Science.gov

Sample records for abundant ant species

  1. Species richness, equitability, and abundance of ants in disturbed landscapes

    USGS Publications Warehouse

    Graham, J.H.; Krzysik, A.J.; Kovacic, D.A.; Duda, J.J.; Freeman, D.C.; Emlen, J.M.; Zak, J.C.; Long, W.R.; Wallace, M.P.; Chamberlin-Graham, C.; Nutter, J.P.; Balbach, H.E.

    2009-01-01

    Ants are used as indicators of environmental change in disturbed landscapes, often without adequate understanding of their response to disturbance. Ant communities in the southeastern United States displayed a hump-backed species richness curve against an index of landscape disturbance. Forty sites at Fort Benning, in west-central Georgia, covered a spectrum of habitat disturbance (military training and fire) in upland forest. Sites disturbed by military training had fewer trees, less canopy cover, more bare ground, and warmer, more compact soils with shallower A-horizons. We sampled ground-dwelling ants with pitfall traps, and measured 15 habitat variables related to vegetation and soil. Ant species richness was greatest with a relative disturbance of 43%, but equitability was greatest with no disturbance. Ant abundance was greatest with a relative disturbance of 85%. High species richness at intermediate disturbance was associated with greater within-site spatial heterogeneity. Species richness was also associated with intermediate values of the normalized difference vegetation index (NDVI), a correlate of net primary productivity (NPP). Available NPP (the product of NDVI and the fraction of days that soil temperature exceeded 25 ??C), however, was positively correlated with species richness, though not with ant abundance. Species richness was unrelated to soil texture, total ground cover, and fire frequency. Ant species richness and equitability are potential state indicators of the soil arthropod community. Moreover, equitability can be used to monitor ecosystem change. ?? 2008 Elsevier Ltd.

  2. [Composition, abundance and infestation rate of ant species in a children's hospital in the city of Palmas, Tocantins, Brazil].

    PubMed

    Bragança, Marcos A L; Lima, Jefferson D

    2010-01-01

    This first survey of the ant fauna in a children's hospital in the city of Palmas, state of Tocantins, compares species composition, abundance and infestation rate of ants between rainy and dry seasons, day and night periods, and among 15 hospital sectors. Forty-eight collections, being 12 diurnal and 12 nocturnal in each season using five attractive baits distributed per sector, maintained for 3h per sampling. A total of 34,309 ants were collected, distributed in 12 species: Acromyrmex sp., Brachymyrmex sp., Camponotus spp. (four morphospecies), Dorymyrmex sp., Tetramorium sp., Solenopsis globularia (Creighton), Solenopsis saevissima Smith, Tapinoma melanocephalum (Fabricius) and Paratrechina longicornis (Latreille). The hospital presented an average building infestation rate (40.3%), when compared with hospitals from other Brazilian regions. In general, there was no difference in the species composition between seasons and the period of the day, although abundance of ants was higher at night. The dry season and the nocturnal period showed the highest infestation rate, mainly by T.melanocephalum and S.globularia. Gynecologic ward, lactation unit, preconception and pediatric ward access ramp showed higher infestation rate, although these varied between seasons. The significant infestation levels by the three species above, especially in sectors with restricted access such as lactation unit, laboratory, Intensive Care Unit e surgery center, indicate potential risks for contamination of patients by multi resistant pathogens possibly present in ants' bodies, as verified in others studies. PMID:20305908

  3. How Ants Drop Out: Ant Abundance on Tropical Mountains

    PubMed Central

    Longino, John T.; Branstetter, Michael G.; Colwell, Robert K.

    2014-01-01

    In tropical wet forests, ants are a large proportion of the animal biomass, but the factors determining abundance are not well understood. We characterized ant abundance in the litter layer of 41 mature wet forest sites spread throughout Central America (Chiapas, Guatemala, Honduras, Nicaragua, and Costa Rica) and examined the impact of elevation (as a proxy for temperature) and community species richness. Sites were intentionally chosen to minimize variation in precipitation and seasonality. From sea level to 1500 m ant abundance very gradually declined, community richness declined more rapidly than abundance, and the local frequency of the locally most common species increased. These results suggest that within this elevational zone, density compensation is acting, maintaining high ant abundance as richness declines. In contrast, in sites above 1500 m, ant abundance dropped abruptly to much lower levels. Among these high montane sites, community richness explained much more of the variation in abundance than elevation, and there was no evidence of density compensation. The relative stability of abundance below 1500 m may be caused by opposing effects of temperature on productivity and metabolism. Lower temperatures may decrease productivity and thus the amount of food available for consumers, but slower metabolisms of consumers may allow maintenance of higher biomass at lower resource supply rates. Ant communities at these lower elevations may be highly interactive, the result of continuous habitat presence over geological time. High montane sites may be ephemeral in geological time, resulting in non-interactive communities dominated by historical and stochastic processes. Abundance in these sites may be determined by the number of species that manage to colonize and/or avoid extinction on mountaintops. PMID:25098722

  4. Influences on the structure of suburban ant (Hymenoptera: Formicidae) communities and the abundance of Tapinoma sessile.

    PubMed

    Toennisson, T A; Sanders, N J; Klingeman, W E; Vail, K M

    2011-12-01

    Urbanization can alter the organization of ant communities and affect populations of urban pest ants. In this study, we sampled ant communities in urban and suburban yards to understand the habitat factors that shape these communities and influence the abundance of a common pest species, Tapinoma sessile (Say). We used pitfall traps to sample ant communities and a combination of pitfall traps and baiting to collect T. sessile at 24 sites in Knoxville, TN. In total, we collected 46 ant species. Ant species richness ranged from seven to 24 species per yard. Ant species richness tended to be lowest near houses, whereas T. sessile abundance was highest near houses. The best predictors of ant species richness in yards were canopy cover and presence of leaf litter: ant species richness peaked at mid-levels of canopy cover and was negatively correlated with the presence of leaf litter. Tapinoma sessile abundance increased with presence of logs, boards, or landscaping timbers and leaf litter in yards. Our results indicate that ant communities and the abundance of particular pest species in these urban and suburban landscapes are shaped by many of the same factors that structure ant communities in less anthropogenically disturbed environments. PMID:22217754

  5. Occurrence and abundance of ants, reptiles, and mammals: Chapter 7

    USGS Publications Warehouse

    2011-01-01

    Sagebrush (Artemisia spp.)- associated wildlife are threatened by habitat loss and fragmentation and by impacts associated with anthropogenic disturbances, including energy development. Understanding how species of concern as well as other wildlife including insects, reptiles, and mammals respond to type and spatial scale of disturbance is critical to managing future land uses and identifying sites that are important for conservation. We developed statistical models to describe species occurrence or abundance, based on area searches in 7.29-ha survey blocks, across the Wyoming Basins Ecoregional Assessment (WBEA) area for six shrub steppe-associated species: harvester ant (Pogonomyrmex spp.), thatch ant (Formica spp.), short-horned lizard (Phrynosoma hernandesi), white-tailed jackrabbit (Lepus townsendii), cottontail (Sylvilagus spp.) and least chipmunk (Tamius minimus). We modeled patterns in occupancy or abundance relative to multi-scale measures of vegetation type and pattern, abiotic site characteristics, and anthropogenic disturbance factors. Sagebrush habitat was a strong predictor of occurrence for shorthorned lizards and white-tailed jackrabbits, but weak for the other four species. Vegetation and abiotic characteristics were strong determinants of species occurrence, although the scale of response was not consistent among species. All species, with the exception of the short-horned lizard, responded to anthropogenic disturbance, although responses again varied as a function of scale and direction (negative and positive influences). Our results improve our understanding of how environmental and anthropogenic factors affect species distributions across the WBEA area and facilitate a multi-species approach to management of this sagebrush ecosystem. Key words: abundance, anthropogenic disturbance, cottontail, habitat, harvester ant, least chipmunk, occurrence, pygmy rabbit, short-horned lizard, thatch ant, white-tailed jackrabbit.

  6. Ant Abundance along a Productivity Gradient: Addressing Two Conflicting Hypotheses.

    PubMed

    Segev, Udi; Kigel, Jaime; Lubin, Yael; Tielbörger, Katja

    2015-01-01

    The number of individuals within a population or community and their body size can be associated with changes in resource supply. While these relationships may provide a key to better understand the role of abiotic vs. biotic constraints in animal communities, little is known about the way size and abundance of organisms change along resource gradients. Here, we studied this interplay in ants, addressing two hypotheses with opposite predictions regarding variation in population densities along resource gradients- the 'productivity hypothesis' and the 'productivity-based thinning hypothesis'. The hypotheses were tested in two functional groups of ground-dwelling ants that are directly primary consumers feeding on seeds: specialized seed-eaters and generalist species. We examined variations in colony density and foraging activity (a size measurement of the forager caste) in six ant assemblages along a steep productivity gradient in a semi-arid region, where precipitation and plant biomass vary 6-fold over a distance of 250km. An increase in the density or foraging activity of ant colonies along productivity gradients is also likely to affect competitive interactions among colonies, and consequently clinal changes in competition intensity were also examined. Ant foraging activity increased with productivity for both functional groups. However, colony density revealed opposing patterns: it increased with productivity for the specialized seed-eaters, but decreased for the generalist species. Competition intensity, evaluated by spatial partitioning of species at food baits and distribution of colonies, was uncorrelated with productivity in the specialized seed-eaters, but decreased with increasing productivity in the generalists. Our results provide support for two contrasting hypotheses regarding the effect of resource availability on the abundance of colonial organisms- the 'productivity hypothesis' for specialized seed-eaters and the 'productivity-based thinning

  7. Ant Abundance along a Productivity Gradient: Addressing Two Conflicting Hypotheses

    PubMed Central

    Segev, Udi; Kigel, Jaime; Lubin, Yael; Tielbörger, Katja

    2015-01-01

    The number of individuals within a population or community and their body size can be associated with changes in resource supply. While these relationships may provide a key to better understand the role of abiotic vs. biotic constraints in animal communities, little is known about the way size and abundance of organisms change along resource gradients. Here, we studied this interplay in ants, addressing two hypotheses with opposite predictions regarding variation in population densities along resource gradients- the ‘productivity hypothesis’ and the ‘productivity-based thinning hypothesis’. The hypotheses were tested in two functional groups of ground-dwelling ants that are directly primary consumers feeding on seeds: specialized seed-eaters and generalist species. We examined variations in colony density and foraging activity (a size measurement of the forager caste) in six ant assemblages along a steep productivity gradient in a semi-arid region, where precipitation and plant biomass vary 6-fold over a distance of 250km. An increase in the density or foraging activity of ant colonies along productivity gradients is also likely to affect competitive interactions among colonies, and consequently clinal changes in competition intensity were also examined. Ant foraging activity increased with productivity for both functional groups. However, colony density revealed opposing patterns: it increased with productivity for the specialized seed-eaters, but decreased for the generalist species. Competition intensity, evaluated by spatial partitioning of species at food baits and distribution of colonies, was uncorrelated with productivity in the specialized seed-eaters, but decreased with increasing productivity in the generalists. Our results provide support for two contrasting hypotheses regarding the effect of resource availability on the abundance of colonial organisms- the ‘productivity hypothesis’ for specialized seed-eaters and the

  8. Temporal Variation in the Abundance and Richness of Foliage-Dwelling Ants Mediated by Extrafloral Nectar.

    PubMed

    Belchior, Ceres; Sendoya, Sebastián F; Del-Claro, Kleber

    2016-01-01

    Plants bearing extrafloral nectaries (EFNs) are common in the Brazilian cerrado savanna, where climatic conditions having marked seasonality influence arboreal ant fauna organization. These ant-plant interactions have rarely been studied at community level. Here, we tested whether: 1) EFN-bearing plants are more visited by ants than EFN-lacking plants; 2) ant visitation is higher in the rainy season than in dry season; 3) plants producing young leaves are more visited than those lacking young leaves in the rainy season; 4) during the dry season, plants with old leaves and flowers are more visited than plants with young leaves and bare of leaves or flowers; 5) the composition of visiting ant fauna differs between plants with and without EFNs. Field work was done in a cerrado reserve near Uberlândia, MG State, Brazil, along ten transects (total area 3,000 m2), in the rainy (October-January) and dry seasons (April-July) of 2010-2011. Plants (72 species; 762 individuals) were checked three times per season for ant presence. Results showed that 21 species (29%) and 266 individuals (35%) possessed EFNs. These plants attracted 38 ant species (36 in rainy, 26 in dry season). In the rainy season, plants with EFNs had higher ant abundance/richness than plants without EFNs, but in the dry season, EFN presence did not influence ant visitation. Plant phenology affected ant richness and abundance in different ways: plants with young leaves possessed higher ant richness in the rainy season, but in the dry season ant abundance was higher on plants possessing old leaves or flowers. The species composition of plant-associated ant communities, however, did not differ between plants with and without EFNs in either season. These findings suggest that the effect of EFN presence on a community of plant-visiting ants is context dependent, being conditioned to seasonal variation. PMID:27438722

  9. Temporal Variation in the Abundance and Richness of Foliage-Dwelling Ants Mediated by Extrafloral Nectar

    PubMed Central

    Belchior, Ceres; Sendoya, Sebastián F.

    2016-01-01

    Plants bearing extrafloral nectaries (EFNs) are common in the Brazilian cerrado savanna, where climatic conditions having marked seasonality influence arboreal ant fauna organization. These ant-plant interactions have rarely been studied at community level. Here, we tested whether: 1) EFN-bearing plants are more visited by ants than EFN-lacking plants; 2) ant visitation is higher in the rainy season than in dry season; 3) plants producing young leaves are more visited than those lacking young leaves in the rainy season; 4) during the dry season, plants with old leaves and flowers are more visited than plants with young leaves and bare of leaves or flowers; 5) the composition of visiting ant fauna differs between plants with and without EFNs. Field work was done in a cerrado reserve near Uberlândia, MG State, Brazil, along ten transects (total area 3,000 m2), in the rainy (October-January) and dry seasons (April-July) of 2010–2011. Plants (72 species; 762 individuals) were checked three times per season for ant presence. Results showed that 21 species (29%) and 266 individuals (35%) possessed EFNs. These plants attracted 38 ant species (36 in rainy, 26 in dry season). In the rainy season, plants with EFNs had higher ant abundance/richness than plants without EFNs, but in the dry season, EFN presence did not influence ant visitation. Plant phenology affected ant richness and abundance in different ways: plants with young leaves possessed higher ant richness in the rainy season, but in the dry season ant abundance was higher on plants possessing old leaves or flowers. The species composition of plant-associated ant communities, however, did not differ between plants with and without EFNs in either season. These findings suggest that the effect of EFN presence on a community of plant-visiting ants is context dependent, being conditioned to seasonal variation. PMID:27438722

  10. Multiple Ant Species Tending Lac Insect Kerria yunnanensis (Hemiptera: Kerriidae) Provide Asymmetric Protection against Parasitoids

    PubMed Central

    Li, Qiao; Hoffmann, Benjamin D.; Zhang, Wei

    2014-01-01

    This study investigated the effects of ant attendance on the parasitoid community and parasitism of lac insect Kerria yunnanensis aggregations in Yunnan province, China. We manipulated ant attendance to establish three treatments: (1) ant exclusion; (2) low ant attendance by several ant species; and (3) high ant attendance by Crematogaster macaoensis. Five parasitoid species were collected, with two species contributing 82.7 and 13.2% of total abundance respectively. Total parasitoid abundance was lowest in the February sample when K. yunnanensis was in its younger life stage, being significantly lower in the ant exclusion treatment. In April, all three treatments had significantly different parasitoid abundances, being highest in the ant exclusion treatment and the lowest in the high ant attendance treatment. When ants were present, there were strong negative relationships between total parasitoid abundance and ant abundance, with the relationships being dependent upon the ant species composition and abundance. The patterns of total parasitoid abundance were driven by the two most abundant parasitoid species. Parasitoid species richness did not differ among treatments or between sample times, however, multivariate analysis confirmed that overall parasitoid community structure differed significantly among treatments and between sample times, with the high ant attendance treatment differing most from the other two treatments. Interestingly the absence of ants did not result in increased parasitism from four of the five parasitoids. Ants in lac insect farming systems have a clear role for agricultural pest management. A full understanding of the asymmetric abilities of ants to influence parasitoid communities, and affect parasitism of hosts will require further experimental manipulation to assess the relative roles of 1) the abundance of each individual ant species on parasitoid access to hosts, 2) competition among parasitoids, and 3) the interaction between the

  11. Multiple ant species tending lac insect Kerria yunnanensis (Hemiptera: Kerriidae) provide asymmetric protection against parasitoids.

    PubMed

    Chen, Youqing; Lu, Zhixing; Li, Qiao; Hoffmann, Benjamin D; Zhang, Wei

    2014-01-01

    This study investigated the effects of ant attendance on the parasitoid community and parasitism of lac insect Kerria yunnanensis aggregations in Yunnan province, China. We manipulated ant attendance to establish three treatments: (1) ant exclusion; (2) low ant attendance by several ant species; and (3) high ant attendance by Crematogaster macaoensis. Five parasitoid species were collected, with two species contributing 82.7 and 13.2% of total abundance respectively. Total parasitoid abundance was lowest in the February sample when K. yunnanensis was in its younger life stage, being significantly lower in the ant exclusion treatment. In April, all three treatments had significantly different parasitoid abundances, being highest in the ant exclusion treatment and the lowest in the high ant attendance treatment. When ants were present, there were strong negative relationships between total parasitoid abundance and ant abundance, with the relationships being dependent upon the ant species composition and abundance. The patterns of total parasitoid abundance were driven by the two most abundant parasitoid species. Parasitoid species richness did not differ among treatments or between sample times, however, multivariate analysis confirmed that overall parasitoid community structure differed significantly among treatments and between sample times, with the high ant attendance treatment differing most from the other two treatments. Interestingly the absence of ants did not result in increased parasitism from four of the five parasitoids. Ants in lac insect farming systems have a clear role for agricultural pest management. A full understanding of the asymmetric abilities of ants to influence parasitoid communities, and affect parasitism of hosts will require further experimental manipulation to assess the relative roles of 1) the abundance of each individual ant species on parasitoid access to hosts, 2) competition among parasitoids, and 3) the interaction between the

  12. Patterns of ant (Hymenoptera: Formicidae) richness and relative abundance along an aridity gradient in Western Venezuela.

    PubMed

    Pérez-Sánchez, A J; Lattke, J E; Viloria, A L

    2013-04-01

    In xeric ecosystems, ant diversity response to aridity varies with rainfall magnitude and gradient extension. At a local scale and with low precipitation regimes, increased aridity leads to a reduction of species richness and an increased relative abundance for some ant species. In order to test this pattern in tropical environments, ant richness and relative abundance variation were evaluated along 35 km of an aridity gradient in the Araya Peninsula, state of Sucre, Venezuela. Three sampling stations comprising five transects each were set up. Pitfall traps and direct collecting from vegetation were assessed per transect. Overall, 52 species, 23 genera, and 7 subfamilies of ants were recorded in the peninsula. The total number of species and genera recorded by both sampling stations and transects decreased linearly with increasing aridity. Total relative abundance was highest in the most arid portion of the peninsula, with Crematogaster rochai (Forel) and Camponotus conspicuus zonatus (Emery) (Hymenoptera: Formicidae) being the numerically dominant species. Spatial and multivariate analyses revealed significant changes in ant composition every 11 km of distance, and showed a decrease of ant diversity with the increase of harsh conditions in the gradient. Here, we discuss how local geographic and topographic features of Araya originate the aridity gradient and so affect the microhabitat conditions for the ant fauna. PMID:23949745

  13. Species diversity and distribution patterns of the ants of Amazonian Ecuador.

    PubMed

    Ryder Wilkie, Kari T; Mertl, Amy L; Traniello, James F A

    2010-01-01

    Ants are among the most diverse, abundant and ecologically significant organisms on earth. Although their species richness appears to be greatest in the New World tropics, global patterns of ant diversity and distribution are not well understood. We comprehensively surveyed ant diversity in a lowland primary rainforest in Western Amazonia, Ecuador using canopy fogging, pitfall traps, baits, hand collecting, mini-Winkler devices and subterranean probes to sample ants. A total of 489 ant species comprising 64 genera in nine subfamilies were identified from samples collected in only 0.16 square kilometers. The most species-rich genera were Camponotus, Pheidole, Pseudomyrmex, Pachycondyla, Brachymyrmex, and Crematogaster. Camponotus and Pseudomyrmex were most diverse in the canopy, while Pheidole was most diverse on the ground. The three most abundant ground-dwelling ant genera were Pheidole, Solenopsis and Pyramica. Crematogaster carinata was the most abundant ant species in the canopy; Wasmannia auropunctata was most abundant on the ground, and the army ant Labidus coecus was the most abundant subterranean species. Ant species composition among strata was significantly different: 80% of species were found in only one stratum, 17% in two strata, and 3% in all three strata. Elevation and the number of logs and twigs available as nest sites were significant predictors of ground-dwelling ant species richness. Canopy species richness was not correlated with any ecological variable measured. Subterranean species richness was negatively correlated with depth in the soil. When ant species were categorized using a functional group matrix based on diet, nest-site preference and foraging ecology, the greatest diversity was found in Omnivorous Canopy Nesters. Our study indicates ant species richness is exceptionally high at Tiputini. We project 647-736 ant species in this global hotspot of biodiversity. Considering the relatively small area surveyed, this region of western

  14. Species Diversity and Distribution Patterns of the Ants of Amazonian Ecuador

    PubMed Central

    Ryder Wilkie, Kari T.; Mertl, Amy L.; Traniello, James F. A.

    2010-01-01

    Ants are among the most diverse, abundant and ecologically significant organisms on earth. Although their species richness appears to be greatest in the New World tropics, global patterns of ant diversity and distribution are not well understood. We comprehensively surveyed ant diversity in a lowland primary rainforest in Western Amazonia, Ecuador using canopy fogging, pitfall traps, baits, hand collecting, mini-Winkler devices and subterranean probes to sample ants. A total of 489 ant species comprising 64 genera in nine subfamilies were identified from samples collected in only 0.16 square kilometers. The most species-rich genera were Camponotus, Pheidole, Pseudomyrmex, Pachycondyla, Brachymyrmex, and Crematogaster. Camponotus and Pseudomyrmex were most diverse in the canopy, while Pheidole was most diverse on the ground. The three most abundant ground-dwelling ant genera were Pheidole, Solenopsis and Pyramica. Crematogaster carinata was the most abundant ant species in the canopy; Wasmannia auropunctata was most abundant on the ground, and the army ant Labidus coecus was the most abundant subterranean species. Ant species composition among strata was significantly different: 80% of species were found in only one stratum, 17% in two strata, and 3% in all three strata. Elevation and the number of logs and twigs available as nest sites were significant predictors of ground-dwelling ant species richness. Canopy species richness was not correlated with any ecological variable measured. Subterranean species richness was negatively correlated with depth in the soil. When ant species were categorized using a functional group matrix based on diet, nest-site preference and foraging ecology, the greatest diversity was found in Omnivorous Canopy Nesters. Our study indicates ant species richness is exceptionally high at Tiputini. We project 647–736 ant species in this global hotspot of biodiversity. Considering the relatively small area surveyed, this region of western

  15. The Effect of Urbanization on Ant Abundance and Diversity: A Temporal Examination of Factors Affecting Biodiversity

    PubMed Central

    Buczkowski, Grzegorz; Richmond, Douglas S.

    2012-01-01

    Numerous studies have examined the effect of urbanization on species richness and most studies implicate urbanization as the major cause of biodiversity loss. However, no study has identified an explicit connection between urbanization and biodiversity loss as the impact of urbanization is typically inferred indirectly by comparing species diversity along urban-rural gradients at a single time point. A different approach is to focus on the temporal rather than the spatial aspect and perform “before and after” studies where species diversity is cataloged over time in the same sites. The current study examined changes in ant abundance and diversity associated with the conversion of natural habitats into urban habitats. Ant abundance and diversity were tracked in forested sites that became urbanized through construction and were examined at 3 time points - before, during, and after construction. On average, 4.3±1.2 unique species were detected in undisturbed plots prior to construction. Ant diversity decreased to 0.7±0.8 species in plots undergoing construction and 1.5±1.1 species in plots 1 year after construction was completed. With regard to species richness, urbanization resulted in the permanent loss of 17 of the 20 species initially present in the study plots. Recovery was slow and only 3 species were present right after construction was completed and 4 species were present 1 year after construction was completed. The second objective examined ant fauna recovery in developed residential lots based on time since construction, neighboring habitat quality, pesticide inputs, and the presence of invasive ants. Ant diversity was positively correlated with factors that promoted ecological recovery and negatively correlated with factors that promoted ecological degradation. Taken together, these results address a critical gap in our knowledge by characterizing the short- and long-term the effects of urbanization on the loss of ant biodiversity. PMID:22876291

  16. [Testing the energetic equivalence rule for litter ants: effects of different methods for abundance estimates in tropical rainforest].

    PubMed

    Vargas, André B; Queiroz, Jarbas M; Mayhé-Nunes, Antônio J; Souza, Guilherme O; Ramos, Elaine F

    2009-01-01

    The Energetic Equivalence Rule (EER) states that species tend to consume energy independent of their body size. Here, the EER was tested for litter ants using body size and abundance data. Rainforest ants were obtained using pitfall traps and Winkler extractor. The abundance data from the Winkler extractions confirmed the EER, while the pitfall traps rejected it. Combination of abundance from pitfall catches and Winkler extractions either confirmed or rejected the EER. Further studies should focus on the interaction between sampling techniques and habitat types in the test of EER for ant communities. PMID:20098936

  17. Samsum ant, Brachyponera sennaarensis (Formicidae: Ponerinae): Distribution and abundance in Saudi Arabia

    PubMed Central

    Al-Khalifa, Mohammed Saleh; Mashaly, Ashraf Mohamed Ali; Siddiqui, Mohammed Iqbal; Al-Mekhlafi, Fahd Abdu

    2015-01-01

    Invasive species are capable of causing considerable damage to natural ecosystems, agriculture and economies throughout the World. Samsum ant, Brachyponera (Pachycondyla) sennaarensis has been a reason for medical implication and social nuisance through its poisonous and severely painful sting causing anaphylactic shock in many cases. We surveyed for the presence of the samsum ant in various provinces of Saudi Arabia. B. sennaarensis was the abundant Ponerinae species in human settlements. In the Eastern provinces, however, few samples were collected, and none were found in the Northern and Western provinces. Infestations of B. sennaarensis were particularly severe in the spring and summer seasons, when the ants make nests in moist areas and in cracks in cemented structures, whereas the extent of infestation reduced in winter seasons. PMID:26288561

  18. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    PubMed Central

    Campos-Navarrete, María José; Abdala-Roberts, Luis; Munguía-Rosas, Miguel A.; Parra-Tabla, Víctor

    2015-01-01

    Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and –within each of these two plot types– mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity. PMID:26241962

  19. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    PubMed

    Campos-Navarrete, María José; Abdala-Roberts, Luis; Munguía-Rosas, Miguel A; Parra-Tabla, Víctor

    2015-01-01

    Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and -within each of these two plot types- mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity. PMID:26241962

  20. Habitat disturbance and the diversity and abundance of ants (Formicidae) in the Southeastern Fall-Line Sandhills

    USGS Publications Warehouse

    Graham, J.H.; Hughie, H.H.; Jones, S.; Wrinn, K.; Krzysik, A.J.; Duda, J.J.; Freeman, D. Carl; Emlen, J.M.; Zak, J.C.; Kovacic, D.A.; Chamberlin-Graham, C.; Balbach, H.

    2004-01-01

    We examined habitat disturbance, species richness, equitability, and abundance of ants in the Fall-Line Sandhills, at Fort Benning, Georgia. We collected ants with pitfall traps, sweep nets, and by searching tree trunks. Disturbed areas were used for military training; tracked and wheeled vehicles damaged vegetation and soils. Highly disturbed sites had fewer trees, diminished ground cover, warmer soils in the summer, and more compacted soils with a shallower A-horizon. We collected 48 species of ants, in 23 genera (141,468 individuals), over four years of sampling. Highly disturbed areas had fewer species, and greater numbers of ants than did moderately or lightly disturbed areas. The ant communities in disturbed areas were also less equitable, and were dominated by Dorymyrmex smithi.

  1. Habitat disturbance and the diversity and abundance of ants (Formicidae) in the Southeastern Fall-Line Sandhills

    PubMed Central

    Graham, John H.; Hughie, Hoyt H.; Jones, Susan; Wrinn, Kerri; Krzysik, Anthony J.; Duda, Jeffrey J.; Freeman, D. Carl; Emlen, John M.; Zak, John C.; Kovacic, David A.; Chamberlin-Graham, Catherine; Balbach, Harold

    2004-01-01

    We examined habitat disturbance, species richness, equitability, and abundance of ants in the Fall-Line Sandhills, at Fort Benning, Georgia. We collected ants with pitfall traps, sweep nets, and by searching tree trunks. Disturbed areas were used for military training; tracked and wheeled vehicles damaged vegetation and soils. Highly disturbed sites had fewer trees, diminished ground cover, warmer soils in the summer, and more compacted soils with a shallower A-horizon. We collected 48 species of ants, in 23 genera (141,468 individuals), over four years of sampling. Highly disturbed areas had fewer species, and greater numbers of ants than did moderately or lightly disturbed areas. The ant communities in disturbed areas were also less equitable, and were dominated by Dorymyrmex smithi. PMID:15861245

  2. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    PubMed Central

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  3. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants.

    PubMed

    Ossola, Alessandro; Nash, Michael A; Christie, Fiona J; Hahs, Amy K; Livesley, Stephen J

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  4. Preference of food particle size among several urban ant species.

    PubMed

    Hooper-Bùi, Linda M; Appel, Arthur G; Rust, Michael K

    2002-12-01

    Appropriate particle size may be a critical characteristic for effective granular ant baits. We examined the particle size preference of six species of pest ants to an anchovy-based bait. We also examined head capsule widths of Argentine ants, Linepithema humile (Mayr) (mean = 0.54 mm), California harvester ants, Pogonomyrmex californicus (Buckley) (mean = 1.63 mm), red imported fire ants, Solenopsis invicta Buren (mean = 0.9 mm), and southern fire ants, Solenopsis xyloni McCook (mean = 0.76 mm) and compared them with the first and second most preferred particle size. There were differences between particle size of which the most mass was removed and of which there were more particles removed by ants. California Argentine ants, southern fire ants, and Alabama Argentine ants removed more 840 to 1,000-microm particle mass of the anchovy diet but had more visits to dishes containing 420 to 590 microm particles. California harvester ants and Allegheny mound ants, Formica spp., removed more >2,000 microm particle mass but visited dishes containing 1,000 to 2,000 microm particles more often. Red imported fire ants also removed more >2,000 microm particle mass but visited dishes with 590 to 840-microm particles most often. Pharaoh ants, Monomorium pharaonis (L.), removed and visited 420 to 590-microm particles more than any other size. A linear regression model determined that particle size preferred by each ant species relates to forager head width. The majority of particles of commercial ant bait, including Amdro, Ascend, Award, Bushwhacker, Max Force with fipronil, and old and new formulations of Max Force with hydramethylnon, were 1,000 to 2,000 microm, but the majority of Niban particles were <420 microm. Altering the size of particles of toxic ant baits to fit the particle size preference of each pest ant species may increase the efficacy of ant baits. PMID:12539835

  5. Reactions by army ant workers to nestmates having had contact with sympatric ant species.

    PubMed

    Dejean, Alain; Corbara, Bruno

    2014-11-01

    It was recently shown that Pheidole megacephala colonies (an invasive species originating from Africa) counterattack when raided by the army ant, Eciton burchellii. The subsequent contact permits Pheidole cuticular compounds (that constitute the "colony odour") to be transferred onto the raiding Eciton, which are then not recognised by their colony-mates and killed. Using a simple method for transferring cuticular compounds, we tested if this phenomenon occurs for Neotropical ants. Eciton workers rubbed with ants from four sympatric species were released among their colony-mates. Individuals rubbed with Solenopsis saevissima or Camponotus blandus workers were attacked, but not those rubbed with Atta sexdens, Pheidole fallax or with colony-mates (control lot). So, the chemicals of certain sympatric ant species, but not others, trigger intra-colonial aggressiveness in Eciton. We conclude that prey-ant chemicals might have played a role in the evolution of army ant predatory behaviour, likely influencing prey specialization in certain cases. PMID:25444708

  6. Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community.

    PubMed

    Blüthgen, Nico; Gebauer, Gerhard; Fiedler, Konrad

    2003-11-01

    For diverse communities of omnivorous insects such as ants, the extent of direct consumption of plant-derived resources vs. predation is largely unknown. However, determination of the extent of "herbivory" among ants may be crucial to understand the hyper-dominance of ants in tropical tree crowns, where prey organisms tend to occur scarcely and unpredictably. We therefore examined N and C stable isotope ratios (delta(15)N and delta(13)C) in 50 ant species and associated insects and plants from a tropical rainforest in North Queensland, Australia. Variation between ant species was pronounced (range of species means: 7.1 per thousand in delta(15)N and 6.8 per thousand in delta(13)C). Isotope signatures of the entire ant community overlapped with those of several herbivorous as well as predacious arthropods. Variability in delta(15)N between ants was not correlated with plant delta(15)N from which they were collected. Ant species spread out in a continuum between largely herbivorous and purely predacious taxa, with a high degree of omnivory. Ant species' delta(15)N were consistent with the trophic level predicted by natural feeding observations, but not their delta(13)C. Low delta(15)N levels were recorded for ant species that commonly forage for nectar on understorey or canopy plants, intermediate levels for species with large colonies that were highly abundant on nectar and honeydew sources and were predacious, and the highest levels for predominantly predatory ground-foraging species. Colonies of the dominant weaver-ants (Oecophylla smaragdina) had significantly lower delta(15)N in mature forests (where preferred honeydew and nectar sources are abundant) than in open secondary vegetation. N concentration of ant dry mass showed only very limited variability across species and no correlation with trophic levels. This study demonstrates that stable isotopes provide a powerful tool for quantitative analyses of trophic niche partitioning and plasticity in complex and

  7. Army ants in four forests: geographic variation in raid rates and species composition.

    PubMed

    O'Donnell, Sean; Lattke, John; Powell, Scott; Kaspari, Michael

    2007-05-01

    1. The New World army ants are top predators in the litter of tropical forest, but no comprehensive studies exist on variation in assemblage-wide activity and species composition. We used standardized protocols to estimate foraging raid rates and species composition of army ant communities in four Neotropical forests. The study sites spanned approximately 10 degrees latitude, with two sites each in Central and South America. 2. We recorded a total of 22 species of army ants. The four sites varied in observed and estimated species richness. Species overlap was highest between the Central American sites, and lowest between the South American sites. 3. Raid activity varied significantly among sites. Raid activity per kilometre of trail walks was over four times higher at the most active site (Sta. Maria, Venezuela) than at the least active site (Barro Colorado Island, Panama). Furthermore, each site showed a different diel pattern of activity. For example, raid activity was higher during daylight hours in Costa Rica, and higher at night in Venezuela. Raid activity relationships with ambient temperature also varied significantly among sites. 4. The overall rate of army ant raids passing through 1 m(2) plots was 0.73 raids per day, but varied among sites, from 0 raids per day (Panama) to 1.2 raids per day (Venezuela). 5. Primarily subterranean species were significantly more abundant in Venezuela, and above-ground foragers that form large swarm fronts were least abundant in Panama. The site heterogeneity in species abundance and diel activity patterns has implications for army ant symbionts, including ant-following birds, and for the animals hunted by these top predators. PMID:17439474

  8. Clonal growth and plant species abundance

    PubMed Central

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  9. Rapid inventory of the ant assemblage in a temperate hardwood forest: species composition and assessment of sampling methods.

    PubMed

    Ellison, Aaron M; Record, Sydne; Arguello, Alexander; Gotelli, Nicholas J

    2007-08-01

    Ants are key indicators of ecological change, but few studies have investigated how ant assemblages respond to dramatic changes in vegetation structure in temperate forests. Pests and pathogens are causing widespread loss of dominant canopy tree species; ant species composition and abundance may be very sensitive to such losses. Before the experimental removal of red oak trees to simulate effects of sudden oak death and examine the long-term impact of oak loss at the Black Rock Forest (Cornwall, NY), we carried out a rapid assessment of the ant assemblage in a 10-ha experimental area. We also determined the efficacy in a northern temperate forest of five different collecting methods--pitfall traps, litter samples, tuna fish and cookie baits, and hand collection--routinely used to sample ants in tropical systems. A total of 33 species in 14 genera were collected and identified; the myrmecines, Aphaenogaster rudis and Myrmica punctiventris, and the formicine Formica neogagates were the most common and abundant species encountered. Ninety-four percent (31 of 33) of the species were collected by litter sampling and structured hand sampling together, and we conclude that, in combination, these two methods are sufficient to assess species richness and composition of ant assemblages in northern temperate forests. Using new, unbiased estimators, we project that 38-58 ant species are likely to occur at Black Rock Forest. Loss of oak from these forests may favor Camponotus species that nest in decomposing wood and open habitat specialists in the genus Lasius. PMID:17716467

  10. New records of ant species from Yunnan, China

    PubMed Central

    Liu, Cong; Guénard, Benoit; Garcia, Francisco Hita; Yamane, Seiki; Blanchard, Benjamin; Yang, Da-Rong; Economo, Evan

    2015-01-01

    Abstract As with many other regions of the world, significant collecting, curation, and taxonomic efforts will be needed to complete the inventory of China’s ant fauna. This is especially true for the highly diverse tropical regions in the south of the country, where moist tropical forests harbor high species richness typical of the Southeast Asian region. We inventoried ants in the Xingshuangbanna prefecture, Yunnan, in June 2013, using a variety of methods including Winkler extraction and hand collection to sample ant diversity. We identified 213 species/morphospecies of ants from 10 subfamilies and 61 genera. After identification of 148 valid species of the 213 total species collected, 40 species represent new records for Yunnan province and 17 species are newly recorded for China. This increases the total number of named ant species in Yunnan and China to 447 and 951 respectively. The most common species collected were Brachyponera luteipes and Vollenhovia emeryi. Only one confirmed exotic species Strumigenys membranifera, was collected, although several others were potentially introduced by humans. These results highlight the high biodiversity value of the region, but also underscore how much work remains to fully document the native myrmecofauna. PMID:25685004

  11. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    PubMed

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. PMID:27038576

  12. Ants Learn Aphid Species as Mutualistic Partners: Is the Learning Behavior Species-Specific?

    PubMed

    Hayashi, Masayuki; Nakamuta, Kiyoshi; Nomura, Masashi

    2015-12-01

    In ant-aphid associations, many aphid species provide ants with honeydew and are tended by ants, whereas others are never tended and are frequently preyed upon by ants. In these relationships, ants must have the ability to discriminate among aphid species, with mutualistic aphids being accepted as partners rather than prey. Although ants reportedly use cuticular hydrocarbons (CHCs) of aphids to differentiate between mutualistic and non-mutualistic species, it is unclear whether the ability to recognize mutualistic aphid species as partners is innate or involves learning. Therefore, we tested whether aphid recognition by ants depends on learning, and whether the learning behavior is species-specific. When workers of the ant Tetramorium tsushimae had previously tended the cowpea aphid, Aphis craccivora, they were less aggressive toward this species. In addition, ants also reduced their aggressiveness toward another mutualistic aphid species, Aphis fabae, after tending A. craccivora, whereas ants remained aggressive toward the non-mutualistic aphid, Acyrthosiphon pisum, regardless of whether or not they had previous experience in tending A. craccivora. When ants were offered glass dummies treated with CHCs of these aphid species, ants that had tended A. craccivora displayed reduced aggression toward CHCs of A. craccivora and A. fabae. Chemical analyses showed the similarity of the CHC profiles between A. craccivora and A. fabae but not with A. pisum. These results suggest that aphid recognition of ants involves learning, and that the learning behavior may not be species-specific because of the similarity of CHCs between different aphid species with which they form mutualisms. PMID:26590597

  13. Species Abundance Patterns in Complex Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Tokita, Kei

    2004-10-01

    An analytic theory of species abundance patterns (SAPs) in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka-Volterra equation, with diverse interspecies interactions. Various SAPs observed in nature are derived from a single parameter. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g., gene expression.

  14. Divergent Chemical Cues Elicit Seed Collecting by Ants in an Obligate Multi-Species Mutualism in Lowland Amazonia

    PubMed Central

    Youngsteadt, Elsa; Guerra Bustios, Patricia; Schal, Coby

    2010-01-01

    In lowland Amazonian rainforests, specific ants collect seeds of several plant species and cultivate them in arboreal carton nests, forming species-specific symbioses called ant-gardens (AGs). In this obligate mutualism, ants depend on the plants for nest stability and the plants depend on ant nests for substrate and nutrients. AG ants and plants are abundant, dominant members of lowland Amazonian ecosystems, but the cues ants use to recognize the seeds are poorly understood. To address the chemical basis of the ant-seed interaction, we surveyed seed chemistry in nine AG species and eight non-AG congeners. We detected seven phenolic and terpenoid volatiles common to seeds of all or most of the AG species, but a blend of the shared compounds was not attractive to the AG ant Camponotus femoratus. We also analyzed seeds of three AG species (Anthurium gracile, Codonanthe uleana, and Peperomia macrostachya) using behavior-guided fractionation. At least one chromatographic fraction of each seed extract elicited retrieval behavior in C. femoratus, but the active fractions of the three plant species differed in polarity and chemical composition, indicating that shared compounds alone did not explain seed-carrying behavior. We suggest that the various AG seed species must elicit seed-carrying with different chemical cues. PMID:21209898

  15. Body size, colony size, abundance, and ecological impact of exotic ants in Florida's upland ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With hundreds of species established in new localities around the world, ants are an important, widely distributed, and growing group of exotic animals. The success of many established exotic ants is hypothesized to be related to competitive advantages associated with smaller workers and larger col...

