poly-7 yielded aqueous dispersions of the long-chain aliphatic polyester poly-8.

  5. New observational constraints on hydrocarbon chemistry in Saturn's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Koskinen, Tommi; Moses, Julianne I.; West, Robert; Guerlet, Sandrine; Jouchoux, Alain

    2016-10-01

    Until now there have been only a few observations of hydrocarbons and photochemical haze in the region where they are produced in Saturn's upper atmosphere. We present new results on hydrocarbon abundances and atmospheric structure based on more than 40 stellar occultations observed by the Cassini/UVIS instrument that we have combined with results from Cassini/CIRS to generate full atmosphere structure models. In addition to detecting CH4, C2H2, C2H4 and C2H6, we detect benzene (C6H6) in UVIS occultations that probe different latitudes and present the first vertical abundance profiles for this species in its production region. Benzene is the simplest ring polyaromatic hydrocarbon (PAH) and a stepping stone to the formation of more complex molecules that are believed to form stratospheric haze. Our calculations show that the observed abundances of benzene can be explained by solar-driven ion chemistry that is enhanced by high-latitude auroral production at least in the northern spring hemisphere. Condensation of benzene and heavier hydrocarbons is possible in the cold polar night of the southern winter where we detect evidence for high altitude haze. We also report on substantial variability in the CH4 profiles that arise from dynamics and affects the minor hydrocarbon abundances. Our results demonstrate the importance of hydrocarbon ion chemistry and coupled models of chemistry and dynamics for future studies of Saturn's upper atmosphere.

  6. Sodium hypochlorite oxidation of petroleum aliphatic contaminants in calcareous soils.

    PubMed

    Picard, François; Chaouki, Jamal

    2016-02-01

    This research project investigated the sodium hypochlorite (NaClO) oxidation of aliphatic petroleum contaminants (C10-C50) in a calcareous soil (average 5473 ppm C10-C50, 15 wt% Ca), which had been excavated from a contaminated industrial site. The decontamination objective was to lower the C10-C50 concentration to 700 ppm. CO2 acidity was used in the project to boost the NaClO oxidation yield and seems to have played a role in desorbing the natural organic matter. The experimental conditions were a 2- to 16-h reaction time, at room temperature, with a 1 to 12.5 wt% NaClO oxidative solution and a fixed 2:1 solution-to-soil ratio. With a 3 wt% NaClO solution and with a CO2 overhead, the NaClO dosage requirement was maintained below 60 g NaClO/g of oxidized C10-C50 over the entire decontamination range. The strong chlorine smell remaining after the reaction was completed suggests that part of the NaClO requirement can be recycled. Except traces of chloroform, there were no regulation-listed organochloride contaminants detected on either the treated soil samples or leachates and the total count of chlorinated compounds in treated soil samples was below the detection limit of 250 mg/kg. The NaClO oxidation mechanism on aliphatic substrates might be triggered by transition metals, such as manganese, but no attempt has been made to investigate the oxidation mechanism. Further investigations would include a constant-fed NaClO system and other techniques to lower the required NaClO dosage.

  7. The spark discharge synthesis of amino acids from various hydrocarbons

    NASA Technical Reports Server (NTRS)

    Ring, D.; Miller, S. L.

    1984-01-01

    The spark discharge synthesis of amino acids using an atmosphere of CH4+N2+H2O+NH3 has been investigated with variable pNH3. The amino acids produced using higher hydrocarbons (ethane, ethylene, acetylene, propane, butane, and isobutane) instead of CH4 were also investigated. There was considerable range in the absolute yields of amino acids, but the yields relative to glycine (or alpha-amino-n-butyric acid) were more uniform. The relative yields of the C3 to C6 aliphatic alpha-amino acids are nearly the same (with a few exceptions) with all the hydrocarbons. The glycine yields are more variable. The precursors to the C3-C6 aliphatic amino acids seem to be produced in the same process, which is separate from the synthesis of glycine precursors. It may be possible to use these relative yields as a signature for a spark discharge synthesis provided corrections can be made for subsequent decomposition events (e.g. in the Murchison meteorite).

  8. Natural and anthropogenic hydrocarbon inputs to sediments of Patos Lagoon Estuary, Brazil.

    PubMed

    Medeiros, Patricia Matheus; Bícego, Márcia Caruso; Castelao, Renato Menezes; Del Rosso, Clarissa; Fillmann, Gilberto; Zamboni, Ademilson Josemar

    2005-01-01

    The Patos Lagoon Estuary, southern Brazil, is an area of environmental interest not only because of tourism, but also because of the presence of the second major port of Brazil, with the related industrial and shipping activities. Thus, potential hydrocarbon pollution was examined in this study. Sediment samples were collected at 10 sites in the estuary, extracted, and analyzed by GC-FID and GC-MS for composition and concentration of the following organic geochemical markers: normal and isoprenoid alkanes, petroleum biomarkers, linear alkylbenzenes (LABs), and polycyclic aromatic hydrocarbons (PAHs). The total concentrations varied from 1.1 to 129.6 microg g(-1) for aliphatic hydrocarbons, from 17.8 to 4510.6 ng g(-1) for petroleum biomarkers, from 3.2 to 1601.9 ng g(-1) for LABs, and from 37.7 to 11,779.9 ng g(-1) for PAHs. Natural hydrocarbons were mainly derived from planktonic inputs due to a usual development of blooms in the estuary. Terrestrial plant wax compounds prevailed at sites located far from Rio Grande City and subject to stronger currents. Anthropogenic hydrocarbons are related to combustion/pyrolysis processes of fossil fuel, release of unburned oil products and domestic/industrial waste outfalls. Anthropogenic hydrocarbon inputs were more apparent at sites associated with industrial discharges (petroleum distributor and refinery), shipping activities (dry docking), and sewage outfalls (sewage). The overall concentrations of anthropogenic hydrocarbons revealed moderate to high hydrocarbon pollution in the study area. PMID:15607781

  9. Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Aponte, José C.; McLain, Hannah L.; Dworkin, Jason P.; Elsila, Jamie E.

    2016-09-01

    Meteoritic water-soluble organic compounds provide a unique record of the processes that occurred during the formation of the solar system and the chemistry preceding the origins of life on Earth. We have investigated the molecular distribution, compound-specific δ13C isotopic ratios and enantiomeric compositions of aliphatic monoamines present in the hot acid-water extracts of the carbonaceous chondrites LAP 02342 (CR2), GRA 95229 (CR2), LON 94101 (CM2), LEW 90500 (CM2), and ALH 83100 (CM1/2). Analyses of the concentration of monoamines in these meteorites revealed: (a) the CR2 chondrites studied here contain higher concentrations of monoamines relative to the analyzed CM2 chondrites; (b) the concentration of monoamines decreases with increasing carbon number; and (c) isopropylamine is the most abundant monoamine in these CR2 chondrites, while methylamine is the most abundant amine species in these CM2 and CM1/2 chondrites. The δ13C values of monoamines in CR2 chondrite do not correlate with the number of carbon atoms; however, in CM2 and CM1/2 chondrites, the 13C enrichment decreases with increasing monoamine carbon number. The δ13C values of methylamine in CR2 chondrites ranged from -1 to +10‰, while in CM2 and CM1/2 chondrites the δ13C values of methylamine ranged from +41 to +59‰. We also observed racemic compositions of sec-butylamine, 3-methyl-2-butylamine, and sec-pentylamine in the studied carbonaceous chondrites. Additionally, we compared the abundance and δ13C isotopic composition of monoamines to those of their structurally related amino acids. We found that monoamines are less abundant than amino acids in CR2 chondrites, with the opposite being true in CM2 and CM1/2 chondrites. We used these collective data to evaluate different primordial synthetic pathways for monoamines in carbonaceous chondrites and to understand the potential common origins these molecules may share with meteoritic amino acids.

  10. Hydrocarbons, PCBs and DDT in the NW Mediterranean deep-sea fish Mora moro

    NASA Astrophysics Data System (ADS)

    Solé, Montserrat; Porte, Cinta; Albaigés, Joan

    2001-02-01

    Data on aliphatic and polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and DDTs in the deep-sea fish Mora moro are reported in relation to the animal's weight/size and tissues (muscle, liver, digestive tube and gills). Fish samples were collected in the Gulf of Lions (NW Mediterranean) at an approximate depth of 1000 m. The concentrations of these organic pollutants followed the trend muscleHydrocarbons, and particularly PAHs, were strongly depleted in all tissues with respect to organochlorinated compounds if compared with the amounts present in bottom waters and sediment. Smaller specimens displayed for most pollutants qualitatively different patterns than larger fish, which could be attributed to their particular habitat/diet. The aliphatic hydrocarbon profiles suggested that Mora moro was exposed to a more predominant intake of biogenic rather than petrogenic hydrocarbons. The entrance and storage organs exhibited characteristic PAH and PCB distributions, reflecting different bioaccumulation and metabolic pathways. Compared with the profiles currently found in surface fish species, a relatively higher contribution of heavier components, namely hepta- and octochlorinated PCBs, and 4-6-ringed PAHs, was found in the deep-sea fish.

  11. Analysis of hydrocarbon-contaminated groundwater metagenomes as revealed by high-throughput sequencing.

    PubMed

    Abbai, Nathlee S; Pillay, Balakrishna

    2013-07-01

    The tendency for chlorinated aliphatics and aromatic hydrocarbons to accumulate in environments such as groundwater and sediments poses a serious environmental threat. In this study, the metabolic capacity of hydrocarbon (aromatics and chlorinated aliphatics)-contaminated groundwater in the KwaZulu-Natal province of South Africa has been elucidated for the first time by analysis of pyrosequencing data. The taxonomic data revealed that the metagenomes were dominated by the phylum Proteobacteria (mainly Betaproteobacteria). In addition, Flavobacteriales, Sphingobacteria, Burkholderiales, and Rhodocyclales were the predominant orders present in the individual metagenomes. These orders included microorganisms (Flavobacteria, Dechloromonas aromatica RCB, and Azoarcus) involved in the degradation of aromatic compounds and various other hydrocarbons that were present in the groundwater. Although the metabolic reconstruction of the metagenome represented composite cell networks, the information obtained was sufficient to address questions regarding the metabolic potential of the microbial communities and to correlate the data to the contamination profile of the groundwater. Genes involved in the degradation of benzene and benzoate, heavy metal-resistance mechanisms appeared to provide a survival strategy used by the microbial communities. Analysis of the pyrosequencing-derived data revealed that the metagenomes represent complex microbial communities that have adapted to the geochemical conditions of the groundwater as evidenced by the presence of key enzymes/genes conferring resistance to specific contaminants. Thus, pyrosequencing analysis of the metagenomes provided insights into the microbial activities in hydrocarbon-contaminated habitats.

  12. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10.

    PubMed Central

    Janssen, D B; Scheper, A; Dijkhuizen, L; Witholt, B

    1985-01-01

    A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichlorethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms. Images PMID:3994371

  13. New insight on aliphatic linkages in the macromolecular organic fraction of Orgueil and Murchison meteorites through ruthenium tetroxide oxidation

    NASA Astrophysics Data System (ADS)

    Remusat, Laurent; Derenne, Sylvie; Robert, François

    2005-09-01

    Ruthenium tetroxide oxidation was used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites and especially to characterize the aliphatic linkages. Already applied to various terrestrial samples, ruthenium tetroxide is a selective oxidant which destroys aromatic units, converting them into CO 2, and yields aliphatic and aromatic acids. In our experiment on chondritic IOM, it produces mainly short aliphatic diacids and polycarboxylic aromatic acids. Some short hydroxyacids are also detected. Aliphatic diacids are interpreted as aliphatic bridges between aromatic units in the chemical structure, and polycarboxylic aromatic acids are the result of the fusion of polyaromatic units. The product distribution shows that aliphatic links are short with numerous substitutions. No indigenous monocarboxylic acid was detected, showing that free aliphatic chains must be very short (less than three carbon atoms). The hydroxyacids are related to the occurrence of ester and ether functional groups within the aliphatic bridges between the aromatic units. This technique thus allows us to characterize in detail the aliphatic linkages of the IOMs, and the derived conclusions are in agreement with spectroscopic, pyrolytic, and degradative results previously reported. Compared to terrestrial samples, the aliphatic part of chondritic IOM is shorter and highly substituted. Aromatic units are smaller and more cross-linked than in coals, as already proposed from NMR data. Orgueil and Murchison IOM exhibit some tiny differences, especially in the length of aliphatic chains.

  14. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOEpatents

    Mirza, Zia I.; Knell, Everett W.; Winter, Bruce L.

    1980-09-30

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  15. Hydrocarbon Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  16. Enhanced crystallization of poly (lactic acid) through reactive aliphatic bisamide

    NASA Astrophysics Data System (ADS)

    Nanthananon, P.; Seadan, M.; Pivsa-Art, S.; Suttiruengwong, S.

    2015-07-01

    The poor crystallization rate of poly (lactic acid) (PLA) is a major drawback in terms of controlling the properties of final products. To overcome this, a nucleating agent is normally applied. In this work, the aliphatic bisamide, N, N'-(1,3-propylene) bis(10-undecenamide) (PBU), having reactive functional groups is used as a crystallization promoter for PLA by adding PBU in various concentration (0.1-0.7 wt%) into PLA together with peroxide via reactive melt blending. The conventional ethylene bis-stearamide(EBS) is used for a comparison. The extruded samples are characterized for gel content and FT-IR spectroscopy. The crystallization behaviour and rate, and spherulites morphology are investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. It is found that the addition of PBU into PLA results in the dramatic increase in crystallinity and crystallization rate of PLA compared with neat PLA and PLA added EBS. The crystallinity increases to 24.9-28.3% higher than neat PLA under even cooling rate of 7°C/min. The addition of 0.7 wt% PBU shows the fastest crystallization rate with t1/2 value isothermally crystallized at 130°C of only 6 min. POM images indicate the increase in the nucleation density and very fine spherulitesof PLA added PBU, promoting the fast crystallization.

  17. [A novel nano-hydroxyapatite/aliphatic polyesteramide composite].

    PubMed

    Deng, Xia; Chen, Zhiqing; Qian, Zhiyong; Liu, Caibing; Li, Hong

    2008-04-01

    Hydrothermally synthesized nano-hydroxyapatite (n-HA) varying in weight from 10% to 30% was used as filler to make nanocomposites with novel aliphatic polyesteramide (PEA) in our laboratory. The structure and properties of PEA and its n-HA composites were investigated through transmission electron microscopy, infrared spectrometry, X-ray diffractioin, scanning electron microscopy and energy spectrometry. The shape and size of the n-HA crystals are similar to those of the apatite crystals in natural bone. Molecule interactions are present between the n-HA and PEA in the composite, which allows the uniform dispersion of n-HA in PEA matrix. This contributes enhanced mechanical property and bioactivity to the composite. The cytocompatibility of the composites has been investigated by culturing osteoblasts on the membranes. Good cell attachment and proliferation manner were observed on the membranes after 1 week. These results suggest that the PEA/n-HA composites prepared in this study may serve as potential candidate scaffold for tissue engineering.

  18. Liquid-crystalline aromatic-aliphatic copolyester bioresorbable polymers.

    PubMed

    de Oca, Horacio Montes; Wilson, Joanne E; Penrose, Andrew; Langton, David M; Dagger, Anthony C; Anderson, Melissa; Farrar, David F; Lovell, Christopher S; Ries, Michael E; Ward, Ian M; Wilson, Andrew D; Cowling, Stephen J; Saez, Isabel M; Goodby, John W

    2010-10-01

    The synthesis and characterisation of a series of liquid-crystalline aromatic-aliphatic copolyesters are presented. Differential scanning calorimetry showed these polymers have a glass transition temperature in the range 72 degrees C-116 degrees C. Polarised optical microscopy showed each polymer exhibits a nematic mesophase on heating to the molten state at temperatures below 165 degrees C. Melt processing is demonstrated by the production of injection moulded and compression moulded specimens with Young's modulus of 5.7 +/- 0.3 GPa and 2.3 +/- 0.3 GPa, respectively. Wide-angle X-ray scattering data showed molecular orientation is responsible for the increase of mechanical properties along the injection direction. Degradation studies in the temperature range 37 degrees C-80 degrees C are presented for one polymer of this series and a kinetic constant of 0.002 days(-1) is obtained at 37 degrees C assuming a first order reaction. The activation energy (83.4 kJ mol(-1)) is obtained following the Arrhenius analysis of degradation, showing degradation of this material is less temperature sensitive compared with other commercially available biodegradable polyesters. In vitro and in vivo biocompatibility data are presented and it is shown the unique combination of degradative, mechanical and biological properties of these polymers may represent in the future an alternative for medical device manufacturers.

  19. Aliphatic polyesters for medical imaging and theranostic applications.

    PubMed

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices.

  20. Process for the synthesis of aliphatic alcohol-containing mixtures

    DOEpatents

    Greene, M.I.; Gelbein, A.P.

    1984-10-16

    A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200 to 450 C and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

  1. Process for the synthesis of aliphatic alcohol-containing mixtures

    DOEpatents

    Greene, Marvin I.; Gelbein, Abraham P.

    1984-01-01

    A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200.degree. to 450.degree. C. and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

  2. Shape memory polymers based on uniform aliphatic urethane networks

    SciTech Connect

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  3. Electrospun aliphatic polycarbonates as tailored tissue scaffold materials.

    PubMed

    Welle, Alexander; Kröger, Mario; Döring, Manfred; Niederer, Kerstin; Pindel, Elvira; Chronakis, Ioannis S

    2007-04-01

    Two different aliphatic polycarbonates were synthesised from CO(2) and the respective epoxides. Poly(propyl carbonate) (PPC) was prepared by heterogeneous catalysis with zinc glutarate. Poly(cyclohexyl carbonate) (PCHC) was prepared via living copolymerisation homogeneously catalysed by a 3-amino-2-cyanoimidoacrylate zinc acetate complex and subjected to electrospinning. The obtained nanofibres had a well-defined morphology free of beads along the fibres and with slightly porous structures on their surface. Subsequently, low-power deep UV irradiations, previously applied for photochemical surface modifications of two-dimensional and three-dimensional scaffolds from biostable polymers, were performed. Here, an effect on surface and bulk properties of PPC nanofibres was observed. Surface modifications of both polymers affected plasma protein adsorption. Photochemical bulk modifications observed for the first time on PPC nanofibres are indicating the possibility of spatial control of biodegradation rates, hence allow for control of the progression of host/implant interactions in vivo. In particular PPC was used for cell culture of L929 fibroblasts and primary rat hepatocytes. Even delicate primary cells showed good adhesion to the scaffolds and high viability.

  4. Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence.

    PubMed

    Almeida, Raquel; Mucha, Ana P; Teixeira, Catarina; Bordalo, Adriano A; Almeida, C Marisa R

    2013-02-01

    In this work, the potential effect of metals, such as Cd, Cu and Pb, on the biodegradation of petroleum hydrocarbons in estuarine sediments was investigated under laboratory conditions. Sandy and muddy non-vegetated sediments were collected in the Lima River estuary (NW Portugal) and spiked with crude oil and each of the metals. Spiked sediments were left in the dark under constant shaking for 15 days, after which crude oil biodegradation was evaluated. To estimate microbial abundance, total cell counts were obtained by DAPI staining and microbial community structure was characterized by ARISA. Culturable hydrocarbon degraders were determined using a modified most probable number protocol. Total petroleum hydrocarbons concentrations were analysed by Fourier Transform Infrared Spectroscopy after their extraction by sonication, and metal contents were determined by atomic absorption spectrometry. The results obtained showed that microbial communities had the potential to degrade petroleum hydrocarbons, with a maximum of 32 % degradation obtained for sandy sediments. Both crude oil and metals changed the microbial community structure, being the higher effect observed for Cu. Also, among the studied metals, only Cu displayed measurable deleterious effect on the hydrocarbons degradation process, as shown by a decrease in the hydrocarbon degrading microorganisms abundance and in the hydrocarbon degradation rates. Both degradation potential and metal influence varied with sediment characteristics probably due to differences in contaminant bioavailability, a feature that should be taken into account in developing bioremediation strategies for co-contaminated estuarine sites.

  5. Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan.

    PubMed

    Mikolasch, Annett; Omirbekova, Anel; Schumann, Peter; Reinhard, Anne; Sheikhany, Halah; Berzhanova, Ramza; Mukasheva, Togzhan; Schauer, Frieder

    2015-05-01

    Three microbial strains were isolated from the rhizosphere of alfalfa (Medicago sativa), grass mixture (Festuca rubra, 75 %; Lolium perenne, 20 %; Poa pratensis, 10 %), and rape (Brassica napus) on the basis of their high capacity to use crude oil as the sole carbon and energy source. These isolates used an unusually wide spectrum of hydrocarbons as substrates (more than 80), including n-alkanes with chain lengths ranging from C12 to C32, monomethyl- and monoethyl-substituted alkanes (C12-C23), n-alkylcyclo alkanes with alkyl chain lengths from 4 to 18 carbon atoms, as well as substituted monoaromatic and diaromatic hydrocarbons. These three strains were identified as Gordonia rubripertincta and Rhodococcus sp. SBUG 1968. During their transformation of this wide range of hydrocarbon substrates, a very large number of aliphatic, alicyclic, and aromatic acids was detected, 44 of them were identified by GC/MS analyses, and 4 of them are described as metabolites for the first time. Inoculation of plant seeds with these highly potent bacteria had a beneficial effect on shoot and root development of plants which were grown on oil-contaminated sand. PMID:25592733

  6. Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan.

    PubMed

    Mikolasch, Annett; Omirbekova, Anel; Schumann, Peter; Reinhard, Anne; Sheikhany, Halah; Berzhanova, Ramza; Mukasheva, Togzhan; Schauer, Frieder

    2015-05-01

    Three microbial strains were isolated from the rhizosphere of alfalfa (Medicago sativa), grass mixture (Festuca rubra, 75 %; Lolium perenne, 20 %; Poa pratensis, 10 %), and rape (Brassica napus) on the basis of their high capacity to use crude oil as the sole carbon and energy source. These isolates used an unusually wide spectrum of hydrocarbons as substrates (more than 80), including n-alkanes with chain lengths ranging from C12 to C32, monomethyl- and monoethyl-substituted alkanes (C12-C23), n-alkylcyclo alkanes with alkyl chain lengths from 4 to 18 carbon atoms, as well as substituted monoaromatic and diaromatic hydrocarbons. These three strains were identified as Gordonia rubripertincta and Rhodococcus sp. SBUG 1968. During their transformation of this wide range of hydrocarbon substrates, a very large number of aliphatic, alicyclic, and aromatic acids was detected, 44 of them were identified by GC/MS analyses, and 4 of them are described as metabolites for the first time. Inoculation of plant seeds with these highly potent bacteria had a beneficial effect on shoot and root development of plants which were grown on oil-contaminated sand.

  7. Cuticular Hydrocarbons as Potential Close Range Recognition Cues in Orchid Bees.

    PubMed

    Pokorny, Tamara; Ramírez, Santiago R; Weber, Marjorie Gail; Eltz, Thomas

    2015-12-01

    Male Neotropical orchid bees collect volatile chemicals from their environment and compose species-specific volatile signals, which are subsequently exposed during courtship display. These perfumes are hypothesized to serve as attractants and may play a role in female mate choice. Here, we investigated the potential of cuticular hydrocarbons as additional recognition cues. The cuticular hydrocarbons of males of 35 species belonging to four of the five extant euglossine bee genera consisted of aliphatic hydrocarbons ranging in chain lengths between 21 and 37 C-atoms in distinct compositions, especially between sympatric species of similar coloring and size, for all but one case. Cleptoparasitic Exaerete spp. had divergent profiles, with major compounds predominantly constituted by longer hydrocarbon chains (>30 C-atoms), which may represent an adaptation to the parasitic life history ("chemical insignificance"). Phylogenetic comparative analyses imply that the chemical profiles exhibited by Exaerete spp. are evolutionarily divergent from the rest of the group. Female hydrocarbon profiles were not identical to male profiles in the investigated species, with either partial or complete separation between sexes in multivariate analyses. Sexually dimorphic hydrocarbon profiles are assumed to be the basis for sex recognition in a number of insects, and thus may supplement the acquired perfume phenotypes in chemical information transfer. Overall, cuticular hydrocarbons meet the requirements to function as intraspecific and intersexual close range recognition signals; behavioral experiments are needed to determine their potential involvement in mate recognition.

  8. Cuticular Hydrocarbons as Potential Close Range Recognition Cues in Orchid Bees.

    PubMed

    Pokorny, Tamara; Ramírez, Santiago R; Weber, Marjorie Gail; Eltz, Thomas

    2015-12-01

    Male Neotropical orchid bees collect volatile chemicals from their environment and compose species-specific volatile signals, which are subsequently exposed during courtship display. These perfumes are hypothesized to serve as attractants and may play a role in female mate choice. Here, we investigated the potential of cuticular hydrocarbons as additional recognition cues. The cuticular hydrocarbons of males of 35 species belonging to four of the five extant euglossine bee genera consisted of aliphatic hydrocarbons ranging in chain lengths between 21 and 37 C-atoms in distinct compositions, especially between sympatric species of similar coloring and size, for all but one case. Cleptoparasitic Exaerete spp. had divergent profiles, with major compounds predominantly constituted by longer hydrocarbon chains (>30 C-atoms), which may represent an adaptation to the parasitic life history ("chemical insignificance"). Phylogenetic comparative analyses imply that the chemical profiles exhibited by Exaerete spp. are evolutionarily divergent from the rest of the group. Female hydrocarbon profiles were not identical to male profiles in the investigated species, with either partial or complete separation between sexes in multivariate analyses. Sexually dimorphic hydrocarbon profiles are assumed to be the basis for sex recognition in a number of insects, and thus may supplement the acquired perfume phenotypes in chemical information transfer. Overall, cuticular hydrocarbons meet the requirements to function as intraspecific and intersexual close range recognition signals; behavioral experiments are needed to determine their potential involvement in mate recognition. PMID:26573208

  9. Project Summary. IN-SITU AQUIFER RESTORATION OF CHLORINATED ALIPHATICS BY METHANOTROPHIC BACTERIA

    EPA Science Inventory

    This project evaluated the potential of an innovative approach to aquifer restoration: enhanced in-situ biotransformation of chlorinated aliphatic solvents by a bacterial community grown on methane under aerobic conditions. The target chlorinated compounds were trichloroethene (...

  10. Field Evaluations Test Plan for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The objective of this project is to qualify candidate alternatives to Aliphatic Isocyanate Polyurethane coatings under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  11. The amino acid and hydrocarbon contents of the Paris meteorite, the most primitive CM chondrite

    NASA Astrophysics Data System (ADS)

    Martins, Zita; Modica, Paola; Zanda, Brigitte; Le Sergeant d'Hendecourt, Louis

    2015-04-01

    The Paris meteorite is reported to be the least aqueously altered CM chondrite [1,2], and to have experienced only weak thermal metamorphism [2-5]. The IR spectra of some of Paris' fragments suggest a primitive origin for the organic matter in this meteorite, similar to the spectra from solid-state materials in molecular clouds [6]. Most of the micron-sized organic particles present in the Paris matrix exhibit 0 < δD <2000‰ [7,8]. In order to understand the effect of aqueous alteration and thermal metamorphism on the abundance and distribution of meteoritic soluble organic matter, we have analyzed for the first time the amino acid and hydrocarbon contents of the Paris meteorite [9]. Extensive aqueous alteration in the parent body of carbonaceous meteorites may result in the decomposition of α-amino acids and the synthesis of β- and γ-amino acids. When plotted with several CM chondrites, Paris has the lowest relative abundance of β-alanine/glycine (0.15) for a CM chondrite, which fits with the relative abundance of β-alanine/glycine increasing with increasing aqueous alteration [10,11]. In addition, our results show that the isovaline detected in this meteorite is racemic (D/L= 0.99 ± 0.08; L-enantiomer excess (%) = 0.35 ± 0.5; corrected D/L = 1.03; corrected L-enantiomer excess (%) = -1.4 ± 2.6). Although aqueous alteration does not create by itself an isovaline asymmetry, it may amplify a small enantiomeric excess. Therefore, our data may support the hypothesis that aqueous alteration is responsible for the high L-enantiomer excess of isovaline observed in the most aqueously altered carbonaceous meteorites [12,13]. Paris has n-alkanes ranging from C16 to C25 and 3- to 5-ring non-alkylated polycyclic aromatic hydrocarbons (PAHs). The lack of alkylated PAHs in Paris seems to be related to the low degree of aqueous alteration on its parent body [9,14]. The extra-terrestrial aliphatic and aromatic hydrocarbon content of Paris may have an interstellar origin

  12. Hydrocarbons in hair, livers and intestines of sea otters (`enhydra lutris`) found dead along the path of the Exxon Valdez oil spill. Marine mammal study 6-3. Exxon Valdez oil spill state/federal natural resource damage assessment. Final report

    SciTech Connect

    Ballachey, B.E.; Kloecker, K.A.

    1997-05-01

    Aliphatic and aromatic hydrocarbons were analyzed in hair, liver and intestinal samples taken from dead sea otters (Enhydra lutris) collected in spring and summer 1989 from Prince William Sound, the Kenai Peninsula and Kodiak Island, along the path of the Exxon Valdez oil spill. Hair showed significant differences in hydrocarbon concentrations among the three locations, but few significant differences were noted for liver or intestine samples. The highest concentrations of both aliphatic and aromatic hydrocarbons were measured in hair samples from Prince William Sound. Hydrocarbon concentrations in intestine and liver samples from the three locations were generally similar and low, suggesting that uptake into the tissues was limited, or that hydrocarbons within the tissues had been metabolized by the time samples were collected.

  13. Radiation induced effects in segmented poly(siloxaneurethaneureas) based on aliphatic and aromatic diisocyanates

    NASA Astrophysics Data System (ADS)

    Przybytniak, Grażyna; Kornacka, Ewa; Kozakiewicz, Janusz; Przybylski, Jarosław

    2007-12-01

    Poly(siloxaneurethaneureas) (PSURURs) prepared from aromatic and aliphatic isocyanates were investigated upon exposure to ionising radiation. Radicals are formed both in siloxane and urethane segments. In comparison with aliphatic analogues it was found that in aromatic PSURURs: (1) concentration of all radicals is lower, (2) relative concentration of methylene radicals formed in siloxane units is higher, (3) the radiation yield of H 2 is more than three times smaller and (4) it seems that efficiency of cross-linking is less significant.

  14. Recent Advances in the Functionalization of Aliphatic Polyesters by Ring-Opening Polymerization

    NASA Astrophysics Data System (ADS)

    Lecomte, Philippe; Jerome, Christine

    Two main strategies aiming at synthesizing aliphatic polyesters bearing pendant functional groups will be reported. The first one is based on the synthesis and the polymerization of lactones substituted by various functional groups. The direct grafting of functional groups onto aliphatic polyesters is the second strategy. Last but not least, the association of these two strategies is very promising in order to overcome their respective limitations.

  15. Interaction of metal cations with functionalised hydrocarbons in the gas phase: further experimental evidence for solvation of metal ions by the hydrocarbon chain.

    PubMed

    van Huizen, Nick A; Luider, Theo M; Jobst, Karl J; Terlouw, Johan K; Holmes, John L; Burgers, Peter C

    2016-01-01

    Relative affinity measurements of monovalent metal ions (= Li(+), Cu(+) and Ag(+)) towards aliphatic amines, alcohols and methyl alkanoates (P) have been performed using the kinetic method on the dissociation of metal bound dimer ions of the type P(1)-M(+)-P(2). It was found that the cations' affinity towards long chain (≥C(4) chain length) n- and s-alkylamines, n-alkanols and methyl n- alkanoates was unexpectedly enhanced. This is attributed to a bidentate interaction of the metal ion with the amine, alcohol or ester functional group and the aliphatic chain, paralleling earlier observations on metal bound nitriles. Methyl substitution at the functional group (s-alkylamines compared with n-alkylamines) serves to strengthen only the N•••M(+) bond, and this can be rationalized by the larger proton affinities of s-alkylamines compared to n-alkylamines. This substitution, however, has no effect on the metal ion-hydrocarbon bond. In contrast, methyl substitution remote from the functional group, as in iso-pentylamine, does lead to strengthening of the metal ion-hydrocarbon bond. The cuprous ion affinity of hexadecylamine, C(16)H(33)NH(2) was found to be as large as that for ethylenediamine (352 kJ mol(-1)), known to be a strong copper binding agent. It is argued that such a metal ion-hydrocarbon interaction does not occur in the metal bound dimers. PMID:27419899

  16. Interaction of metal cations with functionalised hydrocarbons in the gas phase: further experimental evidence for solvation of metal ions by the hydrocarbon chain.

    PubMed

    van Huizen, Nick A; Luider, Theo M; Jobst, Karl J; Terlouw, Johan K; Holmes, John L; Burgers, Peter C

    2016-01-01

    Relative affinity measurements of monovalent metal ions (= Li(+), Cu(+) and Ag(+)) towards aliphatic amines, alcohols and methyl alkanoates (P) have been performed using the kinetic method on the dissociation of metal bound dimer ions of the type P(1)-M(+)-P(2). It was found that the cations' affinity towards long chain (≥C(4) chain length) n- and s-alkylamines, n-alkanols and methyl n- alkanoates was unexpectedly enhanced. This is attributed to a bidentate interaction of the metal ion with the amine, alcohol or ester functional group and the aliphatic chain, paralleling earlier observations on metal bound nitriles. Methyl substitution at the functional group (s-alkylamines compared with n-alkylamines) serves to strengthen only the N•••M(+) bond, and this can be rationalized by the larger proton affinities of s-alkylamines compared to n-alkylamines. This substitution, however, has no effect on the metal ion-hydrocarbon bond. In contrast, methyl substitution remote from the functional group, as in iso-pentylamine, does lead to strengthening of the metal ion-hydrocarbon bond. The cuprous ion affinity of hexadecylamine, C(16)H(33)NH(2) was found to be as large as that for ethylenediamine (352 kJ mol(-1)), known to be a strong copper binding agent. It is argued that such a metal ion-hydrocarbon interaction does not occur in the metal bound dimers.

  17. Solar abundance of osmium

    PubMed Central

    Jacoby, George; Aller, Lawrence H.

    1976-01-01

    The abundance parameter, log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance (by numbers of atoms with respect to hydrogen), has been derived for three lines of osmium by a method of spectrum synthesis. An apparent discordance of the derived abundance with that found from the carbonaceous chondrites is probably to be attributed primarily to errors in the f-values, and blending with unknown contributors. PMID:16592314

  18. Biodegradation and metabolic pathway of β-chlorinated aliphatic acid in Bacillus sp. CGMCC no. 4196.

    PubMed

    Lin, Chunjiao; Yang, Lirong; Xu, Gang; Wu, Jianping

    2011-04-01

    In this study, a bacterial Bacillus sp. CGMCC no. 4196 was isolated from mud. This strain exhibited the ability to degrade high concentration of 3-chloropropionate (3-CPA, 120 mM) or 3-chlorobutyrate (30 mM), but not chloroacetate or 2-chloropropionate (2-CPA). The growing cells, resting cells, and cell-free extracts from this bacterium had the capability of 3-CPA degradation. The results indicated that the optimum biocatalyst for 3-CPA biodegradation was the resting cells. The 3-CPA biodegradation pathway was further studied through the metabolites and critical enzymes analysis by HPLC, LC-MS, and colorimetric method. The results demonstrated that the metabolites of 3-CPA were 3-hydroxypropionic acid (3-HP) and malonic acid semialdehyde, and the critical enzymes were 3-CPA dehalogenase and 3-HP dehydroxygenase. Thus, the mechanism of the dehalogenase-catalyzed reaction was inferred as hydrolytic dehalogenation which was coenzyme A-independent and oxygen-independent. Finally, the pathway of β-chlorinated aliphatic acid biodegradation could be concluded as follows: the β-chlorinated acid is first hydrolytically dehalogenated to the β-hydroxyl aliphatic acid, and the hydroxyl aliphatic acid is oxidized to β-carbonyl aliphatic acid by β-hydroxy aliphatic acid dehydroxygenase. It is the first report that 3-HP was produced from 3-CPA by β-chlorinated aliphatic acid dehalogenase.

  19. Reduction of Aromatic Hydrocarbons by Zero-Valent Iron and Palladium Catalyst

    SciTech Connect

    Kim, Young-Hun; Shin, Won Sik; Ko, Seok-Oh; Kim, Myung-Chul

    2004-03-31

    Permeable reactive barrier (PRB) is an alternative technology for soil and groundwater remediation. Zero valent iron, which is the most popular PRB material, is only applicable to halogenated aliphatic organics and some heavy metals. The objective of this study was to investigate reductive dechlorination of halogenated compounds and reduction of non-halogenated aromatic hydrocarbons using zero valent metals (ZVMs) and catalysts as reactive materials for PRBs. A group of small aromatic hydrocarbons such as monochlorophenols, phenol and benzene were readily reduced with palladium catalyst and zero valent iron. Poly-aromatic hydrocarbons (PAHs) were also tested with the catalysts and zero valent metal combinations. The aromatic rings were reduced and partly reduced PAHs were found as the daughter compounds. The current study demonstrates reduction of aromatic compounds by ZVMs and modified catalysts and implicates that PRB is applicable not only for halogenated organic compounds but nonhalogenated aromatic compounds such as PAHs.

  20. Transport and Degradation of Semivolatile Hydrocarbons in a Petroleum-Contaminated Aquifer, Bemidji, Minnesota

    USGS Publications Warehouse

    Furlong, E.T.; Koleis, J.C.; Aiken, G.R.

    1997-01-01

    Polycyclic aromatic hydrocarbons (PAH) were used as probes to identify the processes controlling the transport and fate of aqueous semivolatile hydrocarbons (SVHCs) in a petroleum-contaminated aquifer near Bemidji, Minnesota. PAH and other SVHCs were isolated from ground water by field solid-phase extraction and analyzed using gas chromatography/mass spectrometry. Close to the oil body, aqueous aliphatic hydrocarbon compositions are substantially different from the parent oil, suggesting microbial alteration prior to or during dissolution. Aqueous PAH concentrations are elevated above oil-water equilibrium concentrations directly beneath the oil and decrease dramatically at distances ranging from the 25 to 65 m downgradient from the leading edge of the oil body. Variations in downgradient distributions of naphthalene, fluorene and phenanthrene, coupled with their biodegradation, partitioning and volatility characteristics, suggest that the PAH are useful probes for distinguishing between the biogeochemical processes affecting SVHC transport and persistence in ground water.