  16. Insecticidal and repellence activity of the essential oil of Pogostemon cablin against urban ants species.

    PubMed

    Albuquerque, Elânia L D; Lima, Janaína K A; Souza, Felipe H O; Silva, Indira M A; Santos, Abraão A; Araújo, Ana Paula A; Blank, Arie F; Lima, Rafaely N; Alves, Péricles B; Bacci, Leandro

    2013-09-01

    Ants are highly abundant in neotropical regions, with certain species adapted to the urban environment, where they can cause damage to human health. The main method for controlling ants consists of using organosynthetic insecticides, which are potentially toxic to the environment. Essential plant oils are considered a viable alternative to the use of conventional insecticides. In this study, we analyze the bioinsecticidal activity and repellence of patchouli essential oil (Pogostemon cablin) against three species of urban ants: Camponotus melanoticus, Camponotus novograndensis, and Dorymyrmex thoracicus. The chemical composition of the essential oil was analyzed by GC-MS and GC-FID. The major compounds were patchoulol (36.6%) followed by α-bulnesene (13.95%), and α-guaiene (11.96%). Toxicity and repellency bioassays were performed using the essential oil over the ants, and mortality evaluations were performed at 4, 24, and 48 h after performing the bioassays. Mortality percentage of the ants on 7 μg/mg was on average 84%. The essential oil of P. cablin displayed toxicity against all three species of urban ants, with the lowest LD₅₀ being observed for D. thoracicus (2.02 μg oil/mg insect) after 48 h of exposure compared to C. melanoticus (2.34 μg oil/mg insect) and C. novogranadensis (2.95 μg oil/mg insect). The essential oil of P. cablin was strongly repellent to the three species of ants in all concentrations tested (0.01% and 1% v/v). Considering the potential toxicity and repellency of the P. cablin essential oil to the urban ants, future studies could investigate the practical application of this oil to control of this insects. PMID:23643519

  17. Field evaluations of the efficacy of Distance Plus on invasive ant species in northern Australia.

    PubMed

    Webb, Garry A; Hoffmann, Benjamin D

    2013-08-01

    The efficacy of Distance Plus Ant Bait, containing the insect growth regulator pyriproxyfen, was tested in the field against two invasive ant species in northern Australia: African big-headed ant (Pheidole megacephala (F.)) and yellow crazy ant (Anoplolepis gracilipes (Fr. Smith)). Results were also gained for a third pest species, Singapore ant (Monomorium destructor (Jerdon)), from one trial focused primarily on P. megacephala. Five studies were conducted throughout northern Australia, each with different protocols, but common to all was the broad-scale dispersal of Distance Plus, coupled with long-term monitoring of ant population levels. Additionally, a laboratory trial was conducted to assess if there was a direct toxic effect by the bait on A. gracilipes workers, and ant community data were collected at some sites in the A. gracilipes trial to assess nontarget impacts and subsequent ecological recovery. All three species were greatly affected by the treatments. The abundance of P. megacephala declined dramatically in all trials, and by the final assessment for each study, very few ants remained, with those remaining being attributable to edge effects from neighboring untreated properties. At both sites that it occurred, M. destructor was initially at least codominant with P. megacephala, but by the final assessment, only three M. destructor individuals were present at one lure at one site, and only a single individual at the other site. Abundance of A. gracilipes fell, on average, to 31% of control levels by 91 d and then slowly recovered, with subsequent treatments only providing slightly greater control. No direct toxic effect on workers was found in the laboratory trial, indicating that population declines of A. gracilipes were typical bait-related declines resulting from reduced worker replacement. Nontarget impacts of the bait could not be distinguished from the negative competitive impacts ofA. gracilipes, but there was a noticeable absence of some key

  18. How selection structures species abundance distributions

    PubMed Central

    Magurran, Anne E.; Henderson, Peter A.

    2012-01-01

    How do species divide resources to produce the characteristic species abundance distributions seen in nature? One way to resolve this problem is to examine how the biomass (or capacity) of the spatial guilds that combine to produce an abundance distribution is allocated among species. Here we argue that selection on body size varies across guilds occupying spatially distinct habitats. Using an exceptionally well-characterized estuarine fish community, we show that biomass is concentrated in large bodied species in guilds where habitat structure provides protection from predators, but not in those guilds associated with open habitats and where safety in numbers is a mechanism for reducing predation risk. We further demonstrate that while there is temporal turnover in the abundances and identities of species that comprise these guilds, guild rank order is conserved across our 30-year time series. These results demonstrate that ecological communities are not randomly assembled but can be decomposed into guilds where capacity is predictably allocated among species. PMID:22787020

  19. Ant species identity mediates reproductive traits and allocation in an ant-garden bromeliad

    PubMed Central

    Leroy, Céline; Corbara, Bruno; Pélozuelo, Laurent; Carrias, Jean-François; Dejean, Alain; Céréghino, Régis

    2012-01-01

    Background and Aims Determining the sources of variation in floral morphology is crucial to understanding the mechanisms underlying Angiosperm evolution. The selection of floral and reproductive traits is influenced by the plant's abiotic environment, florivores and pollinators. However, evidence that variations in floral traits result from mutualistic interactions with insects other than pollinators is lacking in the published literature and has rarely been investigated. We aimed to determine whether the association with either Camponotus femoratus or Pachycondyla goeldii (both involved in seed dispersal and plant protection) mediates the reproductive traits and allocation of Aechmea mertensii, an obligatory ant-garden tank-bromeliad, differently. Methods Floral and reproductive traits were compared between the two A. mertensii ant-gardens. The nitrogen flux from the ants to the bromeliads was investigated through experimental enrichments with stable isotopes (15N). Key Results Camponotus femoratus-associated bromeliads produced inflorescences up to four times longer than did P. goeldii-associated bromeliads. Also, the numbers of flowers and fruits were close to four times higher, and the number of seeds and their mass per fruit were close to 1·5 times higher in C. femoratus than in P. goeldii-associated bromeliads. Furthermore, the 15N-enrichment experiment showed that C. femoratus-associated bromeliads received more nitrogen from ants than did P. goeldii-associated bromeliads, with subsequent positive repercussions on floral development. Greater benefits were conferred to A. mertensii by the association with C. femoratus compared with P. goeldii ants. Conclusions We show for the first time that mutualistic associations with ants can result in an enhanced reproductive allocation for the bromeliad A. mertensii. Nevertheless, the strength and direction of the selection of floral and fruit traits change based on the ant species and were not related to light

  20. Effect of land cover, habitat fragmentation and ant colonies on the distribution and abundance of shrews in southern California

    USGS Publications Warehouse

    Laakkonen, J.; Fisher, R.N.; Case, T.J.

    2001-01-01

    1. Because effects of habitat fragmentation and anthropogenic disturbance on native animals have been relatively little studied in arid areas and in insectivores, we investigated the roles of different land covers, habitat fragmentation and ant colonies on the distribution and abundance of shrews, Notiosorex crawfordi and Sorex ornatus, in southern California. 2. Notiosorex crawfordi was the numerically dominant species (trap-success rate 0.52) occurring in 21 of the 22 study sites in 85% of the 286 pitfall arrays used in this study. Sorex ornatus was captured in 14 of the sites, in 52% of the arrays with a total trap-success rate of 0.2. Neither of the species was found in one of the sites. 3. The population dynamics of the two shrew species were relatively synchronous during the 4-5-year study; the peak densities usually occurred during the spring. Precipitation had a significant positive effect, and maximum temperature a significant negative effect on the trap-success rate of S. ornatus. 4. Occurrence and abundance of shrews varied significantly between sites and years but the size of the landscape or the study site had no effect on the abundance of shrews. The amount of urban edge had no significant effect on the captures of shrews but increased edge allows invasion of the Argentine ants, which had a highly significant negative impact on the abundance of N. crawfordi. 5. At the trap array level, the percentage of coastal sage scrub flora had a significant positive, and the percentage of other flora had a significant negative effect on the abundance of N. crawfordi. The mean canopy height and the abundance of N. crawfordi had a significant positive effect on the occurrence of S. ornatus. 6. Our study suggests that the loss of native coastal sage scrub flora and increasing presence of Argentine ant colonies may significantly effect the distribution and abundance of N. crawfordi. The very low overall population densities of both shrew species in most study sites

  1. Attenuation of species abundance distributions by sampling.

    PubMed

    Shimadzu, Hideyasu; Darnell, Ross

    2015-04-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  2. Attenuation of species abundance distributions by sampling

    PubMed Central

    Shimadzu, Hideyasu; Darnell, Ross

    2015-01-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  3. Targeted Research to Improve Invasive Species Management: Yellow Crazy Ant Anoplolepis gracilipes in Samoa

    PubMed Central

    Hoffmann, Benjamin D.; Auina, Saronna; Stanley, Margaret C.

    2014-01-01

    Lack of biological knowledge of invasive species is recognised as a major factor contributing to eradication failure. Management needs to be informed by a site-specific understanding of the invasion system. Here, we describe targeted research designed to inform the potential eradication of the invasive yellow crazy ant Anoplolepis gracilipes on Nu’utele island, Samoa. First, we assessed the ant’s impacts on invertebrate biodiversity by comparing invertebrate communities between infested and uninfested sites. Second, we investigated the timing of production of sexuals and seasonal variation of worker abundance and nest density. Third, we investigated whether an association existed between A. gracilipes and carbohydrate sources. Within the infested area there were few other ants larger than A. gracilipes, as well as fewer spiders and crabs, indicating that A. gracilipes is indeed a significant conservation concern. The timing of male reproduction appears to be consistent with places elsewhere in the world, but queen reproduction was outside of the known reproductive period for this species in the region, indicating that the timing of treatment regimes used elsewhere are not appropriate for Samoa. Worker abundance and nest density were among the highest recorded in the world, being greater in May than in October. These abundance and nest density data form baselines for quantifying treatment efficacy and set sampling densities for post-treatment assessments. The number of plants and insects capable of providing a carbohydrate supply to ants were greatest where A. gracilipes was present, but it is not clear if this association is causal. Regardless, indirectly controlling ant abundance by controlling carbohydrate supply appears to be promising avenue for research. The type of targeted, site-specific research such as that described here should be an integral part of any eradication program for invasive species to design knowledge-based treatment protocols and

  4. Dataset on the abundance of ants and Cosmopolites sordidus damage in plantain fields with intercropped plants.

    PubMed

    Dassou, Anicet Gbèblonoudo; Carval, Dominique; Dépigny, Sylvain; Fansi, Gabriel; Tixier, Philippe

    2016-12-01

    The data presented in this article are related to the research article entitled "Ant abundance and Cosmopolites sordidus damage in plantain fields as affected by intercropping" (A.G. Dassou, D. Carval, S. Dépigny, G.H Fansi, P. Tixier, 2015) [1]. This article describes how associated crops maize (Zea mays), cocoyam (Xanthosoma sagittifolium) and bottle gourd (Lagenaria siceraria) intercropped in the plantain fields in Cameroun modify ant community structure and damages of banana weevil Cosmopolites sordidus. The field data set is made publicly available to enable critical or extended analyzes. PMID:27622207

  5. Enough is enough: the effects of symbiotic ant abundance on herbivory, growth, and reproduction in an African acacia.

    PubMed

    Palmer, Todd M; Brody, Alison K

    2013-03-01

    Understanding how cooperative interactions evolve and persist remains a central challenge in biology. Many mutualisms are thought to be maintained by "partner fidelity feedback," in which each partner bases their investment on the benefits they receive. Yet, we know little about how benefits change as mutualists vary their investment, which is critical to understanding the balance between mutualism and antagonism in any given partnership. Using an obligate ant-plant mutualism, we manipulated the density of symbiotic acacia ants (Crematogaster mimosae) and examined how the costs and benefits to Acacia drepanolobium trees scaled with ant abundance. Benefits of ants to plants saturated with increasing ant abundance for protection from branch browsing by elephants and attack by branch galling midges, while varying linearly for protection from cerambycid beetles. In addition, the risk of catastrophic whole-tree herbivory by elephants was highest for trees with very low ant abundance. However, there was no relationship between ant abundance and herbivory by leaf-feeding invertebrates, nor by vertebrate browsers such as giraffe, steinbuck, and Grant's gazelle. Ant abundance did not significantly influence rates of branch growth on acacias, but there was a significant negative relationship between ant abundance and the number of fruits produced by host plants, suggesting that maintaining high-density ant colonies is costly. Because benefits to plants largely saturated with increasing colony size, while costs to plant reproduction increased, we suggest that ant colonies may achieve abundances that are higher than optimal for host plants. Our results highlight the conflicts of interest inherent in many mutualisms, and demonstrate the value of examining the shape of curves relating costs and benefits within these globally important interactions. PMID:23687894

  6. Abundance of introduced species at home predicts abundance away in herbaceous communities

    USGS Publications Warehouse

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  7. What are the consequences of ant-seed interactions on the abundance of two dry-fruited shrubs in a Mediterranean scrub?

    PubMed

    Arnan, Xavier; Rodrigo, A; Retana, J

    2011-12-01

    Strong interactions between dry-fruited shrubs and seed-harvesting ants are expected in early successional scrubs, where both groups have a major presence. We have analysed the implications of the seed characteristics of two dry-fruited shrub species (Coronilla minima and Dorycnium pentaphyllum) on seed predation and dispersal mediated by harvester ants and the consequences of these processes on spatio-temporal patterns of plant abundance in a heterogeneous environment. We found that large C. minima seeds were collected much more (39%) than small D. pentaphyllum seeds (2%). However, not all of the removed seeds of these plant species were consumed, and 12.8% of the seeds were lost along the trails, which increased dispersal distances compared with abiotic dispersal alone. Seed dropping occurred among all microhabitats of the two plant species, but especially in open microhabitats, which are the most suitable ones for plant establishment. The two plant species increased their presence in the study area during the study period: C. minima in open microhabitats and D. pentaphyllum in high vegetation. The large size of C. minima seeds probably limited the primary seed dispersal of this species, but may have allowed strong interaction with ants. Thus, seed dispersal by ants resulted in C. minima seeds reaching more suitable microhabitats by means of increasing dispersal distance and redistribution among microhabitats. In contrast, the smaller size of D. pentaphyllum seeds arguably allows abiotic seed dispersal over longer distances and colonization of all types of microhabitats, although it probably also limits their interaction with ants and, consequently, their redistribution in suitable microhabitats. We suggest that dyszoochory could contribute to the success of plant species with different seed characteristics in scrub habitats where seeds are abundantly collected by seed-harvesting ants. PMID:21643993

  8. Modeling species-abundance relationships in multi-species collections

    USGS Publications Warehouse

    Peng, S.; Yin, Z.; Ren, H.; Guo, Q.

    2003-01-01

    Species-abundance relationship is one of the most fundamental aspects of community ecology. Since Motomura first developed the geometric series model to describe the feature of community structure, ecologists have developed many other models to fit the species-abundance data in communities. These models can be classified into empirical and theoretical ones, including (1) statistical models, i.e., negative binomial distribution (and its extension), log-series distribution (and its extension), geometric distribution, lognormal distribution, Poisson-lognormal distribution, (2) niche models, i.e., geometric series, broken stick, overlapping niche, particulate niche, random assortment, dominance pre-emption, dominance decay, random fraction, weighted random fraction, composite niche, Zipf or Zipf-Mandelbrot model, and (3) dynamic models describing community dynamics and restrictive function of environment on community. These models have different characteristics and fit species-abundance data in various communities or collections. Among them, log-series distribution, lognormal distribution, geometric series, and broken stick model have been most widely used.

  9. Various Chemical Strategies to Deceive Ants in Three Arhopala Species (Lepidoptera: Lycaenidae) Exploiting Macaranga Myrmecophytes

    PubMed Central

    Inui, Yoko; Shimizu-kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao

    2015-01-01

    Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies. PMID:25853675

  10. Effect of broadcast baiting on abundance patterns of red imported fire ants (Hymenoptera: Formicidae) and key local ant genera at long-term monitoring sites in Brisbane, Australia.

    PubMed

    McNaught, Melinda K; Wylie, F Ross; Harris, Evan J; Alston, Clair L; Burwell, Chris J; Jennings, Craig

    2014-08-01

    In 2001, the red imported fire ant (Solenopsis invicta Buren) was identified in Brisbane, Australia. An eradication program involving broadcast bait treatment with two insect growth regulators and a metabolic inhibitor began in September of that year and is currently ongoing. To gauge the impacts of these treatments on local ant populations, we examined long-term monitoring data and quantified abundance patterns of S. invicta and common local ant genera using a linear mixed-effects model. For S. invicta, presence in pitfalls reduced over time to zero on every site. Significantly higher numbers of S. invicta workers were collected on high-density polygyne sites, which took longer to disinfest compared with monogyne and low-density polygyne sites. For local ants, nine genus groups of the 10 most common genera analyzed either increased in abundance or showed no significant trend. Five of these genus groups were significantly less abundant at the start of monitoring on high-density polygyne sites compared with monogyne and low-density polygyne sites. The genus Pheidole significantly reduced in abundance over time, suggesting that it was affected by treatment efforts. These results demonstrate that the treatment regime used at the time successfully removed S. invicta from these sites in Brisbane, and that most local ant genera were not seriously impacted by the treatment. These results have important implications for current and future prophylactic treatment efforts, and suggest that native ants remain in treated areas to provide some biological resistance to S. invicta. PMID:25195416

  11. Experimentally testing and assessing the predictive power of species assembly rules for tropical canopy ants

    PubMed Central

    Fayle, Tom M; Eggleton, Paul; Manica, Andrea; Yusah, Kalsum M; Foster, William A

    2015-01-01

    Understanding how species assemble into communities is a key goal in ecology. However, assembly rules are rarely tested experimentally, and their ability to shape real communities is poorly known. We surveyed a diverse community of epiphyte-dwelling ants and found that similar-sized species co-occurred less often than expected. Laboratory experiments demonstrated that invasion was discouraged by the presence of similarly sized resident species. The size difference for which invasion was less likely was the same as that for which wild species exhibited reduced co-occurrence. Finally we explored whether our experimentally derived assembly rules could simulate realistic communities. Communities simulated using size-based species assembly exhibited diversities closer to wild communities than those simulated using size-independent assembly, with results being sensitive to the combination of rules employed. Hence, species segregation in the wild can be driven by competitive species assembly, and this process is sufficient to generate observed species abundance distributions for tropical epiphyte-dwelling ants. PMID:25622647

  12. Experimentally testing and assessing the predictive power of species assembly rules for tropical canopy ants.

    PubMed

    Fayle, Tom M; Eggleton, Paul; Manica, Andrea; Yusah, Kalsum M; Foster, William A

    2015-03-01

    Understanding how species assemble into communities is a key goal in ecology. However, assembly rules are rarely tested experimentally, and their ability to shape real communities is poorly known. We surveyed a diverse community of epiphyte-dwelling ants and found that similar-sized species co-occurred less often than expected. Laboratory experiments demonstrated that invasion was discouraged by the presence of similarly sized resident species. The size difference for which invasion was less likely was the same as that for which wild species exhibited reduced co-occurrence. Finally we explored whether our experimentally derived assembly rules could simulate realistic communities. Communities simulated using size-based species assembly exhibited diversities closer to wild communities than those simulated using size-independent assembly, with results being sensitive to the combination of rules employed. Hence, species segregation in the wild can be driven by competitive species assembly, and this process is sufficient to generate observed species abundance distributions for tropical epiphyte-dwelling ants. PMID:25622647

  13. Impact of red imported fire ant infestation on northern bobwhite quail abundance trends in southeastern United States

    USGS Publications Warehouse

    Allen, C.R.; Willey, R.D.; Myers, P.E.; Horton, P.M.; Buffa, J.

    2000-01-01

    Northern bobwhite quail (Colinus virginianus L.) populations are declining throughout their range. One factor contributing to the decline in the southeastern United States may be the red imported fire ant (Solenopsis invicta Buren). Recent research in Texas has documented that red imported fire ants can have a significant impact on northern bobwhite quail. That research was conducted in areas where fire ants are predominately polygynous (multiple queen). Polygynous infestations have much higher mound densities than the monogynous (single queen) form. In most of the southeastern United States, fire ants are predominately monogynous. We determined if there was a relationship between the invasion of monogynous red imported fire ants and abundance trends in northern bobwhite quail in the southeastern United States. For Florida, Georgia, and South Carolina we compared average northern bobwhite quail abundance based on Christmas Bird Count data for each county before and after fire ant invasion, and conducted regression analyses on bobwhite quail abundance and year preinvasion, and abundance and year postinvasion. Regionally, northern bobwhite quail were more abundant before (0.067 ??0.018 bobwhite quail per observer hour) than after fire ants invaded (0.019 ?? 0.006; Z = -3.746, df = 18, P 30-yr variation in invasion dates.

  14. Traits allowing some ant species to nest syntopically with the fire ant Solenopsis saevissima in its native range.

    PubMed

    Dejean, Alain; Corbara, Bruno; Céréghino, Régis; Leponce, Maurice; Roux, Olivier; Rossi, Vivien; Delabie, Jacques H C; Compin, Arthur

    2015-04-01

    Supercolonies of the red fire ant Solenopsis saevissima (Smith) develop in disturbed environments and likely alter the ant community in the native range of the species. For example, in French Guiana only 8 ant species were repeatedly noted as nesting in close vicinity to its mounds. Here, we verified if a shared set of biological, ecological, and behavioral traits might explain how these 8 species are able to nest in the presence of S. saevissima. We did not find this to be the case. We did find, however, that all of them are able to live in disturbed habitats. It is likely that over the course of evolution each of these species acquired the capacity to live syntopically with S. saevissima through its own set of traits, where colony size (4 species develop large colonies), cuticular compounds which do not trigger aggressiveness (6 species) and submissive behaviors (4 species) complement each other. PMID:25813245

  15. ABUNDANT OR RARE? A HYBRID APPROACH FOR DETERMINING SPECIES RELATIVE ABUNDANCE AT AN ECOREGOIONAL SCALE - 2014

    EPA Science Inventory

    Everyone knows what abundant and rare species are, but quantifying the concept proves elusive. As part of an EPA/USGS project to assess near-coastal species vulnerability to climate change affects, we designed a hybrid approach to determine species relative abundance at an ecoreg...

  16. ABUNDANT OR RARE? A HYBRID APPROACH FOR DETERMINING SPECIES RELATIVE ABUNDANCE AT AN ECOREGOIONAL SCALE

    EPA Science Inventory

    Everyone knows what abundant and rare species are, but quantifying the concept proves elusive. As part of an EPA/USGS project to assess near-coastal species vulnerability to climate change affects, we designed a hybrid approach to determine species relative abundance at an ecoreg...

  17. Leaf-cutting ant nests near roads increase fitness of exotic plant species in natural protected areas

    PubMed Central

    Farji-Brener, Alejandro G; Ghermandi, Luciana

    2008-01-01

    Understanding the mechanisms that promote the invasion of natural protected areas by exotic plants is a central concern for ecology. We demonstrated that nests of the leaf-cutting ant, Acromyrmex lobicornis, near roadsides promote the abundance, growth and reproduction of two exotic plant species, Carduus nutans and Onopordum acanthium, in a national park in northern Patagonia, Argentina and determine the mechanisms that produce these effects. Refuse dumps (RDs) from ant nests have a higher nutrient content than nearby non-nest soils (NNSs); foliar nutrient content and their 15N isotopic signature strongly suggest that plants reach and use these nutrients. Both species of exotic plants in RDs were 50–600% more abundant; seedlings had 100–1000% more foliar area and root and leaf biomass; and adult plants produced 100–300% more seeds than nearby NNS plants. Plants can thus gain access to and benefit from the nutrient content of ant RD, supporting the hypotheses that enhanced resource availability promotes exotic plant performance that could increase the likelihood of biological invasions. The two exotics produce an estimated of 8 385 000 more seeds ha−1 in areas with ant nests compared with areas without; this exceptional increase in seed production represents a potential threat to nearby non-invaded communities. We propose several management strategies to mitigate this threat. Removal efforts of exotics should be focused on ant RDs, where plants are denser and represent a higher source of propagules. PMID:18364316

  18. Effects of temporally persistent ant nests of soil protozoan communities and the abundance of morphological types of amoeba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We compared soil protozoan communities near ant nests with soil protozoans in reference soils 5m from the edge of any mounds. We sampled three species of Chihuahuan Desert ants that construct nests that persist for more than a decade: a seed harvester, Pogonomymex rugosus, a liquid feeding honey-po...

  19. Social coercion of larval development in an ant species

    NASA Astrophysics Data System (ADS)

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults.

  20. Social coercion of larval development in an ant species.

    PubMed

    Villalta, Irene; Amor, Fernando; Cerdá, Xim; Boulay, Raphaël

    2016-04-01

    Ants provide one of the best examples of the division of labor in animal societies. While the queens reproduce, workers generally refrain from laying eggs and dedicate themselves exclusively to domestic tasks. In many species, the small diploid larvae are bipotent and can develop either into workers or queens depending mostly on environmental cues. This generates a conflicting situation between the adults that tend to rear a majority of larvae into workers and the larvae whose individual interest may be to develop into reproductive queens. We tested the social regulation of larval caste fate in the fission-performing ant Aphaenogaster senilis. We first observed interactions between resident workers and queen- and worker-destined larvae in presence/absence of the queen. The results show that workers tend to specifically eliminate queen-destined larvae when the queen is present but not when she is absent or imprisoned in a small cage allowing for volatile pheromone exchanges. In addition, we found that the presence of already developed queen-destined larvae does not inhibit the development of younger still bipotent larvae into queens. Finally, we analyzed the cuticular hydrocarbon profiles of queen- and worker-destined larvae and found no significant quantitative or qualitative difference. Interestingly, the total amount of hydrocarbons on both larval castes is extremely low, which lends credence on the chemical insignificance hypothesis of larval ants. Overall, our results suggest that workers control larval development and police larvae that would develop into queens instead of workers. Such policing behavior is similar in many aspects to what is known of worker policing among adults. PMID:26874941

  1. Is abundance a species attribute? An example with haematophagous ectoparasites.

    PubMed

    Krasnov, Boris R; Shenbrot, Georgy I; Khokhlova, Irina S; Poulin, Robert

    2006-11-01

    Population density is a fundamental property of a species and yet it varies among populations of the same species. The variation comes from the interplay between intrinsic features of a species that tend to produce repeatable density values across all populations of the same species and extrinsic environmental factors that differ among localities and thus tend to produce spatial variation in density. Is inter-population variation in density too large for density to be considered a true species character? We addressed this question using data on abundance (number of parasites per individual host, i.e. equivalent to density) of fleas ectoparasitic on small mammals. The data included samples of 548 flea populations, representing 145 flea species and obtained from 48 different geographical regions. Abundances of the same flea species on the same host species, but in different regions, were more similar to each other than expected by chance, and varied significantly among flea species, with 46% of the variation among samples accounted by differences between flea species. Thus, estimates of abundance are repeatable within the same flea species. The same repeatability was also observed, but to a lesser extent, across flea genera, tribes and subfamilies. Independently of the identity of the flea species, abundance values recorded on the same host species, or in the same geographical region, also showed significant statistical repeatability, though not nearly as strong as that associated with abundance values from the same flea species. There were also no strong indications that regional differences in abiotic variables were an important determinant of variation in abundance of a given flea species on a given host species. Abundance thus appears to be a true species trait in fleas, although it varies somewhat within bounds set by species-specific life history traits. PMID:16896773

  2. Geographical Range and Local Abundance of Tree Species in China

    PubMed Central

    Ren, Haibao; Condit, Richard; Chen, Bin; Mi, Xiangcheng; Cao, Min; Ye, Wanhui; Hao, Zhanqing; Ma, Keping

    2013-01-01

    Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1) whether locally abundant species tend to be geographically widespread; 2) whether species are more abundant towards their range-centers; and 3) how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20–25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km2, and >90% of 651 species had ranges >105 km2. There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species’ abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges. PMID:24130772

  3. Uni-directional trail sharing by two species of ants a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Kunduraci, T.; Kayacan, O.

    2015-06-01

    We study insect traffic, specifically ant traffic on a uni-directional trail which is shared by two species of ants, one of which is ‘good’ at smelling and the other ‘poor’. The two distinct species of ants are placed mixed on the same trail and individuals of both are permitted to make a U-turn when they encounter another ant in front of them. The theoretical scheme for the ant traffic is based on an asymmetric simple exclusion model. The ant traffic on the uni-directional trail is studied as a function of the number of ‘good-smelling’ ants and the evaporation probability of pheromones by keeping the number of ‘poor-smelling ants’ constant during Monte Carlo simulations.

  4. Model reduction for stochastic chemical systems with abundant species.

    PubMed

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-01

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems. PMID:26646867

  5. Model reduction for stochastic chemical systems with abundant species

    NASA Astrophysics Data System (ADS)

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-01

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  6. Model reduction for stochastic chemical systems with abundant species

    SciTech Connect

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  7. Ecological niche structure and rangewide abundance patterns of species

    PubMed Central

    Martínez-Meyer, Enrique; Díaz-Porras, Daniel; Peterson, A. Townsend; Yáñez-Arenas, Carlos

    2013-01-01

    Spatial abundance patterns across species' ranges have attracted intense attention in macroecology and biogeography. One key hypothesis has been that abundance declines with geographical distance from the range centre, but tests of this idea have shown that the effect may occur indeed only in a minority of cases. We explore an alternative hypothesis: that species' abundances decline with distance from the centroid of the species' habitable conditions in environmental space (the ecological niche). We demonstrate consistent negative abundance–ecological distance relationships across all 11 species analysed (turtles to wolves), and that relationships in environmental space are consistently stronger than relationships in geographical space. PMID:23134784

  8. Sympatry and allopatry in two desert ant sister species: how do Cataglyphis bicolor and C. savignyi coexist?

    PubMed

    Dietrich, B; Wehner, R

    2003-06-01

    Two extremely morphologically similar sister species of desert ants, Cataglyphis bicolor and C. savignyi, exhibit broadly overlapping distributional ranges within Tunisia. In order to analyse the microhabitats of C. bicolor and C. savignyi within the sympatric and allopatric areas of both ant species, the plant species located at 113 different nest sites of the two ant species were determined. In the sympatric area, the two species exhibit a clear-cut nest site segregation. This is not the case in the allopatric areas. Hence the two species differentiate their microhabitat only when they are sympatric. The plant species associated mainly with the nest sites of C. bicolor indicate that this species prefers a type of vegetation that needs irrigation. This is in contrast to the nest sites of C. savignyi, which are usually found around plants that characterize typical dry steppe areas. As the ants' foraging paths recorded in the sympatric area reveal, C. bicolor performs significantly shorter foraging runs with respect to both length and time, and covers a much smaller foraging range than C. savignyi does. This result reflects the fact that the microhabitat occupied by the colonies of C. bicolor is richer in food abundance. When direct interspecific interactions were investigated by placing a bait midway between two heterospecific nests, C. bicolor foragers dominated over those of C. savignyi. The same dominance of C. bicolor over C. savignyi occurred in laboratory experiments. These results suggest that the dominant species drives the subordinate one out of the high quality microhabitats, and that the subordinate species is forced to survive in the less lucrative habitats. In conclusion, coexistence seems to be maintained by the asymmetric competitive relationship between the two species and the fact that the subordinate species has the ability to endure in the less favourable microhabitat. PMID:12720085

  9. Why abundant tropical tree species are phylogenetically old.

    PubMed

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-10-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community. PMID:24043767

  10. Multiple peaks of species abundance distributions induced by sparse interactions.

    PubMed

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki; Tokita, Kei

    2016-08-01

    We investigate the replicator dynamics with "sparse" symmetric interactions which represent specialist-specialist interactions in ecological communities. By considering a large self-interaction u, we conduct a perturbative expansion which manifests that the nature of the interactions has a direct impact on the species abundance distribution. The central results are all species coexistence in a realistic range of the model parameters and that a certain discrete nature of the interactions induces multiple peaks in the species abundance distribution, providing the possibility of theoretically explaining multiple peaks observed in various field studies. To get more quantitative information, we also construct a non-perturbative theory which becomes exact on tree-like networks if all the species coexist, providing exact critical values of u below which extinct species emerge. Numerical simulations in various different situations are conducted and they clarify the robustness of the presented mechanism of all species coexistence and multiple peaks in the species abundance distributions. PMID:27627322

  11. Percolation Theory for the Distribution and Abundance of Species

    NASA Astrophysics Data System (ADS)

    He, Fangliang; Hubbell, Stephen P.

    2003-11-01

    We develop and test new models that unify the mathematical relationships among the abundance of a species, the spatial dispersion of the species, the number of patches occupied by the species, the edge length of the occupied patches, and the scale on which the distribution of species is mapped. The models predict that species distributions will exhibit percolation critical thresholds, i.e., critical population abundances at which the fragmented patches (as measured by the number of patches and edge length) start to coalesce to form large patches.

  12. Habitat alteration increases invasive fire ant abundance to the detriment of amphibians and reptiles

    USGS Publications Warehouse

    Todd, B.D.; Rothermel, B.B.; Reed, R.N.; Luhring, T.M.; Schlatter, K.; Trenkamp, L.; Gibbons, J.W.

    2008-01-01

    Altered habitats have been suggested to facilitate red imported fire ant (Solenopsis invicta) colonization and dispersal, possibly compounding effects of habitat alteration on native wildlife. In this study, we compared colonization intensity of wood cover boards by S. invicta among four forest management treatments in South Carolina, USA: an unharvested control (>30 years old); a partially thinned stand; a clearcut with coarse woody debris retained; and a clearcut with coarse woody debris removed. Additionally, we compared dehydration rates and survival of recently metamorphosed salamanders (marbled salamanders, Ambystoma opacum, and mole salamanders, A. talpoideum) among treatments. We found that the number of wood cover boards colonized by S. invicta differed significantly among treatments, being lowest in the unharvested forest treatments and increasing with the degree of habitat alteration. Salamanders that were maintained in experimental field enclosures to study water loss were unexpectedly subjected to high levels of S. invicta predation that differed among forest treatments. All known predation by S. invicta was restricted to salamanders in clearcuts. The amount of vegetative ground cover was inversely related to the likelihood of S. invicta predation of salamanders. Our results show that S. invicta abundance increases with habitat disturbance and that this increased abundance has negative consequences for amphibians that remain in altered habitats. Our findings also suggest that the presence of invasive S. invicta may compromise the utility of cover boards and other techniques commonly used in herpetological studies in the Southeast. ?? 2007 Springer Science+Business Media B.V.

  13. Species-Specific Seed Dispersal in an Obligate Ant-Plant Mutualism

    PubMed Central

    Youngsteadt, Elsa; Baca, Jeniffer Alvarez; Osborne, Jason; Schal, Coby

    2009-01-01

    Throughout lowland Amazonia, arboreal ants collect seeds of specific plants and cultivate them in nutrient-rich nests, forming diverse yet obligate and species-specific symbioses called Neotropical ant-gardens (AGs). The ants depend on their symbiotic plants for nest stability, and the plants depend on AGs for substrate and nutrients. Although the AGs are limited to specific participants, it is unknown at what stage specificity arises, and seed fate pathways in AG epiphytes are undocumented. Here we examine the specificity of the ant-seed interaction by comparing the ant community observed at general food baits to ants attracted to and removing seeds of the AG plant Peperomia macrostachya. We also compare seed removal rates under treatments that excluded vertebrates, arthropods, or both. In the bait study, only three of 70 ant species collected P. macrostachya seeds, and 84% of observed seed removal by ants was attributed to the AG ant Camponotus femoratus. In the exclusion experiment, arthropod exclusion significantly reduced seed removal rates, but vertebrate exclusion did not. We provide the most extensive empirical evidence of species specificity in the AG mutualism and begin to quantify factors that affect seed fate in order to understand conditions that favor its departure from the typical diffuse model of plant-animal mutualism. PMID:19194502

  14. Species-specific seed dispersal in an obligate ant-plant mutualism.

    PubMed

    Youngsteadt, Elsa; Baca, Jeniffer Alvarez; Osborne, Jason; Schal, Coby

    2009-01-01

    Throughout lowland Amazonia, arboreal ants collect seeds of specific plants and cultivate them in nutrient-rich nests, forming diverse yet obligate and species-specific symbioses called Neotropical ant-gardens (AGs). The ants depend on their symbiotic plants for nest stability, and the plants depend on AGs for substrate and nutrients. Although the AGs are limited to specific participants, it is unknown at what stage specificity arises, and seed fate pathways in AG epiphytes are undocumented. Here we examine the specificity of the ant-seed interaction by comparing the ant community observed at general food baits to ants attracted to and removing seeds of the AG plant Peperomia macrostachya. We also compare seed removal rates under treatments that excluded vertebrates, arthropods, or both. In the bait study, only three of 70 ant species collected P. macrostachya seeds, and 84% of observed seed removal by ants was attributed to the AG ant Camponotus femoratus. In the exclusion experiment, arthropod exclusion significantly reduced seed removal rates, but vertebrate exclusion did not. We provide the most extensive empirical evidence of species specificity in the AG mutualism and begin to quantify factors that affect seed fate in order to understand conditions that favor its departure from the typical diffuse model of plant-animal mutualism. PMID:19194502

  15. Abundance of -1,6-piperideine alkaloids in imported fire ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Workers of imported fire ants, including red imported fire ants, Solenopsis invicta Buren, black imported fire ants, S. richteri Forel, and their hybrid (S. invicta × S. richteri), are vicious stingers. Since the venomous sting is a significant medical problem to humans, the chemistry of imported f...

  16. Diversity is maintained by seasonal variation in species abundance

    PubMed Central

    2013-01-01

    Background Some of the most marked temporal fluctuations in species abundances are linked to seasons. In theory, multispecies assemblages can persist if species use shared resources at different times, thereby minimizing interspecific competition. However, there is scant empirical evidence supporting these predictions and, to the best of our knowledge, seasonal variation has never been explored in the context of fluctuation-mediated coexistence. Results Using an exceptionally well-documented estuarine fish assemblage, sampled monthly for over 30 years, we show that temporal shifts in species abundances underpin species coexistence. Species fall into distinct seasonal groups, within which spatial resource use is more heterogeneous than would be expected by chance at those times when competition for food is most intense. We also detect seasonal variation in the richness and evenness of the community, again linked to shifts in resource availability. Conclusions These results reveal that spatiotemporal shifts in community composition minimize competitive interactions and help stabilize total abundance. PMID:24007204

  17. Chemical recognition of partner plant species by foundress ant queens in Macaranga-Crematogaster myrmecophytism.

    PubMed

    Inui, Y; Itioka, T; Murase, K; Yamaoka, R; Itino, T

    2001-10-01

    The partnership in the Crematogaster-Macaranga ant-plant interaction is highly species-specific. Because a mutualistic relationship on a Macaranga plant starts with colonization by a foundress queen of a partner Crematogaster species, we hypothesized that the foundress queens select their partner plant species by chemical recognition. We tested this hypothesis with four sympatric Macaranga species and their Crematogaster plant-ant species. We demonstrated that foundress Crematogaster queens can recognize their partner Macaranga species by contact with the surface of the seedlings, that they can recognize compounds from the stem surface of seedlings of their partner plant species, and that the gas chromatographic profiles are characteristic of the plant species. These findings support the hypothesis that foundress queens of the Crematogaster plant-ant species select their partner Macaranga species by recognizing nonvolatile chemical characteristics of the stem surfaces of seedlings. PMID:11710609

  18. Modelling occurrence and abundance of species when detection is imperfect

    USGS Publications Warehouse

    Royle, J. Andrew; Nichols, J.D.; Kery, M.

    2005-01-01

    Relationships between species abundance and occupancy are of considerable interest in metapopulation biology and in macroecology. Such relationships may be described concisely using probability models that characterize variation in abundance of a species. However, estimation of the parameters of these models in most ecological problems is impaired by imperfect detection. When organisms are detected imperfectly, observed counts are biased estimates of true abundance, and this induces bias in stated occupancy or occurrence probability. In this paper we consider a class of models that enable estimation of abundance/occupancy relationships from counts of organisms that result from surveys in which detection is imperfect. Under such models, parameter estimation and inference are based on conventional likelihood methods. We provide an application of these models to geographically extensive breeding bird survey data in which alternative models of abundance are considered that include factors that influence variation in abundance and detectability. Using these models, we produce estimates of abundance and occupancy maps that honor important sources of spatial variation in avian abundance and provide clearly interpretable characterizations of abundance and occupancy adjusted for imperfect detection.

  19. Highly similar microbial communities are shared among related and trophically similar ant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants dominate many terrestrial ecosystems, yet we know little about their nutritional physiology and ecology. While traditionally viewed as predators and scavengers, recent isotopic studies revealed that many dominant ant species are functional herbivores. As with other insects with nitrogen-poor di...

  20. Honey Ants.

    ERIC Educational Resources Information Center

    Conway, John R.

    1984-01-01

    Provides background information on honey ants. These ants are found in dry or desert regions of North America, Africa, and Australia. Also provides a list of activities using local species of ants. (JN)

  1. Seed Selection by the Harvester Ant Pogonomyrmex rugosus (Hymenoptera: Formicidae) in Coastal Sage Scrub: Interactions With Invasive Plant Species.

    PubMed

    Briggs, C M; Redak, R A

    2016-08-01

    Harvester ants can be the dominant seed predators on plants by collecting and eating seeds and are known to influence plant communities. Harvester ants are abundant in coastal sage scrub (CSS), and CSS is frequently invaded by several exotic plant species. This study used observations of foraging and cafeteria-style experiments to test for seed species selection by the harvester ant Pogonomyrmex rugosus Emery (Hymenoptera: Formicidae) in CSS. Analysis of foraging behavior showed that P. rugosus carried seeds of exotic Erodium cicutarium (L.) and exotic Brassica tournefortii (Gouan) on 85 and 15% of return trips to the nest (respectively), and only a very few ants carried the native seeds found within the study areas. When compared with the availability of seeds in the field, P. rugosus selected exotic E. cicutarium and avoided both native Encelia farinosa (Torrey & A. Gray) and exotic B. tournefortii. Foraging by P. rugosus had no major effect on the seed bank in the field. Cafeteria-style experiments confirmed that P. rugosus selected E. cicutarium over other available seeds. Native Eriogonum fasciculatum (Bentham) seeds were even less selected than E. farinosa and B. tournefortii. PMID:27257121

  2. How well can we predict forage species occurrence and abundance?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a larger effort focused on forage species production and management, we have been developing a statistical modeling approach to predict the probability of species occurrence and the abundance for Orchard Grass over the Northeast region of the United States using two selected statistical m...

  3. Copepod abundance and species composition in the Eastern subtropical/tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Schnack-Schiel, Sigrid B.; Mizdalski, Elke; Cornils, Astrid

    2010-12-01

    Abundance and species composition of copepods were studied during the expedition ANT XXI/1 on a latitudinal transect in the eastern Atlantic from 34°49.5'N to 27°28.1'S between 2-20 November 2002. Stratified zooplankton tows were carried out at 19 stations with a multiple opening-closing net between 300 m water depth and the surface. Cyclopoid and calanoid copepods showed similar patterns of distribution and abundance. Oithona was the most abundant cyclopoid genus, followed by Oncaea. A total of 149 calanoid copepod species were identified. Clausocalanus was by far the most abundant genus, comprising on average about 45% of all calanoids, followed by Calocalanus (13%), Delibus (9%), Paracalanus (6%), and Pleuromamma (5%). All other genera comprised on average less than 5% each, with 40 genera less than 1%. The calanoid copepod communities were distinguished broadly in accordance with sea surface temperature, separating the subtropical from the tropical stations, and were largely determined by variation in species composition and species abundance. Nine Clausocalanus species were identified. The most numerous Clausocalanus species was C. furcatus, which on average comprised half of all adult of this genus. C. pergens, C. paululus, and C. jobei, contributed an average of 19%, 9%, and 9%, respectively. The Clausocalanus species differed markedly in their horizontal and vertical distributions: C. furcatus, C. jobei, and C. mastigophorus had widespread distributions and inhabited the upper water layers. Major differences between the species were found in abundance. C. paululus and C. arcuicornis were biantitropical and were absent or occurred in very low numbers in the equatorial zone. C. parapergens was found at all stations and showed a bimodal distribution pattern with maxima in the subtropics. C. pergens occurred in higher numbers only at the southern stations, where it replaced C. furcatus in dominance. In contrast to the widespread species, the bulk of the C

  4. Effect of disjunct size distributions on foraminiferal species abundance determinations

    SciTech Connect

    Martin, R.E.; Liddell, W.D.