  1. Aliphatic polyester block polymers: renewable, degradable, and sustainable.

    PubMed

    Hillmyer, Marc A; Tolman, William B

    2014-08-19

    Nearly all polymers are derived from nonrenewable fossil resources, and their disposal at their end of use presents significant environmental problems. Nonetheless, polymers are ubiquitous, key components in myriad technologies and are simply indispensible for modern society. An important overarching goal in contemporary polymer research is to develop sustainable alternatives to "petro-polymers" that have competitive performance properties and price, are derived from renewable resources, and may be easily and safely recycled or degraded. Aliphatic polyesters are particularly attractive targets that may be prepared in highly controlled fashion by ring-opening polymerization of bioderived lactones. However, property profiles of polyesters derived from single monomers (homopolymers) can limit their applications, thus demanding alternative strategies. One such strategy is to link distinct polymeric segments in an A-B-A fashion, with A and B chosen to be thermodynamically incompatible so that they can self-organize on a nanometer-length scale and adopt morphologies that endow them with tunable properties. For example, such triblock copolymers can be useful as thermoplastic elastomers, in pressure sensitive adhesive formulations, and as toughening modifiers. Inspired by the tremendous utility of petroleum-derived styrenic triblock copolymers, we aimed to develop syntheses and understand the structure-property profiles of sustainable alternatives, focusing on all renewable and all readily degradable aliphatic polyester triblocks as targets. Building upon oxidation chemistry reported more than a century ago, a constituent of the peppermint plant, (-)-menthol, was converted to the ε-caprolactone derivative menthide. Using a diol initiator and controlled catalysis, menthide was polymerized to yield a low glass transition temperature telechelic polymer (PM) that was then further functionalized using the biomass-derived monomer lactide (LA) to yield fully renewable PLA

  2. Aliphatic polyester block polymers: renewable, degradable, and sustainable.

    PubMed

    Hillmyer, Marc A; Tolman, William B

    2014-08-19

    Nearly all polymers are derived from nonrenewable fossil resources, and their disposal at their end of use presents significant environmental problems. Nonetheless, polymers are ubiquitous, key components in myriad technologies and are simply indispensible for modern society. An important overarching goal in contemporary polymer research is to develop sustainable alternatives to "petro-polymers" that have competitive performance properties and price, are derived from renewable resources, and may be easily and safely recycled or degraded. Aliphatic polyesters are particularly attractive targets that may be prepared in highly controlled fashion by ring-opening polymerization of bioderived lactones. However, property profiles of polyesters derived from single monomers (homopolymers) can limit their applications, thus demanding alternative strategies. One such strategy is to link distinct polymeric segments in an A-B-A fashion, with A and B chosen to be thermodynamically incompatible so that they can self-organize on a nanometer-length scale and adopt morphologies that endow them with tunable properties. For example, such triblock copolymers can be useful as thermoplastic elastomers, in pressure sensitive adhesive formulations, and as toughening modifiers. Inspired by the tremendous utility of petroleum-derived styrenic triblock copolymers, we aimed to develop syntheses and understand the structure-property profiles of sustainable alternatives, focusing on all renewable and all readily degradable aliphatic polyester triblocks as targets. Building upon oxidation chemistry reported more than a century ago, a constituent of the peppermint plant, (-)-menthol, was converted to the ε-caprolactone derivative menthide. Using a diol initiator and controlled catalysis, menthide was polymerized to yield a low glass transition temperature telechelic polymer (PM) that was then further functionalized using the biomass-derived monomer lactide (LA) to yield fully renewable PLA

  3. Coupling spectroscopic and chromatographic techniques for evaluation of the depositional history of hydrocarbons in a subtropical estuary.

    PubMed

    Martins, César C; Doumer, Marta E; Gallice, Wellington C; Dauner, Ana Lúcia L; Cabral, Ana Caroline; Cardoso, Fernanda D; Dolci, Natiely N; Camargo, Luana M; Ferreira, Paulo A L; Figueira, Rubens C L; Mangrich, Antonio S

    2015-10-01

    Spectroscopic and chromatographic techniques can be used together to evaluate hydrocarbon inputs to coastal environments such as the Paranaguá estuarine system (PES), located in the SW Atlantic, Brazil. Historical inputs of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed using two sediment cores from the PES. The AHs were related to the presence of biogenic organic matter and degraded oil residues. The PAHs were associated with mixed sources. The highest hydrocarbon concentrations were related to oil spills, while relatively low levels could be attributed to the decrease in oil usage during the global oil crisis. The results of electron paramagnetic resonance were in agreement with the absolute AHs and PAHs concentrations measured by chromatographic techniques, while near-infrared spectroscopy results were consistent with unresolved complex mixture (UCM)/total n-alkanes ratios. These findings suggest that the use of a combination of techniques can increase the accuracy of assessment of contamination in sediments.

  4. Coupling spectroscopic and chromatographic techniques for evaluation of the depositional history of hydrocarbons in a subtropical estuary.

    PubMed

    Martins, César C; Doumer, Marta E; Gallice, Wellington C; Dauner, Ana Lúcia L; Cabral, Ana Caroline; Cardoso, Fernanda D; Dolci, Natiely N; Camargo, Luana M; Ferreira, Paulo A L; Figueira, Rubens C L; Mangrich, Antonio S

    2015-10-01

    Spectroscopic and chromatographic techniques can be used together to evaluate hydrocarbon inputs to coastal environments such as the Paranaguá estuarine system (PES), located in the SW Atlantic, Brazil. Historical inputs of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed using two sediment cores from the PES. The AHs were related to the presence of biogenic organic matter and degraded oil residues. The PAHs were associated with mixed sources. The highest hydrocarbon concentrations were related to oil spills, while relatively low levels could be attributed to the decrease in oil usage during the global oil crisis. The results of electron paramagnetic resonance were in agreement with the absolute AHs and PAHs concentrations measured by chromatographic techniques, while near-infrared spectroscopy results were consistent with unresolved complex mixture (UCM)/total n-alkanes ratios. These findings suggest that the use of a combination of techniques can increase the accuracy of assessment of contamination in sediments. PMID:26210796

  5. Influence of in situ steam formation by radio frequency heating on thermodesorption of hydrocarbons from contaminated soil.

    PubMed

    Roland, Ulf; Bergmann, Sabine; Holzer, Frank; Kopinke, Frank-Dieter

    2010-12-15

    Thermal desorption of a wide spectrum of organic contaminants, initiated by radio frequency (RF) heating, was studied at laboratory and pilot-plant scales for an artificially contaminated soil and for an originally contaminated soil from an industrial site. Up to 100 °C, moderate desorption rates were observed for light aromatics such as toluene, chlorobenzene, and ethylbenzene. Desorption of the less volatile contaminants was greatly enhanced above 100 °C, when fast evaporation of soil-water produced steam for hydrocarbon stripping (steam-distillation, desorption rates increased by more than 1 order of magnitude). For hydrocarbons with low water solubility (e.g., aliphatic hydrocarbons), the temperature increase above 100 °C after desiccation of soil again led to a significant increase of the removal rates, thus showing the impact of hydrocarbon partial pressure. RF heating was shown to be an appropriate option for thermally enhanced soil vapor extraction, leading to efficient cleaning of contaminated soils.

  6. Interaction of gaseous aromatic and aliphatic compounds in thermophilic biofilters.

    PubMed

    Hu, Qing-yuan; Wang, Can

    2015-12-30

    Two thermophilic biofilters were applied in treating a mixture of gaseous aromatic (benzene) and aliphatic compounds (hexane) to evaluate the interaction of the compounds. The performance of the biofilters was investigated in terms of removal efficiencies, elimination capacity, kinetic analysis, interaction indices, and microbial metabolic characteristics. Results showed that the removal performance of benzene was unaffected by the addition of hexane. The removal efficiencies of benzene were maintained at approximately 80% and the biodegradation rate constant was maintained at 120 h(-1). However, the removal efficiencies of hexane decreased significantly from 60% to 20% and the biodegradation rate constant exhibited a distinct decrease from 93.59 h(-1) to 56.32 h(-1). The interaction index of benzene with the addition of hexane was -0.029, which indicated that hexane had little effect on the degradation of benzene. By contrast, the interaction index of hexane by benzene was -0.557, which showed that benzene inhibited the degradation of hexane significantly. Similar conclusions were obtained about the substrate utilization. Moreover, the utilization degree of carbon sources and the microbial metabolic activities in the biofilter treating hexane were significantly improved with the addition of benzene, whereas the addition of hexane had a slight effect on the microbial communities in the biofilter treating benzene. Conclusions could be obtained that when mixtures of benzene and hexane were treated using biofilters, the degradation of benzene, which was more easily degradable, was dominant and unaffected; whereas the degradation of hexane, which was less easily degradable, was inhibited because of the changing of microbes.

  7. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    PubMed

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages. PMID:25340465

  8. Study of the mineralization effect on the distribution of lipids in sediments from the Cretan Sea: Evidence for hydrocarbon degradation and starvation stress

    NASA Astrophysics Data System (ADS)

    Polymenakou, Paraskevi N.; Tselepides, Anastasios; Stephanou, Euripides G.

    2005-11-01

    Sedimentary diagenetic processes alter the composition and distribution of different lipid compounds. In the present study alterations mediated by microbial communities were investigated along a bathymetric gradient (100 m at 35°23'N-25°09'E, 617 m at 35°33'N-25°08'E, 1494 m at 35°44'N-25°08'E) over the continental margin of northern Crete (Greece, Eastern Mediterranean Sea). Bacterial abundances and distribution were studied using phospholipid linked fatty acids (PLFA), in the range of C 8-C 22, released from intact phospholipids. Lipid components (aliphatic hydrocarbons, free fatty acids, glycerides and glycolipids) were studied over a 2-month incubation period. Carbon mineralization rates at all stations indicated an uneven distribution of active aerobic bacteria with values decreasing towards the deeper stations. PLFA homologue profiles denoted that aerobic gram negative and sulfur oxidizing bacteria dominated microbial communities while the anaerobic, gram positive and sulfate reducing bacteria occurred only in traces. The n-alkane (NA) composition revealed a strong predominance of homologues with odd carbon numbers suggesting an important terrestrial contribution to the sediments. The estimated descriptive ratios of NA, the sum of short chain NA (C 15-C 20) and long chain NA (C 21-C 36) to 17 α( H),21 β( H)-C 30-hopane, before and after a two-month incubation period, indicated the occurrence of hydrocarbon degradation processes. Increased ratios of saturated to unsaturated fatty acids were also recorded after the incubation indicating the starvation of bacterial communities by the end of the experiments.

  9. Plasma Processing Of Hydrocarbon

    SciTech Connect

    Grandy, Jon D; Peter C. Kong; Brent A. Detering; Larry D. Zuck

    2007-05-01

    The Idaho National Laboratory (INL) developed several patented plasma technologies for hydrocarbon processing. The INL patents include nonthermal and thermal plasma technologies for direct natural gas to liquid conversion, upgrading low value heavy oil to synthetic light crude, and to convert refinery bottom heavy streams directly to transportation fuel products. Proof of concepts has been demonstrated with bench scale plasma processes and systems to convert heavy and light hydrocarbons to higher market value products. This paper provides an overview of three selected INL patented plasma technologies for hydrocarbon conversion or upgrade.

  10. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons.

    PubMed

    Guermouche M'rassi, A; Bensalah, F; Gury, J; Duran, R

    2015-10-01

    Crude oil is a common environmental pollutant composed of a large number of both aromatic and aliphatic hydrocarbons. Biodegradation is carried out by microbial communities that are important in determining the fate of pollutants in the environment. The intrinsic biodegradability of the hydrocarbons and the distribution in the environment of competent degrading microorganisms are crucial information for the implementation of bioremediation processes. In the present study, the biodegradation capacities of various bacteria toward aliphatic and aromatic hydrocarbons were determined. The purpose of the study was to isolate and characterize hydrocarbon-degrading bacteria from contaminated soil of a refinery in Arzew, Algeria. A collection of 150 bacterial strains was obtained; the bacterial isolates were identified by 16S rRNA gene sequencing and their ability to degrade hydrocarbon compounds characterized. The isolated strains were mainly affiliated to the Gamma-Proteobacteria class. Among them, Pseudomonas spp. had the ability to metabolize high molecular weight hydrocarbon compounds such as pristane (C19) at 35.11 % by strain LGM22 and benzo[a] pyrene (C20) at 33.93 % by strain LGM11. Some strains were able to grow on all the hydrocarbons tested including octadecane, squalene, phenanthrene, and pyrene. Some strains were specialized degrading only few substrates. In contrast, the strain LGM2 designated as Pseudomonas sp. was found able to degrade both linear and branched alkanes as well as low and high poly-aromatic hydrocarbons (PAHs). The alkB gene involved in alkane degradation was detected in LGM2 and other Pseudomonas-related isolates. The capabilities of the isolated bacterial strains to degrade alkanes and PAHs should be of great practical significance in bioremediation of oil-contaminated environments.

  11. Spider monkeys (Ateles geoffroyi) are less sensitive to the odor of aliphatic ketones than to the odor of other classes of aliphatic compounds.

    PubMed

    Eliasson, Moa; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2015-10-01

    Aliphatic ketones are widely present in body-borne and food odors of primates. Therefore, we used an operant conditioning paradigm and determined olfactory detection thresholds in four spider monkeys for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and two of their isomers (3- and 4-heptanone). We found that, with the exception of the two shortest-chained ketones, all animals detected concentrations <1 ppm (parts per million), and with five odorants individual animals even reached threshold values <0.1 ppm. Further, we found a significant correlation between olfactory sensitivity of the spider monkeys and carbon chain length of the 2-ketones which can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory sensitivity and position of the functional carbonyl group. Across-odorant and across-species comparisons revealed the following: spider monkeys are significantly less sensitive to the odors of aliphatic ketones than to the odor of other classes of aliphatic compounds (1-alcohols, n-aldehydes, n-acetic esters, and n-carboxylic acids) sharing the same carbon length. Spider monkeys do not differ significantly in their olfactory sensitivity for aliphatic ketones from squirrel monkeys and pigtail macaques, but are significantly less sensitive to these odorants compared to human subjects and mice. These findings support the notion that neuroanatomical and genetic properties do not allow for reliable predictions with regard to a species' olfactory sensitivity. Further, we conclude that the frequency of occurrence of a class of odorants in a species' chemical environment does not allow for reliable predictions of the species' olfactory sensitivity. PMID:26055441

  12. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed.

    PubMed

    Kenig, F; Damsté, J S; Frewin, N L; Hayes, J M; De Leeuw, J W

    1995-06-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with

  13. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed

    NASA Technical Reports Server (NTRS)

    Kenig, F.; Damste, J. S.; Frewin, N. L.; Hayes, J. M.; De Leeuw, J. W.

    1995-01-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with

  14. Extraction of hydrocarbons from high-maturity Marcellus Shale using supercritical carbon dioxide

    USGS Publications Warehouse

    Jarboe, Palma B.; Philip A. Candela,; Wenlu Zhu,; Alan J. Kaufman,

    2015-01-01

    Shale is now commonly exploited as a hydrocarbon resource. Due to the high degree of geochemical and petrophysical heterogeneity both between shale reservoirs and within a single reservoir, there is a growing need to find more efficient methods of extracting petroleum compounds (crude oil, natural gas, bitumen) from potential source rocks. In this study, supercritical carbon dioxide (CO2) was used to extract n-aliphatic hydrocarbons from ground samples of Marcellus shale. Samples were collected from vertically drilled wells in central and western Pennsylvania, USA, with total organic carbon (TOC) content ranging from 1.5 to 6.2 wt %. Extraction temperature and pressure conditions (80 °C and 21.7 MPa, respectively) were chosen to represent approximate in situ reservoir conditions at sample depth (1920−2280 m). Hydrocarbon yield was evaluated as a function of sample matrix particle size (sieve size) over the following size ranges: 1000−500 μm, 250−125 μm, and 63−25 μm. Several methods of shale characterization including Rock-Eval II pyrolysis, organic petrography, Brunauer−Emmett−Teller surface area, and X-ray diffraction analyses were also performed to better understand potential controls on extraction yields. Despite high sample thermal maturity, results show that supercritical CO2 can liberate diesel-range (n-C11 through n-C21) n-aliphatic hydrocarbons. The total quantity of extracted, resolvable n-aliphatic hydrocarbons ranges from approximately 0.3 to 12 mg of hydrocarbon per gram of TOC. Sieve size does have an effect on extraction yield, with highest recovery from the 250−125 μm size fraction. However, the significance of this effect is limited, likely due to the low size ranges of the extracted shale particles. Additional trends in hydrocarbon yield are observed among all samples, regardless of sieve size: 1) yield increases as a function of specific surface area (r2 = 0.78); and 2) both yield and surface area increase with increasing

  15. Membrane separation of hydrocarbons

    DOEpatents

    Funk, Edward W.; Kulkarni, Sudhir S.; Chang, Y. Alice

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

  16. Hydrocarbon geoscience research strategy

    SciTech Connect

    Not Available

    1990-04-01

    This document outlines a strategy for oil and gas related research focused on optimizing the economic producibility of the Nation's resources. The Hydrocarbon Geoscience Strategy was developed by the Hydrocarbon Geoscience Research Coordinating Committee of the Department of Energy (DOE). This strategy forms the basis for the development of DOE Fossil Energy's Oil Research Program Implementation Plan and Natural Gas Program Implementation Plan. 24 refs., 5 figs., 3 tabs.

  17. Hydrocarbons Encapsulated in Diamonds From China and India

    NASA Astrophysics Data System (ADS)

    Leung, I.; Tsao, C.; Taj-Eddin, I.

    2005-05-01

    We examined a large number of diamonds from a kimberlite pipe located in Fuxian, China, and alluvial diamonds from Panna, India. We selected 6-10 diamonds from each locality based on certain characteristics: they are white, brilliant, mostly devoid of mineral inclusions, fracture-free, many contain microscopic bubbles, some display etched circular patterns. These diamonds were examined under ultraviolet (UV) light using a fluorescence microscope, then, investigated using a Nicolet 6700 FT-IR spectrometer. Several diamonds emit blue fluorescence when excited with UV light, while others appear dim because they are not fluorescent. It is the latter that render the included bubbles clearly visible, glowing as yellow and blue spherules within the dim diamond host. These fluorescent bubbles are probably filled with hydrocarbon fluids of variable compositions. FT-IR spectra of diamond typically show absorption due to intrinsic diamond lattice vibrations. We found in most of our diamonds used in this study an additional, outstanding group of absorption bands located just below the wavenumber 3000. Peak positions in this region correlate well with symmetric and asymmetric stretching of methylene and methyl groups, attributable to H bonded to C atoms. Comparing them with standard spectral shapes, we found a good match with an alkane molecule composed of saturated aliphatic hydrocarbons. Our observations provide evidence that hydrocarbons might be important components in the deep mantle, but, to transport them up to Earth's surface would require strong capsules which, perhaps, only diamond could provide.

  18. Conversion of Biomass-Derived Furans into Hydrocarbon Fuels

    SciTech Connect

    Moens, L.; Johnson, D. K.

    2013-01-01

    One of the most studied chemical transformations of carbohydrates is their thermocatalytic dehydration to form furans. Cellulose-derived glucose is thereby converted into 5-hydroxymethylfurfuraldehyde (5-HMF), while the hemicellulose-derived pentoses (e.g., xylose, arabinose) form furfuraldehyde. Our objective is to identify new pathways to convert furfuryl alcohol into a mixture of aliphatic hydrocarbons that can be used as drop-in fuels for diesel (C10-20) and jet fuel (C9-16) blends. Furfuryl alcohol is produced commercially through hydrogenation of furfuraldehyde that is derived from hemicellulose-derived pentoses via acid-catalyzed dehydration. The steps that we are currently pursuing to convert furfuryl alcohol into hydrocarbons are 1) oligomerization of furfuryl alcohol to form dimers (C10) and trimers (C15), and 2) hydrotreatment of the dimers and trimers to produce a mixture of linear hydrocarbons with carbon chain lengths in the range of diesel and jet fuels. This presentation will discuss our progress in the development of this pathway.

  19. A model of particulate and species formation applied to laminar, nonpremixed flames for three aliphatic-hydrocarbon fuels

    SciTech Connect

    D'Anna, A.; Kent, J.H.

    2008-03-15

    A detailed kinetic mechanism is developed that includes aromatic growth and particulate formation. The model includes reaction pathways leading to the formation of nanosized particles and their coagulation and growth to larger soot particles using a sectional approach for the particle phase. It is tested against literature data of species concentrations and particulate measurements in nonpremixed laminar flames of methane, ethylene, and butene. Reasonably good predictions of gas and particle-phase concentrations and particle sizes are obtained without any change to the kinetic scheme for the different fuels. The model predicts the low concentration of particulates in the methane flame (about 0.5 ppm) and the higher concentration of soot in the ethylene and butene flames (near 10 ppm). Model predictions show that in the methane flame small precursor particles dominate the particulate loading, whereas soot is the major component in ethylene and butene flames, in accordance with the experimental data. The driving factors in the model responsible for the quite different soot predictions in the ethylene and butene flames compared with the methane flame are benzene and acetylene concentrations, which are higher in the ethylene and butene flames. Soot loadings in the ethylene flame are sensitive to the acetylene soot growth reaction, whereas particle inception rates are linked to benzene in the model. A coagulation model is used to obtain collision efficiencies for some of the particle reactions, and tests show that the modeled results are not particularly sensitive to coagulation at the rates used in our model. Soot oxidation rates are not high enough to correctly predict burnout, and this aspect of the model needs further attention. (author)

  20. Characterization of Chlorinated Aliphatic Hydrocarbons and Environmental Variables in a Shallow Groundwater in Shanghai Using Kriging Interpolation and Multifactorial Analysis

    PubMed Central

    Lu, Qiang; Luo, Qi Shi; Li, Hui; Liu, Yong Di; Gu, Ji Dong; Fei Lin, Kuang

    2015-01-01

    CAHs, as a cleaning solvent, widely contaminated shallow groundwater with the development of manufacturing in China's Yangtze River Delta. This study focused on the distribution of CAHs, and correlations between CAHs and environmental variables in a shallow groundwater in Shanghai, using kriging interpolation and multifactorial analysis. The results showed that the overall CAHs plume area (above DIV) was approximately 9,000 m2 and located in the 2–4 m underground, DNAPL was accumulated at an area of approximately 1,400 m2 and located in the 6-8m sandy silt layer on the top of the muddy silty clay. Heatmap of PPC for CAHs and environmental variables showed that the correlation between “Fe2+” and most CAHs such as “1,1,1-TCA”, “1,1-DCA”, “1,1-DCE” and “%TCA” were significantly positive (p<0.001), but “%CA” and/or “%VC” was not, and “Cl-” was significantly positive correlated with “1,1-DCA” and “1,1-DCE” (p<0.001). The PCA demonstrated that the relative proportions of CAHs in groundwater were mostly controlled by the sources and the natural attenuation. In conclusion, the combination of geographical and chemometrics was helpful to establishing an aerial perspective of CAHs and identifying reasons for the accumulation of toxic dechlorination intermediates, and could become a useful tool for characterizing contaminated sites in general. PMID:26565796

  1. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons.

    PubMed

    Atashgahi, Siavash; Maphosa, Farai; De Vrieze, Jo; Haest, Pieter Jan; Boon, Nico; Smidt, Hauke; Springael, Dirk; Dejonghe, Winnie

    2014-03-01

    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that provide a sustainable electron source for organohalide respiring bacteria. In this study, wood chips, hay, straw, tree bark and shrimp waste, were assessed for their long term applicability as an electron donor for OHR of cis-dichloroethene (cDCE) and vinyl chloride (VC) in sediment microcosms. The initial release of fermentation products, such as acetate, propionate and butyrate led to the onset of extensive methane production especially in microcosms amended with shrimp waste, straw and hay, while no considerable stimulation of VC dechlorination was obtained in any of the SPOM amended microcosms. However, in the longer term, short chain fatty acids accumulation decreased as well as methanogenesis, whereas high dechlorination rates of VC and cDCE were established with concomitant increase of Dehalococcoides mccartyi and vcrA and bvcA gene numbers both in the sediment and on the SPOMs. A numeric simulation indicated that a capping layer of 40 cm with hay, straw, tree bark or shrimp waste is suffice to reduce the groundwater VC concentration below the threshold level of 5 μg/l before discharging into the Zenne River, Belgium. Of all SPOMs, the persistent colonization of tree bark by D. mccartyi combined with the lowest stimulation of methanogenesis singled out tree bark as a long-term electron donor for OHR of cDCE/VC in bioreactive caps.

  2. Characterization of Chlorinated Aliphatic Hydrocarbons and Environmental Variables in a Shallow Groundwater in Shanghai Using Kriging Interpolation and Multifactorial Analysis.

    PubMed

    Lu, Qiang; Luo, Qi Shi; Li, Hui; Liu, Yong Di; Gu, Ji Dong; Lin, Kuang Fei; Fei Lin, Kuang

    2015-01-01

    CAHs, as a cleaning solvent, widely contaminated shallow groundwater with the development of manufacturing in China's Yangtze River Delta. This study focused on the distribution of CAHs, and correlations between CAHs and environmental variables in a shallow groundwater in Shanghai, using kriging interpolation and multifactorial analysis. The results showed that the overall CAHs plume area (above DIV) was approximately 9,000 m(2) and located in the 2-4 m underground, DNAPL was accumulated at an area of approximately 1,400 m(2) and located in the 6-8m sandy silt layer on the top of the muddy silty clay. Heatmap of PPC for CAHs and environmental variables showed that the correlation between "Fe(2+)" and most CAHs such as "1,1,1-TCA", "1,1-DCA", "1,1-DCE" and "%TCA" were significantly positive (p<0.001), but "%CA" and/or "%VC" was not, and "Cl-" was significantly positive correlated with "1,1-DCA" and "1,1-DCE" (p<0.001). The PCA demonstrated that the relative proportions of CAHs in groundwater were mostly controlled by the sources and the natural attenuation. In conclusion, the combination of geographical and chemometrics was helpful to establishing an aerial perspective of CAHs and identifying reasons for the accumulation of toxic dechlorination intermediates, and could become a useful tool for characterizing contaminated sites in general. PMID:26565796

  3. Characterization of Chlorinated Aliphatic Hydrocarbons and Environmental Variables in a Shallow Groundwater in Shanghai Using Kriging Interpolation and Multifactorial Analysis.

    PubMed

    Lu, Qiang; Luo, Qi Shi; Li, Hui; Liu, Yong Di; Gu, Ji Dong; Lin, Kuang Fei; Fei Lin, Kuang

    2015-01-01

    CAHs, as a cleaning solvent, widely contaminated shallow groundwater with the development of manufacturing in China's Yangtze River Delta. This study focused on the distribution of CAHs, and correlations between CAHs and environmental variables in a shallow groundwater in Shanghai, using kriging interpolation and multifactorial analysis. The results showed that the overall CAHs plume area (above DIV) was approximately 9,000 m(2) and located in the 2-4 m underground, DNAPL was accumulated at an area of approximately 1,400 m(2) and located in the 6-8m sandy silt layer on the top of the muddy silty clay. Heatmap of PPC for CAHs and environmental variables showed that the correlation between "Fe(2+)" and most CAHs such as "1,1,1-TCA", "1,1-DCA", "1,1-DCE" and "%TCA" were significantly positive (p<0.001), but "%CA" and/or "%VC" was not, and "Cl-" was significantly positive correlated with "1,1-DCA" and "1,1-DCE" (p<0.001). The PCA demonstrated that the relative proportions of CAHs in groundwater were mostly controlled by the sources and the natural attenuation. In conclusion, the combination of geographical and chemometrics was helpful to establishing an aerial perspective of CAHs and identifying reasons for the accumulation of toxic dechlorination intermediates, and could become a useful tool for characterizing contaminated sites in general.

  4. Air pollution effect of SO2 and/or aliphatic hydrocarbons on marble statues in Archaeological Museums.

    PubMed

    Agelakopoulou, T; Metaxa, E; Karagianni, Ch-S; Roubani-Kalantzopoulou, F

    2009-09-30

    This study allowed the identification of the main physicochemical characteristics of deterioration of the materials used in the construction of Greek ancient statues in order to plan a correct methodology of restoration. The method of Reversed-Flow Inverse Gas Chromatography is appropriate to investigate the influence of air pollutants on authentic pieces from the Greek Archaeological Museum of Kavala, near Salonica. Six local physicochemical quantities which refer to the influence of one or two pollutants (synergistic effect) were determined for each system. These quantities answer the question "when, why and how materials of cultural heritage are attacked".

  5. Sample preparation and characterization for a study of environmentally acceptable endpoints for hydrocarbon-contaminated soil

    SciTech Connect

    Kreitinger, J.P.; Finn, J.T.

    1995-12-31

    In the past, the interdisciplinary research effort required to investigate the acceptable cleanup endpoints for hydrocarbon-impacted soils has been limited by the lack of standardized soils for testing. To support the efforts of the various researchers participating in the EAE research initiative, soil samples were collected from ten sites representing hydrocarbon-impacted soils typical of exploration/production, refinery, and bulk storage terminal operations. The hydrocarbons in the standard soils include crude oil, mixed refinery products, diesel, gasoline, and jet fuel. Physical characterization included analysis of soil texture, water retention, particle density, nanoporosity, pH, electrical conductivity, cation exchange capacity, buffer capacity, organic carbon, sodium adsorption ratio, and clay mineralogy. Chemical characterization included analysis of total recoverable petroleum hydrocarbons, total volatile and semivolatile organic compounds and metals, and TCLP for metals and organics. An analysis of the aliphatic and aromatic hydrocarbon fractions was performed on each soil to support the use of various models for assessing soil toxicity. Screening-level toxicity tests were conducted using Microtox{trademark}, plant seed germination and growth, and earthworm mortality and growth. Biodegradability screening tests were performed in slurry shake flasks to estimate the availability of hydrocarbon fractions to soil microorganisms.

  6. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  7. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  8. CZE study on adsorption processes of aliphatic and aromatic amines on PMMA chip.

    PubMed

    Masár, Marián; Kruk, Pavol; Luc, Milan; Bodor, Róbert; Danč, Ladislav; Troška, Peter

    2013-02-01

    Adsorption processes on a PMMA chip linked with CZE separations of a group of 13 aliphatic and aromatic mono- and di-amines were studied. Due to the lack of chromophores within aliphatic amines, contact conductivity detection implemented directly onto the chip was used for monitoring of cationic CZE separations. To prevent an adsorption of studied amines to the chip channels, the surface of PMMA chip was modified by dynamic coating. Different surface modifiers, such as aliphatic oligoamines (diethylenetriamine and triethylenetetramine), were added to the BGE solutions filling the chip channels. The effect of various concentrations of surface modifiers on peak profiles and separation parameters of amines was monitored. Of these, mainly, aliphatic di-amines and aromatic mono-amines adversely affected the CZE resolution of a whole group of analytes by their strong adsorption to the chip channels. A propionate BGE with pH 3.2 containing 100 μM triethylenetetramine and 25 mM 18-crown-6-ether was found suitable for CZE resolution of 12 from a total of 13 amines studied. Simple dynamic modification of the surface of PMMA chip enabled fast (analysis time lasted 9 min), sensitive (sub-μM LODs reached) and reproducible (1-3% RSD of the peak areas) CZE analysis of the aliphatic and aromatic amines.

  9. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  10. Comprehensive analytical methodology to determine hydrocarbons in marine waters using extraction disks coupled to glass fiber filters and compound-specific isotope analyses.

    PubMed

    Ternon, Eva; Tolosa, Imma

    2015-07-24

    Solid-phase extraction of both aliphatic (AHs) and aromatic polycyclic hydrocarbons (PAHs) from seawater samples was evaluated using a GFF filter stacked upon an octadecyl bonded silica (C18) disk. Stable-isotope measurements were developed on hydrocarbons extracted from both GFF and C18-disks in order to characterize the source of hydrocarbons. A clear partition of hydrocarbon compounds between the dissolved and the particulate phase was highlighted. PAHs showed a higher affinity with the dissolved phase (recoveries efficiency of 48-71%) whereas AHs presented strong affinity with the particulate phase (up to 76% of extraction efficiency). Medium volumes of seawater samples were tested and no breakthrough was observed for a 5L sample. Isotopic fractionation was investigated within all analytical steps but none was evidenced. This method has been applied to harbor seawater samples and very low AH and PAH concentrations were achieved. Due to the low concentration levels of hydrocarbons in the samples, the source of hydrocarbons was determined by molecular indices rather than isotopic measurements and a pyrolytic origin was evidenced. The aliphatic profile also revealed the presence of long-chain linear alkylbenzenes (LABs). The methodology presented here would better fit to polluted coastal environments affected by recent oil spills.

  11. Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

    NASA Technical Reports Server (NTRS)

    Zubko, Viktor; Dwek, Eli; Arendt, Richard G.

    2004-01-01

    We present new interstellar dust models which have been derived by simultaneously fitting the far ultraviolet to near infrared extinction, the diffuse infrared emission, and, unlike previous models, the elemental abundances in dust for the diffuse interstellar medium. We found that dust models consisting of a mixture of spherical graphite and silicate grains, polycyclic aromatic hydrocarbon (PAH) molecules, in addition to porous composite particles containing silicate, organic refractory, and water ice, provide an improved .t to the UV-to-infrared extinction and infrared emission measurements, while consuming the amounts of elements well within the uncertainties of adopted interstellar abundances, including B star abundances. These models are a signi.cant improvement over the recent Li & Draine (2001, ApJ, 554, 778) model which requires an excessive amount of silicon to be locked up in dust: 48 ppm (atoms per million of H atoms), considerably more than the solar abundance of 34 ppm or the B star abundance of 19 ppm.

  12. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V. E-mail: serkor@skyline.od.ua E-mail: scan@deneb1.odessa.ua

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  13. Interstellar Abundance Standards Revisited

    NASA Astrophysics Data System (ADS)

    Sofia, Ulysses J.; Meyer, David M.

    2001-06-01

    We evaluate the stellar abundances often used to represent the total (gas plus dust) composition of the interstellar medium. Published abundances for B stars, young later type (F and G) stars, and the Sun are compared to the modeled dust-phase and measured gas-phase compositions of the interstellar medium. This study uses abundances for the five most populous elements in dust grains-C, O, Mg, Si, and Fe-and the cosmically abundant element, N. We find that B stars have metal abundances that are too low to be considered valid representations of the interstellar medium. The commonly invoked interstellar standard that is two-thirds of the solar composition is also rejected by recent observations. Young (<=2 Gyr) F and G disk stars and the Sun, however, cannot be ruled out as reliable proxies for the total interstellar composition. If their abundances are valid representations of the interstellar medium, then the apparent underabundance of carbon with respect to that required by dust models, i.e., the carbon crisis, is substantially eased.

  14. Four genes encoding MYB28, a major transcriptional regulator of the aliphatic glucosinolate pathway, are differentially expressed in the allopolyploid Brassica juncea.

    PubMed

    Augustine, Rehna; Majee, Manoj; Gershenzon, Jonathan; Bisht, Naveen C

    2013-11-01

    Glucosinolates are Capparales-specific secondary metabolites that have immense potential in human health and agriculture. Unlike Arabidopsis thaliana, our knowledge about glucosinolate regulators in the Brassica crops is sparse. In the current study, four MYB28 homologues were identified (BjuMYB28-1,-2,-3,-4) from the polyploid Brassica juncea, and the effects of allopolyploidization on the divergence of gene sequence, structure, function, and expression were assessed. The deduced protein sequences of the four BjuMYB28 genes showed 76.1-83.1% identity with the Arabidopsis MYB28. Phylogenetic analysis revealed that the four BjuMYB28 proteins have evolved via the hybridization and duplication processes forming the B. juncea genome (AABB) from B. rapa (AA) and B. nigra (BB), while retaining high levels of sequence conservation. Mutant complementation and over-expression studies in A. thaliana showed that all four BjuMYB28 genes encode functional MYB28 proteins and resulted in similar aliphatic glucosinolate composition and content. Detailed expression analysis using qRT-PCR assays and promoter-GUS lines revealed that the BjuMYB28 genes have both tissue- and cell-specific expression partitioning in B. juncea. The two B-genome origin BjuMYB28 genes had more abundant transcripts during the early stages of plant development than the A-genome origin genes. However, with the onset of the reproductive phase, expression levels of all four BjuMYB28 increased significantly, which may be necessary for producing and maintaining high amounts of aliphatic glucosinolates during the later stages of plant development. Taken together, our results suggest that the four MYB28 genes are differentially expressed and regulated in B. juncea to play discrete though overlapping roles in controlling aliphatic glucosinolate biosynthesis.

  15. Four genes encoding MYB28, a major transcriptional regulator of the aliphatic glucosinolate pathway, are differentially expressed in the allopolyploid Brassica juncea.

    PubMed

    Augustine, Rehna; Majee, Manoj; Gershenzon, Jonathan; Bisht, Naveen C

    2013-11-01

    Glucosinolates are Capparales-specific secondary metabolites that have immense potential in human health and agriculture. Unlike Arabidopsis thaliana, our knowledge about glucosinolate regulators in the Brassica crops is sparse. In the current study, four MYB28 homologues were identified (BjuMYB28-1,-2,-3,-4) from the polyploid Brassica juncea, and the effects of allopolyploidization on the divergence of gene sequence, structure, function, and expression were assessed. The deduced protein sequences of the four BjuMYB28 genes showed 76.1-83.1% identity with the Arabidopsis MYB28. Phylogenetic analysis revealed that the four BjuMYB28 proteins have evolved via the hybridization and duplication processes forming the B. juncea genome (AABB) from B. rapa (AA) and B. nigra (BB), while retaining high levels of sequence conservation. Mutant complementation and over-expression studies in A. thaliana showed that all four BjuMYB28 genes encode functional MYB28 proteins and resulted in similar aliphatic glucosinolate composition and content. Detailed expression analysis using qRT-PCR assays and promoter-GUS lines revealed that the BjuMYB28 genes have both tissue- and cell-specific expression partitioning in B. juncea. The two B-genome origin BjuMYB28 genes had more abundant transcripts during the early stages of plant development than the A-genome origin genes. However, with the onset of the reproductive phase, expression levels of all four BjuMYB28 increased significantly, which may be necessary for producing and maintaining high amounts of aliphatic glucosinolates during the later stages of plant development. Taken together, our results suggest that the four MYB28 genes are differentially expressed and regulated in B. juncea to play discrete though overlapping roles in controlling aliphatic glucosinolate biosynthesis. PMID:24043856

  16. Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium.

    PubMed

    Fang, Shumei; An, Xuejiao; Liu, Hongyuan; Cheng, Yi; Hou, Ning; Feng, Lu; Huang, Xinning; Li, Chunyan

    2015-06-01

    Nitriles are common environmental pollutants, and their removal has attracted increasing attention. Microbial degradation is considered to be the most acceptable method for removal. In this work, we investigated the biodegradation of three aliphatic nitriles (acetonitrile, acrylonitrile and crotononitrile) by Rhodococcus rhodochrous BX2 and the expression of their corresponding metabolic enzymes. This organism can utilize all three aliphatic nitriles as sole carbon and nitrogen sources, resulting in the complete degradation of these compounds. The degradation kinetics were described using a first-order model. The degradation efficiency was ranked according to t1/2 as follows: acetonitrile>trans-crotononitrile>acrylonitrile>cis-crotononitrile. Only ammonia accumulated following the three nitriles degradation, while amides and carboxylic acids were transient and disappeared by the end of the assay. mRNA expression and enzyme activity indicated that the tested aliphatic nitriles were degraded via both the inducible NHase/amidase and the constitutive nitrilase pathways, with the former most likely preferred.

  17. Effect of glutathione on in vitro metabolism of unsaturated aliphatic nitriles to cyanide

    SciTech Connect

    Farooqui, M.Y.H.; Massa, E. )

    1991-03-01

    Aliphatic nitriles are widely used as important solvents and intermediates in polymer, plastic, synthetic fibers, resins, dyestuffs, pharmaceuticals and vitamin industries. Occupational exposure to these chemicals is principally through inhalation and dermal routes. Human and animal toxicity studies have suggested that the toxicity of aliphatic nitriles is due to their cyanide (CN{sup {minus}}) liberating capacity under biological conditions. Despite the common property of CN{sup {minus}} liberation, their are marked differences among nitriles, in the amounts of CN{sup {minus}} released to cause poisoning, in the duration of exposure and toxicity signs. The extent of metabolism of unsaturated aliphatic nitrile is influenced by the structural properties of the molecule. The purpose of this study is to investigate the effects of functional groups, the type of unsaturated moiety and availability of sulfhydryls especially glutathione (GSH) on the in vitro rat liver postmitochondrial fraction (microsomes + cytosol) is used to provide cytosolic GHS transferase, an essential enzyme of GSH metabolism.