    1988-02-01

    Studies of foraminiferal distribution and abundance have typically employed a procedure (standard method) that entails counting approximately 300 specimens from a size range greater than some specified minimum (commonly 63 or 125 ..mu..m). This method fails to take into account that foraminifera may be found only within certain size fractions, either because of species specific size ranges or taphonomic processes (sorting, transport, abrasion). Use of a modified counting procedure (sieve method) takes into account foraminiferal size distributions. The sieve method uses counts of up to 300 specimens in each sand-size fraction (0.125-0.25, 0.25-0.5, 0.5-1, 1-2 mm) of each sample. Counts are then totaled for each sample (up to 1200 specimens per site) and used in determination of species abundances for each site. The sieve method has been of considerable utility in recognition of a foraminiferal bathymetric zonation preserved in sediment assemblages from fringing reef environments at Discovery Bay, north Jamaica. Well-documented reef zones (based on corals and physiography) are clearly defined in Q-mode cluster analysis (UPGMA) of species abundances determined using the sieve method. In contrast, individual fore reef zones are not recognized in cluster analysis of foraminiferal species abundances based on the standard method, nor by cluster analysis of species abundances within individual size fractions.

  5. Species-Specific Effects of Ant Inhabitants on Bromeliad Nutrition.

    PubMed

    Gonçalves, Ana Z; Oliveira, Rafael S; Oliveira, Paulo S; Romero, Gustavo Q

    2016-01-01

    Predator activities may lead to the accumulation of nutrients in specific areas of terrestrial habitats where they dispose of prey carcasses. In their feeding sites, predators may increase nutrient availability in the soil and favor plant nutrition and growth. However, the translocation of nutrients from one habitat to another may depend on predator identity and diet, as well as on the amount of prey intake. Here we used isotopic (15N) and physiological methods in greenhouse experiments to evaluate the effects of the identity of predatory ants (i.e., the consumption of prey and nest sites) on the nutrition and growth of the bromeliad Quesnelia arvensis. We showed that predatory ants with protein-based nutrition (i.e., Odontomachus hastatus, Gnamptogenys moelleri) improved the performance of their host bromeliads (i.e., increased foliar N, production of soluble proteins and growth). On the other hand, the contribution of Camponotus crassus for the nutritional status of bromeliads did not differ from bromeliads without ants, possibly because this ant does not have arthropod prey as a preferred food source. Our results show, for the first time, that predatory ants can translocate nutrients from one habitat to another within forests, accumulating nutrients in their feeding sites that become available to bromeliads. Additionally, we highlight that ant contribution to plant nutrition may depend on predator identity and its dietary requirements. Nest debris may be especially important for epiphytic and terrestrial bromeliads in nutrient-poor environments. PMID:27002980

  6. Species-Specific Effects of Ant Inhabitants on Bromeliad Nutrition

    PubMed Central

    Gonçalves, Ana Z.; Oliveira, Rafael S.; Oliveira, Paulo S.; Romero, Gustavo Q.

    2016-01-01

    Predator activities may lead to the accumulation of nutrients in specific areas of terrestrial habitats where they dispose of prey carcasses. In their feeding sites, predators may increase nutrient availability in the soil and favor plant nutrition and growth. However, the translocation of nutrients from one habitat to another may depend on predator identity and diet, as well as on the amount of prey intake. Here we used isotopic (15N) and physiological methods in greenhouse experiments to evaluate the effects of the identity of predatory ants (i.e., the consumption of prey and nest sites) on the nutrition and growth of the bromeliad Quesnelia arvensis. We showed that predatory ants with protein-based nutrition (i.e., Odontomachus hastatus, Gnamptogenys moelleri) improved the performance of their host bromeliads (i.e., increased foliar N, production of soluble proteins and growth). On the other hand, the contribution of Camponotus crassus for the nutritional status of bromeliads did not differ from bromeliads without ants, possibly because this ant does not have arthropod prey as a preferred food source. Our results show, for the first time, that predatory ants can translocate nutrients from one habitat to another within forests, accumulating nutrients in their feeding sites that become available to bromeliads. Additionally, we highlight that ant contribution to plant nutrition may depend on predator identity and its dietary requirements. Nest debris may be especially important for epiphytic and terrestrial bromeliads in nutrient-poor environments. PMID:27002980

  7. Relating species abundance distributions to species-area curves in two Mediterranean-type shrublands

    USGS Publications Warehouse

    Keeley, J.E.

    2003-01-01

    Based on both theoretical and empirical studies there is evidence that different species abundance distributions underlie different species-area relationships. Here I show that Australian and Californian shrubland communities (at the scale from 1 to 1000 m2) exhibit different species-area relationships and different species abundance patterns. The species-area relationship in Australian heathlands best fits an exponential model and species abundance (based on both density and cover) follows a narrow log normal distribution. In contrast, the species-area relationship in Californian shrublands is best fit with the power model and, although species abundance appears to fit a log normal distribution, the distribution is much broader than in Australian heathlands. I hypothesize that the primary driver of these differences is the abundance of small-stature annual species in California and the lack of annuals in Australian heathlands. Species-area is best fit by an exponential model in Australian heathlands because the bulk of the species are common and thus the species-area curves initially rise rapidly between 1 and 100 m2. Annuals in Californian shrublands generate very broad species abundance distributions with many uncommon or rare species. The power function is a better model in these communities because richness increases slowly from 1 to 100 m2 but more rapidly between 100 and 1000 m2 due to the abundance of rare or uncommon species that are more likely to be encountered at coarser spatial scales. The implications of this study are that both the exponential and power function models are legitimate representations of species-area relationships in different plant communities. Also, structural differences in community organization, arising from different species abundance distributions, may lead to different species-area curves, and this may be tied to patterns of life form distribution.

  8. Estimating abundance in the presence of species uncertainty

    USGS Publications Warehouse

    Chambert, Thierry A; Hossack, Blake R.; Fishback, LeeAnn; Davenport, Jon M.

    2016-01-01

    1.N-mixture models have become a popular method for estimating abundance of free-ranging animals that are not marked or identified individually. These models have been used on count data for single species that can be identified with certainty. However, co-occurring species often look similar during one or more life stages, making it difficult to assign species for all recorded captures. This uncertainty creates problems for estimating species-specific abundance and it can often limit life stages to which we can make inference. 2.We present a new extension of N-mixture models that accounts for species uncertainty. In addition to estimating site-specific abundances and detection probabilities, this model allows estimating probability of correct assignment of species identity. We implement this hierarchical model in a Bayesian framework and provide all code for running the model in BUGS-language programs. 3.We present an application of the model on count data from two sympatric freshwater fishes, the brook stickleback (Culaea inconstans) and the ninespine stickleback (Pungitius pungitius), ad illustrate implementation of covariate effects (habitat characteristics). In addition, we used a simulation study to validate the model and illustrate potential sample size issues. We also compared, for both real and simulated data, estimates provided by our model to those obtained by a simple N-mixture model when captures of unknown species identification were discarded. In the latter case, abundance estimates appeared highly biased and very imprecise, while our new model provided unbiased estimates with higher precision. 4.This extension of the N-mixture model should be useful for a wide variety of studies and taxa, as species uncertainty is a common issue. It should notably help improve investigation of abundance and vital rate characteristics of organisms’ early life stages, which are sometimes more difficult to identify than adults.

  9. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service.

    PubMed

    Winfree, Rachael; Fox, Jeremy W; Williams, Neal M; Reilly, James R; Cariveau, Daniel P

    2015-07-01

    Biodiversity-ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real-world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large-scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large-scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species-abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species-abundance distributions in nature. PMID:25959973

  10. Respiratory and cuticular water loss in insects with continuous gas exchange: comparison across five ant species.

    PubMed

    Schilman, Pablo E; Lighton, John R B; Holway, David A

    2005-12-01

    Respiratory water loss (RWL) in insects showing continuous emission of CO(2) is poorly studied because few methodologies can measure it. Comparisons of RWL between insects showing continuous and discontinuous gas exchange cycles (DGC) are therefore difficult. We used two recently developed methodologies (the hyperoxic switch and correlation between water-loss and CO(2) emission rates) to compare cuticular permeabilities and rates of RWL in five species of ants, the Argentine ant (Linepithema humile) and four common native ant competitors. Our results showed that RWL in groups of ants with moderate levels of activity and continuous gas exchange were similar across the two measurement methods, and were similar to published values on insects showing the DGC. Furthermore, ants exposed to anoxia increased their total water loss rates by 50-150%. These results suggest that spiracular control under continuous gas exchange can be as effective as the DGC in reducing RWL. Finally, the mesic-adapted Argentine ant showed significantly higher rates of water loss and cuticular permeability compared to four ant species native to dry environments. Physiological limitations may therefore be responsible for restricting the distribution of this invasive species in seasonally dry environments. PMID:16154585

  11. Density-Dependent Effects of an Invasive Ant on a Ground-Dwelling Arthropod Community.

    PubMed

    Cooling, M; Sim, D A; Lester, P J

    2015-02-01

    It is frequently assumed that an invasive species that is ecologically or economically damaging in one region, will typically be so in other environments. The Argentine ant Linepithema humile (Mayr) is listed among the world's worst invaders. It commonly displaces resident ant species where it occurs at high population densities, and may also reduce densities of other ground-dwelling arthropods. We investigated the effect of varying Argentine ant abundance on resident ant and nonant arthropod species richness and abundance in seven cities across its range in New Zealand. Pitfall traps were used to compare an invaded and uninvaded site in each city. Invaded sites were selected based on natural varying abundance of Argentine ant populations. Argentine ant density had a significant negative effect on epigaeic ant abundance and species richness, but hypogaeic ant abundance and species richness was unaffected. We observed a significant decrease in Diplopoda abundance with increasing Argentine ant abundance, while Coleoptera abundance increased. The effect on Amphipoda and Isopoda depended strongly on climate. The severity of the impact on negatively affected taxa was reduced in areas where Argentine ant densities were low. Surprisingly, Argentine ants had no effect on the abundance of the other arthropod taxa examined. Morphospecies richness for all nonant arthropod taxa was unaffected by Argentine ant abundance. Species that are established as invasive in one location therefore cannot be assumed to be invasive in other locations based on presence alone. Appropriate management decisions should reflect this knowledge. PMID:26308805

  12. Abundance of introduced species at home predicts abundance away in herbaceous grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced versus native communities, because ecological or evolutionary based shifts in popula...

  13. Nest site selection and induced response in a dominant arboreal ant species

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Grangier, Julien; Leroy, Céline; Orivel, Jerôme; Gibernau, Marc

    2008-09-01

    It is well known that arboreal ants, both territorially dominant species and plant ants (e.g., species associated with myrmecophytes or plants housing them in hollow structures), protect their host trees from defoliators. Nevertheless, the presence of an induced defense, suggested by the fact that the workers discovering a leaf wound recruit nestmates, is only known for plant ants. Based on the results from a field study, we show here (1) that colonies of Azteca chartifex, a territorially dominant, neotropical arboreal ant species, mostly selected Goupia glabra (Goupiaceae) trees in which to build their principal carton nests and (2) that plant signals induced workers to recruit nestmates, which patrol the leaves, likely providing the plant with a biotic defense. Furthermore, the number of recruited workers was clearly higher on G. glabra, their most frequently selected host tree species, than on other tree species. These results show that contrary to what was previously believed, induced responses are also found in territorially dominant arboreal ants and so are not limited to the specific associations between myrmecophytes and plant ants.

  14. Interspecific and temporal variation of ant species within Acacia drepanolobium ant domatia, a staple food of patas monkeys (Erythrocebus patas) in Laikipia, Kenya.

    PubMed

    Isbell, Lynne A; Young, Truman P

    2007-12-01

    The ants that live in the swollen thorns (domatia) of Acacia drepanolobium are staple foods for patas monkeys (Erythrocebus patas). To obtain a better understanding of these insects as resources for patas monkeys, we sampled the contents of 1,051 swollen thorns (ant domatia) over a 22-month period from December 1999 to September 2001, in Laikipia, Kenya. First, we confirmed that of the four species of ants that live on A. drepanolobium, Crematogaster sjostedti, the competitively dominant ant in this system, does not rear significant brood in the swollen thorns and is therefore not a major food item of patas monkeys. Second, across the other three species that do use swollen thorns for rearing their brood, C. nigriceps, C. mimosae, and Tetraponera penzigi, the number of worker ants per swollen thorn increased with increasing competitive dominance. Third, although there was considerable month-to-month variation in the number of workers, immatures, and especially alates (winged reproductives) within species, there was less variation across species because ant production was asynchronous. Variation in domatia contents was poorly related to rainfall for each of the three species. Finally, distal thorns held more alates and fewer workers than interior thorns, and branches higher off the ground held more alates and more workers than lower branches. For the numerically dominant C. mimosae, higher branches held significantly more immature ants than did lower branches. Ants are reliable food resources for patas monkeys, and are probably more reliable than many plant resources in this highly seasonal environment. We estimate that patas monkeys may get as much as a third of their daily caloric needs from these ants year-round. As ants and other insects are widely consumed by primates, we suggest that greater consideration be given to species differences in animal food choices and that further studies be conducted to examine the degree to which ants influence energy intake and

  15. Reduced entomopathogen abundance in Myrmica ant nests—testing a possible immunological benefit of myrmecophily using Galleria mellonella as a model

    PubMed Central

    Schär, Sämi; Larsen, Louise L. M.; Meyling, Nicolai V.; Nash, David R.

    2015-01-01

    Social insects such as ants have evolved collective rather than individual immune defence strategies against diseases and parasites at the level of their societies (colonies), known as social immunity. Ants frequently host other arthropods, so-called myrmecophiles, in their nests. Here, we tested the hypothesis that myrmecophily may partly arise from selection for exploiting the ants’ social immunity. We used larvae of the wax moth Galleria mellonella as ‘model myrmecophiles’ (baits) to test this hypothesis. We found significantly reduced abundance of entomopathogens in ant nests compared with the surrounding environment. Specific entomopathogen groups (Isaria fumosorosea and nematodes) were also found to be significantly less abundant inside than outside ant nests, whereas one entomopathogen (Beauveria brongniartii) was significantly more abundant inside nests. We therefore hypothesize that immunological benefits of entering ant nests may provide us a new explanation of why natural selection acts in favour of such a life-history strategy. PMID:26587252

  16. Effectiveness of mosquito traps in measuring species abundance and composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquito species abundance and composition estimates provided by trapping devices are commonly used to guide control efforts, but knowledge of trap biases is necessary for accurately interpreting results. We compared the Mosquito Magnet – Pro, the Mosquito Magnet – X and the CDC Miniature Light Trap...

  17. Capitalizing on opportunistic data for monitoring relative abundances of species.

    PubMed

    Giraud, Christophe; Calenge, Clément; Coron, Camille; Julliard, Romain

    2016-06-01

    With the internet, a massive amount of information on species abundance can be collected by citizen science programs. However, these data are often difficult to use directly in statistical inference, as their collection is generally opportunistic, and the distribution of the sampling effort is often not known. In this article, we develop a general statistical framework to combine such "opportunistic data" with data collected using schemes characterized by a known sampling effort. Under some structural assumptions regarding the sampling effort and detectability, our approach makes it possible to estimate the relative abundance of several species in different sites. It can be implemented through a simple generalized linear model. We illustrate the framework with typical bird datasets from the Aquitaine region in south-western France. We show that, under some assumptions, our approach provides estimates that are more precise than the ones obtained from the dataset with a known sampling effort alone. When the opportunistic data are abundant, the gain in precision may be considerable, especially for rare species. We also show that estimates can be obtained even for species recorded only in the opportunistic scheme. Opportunistic data combined with a relatively small amount of data collected with a known effort may thus provide access to accurate and precise estimates of quantitative changes in relative abundance over space and/or time. PMID:26496390

  18. Measuring β-diversity with species abundance data.

    PubMed

    Barwell, Louise J; Isaac, Nick J B; Kunin, William E

    2015-07-01

    In 2003, 24 presence-absence β-diversity metrics were reviewed and a number of trade-offs and redundancies identified. We present a parallel investigation into the performance of abundance-based metrics of β-diversity. β-diversity is a multi-faceted concept, central to spatial ecology. There are multiple metrics available to quantify it: the choice of metric is an important decision. We test 16 conceptual properties and two sampling properties of a β-diversity metric: metrics should be 1) independent of α-diversity and 2) cumulative along a gradient of species turnover. Similarity should be 3) probabilistic when assemblages are independently and identically distributed. Metrics should have 4) a minimum of zero and increase monotonically with the degree of 5) species turnover, 6) decoupling of species ranks and 7) evenness differences. However, complete species turnover should always generate greater values of β than extreme 8) rank shifts or 9) evenness differences. Metrics should 10) have a fixed upper limit, 11) symmetry (βA,B  = βB,A ), 12) double-zero asymmetry for double absences and double presences and 13) not decrease in a series of nested assemblages. Additionally, metrics should be independent of 14) species replication 15) the units of abundance and 16) differences in total abundance between sampling units. When samples are used to infer β-diversity, metrics should be 1) independent of sample sizes and 2) independent of unequal sample sizes. We test 29 metrics for these properties and five 'personality' properties. Thirteen metrics were outperformed or equalled across all conceptual and sampling properties. Differences in sensitivity to species' abundance lead to a performance trade-off between sample size bias and the ability to detect turnover among rare species. In general, abundance-based metrics are substantially less biased in the face of undersampling, although the presence-absence metric, βsim , performed well overall. Only

  19. On the Morphology of the Digestive System of Two Monomorium Ant Species

    PubMed Central

    Solis, Daniel Russ; Rossi, Mônica Lanzoni; Fox, Eduardo Gonçalves Paterson; Nogueira, Neusa de Lima; Tanaka, Francisco André Ossamu; Bueno, Odair Correa

    2013-01-01

    The digestive system of adults and mature larvae of two ant species of Monomorium Mayr (Hymoneptera: Formicidae) were described with the aid of light and scanning electron microscopy, as there is a lack of studies in this area. These two ant species are recurrently found in urban habitats and are known as ‘tramp species,’ as they cause problems in households, businesses, and hospitals. The most interesting finds of the present study include the existence of spinules in the crop of adults, and the number of Malpighian tubules and rectal pads was constant among different castes, ages, and species. PMID:24224520

  20. Why are there more arboreal ant species in primary than in secondary tropical forests?

    PubMed

    Klimes, Petr; Idigel, Cliffson; Rimandai, Maling; Fayle, Tom M; Janda, Milan; Weiblen, George D; Novotny, Vojtech

    2012-09-01

    1. Species diversity of arboreal arthropods tends to increase during rainforest succession so that primary forest communities comprise more species than those from secondary vegetation, but it is not well understood why. Primary forests differ from secondary forests in a wide array of factors whose relative impacts on arthropod diversity have not yet been quantified. 2. We assessed the effects of succession-related determinants on a keystone ecological group, arboreal ants, by conducting a complete census of 1332 ant nests from all trees with diameter at breast height ≥ 5 cm occurring within two (unreplicated) 0·32-ha plots, one in primary and one in secondary lowland forest in New Guinea. Specifically, we used a novel rarefaction-based approach to match number, size distribution and taxonomic structure of trees in primary forest communities to those in secondary forest and compared the resulting numbers of ant species. 3. In total, we recorded 80 nesting ant species from 389 trees in primary forest but only 42 species from 295 trees in secondary forest. The two habitats did not differ in the mean number of ant species per tree or in the relationship between ant diversity and tree size. However, the between-tree similarity of ant communities was higher in secondary forest than in primary forest, as was the between-tree nest site similarity, suggesting that secondary trees were more uniform in providing nesting microhabitats. 4. Using our rarefaction method, the difference in ant species richness between two forest types was partitioned according to the effects of higher tree density (22·6%), larger tree size (15·5%) and higher taxonomic diversity of trees (14·3%) in primary than in secondary forest. The remaining difference (47·6%) was because of higher beta diversity of ant communities between primary forest trees. In contrast, difference in nest density was explained solely by difference in tree density. 5. Our study shows that reduction in plant taxonomic

  1. Patterns of relative species abundance in rainforests and coral reefs.

    PubMed

    Volkov, Igor; Banavar, Jayanth R; Hubbell, Stephen P; Maritan, Amos

    2007-11-01

    A formidable many-body problem in ecology is to understand the complex of factors controlling patterns of relative species abundance (RSA) in communities of interacting species. Unlike many problems in physics, the nature of the interactions in ecological communities is not completely known. Although most contemporary theories in ecology start with the basic premise that species interact, here we show that a theory in which all interspecific interactions are turned off leads to analytical results that are in agreement with RSA data from tropical forests and coral reefs. The assumption of non-interacting species leads to a sampling theory for the RSA that yields a simple approximation at large scales to the exact theory. Our results show that one can make significant theoretical progress in ecology by assuming that the effective interactions among species are weak in the stationary states in species-rich communities such as tropical forests and coral reefs. PMID:17972874

  2. Analytical formulae for computing dominance from species-abundance distributions.

    PubMed

    Fung, Tak; Villain, Laura; Chisholm, Ryan A

    2015-12-01

    The evenness of an ecological community affects ecosystem structure, functioning and stability, and has implications for biodiversity conservation. In uneven communities, most species are rare while a few dominant species drive ecosystem-level properties. In even communities, dominance is lower, with possibly many species playing key ecological roles. The dominance aspect of evenness can be measured as a decreasing function of the proportion of species required to make up a fixed fraction (e.g., half) of individuals in a community. Here we sought general rules about dominance in ecological communities by linking dominance mathematically to the parameters of common theoretical species-abundance distributions (SADs). We found that if a community's SAD was log-series or lognormal, then dominance was almost inevitably high, with fewer than 40% of species required to account for 90% of all individuals. Dominance for communities with an exponential SAD was lower but still typically high, with fewer than 40% of species required to account for 70% of all individuals. In contrast, communities with a gamma SAD only exhibited high dominance when the average species abundance was below a threshold of approximately 100. Furthermore, we showed that exact values of dominance were highly scale-dependent, exhibiting non-linear trends with changing average species abundance. We also applied our formulae to SADs derived from a mechanistic community model to demonstrate how dominance can increase with environmental variance. Overall, our study provides a rigorous basis for theoretical explorations of the dynamics of dominance in ecological communities, and how this affects ecosystem functioning and stability. PMID:26409166

  3. Assessing introduction risk using species' rank-abundance distributions.

    PubMed

    Chan, Farrah T; Bradie, Johanna; Briski, Elizabeta; Bailey, Sarah A; Simard, Nathalie; MacIsaac, Hugh J

    2015-01-22

    Mixed-species assemblages are often unintentionally introduced into new ecosystems. Analysing how assemblage structure varies during transport may provide insights into how introduction risk changes before propagules are released. Characterization of introduction risk is typically based on assessments of colonization pressure (CP, the number of species transported) and total propagule pressure (total PP, the total abundance of propagules released) associated with an invasion vector. Generally, invasion potential following introduction increases with greater CP or total PP. Here, we extend these assessments using rank-abundance distributions to examine how CP : total PP relationships change temporally in ballast water of ocean-going ships. Rank-abundance distributions and CP : total PP patterns varied widely between trans-Atlantic and trans-Pacific voyages, with the latter appearing to pose a much lower risk than the former. Responses also differed by taxonomic group, with invertebrates experiencing losses mainly in total PP, while diatoms and dinoflagellates sustained losses mainly in CP. In certain cases, open-ocean ballast water exchange appeared to increase introduction risk by uptake of new species or supplementation of existing ones. Our study demonstrates that rank-abundance distributions provide new insights into the utility of CP and PP in characterizing introduction risk. PMID:25473007

  4. Discovery-dominance trade-off among widespread invasive ant species.

    PubMed

    Bertelsmeier, Cleo; Avril, Amaury; Blight, Olivier; Jourdan, Hervé; Courchamp, Franck

    2015-07-01

    Ants are among the most problematic invasive species. They displace numerous native species, alter ecosystem processes, and can have negative impacts on agriculture and human health. In part, their success might stem from a departure from the discovery-dominance trade-off that can promote co-existence in native ant communities, that is, invasive ants are thought to be at the same time behaviorally dominant and faster discoverers of resources, compared to native species. However, it has not yet been tested whether similar asymmetries in behavioral dominance, exploration, and recruitment abilities also exist among invasive species. Here, we establish a dominance hierarchy among four of the most problematic invasive ants (Linepithema humile, Lasius neglectus, Wasmannia auropunctata, Pheidole megacephala) that may be able to arrive and establish in the same areas in the future. To assess behavioral dominance, we used confrontation experiments, testing the aggressiveness in individual and group interactions between all species pairs. In addition, to compare discovery efficiency, we tested the species' capacity to locate a food resource in a maze, and the capacity to recruit nestmates to exploit a food resource. The four species differed greatly in their capacity to discover resources and to recruit nestmates and to dominate the other species. Our results are consistent with a discovery-dominance trade-off. The species that showed the highest level of interspecific aggressiveness and dominance during dyadic interactions. PMID:26257879

  5. Asymmetrical behavioral response towards two boron toxicants depends on the ant species (Hymenoptera: Formicidae).

    PubMed

    Sola, Francisco; Falibene, Agustina; Josens, Roxana

    2013-04-01

    Urban ants are a worldwide critical household pests, and efforts to control them usually involve the use of alimentary baits containing slow-acting insecticides. A common toxicant used is boron, either as borax or boric acid. However, the presence of these compounds can affect the consumption of baits by reducing their acceptance and ingestion. Moreover, as feeding motivation varies widely, according not only to food properties but also to colony conditions, bait consumption might be diminished further in certain situations. In this study, we compared the feeding response of ants toward two boron toxic baits (boric acid and borax) in low motivation situations that enhance any possible phago-deterrence the baits may produce. Most studies investigating bait ingestion evaluate whole nests or groups of ants; here, we analyzed the individual ingestion behavior and mortality of the Argentine ant, Linepithema humile (Mayr), and the carpenter ant, Camponotus mus (Roger), for two boron baits, to detect which compound generates a higher rejection in each of these species. Although these two species have similar feeding habits, our results showed that ants under low motivation conditions reduced the acceptance and consumption of the toxic baits asymmetrically. While L. humile mostly rejected the borax, C. mus rejected the boric acid. These results denote the importance of considering the preference of each species when developing a pest management strategy. PMID:23786084

  6. Unraveling Trichoderma species in the attine ant environment: description of three new taxa.

    PubMed

    Montoya, Quimi Vidaurre; Meirelles, Lucas Andrade; Chaverri, Priscila; Rodrigues, Andre

    2016-05-01

    Fungus-growing "attine" ants forage diverse substrates to grow fungi for food. In addition to the mutualistic fungal partner, the colonies of these insects harbor a rich microbiome composed of bacteria, filamentous fungi and yeasts. Previous work reported some Trichoderma species in the fungus gardens of leafcutter ants. However, no studies systematically addressed the putative association of Trichoderma with attine ants, especially in non-leafcutter ants. Here, a total of 62 strains of Trichoderma were analyzed using three molecular markers (ITS, tef1 and rpb2). In addition, 30 out of 62 strains were also morphologically examined. The strains studied correspond to the largest sampling carried out so far for Trichoderma in the attine ant environment. Our results revealed the richness of Trichoderma in this environment, since we found 20 Trichoderma species, including three new taxa described in the present work (Trichoderma attinorum, Trichoderma texanum and Trichoderma longifialidicum spp. nov.) as well as a new phylogenetic taxon (LESF 545). Moreover, we show that all 62 strains grouped within different clades across the Trichoderma phylogeny, which are identical or closely related to strains derived from several other environments. This evidence supports the transient nature of the genus Trichoderma in the attine ant colonies. The discovery of three new species suggests that the dynamic foraging behavior of these insects might be responsible for accumulation of transient fungi into their colonies, which might hold additional fungal taxa still unknown to science. PMID:26885975

  7. How much variation can one ant species hold? Species delimitation in the Crematogaster kelleri-group in Madagascar.

    PubMed

    Blaimer, Bonnie B; Fisher, Brian L

    2013-01-01

    We investigated the species-level taxonomy of the Malagasy Crematogaster (Crematogaster) kelleri-group and an additional more distantly related species of the same subgenus. Morphological data from worker, queen and male ants, as well as genetic data from three nuclear genes (long wavelength rhodopsin, arginine kinase and carbomoylphosphate synthase) and one mitochondrial marker (cytochrome oxidase I) led to the recognition of six species. Within the C. kelleri-group, three new species are described: C. hazolava Blaimer sp. n., C. hafahafa Blaimer sp. n. and C. tavaratra Blaimer sp. n. The previously described taxa C. kelleri Forel and C. madagascariensis André are validated by our analysis. Conversely, our data suggests synonymy of C. adrepens Forel (with C. kelleri) and C. gibba Emery (with C. madagascariensis). A more distantly related and phylogenetically isolated species, C. tsisitsilo Blaimer sp. n., is further described. We report high levels of morphological and molecular variation in C. kelleri and illustrate that this variation can be explained partly by geography. Species descriptions, images, distribution maps and identification keys based on worker ants, as well as on queen and male ants where available, are presented for all six species. Our work highlights the elevated species richness of Crematogaster ants throughout Madagascar's humid forests, especially in the far northern tip of the island, and the need to use multiple data sources to ensure clear demarcation of this diversity. PMID:23874503

  8. Diversification amongst the South American fire ants: how when and why species barriers break down

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire ants (Solenopsis) are an ideal model system for studying speciation and coexistence. Based on preliminary mitochondrial work, they appear to be a relatively recent radiation, and possibly a species swarm (ancient hybridization among young species). We are using a variety of phylogenetic, phylog...

  9. Discovery–dominance trade-off among widespread invasive ant species

    PubMed Central

    Bertelsmeier, Cleo; Avril, Amaury; Blight, Olivier; Jourdan, Hervé; Courchamp, Franck

    2015-01-01

    Ants are among the most problematic invasive species. They displace numerous native species, alter ecosystem processes, and can have negative impacts on agriculture and human health. In part, their success might stem from a departure from the discovery–dominance trade-off that can promote co-existence in native ant communities, that is, invasive ants are thought to be at the same time behaviorally dominant and faster discoverers of resources, compared to native species. However, it has not yet been tested whether similar asymmetries in behavioral dominance, exploration, and recruitment abilities also exist among invasive species. Here, we establish a dominance hierarchy among four of the most problematic invasive ants (Linepithema humile, Lasius neglectus, Wasmannia auropunctata, Pheidole megacephala) that may be able to arrive and establish in the same areas in the future. To assess behavioral dominance, we used confrontation experiments, testing the aggressiveness in individual and group interactions between all species pairs. In addition, to compare discovery efficiency, we tested the species’ capacity to locate a food resource in a maze, and the capacity to recruit nestmates to exploit a food resource. The four species differed greatly in their capacity to discover resources and to recruit nestmates and to dominate the other species. Our results are consistent with a discovery–dominance trade-off. The species that showed the highest level of interspecific aggressiveness and dominance during dyadic interactions. PMID:26257879

  10. Foraminifera Species Richness, Abundance, and Diversity Research in Bolinas, California

    NASA Astrophysics Data System (ADS)

    Brunwin, N.; Ingram, Z.; Mendez, M.; Sandoval, K.

    2015-12-01

    Foraminifera are abundant, diverse, respond rapidly to environmental change, and are present in all marine and estuarine environments, making them important indicator species. A survey of occurrence and distribution of foraminifera in the Bolinas Lagoon, Marin County, California was carried out by Hedman in 1975, but no study since has focused on foraminiferal composition within this important ecosystem. In July 2015, the Careers in Science (CiS) Intern Program collected samples at 12 sites previously examined in the 1975 study. Thirty-six samples were collected from the upper few centimeters of sediment from a variety of intertidal and subtidal environments within the lagoon. Foraminifera from each sample were isolated, identified and species richness, abundance and diversity quantified. Furthermore, comparisons of faunal composition represented in our recent collection and that of Hedman's 1975 report are made.

  11. Abundance anomaly of the 13C species of CCH

    NASA Astrophysics Data System (ADS)

    Sakai, N.; Saruwatari, O.; Sakai, T.; Takano, S.; Yamamoto, S.

    2010-03-01

    Aims: We have observed the N = 1-0 lines of CCH and its 13C isotopic species toward a cold dark cloud, TMC-1 and a star-forming region, L1527, to investigate the 13C abundances and formation pathways of CCH. Methods: The observations have been carried out with the IRAM 30 m telescope. Results: We have successfully detected the lines of 13CCH and C13CH toward the both sources and found a significant intensity difference between the two 13C isotopic species. The [C13CH] /[13CCH] abundance ratios are 1.6 ± 0.4 (3σ) and 1.6 ± 0.1 (3σ) for TMC-1 and L1527, respectively. The abundance difference between C13CH and 13CCH means that the two carbon atoms of CCH are not equivalent in the formation pathway. On the other hand, the [CCH]/[C13CH] and [CCH]/[13CCH] ratios are evaluated to be larger than 170 and 250 toward TMC-1, and to be larger than 80 and 135 toward L1527, respectively. Therefore, both of the 13C species are significantly diluted in comparison with the interstellar 12C/13C ratio of 60. The dilution is discussed in terms of a behavior of 13C in molecular clouds.

  12. Measurement scale in maximum entropy models of species abundance

    PubMed Central

    Frank, Steven A.

    2010-01-01

    The consistency of the species abundance distribution across diverse communities has attracted widespread attention. In this paper, I argue that the consistency of pattern arises because diverse ecological mechanisms share a common symmetry with regard to measurement scale. By symmetry, I mean that different ecological processes preserve the same measure of information and lose all other information in the aggregation of various perturbations. I frame these explanations of symmetry, measurement, and aggregation in terms of a recently developed extension to the theory of maximum entropy. I show that the natural measurement scale for the species abundance distribution is log-linear: the information in observations at small population sizes scales logarithmically and, as population size increases, the scaling of information grades from logarithmic to linear. Such log-linear scaling leads naturally to a gamma distribution for species abundance, which matches well with the observed patterns. Much of the variation between samples can be explained by the magnitude at which the measurement scale grades from logarithmic to linear. This measurement approach can be applied to the similar problem of allelic diversity in population genetics and to a wide variety of other patterns in biology. PMID:21265915

  13. Food collection and response to pheromones in an ant species exposed to electromagnetic radiation.

    PubMed

    Cammaerts, Marie-Claire; Rachidi, Zoheir; Bellens, François; De Doncker, Philippe

    2013-09-01

    We used the ant species Myrmica sabuleti as a model to study the impact of electromagnetic waves on social insects' response to their pheromones and their food collection. We quantified M. sabuleti workers' response to their trail, area marking and alarm pheromone under normal conditions. Then, we quantified the same responses while under the influence of electromagnetic waves. Under such an influence, ants followed trails for only short distances, no longer arrived at marked areas and no longer orientated themselves to a source of alarm pheromone. Also when exposed to electromagnetic waves, ants became unable to return to their nest and recruit congeners; therefore, the number of ants collecting food increases only slightly and slowly. After 180 h of exposure, their colonies deteriorated. Electromagnetic radiation obviously affects social insects' behavior and physiology. PMID:23320633

  14. Neutral theory and relative species abundance in ecology

    NASA Astrophysics Data System (ADS)

    Volkov, Igor; Banavar, Jayanth R.; Hubbell, Stephen P.; Maritan, Amos

    2003-08-01

    The theory of island biogeography asserts that an island or a local community approaches an equilibrium species richness as a result of the interplay between the immigration of species from the much larger metacommunity source area and local extinction of species on the island (local community). Hubbell generalized this neutral theory to explore the expected steady-state distribution of relative species abundance (RSA) in the local community under restricted immigration. Here we present a theoretical framework for the unified neutral theory of biodiversity and an analytical solution for the distribution of the RSA both in the metacommunity (Fisher's log series) and in the local community, where there are fewer rare species. Rare species are more extinction-prone, and once they go locally extinct, they take longer to re-immigrate than do common species. Contrary to recent assertions, we show that the analytical solution provides a better fit, with fewer free parameters, to the RSA distribution of tree species on Barro Colorado Island, Panama, than the lognormal distribution.

  15. When Can Species Abundance Data Reveal Non-neutrality?

    PubMed Central

    Al Hammal, Omar; Alonso, David; Etienne, Rampal S.; Cornell, Stephen J.

    2015-01-01

    Species abundance distributions (SAD) are probably ecology’s most well-known empirical pattern, and over the last decades many models have been proposed to explain their shape. There is no consensus over which model is correct, because the degree to which different processes can be discerned from SAD patterns has not yet been rigorously quantified. We present a power calculation to quantify our ability to detect deviations from neutrality using species abundance data. We study non-neutral stochastic community models, and show that the presence of non-neutral processes is detectable if sample size is large enough and/or the amplitude of the effect is strong enough. Our framework can be used for any candidate community model that can be simulated on a computer, and determines both the sampling effort required to distinguish between alternative processes, and a range for the strength of non-neutral processes in communities whose patterns are statistically consistent with neutral theory. We find that even data sets of the scale of the 50 Ha forest plot on Barro Colorado Island, Panama, are unlikely to be large enough to detect deviations from neutrality caused by competitive interactions alone, though the presence of multiple non-neutral processes with contrasting effects on abundance distributions may be detectable. PMID:25793889

  16. When can species abundance data reveal non-neutrality?

    PubMed

    Al Hammal, Omar; Alonso, David; Etienne, Rampal S; Cornell, Stephen J

    2015-03-01

    Species abundance distributions (SAD) are probably ecology's most well-known empirical pattern, and over the last decades many models have been proposed to explain their shape. There is no consensus over which model is correct, because the degree to which different processes can be discerned from SAD patterns has not yet been rigorously quantified. We present a power calculation to quantify our ability to detect deviations from neutrality using species abundance data. We study non-neutral stochastic community models, and show that the presence of non-neutral processes is detectable if sample size is large enough and/or the amplitude of the effect is strong enough. Our framework can be used for any candidate community model that can be simulated on a computer, and determines both the sampling effort required to distinguish between alternative processes, and a range for the strength of non-neutral processes in communities whose patterns are statistically consistent with neutral theory. We find that even data sets of the scale of the 50 Ha forest plot on Barro Colorado Island, Panama, are unlikely to be large enough to detect deviations from neutrality caused by competitive interactions alone, though the presence of multiple non-neutral processes with contrasting effects on abundance distributions may be detectable. PMID:25793889

  17. Which Models Are Appropriate for Six Subtropical Forests: Species-Area and Species-Abundance Models

    PubMed Central

    Wei, Shi Guang; Li, Lin; Chen, Zhen Cheng; Lian, Ju Yu; Lin, Guo Jun; Huang, Zhong Liang; Yin, Zuo Yun

    2014-01-01

    The species-area relationship is one of the most important topic in the study of species diversity, conservation biology and landscape ecology. The species-area relationship curves describe the increase of species number with increasing area, and have been modeled by various equations. In this paper, we used detailed data from six 1-ha subtropical forest communities to fit three species-area relationship models. The coefficient of determination and F ratio of ANOVA showed all the three models fitted well to the species-area relationship data in the subtropical communities, with the logarithm model performing better than the other two models. We also used the three species-abundance distributions, namely the lognormal, logcauchy and logseries model, to fit them to the species-abundance data of six communities. In this case, the logcauchy model had the better fit based on the coefficient of determination. Our research reveals that the rare species always exist in the six communities, corroborating the neutral theory of Hubbell. Furthermore, we explained why all species-abundance figures appeared to be left-side truncated. This was due to subtropical forests have high diversity, and their large species number includes many rare species. PMID:24755956

  18. The reproductive phenology of an Amazonian ant species reflects the seasonal availability of its nest sites.

    PubMed

    Frederickson, Megan E

    2006-09-01

    In saturated tropical ant assemblages, reproductive success depends on queens locating and competing for scarce nest sites. Little is known about how this process shapes the life histories of tropical ants. Here I investigate the relationship between nest site availability and an important life history trait, reproductive phenology, in the common Amazonian ant species Allomerus octoarticulatus. A. octoarticulatus is a plant-ant that nests in the hollow, swollen stem domatia on Cordia nodosa. I provide evidence that nest sites are limiting for A. octoarticulatus. Most queens produced by A. octoarticulatus colonies died before locating suitable host plants, and most queens that located hosts died before founding colonies, probably from intraspecific competition among queens for control of host plants. I further show that the reproductive phenology of A. octoarticulatus closely matches the seasonal availability of its nest sites, domatia-bearing C. nodosa saplings. Both the production and flight of A. octoarticulatus reproductives, and the number of C. nodosa saplings available for colonization by ants, peaked from March to May. There was correlative evidence that A. octoarticulatus colonies use temperature as a cue to synchronize their reproduction to the availability of C. nodosa saplings: both the production of reproductives by ant colonies and the number of C. nodosa saplings available for colonization were correlated with temperature, and not with rainfall. All of these results suggest that nest site limitation constrains the reproductive phenology of A. octoarticulatus. PMID:16758217

  19. Leg allometry in ants: extreme long-leggedness in thermophilic species.

    PubMed

    Sommer, Stefan; Wehner, Rüdiger

    2012-01-01

    The thermophilic ant genera Cataglyphis and Ocymyrmex share a variety of specialisations that enable them to engage in high-speed foraging at considerably higher temperatures than less heat-tolerant species. In the present account we test the hypothesis that thermophilic ants have longer legs than closely related species from more mesic habitats. By comparing large-sized, medium-sized, and small-sized species of Cataglyphis and Ocymyrmex with size-matched species of the closely related non-thermophilic genera Formica (Formicinae) and Messor (Myrmicinae), respectively, we show that the thermophilic species are equipped with considerably longer legs than their less heat-tolerant relatives. Hence phylogenetically, extreme long-leggedness has evolved at least twice in desert ants: in the Formicinae and the Myrmicinae. Functionally, this morphological trait is adaptive for a number of reasons. The long legs raise the body into cooler layers of air and enable higher running speeds, which increase convective cooling and reduce foraging time. These are important adaptations all the more as due to the low food density prevailing in desert habitats foraging Cataglyphis and Ocymyrmex ants have to cover large distances within their physically demanding foraging grounds. PMID:21992805

  20. Impact of Two Ant Species on Egg Parasitoids Released as Part of a Biological Control Program

    PubMed Central

    Kergunteuil, Alan; Basso, César; Pintureau, Bernard

    2013-01-01

    Biological control using Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae), an egg parasitoid wasp, was tested in Uruguay to reduce populations of lepidopteran pests on soybeans. It was observed that the commercial parasitoid dispensers, which were made of cardboard, were vulnerable to small predators that succeeded in entering and emptying the containers of all the eggs parasitized by T. pretiosum. Observations in a soybean crop showed that the only small, common predators present were two ant species. The species responsible for the above mentioned predation was determined from the results of a laboratory experiment in which the behavior of the two common ants was tested. A modification of the dispensers to prevent introduction of this ant has been proposed and successfully tested in the laboratory and in the field. PMID:24738954

  1. Species-specific leaf volatile compounds of obligate Macaranga myrmecophytes and host-specific aggressiveness of symbiotic Crematogaster ants.