  18. Classical-Reaction-Driven Stereo- and Regioselective C(sp(3) )-H Functionalization of Aliphatic Amines.

    PubMed

    Mahato, Sujit; Jana, Chandan K

    2016-06-01

    A large variety of synthetic methods have been developed for the synthesis of functionalized aliphatic amines because of their broad spectrum of application. Metallic reagents/catalysts and/or toxic oxidants are involved in most of the cases. Direct CH functionalization of aliphatic amines via their classical condensation reactions with suitable carbonyl compounds is advantageous because this method avoids hazardous metallic reagents, toxic oxidants and pre-activation/pre-functionalization step(s). In this account, the concept of direct CH functionalization of aliphatic amines based on the classical condensation-isomerization-addition (CIA) strategy followed by recent contributions from our ongoing research in the field along with relevant examples from other groups are described. Successes in stereo- and regioselective CC and CO bond formation via direct α- as well as β-C(sp(3) )-H functionalization are discussed. PMID:27185195

  19. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism--a gas-phase ab initio study.

    PubMed

    Bharadwaj, Vivek S; Vyas, Shubham; Villano, Stephanie M; Maupin, C Mark; Dean, Anthony M

    2015-02-14

    The fumarate addition reaction mechanism is central to the anaerobic biodegradation pathway of various hydrocarbons, both aromatic (e.g., toluene, ethyl benzene) and aliphatic (e.g., n-hexane, dodecane). Succinate synthase enzymes, which belong to the glycyl radical enzyme family, are the main facilitators of these biochemical reactions. The overall catalytic mechanism that converts hydrocarbons to a succinate molecule involves three steps: (1) initial H-abstraction from the hydrocarbon by the radical enzyme, (2) addition of the resulting hydrocarbon radical to fumarate, and (3) hydrogen abstraction by the addition product to regenerate the radical enzyme. Since the biodegradation of hydrocarbon fuels via the fumarate addition mechanism is linked to bio-corrosion, an improved understanding of this reaction is imperative to our efforts of predicting the susceptibility of proposed alternative fuels to biodegradation. An improved understanding of the fuel biodegradation process also has the potential to benefit bioremediation. In this study, we consider model aromatic (toluene) and aliphatic (butane) compounds to evaluate the impact of hydrocarbon structure on the energetics and kinetics of the fumarate addition mechanism by means of high level ab initio gas-phase calculations. We predict that the rate of toluene degradation is ∼100 times faster than butane at 298 K, and that the first abstraction step is kinetically significant for both hydrocarbons, which is consistent with deuterium isotope effect studies on toluene degradation. The detailed computations also show that the predicted stereo-chemical preference of the succinate products for both toluene and butane are due to the differences in the radical addition rate constants for the various isomers. The computational and kinetic modeling work presented here demonstrates the importance of considering pre-reaction and product complexes in order to accurately treat gas phase systems that involve intra and inter

  20. Metal and hydrocarbon behavior in sediments from Brazilian shallow waters drilling activities using nonaqueous drilling fluids (NAFs).

    PubMed

    do Carmo R Peralba, Maria; Pozebon, Dirce; dos Santos, João H Z; Maia, Sandra M; Pizzolato, Tânia M; Cioccari, Giovani; Barrionuevo, Simone

    2010-08-01

    The impact of drilling oil activities in the Brazilian Bonito Field/Campos Basin (Rio de Janeiro) shell drilling (300 m) using nonaqueous fluids (NAFs) was investigated with respect to Al, Fe, Mn, Ba, Co, Pb, Cu, As, Hg, Cr, Ni, Zn, Cd, V, and aliphatic and polynuclear aromatic hydrocarbons concentrations in the sediment. Sampling took place in three different times during approximately 33 months. For the metals Al, As, Co, Cr, Cu, Cd, Fe, Ni, Mn, V, and Zn, no significant variation was observed after drilling activities in most of the stations. However, an increase was found in Ba concentration--due to the drilling activity--without return to the levels found 22 months after drilling. High Ba contents was already detected prior to well drilling, probably due to drilling activities in other wells nearby. Hydrocarbon contents also suggest previous anthropogenic activities. Aliphatic hydrocarbon contents were in the range usually reported in other drilling sites. The same behavior was observed in the case of polyaromatic hydrocarbons. Nevertheless, the n-alkane concentration increased sharply after drilling, returning almost to predrilling levels 22 months after drilling activities.

  1. Viscosity of pure hydrocarbons

    SciTech Connect

    Knapstad, B.; Skjolsvik, P.A.; Oye, H.A.

    1989-01-01

    Accurate viscosity measurements have been performed on eight pure hydrocarbons at atmospheric pressure in the temperature range 20-150/sup 0/C, or up to approximately 20/sup 0/C below the boiling point of the hydrocarbon, by use of an absolute oscillating viscometer. The hydrocarbons are cyclohexane and benzene and the n-alkanes of hexane, heptane, octane, decane, dodecane, and tetradecane. The viscosities are described with a modified Arrhenius equation, and the deviation in fit is 0.12% or less. The accuracy is estimated to be 0.33-0.56%. The lowest viscosities are assumed to have the highest deviation. Literature data reported by Dymond and Young normally fit our viscosities within our estimated accuracy. Other literature viscosities tend to be higher than our results, especially for the n-alkanes.

  2. Silver-Catalyzed Decarboxylative Radical Azidation of Aliphatic Carboxylic Acids in Aqueous Solution.

    PubMed

    Liu, Chao; Wang, Xiaoqing; Li, Zhaodong; Cui, Lei; Li, Chaozhong

    2015-08-12

    We report herein an efficient and general method for the decarboxylative azidation of aliphatic carboxylic acids. Thus, with AgNO3 as the catalyst and K2S2O8 as the oxidant, the reactions of various aliphatic carboxylic acids with tosyl azide or pyridine-3-sulfonyl azide in aqueous CH3CN solution afforded the corresponding alkyl azides under mild conditions. A broad substrate scope and wide functional group compatibility were observed. A radical mechanism is proposed for this site-specific azidation.

  3. Friction differences between aliphatic and aromatic structures in lubrication of titanium

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1975-01-01

    Sliding friction experiments were conducted with a titanium (0001) single crystal surface with various adsorbed aliphatic and aromatic compounds containing the same number of carbon atoms. An Auger emission spectroscopy analysis was used to monitor the presence of the organic lubricating compounds. Results of the investigation indicate that hexane and benzene give the same friction coefficients over a range of loads. At light loads the friction decreased with an increase in the halogen atom size where the halogens chlorine, bromine, and iodine are incorporated into the benzene molecular structure. The aliphatic compounds chlorohexane and bromohexane exhibited lower friction coefficients than the aromatic structures chlorobenzene and bromobenzene.

  4. Hydrocarbon fuel detergent

    SciTech Connect

    Meyer, G.R.; Lyons, W.R.

    1990-01-23

    This patent describes a hydrocarbon fuel composition comprising: a hydrocarbon fuel; and a detergent amount of a detergent comprising an alkenylsuccinimide prepared by reacting an alkenylsuccinic acid or anhydride with a mixture of amines, wherein at least 90 weight percent of the alkenyl substituent is derived from an olefin having a carbon chain of from 10 to 30 carbons or mixtures thereof, and wherein the alkenylsuccinic acid or anhydride is reacted with the mixture of amines at a mole ratio of 0.8 to 1.5 moles of the amines per mole of the alkenylsuccinic acid or anhydride.

  5. Light-Hydrocarbon Bearing Solids on Planetesimal 5145 Pholus

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Morrison, David (Technical Monitor)

    1994-01-01

    Object 5145 Pholus (=1992 AD) is a planetesimal in an orbit that crosses those of Saturn, Uranus, and Neptune (period 92.7 years). It is particularly notable because of its extreme red color, corroborated by several observing teams. A spectrum of Pholus obtained in 1992 shows a strong absorption band with a characteristic shape at 2.27 micron, plus a weaker band at 1.7 microns. A better spectrum of the 2.0-2.5 micron region in 1993 confirms the position and shape of the 2.27 micron band. The color and spectral bands are identified with the aliphatic-rich and high H/C organic solid called asphaltite, which in a terrestrial setting originates from thermal processing of products of biological activity. In Pholus, this material is attributed to formation from radiation processing of ices on grains in the interstellar medium. Laboratory spectra of asphaltite and related materials have been published by Moroz et al., while Cloutis showed similar bands in comparable materials and identified them as the overtone and combination bands of C-H stretching and bending modes in CH2 and CH3 groups. Asphaltites, kerites, and anthraxolites are solid non-graphite members of a sequence ranging from oil to graphite; diffuse reflectance spectra of suites of these intermediate materials show color characteristics similar to those of the low-albedo asteroids (C,P,D), although specific identifications have not been made because of the lack of distinct absorption bands in the spectra of most low-albedo solar system bodies. In the case of Pholus, however, the primary band is strong; its wavelength and its shape, plus the match of the extremely red color, leads us to the identification of aliphatic-rich, asphaltite-like organic solid. The C, P, and D-type asteroids vary in degree of 'redness', but are all less red than Pholus. Pholus and the C-type asteroids are the end members of a sequence that represents the radiation processing of hydrocarbons, with Pholus being the least processed

  6. Light-Hydrocarbon Bearing Solids on Planetesimal 5145 Pholus

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Witteborn, Fred C. (Technical Monitor)

    1994-01-01

    Object 5145 Pholus (=1992 AD) is a planetesimal in an orbit that crosses those of Saturn, Uranus, and Neptune (period 92.7 years). It is particularly notable because of its extreme red color, corroborated by several observing teams. A spectrum of Pholus obtained in 1992 shows a strong absorption band with a characteristic shape at 2.27 micrometers, plus a weaker band at 1.7 micrometers. A better spectrum of the 2.0-2.5 micrometer region in 1993 confirms the position and shape of the 2.27-micrometer band. The color and spectral bands are identified with the aliphatic-rich and high H/C organic solid called asphaltite, which in a terrestrial setting originates from thermal processing of products of biological activity. In Pholus, this material is attributed to formation from radiation processing of ices on grains in the interstellar medium. Laboratory spectra of asphaltite and related materials have been published by Moroz et al., while Cloutis showed similar bands in comparable materials and identified them as the overtone and combination bands of C-H stretching and bending modes in CH2 and CH3 groups. Asphaltites, kerites, and anthraxolites are solid non-graphite members of a sequence ranging from oil to graphite; diffuse reflectance spectra of suites of these intermediate materials show color characteristics similar to those of the low-albedo asteroids (C,P,D), although specific identifications have not been made because of the lack of distinct absorption bands in the spectra of most low-albedo solar system bodies. In the case of Pholus, however, the primary band is strong; its wavelength and its shape, plus the match of the extremely red color, leads us to the identification of aliphatic-rich, asphaltite-like organic solid. The C, P, and D-type asteroids vary in degree of "redness", but are all less red than Pholus. Pholus and the Ctype asteroids are the end members of a sequence that represents the radiation processing of hydrocarbons, with Pholus being the least

  7. Development of toxicity criteria for petroleum hydrocarbon fractions in the Petroleum Hydrocarbon Criteria Working Group approach for risk-based management of total petroleum hydrocarbons in soil.

    PubMed

    Twerdok, L E

    1999-02-01

    The Total Petroleum Hydrocarbon Criteria Working Croup (TPHCWG) was formed in 1993 based on the observation that widely different clean-up requirements were being used by states at sites that were contaminated with hydrocarbon materials such as fuels, lubricating oils, and crude oils. These requirements were usually presented as concentration of total petroleum hydrocarbon (TPH), and ranged from 10 to over 10,000 mg TPH/kg soil. Members of this multi-disciplinary group, consisting of representatives from industry, government and academia, jointly recognized that the numerical standard was not based on a scientific assessment of human health risk and established the following goal for the effort: To develop scientifically defensible information for establishing soil cleanup levels that are protective of human health at hydrocarbon contaminated sites. The approach developed by the TPHCWG for TPH hazard assessment consisted of dividing the petroleum hydrocarbon material into multichemical-containing fractions with similar fate and transport characteristics. These fractions were then assigned fate and transport properties (volatilization factor, soil leaching factor, etc.) and toxicity values (RfDs/RfCs) representative of the fraction. The actual site specific hazard assessment and derivation of cleanup levels is accomplished by analyzing sites to determine which fraction(s) is present and applying the appropriate fate, transport and toxicity factors. The method used by this group to determine TPH Faction specific toxicity criteria is a surrogate approach intended to supplement the indicator approach. Indicators are single, carcinogenic hydrocarbon compounds which are evaluated/regulated individually at either the federal or state level. The TPHCWG surrogate approach utilized all appropriate fraction specific toxicity data (single compound and mixture/product), minus the carcinogenic indicator compounds, to derive the fraction specific RfDs and RfCs. This hazard

  8. Development of toxicity criteria for petroleum hydrocarbon fractions in the Petroleum Hydrocarbon Criteria Working Group approach for risk-based management of total petroleum hydrocarbons in soil.

    PubMed

    Twerdok, L E

    1999-02-01

    The Total Petroleum Hydrocarbon Criteria Working Croup (TPHCWG) was formed in 1993 based on the observation that widely different clean-up requirements were being used by states at sites that were contaminated with hydrocarbon materials such as fuels, lubricating oils, and crude oils. These requirements were usually presented as concentration of total petroleum hydrocarbon (TPH), and ranged from 10 to over 10,000 mg TPH/kg soil. Members of this multi-disciplinary group, consisting of representatives from industry, government and academia, jointly recognized that the numerical standard was not based on a scientific assessment of human health risk and established the following goal for the effort: To develop scientifically defensible information for establishing soil cleanup levels that are protective of human health at hydrocarbon contaminated sites. The approach developed by the TPHCWG for TPH hazard assessment consisted of dividing the petroleum hydrocarbon material into multichemical-containing fractions with similar fate and transport characteristics. These fractions were then assigned fate and transport properties (volatilization factor, soil leaching factor, etc.) and toxicity values (RfDs/RfCs) representative of the fraction. The actual site specific hazard assessment and derivation of cleanup levels is accomplished by analyzing sites to determine which fraction(s) is present and applying the appropriate fate, transport and toxicity factors. The method used by this group to determine TPH Faction specific toxicity criteria is a surrogate approach intended to supplement the indicator approach. Indicators are single, carcinogenic hydrocarbon compounds which are evaluated/regulated individually at either the federal or state level. The TPHCWG surrogate approach utilized all appropriate fraction specific toxicity data (single compound and mixture/product), minus the carcinogenic indicator compounds, to derive the fraction specific RfDs and RfCs. This hazard

  9. Solar abundance of platinum

    PubMed Central

    Burger, Harry; Aller, Lawrence H.

    1975-01-01

    Three lines of neutral platinum, located at λ 2997.98 Å, λ 3064.71 Å, and λ 3301.86 Å have been used to determine the solar platinum abundance by the method of spectral synthesis. On the scale, log A(H) = 12.00, the thus-derived solar platinum abundance is 1.75 ± 0.10, in fair accord with Cameron's value of log A(Pt) = 1.69 derived by Mason from carbonaceous chondrites and calculated on the assumption that log A(Si) = 7.55 in the sun. PMID:16592278

  10. Hydrocarbon contaminated soils and groundwater

    SciTech Connect

    Kostecki, P.T.

    1992-01-01

    This book contains the proceedings of hydrocarbon contaminated soils and groundwater. Topics covered include: Perspectives on hydrocarbon contamination; regulations; environmental fate and modeling; sampling and site assessment; remediation assessment and design; and remediation case studies.

  11. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  12. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  13. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  14. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  15. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  16. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  17. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  18. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  19. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  20. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  1. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments

    PubMed Central

    Fathepure, Babu Z.

    2014-01-01

    Many hypersaline environments are often contaminated with petroleum compounds. Among these, oil and natural gas production sites all over the world and hundreds of kilometers of coastlines in the more arid regions of Gulf countries are of major concern due to the extent and magnitude of contamination. Because conventional microbiological processes do not function well at elevated salinities, bioremediation of hypersaline environments can only be accomplished using high salt-tolerant microorganisms capable of degrading petroleum compounds. In the last two decades, there have been many reports on the biodegradation of hydrocarbons in moderate to high salinity environments. Numerous microorganisms belonging to the domain Bacteria and Archaea have been isolated and their phylogeny and metabolic capacity to degrade a variety of aliphatic and aromatic hydrocarbons in varying salinities have been demonstrated. This article focuses on our growing understanding of bacteria and archaea responsible for the degradation of hydrocarbons under aerobic conditions in moderate to high salinity conditions. Even though organisms belonging to various genera have been shown to degrade hydrocarbons, members of the genera Halomonas Alcanivorax, Marinobacter, Haloferax, Haloarcula, and Halobacterium dominate the published literature. Despite rapid advances in understanding microbial taxa that degrade hydrocarbons under aerobic conditions, not much is known about organisms that carry out similar processes in anaerobic conditions. Also, information on molecular mechanisms and pathways of hydrocarbon degradation in high salinity is scarce and only recently there have been a few reports describing genes, enzymes and breakdown steps for some hydrocarbons. These limited studies have clearly revealed that degradation of oxygenated and non-oxygenated hydrocarbons by halophilic and halotolerant microorganisms occur by pathways similar to those found in non-halophiles. PMID:24795705

  2. Lipid bilayer permeation of aliphatic amine and carboxylic acid drugs: rates of insertion, translocation and dissociation from MD simulations.

    PubMed

    Oruç, Tuğçe; Küçük, Sami Emre; Sezer, Deniz

    2016-09-21

    Aliphatic amines (AAs) and carboxylic acids (CAs) constitute the two most commonly occurring chemical groups among orally active drugs [Manallack, et al., ChemMedChem, 2013, 8, 242]. Here, we aim to rationalize this observation in terms of molecular properties that are essential for drug bioavailability. To this end, the permeation of the AA drug dyclonine and the CA drug 4-phenylbutyrate through a lipid bilayer is studied with molecular dynamics (MD) simulations. Permeability coefficients for the neutral and ionized forms of these drugs are calculated using the inhomogeneous solubility-diffusion model. To draw conclusions about other AA and CA drugs, the permeability coefficient is expressed as a sum over contributions from drug insertion into, translocation across, and dissociation from the lipid bilayer. Simple but general expressions for each of these separate steps are obtained and validated against the MD simulations of dyclonine and phenylbutyrate. We conclude that the neutral forms of most AA and CA drugs have large permeability coefficients (>1 cm s(-1)), while their ionized forms ensure solubility in aqueous environments. Thus, a physicochemical rationale for the reported abundance of AAs and CAs among drugs is provided.

  3. Lipid bilayer permeation of aliphatic amine and carboxylic acid drugs: rates of insertion, translocation and dissociation from MD simulations.

    PubMed

    Oruç, Tuğçe; Küçük, Sami Emre; Sezer, Deniz

    2016-09-21

    Aliphatic amines (AAs) and carboxylic acids (CAs) constitute the two most commonly occurring chemical groups among orally active drugs [Manallack, et al., ChemMedChem, 2013, 8, 242]. Here, we aim to rationalize this observation in terms of molecular properties that are essential for drug bioavailability. To this end, the permeation of the AA drug dyclonine and the CA drug 4-phenylbutyrate through a lipid bilayer is studied with molecular dynamics (MD) simulations. Permeability coefficients for the neutral and ionized forms of these drugs are calculated using the inhomogeneous solubility-diffusion model. To draw conclusions about other AA and CA drugs, the permeability coefficient is expressed as a sum over contributions from drug insertion into, translocation across, and dissociation from the lipid bilayer. Simple but general expressions for each of these separate steps are obtained and validated against the MD simulations of dyclonine and phenylbutyrate. We conclude that the neutral forms of most AA and CA drugs have large permeability coefficients (>1 cm s(-1)), while their ionized forms ensure solubility in aqueous environments. Thus, a physicochemical rationale for the reported abundance of AAs and CAs among drugs is provided. PMID:27539552

  4. Optrode for sensing hydrocarbons

    DOEpatents

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1987-05-19

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 6 figs.

  5. Optrode for sensing hydrocarbons

    DOEpatents

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  6. Zeroing in on hydrocarbons

    SciTech Connect

    Roest, I.P.B. van der; Brasser, D.J.S.; Wagebaert, A.P.J.; Stam, P.H.

    1997-05-01

    The increasing costs of remediating contaminated sites has stimulated research for cost-reducing techniques in soil investigation and cleanup techniques. MAP Environmental Research has developed a technology using ground penetrating radar in combination with in house developed software to locate and define the extent of hydrocarbon contamination. This article discusses the new technology. 2 figs.

  7. Excited states in hydrocarbons

    SciTech Connect

    Lipsky, S.

    1987-01-01

    In this brief review we first summarize some pertinent features of the photophysical properties of excited states of hydrocarbons and the mechanisms by which they transfer energy to solutes and then review their yields and their behavior under fast-electron irradiation conditions. 33 refs.

  8. Optrode for sensing hydrocarbons

    DOEpatents

    Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.

    1988-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  9. Optrode for sensing hydrocarbons

    DOEpatents

    Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.

    1987-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  10. Acetoxylation of unsaturated hydrocarbons

    SciTech Connect

    Vekki, A.V. de

    1994-06-10

    Acetoxylation is a method for one-step introduction of ester groups into molecules of unsaturated hydrocarbons. Subsequent processing of esters formed may allow an easy preparation of alkanediols and dicarboxylic and polyfunctional carboxylic acids with the required number of carbon atoms.

  11. Hydrocarbon options emerge

    SciTech Connect

    Fairley, P.

    1995-11-01

    Europe stole the scene at last week`s International Chlorofluorocarbon (CFC) and Halon Alternatives Conference in Washington as attendees learned more about an accelerating shift to low-cost hydrocarbon refrigerants by European equipment manufacturers. Udo Wenning, representing German refrigerator market leader Bosch-Siemens, told the conference that hydrocarbons-isobutane as refrigerant and cyclopentane to blow the insulating foam-are now used in 90% of German production. Wenning says that in all performance parameters, hydrocarbons match the hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) replacements favored in the U.S. and Japan and that, unlike HCFCs and HFCs they have low global warming potential. Their Achille`s heel is flammability, Wenning says. American equipment manufacturers aiming to sell a new generation of equipment designed for the new HFC refrigerants sought to amplify concern over flammability at the conference. {open_quotes}In a society as litigious as ours, we do not see a future for flammable refrigerants,{close_quotes} says a representative of air conditioner manufacturer Carrier. Hydrocarbon supporters such as Greenpeace say the risks are mananageable.

  12. Abundances of light elements.

    PubMed Central

    Pagel, B E

    1993-01-01

    Recent developments in the study of abundances of light elements and their relevance to cosmological nucleosynthesis are briefly reviewed. The simplest model, based on standard cosmology and particle physics and assuming homogeneous baryon density at the relevant times, continues to stand up well. PMID:11607388

  13. Determining the Metabolic Footprints of Hydrocarbon Degradation Using Multivariate Analysis

    PubMed Central

    Smith, Renee. J.; Jeffries, Thomas C.; Adetutu, Eric M.; Fairweather, Peter G.; Mitchell, James G.

    2013-01-01

    The functional dynamics of microbial communities are largely responsible for the clean-up of hydrocarbons in the environment. However, knowledge of the distinguishing functional genes, known as the metabolic footprint, present in hydrocarbon-impacted sites is still scarcely understood. Here, we conducted several multivariate analyses to characterise the metabolic footprints present in a variety of hydrocarbon-impacted and non-impacted sediments. Non-metric multi-dimensional scaling (NMDS) and canonical analysis of principal coordinates (CAP) showed a clear distinction between the two groups. A high relative abundance of genes associated with cofactors, virulence, phages and fatty acids were present in the non-impacted sediments, accounting for 45.7 % of the overall dissimilarity. In the hydrocarbon-impacted sites, a high relative abundance of genes associated with iron acquisition and metabolism, dormancy and sporulation, motility, metabolism of aromatic compounds and cell signalling were observed, accounting for 22.3 % of the overall dissimilarity. These results suggest a major shift in functionality has occurred with pathways essential to the degradation of hydrocarbons becoming overrepresented at the expense of other, less essential metabolisms. PMID:24282619

  14. Venus clouds: test for hydrocarbons.

    PubMed

    Plummer, W T

    1969-03-14

    Infrared reflection spectra of hydrocarbon clouds and frosts now give a critical test of Velikovsky's prediction that Venus is surrounded by a dense envelope of hydrocarbon clouds and dusts. Venus does not exhibit an absorption feature near 2.4 microns, although such a feature is prominent in every hydrocarbon spectrum observed.

  15. Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions.

    PubMed

    Whelan, M J; Coulon, F; Hince, G; Rayner, J; McWatters, R; Spedding, T; Snape, I

    2015-07-01

    A dynamic multi-media model that includes temperature-dependency for partitioning and degradation was developed to predict the behaviour of petroleum hydrocarbons during biopiling at low temperature. The activation energy (Ea) for degradation was derived by fitting the Arrhenius equation to hydrocarbon concentrations from temperature-controlled soil mesocosms contaminated with crude oil and diesel. The model was then applied to field-scale biopiles containing soil contaminated with diesel and kerosene at Casey Station, Antarctica. Temporal changes of total petroleum hydrocarbons (TPH) concentrations were very well described and predictions for individual hydrocarbon fractions were generally acceptable (disparity between measured and predicted concentrations was less than a factor two for most fractions). Biodegradation was predicted to be the dominant loss mechanism for all but the lightest aliphatic fractions, for which volatilisation was most important. Summertime losses were significant, resulting in TPH concentrations which were about 25% of initial concentrations just 1 year after the start of treatment. This contrasts with the slow rates often reported for hydrocarbons in situ and suggests that relatively simple remediation techniques can be effective even in Antarctica.

  16. The evolution of hydrocarbons past the asymptotic giant branch: the case of MSX SMC 029

    NASA Astrophysics Data System (ADS)

    Pauly, Tyler; Sloan, Gregory C.; Kraemer, Kathleen E.; Bernard-Salas, Jeronimo; Lebouteiller, Vianney; Goes, Christopher; Barry, Donald

    2015-01-01

    We present an optimally extracted high-resolution spectrum of MSX SMC 029 obtained by the Infrared Spectrograph on the Spitzer Space Telescope. MSX SMC 029 is a carbon-rich object in the Small Magellanic Cloud that has evolved past the asymptotic giant branch (AGB). The spectrum reveals a cool carbon-rich dust continuum with emission from polycyclic aromatic hydrocarbons (PAHs) and absorption from simpler hydrocarbons, both aliphatic and aromatic, including acetylene and benzene. The spectrum shows many similarities to the carbon-rich post-AGB objects SMP LMC 011 in the Large Magellanic Cloud and AFGL 618 in the Galaxy. Both of these objects also show infrared absorption features from simple hydrocarbons. All three spectra lack strong atomic emission lines in the infrared, indicating that we are observing the evolution of carbon-rich dust and free hydrocarbons in objects between the AGB and planetary nebulae. These three objects give us a unique view of the elusive phase when hydrocarbons exist both as relatively simple molecules and the much more complex and ubiquitous PAHs. We may be witnessing the assembly of amorphous carbon into PAHs.

  17. Urban rivers as conveyors of hydrocarbons to sediments of estuarine areas: source characterization, flow rates and mass accumulation.

    PubMed

    Mauad, Cristiane R; Wagener, Angela de L R; Massone, Carlos G; Aniceto, Mayara da S; Lazzari, Letícia; Carreira, Renato S; Farias, Cássia de O

    2015-02-15

    Aliphatic (n-C12-n-C40, unresolved complex mixture, resolved peaks) and aromatic hydrocarbons (46 PAH) were investigated in suspended particulate matter (SPM) sampled over eleven months in six of the major rivers and two channels of the Guanabara Bay Basin. PAH flow rates of the most contaminated rivers, the contribution to the PAH sediment load of the receiving bay, and the main sources of hydrocarbons were determined. PAH (38) ranged from 28 ng L(-1) to 11,514 ng L(-1). Hydrocarbon typology and statistical evaluation demonstrated contribution of distinct sources in different regions and allowed quantification of these contributions. Total flow rate for the five major rivers amounts to 3 t year(-1) and responds for 30% of the total PAH annual input into the northern area of the Guanabara Bay. For the first time PAH mass deposited in the bay sediments has been estimated and shall serve as base for decision making and source abatement.

  18. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...

  19. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New...

  20. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New...

  1. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New...

  2. Mass spectral analysis of C3 and C4 aliphatic amino acid derivatives.

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Chadha, M. S.

    1971-01-01

    Diagnostic criteria are obtained for the distinction of alpha, beta, gamma, and N-methyl isomers of the C3 and C4 aliphatic amino acids, using mass spectral analysis of the derivatives of these acids. The use of deuterium labeling has helped in the understanding of certain fragmentation pathways.

  3. IN-SITU AQUIFER RESTORATION OF CHLORINATED ALIPHATICS BY METHANOTROPHIC BACTERIA

    EPA Science Inventory

    This project evaluated the potential of enhanced in-situ biotransformation of chlorinated aliphatic solvents by a bacterial community grown on methane under aerobic conditions. The target chlorinated compounds were trichloroethene (TCE), cis-and trans-1,2-dichloroethene (DCE), an...

  4. Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes. Successful completion of this project will result in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project.

  5. PRECONCENTRATION OF ALIPHATIC AMINES FROM WATER DETERMINED BY CAPILLARY ELECTROPHORESIS WITH INDIRECT UV DETECTION

    EPA Science Inventory

    Preconcentration methodology based on adsorption chromatographies for enriching aliphatic amines (c1 to C4 substituted primary, secondary, and tertiary) and alkanolamines in water was studied by free zone capillary electrophoresis (CZE)with indirect UV detection. The solid-phase ...

  6. Spectrofluorimetric evaluation of total aliphatic and aromatic amines in well waters and wastewaters

    SciTech Connect

    Djozan, D.; Faraj-Zadeh, M.A.

    1998-09-01

    Aliphatic and aromatic amines are important metabolic intermediates in decomposition processes and are distributed in wastewaters. Monitoring of these compounds in the water samples can indicate whether the environmental waters are contaminated with wastewaters. A simple and rapid spectrofluorimetric method is described for the determination of aliphatic and aromatic amines on the basis of ammonia and aniline, respectively. Aromatic amines in samples were reacted at pH 5.5 with fluram immobilized on an Octadecylsilane Solid Phase Extraction (ODS-SPE) cartridge. The produced pyrrolinones were adsorbed on SPE and separated from the aliphatic amines. Analysis of these compounds was carried out by elution of SPE with 1 ml Tetrahydrofuran (THF) and determination of fluorescence intensity at excitation wavelength 400 nm and emission wavelength 475 nm. Aliphatic amines after passing from SPE were collected and reacted with fluram at pH 9.2, and extracted into dichloromethane at pH 3 and quantitated fluorimetrically. Linear dynamic ranges and detection limits (LOD) were 1-20, 0.43 mg l{sup {minus}1} and 1-200, 0.39 {micro}g l{sup {minus}1} for ammonia and aniline, respectively. The proposed method was successfully applied for the evaluation of these compounds in local well waters and municipality wastewaters.

  7. Copper-catalyzed aliphatic C-H amination with an amidine moiety.

    PubMed

    Chen, Hui; Sanjaya, Stephen; Wang, Yi-Feng; Chiba, Shunsuke

    2013-01-01

    A method for amination of aliphatic C-H bonds of N-alkylamidines is described that utilizes Cu(OAc)(2) as the catalyst in the presence of PhI(OAc)(2) and K(3)PO(4). The resulting products, dihydroimidazoles and tetrahydropyrimidines, could be converted into the corresponding diamines by hydride reduction. PMID:23252919

  8. Phenolic and short-chained aliphatic organic acid constituents of wild oat (Avena fatua L.) seeds.

    PubMed

    Gallagher, R S; Ananth, R; Granger, K; Bradley, B; Anderson, J V; Fuerst, E P

    2010-01-13

    The objective of this research was to identify and quantify the phenolic and short-chained aliphatic organic acids present in the seeds of three wild-type populations of wild oat and compare these results to the chemical composition of seeds from two commonly utilized wild oat isolines (M73 and SH430). Phenolic acids have been shown to serve as germination inhibitors, as well as protection for seeds from biotic and abiotic stress factors in other species, whereas aliphatic organic acids have been linked to germination traits and protection against pathogens. Wild oat populations were grown under a "common garden" environment to remove maternal variation, and the resulting seeds were extracted to remove the readily soluble and chemically bound phenolic and aliphatic organic acid components. Compounds were identified and quantified using gas chromatography-mass spectrometry. Ferulic and p-coumaric acid comprised 99% of the total phenolic acids present in the seeds, of which 91% were contained in the hulls and 98% were in the chemically bound forms. Smaller quantities of OH benzoic and vanillic acid were also detected. Soluble organic acids concentrations were higher in the M73 isoline compared to SH430, suggesting that these chemical constituents could be related to seed dormancy. Malic, succinic, fumaric and azelaic acid were the dominant aliphatic organic acids detected in all seed and chemical fractions.

  9. Generation of compositionally atypical hydrocarbons in CO[sub 2]-rich geologic environments

    SciTech Connect

    Gize, A ); Macdonald, R. )

    1993-02-01

    Bitumen seepages from a trachyte flow on the Suswa volcano (East African Rift) are anomalously enriched in O and N heteroatomic organic compounds and depleted in aliphatics. Compositional and geologic data suggest that the biogenically derived bitumens were extracted and/or transported by liquid or supercritical CO[sub 2] rather than H[sub 2]O, possibly from caldera-lake sediments. Compositionally atypical hydrocarbons and reduced carbon associated with other alkaline-peralkaline igneous complexes, as well as Hg and Au deposits, may also reflect CO[sub 2] fluids. Hydrocarbon extraction and migration in CO[sub 2]-rich fluids are considered realistic mechanisms in certain geologic environments. 22 refs., 2 figs., 1 tab.

  10. [Biodegradability of the components of natural hydrocarbon mixtures previously submitted to landfarming].

    PubMed

    Pucci, G N; Pucci, O H

    2003-01-01

    The complex composition of the crude oil and the hydrocarbons that integrate the waste of the different stages of the oil industry turn this product a mixture that presents different difficulties for its elimination by biological methods. The objective of this paper was to study the biodegradation potential of autochthonous bacterial communities on hydrocarbons obtained from four polluted places and subjected to landfarming biorremediation system during a decade. The results showed a marked difference in biodegradability of the three main fractions of crude oil, aliphatic, aromatic, and polar fractions, obtained by column chromatography. All fractions were used as carbon source and energy. There were variations in the production of biomass among the different fractions as well as in the kinetics of biodegradation, according to the composition of each fraction.

  11. Bacterial sources for phenylalkane hydrocarbons

    SciTech Connect

    Ellis, L.; Winans, R.E.; Langworthy, T.

    1996-10-01

    The presence of phenylalkane hydrocarbons in geochemical samples has been the source of much controversy. Although an anthropogenic input from detergent sources always appears likely, the distribution of phenylalkane hydrocarbons in some cases far exceeding that attributed to detergent input has led to a reappraisal of this view. Indeed, recent work involving analysis of the lipid hydrocarbon extracts from extant Thermoplasma bacteria has revealed the presence of phenylalkane hydrocarbons. The presence of phenylalkane hydrocarbons in sedimentary organic matter may therefore represent potential biological markers for thermophilic bacteria.

  12. Impact and radiation influence on solid hydrocarbon transformation and structuring (by IR-spectroscopy)

    NASA Astrophysics Data System (ADS)

    Kovaleva, O.

    2009-04-01

    Solid hydrocarbons (bitumens)-typical specimens of natural organic minerals-are one of the most essential objects of petroleum geology and at the same time-one of the least investigated objects of organic mineralogy. Moreover they can be treated as admissible analogs of meteorite carbonaceous materials. According to terrestrial analog of meteoritic organic matter it's possible to estimate the chemical structure of extraterrestrial matter. Further investigation of impact force and radiation influence on the bitumen chemical structure change will make it possible to connect them with extraterrestrial organic matter. This work represents the research of impact influence on the processes of transformation and structuring of asphaltite and changes in the molecular structure of solid bitumens constituting the carbonization series (asphaltite--kerite--anthraxolite), which were subjected to the impact of high radiation doses (10 and 100 Mrad) by infrared spectroscopy (IRS). In percussion experiments peak pressure varied from 10 to 63.4 GPa; temperature - from the first tens degrees to several hundreds degrees Celsius. The radiation experiment was performed in the Arzamas-16 Federal Nuclear Center in line with conditions described in [1]. Asphaltite, which sustained shock load from 17.3 to 23 GPa, didn't undergo considerable changes in its element composition. Though their IR-spectra differ from the spectrum of initial asphaltite by heightened intensity of absorption bands of aromatic groups, as well as by insignificant rise of heterogroups and condensed structures oscillation strength. At the same time the intensity of aliphatic (СН2 and СН3) groups absorption hasn't changed. Probably there've just been the carbon and hydrogen atomic rearrangement. However, shock load up to 26.7 GPa leads to asphaltite transformation into the albertite. There've been observed the intensity decrease of aliphatic groups on its IR-spectrum. Under growth of shock load up to 60 GPa bitumen

  13. Solar abundance of iridium

    PubMed Central

    Drake, Stephen; Aller, Lawrence H.

    1976-01-01

    By a method of spectrum synthesis, which yields log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance, an attempt is made to deduce the solar iridium abundance from one relatively unblended, but fairly weak IrI line, λ 3220.78 Å. If the Corliss-Bozman f-value for this line is adopted, we find log A(Ir) = 0.82 on the scale log A(H) = 12.00. The discordance with the value found from carbonaceous chondrites may arise from faulty f-values or from difficulties arising from line blending in this far ultraviolet domain of the solar spectrum. PMID:16578735

  14. Paleozoic Hydrocarbon-Seep Limestones

    NASA Astrophysics Data System (ADS)

    Peckmann, J.