    PubMed

    Inui, Yoko; Itioka, Takao

    2007-11-01

    Macaranga myrmecophytes harbor species-specific Crematogaster ants that defend host trees from herbivores. We examined ant aggressive behaviors when artificially damaged leaf pieces from another tree were offered to four sympatric species of obligate Macaranga myrmecophytes. The ants showed aggressive behavior in response to leaf pieces regardless of the leaf species; however, aggressiveness was higher when conspecific leaf pieces were offered than when nonhost species were offered. Thus, ants can recognize leaf damage and distinguish among damaged leaf species. Chemical analyses of volatile compounds emitted from damaged leaves that may induce ant defense showed that the composition of the minor compounds differed among the four Macaranga species, although there were many compounds in common. PMID:17929092

  2. Species composition and abundance of Brevipalpus spp. on different citrus species in Mexican orchards.

    PubMed

    Salinas-Vargas, D; Santillán-Galicia, M T; Valdez-Carrasco, J; Mora-Aguilera, G; Atanacio-Serrano, Y; Romero-Pescador, P

    2013-08-01

    We studied the abundance of Brevipalpus spp. in citrus orchards in the Mexican states of Yucatan, Quintana Roo and Campeche. Mites were collected from 100 trees containing a mixture of citrus species where sweet orange was always the main species. Eight collections were made at each location from February 2010 to February 2011. Mites from the genus Brevipalpus were separated from other mites surveyed and their abundance and relationships with the different citrus species were quantified throughout the collection period. A subsample of 25% of the total Brevipalpus mites collected were identified to species level and the interaction of mite species and citrus species were described. Brevipalpus spp. were present on all collection dates and their relative abundance was similar on all citrus species studies. The smallest number of mites collected was during the rainy season. Brevipalpus phoenicis (Geijskes) and Brevipalpus californicus (Banks) were the only two species present and they were found in all locations except Campeche, where only B. phoenicis was present. Yucatan and Campeche are at greater risk of leprosis virus transmission than Quintana Roo because the main vector, B. phoenicis, was more abundant than B. californicus. The implications of our results for the design of more accurate sampling and control methods for Brevipalpus spp. are discussed. PMID:23949863

  3. Characterization of 24 microsatellite markers in eleven species of fire ants in the genus Solenopsis (Hymenoptera: Formicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inquiline social parasite ant Solenopsis daguerrei infests colonies of several mound-building fire ant species within the S. saevissima species-group. Twenty-four microsatellite markers were isolated from a repeat-enriched genomic library of S. daguerrei. Eleven loci were polymorphic in the inq...

  4. Community structure influences species' abundance along environmental gradients.

    PubMed

    Eloranta, Antti P; Helland, Ingeborg P; Sandlund, Odd T; Hesthagen, Trygve; Ugedal, Ola; Finstad, Anders G

    2016-01-01

    Species' response to abiotic environmental variation can be influenced by local community structure and interspecific interactions, particularly in restricted habitats such as islands and lakes. In temperate lakes, future increase in water temperature and run-off of terrestrial (allochthonous) dissolved organic carbon (DOC) are predicted to alter community composition and the overall ecosystem productivity. However, little is known about how the present community structure and abiotic environmental variation interact to affect the abundance of native fish populations. We used a space-for-time approach to study how local community structure interact with lake morphometric and climatic characteristics (i.e. temperature and catchment productivity) to affect brown trout (Salmo trutta L.) yield in 283 Norwegian lakes located in different biogeographical regions. Brown trout yield (based on data from standardized survey gill net fishing; g 100 m(-2) gill net night(-1)) was generally lower in lakes where other fish species were present than in lakes with brown trout only. The yield showed an overall negative relationship with increasing temperature and a positive relationship with lake shoreline complexity. Brown trout yield was also negatively correlated with DOC load (measured using Normalized Difference Vegetation Index as a proxy) and lake size and depth (measured using terrain slope as a proxy), but only in lakes where other fish species were present. The observed negative response of brown trout yield to increasing DOC load and proportion of the pelagic open-water area is likely due to restricted (littoral) niche availability and competitive dominance of more pelagic fishes such as Arctic charr (Salvelinus alpinus (L.)). Our study highlights that, through competitive interactions, the local community structure can influence the response of a species' abundance to variation in abiotic conditions. Changes in biomass and niche use of top predators (such as the brown

  5. Analyzing fractal property of species abundance distribution and diversity indexes.

    PubMed

    Su, Qiang

    2016-03-01

    Community diversity is usually characterized by numerical indexes; however it indeed depends on the species abundance distribution (SAD). Diversity indexes and SAD are based on the same information but treating as separate themes. Ranking species abundance from largest to smallest, the decreasing pattern can give the information about the SAD. Frontier proposed such SAD might be a fractal structure, and first applied the Zipf-Mandelbrot model to the SAD study. However, this model fails to include the Zipf model, and also fails to ensure an integer rank. In this study, a fractal model of SAD was reconstructed, and tested with 104 community samples from 8 taxonomic groups. The results show that there was a good fit of the presented model. Fractal parameter (p) determines the SAD of a community. The ecological significance of p relates to the "dominance" of a community. The correlation between p and classical diversity indexes show that Shannon index decreases and Simpson index increases as p increases. The main purpose of this paper is not to compare with other SADs models; it simply provides a new interpretation of SAD model construction, and preliminarily integrates diversity indexes and SAD model into a broader perspective of community diversity. PMID:26746388

  6. Metagenomic abundance estimation and diagnostic testing on species level

    PubMed Central

    Lindner, Martin S.; Renard, Bernhard Y.

    2013-01-01

    One goal of sequencing-based metagenomic community analysis is the quantitative taxonomic assessment of microbial community compositions. In particular, relative quantification of taxons is of high relevance for metagenomic diagnostics or microbial community comparison. However, the majority of existing approaches quantify at low resolution (e.g. at phylum level), rely on the existence of special genes (e.g. 16S), or have severe problems discerning species with highly similar genome sequences. Yet, problems as metagenomic diagnostics require accurate quantification on species level. We developed Genome Abundance Similarity Correction (GASiC), a method to estimate true genome abundances via read alignment by considering reference genome similarities in a non-negative LASSO approach. We demonstrate GASiC’s superior performance over existing methods on simulated benchmark data as well as on real data. In addition, we present applications to datasets of both bacterial DNA and viral RNA source. We further discuss our approach as an alternative to PCR-based DNA quantification. PMID:22941661

  7. Species delimitation: A case study in a problematic ant taxon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species delimitation has been invigorated as a discipline in systematics by an influx of new character sets, analytical methods, and conceptual advances. We use genetic data from 68 markers, combined with distributional, bioclimatic, and coloration information, to distinguish evolutionarily indepe...

  8. SPECIES-ABUNDANCE-BIOMASS RESPONSES BY ESTUARINE MACROBENTHOS TO SEDIMENT CHEMICAL CONTAMINATION.

    EPA Science Inventory

    Macrobenthic community responses can be measured through concerted changes in univariate metrics, including species richness, total abundance, and total biomass. The classic model of pollution effects on marine macroinvertebrate communities recognizes that species/abundance/bioma...

  9. Myrmecochory and short-term seed fate in Rhamnus alaternus: Ant species and seed characteristics

    NASA Astrophysics Data System (ADS)

    Bas, J. M.; Oliveras, J.; Gómez, C.

    2009-05-01

    Benefits conferred on plants in ant-mediated seed dispersal mutualisms (myrmecochory) depend on the fate of transported seeds. We studied the effects of elaiosome presence, seed size and seed treatment (with and without passage through a bird's digestive tract) on short-term seed fate in Rhamnus alaternus. In our study, we define short-term seed, or initial, seed fate, as the location where ants release the seeds after ant contact with it. The elaiosomes had the most influence on short-term fate, i.e. whether or not seeds were transported to the nest. The workers usually transported big seeds more often than small ones, but small ants did not transport large seeds. Effect of seed size on transport depended on the ant species and on the treatment of the seed (manual extraction simulating a direct fall from the parent plant vs. bird deposition corresponding to preliminary primary dispersal). Probability of removal of elaiosome-bearing seeds to the nest by Aphaenogaster senilis increased with increasing seed weight.

  10. Nylanderia deceptrix sp. n., a new species of obligately socially parasitic formicine ant (Hymenoptera, Formicidae)

    PubMed Central

    Messer, Steven J.; Cover, Stefan P.; LaPolla, John S.

    2016-01-01

    Abstract Obligately socially parasitic ants are social parasites that typically lack the sterile worker caste, and depend on the host species for survival and brood care. The genus Nylanderia has over 130 described species and subspecies, none of which, until this study, were known social parasites. Here we describe the first social parasite known in the genus, Nylanderia deceptrix. Aspects of the biology of the host species, Nylanderia parvula (Mayr 1870), and Nylanderia deceptrix are examined. The data from both the host and the parasite species are combined to better understand the host-parasite relationship. PMID:26865815

  11. Astrochem: Abundances of chemical species in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Maret, Sébastien; Bergin, Edwin A.

    2015-07-01

    Astrochem computes the abundances of chemical species in the interstellar medium, as function of time. It studies the chemistry in a variety of astronomical objects, including diffuse clouds, dense clouds, photodissociation regions, prestellar cores, protostars, and protostellar disks. Astrochem reads a network of chemical reactions from a text file, builds up a system of kinetic rates equations, and solves it using a state-of-the-art stiff ordinary differential equation (ODE) solver. The Jacobian matrix of the system is computed implicitly, so the resolution of the system is extremely fast: large networks containing several thousands of reactions are usually solved in a few seconds. A variety of gas phase process are considered, as well as simple gas-grain interactions, such as the freeze-out and the desorption via several mechanisms (thermal desorption, cosmic-ray desorption and photo-desorption). The computed abundances are written in a HDF5 file, and can be plotted in different ways with the tools provided with Astrochem. Chemical reactions and their rates are written in a format which is meant to be easy to read and to edit. A tool to convert the chemical networks from the OSU and KIDA databases into this format is also provided. Astrochem is written in C, and its source code is distributed under the terms of the GNU General Public License (GPL).

  12. Fuel breaks affect nonnative species abundance in Californian plant communities

    USGS Publications Warehouse

    Merriam, K.E.; Keeley, J.E.; Beyers, J.L.

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.

  13. Circadian consequences of social organization in the ant species Camponotus compressus

    NASA Astrophysics Data System (ADS)

    Sharma, Vijay Kumar; Lone, Shahnaz Rahman; Goel, Anubhuthi; Chandrashekaran, M. K.

    The locomotor activity rhythm of different castes of the ant species Camponotus compressus was monitored individually under laboratory light/dark (LD) cycles, and under continuous darkness (DD). The colony of this ant species comprises two sexual castes, the queens and the males, and three worker castes, namely the major, media, and minor workers. The virgin males and virgin queens display rhythmic activity patterns, but the mated queens were arrhythmic while laying eggs, with the rhythmicity resuming soon after egg-laying. Under the LD regime, major workers showed nocturnal patterns, while about 75% of the media workers displayed nocturnal patterns and about 25% showed diurnal patterns. Under the DD regime, most major workers exhibited circadian rhythm of activity with a single steady state, whereas media workers displayed two types of activity patterns, with activity patterns changing after 6-9 days in DD (turn-arounds). The pre-turn-around τ of the ants that showed nocturnal activity patterns during LD entrainment was <24 h after release into DD, which then became >24 h, after 6-9 days. On the other hand, the pre-turn-around τ of those ants that exhibited diurnal patterns during LD entrainment was first >24 h after release into DD, and then became <24 h, after 6-9 days. The activity of the minor workers neither entrained to LD cycles nor showed any sign of free-run in DD. It appears that the circadian clocks of the ant species C. compressus are flexible, and may perhaps depend upon the tasks assigned to them in the colony.

  14. Colony structure and spatial partitioning of cavity dwelling ant species in nuts of eastern US forest floors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nut-bearing trees create islands of high efficiency, low cost housing opportunities for ant colonies. Fallen nuts in leaf litter from previous seasons provide ready-made nest sites for cavity dwelling ant species, as well as affording protection from the elements. Suitable nuts for nests require an ...

  15. Target strengths of two abundant mesopelagic fish species.

    PubMed

    Scoulding, Ben; Chu, Dezhang; Ona, Egil; Fernandes, Paul G

    2015-02-01

    Mesopelagic fish of the Myctophidae and Sternoptychidae families dominate the biomass of the oceanic deep scattering layers and, therefore, have important ecological roles within these ecosystems. Interest in the commercial exploitation of these fish is growing, so the development of techniques for estimating their abundance, distribution and, ultimately, sustainable exploitation are essential. The acoustic backscattering characteristics for two size classes of Maurolicus muelleri and Benthosema glaciale are reported here based on swimbladder morphology derived from digitized soft x-ray images, and empirical (in situ) measurements of target strength (TS) derived from an acoustic survey in a Norwegian Sea. A backscattering model based on a gas-filled prolate spheroid was used to predict the theoretical TS for both species across a frequency range between 0 and 250 kHz. Sensitivity analyses of the TS model to the modeling parameters indicate that TS is rather sensitive to the viscosity, swimbladder volume ratio, and tilt, which can result in substantial changes to the TS. Theoretical TS predictions close to the resonance frequency were in good agreement (±2 dB) with mean in situ TS derived from the areas acoustically surveyed that were spatially and temporally consistent with the trawl information for both species. PMID:25698030

  16. Daughter Species Abundances in Comet C/2014 Q2 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Cochran, Anita; Dello Russo, Neil; Kelley, Michael

    2015-11-01

    We present analysis of high spectral resolution optical spectra of C/2014 Q2 (Lovejoy) acquired with the Tull Coude spectrometer on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory and the ARCES spectrometer mounted on the 3.5-meter Astrophysical Research Consortium Telescope at Apache Point Observatory. Both Tull Coude and ARCES provide high spectral resolution (R=30,000-60,000) and a large spectral range of approximately 3500-10000 Angstroms. We obtained two observation epochs, one in February 2015 at a heliocentric distance of 1.3 AU, and another in May 2015 at a heliocentric distance of 1.9 AU. Another epoch in late August 2015 at a heliocentric distance of 3.0 AU is scheduled. We will present production rates of the daughter species CN, C3, CH, C2, and NH2. We will also present H2O production rates derived from the [OI]6300 emission, as well as measurements of the flux ratio of the [OI]5577 Angstrom line to the sum of the [OI]6300 and [OI]6364 Angstrom lines (sometimes referred to as the oxygen line ratio). This ratio is indicative of the CO2 abundance of the comet. As we have observations at several heliocentric distances, we will examine how production rates and mixing ratios of the various species change with heliocentric distance. We will compare our oxygen line measurements to observations of CO2 made with Spitzer, as well as our other daughter species observations to those of candidate parent molecules made at IR wavelengths.

  17. Abundance changes and habitat availability drive species' responses to climate change

    NASA Astrophysics Data System (ADS)

    Mair, Louise; Hill, Jane K.; Fox, Richard; Botham, Marc; Brereton, Tom; Thomas, Chris D.

    2014-02-01

    There is little consensus as to why there is so much variation in the rates at which different species' geographic ranges expand in response to climate warming. Here we show that the relative importance of species' abundance trends and habitat availability for British butterfly species vary over time. Species with high habitat availability expanded more rapidly from the 1970s to mid-1990s, when abundances were generally stable, whereas habitat availability effects were confined to the subset of species with stable abundances from the mid-1990s to 2009, when abundance trends were generally declining. This suggests that stable (or positive) abundance trends are a prerequisite for range expansion. Given that species' abundance trends vary over time for non-climatic as well as climatic reasons, assessment of abundance trends will help improve predictions of species' responses to climate change, and help us to understand the likely success of different conservation strategies for facilitating their expansions.

  18. Multiphase myrmecochory: the roles of different ant species and effects of fire.

    PubMed

    Beaumont, Kieren P; Mackay, Duncan A; Whalen, Molly A

    2013-07-01

    Seed dispersal by ants (myrmecochory) can be influenced by changes to ant assemblages resulting from habitat disturbance as well as by differences in disperser behaviour. We investigated the effect of habitat disturbance by fire on the dispersal of seeds of a myrmecochorous shrub, Pultenaea daphnoides. We also investigated the consequence of the seed relocation behaviours of two common dispersers (Pheidole sp. A and Rhytidoponera metallica) for the redispersal of seeds. Pheidole sp. A colonies did not relocate seeds outside their nests. In contrast, R. metallica colonies relocated 43.6% of seeds fed to them, of which 96.9% had residual elaiosome that remained attached. On average, R. metallica relocated seeds 78.9 and 60.7 cm from the nest entrances in burned and unburned habitat, respectively. Seeds were removed faster in burned than in unburned habitat, and seeds previously relocated by R. metallica were removed at similar rates to seeds with intact elaiosomes, but faster than seeds with detached elaiosomes. Dispersal distances were not significantly different between burned (51.3 cm) and unburned (70.9 cm) habitat or between seeds with different elaiosome conditions. Differences between habitat types in the frequency of seed removal, the shape of the seed dispersal curve, and the relative contribution of R. metallica and Pheidole sp. A to seed dispersal were largely due to the effect of recent fire on the abundance of Pheidole sp. A. Across habitat types, the number of seeds removed from depots and during dispersal trials most strongly related to the combined abundances of R. metallica and Pheidole. Our findings show that myrmecochory can involve more than one dispersal phase and that fire indirectly influences myrmecochory by altering the abundances of seed-dispersing ants. PMID:23386041

  19. Evidence of competition among three species of Pseudacteon decapitating flies released in the Gainesville area as fire ant biocontrol agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three species of fire ant decapitating flies have been established in the Gainesville area. The first species, Pseudacteon tricuspis, was established in 1997. The second species, Pseudacteon curvatus, was established in 2003 and the third species, Pseudacteon obtusus, was established in 2008. The s...

  20. Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic Species

    PubMed Central

    Hansen, Gretchen J. A.; Vander Zanden, M. Jake; Blum, Michael J.; Clayton, Murray K.; Hain, Ernie F.; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S.; McIntyre, Peter B.; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D.; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies. PMID:24194883

  1. Commonly rare and rarely common: comparing population abundance of invasive and native aquatic species.

    PubMed

    Hansen, Gretchen J A; Vander Zanden, M Jake; Blum, Michael J; Clayton, Murray K; Hain, Ernie F; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S; McIntyre, Peter B; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies. PMID:24194883

  2. RELATIONSHIPS OF ALIEN PLANT SPECIES ABUNDANCE TO RIPARIAN VEGETATION, ENVIRONMENT, AND DISTURBANCE

    EPA Science Inventory

    Riparian ecosystems are often invaded by alien species. We evaluated vegetation, environment, and disturbance conditions and their interrelationships with alien species abundance along reaches of 29 streams in eastern Oregon, USA. Using flexible-BETA clustering, indicator species...

  3. Paralyzing Action from a Distance in an Arboreal African Ant Species

    PubMed Central

    Rifflet, Aline; Tene, Nathan; Orivel, Jerome; Treilhou, Michel; Dejean, Alain; Vetillard, Angelique

    2011-01-01

    Due to their prowess in interspecific competition and ability to catch a wide range of arthropod prey (mostly termites with which they are engaged in an evolutionary arms race), ants are recognized as a good model for studying the chemicals involved in defensive and predatory behaviors. Ants' wide diversity of nesting habits and relationships with plants and prey types implies that these chemicals are also very diverse. Using the African myrmicine ant Crematogaster striatula as our focal species, we adopted a three-pronged research approach. We studied the aggressive and predatory behaviors of the ant workers, conducted bioassays on the effect of their Dufour gland contents on termites, and analyzed these contents. (1) The workers defend themselves or eliminate termites by orienting their abdominal tip toward the opponent, stinger protruded. The chemicals emitted, apparently volatile, trigger the recruitment of nestmates situated in the vicinity and act without the stinger having to come into direct contact with the opponent. Whereas alien ants competing with C. striatula for sugary food sources are repelled by this behavior and retreat further and further away, termites defend their nest whatever the danger. They face down C. striatula workers and end up by rolling onto their backs, their legs batting the air. (2) The bioassays showed that the toxicity of the Dufour gland contents acts in a time-dependent manner, leading to the irreversible paralysis, and, ultimately, death of the termites. (3) Gas chromatography-mass spectrometry analyses showed that the Dufour gland contains a mixture of mono- or polyunsaturated long-chain derivatives, bearing functional groups like oxo-alcohols or oxo-acetates. Electrospray ionization-mass spectrometry showed the presence of a molecule of 1584 Da that might be a large, acetylated alkaloid capable of splitting into smaller molecules that could be responsible for the final degree of venom toxicity. PMID:22194854

  4. Paralyzing action from a distance in an arboreal African ant species.

    PubMed

    Rifflet, Aline; Tene, Nathan; Orivel, Jerome; Treilhou, Michel; Dejean, Alain; Vetillard, Angelique

    2011-01-01

    Due to their prowess in interspecific competition and ability to catch a wide range of arthropod prey (mostly termites with which they are engaged in an evolutionary arms race), ants are recognized as a good model for studying the chemicals involved in defensive and predatory behaviors. Ants' wide diversity of nesting habits and relationships with plants and prey types implies that these chemicals are also very diverse. Using the African myrmicine ant Crematogaster striatula as our focal species, we adopted a three-pronged research approach. We studied the aggressive and predatory behaviors of the ant workers, conducted bioassays on the effect of their Dufour gland contents on termites, and analyzed these contents. (1) The workers defend themselves or eliminate termites by orienting their abdominal tip toward the opponent, stinger protruded. The chemicals emitted, apparently volatile, trigger the recruitment of nestmates situated in the vicinity and act without the stinger having to come into direct contact with the opponent. Whereas alien ants competing with C. striatula for sugary food sources are repelled by this behavior and retreat further and further away, termites defend their nest whatever the danger. They face down C. striatula workers and end up by rolling onto their backs, their legs batting the air. (2) The bioassays showed that the toxicity of the Dufour gland contents acts in a time-dependent manner, leading to the irreversible paralysis, and, ultimately, death of the termites. (3) Gas chromatography-mass spectrometry analyses showed that the Dufour gland contains a mixture of mono- or polyunsaturated long-chain derivatives, bearing functional groups like oxo-alcohols or oxo-acetates. Electrospray ionization-mass spectrometry showed the presence of a molecule of 1584 Da that might be a large, acetylated alkaloid capable of splitting into smaller molecules that could be responsible for the final degree of venom toxicity. PMID:22194854

  5. Distribution, abundance and persistence of Orasema spp. (Hym:Eucharitidae) parasitic on fire ants in South America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parasitoid wasps of the genus Orasema Cameron have been considered as potential candidates for biological control of imported fire ants in the United States. Surveys were conducted for their occurrence in fire ant colonies across southern South America. In Argentina, 443 ant colonies were excavated ...

  6. Plant Trait-Species Abundance Relationships Vary with Environmental Properties in Subtropical Forests in Eastern China

    PubMed Central

    Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X.; Wang, Xi-Hua

    2013-01-01

    Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests. PMID:23560114

  7. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    PubMed

    Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X; Wang, Xi-Hua

    2013-01-01

    Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests. PMID:23560114

  8. Extrafloral nectar fuels ant life in deserts.

    PubMed

    Aranda-Rickert, Adriana; Diez, Patricia; Marazzi, Brigitte

    2014-01-01

    Interactions mediated by extrafloral nectary (EFN)-bearing plants that reward ants with a sweet liquid secretion are well documented in temperate and tropical habitats. However, their distribution and abundance in deserts are poorly known. In this study, we test the predictions that biotic interactions between EFN plants and ants are abundant and common also in arid communities and that EFNs are only functional when new vegetative and reproductive structures are developing. In a seasonal desert of northwestern Argentina, we surveyed the richness and phenology of EFN plants and their associated ants and examined the patterns in ant-plant interaction networks. We found that 25 ant species and 11 EFN-bearing plant species were linked together through 96 pairs of associations. Plants bearing EFNs were abundant, representing ca. 19 % of the species encountered in transects and 24 % of the plant cover. Most ant species sampled (ca. 77 %) fed on EF nectar. Interactions showed a marked seasonal pattern: EFN secretion was directly related to plant phenology and correlated with the time of highest ant ground activity. Our results reveal that EFN-mediated interactions are ecologically relevant components of deserts, and that EFN-bearing plants are crucial for the survival of desert ant communities. PMID:25381258

  9. Foraging behaviors of two sympatric ant species in response to lizard eggs.

    PubMed

    Huang, Wen-San

    2010-03-01

    The trade-off between behavioral dominance and resource discovery ability represents a mechanism which could facilitate the coexistence of species, but evidence of the existence of this trade-off is limited and is often derived from experiments using artificial bait. In this study, I performed a field experiment to investigate the outcome of potential food competition between an encounter species (Paratrechina longicornis) and an exploitative one (Pheidole taivanensis) and to examine the factors that may explain the behavior of P. taivanensis when obtaining food (lizard eggs) without being attacked by P. longicornis. When P. longicornis was experimentally introduced to eggs occupied by P. taivanensis for 1 day, it displaced P. taivanensis. However, P. longicornis ignored lizard eggs which had been occupied by P. taivanensis for 2 or more days, and did not displace P. taivanensis, because by that time the eggshells had been damaged by P. taivanensis so they could no longer be used by P. longicornis. Eggshells were damaged more quickly by P. taivanensis at Santimen, southwestern Taiwan, than at four other study sites where there were lower intensities of food competition between P. taivanensis and P. longicornis. The displacement percentage was higher at Santimen which had higher ant population densities. The present study shows that lizard eggs may constitute a natural, ephemeral resource for which ants compete in space and time. Comparisons between study sites with and without ants suggest the existence of a trade-off between resource discovery and territorial defense. PMID:20199855

  10. The Nest Architecture of Three Species of North Florida Aphaenogaster Ants

    PubMed Central

    Tschinkel, Walter R.

    2011-01-01

    The architecture of the subterranean nests of Aphaenogaster floridana Smith (Hymenoptera: Formicidae), A. treatae Forel and A. ashmeadi (Emery), was studied from plaster, wax, or metal casts. After structural features were quantified from digital images, the entombed ants were retrieved from the plaster by dissolution or wax casts by melting and counted. Nests of all three species were rather simple, small and vertical, with horizontal chambers connected by vertical shafts. Shafts descending to lower chambers tended to arise from chamber edges, whereas those connecting to a chamber above tended to arise from chamber centers. A. floridana had the largest nests and colonies, and multiple shafts commonly connected upper chambers, a feature lacking in the other two species. In A. floridana nests a higher proportion of chamber area and greater spacing between chambers occurred in the deeper parts of the nest, regardless of nest size. The other two species showed no vertical differentiation of any size-free measure at any nest size. In all three species, nest size increased more slowly than the worker population, so crowding was greater in large colonies than in small, in contrast to the situation in three other ant species for which data were available. An appendix with stereo images of all casts is provided. PMID:22221290

  11. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation

    PubMed Central

    Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R.; Luke, Sarah H.; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data. PMID:26881747

  12. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation.

    PubMed

    Májeková, Maria; Paal, Taavi; Plowman, Nichola S; Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R; Luke, Sarah H; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package "traitor" to facilitate assessments of missing trait data. PMID:26881747

  13. Spatial distribution of dominant arboreal ants in a malagasy coastal rainforest: gaps and presence of an invasive species.

    PubMed

    Dejean, Alain; Fisher, Brian L; Corbara, Bruno; Rarevohitra, Raymond; Randrianaivo, Richard; Rajemison, Balsama; Leponce, Maurice

    2010-01-01

    We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species-a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant arboreal

  14. The Relationship between Canopy Cover and Colony Size of the Wood Ant Formica lugubris - Implications for the Thermal Effects on a Keystone Ant Species

    PubMed Central

    Chen, Yi-Huei; Robinson, Elva J. H.

    2014-01-01

    Climate change may affect ecosystems and biodiversity through the impacts of rising temperature on species’ body size. In terms of physiology and genetics, the colony is the unit of selection for ants so colony size can be considered the body size of a colony. For polydomous ant species, a colony is spread across several nests. This study aims to clarify how climate change may influence an ecologically significant ant species group by investigating thermal effects on wood ant colony size. The strong link between canopy cover and the local temperatures of wood ant’s nesting location provides a feasible approach for our study. Our results showed that nests were larger in shadier areas where the thermal environment was colder and more stable compared to open areas. Colonies (sum of nests in a polydomous colony) also tended to be larger in shadier areas than in open areas. In addition to temperature, our results supported that food resource availability may be an additional factor mediating the relationship between canopy cover and nest size. The effects of canopy cover on total colony size may act at the nest level because of the positive relationship between total colony size and mean nest size, rather than at the colony level due to lack of link between canopy cover and number of nests per colony. Causal relationships between the environment and the life-history characteristics may suggest possible future impacts of climate change on these species. PMID:25551636

  15. Spatial Distribution of Dominant Arboreal Ants in a Malagasy Coastal Rainforest: Gaps and Presence of an Invasive Species

    PubMed Central

    Dejean, Alain; Fisher, Brian L.; Corbara, Bruno; Rarevohitra, Raymond; Randrianaivo, Richard; Rajemison, Balsama; Leponce, Maurice

    2010-01-01

    We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species—a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant

  16. The high cost of mutualism: effects of four species of East African ant symbionts on their myrmecophyte host tree.

    PubMed

    Stanton, Maureen L; Palmer, Todd M

    2011-05-01

    Three recent meta-analyses of protective plant-ant mutualisms report a surprisingly weak relationship between herbivore protection and measured demographic benefits to ant-plants, suggesting high tolerance for herbivory, substantial costs of ant-mediated defense, and/or benefits that are realized episodically rather than continuously. Experimental manipulations of protective ant-plant associations typically last for less than a year, yet virtually all specialized myrmecophytes are long-lived perennials for which the costs and benefits of maintaining ant symbionts could accrue at different rates over the host's lifetime. To complement long-term monitoring studies, we experimentally excluded each of four ant symbionts from their long-lived myrmecophyte host trees (Acacia drepanolobium) for 4.5 years. Ant species varied in their effectiveness against herbivores and in their effects on intermediate-term growth and reproduction, but the level of herbivore protection provided was a poor predictor of the net impact they had on host trees. Removal of the three Crematogaster species resulted in cumulative gains in host tree growth and/or reproduction over the course of the experiment, despite the fact that two of those species significantly reduce chronic herbivore damage. In contrast, although T. penzigi is a relatively poor defender, the low cost of maintaining this ant symbiont apparently eliminated negative impacts on overall tree growth and reproduction, resulting in enhanced allocation to new branch growth by the final census. Acacia drepanolobium is evidently highly tolerant of herbivory by insects and small browsers, and the costs of maintaining Crematogaster colonies exceeded the benefits received during the study. No experimental trees were killed by elephants, but elephant damage was uniquely associated with reduced tree growth, and at least one ant species (C. mimosae) strongly deterred elephant browsing. We hypothesize that rare but catastrophic damage by

  17. Three new species and reassessment of the rare Neotropical ant genus Leptanilloides (Hymenoptera, Formicidae, Leptanilloidinae)

    PubMed Central

    Borowiec, Marek L.; Longino, John T.

    2011-01-01

    Abstract We describe three new species of the Neotropical ant genus Leptanilloides: Leptanilloides gracilis sp. n. based on workers from Mexico and Guatemala, Leptanilloides erinys sp. n. based on workers and a gyne from Ecuador, and Leptanilloides femoralis sp. n. based on workers from Venezuela. The description of Leptanilloides gracilis is a northern extension of the known range of the genus, now numbering eleven described species. We also describe and discuss three unassociated male morphotypes from Central America. We report the occurrence of a metatibial gland in Leptanilloides and a fused promesonotal connection (suture) in some species. We provide a modified, detailed diagnosis of the genus and a revised key to the worker caste of the known species. PMID:22140337

  18. A New (Old), Invasive Ant in the Hardwood Forests of Eastern North America and Its Potentially Widespread Impacts

    PubMed Central

    Guénard, Benoit; Dunn, Robert R.

    2010-01-01

    Biological invasions represent a serious threat for the conservation of biodiversity in many ecosystems. While many social insect species and in particular ant species have been introduced outside their native ranges, few species have been successful at invading temperate forests. In this study, we document for the first time the relationship between the abundance of the introduced ant, Pachycondyla chinensis, in mature forests of North Carolina and the composition, abundance and diversity of native ant species using both a matched pair approach and generalized linear models. Where present, P. chinensis was more abundant than all native species combined. The diversity and abundance of native ants in general and many individual species were negatively associated with the presence and abundance of P. chinensis. These patterns held regardless of our statistical approach and across spatial scales. Interestingly, while the majority of ant species was strongly and negatively correlated with the abundance and presence of P. chinensis, a small subset of ant species larger than P. chinensis was either as abundant or even more abundant in invaded than in uninvaded sites. The large geographic range of this ant species combined with its apparent impact on native species make it likely to have cascading consequences on eastern forests in years to come, effects mediated by the specifics of its life history which is very different from those of other invasive ants. The apparent ecological impacts of P. chinensis are in addition to public health concerns associated with this species due to its sometimes, deadly sting. PMID:20657769

  19. Modelling community dynamics based on species-level abundance models from detection/nondetection data

    USGS Publications Warehouse

    Yamaura, Yuichi; Royle, J. Andrew; Kuboi, Kouji; Tada, Tsuneo; Ikeno, Susumu; Makino, Shun'ichi

    2011-01-01

    1. In large-scale field surveys, a binary recording of each species' detection or nondetection has been increasingly adopted for its simplicity and low cost. Because of the importance of abundance in many studies, it is desirable to obtain inferences about abundance at species-, functional group-, and community-levels from such binary data. 2. We developed a novel hierarchical multi-species abundance model based on species-level detection/nondetection data. The model accounts for the existence of undetected species, and variability in abundance and detectability among species. Species-level detection/nondetection is linked to species- level abundance via a detection model that accommodates the expectation that probability of detection (at least one individuals is detected) increases with local abundance of the species. We applied this model to a 9-year dataset composed of the detection/nondetection of forest birds, at a single post-fire site (from 7 to 15 years after fire) in a montane area of central Japan. The model allocated undetected species into one of the predefined functional groups by assuming a prior distribution on individual group membership. 3. The results suggest that 15–20 species were missed in each year, and that species richness of communities and functional groups did not change with post-fire forest succession. Overall abundance of birds and abundance of functional groups tended to increase over time, although only in the winter, while decreases in detectabilities were observed in several species. 4. Synthesis and applications. Understanding and prediction of large-scale biodiversity dynamics partly hinge on how we can use data effectively. Our hierarchical model for detection/nondetection data estimates abundance in space/time at species-, functional group-, and community-levels while accounting for undetected individuals and species. It also permits comparison of multiple communities by many types of abundance-based diversity and similarity

  20. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    PubMed Central

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  1. Fish and phytoplankton exhibit contrasting temporal species abundance patterns in a dynamic north temperate lake.

    PubMed

    Hansen, Gretchen J A; Carey, Cayelan C

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of "core" (common occurrence and high abundance) and "occasional" (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  2. Iridium Concentrations and Abundances of Meteoritic Ejecta from the Eltanin Impact in Sediment Cores from Polarstern Expedition ANT XII/4

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    The abundances of meteoritic ejecta from the Eltanin asteroid impact have been examined in several sediment cores recovered by the FS Polarstern during expedition ANT XII/4 using elemental concentrations of iridium and weights of coarse ejecta debris. Three cores with well-preserved impact deposits, PS204-1, PS2708-1, and PS2709-1, each contain Ir and ejecta fluences similar to those found in USNS Eltanin core E13-4. Small Ir anomalies and traces of ejecta were found in cores PS2706-1 and PS2710-1, but since these cores lack well-defined deposits, these are considered to be reworked and not representative of the fallout. No evidence of ejecta was found in cores PS2802-1 and PS2705-1. These results confirm earlier speculation that the Eltanin impact resulted in deposits of ejecta with up to 1 gram/sq centimeter of depris over a wide area of the ocean floor. However, there are sill large uncertainties over the actual regional or global extent of this unique sediment deposit.

  3. Taxonomic Synopsis of the Ponto-Mediterranean Ants of Temnothorax nylanderi Species-Group

    PubMed Central

    Csősz, Sándor; Heinze, Jürgen; Mikó, István

    2015-01-01

    In the current revisionary work, the Temnothorax nylanderi species-group of myrmicine ants is characterized. Eighteen species belonging to this group in the Ponto-Mediterranean region are described or redefined based on an integrative approach that combines exploratory analyses of morphometric data and of a 658bp fragment of the mitochondrial gene for the cytochrome c oxidase subunit I (CO I). The species group is subdivided into five species complexes: T. angustifrons complex, T. lichtensteini complex, T. nylanderi complex, T. parvulus complex, T. sordidulus complex, and two species, T. angulinodis sp. n. and T. flavicornis (Emery, 1870) form their own lineages. We describe seven new species (T. angulinodis sp. n., T. angustifrons sp. n., T. ariadnae sp. n., T. helenae sp. n., T. lucidus sp. n., T. similis sp. n., T. subtilis sp. n.), raise T. tergestinus (FINZI, 1928) stat.n. to species level, and propose a new junior synonymy for T. saxonicus (SEIFERT, 1995) syn.n. (junior synonym of T. tergestinus). We describe the worker caste and provide high quality images and distributional maps for all eighteen species. Furthermore, we provide a decision tree as an alternative identification key that visually gives an overview of this species-group. We make the first application to Formicidae of the Semantic Phenotype approach that has been used in previous taxonomic revisions. PMID:26536033

  4. Compared morphology of the immatures of males of two urban ant species of Camponotus.

    PubMed

    Solis, Daniel Russ; Fox, Eduardo Gonçalves Paterson; Rossi, Mônica Lanzoni; Bueno, Odair Correa

    2012-01-01

    The immatures of males of two species of Camponotus ants (Hymenoptera: Formicidae) are described and compared by light and electron microscopy. The numbers of larval instars were determined: Camponotus rufipes Fabricius (Hymenoptera: Formicidae) have four instars; and Camponotus vittatus Forel have three. Male larvae of the two species are similar to previously described Camponotus larvae, sharing the following traits: basic shape of body and mandible, presence of 'chiloscleres', 'praesaepium' (some specimens), labial pseudopalps, and ten pairs of spiracles. However, larvae of the two species can be separated by bodily dimensions and based on their hair number and types. Worker larvae of C. vittatus previously described are extensively similar to male larvae, with only a few inconspicuous differences that may result from intraspecific variation or sexual differences. PMID:22934715

  5. Rarity and diversity in forest ant assemblages of Great Smoky Mountains National Park

    USGS Publications Warehouse

    Lessard, J.-P.; Dunn, R.R.; Parker, C.R.; Sanders, N.J.

    2007-01-01

    We report on a systematic survey of the ant fauna occurring in hardwood forests in the Great Smoky Mountains National Park. At 22-mixed hardwood sites, we collected leaf-litter ant species using Winkler samplers. At eight of those sites, we also collected ants using pitfall and Malaise traps. In total, we collected 53 ant species. As shown in other studies, ant species richness tended to decline with increasing elevation. Leaf-litter ant assemblages were also highly nested. Several common species were both locally abundant and had broad distributions, while many other species were rarely detected. Winkler samplers, pitfall traps, and Malaise traps yielded samples that differed in composition, but not richness, from one another. Taken together, our work begins to illuminate the factors that govern the diversity, distribution, abundance, and perhaps rarity of ants of forested ecosystems in the Great Smoky Mountains National Park.

  6. Impacts of residual insecticide barriers on perimeter-invading ants, with particular reference to the odorous house ant, Tapinoma sessile.

    PubMed

    Scharf, Michael E; Ratliff, Catina R; Bennett, Gary W

    2004-04-01

    Three liquid insecticide formulations were evaluated as barrier treatments against perimeter-invading ants at a multifamily housing complex in West Lafayette, IN. Several ant species were present at the study site, including (in order of abundance) pavement ant, Tetramorium caespitum (L.); honey ant, Prenolepis imparis (Say); odorous house ant, Tapinoma sessile (Say); thief ant, Solenopsis molesta (Say); acrobat ant, Crematogaster ashmeadi (Mayr); crazy ant, Paratrechina longicornis (Latrielle), field ants, Formica spp.; and carpenter ant Camponotus pennsylvanicus (DeGeer). Studies began in May 2001 and concluded 8 wk later in July. Individual replicate treatments were placed 0.61 in (2 feet) up and 0.92 m (3 feet) out from the ends of 46.1 by 10.1-m (151 by 33-foot) apartment buildings. Ant sampling was performed with 10 placements of moist cat food for 1 h within treatment zones, followed by capture and removal of recruited ants for later counting. All treatments led to substantial reductions in ant numbers relative to untreated controls. The most effective treatment was fipronil, where 2% of before-treatment ant numbers were present at 8 wk after treatment. Both imidacloprid and cyfluthrin barrier treatments had efficacy comparative with fipronil, but to 4 and 2 wk, respectively. Odorous house ants were not sampled before treatment. Comparisons of ant species composition between treatments and controls revealed an increase in odorous house ant frequencies at 1-8 wk after treatment in treated locations only. These results demonstrate efficacy for both nonrepellent and repellent liquid insecticides as perimeter treatments for pest ants. In addition, our findings with odorous house ant highlight an apparent invasive-like characteristic of this species that may contribute to its dramatic increase in structural infestation rates in many areas of the United States. PMID:15154488

  7. Extrafloral nectar fuels ant life in deserts

    PubMed Central

    Aranda-Rickert, Adriana; Diez, Patricia; Marazzi, Brigitte

    2014-01-01

    Interactions mediated by extrafloral nectary (EFN)-bearing plants that reward ants with a sweet liquid secretion are well documented in temperate and tropical habitats. However, their distribution and abundance in deserts are poorly known. In this study, we test the predictions that biotic interactions between EFN plants and ants are abundant and common also in arid communities and that EFNs are only functional when new vegetative and reproductive structures are developing. In a seasonal desert of northwestern Argentina, we surveyed the richness and phenology of EFN plants and their associated ants and examined the patterns in ant–plant interaction networks. We found that 25 ant species and 11 EFN-bearing plant species were linked together through 96 pairs of associations. Plants bearing EFNs were abundant, representing ca. 19 % of the species encountered in transects and 24 % of the plant cover. Most ant species sampled (ca. 77 %) fed on EF nectar. Interactions showed a marked seasonal pattern: EFN secretion was directly related to plant phenology and correlated with the time of highest ant ground activity. Our results reveal that EFN-mediated interactions are ecologically relevant components of deserts, and that EFN-bearing plants are crucial for the survival of desert ant communities. PMID:25381258

  8. Conserved Microsatellites in Ants Enable Population Genetic and Colony Pedigree Studies across a Wide Range of Species

    PubMed Central

    Butler, Ian A.; Siletti, Kimberly; Oxley, Peter R.; Kronauer, Daniel J. C.