    2007-12-01

    To date, five Paleozoic hydrocarbon-seep limestones have been recognized based on carbonate fabrics, associated fauna, and stable carbon isotopes. These are the Middle Devonian Hollard Mound from the Antiatlas of Morocco [1], Late Devonian limestone lenses with the dimerelloid brachiopod Dzieduszyckia from the Western Meseta of Morocco [2], Middle Mississippian limestones with the dimerelloid brachiopod Ibergirhynchia from the Harz Mountains of Germany [3], Early Pennsylvanian limestones from the Tantes Mound in the High Pyrenees of France [4], and Late Pennsylvanian limestone lenses from the Ganigobis Shale Member of southern Namibia [5]. Among these examples, the composition of seepage fluids varied substantially as inferred from delta C-13 values of early diagenetic carbonate phases. Delta C-13 values as low as -50 per mil from the Tantes Mound and -51 per mil from the Ganigobis limestones reveal seepage of biogenic methane, whereas values of -12 per mil from limestones with Dzieduszyckia associated with abundant pyrobitumen agree with oil seepage. Intermediate delta C-13 values of carbonate cements from the Hollard Mound and Ibergirhynchia deposits probably reflect seepage of thermogenic methane. It is presently very difficult to assess the faunal evolution at seeps in the Paleozoic based on the limited number of examples. Two of the known seeps were typified by extremely abundant rhynchonellide brachiopods of the superfamily Dimerelloidea. Bivalve mollusks and tubeworms were abundant at two of the known Paleozoic seep sites; one was dominated by bivalve mollusks (Hollard Mound, Middle Devonian), another was dominated by tubeworms (Ganigobis Shale Member, Late Pennsylvanian). The tubeworms from these two deposits are interpreted to represent vestimentiferan worms, based on studies of the taphonomy of modern vestimentiferans. However, this interpretation is in conflict with the estimated evolutionary age of vestimentiferans based on molecular clock methods

  15. Organic geochemistry of the Vindhyan sediments: Implications for hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dayal, A. M.; Mani, Devleena; Madhavi, T.; Kavitha, S.; Kalpana, M. S.; Patil, D. J.; Sharma, Mukund

    2014-09-01

    The organic geochemical methods of hydrocarbon prospecting involve the characterization of sedimentary organic matter in terms of its abundance, source and thermal maturity, which are essential prerequisites for a hydrocarbon source rock. In the present study, evaluation of organic matter in the outcrop shale samples from the Semri and Kaimur Groups of Vindhyan basin was carried out using Rock Eval pyrolysis. Also, the adsorbed low molecular weight hydrocarbons, methane, ethane, propane and butane, were investigated in the near surface soils to infer the generation of hydrocarbons in the Vindhyan basin. The Total Organic Carbon (TOC) content in shales ranges between 0.04% and 1.43%. The S1 (thermally liberated free hydrocarbons) values range between 0.01-0.09 mgHC/gRock (milligram hydrocarbon per gram of rock sample), whereas the S2 (hydrocarbons from cracking of kerogen) show the values between 0.01 and 0.14 mgHC/gRock. Based on the Tmax (temperature at highest yield of S2) and the hydrogen index (HI) correlations, the organic matter is characterized by Type III kerogen. The adsorbed soil gas, CH4 (C1), C2H6 (C2), C3H8 (C3) and nC4H10, (nC4), concentrations measured in the soil samples from the eastern part of Vindhyan basin (Son Valley) vary from 0 to 186 ppb, 0 to 4 ppb, 0 to 5 ppb, and 0 to 1 ppb, respectively. The stable carbon isotope values for the desorbed methane (δ13C1) and ethane (δ13C2) range between -45.7‰ to -25.2‰ and -35.3‰ to -20.19‰ (VPDB), respectively suggesting a thermogenic source for these hydrocarbons. High concentrations of thermogenic hydrocarbons are characteristic of areas around Sagar, Narsinghpur, Katni and Satna in the Son Valley. The light hydrocarbon concentrations (C1-C4) in near surface soils of the western Vindhyan basin around Chambal Valley have been reported to vary between 1-2547 ppb, 1-558 ppb, 1-181 ppb, 1-37 ppb and 1-32 ppb, respectively with high concentrations around Baran-Jhalawar-Bhanpur-Garot regions (Kumar

  16. Multimedia fate of petroleum hydrocarbons in the soil: oil matrix of constructed biopiles.

    PubMed

    Coulon, Frédéric; Whelan, Michael J; Paton, Graeme I; Semple, Kirk T; Villa, Raffaella; Pollard, Simon J T

    2010-12-01

    A dynamic multimedia fugacity model was used to evaluate the partitioning and fate of petroleum hydrocarbon fractions and aromatic indicator compounds within the soil: oil matrix of three biopiles. Each biopile was characterised by four compartments: air, water, soil solids and non-aqueous phase liquid (NAPL). Equilibrium partitioning in biopile A and B suggested that most fractions resided in the NAPL, with the exception of the aromatic fraction with an equivalent carbon number from 5 to 7 (EC(5-7)). In Biopile C, which had the highest soil organic carbon content (13%), the soil solids were the most important compartment for both light aliphatic fractions (EC(5-6) and EC(6-8)) and aromatic fractions, excluding the EC(16-21) and EC(21-35). Our starting hypothesis was that hydrocarbons do not degrade within the NAPL. This was supported by the agreement between predicted and measured hydrocarbon concentrations in Biopile B when the degradation rate constant in NAPL was set to zero. In all scenarios, biodegradation in soil was predicted as the dominant removal process for all fractions, except for the aliphatic EC(5-6) which was predominantly lost via volatilization. The absence of an explicit NAPL phase in the model yielded a similar prediction of total petroleum hydrocarbon (TPH) behaviour; however the predicted concentrations in the air and water phases were significantly increased with consequent changes in potential mobility. Further comparisons between predictions and measured data, particularly concentrations in the soil mobile phases, are required to ascertain the true value of including an explicit NAPL in models of this kind.

  17. Characterization of hydrocarbons in aerosols at a Mediterranean city with a high density of palm groves.

    PubMed

    Chofre, Carolina; Gil-Moltó, Juan; Galindo, Nuria; Varea, Montse; Caballero, Sandra

    2016-09-01

    Samples of PM1 and PM10 were collected for 1 year at an urban background station in the city of Elche (southeastern Spain) and analyzed to determine the content of n-alkanes and polycyclic aromatic hydrocarbons (PAHs). A few samples were also gathered at a second sampling point established at one of the several palm tree gardens of the city in order to evaluate the influence of biogenic emissions on the urban levels of n-alkanes. Diagnostic parameters obtained for aliphatic hydrocarbons (carbon maximum number (C max), carbon preference index (CPI), and wax n-alkane content (%WNA)) revealed a higher contribution of biogenic n-alkanes in PM10 than in PM1. Moreover, the values of %WNA indicated that the levels of n-alkanes in Elche were more affected by emissions from terrestrial vegetation than in other urban areas, particularly in the palm tree grove location (%WNA = 29 for PM10). PAH diagnostic ratios pointed to traffic as the main anthropogenic source of hydrocarbons in Elche, with predominance of diesel versus gasoline vehicle emissions. The average levels of total PAHs (~1 ng m(-3)) were noticeably lower than the values registered at other urban areas in Europe, most likely because emissions from other sources are scarce. Both aliphatic and aromatic hydrocarbons showed higher levels in the cold season due to the lower atmospheric dispersion conditions, the increase in traffic exhaust emissions, and the lower ambient temperatures that reduce the evaporation of semivolatile species. PMID:27502520

  18. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    SciTech Connect

    Cherrier, J.

    2005-05-16

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblages collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO{sub 2} could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO{sub 2} was used as the indicator of hydrocarbon degradation and {delta}{sup 13}C analysis of the resultant CO{sub 2} was used to evaluate the source of the respired CO{sub 2} (i.e. petroleum hydrocarbons or the pinfish cometabolite

  19. Absorbent agents for clean-up of liquid hydrocarbons

    SciTech Connect

    Waldmann, J.J.

    1993-08-24

    A method is described for absorbing liquid hydrocarbon from a liquid hydrocarbon-contaminated substrate comprising applying to said contaminated substrate an effective amount of a chemical absorbent composition of formula: A[sub m]B[sub n]C[sub p] wherein A[sub m] is an acid leached bentonite in a form of hydrous silicate of alumina modified by a hydrophobic alkyl (C[sub 12]-C[sub 24]) amine which has been double protonized by an aliphatic acid with C[sub 1]-C[sub 18] carbon atoms in which m = 0 to 100% by weight of the composition; B[sub n] is a modified aminoplast resin comprised of cyanoguanidine-melamine-urea-formaldehyde in a foam form in which n is 0 to 100% by weight; and C[sub p] is a siliceous support-modified hydrophobic material in which p is 0 to 100% by weight; provided that at least one of m and n is a positive numerical value.

  20. Inclusions of Hydrocarbon Fluids in Diamonds From Wafangdian, Liaoning, China

    NASA Astrophysics Data System (ADS)

    Leung, I. S.; Tsao, C.

    2015-12-01

    We studied a large number of industrial-grade diamonds from Pipe 50 of Liaoning, China. These diamonds are not suitable for polishing into gems or making cutting tools. They are usually crushed to form abrasives, without much scientific scrutiny. We report here fluid inclusions in dozens of diamonds. The first type of fluids occur in the outer rim of diamonds, just below the surface, while their interior is free of visible fluids. Under UV radiation, when a non-fluorescent diamond appeared dim, bubbles of included fluids became visible as yellow and blue spherules. Such diamonds are sometimes encrusted with euhedral micro-diamonds resembling those on thin films grown by CVD. The second type of fluid-rich diamonds display iridescence of pink, blue, green and yellow colors. They show lamellar, filamentous, or tubular structures, some of the tubes are filled with granules, probably grown from fluids in the tubes. An FT-IR investigation of both types yielded similar results. Apart from absorption due to intrinsic diamond lattice vibrations, we found an outstanding group of bands just below wavenumber 3000. This indicates the presence of a saturated aliphatic hydrocarbons of long chain length. Our results seem to implicate that hydrocarbons might be an important component in Earth's mantle, which might even have provided carbon from which diamonds crystllized.

  1. Hydrocarbons and other organic materials on Iapetus: Revised analysis

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Dalle Ore, C. M.; Pendleton, Y. J.; Clark, R. N.

    2013-10-01

    We present a revised quantitative analysis of the hydrocarbon and other organic molecular inventory in the low-albedo material of Saturn’s satellite Iapetus, based on a revision of the calibration of the Cassini VIMS instrument. Our study uses hyperspectral data from a mosaic of Iapetus’ surface (Pinilla-Alonso et al. 2012, Icarus 215, 75-82) constructed from VIMS data on close fly-bys of the satellite. We extracted >2000 individual spectra of the low-albedo regions, and with a clustering analysis tool (Dalle Ore et al. 2012, Icarus 221, 735-743) separated them into two spectrally distinct groups, one concentrated on the leading hemisphere of Iapetus, and the other on the trailing. This distribution is broadly consistent with that found from Cassini ISS data analyzed by Denk et al. (2010, Science 327, 435-439). We modeled the average spectra of the two geographic regions using the materials and techniques described by Clark et al. (2012, Icarus 218, 831-860), and extracted the residual (Iapetus/model) in the interval 2.7-4.0 µm for analysis of the organic molecular bands that occur in this spectral region. These bands are the C-H stretching modes of aromatic hydrocarbons at ~3.28 μm 3050 cm-1), plus four blended bands of aliphatic -CH2- and -CH3 in the range ~3.36-3.52 μm 2980-2840 cm-1). In these data, the aromatic band, probably indicating the presence of polycyclic aromatic hydrocarbons (PAH), is unusually strong in comparison to the aliphatic bands, as was found for Hyperion (Dalton et al. 2012, Icarus 220, 752-776; Dalle Ore et al. 2012 op. cit.) and Phoebe (Dalle Ore et al. 2012 op. cit.). Our Gaussian decomposition of the organic band region suggests the presence of molecular bands in addition to those noted above, specifically bands attributable to cycloalkanes, olefinic compounds, CH3OH, and N-substituted PAHs. Insofar as the superficial layer of low-albedo material on Iapetus originated in the interior of Phoebe and was transported to Iapetus (and

  2. Membrane separation of hydrocarbons

    DOEpatents

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  3. [Proteins from hydrocarbon fermentation].

    PubMed

    Champagnat, A

    1975-06-01

    The research work for the culture of yeasts on hydrocarbon substrates has started in 1959 at the research laboratory of Lavera in France, under Champagnat as leader. Its result is the construction and exploitation of 2 industrial plants in France and England, and a new big one is being built in Italy. The paper describes the various hydrocarbon substrates in use or proposed, and the two BP processes. It gives the main characteristics of the yeasts produced. It emphasizes the methods used for the evaluation of the yeasts both toxicologically and nutritionally by independent organizations of international level. A number of tables are given upon the nutritional performances of the yeasts on farm animals. Authorizations of use have been obtained from the hygiene authorities of the main European countries. The use for human consumption is now being considered.

  4. Hydrocarbon bioremediation -- An overview

    SciTech Connect

    Reisinger, H.J.

    1995-12-31

    Bioremediation is the process that transforms xenobiotics introduced into the environment to a less toxic or innocuous form, or mineralizes them to inorganic species. The processes can be carried out through either aerobic or anaerobic pathways by indigenous heterotrophs or by specially engineered organisms. For some xenobiotics, the process can also be carried out by cometabolic processes, which use another compound as the carbon and energy source. This technique can be applied either in situ or ex situ. An overview is presented of real-world applications of a variety of hydrocarbon bioremediation approaches, including biopiling, bioventing, bioslurping, landfarming, electrobioreclamation, and biovertical circulation wells. Problems in translating laboratory and field-scale pilot test data to full-scale operating systems are discussed. Such issues include biodegradation enhancement, nutrient and electron acceptor delivery, alternative electron acceptors, and integration of biological, chemical, and physical approaches to hydrocarbon remediation.

  5. FROZEN HYDROCARBONS IN COMETS

    SciTech Connect

    Simonia, Irakli

    2011-02-15

    Recent investigations of the luminescence of frozen hydrocarbon particles of icy cometary halos have been carried out. The process of luminescence of organic icy particles in a short-wavelength solar radiation field is considered. A comparative analysis of observed and laboratory data leads to 72 luminescent emission lines in the spectrum of the comet 153P/Ikeya-Zhang. The concept of cometary relict matter is presented, and the creation of a database of unidentified cometary emission lines is proposed.

  6. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  7. Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame

    SciTech Connect

    Marinov, N.M.; Pitz, W.J.; Westbrook, C.K.; Vincitore, A.M.; Castaldi, M.J.; Senkan, S.M.; Melius, C.F.

    1998-07-01

    Experimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane-oxygen-argon burner stabilized flame. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of 2.6 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph/mass spectrometer technique. Measurements were made in the main reaction and post-reaction zones for a number of low molecular weight species, aliphatics, aromatics, and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-fused aromatic rings. Reaction flux and sensitivity analysis were used to help identify the important reaction sequences leading to aromatic and PAH growth and destruction in the n-butane flame. Reaction flux analysis showed the propargyl recombination reaction was the dominant pathway to benzene formation. The consumption of propargyl by H atoms was shown to limit propargyl, benzene, and naphthalene formation in flames as exhibited by the large negative sensitivity coefficients. Naphthalene and phenanthrene production was shown to be plausibly formed through reactions involving resonantly stabilized cyclopentadienyl and indenyl radicals. Many of the low molecular weight aliphatics, combustion by-products, aromatics, branched aromatics, and PAHs were fairly well simulated by the model. Additional work is required to understand the formation mechanisms of phenyl acetylene, pyrene, and fluoranthene in the n-butane flame. 73 refs.

  8. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    SciTech Connect

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  9. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites

    PubMed Central

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons. PMID:27471499

  10. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites.

    PubMed

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  11. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites.

    PubMed

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons. PMID:27471499

  12. Radical scavengers from heavy hydrocarbons

    SciTech Connect

    Kubo, Junichi

    1996-10-01

    The hydrogen-donating properties of some hydrocarbons form the basis for processes such as coal liquefaction and heavy oil upgrading. However, these hydrocarbons have seldom been used for other purposes, because their potential applications have not been well recognized. Research has indicated that these hydrogen-donating hydrocarbons can be used in important reactions as radical scavengers and have properties particular to those of pure hydrocarbons without functional groups containing heteroatoms. Over years of study researchers have found that pure hydrocarbons with radical-scavenging effects nearly as high as those in conventional hindered phenolic antioxidants can be produced from petroleum, and these hydrogen-donating hydrocarbons exhibit such effects even in oxidative atmospheres (i.e., they function as antioxidants). He has also shown that these mixtures have some properties particular to pure hydrocarbons without functional groups containing heteroatoms, and they`ve seen that a mechanism based on the steric effects appears when these hydrocarbons are used in heavy oil hydroprocessing. Hydrogen-donating hydrocarbons should be a viable resource in many applications. In this article, he presents radical-scavenging abilities, characteristics as pure hydrocarbons, and applications on the basis of the studies.

  13. The Amoco CadizOil Spill: Evolution of Petroleum Hydrocarbons in the Ile Grande Salt Marshes (Brittany) after a 13-year Period

    NASA Astrophysics Data System (ADS)

    Mille, G.; Munoz, D.; Jacquot, F.; Rivet, L.; Bertrand, J.-C.

    1998-11-01

    The Ile Grande salt marshes (Brittany coast) were polluted by petroleum hydrocarbons after theAmoco Cadizgrounding in 1978. Thirteen years after the oil spill, sediments were analysed for residual hydrocarbons in order to monitor the aliphatic and aromatic hydrocarbon signatures and to assess both qualitatively and quantitatively the changes in composition of theAmoco Cadizoil. Six stations were selected in the Ile Grande salt marshes and sediments were sampled to a depth of 20 cm. For each sample, the hydrocarbon compositions were determined for alkanes, alkenes, aromatics and biomarkers (terpanes, steranes, diasteranes). Hydrocarbon levels drastically decreased between 1978 and 1991, but to different extents according to the initial degree of contamination. In 1991, hydrocarbon concentrations never exceeded 1·7 g kg-1sediment dry weight, and in most cases were less than 0·1 g kg-1sediment dry weight. Even though petroleum hydrocarbons are still present, natural hydrocarbons were also detected at several stations. Changes in some biomarker distributions were observed 13 years after the oil spill. Nevertheless, most of the biomarkers are very stable in the salt marsh environment and remain unaltered even after a 13-year period.

  14. Abundance of field galaxies

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Karachentsev, Igor; Makarov, Dmitry; Nasonova, Olga

    2015-12-01

    We present new measurements of the abundance of galaxies with a given circular velocity in the Local Volume: a region centred on the Milky Way Galaxy and extending to distance ˜10 Mpc. The sample of ˜750 mostly dwarf galaxies provides a unique opportunity to study the abundance and properties of galaxies down to absolute magnitudes MB ≈ -10 and virial masses M_vir= 109{ M_{⊙}}. We find that the standard Λ cold dark matter (ΛCDM) model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities V ≳ 70 kms-1 and corresponding virial masses M_vir≳ 5× 10^{10}{ M_{⊙}}, but it badly fails by overpredicting ˜5 times the abundance of large dwarfs with velocities V = 30-40 kms-1. The warm dark matter (WDM) models cannot explain the data either, regardless of mass of WDM particle. Just as in previous observational studies, we find a shallow asymptotic slope dN/dlog V ∝ Vα, α ≈ -1 of the velocity function, which is inconsistent with the standard ΛCDM model that predicts the slope α = -3. Though reminiscent to the known overabundance of satellite problem, the overabundance of field galaxies is a much more difficult problem. For the standard ΛCDM model to survive, in the 10 Mpc radius of the Milky Way there should be 1000 not yet detected galaxies with virial mass M_vir≈ 10^{10}{ M_{⊙}}, extremely low surface brightness and no detectable H I gas. So far none of this type of galaxies have been discovered.

  15. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds

    USGS Publications Warehouse

    Kolak, J.J.; Burruss, R.C.

    2006-01-01

    Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.

  16. Contaminated soil phytoremediation by Cyperus laxus Lam. cytochrome p450 EROD-activity induced by hydrocarbons in roots.