    2014-01-01

    Broadly applicable polymorphic genetic markers are essential tools for population genetics, and different types of markers have been developed for this purpose. Microsatellites have been employed as particularly polymorphic markers for over 20 years. However, PCR primers for microsatellite loci are often not useful outside the species for which they were designed. This implies that a new set of loci has to be identified and primers developed for every new study species. To overcome this constraint, we identified 45 conserved microsatellite loci based on the eight currently available ant genomes and designed primers for PCR amplification. Among these loci, we chose 24 for in-depth study in six species covering six different ant subfamilies. On average, 11.16 of these 24 loci were polymorphic and in Hardy-Weinberg equilibrium in any given species. The average number of alleles for these polymorphic loci within single populations of the different species was 4.59. This set of genetic markers will thus be useful for population genetic and colony pedigree studies across a wide range of ant species, supplementing the markers available for previously studied species and greatly facilitating the study of the many ant species lacking genetic markers. Our study shows that it is possible to develop microsatellite loci that are both conserved over a broad range of taxa, yet polymorphic within species. This should encourage researchers to develop similar tools for other large taxonomic groups. PMID:25244681

  9. A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species

    PubMed Central

    Wagner, Herbert C.; Peskoller, Andrea; Moder, Karl; Dowell, Floyd E.; Arthofer, Wolfgang

    2015-01-01

    Species identification—of importance for most biological disciplines—is not always straightforward as cryptic species hamper traditional identification. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and inexpensive method of use in various applications, including the identification of species. Despite its efficiency, NIRS has never been tested on a group of more than two cryptic species, and a working routine is still missing. Hence, we tested if the four morphologically highly similar, but genetically distinct ant species Tetramorium alpestre, T. caespitum, T. impurum, and T. sp. B, all four co-occurring above 1,300 m above sea level in the Alps, can be identified unambiguously using NIRS. Furthermore, we evaluated which of our implementations of the three analysis approaches, partial least squares regression (PLS), artificial neural networks (ANN), and random forests (RF), is most efficient in species identification with our data set. We opted for a 100% classification certainty, i.e., a residual risk of misidentification of zero within the available data, at the cost of excluding specimens from identification. Additionally, we examined which strategy among our implementations, one-vs-all, i.e., one species compared with the pooled set of the remaining species, or binary-decision strategies, worked best with our data to reduce a multi-class system to a two-class system, as is necessary for PLS. Our NIRS identification routine, based on a 100% identification certainty, was successful with up to 66.7% of unambiguously identified specimens of a species. In detail, PLS scored best over all species (36.7% of specimens), while RF was much less effective (10.0%) and ANN failed completely (0.0%) with our data and our implementations of the analyses. Moreover, we showed that the one-vs-all strategy is the only acceptable option to reduce multi-class systems because of a minimum expenditure of time. We emphasise our classification routine using fibre

  10. A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species.

    PubMed

    Kinzner, Martin-Carl; Wagner, Herbert C; Peskoller, Andrea; Moder, Karl; Dowell, Floyd E; Arthofer, Wolfgang; Schlick-Steiner, Birgit C; Steiner, Florian M

    2015-01-01

    Species identification-of importance for most biological disciplines-is not always straightforward as cryptic species hamper traditional identification. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and inexpensive method of use in various applications, including the identification of species. Despite its efficiency, NIRS has never been tested on a group of more than two cryptic species, and a working routine is still missing. Hence, we tested if the four morphologically highly similar, but genetically distinct ant species Tetramorium alpestre, T. caespitum, T. impurum, and T. sp. B, all four co-occurring above 1,300 m above sea level in the Alps, can be identified unambiguously using NIRS. Furthermore, we evaluated which of our implementations of the three analysis approaches, partial least squares regression (PLS), artificial neural networks (ANN), and random forests (RF), is most efficient in species identification with our data set. We opted for a 100% classification certainty, i.e., a residual risk of misidentification of zero within the available data, at the cost of excluding specimens from identification. Additionally, we examined which strategy among our implementations, one-vs-all, i.e., one species compared with the pooled set of the remaining species, or binary-decision strategies, worked best with our data to reduce a multi-class system to a two-class system, as is necessary for PLS. Our NIRS identification routine, based on a 100% identification certainty, was successful with up to 66.7% of unambiguously identified specimens of a species. In detail, PLS scored best over all species (36.7% of specimens), while RF was much less effective (10.0%) and ANN failed completely (0.0%) with our data and our implementations of the analyses. Moreover, we showed that the one-vs-all strategy is the only acceptable option to reduce multi-class systems because of a minimum expenditure of time. We emphasise our classification routine using fibre-optic NIRS

  11. Pseudacteon notocaudatus and Pseudacteon obtusitus (Diptera: Phoridae), two new species of fire ant parasitoids from South America.

    PubMed

    Plowes, Robert M; Folgarait, Patricia J; Gilbert, Lawrence E

    2015-01-01

    Ongoing studies in South America of phorid flies of the genus Pseudacteon Coquillett 1907 have revealed two further new species in this genus that are described here: P. obtusitus and P. notocaudatus. Both species are parasitoids of Solenopsis (F.) fire ants. PMID:26624354

  12. Argentine ant invasion associated with loblolly pines in the southeastern United States: minimal impacts but seasonally sustained.

    PubMed

    Rowles, Alexei D; Silverman, Jules

    2010-08-01

    Invasive ants are notorious for directly displacing native ant species. Although such impacts are associated with Argentine ant invasions (Linepithema humile) worldwide, impacts within natural habitat are less widely reported, particularly those affecting arboreal ant communities. Argentine ants were detected in North Carolina mixed pine-hardwood forest for the first time but were localized on and around loblolly pines (Pinus taeda), probably because of association with honeydew-producing Hemiptera. We explored the potential impacts of L. humile on arboreal and ground-foraging native ant species by comparing interspersed loblolly pines invaded and uninvaded by Argentine ants. Impacts on native ants were assessed monthly over 1 yr by counting ants in foraging trails on pine trunks and in surrounding plots using a concentric arrangement of pitfall traps at 1, 2, and 3 m from the base of each tree. Of floristics and habitat variables, higher soil moisture in invaded plots was the only difference between plot types, increasing confidence that any ant community differences were caused by Argentine ants. Overall patterns of impact were weak. Composition differed significantly between Argentine ant invaded and uninvaded trunks and pitfalls but was driven only by the presence of Argentine ants rather than any resulting compositional change in native ant species. Native ant abundance and richness were similarly unaffected by L. humile. However, the abundance of individual ant species was more variable. Although numbers of the arboreal Crematogaster ashmeadi (Myrmicinae) declined on and around invaded pines, epigeic Aphaenogaster rudis (Myrmicinae) remained the most abundant species in all plots. Argentine ant densities peaked in late summer and fall, therefore overlapping with most native ants. Unexpected was their continued presence during even the coldest months. We provide evidence that Argentine ants can invade and persist in native North Carolina forests, probably

  13. Seed banks in a degraded desert shrubland: Influence of soil surface condition and harvester ant activity on seed abundance

    USGS Publications Warehouse

    DeFalco, L.A.; Esque, T.C.; Kane, J.M.; Nicklas, M.B.

    2009-01-01

    We compared seed banks between two contrasting anthropogenic surface disturbances (compacted, trenched) and adjacent undisturbed controls to determine whether site condition influences viable seed densities of perennial and annual Mojave Desert species. Viable seeds of perennials were rare in undisturbed areas (3-4 seeds/m2) and declined to <1 seed/m2 within disturbed sites. Annual seed densities were an order of magnitude greater than those of perennials, were one-third the undisturbed seed densities on compacted sites, but doubled on trenched sites relative to controls. On trenched sites, greater litter cover comprising the infructescences of the dominant spring annuals, and low gravel content, enhanced seed densities of both annuals and perennials. Litter cover and surface ruggedness were the best explanations for viable perennial seed densities on compacted sites, but litter cover and the presence of a common harvester ant explained annual seed densities better than any other surface characteristics that were examined. Surface disturbances can have a varied impact on the condition of the soil surface in arid lands. Nevertheless, the consistently positive relationship between ground cover of litter and viable seed density emphasizes the importance of litter as an indicator of site degradation and recovery potential in arid lands.

  14. [Ant diversity (Hymenoptera: Formicidae) from capões in Brazilian Pantanal: relationship between species richness and structural complexity].

    PubMed

    Corrêa, Michele M; Fernandes, Wedson D; Leal, Inara R

    2006-01-01

    Species richness of epigeic ants was surveyed in forest islands named capões of Brazilian Pantanal and related with their structural complexity. The ants were collected using pitfall traps in 28 capões from Rio Negro Farm, in Aquidauana municipality, Mato-Grosso do Sul state, Brazil. The structural complexity of capões was evaluated by measuring vegetation density and litter quantity near the pit-fall traps. Seventy-one species, distributed in 26 genera and seven sub-families were found. Ectatomma edentatum Roger (Formicidae: Ectatomminae) and one species of Pheidole were the most frequent species. Species richness was positively correlated only with herbaceous vegetation density of capões, supporting the idea that the increase in environmental heterogeneity diminishes species competition, allowing species co-occurrence. PMID:17273701

  15. From the Cover: Ecological community description using the food web, species abundance, and body size

    NASA Astrophysics Data System (ADS)

    Cohen, Joel E.; Jonsson, Tomas; Carpenter, Stephen R.

    2003-02-01

    Measuring the numerical abundance and average body size of individuals of each species in an ecological community's food web reveals new patterns and illuminates old ones. This approach is illustrated using data from the pelagic community of a small lake: Tuesday Lake, Michigan, United States. Body mass varies almost 12 orders of magnitude. Numerical abundance varies almost 10 orders of magnitude. Biomass abundance (average body mass times numerical abundance) varies only 5 orders of magnitude. A new food web graph, which plots species and trophic links in the plane spanned by body mass and numerical abundance, illustrates the nearly inverse relationship between body mass and numerical abundance, as well as the pattern of energy flow in the community. Species with small average body mass occur low in the food web of Tuesday Lake and are numerically abundant. Larger-bodied species occur higher in the food web and are numerically rarer. Average body size explains more of the variation in numerical abundance than does trophic height. The trivariate description of an ecological community by using the food web, average body sizes, and numerical abundance includes many well studied bivariate and univariate relationships based on subsets of these three variables. We are not aware of any single community for which all of these relationships have been analyzed simultaneously. Our approach demonstrates the connectedness of ecological patterns traditionally treated as independent. Moreover, knowing the food web gives new insight into the disputed form of the allometric relationship between body mass and abundance.

  16. A Keystone Ant Species Provides Robust Biological Control of the Coffee Berry Borer Under Varying Pest Densities.

    PubMed

    Morris, Jonathan R; Vandermeer, John; Perfecto, Ivette

    2015-01-01

    Species' functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems. PMID:26562676

  17. Estimating Abundances of Interacting Species Using Morphological Traits, Foraging Guilds, and Habitat

    PubMed Central

    Dorazio, Robert M.; Connor, Edward F.

    2014-01-01

    We developed a statistical model to estimate the abundances of potentially interacting species encountered while conducting point-count surveys at a set of ecologically relevant locations – as in a metacommunity of species. In the model we assume that abundances of species with similar traits (e.g., body size) are potentially correlated and that these correlations, when present, may exist among all species or only among functionally related species (such as members of the same foraging guild). We also assume that species-specific abundances vary among locations owing to systematic and stochastic sources of heterogeneity. For example, if abundances differ among locations due to differences in habitat, then measures of habitat may be included in the model as covariates. Naturally, the quantitative effects of these covariates are assumed to differ among species. Our model also accounts for the effects of detectability on the observed counts of each species. This aspect of the model is especially important for rare or uncommon species that may be difficult to detect in community-level surveys. Estimating the detectability of each species requires sampling locations to be surveyed repeatedly using different observers or different visits of a single observer. As an illustration, we fitted models to species-specific counts of birds obtained while sampling an avian community during the breeding season. In the analysis we examined whether species abundances appeared to be correlated due to similarities in morphological measures (body mass, beak length, tarsus length, wing length, tail length) and whether these correlations existed among all species or only among species of the same foraging guild. We also used the model to estimate the effects of forested area on species abundances and the effects of sound power output (as measured by body size) on species detection probabilities. PMID:24727898

  18. Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat

    USGS Publications Warehouse

    Dorazio, Robert M.; Connor, Edward F.

    2014-01-01

    We developed a statistical model to estimate the abundances of potentially interacting species encountered while conducting point-count surveys at a set of ecologically relevant locations - as in a metacommunity of species. In the model we assume that abundances of species with similar traits (e.g., body size) are potentially correlated and that these correlations, when present, may exist among all species or only among functionally related species (such as members of the same foraging guild). We also assume that species-specific abundances vary among locations owing to systematic and stochastic sources of heterogeneity. For example, if abundances differ among locations due to differences in habitat, then measures of habitat may be included in the model as covariates. Naturally, the quantitative effects of these covariates are assumed to differ among species. Our model also accounts for the effects of detectability on the observed counts of each species. This aspect of the model is especially important for rare or uncommon species that may be difficult to detect in community-level surveys. Estimating the detectability of each species requires sampling locations to be surveyed repeatedly using different observers or different visits of a single observer. As an illustration, we fitted models to species-specific counts of birds obtained while sampling an avian community during the breeding season. In the analysis we examined whether species abundances appeared to be correlated due to similarities in morphological measures (body mass, beak length, tarsus length, wing length, tail length) and whether these correlations existed among all species or only among species of the same foraging guild. We also used the model to estimate the effects of forested area on species abundances and the effects of sound power output (as measured by body size) on species detection probabilities.

  19. Ant Species Differences Determined by Epistasis between Brood and Worker Genomes

    PubMed Central

    Linksvayer, Timothy A.

    2007-01-01

    Epistasis arising from physiological interactions between gene products often contributes to species differences, particularly those involved in reproductive isolation. In social organisms, phenotypes are influenced by the genotypes of multiple interacting individuals. In theory, social interactions can give rise to an additional type of epistasis between the genomes of social partners that can contribute to species differences. Using a full-factorial cross-fostering design with three species of closely related Temnothorax ants, I found that adult worker size was determined by an interaction between the genotypes of developing brood and care-giving workers, i.e. intergenomic epistasis. Such intergenomic social epistasis provides a strong signature of coevolution between social partners. These results demonstrate that just as physiologically interacting genes coevolve, diverge, and contribute to species differences, so do socially interacting genes. Coevolution and conflict between social partners, especially relatives such as parents and offspring, has long been recognized as having widespread evolutionary effects. This coevolutionary process may often result in coevolved socially-interacting gene complexes that contribute to species differences. PMID:17912371

  20. Species abundance in a forest community in South China: A case of poisson lognormal distribution

    USGS Publications Warehouse

    Yin, Z.-Y.; Ren, H.; Zhang, Q.-M.; Peng, S.-L.; Guo, Q.-F.; Zhou, G.-Y.

    2005-01-01

    Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m??20 m, 5 m??5 m, and 1 m??1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal; (ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (?? and ??) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the ?? and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/?? should be an alternative measure of diversity.

  1. New Insights on Jupiter's Deep Water Abundance from Disequilibrium Species

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Gierasch, Peter; Lunine, Jonathan; Mousis, Olivier

    2014-11-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We aim to improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of eddy diffusion coefficient. The new formulation predicts a smooth transition from slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for newly derived coefficient of less than 25%, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraintprovided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other one constrains the water enrichment between 7 and 23. This difference calls for a better assessment of CO kinetic models.

  2. New insights on Jupiter's deep water abundance from disequilibrium species

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Gierasch, Peter J.; Lunine, Jonathan I.; Mousis, Olivier

    2015-04-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of the eddy diffusion coefficient for the troposphere of giant planets. The new formulation predicts a smooth transition from the slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for the newly derived coefficient of less than 25%, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraint provided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other constrains the water enrichment between 3 and 11.

  3. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin

    2012-01-01

    Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090

  4. Taxonomic studies on the ant genus Ponera Latreille, 1804 (Hymenoptera, Formicidae), with the description of a new species from India

    PubMed Central

    Bharti, Himender; Rilta, Joginder Singh

    2015-01-01

    Abstract Four species of the ant genus Ponera Latreille, 1804, are recorded from India. The present study reports one new species Ponera sikkimensis sp. n., a divergent population of Ponera indica Bharti & Wachkoo, 2012 and one new record, Ponera paedericera Zhou, 2001 from India. An identification key and distributions for the four known Indian species of Ponera based on the worker caste are provided. PMID:26487822

  5. Urbanization Level and Woodland Size Are Major Drivers of Woodpecker Species Richness and Abundance

    PubMed Central

    Myczko, Łukasz; Rosin, Zuzanna M.; Skórka, Piotr; Tryjanowski, Piotr

    2014-01-01

    Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species. PMID:24740155

  6. Tallgrass prairie ants: their species composition, ecological roles, and response to management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants are highly influential organisms in terrestrial ecosystems, including the tallgrass prairie, one of the most endangered ecosystems in North America. Through their tunneling, ants affect soil properties and resource availability for animals and plants. Ants also have important ecological roles a...

  7. Role of relative humidity in colony founding and queen survivorship in two carpenter ant species.

    PubMed

    Mankowski, Mark E; Morrell, J J

    2011-06-01

    Conditions necessary for optimal colony foundation in two carpenter ant species, Camponotus modoc Wheeler and Camponotus vicinus Mayr, were studied. Camponotus modoc and C. vicinus queens were placed in Douglas-fir, Pseudotsuga menziesii (Mirb. Franco) and Styrofoam blocks conditioned in sealed chambers at 70, 80, or 100% RH. Nanitic workers produced after 12 wk were used to assess the effects of substrate and moisture content on colony initiation. Queens of C. vicinus in Douglas-fir and Styrofoam produced worker numbers that did not differ significantly with moisture content; however, the number of colonies initiated by C. modoc differed significantly with moisture content. The results indicate that colony founding in C. vicinus is less sensitive to moisture content than C. modoc for Douglas-fir and Styrofoam. In another test, groups of queens of each species were exposed to 20, 50, 70, and 100% RH and the time until 50% mortality occurred was recorded for each species. C. vicinus lived significantly longer at each of the test humidities than C. modoc, suggesting that the former species is adapted to better survive under xeric conditions. PMID:21735888

  8. A Keystone Ant Species Provides Robust Biological Control of the Coffee Berry Borer Under Varying Pest Densities

    PubMed Central

    Morris, Jonathan R.; Vandermeer, John; Perfecto, Ivette

    2015-01-01

    Species’ functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems. PMID:26562676

  9. Red imported fire ant impacts on upland arthropods in Southern Mississippi

    USGS Publications Warehouse

    Epperson, D.M.; Allen, C.R.

    2010-01-01

    Red imported fire ants (Solenopsis invicta) have negative impacts on a broad array of invertebrate species. We investigated the impacts of fire ants on the upland arthropod community on 20???40 ha study sites in southern Mississippi. Study sites were sampled from 19972000 before, during, and after fire ant bait treatments to reduce fire ant populations. Fire ant abundance was assessed with bait transects on all sites, and fire ant population indices were estimated on a subset of study sites. Species richness and diversity of other ant species was also assessed from bait transects. Insect biomass and diversity was determined from light trap samples. Following treatments, fire ant abundance and population indices were significantly reduced, and ant species diversity and richness were greater on treated sites. Arthropod biomass, species diversity and species richness estimated from light trap samples were negatively correlated with fire ant abundance, but there were no observable treatment effects. Solenopsis invicta has the potential to negatively impact native arthropod communities resulting in a potential loss of both species and function.

  10. Abundance of minor ion species at Mars: ASPERA-3 observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yiteng; Nilsson, Hans; Barabash, Stas; Li, Lei

    2012-07-01

    The main species at Mars are O+, O2+, CO2+, while there are also some minor species. This article successfully separates minor species of O++, He+ and H2+ with about 12eV by integrating from two and a half years ASPERA-3 data on Mars Express and by integrating and taking some corrections and data processing. At the same time some space statistic Statistics of these Mars ions and estimating are taken place. The result indicates O++ ions density reduce quickly in the region without sunlight, and have moreis higher at subsolar than in the high alatitude place,. and reduces quickly in the region without sunlight. He+ and H2+ have similar distribution in space mainly above in the high altitude ionosphere, and relatively reduce sparse in the midnight space. O++ and He+ have a comparable volume density about 0.1% of O+, and H2+ is muchone order of magnitude lowerless for one order. Our results imply that O++ ions in the martian space are mainly the product of phtoionization in the ionosphere, while H2+ and He+ might also be originated in the planet.

  11. Species Composition and Abundance of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) in Minnesota Field Corn.

    PubMed

    Koch, Robert L; Pahs, Tiffany

    2015-04-01

    In response to concerns of increasing significance of stink bugs (Hemiptera: Heteroptera: Pentatomidae) in northern states, a survey was conducted over 2 yr in Minnesota to characterize the Pentatomidae associated with field corn, Zea mays L. Halyomorpha halys (Stål), an exotic species, was not detected in this survey, despite continued detection of this species as an invader of human-made structures in Minnesota. Five species of Pentatomidae (four herbivorous; one predatory) were collected from corn. Across years, Euschistus variolarius (Palisot de Beauvois) and Euschistus servus euschistoides (Vollenhoven) had the greatest relative abundances and frequencies of detection. In 2012, the abundance of herbivorous species exceeded 25 nymphs and adults per 100 plants (i.e., an economic threshold) in 0.48% of fields. However, the abundance of herbivorous species did not reach economic levels in any fields sampled in 2013. The frequency of detection of herbivorous species and ratio of nymphs to adults was highest during reproductive growth stages of corn. The predator species, Podisus maculiventris (Say), was detected in 0 to 0.32% of fields. These results provide baseline information on the species composition and abundance of Pentatomidae in Minnesota field corn, which will be necessary for documentation of changes to this fauna as a result of the invasion of H. halys and to determine if some native species continue to increase in abundance in field crops. PMID:26313176

  12. Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory.

    PubMed

    Chao, Anne; Hsieh, T C; Chazdon, Robin L; Colwell, Robert K; Gotelli, Nicholas J

    2015-05-01

    Based on a sample of individuals, we focus on inferring the vector of species relative abundance of an entire assemblage and propose a novel estimator of the complete species-rank abundance distribution (RAD). Nearly all previous estimators of the RAD use the conventional "plug-in" estimator Pi (sample relative abundance) of the true relative abundance pi of species i. Because most biodiversity samples are incomplete, the plug-in estimators are applied only to the subset of species that are detected in the sample. Using the concept of sample coverage and its generalization, we propose a new statistical framework to estimate the complete RAD by separately adjusting the sample relative abundances for the set of species detected in the sample and estimating the relative abundances for the set of species undetected in the sample but inferred to be present in the assemblage. We first show that P, is a positively biased estimator of pi for species detected in the sample, and that the degree of bias increases with increasing relative rarity of each species. We next derive a method to adjust the sample relative abundance to reduce the positive bias inherent in j. The adjustment method provides a nonparametric resolution to the longstanding challenge of characterizing the relationship between the true relative abundance in the entire assemblage and the observed relative abundance in a sample. Finally, we propose a method to estimate the true relative abundances of the undetected species based on a lower bound of the number of undetected species. We then combine the adjusted RAD for the detected species and the estimated RAD for the undetected species to obtain the complete RAD estimator. Simulation results show that the proposed RAD curve can unveil the true RAD and is more accurate than the empirical RAD. We also extend our method to incidence data. Our formulas and estimators are illustrated using empirical data sets from surveys of forest spiders (for abundance data) and

  13. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear

  14. A Common Scaling Rule for Abundance, Energetics, and Production of Parasitic and Free-Living Species

    PubMed Central

    Hechinger, Ryan F.; Lafferty, Kevin D.; Dobson, Andy P.; Brown, James H.; Kuris, Armand M.

    2011-01-01

    The metabolic theory of ecology uses the scaling of metabolism with body size and temperature to explain the causes and consequences of species abundance. However, the theory and its empirical tests have never simultaneously examined parasites alongside free-living species. This is unfortunate because parasites represent at least half of species diversity. We show that metabolic scaling theory could not account for the abundance of parasitic or free-living species in three estuarine food webs until accounting for trophic dynamics. Analyses then revealed that the abundance of all species uniformly scaled with body mass to the −¾ power. This result indicates “production equivalence,” where biomass production within trophic levels is invariant of body size across all species and functional groups: invertebrate or vertebrate, ectothermic or endothermic, and free-living or parasitic. PMID:21778398

  15. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances

    PubMed Central

    Boulangeat, Isabelle; Gravel, Dominique; Thuiller, Wilfried

    2014-01-01

    Although abiotic factors, together with dispersal and biotic interactions, are often suggested to explain the distribution of species and their abundances, species distribution models usually focus on abiotic factors only. We propose an integrative framework linking ecological theory, empirical data and statistical models to understand the distribution of species and their abundances together with the underlying community assembly dynamics. We illustrate our approach with 21 plant species in the French Alps. We show that a spatially nested modelling framework significantly improves the model’s performance and that the spatial variations of species presence–absence and abundances are predominantly explained by different factors. We also show that incorporating abiotic, dispersal and biotic factors into the same model bring new insights to our understanding of community assembly. This approach, at the crossroads between community ecology and biogeography, is a promising avenue for a better understanding of species co-existence and biodiversity distribution. PMID:22462813

  16. A common scaling rule for abundance, energetics, and production of parasitic and free-living species

    USGS Publications Warehouse

    Hechinger, Ryan F.; Lafferty, Kevin D.; Dobson, Andy P.; Brown, James H.; Kuris, Armand M.

    2011-01-01

    The metabolic theory of ecology uses the scaling of metabolism with body size and temperature to explain the causes and consequences of species abundance. However, the theory and its empirical tests have never simultaneously examined parasites alongside free-living species. This is unfortunate because parasites represent at least half of species diversity. We show that metabolic scaling theory could not account for the abundance of parasitic or free-living species in three estuarine food webs until accounting for trophic dynamics. Analyses then revealed that the abundance of all species uniformly scaled with body mass to the - 3/4 power. This result indicates "production equivalence," where biomass production within trophic levels is invariant of body size across all species and functional groups: invertebrate or vertebrate, ectothermic or endothermic, and free-living or parasitic.

  17. Ants contribute significantly to the pollination of a biodiesel plant, Jatropha curcas.

    PubMed

    Luo, Chang W; Li, Kun; Chen, Xiao M; Huang, Zachary Y

    2012-10-01

    Ants are the most abundant visitors to the flowers of Jatropha curcas L., but it is not clear how much they contribute to the pollination of this plant. In this study, we observed floral visitor assemblage and foraging behavior of ants, measured pollen loads carried by ants and deposited on stigmas, and determined the contribution of ants to the female reproductive success of J. curcas through exclusion experiments. Ants were the most abundant pollinators, accounting for 71.03 and 78.17% of total visits at two study sites. Among different ant species, Tapinoma melanocephalum (F.) is always the most abundant and the only common ant species at two study sites, which might suggest its important role in the pollination of J. curcas. Pollen loads carried by ants were significantly different among different species at two study sites. Pollen loads carried by ants increased with increased body length. Although the flowers exposed only to the ants produced less fruit than those exposed only to the winged visitors, ants alone resulted in almost 60% fruit set. Thus, ants could play a major role in the pollination of J. curcas if winged insects are absent. PMID:23068173

  18. Macroalgal mats and species abundance: a field experiment

    NASA Astrophysics Data System (ADS)

    Hull, S. C.

    1987-11-01

    A field experiment was carried out whereby the density of macroalgae ( Enteromorpha spp.) was manipulated and the resultant changes in sediment infaunal density were monitored. Four densities of Enteromorpha spp. were used: 0,0·3, 1, and 3 kg FW m -2, corresponding to control, low-, medium-, and high-density plots. The experiment ran from May to October 1985 and was sampled on three occasions. By July, the density of Corophium volutator was reduced at all weed levels when compared to control plots, whereas densities of Hydrobia ulvae, Macoma balthica, Nereis diversicolor, and Capitella capitata, all increased. Samples taken in October when the weed mats were buried in the sediment showed fewer differences than in July. Macoma, Nereis, and Capitella were still significantly more abundant at medium and high weed densities. Corophium showed no significant treatment effect. There was, however, a highly significant difference in population size structure for Corophium. Measurements of sediment redox potential and silt content under medium- and high-density plots revealed rapid anoxia with a significant increase in siltation.

  19. The effect of soil-borne pathogens depends on the abundance of host tree species

    PubMed Central

    Liu, Yu; Fang, Suqin; Chesson, Peter; He, Fangliang

    2015-01-01

    The overarching issue for understanding biodiversity maintenance is how fitness advantages accrue to a species as it becomes rare, as this is the defining feature of stable coexistence mechanisms. Without these fitness advantages, average fitness differences between species will lead to exclusion. However, empirical evidence is lacking, especially for forests, due to the difficulty of manipulating density on a large-enough scale. Here we took advantage of naturally occurring contrasts in abundance between sites of a subtropical tree species, Ormosia glaberrima, to demonstrate how low-density fitness advantages accrue by the Janzen–Connell mechanism. The results showed that soil pathogens suppressed seedling recruitment of O. glaberrima when it is abundant but had little effect on the seedlings when it is at low density due to the lack of pathogens. The difference in seedling survival between abundant and low-density sites demonstrates strong dependence of pathogenic effect on the abundance of host species. PMID:26632594

  20. The effect of soil-borne pathogens depends on the abundance of host tree species.

    PubMed

    Liu, Yu; Fang, Suqin; Chesson, Peter; He, Fangliang

    2015-01-01

    The overarching issue for understanding biodiversity maintenance is how fitness advantages accrue to a species as it becomes rare, as this is the defining feature of stable coexistence mechanisms. Without these fitness advantages, average fitness differences between species will lead to exclusion. However, empirical evidence is lacking, especially for forests, due to the difficulty of manipulating density on a large-enough scale. Here we took advantage of naturally occurring contrasts in abundance between sites of a subtropical tree species, Ormosia glaberrima, to demonstrate how low-density fitness advantages accrue by the Janzen-Connell mechanism. The results showed that soil pathogens suppressed seedling recruitment of O. glaberrima when it is abundant but had little effect on the seedlings when it is at low density due to the lack of pathogens. The difference in seedling survival between abundant and low-density sites demonstrates strong dependence of pathogenic effect on the abundance of host species. PMID:26632594

  1. Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations.

    PubMed

    Dashko, Sofia; Liu, Ping; Volk, Helena; Butinar, Lorena; Piškur, Jure; Fay, Justin C

    2016-01-01

    Saccharomyces cerevisiae and its sibling species Saccharomyces paradoxus are known to inhabit temperate arboreal habitats across the globe. Despite their sympatric distribution in the wild, S. cerevisiae is predominantly associated with human fermentations. The apparent ecological differentiation of these species is particularly striking in Europe where S. paradoxus is abundant in forests and S. cerevisiae is abundant in vineyards. However, ecological differences may be confounded with geographic differences in species abundance. To compare the distribution and abundance of these two species we isolated Saccharomyces strains from over 1200 samples taken from vineyard and forest habitats in Slovenia. We isolated numerous strains of S. cerevisiae and S. paradoxus, as well as a small number of Saccharomyces kudriavzevii strains, from both vineyard and forest environments. We find S. cerevisiae less abundant than S. paradoxus on oak trees both within and outside the vineyard, but more abundant on grapevines and associated substrates. Analysis of the uncultured microbiome shows, that both S. cerevisiae and S. paradoxus are rare species in soil and bark samples, but can be much more common in grape must. In contrast to S. paradoxus, European strains of S. cerevisiae have acquired multiple traits thought to be important for life in the vineyard and dominance of wine fermentations. We conclude, that S. cerevisiae and S. paradoxus currently share both vineyard and non-vineyard habitats in Slovenia and we discuss factors relevant to their global distribution and relative abundance. PMID:26941733

  2. Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations

    PubMed Central

    Dashko, Sofia; Liu, Ping; Volk, Helena; Butinar, Lorena; Piškur, Jure; Fay, Justin C.

    2016-01-01

    Saccharomyces cerevisiae and its sibling species Saccharomyces paradoxus are known to inhabit temperate arboreal habitats across the globe. Despite their sympatric distribution in the wild, S. cerevisiae is predominantly associated with human fermentations. The apparent ecological differentiation of these species is particularly striking in Europe where S. paradoxus is abundant in forests and S. cerevisiae is abundant in vineyards. However, ecological differences may be confounded with geographic differences in species abundance. To compare the distribution and abundance of these two species we isolated Saccharomyces strains from over 1200 samples taken from vineyard and forest habitats in Slovenia. We isolated numerous strains of S. cerevisiae and S. paradoxus, as well as a small number of Saccharomyces kudriavzevii strains, from both vineyard and forest environments. We find S. cerevisiae less abundant than S. paradoxus on oak trees both within and outside the vineyard, but more abundant on grapevines and associated substrates. Analysis of the uncultured microbiome shows, that both S. cerevisiae and S. paradoxus are rare species in soil and bark samples, but can be much more common in grape must. In contrast to S. paradoxus, European strains of S. cerevisiae have acquired multiple traits thought to be important for life in the vineyard and dominance of wine fermentations. We conclude, that S. cerevisiae and S. paradoxus currently share both vineyard and non-vineyard habitats in Slovenia and we discuss factors relevant to their global distribution and relative abundance. PMID:26941733

  3. New species and records of Pseudacteon Coquillett, 1907 (Diptera, Phoridae), parasitoids of the fire ant Solenopsis geminata group (Hymenoptera, Formicidae).

    PubMed

    Pereira, Thalles Platiny Lavinscky; Delabie, Jacques Hubert Charles; Bravo, Freddy

    2015-01-01

    The genus Pseudacteon Coquillett (Diptera, Phoridae) has a worldwide distribution and comprises parasitic myrmecophilous species that decapitate host ants. Seventy one species are known in the genus, 41 of them occur in the Neotropical Region and are 25 from Brazil. In northeastern Brazil, there are only records for two species, Pseudacteon dentiger Borgmeier and Pseudacteon antiguensis Malloch. In this paper, two new species of the genus are described from female specimens, Pseudacteon pesqueroi new spec. and Pseudacteon plowesi new spec., and also, new records of three Pseudacteon species for the Brazilian Northeast are given. PMID:26624156

  4. Contrasting soil ciliate species richness and abundance between two tropical plant species: a test of the plant effect.

    PubMed

    Acosta-Mercado, D; Lynn, D H

    2006-05-01

    We still have a rudimentary understanding about the mechanism by which plant roots may stimulate soil microbial interactions. A biochemical model involving plant-derived biochemical fractions, such as exudates, has been used to explain this "rhizosphere effect" on bacteria. However, the variable response of other soil microbial groups, such as protozoa, to the rhizosphere suggests that other factors could be involved in shaping their communities. Thus, two experiments were designed to: (1) determine whether stimulatory and/or inhibiting factors associated with particular plant species regulate ciliate diversity and abundance and (2) obtain a better understanding about the mechanism by which these plant factors operate in the rhizosphere. Bacterial and chemical slurries were reciprocally exchanged between two plant species known to differ in terms of ciliate species richness and abundance (i.e., Canella winterana and plantation Tectona grandis). Analysis of variance showed that the bacteria plus nutrients and the nutrients only treatment had no significant effect on overall ciliate species richness and abundance when compared to the control treatment. However, the use of only colpodean species increased the taxonomic resolution of treatment effects revealing that bacterial slurries had a significant effect on colpodean ciliate species richness. Thus, for particular rhizosphere ciliates, biological properties, such as bacterial diversity or abundance, may have a strong influence on their diversity and possibly abundance. These results are consistent with a model of soil bacteria-mediated mutualisms between plants and protozoa. PMID:16645921

  5. Assessing the sensitivity of avian species abundance to land cover and climate

    USGS Publications Warehouse

    LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R., III; Dijak, William D.; Millspaugh, Joshua J.

    2016-01-01

    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

  6. Spatial covariation of local abundance among different parasite species: the effect of shared hosts.

    PubMed

    Lagrue, C; Poulin, R

    2015-10-01

    Within any parasite species, abundance varies spatially, reaching higher values in certain localities than in others, presumably reflecting the local availability of host resources or the local suitability of habitat characteristics for free-living stages. In the absence of strong interactions between two species of helminths with complex life cycles, we might predict that the degree to which their abundances covary spatially is determined by their common resource requirements, i.e. how many host species they share throughout their life cycles. We test this prediction using five trematode species, all with a typical three-host cycle, from multiple lake sampling sites in New Zealand's South Island: Stegodexamene anguillae, Telogaster opisthorchis, Coitocaecum parvum, Maritrema poulini, and an Apatemon sp. Pairs of species from this set of five share the same host species at either one, two, or all three life cycle stages. Our results show that when two trematode species share the same host species at all three life stages, they show positive spatial covariation in abundance (of metacercarial and adult stages) across localities. When they share hosts at two life stages, they show positive spatial covariation in abundance in some cases but not others. Finally, if two trematode species share only one host species, at a single life stage, their abundances do not covary spatially. These findings indicate that the extent of resource sharing between parasite species can drive the spatial match-mismatch between their abundances, and thus influence their coevolutionary dynamics and the degree to which host populations suffer from additive or synergistic effects of multiple infections. PMID:26113509

  7. Pseudacteon calderensis, a new fly species (Diptera:Phoridae) attacking the fire ant Solenopsis interrupta (Hymenoptera:Formicidae) in northwestern Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new species of Pseudacteon phorid fly Pseudacteon calderis (Diptera: Phoridae) is described from females attacking worker ants of Solenopsis interrupta Santschi in Salta and Jujuy provinces, northwestern Argentina. Pseudacteon calderis differs from almost all other South American Pseudacteon speci...

  8. Gradients in the Number of Species at Reef-Seagrass Ecotones Explained by Gradients in Abundance

    PubMed Central

    Tuya, Fernando; Vanderklift, Mathew A.; Wernberg, Thomas; Thomsen, Mads S.

    2011-01-01

    Gradients in the composition and diversity (e.g. number of species) of faunal assemblages are common at ecotones between juxtaposed habitats. Patterns in the number of species, however, can be confounded by patterns in abundance of individuals, because more species tend to be found wherever there are more individuals. We tested whether proximity to reefs influenced patterns in the composition and diversity (‘species density’ = number of species per area and ‘species richness’ = number of species per number of individuals) of prosobranch gastropods in meadows of two seagrasses with different physiognomy: Posidonia and Amphibolis. A change in the species composition was observed from reef-seagrass edges towards the interiors of Amphibolis, but not in Posidonia meadows. Similarly, the abundance of gastropods and species density was higher at edges relative to interiors of Amphibolis meadows, but not in Posidonia meadows. However, species richness was not affected by proximity to reefs in either type of seagrass meadow. The higher number of species at the reef-Amphibolis edge was therefore a consequence of higher abundance, rather than species richness per se. These results suggest that patterns in the composition and diversity of fauna with proximity to adjacent habitats, and the underlying processes that they reflect, likely depend on the physiognomy of the habitat. PMID:21629654

  9. Gradients in the number of species at reef-seagrass ecotones explained by gradients in abundance.

    PubMed

    Tuya, Fernando; Vanderklift, Mathew A; Wernberg, Thomas; Thomsen, Mads S

    2011-01-01

    Gradients in the composition and diversity (e.g. number of species) of faunal assemblages are common at ecotones between juxtaposed habitats. Patterns in the number of species, however, can be confounded by patterns in abundance of individuals, because more species tend to be found wherever there are more individuals. We tested whether proximity to reefs influenced patterns in the composition and diversity ('species density'  =  number of species per area and 'species richness'  =  number of species per number of individuals) of prosobranch gastropods in meadows of two seagrasses with different physiognomy: Posidonia and Amphibolis. A change in the species composition was observed from reef-seagrass edges towards the interiors of Amphibolis, but not in Posidonia meadows. Similarly, the abundance of gastropods and species density was higher at edges relative to interiors of Amphibolis meadows, but not in Posidonia meadows. However, species richness was not affected by proximity to reefs in either type of seagrass meadow. The higher number of species at the reef-Amphibolis edge was therefore a consequence of higher abundance, rather than species richness per se. These results suggest that patterns in the composition and diversity of fauna with proximity to adjacent habitats, and the underlying processes that they reflect, likely depend on the physiognomy of the habitat. PMID:21629654

  10. Remembrance of things past: modelling the relationship between species' abundances in living communities and death assemblages.

    PubMed

    Olszewski, Thomas D

    2012-02-23

    Accumulations of dead skeletal material are a valuable archive of past ecological conditions. However, such assemblages are not equivalent to living communities because they mix the remains of multiple generations and are altered by post-mortem processes. The abundance of a species in a death assemblage can be quantitatively modelled by successively integrating the product of an influx time series and a post-mortem loss function (a decay function with a constant half-life). In such a model, temporal mixing increases expected absolute dead abundance relative to average influx as a linear function of half-life and increases variation in absolute dead abundance values as a square-root function of half-life. Because typical abundance distributions of ecological communities are logarithmically distributed, species' differences in preservational half-life would have to be very large to substantially alter species' abundance ranks (i.e. make rare species common or vice-versa). In addition, expected dead abundances increase at a faster rate than their range of variation with increased time averaging, predicting greater consistency in the relative abundance structure of death assemblages than their parent living community. PMID:21653564

  11. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    SciTech Connect

    Resasco, Julian; et al,

    2014-04-01

    Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.

  12. Long-term changes in species composition and relative abundances of sharks at a provisioning site.

    PubMed

    Brunnschweiler, Juerg M; Abrantes, Kátya G; Barnett, Adam

    2014-01-01

    Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today's recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004-2006 and 2007-2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004-2006 and very rare in the period of 2007-2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark

  13. Long-Term Changes in Species Composition and Relative Abundances of Sharks at a Provisioning Site

    PubMed Central

    Brunnschweiler, Juerg M.; Abrantes, Kátya G.; Barnett, Adam

    2014-01-01

    Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today’s recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004–2006 and 2007–2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004–2006 and very rare in the period of 2007–2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion

  14. Regional species richness of families and the distribution of abundance and rarity in a local community of forest Hymenoptera

    NASA Astrophysics Data System (ADS)

    Ulrich, Werner

    2005-09-01

    Recent investigations about the relationship between the number of species of taxonomic lineages and regional patterns of species abundances gave indecisive results. Here, it is shown that mean densities of species of a species-rich community of forest Hymenoptera (673 species out of 25 families) were positively related to the number of European species per family. The fraction of abundant species per family declined and the fraction of rare species increased with species richness. Species rich families contained relatively more species, which were present in only one study year (occasional species), and relatively fewer species present during the whole study period (frequent species).

  15. Estimating species occurrence, abundance, and detection probability using zero-inflated distributions

    USGS Publications Warehouse

    Wenger, S.J.; Freeman, Mary C.

    2008-01-01

    Researchers have developed methods to account for imperfect detection of species with either occupancy (presence-absence) or count data using replicated sampling. We show how these approaches can be combined to simultaneously estimate occurrence, abundance, and detection probability by specifying a zero-inflated distribution for abundance. This approach may be particularly appropriate when patterns of occurrence and abundance arise from distinct processes operating at differing spatial or temporal scales. We apply the model to two data sets: (1) previously published data for a species of duck, Anas platyrhynchos, and (2) data for a stream fish species, Etheostoma scotti. We show that in these cases, an incomplete-detection zero-inflated modeling approach yields a superior fit to the data than other models. We propose that zero-inflated abundance models accounting for incomplete detection be considered when replicate count data are available.

  16. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    PubMed

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances. PMID:25712048

  17. Effects of interspecific competition between two urban ant species, Linepithema humile and Monomorium minimum, on toxic bait performance.

    PubMed

    Alder, Patricia; Silverman, Jules

    2005-04-01

    We evaluated the effects of interspecific competition on ant bait performance with two urban pest ants, the Argentine ant, Linepithema humile (Mayr), and the little black ant, Monomorium minimum (Buckley). In a laboratory study, the impact of a solid sulfluramid bait on M. minimum was diminished when L. humile were present, whereas the presence of M. minimum reduced the performance of a liquid fipronil bait against L. humile. Argentine ants were not adversely affected by sulfluramid bait at any time, whereas M. minimum was unaffected by fipronil bait until 14 d of exposure. In field studies measuring diel foraging activity, M. minimum seemed to delay L. humile foraging to food stations by approximately 30 min during summer 2001. However, L. humile subsequently recruited to food stations in very high numbers, thereby displacing M. minimum. L. humile visited food stations over an entire 24-h period, whereas M. minimum was only observed visiting food stations during daylight hours. Adjusting the timing of bait placement in the field may minimize any negative effects of interspecific competition between these two species on toxic bait performance. PMID:15889743

  18. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches

    PubMed Central

    Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region. PMID:26644988

  19. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches.

    PubMed

    Wagner, Elena L E S; Roche, Dominique G; Binning, Sandra A; Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region. PMID:26644988

  20. Comparing electroantennogram and behavioral responses of two Pseudacteon phorid fly species to body extracts of Black, Red and Hybrid imported fire ants, Solenopsis spp.

    PubMed

    Chen, Li; Ochieng, Samuel A; He, Xiaofang; Fadamiro, Henry Y

    2012-10-01

    Several phorid fly species were introduced to the southern United States for biological control of the invasive imported fire ants, Solenopsis richteri (Black), Solenopsis invicta (Red), and their Hybrid S. richteri×S. invicta (Hybrid). It has been previously reported that the Jaguariuna biotype of Pseudacteon tricuspis and the Formosan biotype of Pseudacteon curvatus could distinguish among the three fire ant species with greater preference for Hybrid and Red fire ants. We hypothesized that phorid flies might use host derived chemical cues to differentiate ant species. To determine possible differential olfactory sensitivity of phorid fly species to different fire ant species, we compared electroantennogram (EAG) and behavioral responses of both sexes of P. tricuspis and P. curvatus to body extracts of Black, Red and Hybrid fire ants. As worker sizes of Black and Hybrid fire ants used in this study were much larger than that of Red fire ant (the average weight for Black, Red and Hybrid workers was 1.707, 0.863, 1.223mg per ants, respectively), at doses of 0.01, 0.1, 1 worker equivalent, body extracts of Black and Hybrid fire ant elicited significantly greater EAG response in both sexes of P. tricuspis than that of Red fire ant. Similarly, the EAG response in female P. curvatus to body extract of Black fire ant was significantly greater than to body extract of Red fire ant. To eliminate worker size influence on EAG response in phorid flies, we conducted a second EAG study using a dose of 1mg ant equivalent (body extract from 1mg of worker). No difference in EAG responses was recorded to body extract obtained from the same amount of workers among the three fire ant species (we consider viable Hybrid fire ant as a species in this paper), suggesting that worker size differences contributed to difference in EAG response in the first EAG study. In both EAG studies, male P. tricuspis showed significantly greater EAG responses than male P. curvatus to all three fire ant

  1. Odorous House Ants (Tapinoma sessile) as Back-Seat Drivers of Localized Ant Decline in Urban Habitats

    PubMed Central

    Salyer, Adam; Bennett, Gary W.; Buczkowski, Grzegorz A.

    2014-01-01

    Invasive species and habitat disturbance threaten biodiversity worldwide by modifying ecosystem performance and displacing native organisms. Similar homogenization impacts manifest locally when urbanization forces native species to relocate or reinvade perpetually altered habitat. This study investigated correlations between ant richness and abundance in response to urbanization and the nearby presence of invasive ant species, odorous house ants (Tapinoma sessile), within its native region. Surveying localized ant composition within natural, semi-natural, and urban habitat supported efforts to determine whether T. sessile appear to be primary (drivers) threats as instigators or secondary (passengers) threats as inheritors of indigenous ant decline. Sampling 180 sites, evenly split between all habitats with and without T. sessile present, yielded 45 total species. Although urbanization and T. sessile presence factors were significantly linked to ant decline, their interaction correlated to the greatest reduction of total ant richness (74%) and abundance (81%). Total richness appeared to decrease from 27 species to 18 when natural habitat is urbanized and from 18 species to 7 with T. sessile present in urban plots. Odorous house ant presence minimally influenced ant communities within natural and semi-natural habitat, highlighting the importance of habitat alteration and T. sessile presence interactions. Results suggest urbanization releases T. sessile from unknown constraints by decreasing ant richness and competition. Within urban environment, T. sessile are pre-adapted to quickly exploit new resources and grow to supercolony strength wherein T. sessile drive adjacent biodiversity loss. Odorous house ants act as passengers and drivers of ecological change throughout different phases of urban ‘invasion’. This progression through surviving habitat alteration, exploiting new resources, thriving, and further reducing interspecific competition supports a

  2. Biodiversity on Broadway - Enigmatic Diversity of the Societies of Ants (Formicidae) on the Streets of New York City

    PubMed Central

    Pećarević, Marko; Danoff-Burg, James; Dunn, Robert R.

    2010-01-01

    Each year, a larger proportion of the Earth's surface is urbanized, and a larger proportion of the people on Earth lives in those urban areas. The everyday nature, however, that humans encounter in cities remains poorly understood. Here, we consider perhaps the most urban green habitat, street medians. We sampled ants from forty-four medians along three boulevards in New York City and examined how median properties affect the abundance and species richness of native and introduced ants found on them. Ant species richness varied among streets and increased with area but was independent of the other median attributes measured. Ant assemblages were highly nested, with three numerically dominant species present at all medians and additional species present at a subset of medians. The most common ant species were the introduced Pavement ant (Tetramorium caespitum) and the native Thief ant (Solenopsis molesta) and Cornfield ant (Lasius neoniger). The common introduced species on the medians responded differently to natural and disturbed elements of medians. Tetramorium caespitum was most abundant in small medians, with the greatest edge/area ratio, particularly if those medians had few trees, whereas Nylanderia flavipes was most abundant in the largest medians, particularly if they had more trees. Many of the species encountered in Manhattan were similar to those found in other large North American cities, such that a relatively small subset of ant species probably represent most of the encounters humans have with ants in North America. PMID:20957156

  3. Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Now that the Messenger spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbital-phase searches for additional species in Mercury's exosphere.

  4. Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Astrophysics Data System (ADS)

    Vervack, R. J., Jr.; Killen, R. M.; Sprague, A. L.; Burger, M. H.; Merkel, A. W.; Sarantos, M.

    2011-10-01

    Now that the MESSENGER spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbitalphase searches for additional species in Mercury's exosphere.

  5. Decadal variability in abundances of the dominant euphausiid species in southern sectors of the California Current

    NASA Astrophysics Data System (ADS)

    Brinton, Edward; Townsend, Annie

    2003-08-01

    Euphausiid abundance data from broadly based California Cooperative Oceanic Fisheries Investigation surveys in California and Baja California sectors of the California Current provided a time series distinguishing periodic, rhythmic and irregular species patterns. Comparisons with environmental indexes indicate significant correlations with warm-water species, most notably in coastal Nyctiphanes simplex. Oceanic warm-water species were similarly, but less extremely, allied with an index. Coastal warm-water N. simplex was uncommon off southern California before the atmospheric regime shift of the 1970s. It assumed a post-1978 pattern of rhythmic biannual abundance increases and decreases during 1981-2000. The near-tropical oceanic Euphausia eximia and Pacific Central subtropicals patterned similarly, but was more periodic than rhythmic. Euphausia pacifica, the most dominant and broadly ranging Euphausia species, peaked at irregular but distinct bi-decadal abundances during 6 strong La Niña episodes. The peaks uniformly collapsed by 90%, becoming El Niño-associated minima. The cold-water coastal northern species Thysanoessa spinifera frequently ranged far south off Baja California before 1960 but became limited to Central California in the 1980s. The importance of T. spinifera off the Californias is small compared with northern regions, but it extends to southern upwelling centers contributing to dominance, here, by cold-water euphausiids. Decadal periodicity of species abundances decreased in the 1990s, when trends became more common. Differences among sectors were minimal between the two Californias, but were often distinct between southern California and Central Baja California. Species abundances, comparing pre- and post-climate shift species averages, differed insignificantly for all species when logarithmic values were used. With arithmetic values, most 1977-1998 average values were the greater, but with large standard deviations.

  6. Global patterns in sandy beach macrofauna: Species richness, abundance, biomass and body size

    NASA Astrophysics Data System (ADS)

    Defeo, Omar; McLachlan, Anton

    2013-10-01

    Global patterns in species richness in sandy beach ecosystems have been poorly understood until comparatively recently, because of the difficulty of compiling high-resolution databases at continental scales. We analyze information from more than 200 sandy beaches around the world, which harbor hundreds of macrofauna species, and explore latitudinal trends in species richness, abundance and biomass. Species richness increases from temperate to tropical sites. Abundance follows contrasting trends depending on the slope of the beach: in gentle slope beaches, it is higher at temperate sites, whereas in steep-slope beaches it is higher at the tropics. Biomass follows identical negative trends for both climatic regions at the whole range of beach slopes, suggesting decreasing rates in carrying capacity of the environment towards reflective beaches. Various morphodynamic variables determine global trends in beach macrofauna. Species richness, abundance and biomass are higher at dissipative than at reflective beaches, whereas a body size follows the reverse pattern. A generalized linear model showed that large tidal range (which determines the vertical dimension of the intertidal habitat), small size of sand particles and flat beach slope (a product of the interaction among wave energy, tidal range and grain size) are correlated with high species richness, suggesting that these parameters represent the most parsimonious variables for modelling patterns in sandy beach macrofauna. Large-scale patterns indicate a scaling of abundance to a body size, suggesting that dissipative beaches harbor communities with highest abundance and species with the smallest body sizes. Additional information for tropical and northern hemisphere sandy beaches (underrepresented in our compilation) is required to decipher more conclusive trends, particularly in abundance, biomass and body size. Further research should integrate meaningful oceanographic variables, such as temperature and primary

  7. How to be an ant on figs

    NASA Astrophysics Data System (ADS)

    Bain, Anthony; Harrison, Rhett D.; Schatz, Bertrand

    2014-05-01

    Mutualistic interactions are open to exploitation by one or other of the partners and a diversity of other organisms, and hence are best understood as being embedded in a complex network of biotic interactions. Figs participate in an obligate mutualism in that figs are dependent on agaonid fig wasps for pollination and the wasps are dependent on fig ovules for brood sites. Ants are common insect predators and abundant in tropical forests. Ants have been recorded on approximately 11% of fig species, including all six subgenera, and often affect the fig-fig pollinator interaction through their predation of either pollinating and parasitic wasps. On monoecious figs, ants are often associated with hemipterans, whereas in dioecious figs ants predominantly prey on fig wasps. A few fig species are true myrmecophytes, with domatia or food rewards for ants, and in at least one species this is linked to predation of parasitic fig wasps. Ants also play a role in dispersal of fig seeds and may be particularly important for hemi-epiphytic species, which require high quality establishment microsites in the canopy. The intersection between the fig-fig pollinator and ant-plant systems promises to provide fertile ground for understanding mutualistic interactions within the context of complex interaction networks.

  8. Predators reduce abundance and species richness of coral reef fish recruits via non-selective predation

    NASA Astrophysics Data System (ADS)

    Heinlein, J. M.; Stier, A. C.; Steele, M. A.

    2010-06-01

    Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.

  9. First record of the myrmicine ant genus Carebara Westwood, 1840 (Hymenoptera, Formicidae) from Saudi Arabia with description of a new species, C. abuhurayri sp. n.

    PubMed

    Aldawood, Abdulrahman S; Sharaf, Mostafa R; Taylor, Brian

    2011-01-01

    The myrmicine ant genus Carebara is recorded for the first time in Saudi Arabia from the Arabian Peninsula as a whole. A new species Carebara abuhurayrisp. n. is described based on workers collected from Al Bahah region. One of the smallest ant species known to occur in Arabia, Carebara abuhurayri is found in an area inhabited by many ant species including Tetramorium sericeiventre Emery, 1877, Pheidole minuscula Bernard, 1952, Pheidole sp., Monomorium destructor (Jerdon, 1851), Monomorium exiguum (Forel, 1894) and Monomorium sp. and Crematogaster sp. PMID:21594112

  10. Using species abundance distribution models and diversity indices for biogeographical analyses

    NASA Astrophysics Data System (ADS)

    Fattorini, Simone; Rigal, François; Cardoso, Pedro; Borges, Paulo A. V.

    2016-01-01

    We examine whether Species Abundance Distribution models (SADs) and diversity indices can describe how species colonization status influences species community assembly on oceanic islands. Our hypothesis is that, because of the lack of source-sink dynamics at the archipelago scale, Single Island Endemics (SIEs), i.e. endemic species restricted to only one island, should be represented by few rare species and consequently have abundance patterns that differ from those of more widespread species. To test our hypothesis, we used arthropod data from the Azorean archipelago (North Atlantic). We divided the species into three colonization categories: SIEs, archipelagic endemics (AZEs, present in at least two islands) and native non-endemics (NATs). For each category, we modelled rank-abundance plots using both the geometric series and the Gambin model, a measure of distributional amplitude. We also calculated Shannon entropy and Buzas and Gibson's evenness. We show that the slopes of the regression lines modelling SADs were significantly higher for SIEs, which indicates a relative predominance of a few highly abundant species and a lack of rare species, which also depresses diversity indices. This may be a consequence of two factors: (i) some forest specialist SIEs may be at advantage over other, less adapted species; (ii) the entire populations of SIEs are by definition concentrated on a single island, without possibility for inter-island source-sink dynamics; hence all populations must have a minimum number of individuals to survive natural, often unpredictable, fluctuations. These findings are supported by higher values of the α parameter of the Gambin mode for SIEs. In contrast, AZEs and NATs had lower regression slopes, lower α but higher diversity indices, resulting from their widespread distribution over several islands. We conclude that these differences in the SAD models and diversity indices demonstrate that the study of these metrics is useful for

  11. Impact of ecological doses of the most widespread phthalate on a terrestrial species, the ant Lasius niger.

    PubMed

    Cuvillier-Hot, Virginie; Salin, Karine; Devers, Séverine; Tasiemski, Aurélie; Schaffner, Pauline; Boulay, Raphaël; Billiard, Sylvain; Lenoir, Alain

    2014-05-01

    Phthalates are synthetic contaminants released into the environment notably by plastic waste. Semi-volatile, they adsorb to atmospheric particles and get distributed in all ecosystems. Effects of this major anthropogenic pollution in economical species in aquatic habitats have attracted large interest. On the contrary, very few studies have focused on wild terrestrial species. Yet, these lipophilic molecules are easily trapped by insect cuticle; ants and other insects have been shown to permanently bear among their cuticular components a non-negligible proportion of phthalates, meaning that they suffer from chronic exposure to these pollutants. Oral route could also be an additional way of contamination, as phthalates tend to stick to any organic particle. We show here via a food choice experiment that Lasius niger workers can detect, and avoid feeding on, food contaminated with DEHP (DiEthyl Hexyl Phthalate), the most widespread phthalate found in nature. This suggests that the main source of contamination for ants is atmosphere and that doses measured on the cuticle correspond to the chronic exposure levels for these animals. Such an ecologically relevant dose of DEHP was used to contaminate ants in lab and to investigate their physiological impact. Over a chronic exposure (1 dose per week for 5 weeks), the egg-laying rate of queens was significantly reduced lending credence to endocrine disruptive properties of such a pollutant, as also described for aquatic invertebrates. On the contrary, short term exposure (24h) to a single dose of DEHP does not induce oxidative stress in ant workers as expected, but leads to activation of the immune system. Because of their very large distribution, their presence in virtually all terrestrial ecosystems and their representation at all trophic levels, ants could be useful indicators of contamination by phthalates, especially via monitoring the level of activation of their immune state. PMID:24713390

  12. Habitat partitioning by five congeneric and abundant Choerodon species (Labridae) in a large subtropical marine embayment

    NASA Astrophysics Data System (ADS)

    Fairclough, D. V.; Clarke, K. R.; Valesini, F. J.; Potter, I. C.

    2008-04-01

    The habitats occupied by the juveniles and adults of five morphologically similar, diurnally active and abundant Choerodon species in the large subtropical environment of Shark Bay, a "World Heritage Property" on the west coast of Australia, have been determined. The densities of the two life cycle stages of each Choerodon species in those habitats were used in various analyses to test the hypotheses that: (1) habitats are partitioned among these species and between their juveniles and adults; (2) such habitat partitioning is greatest in the case of the two Western Australian endemic species, i.e. Choerodon rubescens and Choerodon cauteroma; and (3) the extent of habitat partitioning between both of these two species and the only species that is widely distributed in the Indo-West Pacific, i.e. Choerodon schoenleinii, will be less pronounced. Initially, catches of each of the five congeneric species, obtained during other studies in Shark Bay by angling, spearfishing and otter trawling, were collated to elucidate the broad distribution of these species in that embayment. Underwater visual census was then used to determine the densities of the juveniles and adults of each Choerodon species at sites representing the four habitat types in which one or more of these species had been caught, i.e. reefs in marine waters at the western boundary of the bay and seagrass, reefs and rocky shorelines in the two inner gulfs. The compositions of the Choerodon species over marine (entrance channel) reefs and in seagrass were significantly different and each differed significantly from those in both inner gulf reefs and rocky shorelines, which were, however, not significantly different. Choerodon rubescens was restricted to exposed marine reefs, and thus occupied a different habitat and location of the bay than C. cauteroma, the other endemic species, which was almost exclusively confined to habitats found in the inner gulfs. Choerodon cauteroma differed from other Choerodon

  13. Species composition and seasonal abundance of Chaetognatha in the subtropical coastal waters of Hong Kong

    NASA Astrophysics Data System (ADS)

    Tse, P.; Hui, S. Y.; Wong, C. K.

    2007-06-01

    Species composition, species diversity and seasonal abundance of chaetognaths were studied in Tolo Harbour and the coastal waters of eastern Hong Kong. Tolo Harbour is a semi-enclosed and poorly flushed bay with a long history of eutrophication. It opens into the eastern coast of Hong Kong which is fully exposed to water currents from the South China Sea. Zooplankton samples were collected monthly from July 2003 to July 2005 at six stations. Twenty species of chaetognaths were identified. They included six species of the genus Aidanosagitta ( Aidanosagitta neglecta, Aidanosagitta delicata, Aidanosagitta johorensis, Aidanosagitta regularis, Aidanosagitta bedfordii and Aidanosagitta crassa), four species of the genus Zonosagitta ( Zonosagitta nagae, Zonosagitta bedoti, Zonosagitta bruuni and Zonosagitta pulchra), three species of the genus Ferosagitta ( Ferosagitta ferox, Ferosagitta tokiokai and Ferosagitta robusta) and one species each from the genera Serratosagitta ( Serratosagitta pacifica), Decipisagitta ( Decipisagitta decipiens), Flaccisagitta ( Flaccisagitta enflata), Krohnitta ( Krohnitta pacifica), Mesosagitta ( Mesosagitta minima), Pterosagitta ( Pterosagitta draco) and Sagitta ( Sagitta bipunctata). The most abundant species were Flaccisagitta enflata, A. neglecta and A. delicata. Averaged over the entire study period, the densities of Flaccisagitta enflata, A. neglecta and A. delicata were 9.3, 6.6 and 5.2 ind. m -3, respectively. Overall, these species constituted 39.7%, 28.2% and 22.0% of all chaetognaths collected in the study. Averaged over the entire study, the density of most of the low abundance species was <0.6 ind. m -3. Flaccisagitta enflata occurred throughout the year at all sampling stations. Aidanosagitta neglecta occurred at all sampling stations, but was most common in summer. Aidanosagitta delicata was most common in Tolo Harbour during summer. Tolo Harbour supported larger populations, but fewer species of chaetognaths than the

  14. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    PubMed

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. PMID:25588119

  15. Ant predation on herbivores through a multitrophic lens: how effects of ants on plant herbivore defense and natural enemies vary along temperature gradients.

    PubMed

    Rodríguez-Castañeda, G; Brehm, G; Fiedler, K; Dyer, L A

    2016-04-01

    Ants are keystone predators in terrestrial trophic cascades. Addressing ants' roles in multitrophic interactions across regional gradients is important for understanding mechanisms behind range limits of species. We present four hypotheses of trophic dynamics occurring when ants are rare: first, there is a shift in predator communities; second, plants decrease investments in ant attraction and increase production of secondary metabolites; third, lower herbivory at high elevations allows plants to tolerate herbivory; and fourth, distribution of ant-plants can be limited based on ant abundance. Conducting experiments on multitrophic effects of ants across elevational gradients, and incorporating these results to ecological niche modeling (ENM) will improve our knowledge of the impacts of global change on ants, trophic interactions, and biodiversity. PMID:27436650

  16. The Distribution and Abundance of Bird Species: Towards a Satellite, Data Driven Avian Energetics and Species Richness Model

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2003-01-01

    This paper addresses the fundamental question of why birds occur where and when they do, i.e., what are the causative factors that determine the spatio-temporal distributions, abundance, or richness of bird species? In this paper we outline the first steps toward building a satellite, data-driven model of avian energetics and species richness based on individual bird physiology, morphology, and interaction with the spatio-temporal habitat. To evaluate our model, we will use the North American Breeding Bird Survey and Christmas Bird Count data for species richness, wintering and breeding range. Long term and current satellite data series include AVHRR, Landsat, and MODIS.

  17. Species abundance distribution and population dynamics in a two-community model of neutral ecology

    NASA Astrophysics Data System (ADS)

    Vallade, M.; Houchmandzadeh, B.

    2006-11-01

    Explicit formulas for the steady-state distribution of species in two interconnected communities of arbitrary sizes are derived in the framework of Hubbell’s neutral model of biodiversity. Migrations of seeds from both communities as well as mutations in both of them are taken into account. These results generalize those previously obtained for the “island-continent” model and they allow an analysis of the influence of the ratio of the sizes of the two communities on the dominance/diversity equilibrium. Exact expressions for species abundance distributions are deduced from a master equation for the joint probability distribution of species in the two communities. Moreover, an approximate self-consistent solution is derived. It corresponds to a generalization of previous results and it proves to be accurate over a broad range of parameters. The dynamical correlations between the abundances of a species in both communities are also discussed.

  18. Does beach nourishment have long-term effects on intertidal macroinvertebrate species abundance?

    NASA Astrophysics Data System (ADS)

    Leewis, Lies; van Bodegom, Peter M.; Rozema, Jelte; Janssen, Gerard M.

    2012-11-01

    Coastal squeeze is the largest threat for sandy coastal areas. To mitigate seaward threats, erosion and sea level rise, sand nourishment is commonly applied. However, its long-term consequences for macroinvertebrate fauna, critical to most ecosystem services of sandy coasts, are still unknown. Seventeen sandy beaches - nourished and controls - were sampled along a chronosequence to investigate the abundance of four dominant macrofauna species and their relations with nourishment year and relevant coastal environmental variables. Dean's parameter and latitude significantly explained the abundance of the spionid polychaete Scolelepis squamata, Beach Index (BI), sand skewness, beach slope and latitude explained the abundance of the amphipod Haustorius arenarius and Relative Tide Range (RTR), recreation and sand sorting explained the abundance of Bathyporeia sarsi. For Eurydice pulchra, no environmental variable explained its abundance. For H. arenarius, E. pulchra and B. sarsi, there was no relation with nourishment year, indicating that recovery took place within a year after nourishment. Scolelepis squamata initially profited from the nourishment with "over-recolonisation". This confirms its role as an opportunistic species, thereby altering the initial community structure on a beach after nourishment. We conclude that the responses of the four dominant invertebrates studied in the years following beach nourishment are species specific. This shows the importance of knowing the autecology of the sandy beach macroinvertebrate fauna in order to be able to mitigate the effects of beach nourishment and other environmental impacts.

  19. Plankton studies in San Francisco Bay; IV, Phytoplankton abundance and species composition, January 1980 - February 1981

    USGS Publications Warehouse

    Wong, R.L.; Cloern, J.E.

    1982-01-01

    Data are presented on the phytoplankton species composition and abundance in San Francisco Bay from January 1980 through February 1981. Phytoplankton were identified and enumerated in surface samples collected approximately every two weeks at selected stations in the main channel of the Bay, and at shoal stations in the central portion of South San Francisco Bay, San Pablo Bay, and Suisun Bay. Also reported are separate species lists for microphytoplankton (< 60 micrometers) and macrophytoplankton (> 60 micrometers). (Author 's abstract)

  20. Individualistic sensitivities and exposure to climate change explain variation in species' distribution and abundance changes.

    PubMed

    Palmer, Georgina; Hill, Jane K; Brereton, Tom M; Brooks, David R; Chapman, Jason W; Fox, Richard; Oliver, Tom H; Thomas, Chris D

    2015-10-01

    The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population "forcing" (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species' responses to recent climate change may be more predictable than previously recognized. PMID:26601276

  1. Estimating species - area relationships by modeling abundance and frequency subject to incomplete sampling.

    PubMed

    Yamaura, Yuichi; Connor, Edward F; Royle, J Andrew; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-07-01

    Models and data used to describe species-area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species-area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species-area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density-area relationships and occurrence probability-area relationships can alter the form of species-area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a

  2. Ant community change across a ground vegetation gradient in north Florida's longleaf pine flatwoods

    PubMed Central

    Lubertazzi, David; Tschinkel, Walter R.

    2003-01-01

    Ant communities in longleaf pine habitats are poorly known and hence the naturally occurring ant assemblages of a large portion of southeastern North America are not well understood. This study examined the diverse ant community found in the longleaf pine flatwoods of north Florida and tested how ant diversity changes along a herbaceous ground cover gradient. Restoring the ground cover to its original floral composition is an important focus of longleaf pine conservation and hence it is important to understand how native faunal communities vary with ground cover variation. Using 4 sampling methods, we characterized the ant community and analyzed its within-habitat variation among 12 study sites. We found the highest plot species richness (55 species) and within-habitat species richness (72 species) ever recorded for North American ants. The ants formed three distinct communities. The low-diversity arboreal and subterranean assemblages varied little across forest stands while the diversity of the species-rich ground foraging ant community was negatively correlated with percent herbaceous cover. The imported fire ant, Solenopsis invicta (monogyne form), was unexpectedly found to be abundant in high herbaceous cover sites. Floral restoration of the pine flatwoods, which is increasing the proportion of herbaceous cover, is likely to cause an increase in the abundance of the imported fire ant. Abbreviation: ANF Apalachicola National Forest PMID:15841237

  3. Habitat traits and species interactions differentially affect abundance and body size in pond-breeding amphibians.

    PubMed

    Ousterhout, Brittany H; Anderson, Thomas L; Drake, Dana L; Peterman, William E; Semlitsch, Raymond D

    2015-07-01

    In recent studies, habitat traits have emerged as stronger predictors of species occupancy, abundance, richness and diversity than competition. However, in many cases, it remains unclear whether habitat also mediates processes more subtle than competitive exclusion, such as growth, or whether intra- and interspecific interactions among individuals of different species may be better predictors of size. To test whether habitat traits are a stronger predictor of abundance and body size than intra- and interspecific interactions, we measured the density and body size of three species of larval salamanders in 192 ponds across a landscape. We found that the density of larvae was best predicted by models that included habitat features, while models incorporating interactions among individuals of different species best explained the body size of larvae. Additionally, we found a positive relationship between focal species density and congener density, while focal species body size was negatively related to congener density. We posit that salamander larvae may not experience competitive exclusion and thus reduced densities, but instead compensate for increased competition behaviourally (e.g. reduced foraging), resulting in decreased growth. The discrepancy between larval density and body size, a strong predictor of fitness in this system, also highlights a potential shortcoming in using density or abundance as a metric of habitat quality or population health. PMID:25643605

  4. Regular Patterns for Proteome-Wide Distribution of Protein Abundance across Species

    PubMed Central

    Jiang, Ying; Ying, Wantao; Wu, Songfeng; Zhu, Yunping; Liu, Siqi; Yang, Pengyuan; Qian, Xiaohong; He, Fuchu

    2012-01-01

    A proteome of the bio-entity, including cell, tissue, organ, and organism, consists of proteins of diverse abundance. The principle that determines the abundance of different proteins in a proteome is of fundamental significance for an understanding of the building blocks of the bio-entity. Here, we report three regular patterns in the proteome-wide distribution of protein abundance across species such as human, mouse, fly, worm, yeast, and bacteria: in most cases, protein abundance is positively correlated with the protein's origination time or sequence conservation during evolution; it is negatively correlated with the protein's domain number and positively correlated with domain coverage in protein structure, and the correlations became stronger during the course of evolution; protein abundance can be further stratified by the function of the protein, whereby proteins that act on material conversion and transportation (mass category) are more abundant than those that act on information modulation (information category). Thus, protein abundance is intrinsically related to the protein's inherent characters of evolution, structure, and function. PMID:22427835

  5. Observed and predicted effects of climate change on species abundance in protected areas

    NASA Astrophysics Data System (ADS)

    Johnston, Alison; Ausden, Malcolm; Dodd, Andrew M.; Bradbury, Richard B.; Chamberlain, Dan E.; Jiguet, Frédéric; Thomas, Chris D.; Cook, Aonghais S. C. P.; Newson, Stuart E.; Ockendon, Nancy; Rehfisch, Mark M.; Roos, Staffan; Thaxter, Chris B.; Brown, Andy; Crick, Humphrey Q. P.; Douse, Andrew; McCall, Rob A.; Pontier, Helen; Stroud, David A.; Cadiou, Bernard; Crowe, Olivia; Deceuninck, Bernard; Hornman, Menno; Pearce-Higgins, James W.

    2013-12-01

    The dynamic nature and diversity of species' responses to climate change poses significant difficulties for developing robust, long-term conservation strategies. One key question is whether existing protected area networks will remain effective in a changing climate. To test this, we developed statistical models that link climate to the abundance of internationally important bird populations in northwestern Europe. Spatial climate-abundance models were able to predict 56% of the variation in recent 30-year population trends. Using these models, future climate change resulting in 4.0°C global warming was projected to cause declines of at least 25% for more than half of the internationally important populations considered. Nonetheless, most EU Special Protection Areas in the UK were projected to retain species in sufficient abundances to maintain their legal status, and generally sites that are important now were projected to be important in the future. The biological and legal resilience of this network of protected areas is derived from the capacity for turnover in the important species at each site as species' distributions and abundances alter in response to climate. Current protected areas are therefore predicted to remain important for future conservation in a changing climate.

  6. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.

    PubMed

    Smith, Henrik G; Dänhardt, Juliana; Lindström, Ake; Rundlöf, Maj

    2010-04-01

    It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds. PMID:20213151

  7. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam

    USGS Publications Warehouse

    Campbell, Earl W., III; Yackel Adams, Amy A.; Converse, Sarah J.; Fritts, Thomas H.; Rodda, Gordon H.

    2012-01-01

    The effect of predators on the abundance of prey species is a topic of ongoing debate in ecology; the effect of snake predators on their prey has been less debated, as there exists a general consensus that snakes do not negatively influence the abundance of their prey. However, this viewpoint has not been adequately tested. We quantified the effect of brown treesnake (Boiga irregularis) predation on the abundance and size of lizards on Guam by contrasting lizards in two 1-ha treatment plots of secondary forest from which snakes had been removed and excluded vs. two 1-ha control plots in which snakes were monitored but not removed or excluded. We removed resident snakes from the treatment plots with snake traps and hand capture, and snake immigration into these plots was precluded by electrified snake barriers. Lizards were sampled in all plots quarterly for a year following snake elimination in the treatment plots. Following the completion of this experiment, we used total removal sampling to census lizards on a 100-m2 subsample of each plot. Results of systematic lizard population monitoring before and after snake removal suggest that the abundance of the skink, Carlia ailanpalai, increased substantially and the abundance of two species of gekkonids, Lepidodactylus lugubris and Hemidactylus frenatus, also increased on snake-free plots. No treatment effect was observed for the skink Emoia caeruleocauda. Mean snout–vent length of all lizard species only increased following snake removal in the treatment plots. The general increase in prey density and mean size was unexpected in light of the literature consensus that snakes do not control the abundance of their prey species. Our findings show that, at least where alternate predators are lacking, snakes may indeed affect prey populations.

  8. Testing the effects of ant invasions on non-ant arthropods with high-resolution taxonomic data.

    PubMed

    Hanna, Cause; Naughton, Ida; Boser, Christina; Holway, David

    2015-10-01

    Invasions give rise to a wide range of ecological effects. Many invasions proceed without noticeable impacts on the resident biota, whereas others shift species composition and even alter ecosystem function. Ant invasions generate a broad spectrum of ecological effects, but controversy surrounds the extent of these impacts, especially with regard to how other arthropods are affected. This uncertainty in part results from the widespread use of low-resolution taxonomic data, which can mask the presence of other introduced species and make it difficult to isolate the effects of ant invasions on native species. Here, we use high-resolution taxonomic data to examine the effects of Argentine ant invasions on arthropods on Santa Cruz Island, California. We sampled arthropods in eight pairs of invaded and uninvaded plots and then collaborated with taxonomic experts to identify taxa in four focal groups: spiders, bark lice, beetles, and ants. Spiders, bark lice, and beetles made up ~40% of the 9868 non-ant arthropod individuals sampled; the majority of focal group arthropods were putatively native taxa. Although our results indicate strong negative effects of the Argentine ant on native ants, as is well documented, invaded and uninvaded plots did not differ with respect to the richness, abundance, or species composition of spiders, bark lice, and beetles. One common, introduced species of bark louse was more common in uninvaded plots than in invaded plots, and including this species into our analyses changed the relationship between bark louse richness vs. L. humile abundance from no relationship to a significant negative relationship. This case illustrates how failure to differentiate native and introduced taxa can lead to erroneous conclusions about the effects of ant invasions. Our results caution against unqualified assertions about the effects of ant invasions on non-ant arthropods, and more generally demonstrate that accurate assessments of invasion impacts depend on

  9. Species richness and relative species abundance of Nymphalidae (Lepidoptera) in three forests with different perturbations in the North-Central Caribbean of Costa Rica.

    PubMed

    Stephen, Carolyn; Sánchez, Ragde

    2014-09-01

    Measurements of species richness and species abundance can have important implications for regulations and conservation. This study investigated species richness and abundance of butterflies in the family Nymphalidae at undisturbed, and disturbed habitats in Tirimbina Biological Reserve and Nogal Private Reserve, Sarapiquí, Costa Rica. Traps baited with rotten banana were placed in the canopy and the understory of three habitats: within mature forest, at a river/forest border, and at a banana plantation/forest border. In total, 71 species and 487 individuals were caught and identified during May and June 2011 and May 2013. Species richness and species abundance were found to increase significantly at perturbed habitats (p < 0.0001, p < 0.0001, respectively). The edge effect, in which species richness and abundance increase due to greater complementary resources from different habitats, could be one possible explanation for increased species richness and abundance. PMID:25412524

  10. Habitat Selection and Temporal Abundance Fluctuations of Demersal Cartilaginous Species in the Aegean Sea (Eastern Mediterranean)

    PubMed Central

    Maravelias, Christos D.; Tserpes, George; Pantazi, Maria; Peristeraki, Panagiota

    2012-01-01

    Predicting the occurrence of keystone top predators in a multispecies marine environment, such as the Mediterranean Sea, can be of considerable value to the long-term sustainable development of the fishing industry and to the protection of biodiversity. We analysed fisheries independent scientific bottom trawl survey data of two of the most abundant cartilaginous fish species (Scyliorhinus canicula, Raja clavata) in the Aegean Sea covering an 11-year sampling period. The current findings revealed a declining trend in R. clavata and S. canicula abundance from the late ′90 s until 2004. Habitats with the higher probability of finding cartilaginous fish present were those located in intermediate waters (depth: 200–400 m). The present results also indicated a preferential species' clustering in specific geographic and bathymetric regions of the Aegean Sea. Depth appeared to be one of the key determining factors for the selection of habitats for all species examined. With cartilaginous fish species being among the more biologically sensitive fish species taken in European marine fisheries, our findings, which are based on a standardized scientific survey, can contribute to the rational exploitation and management of their stocks by providing important information on temporal abundance trends and habitat preferences. PMID:22536389

  11. Spatial predictability of juvenile fish species richness and abundance in a coral reef environment

    NASA Astrophysics Data System (ADS)

    Mellin, C.; Andréfouët, S.; Ponton, D.

    2007-12-01

    Juvenile reef fish communities represent an essential component of coral reef ecosystems in the current focus of fish population dynamics and coral reef resilience. Juvenile fish survival depends on habitat characteristics and is, following settlement, the first determinant of the number of individuals within adult populations. The goal of this study was to provide methods for mapping juvenile fish species richness and abundance into spatial domains suitable for micro and meso-scale analysis and management decisions. Generalized Linear Models predicting juvenile fish species richness and abundance were developed according to spatial and temporal environmental variables measured from 10 m up to 10 km in the southwest lagoon of New Caledonia. The statistical model was further spatially generalized using a 1.5-m resolution, independently created, remotely sensed, habitat map. This procedure revealed that : (1) spatial factors at 10 to 100-m scale explained up to 71% of variability in juvenile species richness, (2) a small improvement (75%) was gained when a combination of environmental variables at different spatial and temporal scales was used and (3) the coupling of remotely sensed data, geographical information system tools and point-based ecological data showed that the highest species richness and abundance were predicted along a narrow margin overlapping the coral reef flat and adjacent seagrass beds. Spatially explicit models of species distribution may be relevant for the management of reef communities when strong relationships exist between faunistic and environmental variables and when models are built at appropriate scales.

  12. Abundance-based similarity indices and their estimation when there are unseen species in samples.

    PubMed

    Chao, Anne; Chazdon, Robin L; Colwell, Robert K; Shen, Tsung-Jen

    2006-06-01

    A wide variety of similarity indices for comparing two assemblages based on species incidence (i.e., presence/absence) data have been proposed in the literature. These indices are generally based on three simple incidence counts: the number of species shared by two assemblages and the number of species unique to each of them. We provide a new probabilistic derivation for any incidence-based index that is symmetric (i.e., the index is not affected by the identity ordering of the two assemblages) and homogeneous (i.e., the index is unchanged if all counts are multiplied by a constant). The probabilistic approach is further extended to formulate abundance-based indices. Thus any symmetric and homogeneous incidence index can be easily modified to an abundance-type version. Applying the Laplace approximation formulas, we propose estimators that adjust for the effect of unseen shared species on our abundance-based indices. Simulation results show that the adjusted estimators significantly reduce the biases of the corresponding unadjusted ones when a substantial fraction of species is missing from samples. Data on successional vegetation in six tropical forests are used for illustration. Advantages and disadvantages of some commonly applied indices are briefly discussed. PMID:16918900

  13. Abundance of biting midge species (Diptera: Ceratopogonidae, Culicoides spp.) on cattle farms in Korea

    PubMed Central

    Oem, Jae-Ku; Chung, Joon-Yee; Kwon, Mee-Soon; Kim, Toh-Kyung; Lee, Tae-Uk

    2013-01-01

    Culicoides biting midges were collected on three cattle farms weekly using light traps overnight from May to October between 2010 and 2011 in the southern part of Korea. The seasonal and geographical abundance of Culicodes spp. were measured. A total of 16,538 biting midges were collected from 2010 to 2011, including seven species of Culicoides, four of which represented 98.42% of the collected specimens. These four species were Culicodes (C.) punctatus (n = 14,413), C. arakawae (n = 1,120), C. oxystoma (n = 427), and C. maculatus (n = 318). C. punctatus was the predominant species (87.15%). PMID:23388441

  14. Cytogenetic analysis of three species of Pseudacteon (Diptera, Phoridae) parasitoids of the fire ants using standard and molecular techniques

    PubMed Central

    2009-01-01

    Pseudacteon flies, parasitoids of worker ants, are being intensively studied as potentially effective agents in the biological control of the invasive pest fire ant genus Solenopsis (Hymenoptera: Formicidae). This is the first attempt to describe the karyotype of P. curvatus Borgmeier, P. nocens Borgmeier and P. tricuspis Borgmeier. The three species possess 2n = 6; chromosomes I and II were metacentric in the three species, but chromosome pair III was subtelocentric in P. curvatus and P. tricuspis, and telocentric in P. nocens. All three species possess a C positive band in chromosome II, lack C positive heterochromatin on chromosome I, and are mostly differentiated with respect to chromosome III. P. curvatus and P. tricuspis possess a C positive band, but at different locations, whereas this band is absent in P. nocens. Heterochromatic bands are neither AT nor GC rich as revealed by fluorescent banding. In situ hybridization with an 18S rDNA probe revealed a signal on chromosome II in a similar location to the C positive band in the three species. The apparent lack of morphologically distinct sex chromosomes is consistent with proposals of environmental sex determination in the genus. Small differences detected in chromosome length and morphology suggests that chromosomes have been highly conserved during the evolutionary radiation of Pseudacteon. Possible mechanisms of karyotype evolution in the three species are suggested. PMID:21637448

  15. Methanotrophic community abundance and composition in plateau soils with different plant species and plantation ways.

    PubMed

    Dai, Yu; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2015-11-01

    Aerobic methane-oxidizing bacteria (MOB) play an important role in mitigating the methane emission in soil ecosystems to the atmosphere. However, the impact of plant species and plantation ways on the distribution of MOB remains unclear. The present study investigated MOB abundance and structure in plateau soils with different plant species and plantation ways (natural and managed). Soils were collected from unmanaged wild grassland and naturally forested sites, and managed farmland and afforested sites. A large variation in MOB abundance and structure was found in these studied soils. In addition, both type I MOB (Methylocaldum) and type II MOB (Methylocystis) were detected in these soils, while type II MOB usually outnumbered type I MOB. The distribution of soil MOB community was found to be collectively regulated by plantation way, plant species, the altitude of sampling site, and soil properties. PMID:26142389

  16. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species

    PubMed Central

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction. PMID:26046534

  17. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species.