    PubMed

    López-Martínez, S; Gallegos-Martínez, M E; Pérez-Flores, L J; Gutiérrez-Rojas, M

    2008-01-01

    Laboratory and greenhouse experiments with Cyperus laxus Lam were conducted to determine the rate and extent of phytoremediation and the effect of hydrocarbons on the cytochrome P450 EROD (7-ethoxyresorufin-O-deethylase) enzymatic activity in roots. Plants were cultivated on hydrocarbon-contaminated soil (HCS) and spiked perlite. Phytoremediation was evaluated using 6.5 kg HCS (173 +/- 15 mg total petroleum hydrocarbons [TPH] g(-1) of dry soil) pots at different moisture contents; the average removal rate was 3.46-0.25 mg TPH g(-1) dry soil month(-1) and 48% was removed when moisture was kept at 60%. The aromatic hydrocarbon fraction was the mostly removed, 60%; aliphatic, 51%; and polar 24% after 24-month experiments. In unplanted pots, TPH concentration did not exhibit significant differences with respect to the initial concentration. We confirmed that the presence of hydrocarbons induced ERODactivity up to 6.5-fold. Moreover, short-term experiments (up to 13 d) with spiked perlite demonstrated that two EROD activities in roots contributed to the total detected; 60% was found in the cytosolic and 40% in the microsomal fraction. To our knowledge, this is the first work that tries to build links between the hydrocarbon-inducible character of ERODactivity in roots and the phytoremediation ability of C. laxus in highly contaminated soils. PMID:19260214

  17. Late embryogenesis abundant proteins

    PubMed Central

    Olvera-Carrillo, Yadira; Reyes, José Luis

    2011-01-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families, each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility. PMID:21447997

  18. A comprehensive two-dimensional gas chromatography method for analyzing extractable petroleum hydrocarbons in water and soil.

    PubMed

    Seeley, Stacy K; Bandurski, Steven V; Brown, Robert G; McCurry, James D; Seeley, John V

    2007-01-01

    A flow-switching two-dimensional gas chromatography (GCxGC) apparatus has been constructed that can operate at temperatures as high as 340 degrees C. This system is employed to analyze complex hydrocarbon mixtures such as diesel fuel, gas-oil, motor oil, and petroleum contaminated environmental samples. The GCxGC system generates two-dimensional chromatograms with minimal overlap between the aliphatic and aromatic regions This allows these compound classes to be independently quantitated without prior fractionation. The GCxGC system is used to analyze extracts of spiked water samples, wastewater, and soil. The accuracy of the method is compared to that of the Massachusetts Extractable Petroleum Hydrocarbons (MA EPH) method. The GCxGC system generates a quantitative accuracy similar to the MA EPH method for the analysis of spiked water samples. The GCxGC method and the MA EPH method generate comparable levels of total hydrocarbons when wastewater is analyzed, but the GCxGC method detects a significantly higher aromatic content and lower aliphatic content. Both the GCxGC method and MA EPH method measure comparable levels of aromatics in the soil samples. PMID:18078573

  19. Hydrocarbon Anions in Interstellar Clouds and Circumstellar Envelopes

    NASA Astrophysics Data System (ADS)

    Millar, T. J.; Walsh, C.; Cordiner, M. A.; Ní Chuimín, R.; Herbst, Eric

    2007-06-01

    The recent detection of the hydrocarbon anion C6H- in the interstellar medium has led us to investigate the synthesis of hydrocarbon anions in a variety of interstellar and circumstellar environments. We find that the anion/neutral abundance ratio can be quite large, on the order of at least a few percent, once the neutral has more than five carbon atoms. Detailed modeling shows that the column densities of C6H- observed in IRC +10 216 and TMC-1 can be reproduced. Our calculations also predict that other hydrocarbon anions, such as C4H- and C8H-, are viable candidates for detection in IRC +10 216, TMC-1, and photon-dominated regions such as the Horsehead Nebula.

  20. Chemical abundance of comets

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan; Wehinger, Peter

    1988-01-01

    Observations of NH2, (OI) and molecular ion spectra in comets represent virtually all of the volatile fraction of a comet nucleus. Their study leads to the N2, NH3, H2O, CO2, CO content of the nucleus, and thus to important constraints on models of comet formation and chemical processing in the primitive solar nebula. The observations of Comet Halley provide the opportunity for the first comprehensive determination of the abundances in a comet nucleus. The carbon isotope abundance ratio 12 C/13 C = 65 plus or minus 8 has been determined for Comet Halley from resolved rotational line structure in the CN B-X (0,0) band. The ratio is approximately 30 pct lower than the solar system value, 89, indicating either an enhancement of 13CN or a depletion of 12CN in the comet. Scenarios consistent with the observed carbon isotope ratio are: (1) formation of the comet at the periphery of the solar nebula in a fractionation-enriched 13CN region, or hidden from 12CN enrichment sources, and (2) capture of an interestellar comet. Long-slit charge coupled device (CCD) spectra obtained at the time of the spacecraft encounter of Comet Halley have also been analyzed. Scale lengths, production rates and column densities of CH, CN, C2 and NH2 were determined.

  1. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  2. Hydrocarbon residues in tissues of sea otters (`enhydra lutris`) collected following the Exxon Valdez oil spill. Marine mammal study 6-16. Exxon Valdez oil spill state/federal natural resource damage assessment. Final report

    SciTech Connect

    Ballachey, B.E.; Kloecker, K.A.

    1997-04-01

    Ten moderately to heavily oiled sea otters were collected in Prince William Sound during the Exxon Valdez oil spill and up to seven tissues from each were analyzed for hydrocarbons. Aliphatic and aromatic hydrocarbons were detected in all tissues. Concentrations of aromatic hydrocarbons in fat samples were an order of magnitude higher than in other tissues. The patterns of distribution of these hydrocarbons suggested crude oil as the source of contamination. However, there was variation among oiled otters in the concentrations of individual hydrocarbons, which may be due to differing proximate causes of mortality and varying lengths of time and sea otters survived following oil exposure. The concentrations of both aliphatic and aromatic hydrocarbons in the tissues of the ten oiled sea otters generally were higher than in tissues from 7 sea otters with no external oiling that were collected from prince William Sound in 1989 and 1990, or from 12 sea otters collected from an area in southeast Alaska which had not experienced an oil spill.

  3. Synthesis and Bioactivity of 5-Substituted-2-furoyl Diacylhydazide Derivatives with Aliphatic Chain

    PubMed Central

    Cui, Zining; Li, Xinghai; Tian, Fang; Yan, Xiaojing

    2014-01-01

    A series of 5-substituted-2-furoyl diacylhydazide derivatives with aliphatic chain were designed and synthesized. Their structures were characterized by IR, 1H NMR, elemental analysis, and X-ray single crystal diffraction. The anti-tumor bioassay revealed that some title compounds exhibited promising activity against the selected cancer cell lines, especially against the human promyelocytic leukemic cells (HL-60). Their fungicidal tests indicated that most of the title compounds showed significant anti-fungal activity. The preliminary structure-activity relationship showed that the aliphatic chain length and differences in the R2 group had obvious effects on the anti-tumor and anti-fungal activities. The bioassay results demonstrated that the title compounds hold great promise as novel lead compounds for further drug discovery. PMID:24853128

  4. Chiral surfactant-type catalyst: enantioselective reduction of long-chain aliphatic ketoesters in water.

    PubMed

    Lin, Zechao; Li, Jiahong; Huang, Qingfei; Huang, Qiuya; Wang, Qiwei; Tang, Lei; Gong, Deying; Yang, Jun; Zhu, Jin; Deng, Jingen

    2015-05-01

    A series of amphiphilic ligands were designed and synthesized. The rhodium complexes with the ligands were applied to the asymmetric transfer hydrogenation of broad range of long-chained aliphatic ketoesters in neat water. Quantitative conversion and excellent enantioselectivity (up to 99% ee) was observed for α-, β-, γ-, δ- and ε-ketoesters as well as for α- and β-acyloxyketone using chiral surfactant-type catalyst 2. The CH/π interaction and the strong hydrophobic interaction of long aliphatic chains between the catalyst and the substrate in the metallomicelle core played a key role in the catalytic transition state. Synergistic effects between the metal-catalyzed site and the hydrophobic microenvironment of the core in the micelle contributed to high stereoselectivity.

  5. [Synthesis, characterization and fluorescent properties of copper phthalocyanine derivates substituted by aliphatic alcohol].

    PubMed

    Zhang, Liang; Xu, Qing-Feng; Lu, Jian-Mei; Yao, She-Chun

    2007-04-01

    A series of copper phthalocyanine derivatives substituted by aliphatic chain were obtained by the reaction of tetra-formyl chloride copper phthalocyanine and aliphatic alcohol such as n-butyl alcohol, n-amyl alcohol, n-hexyl alcohol, n-caprylic alcohol and lauryl alcohol. IR, UV-Vis, elemental analysis and 1H NMR verified the structures and substituting degree. The solubility and the relationship between fluorescence and concentration and substituting group were studied in organic solution. It was confirmed that the solubility in organic solution was improved greatly, the fluorescence did not change in linear according to the concentration and the fluorescence of copper phthalocyanine derivatives substituted by the long alkyl was stronger than that substituted by the relatively short alkyl.

  6. Spacecraft Maximum Allowable Concentrations (SMACs) for C3 to C8 Aliphatic Saturated Aldehydes

    NASA Technical Reports Server (NTRS)

    Langford, Shannon D.

    2007-01-01

    Spacecraft maximum allowable concentrations (SMACs) for C3 to C8, straight-chain, aliphatic aldehydes have been previously assessed and have been documented in volume 4 of Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants (James, 2000). These aldehydes as well as associated physical properties are shown in Table 1. The C3 to C8 aliphatic aldehydes can enter the habitable compartments and contaminate breathing air of spacecraft by several routes including incomplete oxidation of alcohols in the Environmental Control and Life Support System (ECLSS) air revitalization subsystem, as a byproduct of human metabolism, through materials off-gassing, or during food preparation. These aldehydes have been detected in the atmosphere of manned space vehicles in the past. Analysis performed by NASA of crew cabin air samples from the Russian Mir Space Station revealed the presence of C3 to C8 aldehydes at concentrations peaking at approximately 0.1 mg/cu m.

  7. Remote detection of hydrocarbon seeps

    SciTech Connect

    Barringer, A. R.

    1985-05-14

    A method of detecting hydrocarbon seeps in a sea or in earth is disclosed. The method involves interrogating aerosols formed above the sea or earth surface with an intense beam of primary light radiation generated aboard an aircraft or other vehicle. The spectral composition of the beam is selected to induce secondary light radiation in certain hydrocarbon materials contained in aerosols generated by hydrocarbon seeps rising to the sea or earth surface. The secondary light radiation is detected aboard the aircraft and subjected to spectral analysis to determine whether the composition of the aerosols is characteristic of aerosols generated by hydrocarbon seeps. Apparatus for implementing the method is also disclosed.

  8. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    DOEpatents

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    2015-09-29

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase is dispersed.

  9. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea.

    PubMed Central

    Vannelli, T; Logan, M; Arciero, D M; Hooper, A B

    1990-01-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane, Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded. PMID:2339874

  10. Diverse Asymmetric Hydrofunctionalization of Aliphatic Internal Alkenes through Catalytic Regioselective Hydroboration.

    PubMed

    Xi, Yumeng; Hartwig, John F

    2016-06-01

    We report a two-step strategy for diverse hydrofunctionalizations of aliphatic internal alkenes with high regioselectivity and enantioselectivity. This process comprises a copper-catalyzed asymmetric hydroboration and subsequent stereospecific derivatizations of the secondary boronates. By this strategy, a range of compounds, such as amides, alkyl fluorides and bromides, alcohols, aldehydes, arenes, and heteroarenes, were synthesized from an internal alkene with high regioselectivity and enantioselectivity. Computational studies provide insight into the origins of these selectivities. PMID:27167490

  11. Derivatization to stabilize some aliphatic primary hydroxylamines for g.l.c. analysis.

    PubMed

    Beckett, A H; Achari, R

    1977-04-01

    By appropriate choice of trimethylsilylating and trifluoroacetylating reagents and organic solvents for extraction, stable derivative of aliphatic primary hydroxylamines metabolites, N-hydroxyphentermine, N-hydroxychlorphentermine, N-hydroxymexiletene, N-hydroxyphenethylamine, N-hydroxyamphetamine, and N-hydroxy-3,4-dimethoxyamphetamine, were obtained and examined by g.l.c. analysis without decomposition and without interference from the parent drug or other metabolic products. PMID:17670

  12. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    SciTech Connect

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    2015-03-17

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase id dispersed.

  13. New aliphatic alcohol and (Z)-4-coumaric acid glycosides from Acanthus ilicifolius.

    PubMed

    Wu, Jun; Zhang, Si; Huang, Jianshe; Xiao, Qiang; Li, Qingxin; Long, Lijuan; Huang, Liangmin

    2003-10-01

    From the aerial parts of Acanthus ilicifolius, a new aliphatic alcohol glycoside (ilicifolioside C) and two new (Z)-4-coumaric acid glycosides, (Z)-4-coumaric acid 4-O-beta-D-glucopyranoside and (Z)-4-coumaric acid 4-O-beta-D-apiofuranosyl-(1"-->2')-O-beta-D-glucopyranoside were isolated. The structural elucidations were based on the analyses of spectroscopic data. Z-Form 4-coumaric acid glycosides were first isolated from plant.

  14. Hydrocarbon conversion process

    SciTech Connect

    Ting, P.B.; Simpson, H.D.

    1986-02-04

    This patent describes a catalytic refining process in which a hydrocarbon oil is upgraded by contact with a particulate catalyst under conditions of elevated temperature and pressure in the presence of hydrogen. The catalyst, is made of a composition prepared by the method consisting of: (1) impregnating support particles with an aqueous impregnating solution comprising one or more dissolved Group VIB metal components and citric acid, in which the solution has a pH less than 1.0; and (2) calcining the impregnated support particles.

  15. Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos).

    PubMed

    Hoffman, D J

    1979-09-01

    Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil to assess their toxicity. The class composition of the mixture was similar to that of South Louisiana crude oil, an American Petroleum Institute reference oil. Application of 20 microliter of the mixture reduced embryonic survival by nearly 70%. The temporal pattern of embryonic death was similar to that after exposure to South Louisiana crude oil. Embryonic growth was stunted, as reflected by weight, crown-rump length, and bill length, and there was a significant increase in the incidence of abnormal survivors. When individual classes of aromatic hydrocarbons were tested, tetracyclics caused some embryonic death at the concentrations in the mixture. When classes were tested in all possible combinations of two, no combination appeared to be as toxic as the entire mixture. Addition of the tetracyclic compound chrysene to the aromatic mixture considerably enhanced embryotoxicity, but could not completely account for the toxicity of the crude oil. The presence of additional unidentified polycyclic aromatic hydrocarbons as well as methylated derivatives of polycyclic aromatic compounds such as chrysene may further account for the embryotoxicity of the crude oil. PMID:513150

  16. Hydrocarbons in surface sediments from the Changjiang (Yangtze River) Estuary, East China Sea.

    PubMed

    Bouloubassi, I; Fillaux, J; Saliot, A

    2001-12-01

    Sedimentary aliphatic (AH) and polycyclic aromatic hydrocarbons (PAHs) were studied in the Changjiang Estuary and the adjacent East China Sea. Total AH ranged from 2.20 to 11.82 microg g(-1) and consisted of n-alkanes and a dominant petroleum-related unresolved complex mixture (UCM). Within the n-alkanes, terrestrial plant wax compounds prevailed at nearly all stations. Of the PAHs, biogenic perylene dominated at stations receiving riverine inputs. Anthropogenic PAHs originating from combustion/pyrolysis processes varied from 17 to 157 ng g(-1), while fossil PAH concentrations ranged from 42 to 187 ng g(-1). Both biogenic and anthropogenic hydrocarbons are primarily derived from riverine discharges and accumulate at shallow-water stations. Distinct phase associations lead, nevertheless, to different sedimentation patterns. Fossil PAHs are enhanced at offshore stations where they are introduced directly by shipping activities. Biomarker fingerprints ascribe their source to Chinese crude oils. The overall levels of anthropogenic hydrocarbons are low compared to relevant areas worldwide and reveal a low/moderate level of hydrocarbon pollution. PMID:11827121

  17. Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos)

    USGS Publications Warehouse

    Hoffman, D.J.

    1979-01-01

    Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil to assess their toxicity. The class composition of the mixture was similar to that of South Louisiana crude oil, an American Petroleum Institute reference oil. Application of 20 microliter of the mixture reduced embryonic survival by nearly 70%. The temporal pattern of embryonic death was similar to that after exposure to South Louisiana crude oil. Embryonic growth was stunted, as reflected by weight, crown-rump length, and bill length, and there was a significant increase in the incidence of abnormal survivors. When individual classes of aromatic hydrocarbons were tested, tetracyclics caused some embryonic death at the concentrations in the mixture. When classes were tested in all possible combinations of two, no combination appeared to be as toxic as the entire mixture. Addition of the tetracyclic compound chrysene to the aromatic mixture considerably enhanced embryotoxicity, but could not completely account for the toxicity of the crude oil. The presence of additional unidentified polycyclic aromatic hydrocarbons as well as methylated derivatives of polycyclic aromatic compounds such as chrysene may further account for the embryotoxicity of the crude oil.

  18. DETERMINATION OF ALIPHATIC AMINES IN WATER USING DERIVATIZATION WITH FLUORESCEIN ISOTHIOCYANATE AND CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION.

    EPA Science Inventory

    Detection-oriented derivatization of aliphatic amines and amine functional groups in coumpounds of environmental interest was studied using fluorescein isothiocyanate (FITC) with separation/determination by capillary electrophoresis/laser-induced fluorescence. Determinative level...

  19. Abundances in Sagittarius Stars

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Zaggia, S.; Sbordone, L.; Santin, P.; Monaco, L.; Monai, S.; Molaro, P.; Marconi, G.; Girardi, L.; Ferraro, F.; di Marcantonio, P.; Caffau, E.; Bellazzini, M.

    The Sagittarius dwarf spheroidal is a very complex galaxy, which has undergone prolonged star formation. From the very first high resolution chemical analysis of Sgr stars, conducted using spectra obtained during the commissioning of UVES at VLT, it was clear that the star had undergone a high level of chemical processing, at variance with most of the other Local Group dwarf spheroidals. Thanks to FLAMES at VLT we now have accurate metallicities and abundances of alpha-chain elements for about 150 stars, which provide the first reliable metallicity distribution for this galaxy. Besides the already known high metallicity tail the existence of a metal-poor population has also been highlighted, although an assessment of the fraction of Sgr stars which belong to this population requires a larger sample. From our data it is also obvious that Sagittarius is a nucleated galaxy and that the centre of the nucleus coincides with M54, as already shown by Monaco et al.

  20. A laboratory investigation of the effectiveness of various skin and surface decontaminants for aliphatic polyisocyanates.

    PubMed

    Bello, Dhimiter; Woskie, Susan R; Streicher, Robert P; Stowe, Meredith H; Sparer, Judy; Redlich, Carrie A; Cullen, Mark R; Liu, Youcheng

    2005-07-01

    Isocyanates may cause contact dermatitis and respiratory sensitization leading to asthma. Dermal exposure to aliphatic isocyanates in auto body shops is very common. However, little is known about the effectiveness of available commercial products used for decontaminating aliphatic polyisocyanates. This experimental study evaluated the decontamination effectiveness of aliphatic polyisocyanates for several skin and surface decontaminants available for use in the auto body industry. The efficiency of two major decontamination mechanisms, namely (i) consumption of free isocyanate groups via chemical reactions with active hydrogen components of the decontaminant and (ii) physical removal processes such as dissolution were studied separately for each decontaminant. Considerable differences were observed among surface decontaminants in their rate of isocyanate consumption, of which those containing free amine groups performed the best. Overall, Pine-Sol(R) MEA containing monoethanolamine was the most efficient surface decontaminant, operating primarily via chemical reaction with the isocyanate group. Polypropylene glycol (PPG) had the highest physical removal efficiency and the lowest reaction rate with isocyanates. All tested skin decontaminants performed similarly, accomplishing decontamination primarily via physical processes and removing 70-80% of isocyanates in one wiping. Limitations of these skin decontaminants are discussed and alternatives presented. In vitro testing using animal skins and in vivo testing with field workers are being conducted to further assess the efficiency and identify related determinants. PMID:15986052