    PubMed

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-Chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction. PMID:26046534

  18. Annual cycle of zooplankton abundance and species composition in Izmit Bay (the northeastern Marmara Sea)

    NASA Astrophysics Data System (ADS)

    Isinibilir, Melek; Kideys, Ahmet E.; Tarkan, Ahmet N.; Yilmaz, I. Noyan

    2008-07-01

    The monthly abundance, biomass and taxonomic composition of zooplankton of Izmit Bay (the northeastern Marmara Sea) were studied from October 2001 to September 2002. Most species within the zooplankton community displayed a clear pattern of succession throughout the year. Generally copepods and cladocerans were the most abundant groups, while the contribution of meroplankton increased at inner-most stations and dominated the zooplankton. Both species number ( S) and diversity ( H') were positively influenced by the increase in salinity of upper layers ( r = 0.30 and r = 0.31, p < 0.001, respectively), while chlorophyll a was negatively affected ( r = -0.36, p < 0.001). Even though Noctiluca scintillans had a significant seasonality ( F11,120 = 8.45, p < 0.001, ANOVA), abundance was not related to fluctuations in temperature and only chlorophyll a was adversely correlated ( r = -0.35, p < 0.001). In general, there are some minor differences in zooplankton assemblages of upper and lower layers. A comparison of the species composition and abundance of Izmit Bay with other Black Sea bays reveals a high similarity between them.

  19. Fire Ant Decapitating Fly Cooperative Release Programs (1994–2008): Two Pseudacteon Species, P. tricuspis and P. curvatus, Rapidly Expand Across Imported Fire Ant Populations in the Southeastern United States

    PubMed Central

    Callcott, Anne-Marie A.; Porter, Sanford D.; Weeks, Ronald D.; “Fudd” Graham, L. C.; Johnson, Seth J.; Gilbert, Lawrence E.

    2011-01-01

    Natural enemies of the imported fire ants, Solenopsis invicta Buren S. richteri Forel (Hymenoptera: Formicidae), and their hybrid, include a suite of more than 20 fire ant decapitating phorid flies from South America in the genus Pseudacteon. Over the past 12 years, many researchers and associates have cooperated in introducing several species as classical or self-sustaining biological control agents in the United States. As a result, two species of flies, Pseudacteon tricuspis Borgmeier and P. curvatus Borgmeier (Diptera: Phoridae), are well established across large areas of the southeastern United States. Whereas many researchers have published local and state information about the establishment and spread of these flies, here distribution data from both published and unpublished sources has been compiled for the entire United States with the goal of presenting confirmed and probable distributions as of the fall of 2008. Documented rates of expansion were also used to predict the distribution of these flies three years later in the fall of 2011. In the fall of 2008, eleven years after the first successful release, we estimate that P. tricuspis covered about 50% of the fire ant quarantined area and that it will occur in almost 65% of the quarantine area by 2011. Complete coverage of the fire ant quarantined area will be delayed or limited by this species' slow rate of spread and frequent failure to establish in more northerly portions of the fire ant range and also, perhaps, by its preference for red imported fire ants (S. invicta). Eight years after the first successful release of P. curvatus, two biotypes of this species (one biotype occurring predominantly in the black and hybrid imported fire ants and the other occurring in red imported fire ants) covered almost 60% of the fire ant quarantined area. We estimate these two biotypes will cover almost 90% of the quarantine area by 2011 and 100% by 2012 or 2013. Strategic selection of several distributional gaps

  20. ANT (HYMENOPTERA: FORMICIDAE) RESPONSES TO ENVIRONMENTAL STRESSORS IN THE NORTHERN CHIHUAHUAN DESERT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied responses of ant communities to shrub removal and intense pulse seasonal grazing by domestic livestock for four consecutive years. Weighted relative abundance and percent of traps in which an ant species occurred were analyzed using randomized, complete block design split in time analysi...

  1. Species Abundance Distribution of Ectoparasites on Norway Rats (Rattus norvegicus) from a Localized Area in Southwest China

    PubMed Central

    Guo, Xian Guo; Dong, Wen Ge; Men, Xing Yuan; Qian, Ti Jun; Wu, Dian; Ren, Tian Guang; Qin, Feng; Song, Wen Yu; Yang, Zhi Hua; Fletcher, Quinn E

    2016-01-01

    Background: The species of ectoparasites that live on a specific host in a geographical region form an ectoparasite community. Species abundance distributions describe the number of individuals observed for each different species that is encountered within a community. Based on properties of the species abundance distribution, the expected total number of species present in the community can be estimated. Methods: Preston’s lognormal distribution model was used to fit the expected species abundance distribution curve. Using the expected species abundance distribution curve, we estimated the total number of expected parasite species present and the amount of species that were likely missed by our sampling in the field. Results: In total, 8040 ectoparasites (fleas, sucking lice, gamasid mites and chigger mites) were collected from 431 Norway rats (Rattus norvegicus) from a localized area in southwest China. These ectoparasites were identified to be 47 species from 26 genera in 10 families. The majority of ectoparasite species were chigger mites (family Trombiculidae) while the majority of individuals were sucking lice in the family Polyplacidae. The expected species abundance distribution curve demonstrated the classic pattern that the majority of ectoparasite species were rare and that there were a few common species. The total expected number of ectoparasite species on R. norvegicus was estimated to be 85 species, and 38 species were likely missed by our sampling in the field. Conclusions: Norway rats harbor a large suite of ectoparasites. Future field investigations should sample large numbers of host individuals to assess ectoparasite populations. PMID:27308277

  2. Ecological sampling of ants: competition and biodiversity.

    PubMed

    Smith, Chris R

    2009-07-01

    Ants are among the most dominant taxa in terrestrial ecosystems, despite their small individual size. Furthermore, they are a hyperdiverse family with an estimated 20,000 species. Together, these two properties make ants a model for ecological interactions (specifically competition) and biodiversity estimation. Although there are many means of measuring diversity, the two most common among myrmecologists are baiting and pitfall trapping. Pitfall traps provide an almost unbiased estimate of the ground foraging community, whereas baiting allows the estimation of ecological dominance and the competitive outcomes between species. This protocol describes an approach to assay both abundance (pitfall traps) and ecological interactions (baits) in the same community. PMID:20147206

  3. Rich and rare—First insights into species diversity and abundance of Antarctic abyssal Gastropoda (Mollusca)

    NASA Astrophysics Data System (ADS)

    Schwabe, Enrico; Michael Bohn, Jens; Engl, Winfried; Linse, Katrin; Schrödl, Michael

    2007-08-01

    , and all these 84 species seem endemic to Antarctica south of the Polar Front. Comparing diversity and abundances based on epibenthic sledge samples, there is no clear relationship between Antarctic deep-sea gastropod abundance and species richness with depth. However, both Antarctic and adjacent deep-sea areas are still far from being adequately sampled to allow more comprehensive conclusions.

  4. Effect of trophic status in lakes on fungal species diversity and abundance.

    PubMed

    Pietryczuk, A; Cudowski, A; Hauschild, T

    2014-11-01

    The objective of this study was to determine the species diversity and abundance of fungi in relation to the hydrochemical conditions, with special emphasis on the trophic status and degree of pollution of lakes. The study was conducted in 14 lakes of the Augustów Lakeland (central Europe, NE Poland) with different hydrological conditions, type of stratification and trophic status. The analyses were performed in the hydrological year 2013. In the waters of the studied lakes, the mean abundance of fungi was 5600±3600 CFU/mL. The minimum value (800 CFU/mL) was recorded for the mesotrophic Płaskie Lake, and the maximum value (14,000 CFU/mL) was recorded for the eutrophic Pobojno Lake. A total of 38 species of fungi were identified, including 11 belonging to the aquatic hyphomycetes; up to 14 species were potentially pathogenic fungi. The potentially pathogenic fungi, particularly Candida albicans and Scopulariopsis fusca, were found in lakes with increased concentrations of chloride and sulphate(VI) ions and may thus serve as indicators of the degree of water pollution. This paper illustrates that the species diversity and abundance of fungi in limnic waters depend on the concentration of organic matter, chlorophyll a concentration, and the degree of water pollution. The results suggest that aquatic fungi can be a valuable indicator of the degree of pollution and the sanitary quality of the water. PMID:25145569

  5. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities

    PubMed Central

    Chisholm, Ryan A.; Pacala, Stephen W.

    2010-01-01

    A fundamental challenge in ecology is to understand the mechanisms that govern patterns of relative species abundance. Previous numerical simulations have suggested that complex niche-structured models produce species abundance distributions (SADs) that are qualitatively similar to those of very simple neutral models that ignore differences between species. However, in the absence of an analytical treatment of niche models, one cannot tell whether the two classes of model produce the same patterns via similar or different mechanisms. We present an analytical proof that, in the limit as diversity becomes large, a strong niche model give rises to exactly the same asymptotic form of SAD as the neutral model, and we verify the analytical predictions for a Panamanian tropical forest data set. Our results strongly suggest that neutral processes drive patterns of relative species abundance in high-diversity ecological communities, even when strong niche structure exists. However, neutral theory cannot explain what generates high diversity in the first place, and it may not be valid in low-diversity communities. Our results also confirm that neutral theory cannot be used to infer an absence of niche structure or to explain ecosystem function. PMID:20733073

  6. Culicoides monitoring in Belgium in 2011: analysis of spatiotemporal abundance, species diversity and Schmallenberg virus detection.

    PubMed

    DE Regge, N; DE Deken, R; Fassotte, C; Losson, B; Deblauwe, I; Madder, M; Vantieghem, P; Tomme, M; Smeets, F; Cay, A B

    2015-09-01

    In 2011, Culicoides (Diptera: Ceratopogonidae) were collected at 16 locations covering four regions of Belgium with Onderstepoort Veterinary Institute (OVI) traps and at two locations with Rothamsted suction traps (RSTs). Quantification of the collections and morphological identification showed important variations in abundance and species diversity between individual collection sites, even for sites located in the same region. However, consistently higher numbers of Culicoides midges were collected at some sites compared with others. When species abundance and diversity were analysed at regional level, between-site variation disappeared. Overall, species belonging to the subgenus Avaritia together with Culicoides pulicaris (subgenus Culicoides) were the most abundant, accounting for 80% and 96% of all midges collected with RSTs and OVI traps, respectively. Culicoides were present during most of the year, with Culicoides obsoletus complex midges found from 9 February until 27 December. Real-time reverse-transcription polymerase chain reaction screening for Schmallenberg virus in the heads of collected midges resulted in the first detection of the virus in August 2011 and identified C. obsoletus complex, Culicoides chiopterus and Culicoides dewulfi midges as putative vector species. At Libramont in the south of Belgium, no positive pools were identified. PMID:25761054

  7. Differential effects of cocaine exposure on the abundance of phospholipid species in rat brain and blood*

    PubMed Central

    Cummings, Brian S.; Pati, Sumitra; Sahin, Serap; Scholpa, Natalie E.; Monian, Prashant; Trinquero, Paul O.; Clark, Jason K.; Wagner, John J.

    2015-01-01

    Background Lipid profiles in the blood are altered in human cocaine users, suggesting that cocaine-exposure can induce lipid remodeling. Methods Cocaine-induced locomotor sensitization in rats was followed by shotgun lipidomics using electrospray ionization-mass spectrometry (ESI-MS) and determined changes in brain tissues. To determine if any lipidomic changes were also reflected in the blood, we performed principal component analysis (PCA) of lipidomic spectra isolated from cocaine-treated animals. Alterations in the abundance of phospholipid species were correlated with behavioral changes in the magnitude of either the initial response to drug or locomotor sensitization. Results Behavioral sensitization altered the relative abundance of several phospholipid species in the hippocampus and cerebellum, measured one week following the final exposure to cocaine. In contrast, relatively few effects on phospholipids in either the dorsal or the ventral striatum were observed. PCA analysis demonstrated that cocaine altered the relative abundance of several glycerophospholipid species as compared to saline-injected controls. Subsequent MS/MS analysis identified some of these lipids as phosphatidylethanolamines, phosphatidylserines and phosphatidylcholines. The relative abundance of some of these phospholipid species were well correlated (R2 of 0.7 or higher) with either the initial response to cocaine or locomotor sensitization. Conclusion Taken together, these data demonstrate that a cocaine-conditioning experience results in the remodeling of specific phospholipids in rat brain tissue in a region-specific manner and also alters the intensities and types of phospholipid species in rat blood. These results further suggest that such changes may serve as biomarkers to assess the neuroadaptations occurring following repeated exposure to cocaine. PMID:25960140

  8. Estimating species – area relationships by modeling abundance and frequency subject to incomplete sampling

    USGS Publications Warehouse

    Yamaura, Yuichi; Connor, Edward F.; Royle, Andy; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-01-01

    Models and data used to describe species–area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species–area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species–area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density–area relationships and occurrence probability–area relationships can alter the form of species–area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied

  9. Abundance, species composition of microzooplankton from the coastal waters of Port Blair, South Andaman Island

    PubMed Central

    2012-01-01

    Background Microzooplankton consisting of protists and metazoa <200 μm. It displays unique feeding mechanisms and behaviours that allow them to graze cells up to five times their own volume. They can grow at rates which equal or exceed prey growth and can serve as a viable food source for metazoans. Moreover, they are individually inconspicuous, their recognition as significant consumers of oceanic primary production. The microzooplankton can be the dominant consumers of phytoplankton production in both oligo- and eutrophic regions of the ocean and are capable of consuming >100% of primary production. Results The microzooplankton of the South Andaman Sea were investigated during September 2011 to January 2012. A total of 44 species belong to 19 genera were recorded in this study. Tintinnids made larger contribution to the total abundance (34%) followed in order by dinoflagellates (24%), ciliates (20%) and copepod nauplii (18%). Foraminifera were numerically less (4%). Tintinnids were represented by 20 species belong to 13 genera, Heterotrophic dinoflagellates were represented by 17 species belong to 3 genera and Ciliates comprised 5 species belong to 3 genera. Eutintinus tineus, Tintinnopsis cylindrical, T. incertum, Protoperidinium divergens, Lomaniella oviformes, Strombidium minimum were the most prevalent microzooplankton. Standing stock of tintinnids ranged from 30–80 cells.L-1 and showed a reverse distribution with the distribution of chlorophyll a relatively higher species diversity and equitability was found in polluted harbour areas. Conclusions The change of environmental variability affects the species composition and abundance of microzooplankton varied spatially and temporarily. The observations clearly demonstrated that the harbor area differed considerably from other area in terms of species present and phytoplankton biomass. Further, the phytoplankton abundance is showed to be strongly influenced by tintinnid with respect to the relationship of

  10. Abundance and phenology patterns of two pond-breeding salamanders determine species interactions in natural populations.

    PubMed

    Anderson, Thomas L; Hocking, Daniel J; Conner, Christopher A; Earl, Julia E; Harper, Elizabeth B; Osbourn, Michael S; Peterman, William E; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2015-03-01

    Phenology often determines the outcome of interspecific interactions, where early-arriving species often dominate interactions over those arriving later. The effects of phenology on species interactions are especially pronounced in aquatic systems, but the evidence is largely derived from experimental studies. We examined whether differences in breeding phenology between two pond-breeding salamanders (Ambystoma annulatum and A. maculatum) affected metamorph recruitment and demographic traits within natural populations, with the expectation that the fall-breeding A. annulatum would negatively affect the spring-breeding A. maculatum. We monitored populations of each species at five ponds over 4 years using drift fences. Metamorph abundance and survival of A. annulatum were affected by intra- and interspecific processes, whereas metamorph size and date of emigration were primarily influenced by intraspecific effects. Metamorph abundance, snout-vent length, date of emigration and survival for A. maculatum were all predicted by combinations of intra- and interspecific effects, but often showed negative relationships with A. annulatum metamorph traits and abundance. Size and date of metamorphosis were strongly correlated within each species, but in opposite patterns (negative for A. annulatum and positive for A. maculatum), suggesting that the two species use alternative strategies to enhance terrestrial survival and that these factors may influence their interactions. Our results match predictions from experimental studies that suggest recruitment is influenced by intra- and interspecific processes which are determined by phenological differences between species. Incorporating spatiotemporal variability when modeling population dynamics is necessary to understand the importance of phenology in species interactions, especially as shifts in phenology occur under climate change. PMID:25413866

  11. A comparison of pitfall traps with bait traps for studying leaf litter ant communities.

    PubMed

    Wang, C; Strazanac, J; Butler, L

    2001-06-01

    A comparison of pitfall traps with bait traps for sampling leaf litter ants was studied in oak-dominated mixed forests during 1995-1997. A total of 31,732 ants were collected from pitfall traps and 54,694 ants were collected from bait traps. They belonged to four subfamilies, 17 genera, and 32 species. Bait traps caught 29 species, whereas pitfall traps caught 31 species. Bait traps attracted one species not found in pitfall traps, but missed three of the species collected with pitfall traps. Collections from the two sampling methods showed differences in species richness, relative abundance, diversity, and species accumulation curves. Pitfall traps caught significantly more ant species per plot than did bait traps. The ant species diversity obtained from pitfall traps was higher than that from bait traps. Bait traps took a much longer time to complete an estimate of species richness than did pitfall traps. Little information was added to pitfall trapping results by the bait trapping method. The results suggested that the pitfall trapping method is superior to the bait trapping method for leaf litter ant studies. Species accumulation curves showed that sampling of 2,192+/-532 ants from six plots by pitfall traps provided a good estimation of ant species richness under the conditions of this study. PMID:11425034

  12. Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants provide remarkable examples of equivalent genotypes developing into divergent and discrete phenotypes. Diploid eggs can develop either into queens, which specialize in reproduction, or workers, which participate in cooperative tasks such as building the nest, collecting food, and rearing the yo...

  13. Species abundance distributions, statistical mechanics and the priors of MaxEnt.

    PubMed

    Bowler, M G

    2014-03-01

    The methods of Maximum Entropy have been deployed for some years to address the problem of species abundance distributions. In this approach, it is important to identify the correct weighting factors, or priors, to be applied before maximising the entropy function subject to constraints. The forms of such priors depend not only on the exact problem but can also depend on the way it is set up; priors are determined by the underlying dynamics of the complex system under consideration. The problem is one of statistical mechanics and it is the properties of the system that yield the correct MaxEnt priors, appropriate to the way the problem is framed. Here I calculate, in several different ways, the species abundance distribution resulting when individuals in a community are born and die independently. In the usual formulation the prior distribution for the number of species over the number of individuals is 1/n; the problem can be reformulated in terms of the distribution of individuals over species classes, with a uniform prior. Results are obtained using master equations for the dynamics and separately through the combinatoric methods of elementary statistical mechanics; the MaxEnt priors then emerge a posteriori. The first object is to establish the log series species abundance distribution as the outcome of per capita guild dynamics. The second is to clarify the true nature and origin of priors in the language of MaxEnt. Finally, I consider how it may come about that the distribution is similar to log series in the event that filled niches dominate species abundance. For the general ecologist, there are two messages. First, that species abundance distributions are determined largely by population sorting through fractional processes (resulting in the 1/n factor) and secondly that useful information is likely to be found only in departures from the log series. For the MaxEnt practitioner, the message is that the prior with respect to which the entropy is to be

  14. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding.

    PubMed

    Zhou, Xiaofan; Slone, Jesse D; Rokas, Antonis; Berger, Shelley L; Liebig, Jürgen; Ray, Anandasankar; Reinberg, Danny; Zwiebel, Laurence J

    2012-01-01

    Ants are a highly successful family of insects that thrive in a variety of habitats across the world. Perhaps their best-known features are complex social organization and strict division of labor, separating reproduction from the day-to-day maintenance and care of the colony, as well as strict discrimination against foreign individuals. Since these social characteristics in ants are thought to be mediated by semiochemicals, a thorough analysis of these signals, and the receptors that detect them, is critical in revealing mechanisms that lead to stereotypic behaviors. To address these questions, we have defined and characterized the major chemoreceptor families in a pair of behaviorally and evolutionarily distinct ant species, Camponotus floridanus and Harpegnathos saltator. Through comprehensive re-annotation, we show that these ant species harbor some of the largest yet known repertoires of odorant receptors (Ors) among insects, as well as a more modest number of gustatory receptors (Grs) and variant ionotropic glutamate receptors (Irs). Our phylogenetic analyses further demonstrate remarkably rapid gains and losses of ant Ors, while Grs and Irs have also experienced birth-and-death evolution to different degrees. In addition, comparisons of antennal transcriptomes between sexes identify many chemoreceptors that are differentially expressed between males and females and between species. We have also revealed an agonist for a worker-enriched OR from C. floridanus, representing the first case of a heterologously characterized ant tuning Or. Collectively, our analysis reveals a large number of ant chemoreceptors exhibiting patterns of differential expression and evolution consistent with sex/species-specific functions. These differentially expressed genes are likely associated with sex-based differences, as well as the radically different social lifestyles observed between C. floridanus and H. saltator, and thus are targets for further functional characterization

  15. Species composition, distribution and abundance of chaetodontidae along reef transects in the Flores Sea

    NASA Astrophysics Data System (ADS)

    Adrim, Mohammad; Hutomo, Malikusworo

    Observations on chaetodontid fishes were made by applying a visual census technique at 13 coral reef locations in the Flores Sea region in October and November 1984. These observations were made along 50 m transect lines, parallel to the shore or the reef edge at depths between 3 to 12 m. Twenty-three species of Chaetodontidae were observed, representing three genera: Chaetodon (20 species), Heniochus (2 species) and Forcipiger (1 species). Chaetodon kleini, C. trifasciatus, C. melannotus and C. baronessa proved to be the most abundant species, and among them C. kleini and C. trifasciatus were the most widely distributed ones. Chaetodon semeion and C. mertensi were the rarest species. The greatest number of individuals (77) was counted at station 4.268 near Tanjung Burung, Sumbawa, while the greatest number of species (14) was observed at station 4.257, north of Komodo. The lowest number of individuals (17) was counted at station 4.175 near P. Bahuluang, Salayer, while station 4.251 near Teluk Slawi, Komodo, was inhabited by the smallest numbver of species (2). Numerical classification by using the Bray Curtis dissimilarity index resulted in three groups of entities. The first group was characterized by predomination of C. kleini and the second by predomination of C. melannotus. The third one was a loose group not characterized by any predominant species. The analyses indicated that the similarities of the chaetodontid communities between locations are not related to the distance between them, but rather to habitat conditions. For example predomination of C. melannotus is strongly related to the predomination of soft coral. Compared to other areas of Indonesia, e.g. Bali, Seribu Islands, Batam, Sunda Strait, and Ambon Bay, the Flores Sea reefs have a more abundant and more diverse chaetodontid fauna.

  16. Molecular comparisons suggest caribbean crazy ant from Florida and rasberry crazy ant from Texas (Hymenoptera: Formicidae: Nylanderia) are the same species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2002, a new invasive pest ant in the genus, Nylanderia (formerly Paratrechina), was found in Houston, Texas. This invasive ant has been causing significant economic and ecological damage in infested areas. Due to the morphological and behavioral similarities to N. pubens Forel found in Florida,...

  17. Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery

    NASA Astrophysics Data System (ADS)

    Stagakis, Stavros; Vanikiotis, Theofilos; Sykioti, Olga

    2016-09-01

    The advancing technology of hyperspectral remote sensing offers the opportunity of accurate land cover characterization of complex natural environments. In this study, a linear spectral unmixing algorithm that incorporates a novel hierarchical Bayesian approach (BI-ICE) was applied on two spatially and temporally adjacent CHRIS/PROBA images over a forest in North Pindos National Park (Epirus, Greece). The scope is to investigate the potential of this algorithm to discriminate two different forest species (i.e. beech - Fagus sylvatica, pine - Pinus nigra) and produce accurate species-specific abundance maps. The unmixing results were evaluated in uniformly distributed plots across the test site using measured fractions of each species derived by very high resolution aerial orthophotos. Landsat-8 images were also used to produce a conventional discrete-type classification map of the test site. This map was used to define the exact borders of the test site and compare the thematic information of the two mapping approaches (discrete vs abundance mapping). The required ground truth information, regarding training and validation of the applied mapping methodologies, was collected during a field campaign across the study site. Abundance estimates reached very good overall accuracy (R2 = 0.98, RMSE = 0.06). The most significant source of error in our results was due to the shadowing effects that were very intense in some areas of the test site due to the low solar elevation during CHRIS acquisitions. It is also demonstrated that the two mapping approaches are in accordance across pure and dense forest areas, but the conventional classification map fails to describe the natural spatial gradients of each species and the actual species mixture across the test site. Overall, the BI-ICE algorithm presented increased potential to unmix challenging objects with high spectral similarity, such as different vegetation species, under real and not optimum acquisition conditions. Its

  18. Plankton studies in San Francisco Bay; II, Phytoplankton abundance and species composition, July 1977-December 1979

    USGS Publications Warehouse

    Wong, Raymond L. J.; Cloern, James E.

    1981-01-01

    Data are presented on the phytoplankton species composition and abundance in San Francisco Bay from July 1977 through December 1979. Phytoplankton identification and enumerations were made at selected stations. Sample collections were made at selected stations in the main channel of the Bay from Rio Vista on the Sacramento River to Calaveras Point in South San Francisco Bay, and at shoal stations in the central portion of South San Francisco Bay, San Pablo Bay, and Suisun Bay. Also reported, from October 1978 through December 1979, are the calculated phytoplankton carbon and percent nondiatom carbon, and the species list. This study is one component of an ongoing interdisciplinary study of San Francisco Bay. (USGS)

  19. The fish fauna of Anambra river basin, Nigeria: species abundance and morphometry.

    PubMed

    Odo, Gregory Ejikeme; Didigwu, Nwani Christopher; Eyo, Joseph Effiong

    2009-01-01

    The fish yields of most Nigeria inland waters are generally on the decline for causes that may range from inadequate management of the fisheries to degradation of the water bodies. Sustainable exploitation requires knowledge of the ichthyofaunal composition in the water bodies. We did a survey of fish species in Anambra river basin for 22 months. Fish samples were collected using four different gears -hook and line of size 13, caste nets, gill nets, and cages of mesh sizes of 50 mm, 75 mm, and 100 mm each. We recorded 52 fish species belonging to 17 families: 171, 236, and 169 individuals at Ogurugu, Otuocha, and Nsugbe stations respectively. Two families, Characidae, 19.5%, and Mochokidae, 11.8%, constituted the dominant fish families in the river. The dominant fish species were Citherinus citherius, 9.02%, and Alestes nurse, 7.1%. Other fish species with significant abundance were Synodontis clarias 6.9%, Macrolepidotus curvier 5.7%, Labeo coubie 5.4%, Distichodus rostrtus 4.9%, and Schilbe mystus 4.5%. The meristic features of the two most abundant fish species caught are as follows: Citharinus citharius dorsal fins 20, anal fins 30, caudal fins 21, pectoral fins, 9 and 8 ventral fins, and Alestes nurse 10 dorsal fins, 14 anal fins, 31 caudal fins, 7 pectoral fins and 6 ventral fins. The morphometric features of the two most abundant fish species are Citharinus citharius total length 300 mm, standard length 231 mm, head length 69 mm, body length 101 mm, body girth 176 mm, body weight 900 mg. Alestes nurse total length 200, standard length 140 mm, head length 60 mm, body length 80 mm, body girth 120 mm, body weight 400 mg. The most abundant animal utilizing the basin was Ardea cinerea (D3) with 22.2% occurrence (D4) and this was followed by Caprini with 13.51%, and Varanus niloticus, 10.04%. The least abundant animals utilizing basin were Chephalophus rufilatus, and Erythrocebus patas, with 0.58% each of occurrence. PMID:19637699

  20. Are the Most Plastic Species the Most Abundant Ones? An Assessment Using a Fish Assemblage

    PubMed Central

    Vidal, Nicolás; Zaldúa, Natalia; D'Anatro, Alejandro; Naya, Daniel E.

    2014-01-01

    Few studies have evaluated phenotypic plasticity at the community level, considering, for example, plastic responses in an entire species assemblage. In addition, none of these studies have addressed the relationship between phenotypic plasticity and community structure. Within this context, here we assessed the magnitude of seasonal changes in digestive traits (seasonal flexibility), and of changes during short-term fasting (flexibility during fasting), occurring in an entire fish assemblage, comprising ten species, four trophic levels, and a 37-fold range in body mass. In addition, we analyzed the relationship between estimates of digestive flexibility and three basic assemblage structure attributes, i.e., species trophic position, body size, and relative abundance. We found that: (1) Seasonal digestive flexibility was not related with species trophic position or with body size; (2) Digestive flexibility during fasting tended to be inversely correlated with body size, as expected from scaling relationships; (3) Digestive flexibility, both seasonal and during fasting, was positively correlated with species relative abundance. In conclusion, the present study identified two trends in digestive flexibility in relation to assemblage structure, which represents an encouraging departure point in the search of general patterns in phenotypic plasticity at the local community scale. PMID:24651865

  1. Predicting probability of occurrence and factors affecting distribution and abundance of three Ozark endemic crayfish species at multiple spatial scales

    USGS Publications Warehouse

    Nolen, Matthew S.; Magoulick, Daniel D.; DiStefano, Robert J.; Imhoff, Emily M.; Wagner, Brian K.

    2014-01-01

    We found that a range of environmental variables were important in predicting crayfish distribution and abundance at multiple spatial scales and their importance was species-, response variable- and scale dependent. We would encourage others to examine the influence of spatial scale on species distribution and abundance patterns.

  2. Ant community structure during forest succession in a subtropical forest in South-East China

    NASA Astrophysics Data System (ADS)

    Staab, Michael; Schuldt, Andreas; Assmann, Thorsten; Bruelheide, Helge; Klein, Alexandra-Maria

    2014-11-01

    Understanding how communities respond to environmental gradients is critical to predict responses of species to changing habitat conditions such as in regenerating secondary habitats after human land use. In this study, ground-living ants were sampled with pitfall traps in 27 plots in a heterogeneous and diverse subtropical forest to test if and how a broad set of environmental variables including elevation, successional age, and tree species richness influence ant diversity and community composition. In total, 13,441 ant individuals belonging to 71 species were found. Ant abundance was unrelated to all environmental variables. Rarefied ant species richness was negatively related to elevation, and Shannon diversity decreased with shrub cover. There was considerable variation in ant species amongst plots, associated with elevation, successional age, and variables related to succession such as shrub cover. It is shown that younger secondary forests may support a species-rich and diverse community of ants in subtropical forests even though the species composition between younger and older forests is markedly different. These findings confirm the conservation value of secondary subtropical forests, which is critical because subtropical forests have been heavily exploited by human activities globally. However, the findings also confirm that old-growth forest should have priority in conservation as it supports a distinct ant community. Our study identifies a set of ant species which are associated with successional age and may thus potentially assist local conservation planning.

  3. Sampling designs matching species biology produce accurate and affordable abundance indices.

    PubMed

    Harris, Grant; Farley, Sean; Russell, Gareth J; Butler, Matthew J; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km(2) cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions

  4. Sampling designs matching species biology produce accurate and affordable abundance indices

    PubMed Central

    Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which

  5. Shifts in Campylobacter species abundance may reflect general microbial community shifts in periodontitis progression

    PubMed Central

    Henne, Karsten; Fuchs, Felix; Kruth, Sebastian; Horz, Hans-Peter; Conrads, Georg

    2014-01-01

    Background Oral Campylobacter species have been found to be associated with periodontitis progression. While the etiological significance of Campylobacter rectus is quite established, the association of C. gracilis, C. concisus, and C. curvus with health or disease remains contradictory. Objectives This study hypothesizes that the proportion of species within the Campylobacter genus rather than the absolute abundance of a single species is a suitable indicator for periodontitis progression. Design Subgingival plaque from 90 periodontitis patients and gingival sulcus fluid of 32 healthy individuals were subjected to a newly developed nested PCR approach, in which all Campylobacter spp. were amplified simultaneously. The resulting mixture of 16S-rRNA-gene-amplicons were separated by single-stranded conformation polymorphism (SSCP) gel electrophoresis, followed by sequencing and identification of excised bands and relative quantification of band intensities. In all samples, the abundance of selected periodontitis marker species was determined based on DNA hybridization on a microarray. Results The highly prevalent Campylobacter community was composed of varying proportions of C. rectus, C. gracilis, C. concisus, and C. curvus. Cluster analysis based on SSCP-banding pattern resulted in distinct groups which in turn coincided with significant differences in abundance of established periodontitis marker species (Tannerella forsythia, Porphyromonas gingivalis, and Fusobacterium nucleatum) and progression. Conclusions The shift in the Campylobacter community composition seems to display the general microbial community shift during clinical progression in a simplified manner. The focus on members of the Campylobacter in this study suggests that this genus can be an indicator of ecological changes in the subgingival oral microflora. PMID:25412608

  6. Species abundance and diversity of Burkholderia cepacia complex in the environment.

    PubMed

    Ramette, Alban; LiPuma, John J; Tiedje, James M

    2005-03-01

    Despite considerable interest in studying Burkholderia cepacia complex in the environment, we still do not have efficient methods to detect, isolate, and screen large numbers of B. cepacia isolates. To better describe the ecology and diversity of B. cepacia complex, a colony hybridization assay was developed to detect specifically all species of the complex based on polymorphism of the variable V3 region of the 16S rRNA sequence. The sensitivity of the assay was dramatically enhanced by using a probe consisting of three repeats of a B. cepacia complex-specific probe, each separated by a phosphoramidite spacer. In addition, a duplex PCR targeting B. cepacia complex-specific recA and 16S rRNA sequences was developed to enable a fast and reliable diagnostic assay for members of the complex. When applied to maize rhizosphere samples, colony hybridization results were in good agreement with those of most-probable-number duplex PCR, both indicating a >100-fold fluctuation of abundance between individual plants. Using restriction analysis of recA for a total of 285 confirmed isolates of the B. cepacia complex, up to seven B. cepacia complex species were identified; however, their diversity and abundance were not evenly distributed among individual plants, and several allelic variants were commonly found from the same rhizosphere sample. These results indicate that not only complex communities of B. cepacia complex species and closely related strains of the same species may coexist at high population levels but also species composition and abundance may dramatically vary between individual plants. PMID:15746318

  7. Ant-caterpillar antagonism at the community level: interhabitat variation of tritrophic interactions in a neotropical savanna.

    PubMed

    Sendoya, Sebastián F; Oliveira, Paulo S

    2015-03-01

    Ant foraging on foliage can substantially affect how phytophagous insects use host plants and represents a high predation risk for caterpillars, which are important folivores. Ant-plant-herbivore interactions are especially pervasive in cerrado savanna due to continuous ant visitation to liquid food sources on foliage (extrafloral nectaries, insect honeydew). While searching for liquid rewards on plants, aggressive ants frequently attack or kill insect herbivores, decreasing their numbers. Because ants vary in diet and aggressiveness, their effect on herbivores also varies. Additionally, the differential occurrence of ant attractants (plant and insect exudates) on foliage produces variable levels of ant foraging within local floras and among localities. Here, we investigate how variation of ant communities and of traits among host plant species (presence or absence of ant attractants) can change the effect of carnivores (predatory ants) on herbivore communities (caterpillars) in a cerrado savanna landscape. We sampled caterpillars and foliage-foraging ants in four cerrado localities (70-460 km apart). We found that: (i) caterpillar infestation was negatively related with ant visitation to plants; (ii) this relationship depended on local ant abundance and species composition, and on local preference by ants for plants with liquid attractants; (iii) this was not related to local plant richness or plant size; (iv) the relationship between the presence of ant attractants and caterpillar abundance varied among sites from negative to neutral; and (v) caterpillars feeding on plants with ant attractants are more resistant to ant predation than those feeding on plants lacking attractants. Liquid food on foliage mediates host plant quality for lepidopterans by promoting generalized ant-caterpillar antagonism. Our study in cerrado shows that the negative effects of generalist predatory ants on herbivores are detectable at a community level, affecting patterns of abundance and

  8. Diatom species abundance and morphologically-based dissolution proxies in coastal Southern Ocean assemblages

    NASA Astrophysics Data System (ADS)

    Warnock, Jonathan P.; Scherer, Reed P.

    2015-07-01

    Taphonomic processes alter diatom assemblages in sediments, thus potentially negatively impacting paleoclimate records at various rates across space, time, and taxa. However, quantitative taphonomic data is rarely included in diatom-based paleoenvironmental reconstructions and no objective standard exists for comparing diatom dissolution in sediments recovered from marine depositional settings, including the Southern Ocean's opal belt. Furthermore, identifying changes to diatom dissolution through time can provide insight into the efficiency of both upper water column nutrient recycling and the biological pump. This is significant in that reactive metal proxies (e.g. Al, Ti) in the sediments only account for post-depositional dissolution, not the water column where the majority of dissolution occurs. In order to assess the range of variability of responses to dissolution in a typical Southern Ocean diatom community and provide a quantitative guideline for assessing taphonomic variability in diatoms recovered from core material, a sediment trap sample was subjected to controlled, serial dissolution. By evaluating dissolution-induced changes to diatom species' relative abundance, three preservational categories of diatoms have been identified: gracile, intermediate, and robust. The relative abundances of these categories can be used to establish a preservation grade for diatom assemblages. However, changes to the relative abundances of diatom species in sediment samples may reflect taphonomic or ecological factors. In order to address this complication, relative abundance changes have been tied to dissolution-induced morphological change to the areolae of Fragilariopsis curta, a significant sea-ice indicator in Southern Ocean sediments. This correlation allows differentiation between gracile species loss to dissolution versus ecological factors or sediment winnowing. These results mirror a similar morphological dissolution index from a parallel study utilizing

  9. Abiotic mediation of a mutualism drives herbivore abundance.

    PubMed

    Mooney, Emily H; Phillips, Joseph S; Tillberg, Chadwick V; Sandrow, Cheryl; Nelson, Annika S; Mooney, Kailen A

    2016-01-01

    Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17-fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism. PMID:26563752

  10. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama

    PubMed Central

    Crawford, Andrew J.; Lips, Karen R.; Bermingham, Eldredge

    2010-01-01

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity. PMID:20643927

  11. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama.

    PubMed

    Crawford, Andrew J; Lips, Karen R; Bermingham, Eldredge

    2010-08-01

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity. PMID:20643927

  12. Relative abundance and species richness of cerambycid beetles in partial cut and uncut bottomland hardwood forests

    USGS Publications Warehouse

    Newell, P.; King, S.

    2009-01-01

    Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.

  13. Understanding Long-Term Changes in Species Abundance Using a Niche-Based Approach

    PubMed Central

    Helaouët, Pierre; Beaugrand, Grégory; Edwards, Martin

    2013-01-01

    One of the major challenges to understanding population changes in ecology for assessment purposes is the difficulty in evaluating the suitability of an area for a given species. Here we used a new simple approach able to faithfully predict through time the abundance of two key zooplanktonic species by focusing on the relationship between the species’ environmental preferences and their observed abundances. The approach is applied to the marine copepods Calanus finmarchicus and C. helgolandicus as a case study characterising the multidecadal dynamics of the North Sea ecosystem. We removed all North Sea data from the Continuous Plankton Recorder (CPR) dataset and described for both species a simplified ecological niche using Sea Surface Temperature (SST) and CPR Phytoplankton Colour Index (PCI). We then modelled the dynamics of each species by associating the North Sea’s environmental parameters to the species’ ecological niches, thus creating a method to assess the suitability of this area. By using both C. finmarchicus and C. helgolandicus as indicators, the procedure reproduces the documented switches from cold to warm temperate states observed in the North Sea. PMID:24265757

  14. Integrating biology into invasive species management is a key principle for eradication success: the case of yellow crazy ant Anoplolepis gracilipes in northern Australia.

    PubMed

    Hoffmann, B D

    2015-04-01

    The lack of biological knowledge of many invasive species remains as one of the greatest impediments to their management. Here I detail targeted research into the biology of the yellow crazy ant Anoplolepis gracilipes within northern Australia and detail how such knowledge can be used to improve the management outcomes for this species. I quantified nest location and density in three habitats, worker activity over 24 h, infestation expansion rate, seasonal variation of worker abundance and the timing of production of sexuals. Nests were predominantly (up to 68%) located at the bases of large trees, indicating that search efforts should focus around tree bases. Nest density was one nest per 22, 7.1 and 6.3 m2 in the three habitats, respectively. These data form the baselines for quantifying treatment efficacy and set sampling densities for post-treatment assessments. Most (60%) nests were underground, predominantly (89%) occurring in an open area rather than underneath a rock or log. Some seasonality was evident for nests within leaf litter, with most (83%) occurring during the 'wet season' (October-March). Of the underground nests, most were shallow, with 44% being less than 10 cm deep, and 67% being less than 20 cm deep. Such nest location and density information serves many management purposes, for improving detection, mapping and post-treatment assessments, and also provided strong evidence that carbohydrate supply was a major driver of A. gracilipes populations. Just over half of the nests (56%) contained queens. Of the 62 underground nests containing queens, most queens (80%) were located at the deepest chamber. When queens were present, most often (38%) only one queen was present, the most being 16. Queen number per nest was the lowest in July and August just prior to the emergence of virgin queens in September, with queen numbers then remaining steadily high until April. Nothing is known for any ant species about how the queen number per nest/colony affects

  15. Variation in Population Synchrony in a Multi-Species Seabird Community: Response to Changes in Predator Abundance.

    PubMed

    Robertson, Gail S; Bolton, Mark; Morrison, Paul; Monaghan, Pat

    2015-01-01

    Ecologically similar sympatric species, subject to typical environmental conditions, may be expected to exhibit synchronous temporal fluctuations in demographic parameters, while populations of dissimilar species might be expected to show less synchrony. Previous studies have tested for synchrony in different populations of single species, and those including data from more than one species have compared fluctuations in only one demographic parameter. We tested for synchrony in inter-annual changes in breeding population abundance and productivity among four tern species on Coquet Island, northeast England. We also examined how manipulation of one independent environmental variable (predator abundance) influenced temporal changes in ecologically similar and dissimilar tern species. Changes in breeding abundance and productivity of ecologically similar species (Arctic Sterna paradisaea, Common S. hirundo and Roseate Terns S. dougallii) were synchronous with one another over time, but not with a species with different foraging and breeding behaviour (Sandwich Terns Thalasseus sandvicensis). With respect to changes in predator abundance, there was no clear pattern. Roseate Tern abundance was negatively correlated with that of large gulls breeding on the island from 1975 to 2013, while Common Tern abundance was positively correlated with number of large gulls, and no significant correlations were found between large gull and Arctic and Sandwich Tern populations. Large gull abundance was negatively correlated with productivity of Arctic and Common Terns two years later, possibly due to predation risk after fledging, while no correlation with Roseate Tern productivity was found. The varying effect of predator abundance is most likely due to specific differences in the behaviour and ecology of even these closely-related species. Examining synchrony in multi-species assemblages improves our understanding of how whole communities react to long-term changes in the

  16. Variation in Population Synchrony in a Multi-Species Seabird Community: Response to Changes in Predator Abundance

    PubMed Central

    Robertson, Gail S.; Bolton, Mark; Morrison, Paul; Monaghan, Pat

    2015-01-01

    Ecologically similar sympatric species, subject to typical environmental conditions, may be expected to exhibit synchronous temporal fluctuations in demographic parameters, while populations of dissimilar species might be expected to show less synchrony. Previous studies have tested for synchrony in different populations of single species, and those including data from more than one species have compared fluctuations in only one demographic parameter. We tested for synchrony in inter-annual changes in breeding population abundance and productivity among four tern species on Coquet Island, northeast England. We also examined how manipulation of one independent environmental variable (predator abundance) influenced temporal changes in ecologically similar and dissimilar tern species. Changes in breeding abundance and productivity of ecologically similar species (Arctic Sterna paradisaea, Common S. hirundo and Roseate Terns S. dougallii) were synchronous with one another over time, but not with a species with different foraging and breeding behaviour (Sandwich Terns Thalasseus sandvicensis). With respect to changes in predator abundance, there was no clear pattern. Roseate Tern abundance was negatively correlated with that of large gulls breeding on the island from 1975 to 2013, while Common Tern abundance was positively correlated with number of large gulls, and no significant correlations were found between large gull and Arctic and Sandwich Tern populations. Large gull abundance was negatively correlated with productivity of Arctic and Common Terns two years later, possibly due to predation risk after fledging, while no correlation with Roseate Tern productivity was found. The varying effect of predator abundance is most likely due to specific differences in the behaviour and ecology of even these closely-related species. Examining synchrony in multi-species assemblages improves our understanding of how whole communities react to long-term changes in the

  17. The trap-jaw ant genus Odontomachus Latreille (Hymenoptera: Formicidae) from Sumatra, with a new species description.

    PubMed

    Satria, Rijal; Kurushima, Hiroaki; Herwina, Henny; Yamane, Seiki; Eguchi, Katsuyuki

    2015-01-01

    The ant genus Odontomachus Latreille is reviewed for Sumatra, the sixth largest island in the world and located in western Indonesia. Previously three species were recorded from the island: O. simillimus F. Smith, O. rixosus F. Smith, and O. latidens Mayr. We add two species to the fauna, O. procerus Emery stat. nov and Odontomachus minangkabau sp. nov. The new species belongs to O. rixosus species group, and it is morphologically most similar to O. rixosus and O. pararixosus Terayama & Ito. However, it can be separated from the latter two by its large body (HL 3.13-3.55 mm, WL 4.15-4.65 mm), the masticatory margin with 11-14 denticles, and dark-colored body. Odontomachus latidens subsp. sumatranus Emery is newly synonymized with O. procerus. The castes and sexes of the known species are also described, including the first descriptions of the male for O. latidens, O. procerus, and O. rixosus. A key to the Sumatran species based on the worker caste is provided, and the bionomics of each species is summarized. PMID:26624734

  18. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species

    PubMed Central

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability. PMID:25352979

  19. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species.

    PubMed

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability. PMID:25352979

  20. Bacterial colonization and extinction on marine aggregates: stochastic model of species presence and abundance

    PubMed Central

    Kramer, Andrew M; Lyons, M Maille; Dobbs, Fred C; Drake, John M

    2013-01-01

    Organic aggregates provide a favorable habitat for aquatic microbes, are efficiently filtered by shellfish, and may play a major role in the dynamics of aquatic pathogens. Quantifying this role requires understanding how pathogen abundance in the water and aggregate size interact to determine the presence and abundance of pathogen cells on individual aggregates. We build upon current understanding of the dynamics of bacteria and bacterial grazers on aggregates to develop a model for the dynamics of a bacterial pathogen species. The model accounts for the importance of stochasticity and the balance between colonization and extinction. Simulation results suggest that while colonization increases linearly with background density and aggregate size, extinction rates are expected to be nonlinear on small aggregates in a low background density of the pathogen. Under these conditions, we predict lower probabilities of pathogen presence and reduced abundance on aggregates compared with predictions based solely on colonization. These results suggest that the importance of aggregates to the dynamics of aquatic bacterial pathogens may be dependent on the interaction between aggregate size and background pathogen density, and that these interactions are strongly influenced by ecological interactions and pathogen traits. The model provides testable predictions and can be a useful tool for exploring how species-specific differences in pathogen traits may alter the effect of aggregates on disease transmission. PMID:24340173

  1. Abundance and Spatial Dispersion of Rice Stem Borer Species in Kahama, Tanzania

    PubMed Central

    Leonard, Alfonce; Rwegasira, Gration M.

    2015-01-01

    Species diversity, abundance, and dispersion of rice stem borers in framer’s fields were studied in four major rice growing areas of Kahama District. Stem borer larvae were extracted from the damaged tillers in 16 quadrants established in each field. Adult Moths were trapped by light traps and collected in vials for identification. Results indicated the presence of Chilo partellus, Maliarpha separatella, and Sesamia calamistis in all study areas. The most abundant species was C. partellus (48.6%) followed by M. separatella (35.4%) and S. calamistis was least abundant (16.1%). Stem borers dispersion was aggregated along the edges of rice fields in three locations (wards) namely: Bulige, Chela, and Ngaya. The dispersion in the fourth ward, Kashishi was uniform as established from two of the three dispersion indices tested. Further studies would be required to establish the available alternative hosts, the extent of economic losses and the distribution of rice stem borers in the rest of the Lake zone of Tanzania. PMID:26411785

  2. Abundance and Spatial Dispersion of Rice Stem Borer Species in Kahama, Tanzania.

    PubMed

    Leonard, Alfonce; Rwegasira, Gration M

    2015-01-01

    Species diversity, abundance, and dispersion of rice stem borers in framer's fields were studied in four major rice growing areas of Kahama District. Stem borer larvae were extracted from the damaged tillers in 16 quadrants established in each field. Adult Moths were trapped by light traps and collected in vials for identification. Results indicated the presence of Chilo partellus, Maliarpha separatella, and Sesamia calamistis in all study areas. The most abundant species was C. partellus (48.6%) followed by M. separatella (35.4%) and S. calamistis was least abundant (16.1%). Stem borers dispersion was aggregated along the edges of rice fields in three locations (wards) namely: Bulige, Chela, and Ngaya. The dispersion in the fourth ward, Kashishi was uniform as established from two of the three dispersion indices tested. Further studies would be required to establish the available alternative hosts, the extent of economic losses and the distribution of rice stem borers in the rest of the Lake zone of Tanzania. PMID:26411785

  3. Integration of non-indigenous species within the interspecific abundance-occupancy relationship

    NASA Astrophysics Data System (ADS)

    Rigal, François; Whittaker, Robert J.; Triantis, Kostas A.; Borges, Paulo A. V.

    2013-04-01

    There is a broad consensus that habitat disturbance and introduction of non-indigenous species may dramatically modify community structure, particularly in insular ecosystems. However, it is less clear whether emergent macroecological patterns are similarly affected. The positive interspecific abundance-occupancy relationship (IAOR) is one of the most pervasive macroecological patterns, yet has rarely been analyzed for oceanic island assemblages. We use an extensive dataset for arthropods from six islands within the Azorean archipelago to test: (1) whether indigenous and non-indigenous species are distributed differently within the IAOR; and (2) to the extent that they are, can differences can be attributed to two indices of disturbance. We implemented modeling averaged methods using five of the most common IAOR models to derive an averaged IAOR fit for each island. After testing if species colonization status (indigenous versus non-indigenous) may explain the residuals of the IAOR, we identified true negative and positive outliers and tested the effect of colonization status on the likelihood of a species being a positive or negative outlier. We found that the indigenous and non-indigenous species are randomly distributed on both sides of the overall IAOR. Only for Flores Island, were non-indigenous species more aggregated than indigenous species. We were unable to detect a meaningful relationship between deviation from the IAOR and disturbance, despite the undoubted impact of both severe habitat loss and non-indigenous species on these oceanic islands. Our results show that the non-indigenous species have been integrated alongside indigenous species in the contemporary Azorean arthropod communities such that they are mostly undetectable by the study of the IAOR.

  4. Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications.

    PubMed

    Gu, W; Crawford, E D; O'Donovan, B D; Wilson, M R; Chow, E D; Retallack, H; DeRisi, J L

    2016-01-01

    Next-generation sequencing has generated a need for a broadly applicable method to remove unwanted high-abundance species prior to sequencing. We introduce DASH (Depletion of Abundant Sequences by Hybridization). Sequencing libraries are 'DASHed' with recombinant Cas9 protein complexed with a library of guide RNAs targeting unwanted species for cleavage, thus preventing them from consuming sequencing space. We demonstrate a more than 99 % reduction of mitochondrial rRNA in HeLa cells, and enrichment of pathogen sequences in patient samples. We also demonstrate an application of DASH in cancer. This simple method can be adapted for any sample type and increases sequencing yield without additional cost. PMID:26944702

  5. Convergence and divergence in a long-term old-field succession: the importance of spatial scale and species abundance.

    PubMed

    Li, Shao-Peng; Cadotte, Marc W; Meiners, Scott J; Pu, Zhichao; Fukami, Tadashi; Jiang, Lin

    2016-09-01

    Whether plant communities in a given region converge towards a particular stable state during succession has long been debated, but rarely tested at a sufficiently long time scale. By analysing a 50-year continuous study of post-agricultural secondary succession in New Jersey, USA, we show that the extent of community convergence varies with the spatial scale and species abundance classes. At the larger field scale, abundance-based dissimilarities among communities decreased over time, indicating convergence of dominant species, whereas incidence-based dissimilarities showed little temporal tend, indicating no sign of convergence. In contrast, plots within each field diverged in both species composition and abundance. Abundance-based successional rates decreased over time, whereas rare species and herbaceous plants showed little change in temporal turnover rates. Initial abandonment conditions only influenced community structure early in succession. Overall, our findings provide strong evidence for scale and abundance dependence of stochastic and deterministic processes over old-field succession. PMID:27373449

  6. Direct evidence that density-dependent regulation underpins the temporal stability of abundant species in a diverse animal community

    PubMed Central

    Henderson, Peter A.; Magurran, Anne E.

    2014-01-01

    To understand how ecosystems are structured and stabilized, and to identify when communities are at risk of damage or collapse, we need to know how the abundances of the taxa in the entire assemblage vary over ecologically meaningful timescales. Here, we present an analysis of species temporal variability within a single large vertebrate community. Using an exceptionally complete 33-year monthly time series following the dynamics of 81 species of fishes, we show that the most abundant species are least variable in terms of temporal biomass, because they are under density-dependent (negative feedback) regulation. At the other extreme, a relatively large number of low abundance transient species exhibit the greatest population variability. The high stability of the consistently common high abundance species—a result of density-dependence—is reflected in the observation that they consistently represent over 98% of total fish biomass. This leads to steady ecosystem nutrient and energy flux irrespective of the changes in species number and abundance among the large number of low abundance transient species. While the density-dependence of the core species ensures stability under the existing environmental regime, the pool of transient species may support long-term stability by replacing core species should environmental conditions change. PMID:25100702

  7. Commercial agrochemical applications in vineyards do not influence ant communities.

    PubMed

    Chong, Chee Seng; Hoffmann, Ary A; Thomson, Linda J

    2007-12-01

    Ants have been widely used as bioindicators for various terrestrial monitoring and assessment programs but are seldom considered in evaluation of nontarget pesticide effect. Much chemical assessment has been biased toward laboratory and bioassay testing for control of specific pest ant species. Several field studies that did explore the nontarget impacts of pesticides on ants have reported contradictory findings. To address the impact of chemical applications on ants, we tested the response of epigeal ant assemblages and community structure to three pesticide gradients (cumulative International Organization for Biological and Integrated Control toxicity rating, chlorpyrifos use rate, and sulfur use rate) in 19 vineyards. Ordination analyses using nonmetric multidimensional scaling detected community structures at species and genus levels, but the structures were not explained by any pesticide variables. There was no consistent pattern in species and genus percentage complementarities and ant assemblages along pesticide gradients. In contrast, ant community structure was influenced by the presence of shelterbelts near the sampling area. Reasons for the resilience of ants to pesticides are given and assessment at the colony level instead of workers abundance is suggested. The presence of Linepithema humile (Mayr) is emphasized. PMID:18284765

  8. STUDIES ON THE SPECIES COMPOSITION AND RELATIVE ABUNDANCE OF MOSQUITOES OF MPIGI DISTRICT, CENTRAL UGANDA

    PubMed Central

    Mayanja, Martin; Mutebi, John-Paul; Crabtree, Mary B.; Ssenfuka, Fred; Muwawu, Teddy; Lutwama, Julius J.

    2015-01-01

    Prediction of arboviral disease outbreaks and planning for appropriate control interventions require knowledge of the mosquito vectors involved. Although mosquito surveys have been conducted in different regions of Uganda since the mid 30’s such studies have not been carried out in Mpigi District. In October 2011, we conducted mosquito collections in Mpigi district to determine species composition and relative abundance of the different species. The survey was conducted in four villages, Njeru, Ddela, Kiwumu and Nsumbain Kammengo sub-county, Mpigi district, Uganda. CDC light traps baited with dry ice (carbon dioxide) were used to capture adult mosquitoes. A total of 54,878 mosquitoes comprising 46 species from eight genera were collected. The dominant species at all sites was Coquilletidia (Coquilletidia) fuscopennata Theobald (n=38,059, 69%), followed by Coquillettidia (Coquillettidia) metallica Theobald (n=4,265, 7.8%). The number of species collected varied from 17 in the genus Culex to 1 in the genus Lutzia. Of the 46 species identified, arboviruses had previously been isolated from 28 (60.9%) suggesting a high potential for arboviral transmission and/or maintenance in Mpigi District. PMID:26346305

  9. Abundance of Woody Riparian Species in the Western USA in Relation to Phenology, Climate, and Flow Regime

    NASA Astrophysics Data System (ADS)

    Auble, G. T.; Friedman, J. M.; Scott, M. L.; Shafroth, P. B.; Merigliano, M. M.; Freehling, M. D.; Evans, R. E.; Griffin, E. R.

    2004-12-01

    We randomly selected 475 long-term U.S. Geological Survey stream gaging stations in 17 western states to relate the presence and abundance of woody species to environmental factors. Along a 1.3-km reach near each station we measured the cover of all species on a list of the 44 most abundant large woody riparian species in the region. We used logistic regression to fit the response of four abundant species to growing degree days and mean precipitation. Then we related relative abundance of these 4 species to timing of the flood peak in sites where the likelihood of occurrence was greater than 0.5. The exotics Tamarix ramosissima (saltcedar) and Elaeagnus angustifolia (Russian-olive) are now the third and fourth most frequently occurring large woody riparian species in the western U.S. and the second and fifth most abundant. In climatically suitable areas, species differences in reproductive phenology produce different relations of abundance to flow regime. Because of its limited period of seed release and viability in early summer, cottonwood (Populus deltoides) is disadvantaged where floods occur in the spring or fall. Abundances of saltcedar, because of its long period of seed release; Russian-olive, because of seed dormancy; and Salix exigua, because of the importance of vegetative spread, are much less sensitive to flood timing.

  10. A taxonomic revision of South American species of the seed-harvester ant genus Pogonomyrmex (Hymenoptera: Formicidae). Part I.

    PubMed

    Johnson, Robert A

    2015-01-01

    South American species in the seed-harvester ant genus Pogonomyrmex (subfamily Myrmicinae) are interesting biologically because of their numerous queen phenotypes and life histories. This paper provides a taxonomic revision and reviews the natural history for 21 South American species of Pogonomyrmex so that we can better study their rich and interesting ecology, life history, and evolution. Species treated herein comprise all South American species-groups except for the brevibarbis and rastratus-groups. The following taxa are raised to species: pencosensis Forel 1914 and serpens Santschi 1922. The following new synonomies are proposed: bruchi Forel 1913 is synonomized under coarctatus Mayr 1868 and cunicularius carnivora Santschi 1925 under serpens Santschi 1922. The following new species is described: tinogasta. This paper redescribes workers of all species, and I describe queens and diagnose males for the following species: bispinosus (ergatoid queen, male), inermis (queen, male), laticeps (male), lobatus (queen, male), micans (queen), naegelii (ergatoid queen), pencosensis (ergatoid queen), serpens (ergatoid queen), tinogasta (brachypterous queen), and uruguayensis (queen, male). A neotype was designated for the untraceable or possibly lost type of P. bispinosus, and a holotype or lectotype was designated from syntypes for all other previously described taxa in order to provide a single name-bearing specimen and to facilitate future taxonomic studies. Of the 21 species treated herein, five species have ergatoid (wingless) queens (bispinosus, cunicularius, pencosensis, serpens, mayri), two have brachypterous (short-winged) queens (mendozanus, tinogasta), and two have dimorphic queens (winged and ergatoid in naegelii, brachypterous and ergatoid in laticeps). I also provide keys for workers and queens (in English and Spanish), photographs of all castes, distribution maps, and a summary of known biology. PMID:26624334

  11. Assessing Landscape Constraints on Species Abundance: Does the Neighborhood Limit Species Response to Local Habitat Conservation Programs?

    PubMed Central

    Jorgensen, Christopher F.; Powell, Larkin A.; Lusk, Jeffery J.; Bishop, Andrew A.; Fontaine, Joseph J.

    2014-01-01

    Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants. PMID:24918779

  12. Assessing landscape constraints on species abundance: does the neighborhood limit species response to local habitat conservation programs?

    PubMed

    Jorgensen, Christopher F; Powell, Larkin A; Lusk, Jeffery J; Bishop, Andrew A; Fontaine, Joseph J

    2014-01-01

    Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants. PMID:24918779

  13. Distribution and abundance of decapod crustacean larvae in the southeastern Bering Sea with emphasis on commercial species. Final report

    SciTech Connect

    Armstrong, D.A.; Incze, L.S.; Wencker, D.L.; Armstrong, J.L.

    1981-01-01

    Contents include: Distribution and abundance of king crab larvae, Paralithodes camtschatica and P. platypus in the southeast Bering Sea; Distribution and abundance of the larvae of tanner crabs in the southeastern Bering Sea; Distribution and abundance of other brachyuran larvae in the southeastern Bering Sea with emphasis on Erimacrus isenbeckii; Distribution and abundance of shrimp larvae in the southeastern Bering Sea with emphasis on pandalid species; Distribution and abundance of hermit crabs (Paguridae) in the southeasternBering Sea; Possible oil impacts on decapod larbae in the southeastern Bering Sea with emphesis on the St. George Basin.

  14. Microbial distribution and abundance in the digestive system of five shipworm species (Bivalvia: Teredinidae).

    PubMed

    Betcher, Meghan A; Fung, Jennifer M; Han, Andrew W; O'Connor, Roberta; Seronay, Romell; Concepcion, Gisela P; Distel, Daniel L; Haygood, Margo G

    2012-01-01

    Marine bivalves of the family Teredinidae (shipworms) are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes) of the gills (ctenidia). These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH) and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis). These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose. PMID:23028923

  15. Stream salamander species richness and abundance in relation to environmental factors in Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Grant, E.H.C.; Jung, R.E.; Rice, K.C.

    2005-01-01

    Stream salamanders are sensitive to acid mine drainage and may be sensitive to acidification and low acid neutralizing capacity (ANC) of a watershed. Streams in Shenandoah National Park, Virginia, are subject to episodic acidification from precipitation events. We surveyed 25 m by 2 m transects located on the stream bank adjacent to the water channel in Shenandoah National Park for salamanders using a stratified random sampling design based on elevation, aspect and bedrock geology. We investigated the relationships of four species (Eurycea bislineata, Desmognathus fuscus, D. monticola and Gyrinophilus porphyriticus) to habitat and water quality variables. We did not find overwhelming evidence that stream salamanders are affected by the acid-base status of streams in Shenandoah National Park. Desmognathus fuscus and D. monticola abundance was greater both in streams that had a higher potential to neutralize acidification, and in higher elevation (>700 m) streams. Neither abundance of E. bislineata nor species richness were related to any of the habitat variables. Our sampling method preferentially detected the adult age class of the study species and did not allow us to estimate population sizes. We suggest that continued monitoring of stream salamander populations in SNP will determine the effects of stream acidification on these taxa.

  16. Monitoring species richness and abundance of shorebirds in the western Great Basin

    USGS Publications Warehouse

    Warnock, N.; Haig, Susan M.; Oring, L.W.

    1998-01-01

    Broad-scale avian surveys have been attempted within North America with mixed results. Arid regions, such as the Great Basin, are often poorly sampled because of the vastness of the region, inaccessibility of sites, and few ornithologists. In addition, extreme variability in wetland habitat conditions present special problems for conducting censuses of species inhabiting these areas. We examined these issues in assessing multi-scale shorebird (order: Charadriiformes) censuses conducted in the western Great Basin from 1992-1997. On ground surveys, we recorded 31 species of shorebirds, but were unable to accurately estimate population size. Conversely, on aerial surveys we were able to estimate regional abundance of some shorebirds, but were unable to determine species diversity. Aerial surveys of three large alkali lakes in Oregon (Goose, Summer, and Abert Lakes) revealed > 300,000 shorebirds in one year of this study, of which 67% were American Avocets (Recurvirostra americana) and 30% phalaropes (Phalaropus spp.). These lakes clearly meet Western Hemisphere Shorebird Reserve Network guidelines for designation as important shorebird sites. Based upon simulations of our monitoring effort and the magnitude and variation of numbers of American Avocets, detection of S-10% negative declines in populations of these birds would take a minimum of 7-23 years of comparable effort. We conclude that a combination of ground and aerial surveys must be conducted at multiple sites and years and over a large region to obtain an accurate picture of the diversity, abundance, and trends of shorebirds in the western Great Basin.

  17. Microbial Distribution and Abundance in the Digestive System of Five Shipworm Species (Bivalvia: Teredinidae)

    PubMed Central

    Betcher, Meghan A.; Fung, Jennifer M.; Han, Andrew W.; O’Connor, Roberta; Seronay, Romell; Concepcion, Gisela P.; Distel, Daniel L.; Haygood, Margo G.

    2012-01-01

    Marine bivalves of the family Teredinidae (shipworms) are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes) of the gills (ctenidia). These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH) and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis). These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose. PMID:23028923

  18. Monitoring species richness and abundance of shorebirds in the western Great Basin

    USGS Publications Warehouse

    Warnock, N.; Haig, S.M.; Oring, L.W.

    1998-01-01

    Broad-scale avian surveys have been attempted within North America with mixed results. Arid regions, such as the Great Basin, are often poorly sampled because of the vastness of the region, inacessibilty of sites, and few ornithologist. In addition, extreme variability in wetland habitat conditions present special problems for conducting censuses of species inhabiting these areas. We examined these issues in assessing multi-scale shorebird (order: Charadriiformes) censuses conducted the western Great Basin from 1992-1997. On ground surveys, we recorded 31 species of shorebirds, but were unable to accurately estimate population size. Conversely, on aerial surveys we were able to estimate regional abundance of some shorebirds, but were unable to determined species diversity. Acrial surveys of three large alkali lakcs in Oregon (Goose, Summer, and abert Lakes) revealed > 300,000 shorebirds in one year of this study, of which 67% were American Avocets (Recurvirostra americana) and 30% phalaropes (Phalaropus spp.). These lakes clearly meet Western Hemisphere Shorebird Reserve Network guidelines for designation as important shorebirds sites. Based upon simulations of our monitoring effort and the magnitude and variation of numbers of American Avocets, detection of 5-10% negative declines in population of these birds would take a minimum of 7-23 years comparable effort. We conclude that a combination of ground and aerial surveys must be conducted at multiple sites and years and over a large region to obtain an accurate picture of the diversity, abundance, and trends of shorebirds in the western Great Basin.

  19. The predatory behaviour of a tramp ant species in its native range.

    PubMed

    Kenne, Martin; Mony, Ruth; Tindo, Maurice; Njaleu, Lydie Carole Kamaha; Orivel, Jerôme; Dejean, Alain

    2005-01-01

    Workers of the pest ant Paratrechina longicornis participate in a type of group hunting. Each individual forages with its long antennae wide open and moves quickly (6.3 cm/s) along an erratic path surrounded by nestmates behaving in the same way and within range of a recruiting pheromone. They detect prey by contact with successful workers singly capturing and retrieving small prey and seizing larger ones by an appendage. Then they recruit nestmates at short-range; all together they spread-eagle the prey and retrieve them whole. PMID:16286091

  20. Environmental Correlates of Abundances of Mosquito Species and Stages in Discarded Vehicle Tires

    PubMed Central

    YEE, DONALD A.; KNEITEL, JAMIE M.; JULIANO, STEVEN A.

    2012-01-01

    Discarded vehicle tires are a common habitat for container mosquito larvae, although the environmental factors that may control their presence or abundance within a tire are largely unknown. We sampled discarded vehicle tires in six sites located within four counties of central Illinois during the spring and summer of 2006 to determine associations between a suite of environmental factors and community composition of container mosquitoes. Our goal was to find patterns of association between environmental factors and abundances of early and late instars. We hypothesized that environmental factors correlated with early instars would be indicative of oviposition cues, whereas environmental factors correlated with late instars would be those important for larval survival. We collected 13 species of mosquitoes, with six species (Culex restuans, Cx. pipiens, Aedes albopictus, Cx. salinarius, Ae. atropalpus, and Ae. triseriatus) accounting for ≈95% of all larvae. There were similar associations between congenerics and environmental factors, with Aedes associated with detritus type (fine detritus, leaves, seeds) and Culex associated with factors related to the surrounding habitat (human population density, canopy cover, tire size) or microorganisms (bacteria, protozoans). Although there was some consistency in factors that were important for early and late instar abundance, there were few significant associations between early and late instars for individual species. Lack of correspondence between factors that explain variation in early versus late instars, most notable for Culex, suggests a difference between environmental determinants of oviposition and survival within tires. Environmental factors associated with discarded tires are important for accurate predictions of mosquito occurrence at the generic level. PMID:20180308

  1. Multilocus genetic characterization of two ant vectors (Group II "Dirty 22" species) known to contaminate food and food products and spread foodborne pathogens.

    PubMed

    Sulaiman, Irshad M; Anderson, Mickey; Oi, David H; Simpson, Steven; Kerdahi, Khalil

    2012-08-01

    The U.S. Food and Drug Administration utilizes the presence of filth and extraneous materials as one of the criteria for implementing regulatory actions and assessing adulteration of food products of public health importance. Twenty-two prevalent pest species (also known as the ''Dirty 22'' species) have been considered by this agency as possible vehicles for the spread of foodborne diseases, and the presence of these species is considered an indicator of unsanitary conditions in food processing and storage facilities. In a previous study, we further categorized the Dirty 22 species into four groups: group I includes four cockroach species, group II includes two ant species, group III includes 12 fly species, and group IV includes four rodent species. Here, we describe the development of three nested PCR primer sets and multilocus genetic characterization by amplifying the small subunit rRNA, elongation factor 1-alpha, and wingless (WNT-1) genes of group II Dirty 22 ant species Monomorium pharaonis and Solenopsis molesta. These novel group II Dirty 22 species-specific nested PCR primer sets can be used when the specimens cannot be identified using conventional microscopic methods. These newly developed assays will provide correct identification of group II Dirty 22 ant species, and the information can be used in the control of foodborne pathogens. PMID:22856568

  2. Water Mites (Acari: Hydrachnida) of Ozark Streams - Abundance, Species Richness, and Potential as Environmental Indicators

    NASA Astrophysics Data System (ADS)

    Radwell, A. J.; Brown, A. V.

    2005-05-01

    Because water mites are tightly linked to other stream metazoans through parasitism and predation, they are potentially effective indicators of environmental quality. Meiofauna (80 μm to 1 mm) were sampled from headwater riffles of 11 Ozark streams to determine relative abundance and densities of major meiofauna taxa. Water mites comprised 15.3% of the organisms collected exceeded only by chironomids (50.2%) and oligochaetes (17.8%), and mean water mite density among the 11 streams was 265 organisms per liter. The two streams that differed the most in environmental quality were sampled using techniques suitable for identification of species. An estimated 32 species from 20 genera and 13 families were found in the least disturbed stream; an estimated 19 species from 13 genera and 8 families were found in the most disturbed stream. This preliminary finding supports the notion that water mite species richness declines in response to environmental disturbance. Many species could only be identified as morphospecies of particular genera, but the ongoing taxonomic revision of Hydrachnida is expected to provide needed information. A collaborative effort between those interested in taxonomy/systematics of water mites and ecologists interested in the significance of water mites in aquatic communities could prove mutually beneficial.

  3. Restinga forests of the Brazilian coast: richness and abundance of tree species on different soils.

    PubMed

    Magnago, Luiz F S; Martins, Sebastião V; Schaefer, Carlos E G R; Neri, Andreza V

    2012-09-01

    The aim of this study was to determine changes in composition, abundance and richness of species along a forest gradient with varying soils and flood regimes. The forests are located on the left bank of the lower Jucu River, in Jacarenema Natural Municipal Park, Espírito Santo. A survey of shrub/tree species was done in 80 plots, 5x25 m, equally distributed among the forests studied. We included in the sampling all individuals with >3.2 cm diameter at breast height (1.30 m). Soil samples were collected from the surface layer (0-10 cm) in each plot for chemical and physical analysis. The results indicate that a significant pedological gradient occurs, which is influenced by varying seasonal groundwater levels. Restinga forest formations showed significant differences in species richness, except for Non-flooded Forest and Non-flooded Forest Transition. The Canonical Correlation Analysis (CCA) showed that some species are distributed along the gradient under the combined influence of drainage, nutrient concentration and physical characteristics of the soil. Regarding the variables tested, flooding seems to be a more limiting factor for the establishment of plant species in Restinga forests than basic soil fertility attributes. PMID:22886165

  4. Influence of interspecific competition on the recruitment behavior and liquid food transport in the tramp ant species Pheidole megacephala

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Breton, Julien; Suzzoni, Jean Pierre; Orivel, Jérôme; Saux-Moreau, Corrie

    2005-07-01

    This study was conducted on the reactions of Pheidole megacephala scouts when finding liquid food sources situated on territories marked by competing dominant ant species or on unmarked, control areas to see if the number of recruited nestmates is affected and if soldiers behave in ways adapted to the situation. We show that scouts recruit more nestmates, particularly soldiers, on marked rather than on unmarked areas. This recruitment allows P. megacephala to organize the defence and rapid depletion of these food sources prior to any contact with competitors. Soldiers can carry liquid foods both (1) in their crops like other Myrmicinae and (2), in a new finding concerning myrmicine ants, under their heads and thoraxes like certain poneromorph genera because the droplets adhere through surface tension strengths. Later, the liquids stored in the crop are distributed to nestmates through regurgitations during trophallaxis and the external droplets are distributed through “social buckets”, or the mode of liquid food transfer common in poneromorphs. Their flexibility to use or not use the latter technique, based on the situation, corroborates other reports that Pheidole soldiers have a relatively large behavioral repertoire.

  5. Differences in ecological structure, function, and native species abundance between native and invaded Hawaiian streams.

    PubMed

    Holitzki, Tara M; MacKenzie, Richard A; Wiegner, Tracy N; McDermid, Karla J

    2013-09-01

    Poeciliids, one of the most invasive species worldwide, are found on almost every continent and have been identified as an "invasive species of concern" in the United States, New Zealand, and Australia. Despite their global prevalence, few studies have quantified their impacts on tropical stream ecosystem structure, function, and biodiversity. Utilizing Hawaiian streams as model ecosystems, we documented how ecological structure, function, and native species abundance differed between poeciliid-free and poeciliid-invaded tropical streams. Stream nutrient yields, benthic biofilm biomass, densities of macroinvertebrates and fish, and community structures of benthic algae, macroinvertebrates, and fish were compared between streams with and without established poeciliid populations on the island of Hawai'i, Hawaii, USA. Sum nitrate (sigmaNO3(-) = NO3(-) + NO2(-)), total nitrogen, and total organic carbon yields were eight times, six times, and five times higher, respectively, in poeciliid streams than in poeciliid-free streams. Benthic biofilm ash-free dry mass was 1.5x higher in poeciliid streams than in poeciliid-free streams. Percentage contributions of chironomids and hydroptilid caddisflies to macroinvertebrate densities were lower in poeciliid streams compared to poeciliid-free streams, while percentage contributions of Cheumatopsyche analis caddisflies, Dugesia sp. flatworms, and oligochaetes were higher. Additionally, mean densities of native gobies were two times lower in poeciliid streams than in poeciliid-free ones, with poeciliid densities being approximately eight times higher than native fish densities. Our results, coupled with the wide distribution of invasive poeciliids across Hawaii and elsewhere in the tropics, suggest that poeciliids may negatively impact the ecosystem structure, function, and native species abundance of tropical streams they invade. This underscores the need for increased public awareness to prevent future introductions and for

  6. Intercontinental chemical variation in the invasive ant Wasmannia auropunctata (Roger) (Hymenoptera Formicidae): a key to the invasive success of a tramp species

    NASA Astrophysics Data System (ADS)

    Errard, Christine; Delabie, Jacques; Jourdan, Hervé; Hefetz, Abraham

    2005-07-01

    Unicoloniality emerges as a feature that characterizes successful invasive species. Its underlying mechanism is reduced intraspecific aggression while keeping interspecific competitiveness. To that effect, we present here a comparative behavioural and chemical study of the invasive ant Wasmannia auropunctata in parts of its native and introduced ranges. We tested the hypothesis that introduced populations (New Caledonia archipelago) have reduced intraspecific aggression relative to native populations (e.g., Ilhéus area, Brazil) and that this correlates with reduced variability in cuticular hydrocarbons (CHCs). As predicted, there was high intraspecific aggression in the Brazilian populations, but no intraspecific aggression among the New Caledonian populations. However, New Caledonian worker W. auropunctata remained highly aggressive towards ants of other invasive species. The chemical data corresponded with the behaviour. While CHCs of ants from the regions of Brazil diverged, the profiles of ants from various localities in New Caledonia showed high uniformity. We suggest that in New Caledonia W. auropunctata appears to behave as a single supercolony, whereas in its native range it acts as a multicolonial species. The uniformity of recognition cues in the New Caledonia ants may reflect a process whereby recognition alleles became fixed in the population, but may also be the consequence of a single introduction event and subsequent aggressive invasion of the ecosystem. Chemical uniformity coupled with low intraspecific but high interspecific aggression, lend credence to the latter hypothesis.

  7. How climate warming impacts the distribution and abundance of two small flatfish species in the North Sea

    NASA Astrophysics Data System (ADS)

    van Hal, Ralf; Smits, Kalle; Rijnsdorp, Adriaan D.

    2010-07-01

    Climate change, specifically temperature, affects the distribution and densities of species in marine and terrestrial ecosystems. Here, we looked at the effect of temperature during winter and spawning period on latitudinal range shifts and changes in abundance of two non-commercial North Sea fish species, solenette ( Buglossidium luteum) and scaldfish ( Arnoglossus laterna). Both species have increased in abundance and moved to the north since the late 1980s, coinciding with a series of mild winters. In 1996, following a very cold winter, the abundance of both species temporarily decreased as they retracted to the south. The shift in temperature affected adult habitat conditions, allowing them to immigrate into new areas where they subsequently reproduced successfully. We can conclude this because recruitment improved following the increase in abundance. The recruitment relates significantly to the higher adult stock and higher temperatures. The predictions of higher average temperatures and milder winters in the North Sea make it likely that these species will increase further in abundance and move northward. The observed increase in abundance of these small flatfish species will affect the North Sea food web and therefore commercial species, e.g. plaice, by predation on juveniles and competition for benthic food resources.

  8. Ant-mediated seed dispersal in a warmed world.

    PubMed

    Stuble, Katharine L; Patterson, Courtney M; Rodriguez-Cabal, Mariano A; Ribbons, Relena R; Dunn, Robert R; Sanders, Nathan J

    2014-01-01

    Climate change affects communities both directly and indirectly via changes in interspecific interactions. One such interaction that may be altered under climate change is the ant-plant seed dispersal mutualism common in deciduous forests of eastern North America. As climatic warming alters the abundance and activity levels of ants, the potential exists for shifts in rates of ant-mediated seed dispersal. We used an experimental temperature manipulation at two sites in the eastern US (Harvard Forest in Massachusetts and Duke Forest in North Carolina) to examine the potential impacts of climatic warming on overall rates of seed dispersal (using Asarum canadense seeds) as well as species-specific rates of seed dispersal at the Duke Forest site. We also examined the relationship between ant critical thermal maxima (CTmax) and the mean seed removal temperature for each ant species. We found that seed removal rates did not change as a result of experimental warming at either study site, nor were there any changes in species-specific rates of seed dispersal. There was, however, a positive relationship between CTmax and mean seed removal temperature, whereby species with higher CTmax removed more seeds at hotter temperatures. The temperature at which seeds were removed was influenced by experimental warming as well as diurnal and day-to-day fluctuations in temperature. Taken together, our results suggest that while temperature may play a role in regulating seed removal by ants, ant plant seed-dispersal mutualisms may be more robust to climate change than currently assumed. PMID:24688863

  9. Ant-mediated seed dispersal in a warmed world

    PubMed Central

    Patterson, Courtney M.; Rodriguez-Cabal, Mariano A.; Ribbons, Relena R.; Dunn, Robert R.; Sanders, Nathan J.

    2014-01-01

    Climate change affects communities both directly and indirectly via changes in interspecific interactions. One such interaction that may be altered under climate change is the ant-plant seed dispersal mutualism common in deciduous forests of eastern North America. As climatic warming alters the abundance and activity levels of ants, the potential exists for shifts in rates of ant-mediated seed dispersal. We used an experimental temperature manipulation at two sites in the eastern US (Harvard Forest in Massachusetts and Duke Forest in North Carolina) to examine the potential impacts of climatic warming on overall rates of seed dispersal (using Asarum canadense seeds) as well as species-specific rates of seed dispersal at the Duke Forest site. We also examined the relationship between ant critical thermal maxima (CTmax) and the mean seed removal temperature for each ant species. We found that seed removal rates did not change as a result of experimental warming at either study site, nor were there any changes in species-specific rates of seed dispersal. There was, however, a positive relationship between CTmax and mean seed removal temperature, whereby species with higher CTmax removed more seeds at hotter temperatures. The temperature at which seeds were removed was influenced by experimental warming as well as diurnal and day-to-day fluctuations in temperature. Taken together, our results suggest that while temperature may play a role in regulating seed removal by ants, ant plant seed-dispersal mutualisms may be more robust to climate change than currently assumed. PMID:24688863

  10. Ant plant herbivore interactions in the neotropical cerrado savanna

    NASA Astrophysics Data System (ADS)

    Oliveira, Paulo S.; Freitas, André V. L.

    2004-12-01

    The Brazilian cerrado savanna covers nearly 2 million km2 and has a high incidence on foliage of various liquid food sources such as extrafloral nectar and insect exudates. These liquid rewards generate intense ant activity on cerrado foliage, making ant plant herbivore interactions especially prevalent in this biome. We present data on the distribution and abundance of extrafloral nectaries in the woody flora of cerrado communities and in the flora of other habitats worldwide, and stress the relevance of liquid food sources (including hemipteran honeydew) for the ant fauna. Consumption by ants of plant and insect exudates significantly affects the activity of the associated herbivores of cerrado plant species, with varying impacts on the reproductive output of the plants. Experiments with an ant plant butterfly system unequivocally demonstrate that the behavior of both immature and adult lepidopterans is closely related to the use of a risky host plant, where intensive visitation by ants can have a severe impact on caterpillar survival. We discuss recent evidence suggesting that the occurrence of liquid rewards on leaves plays a key role in mediating the foraging ecology of foliage-dwelling ants, and that facultative ant plant mutualisms are important in structuring the community of canopy arthropods. Ant-mediated effects on cerrado herbivore communities can be revealed by experiments performed on wide spatial scales, including many environmental factors such as soil fertility and vegetation structure. We also present some research questions that could be rewarding to investigate in this major neotropical savanna.

  11. Shrub encroachment affects mammalian carnivore abundance and species richness in semiarid rangelands

    NASA Astrophysics Data System (ADS)

    Blaum, Niels; Rossmanith, Eva; Popp, Alexander; Jeltsch, Florian

    2007-01-01

    Shrub encroachment due to overgrazing has led to dramatic changes of savanna landscapes and is considered to be one of the most threatening forms of rangeland degradation e.g. via habitat fragmentation. Mammalian carnivores are particularly vulnerable to local extinction in fragmented landscapes. However, our understanding of how shrub encroachment affects mammalian carnivores is poor. Here we investigated the relative sensitivities of ten native carnivores to different levels of shrub cover ranging from low (<5%) to high shrub cover (>25%) in 20 southern Kalahari rangeland sites. Relative abundance of carnivores was monitored along 40 sand transects (5 m × 250 m) for each site. Our results show that increasing shrub cover affects carnivore species differently. African wild cats, striped polecats, cape foxes and suricates were negatively affected, whereas we found hump-shaped responses for yellow mongooses, bat-eared foxes and small-spotted genets with maximum abundance at shrub covers between 10 and 18%. In contrast, black-backed jackals, slender mongooses and small spotted cats were not significantly affected by increasing shrub cover. However, a negative impact of high shrub cover above 18% was congruent for all species. We conclude that intermediate shrub cover (10-18%) in savanna landscapes sustain viable populations of small carnivores.

  12. Oviposition behaviour of four ant parasitoids (Hymenoptera, Braconidae, Euphorinae, Neoneurini and Ichneumonidae, Hybrizontinae), with the description of three new European species

    PubMed Central

    Gómez Durán, José-María; van Achterberg, Cornelis

    2011-01-01

    Abstract The oviposition behaviour of four ant parasitoids was observed and filmed for the first time. The movies are available from YouTube (search for Elasmosoma, Hybrizon, Kollasmosoma and Neoneurus). Two of the observed species (Neoneurus vesculus sp. n. and Kollasmosoma sentum sp. n.) are new to science. A third species (Neoneurus recticalcar sp. n.) is described from Slovakia and Norway. Keys to the Palaearctic species of the genera Neoneurus and Kollasmosoma are added. PMID:21998538

  13. Colony growth of two species of Solenopsis fire ants(Hymenoptera: Formicidae) reared with crickets and beef liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most diets for rearing fire ants and other ants contain insects such as crickets or mealworms. Unfortunately, insect diets are expensive, especially for large rearing operations, and are not always easily available. This study was designed to examine colony growth of Solenopsis fire ants on beef liv...

  14. Microbiomes of ant castes implicate new microbial roles in the fungus-growing ant Trachymyrmex septentrionalis

    PubMed Central

    Ishak, Heather D.; Miller, Jessica L.; Sen, Ruchira; Dowd, Scot E.; Meyer, Eli; Mueller, Ulrich G.

    2011-01-01

    Fungus-growing ants employ several defenses against diseases, including disease-suppressing microbial biofilms on their integument and in fungal gardens. Here, we compare the phenology of microbiomes in natural nests of the temperate fungus-growing ant Trachymyrmex septentrionalis using culture-dependent isolations and culture-independent 16S-amplicon 454-sequencing. 454-sequencing revealed diverse actinobacteria associated with ants, including most prominently Solirubrobacter (12.2–30.9% of sequence reads), Pseudonocardia (3.5–42.0%), and Microlunatus (0.4–10.8%). Bacterial abundances remained relatively constant in monthly surveys throughout the annual active period (late winter to late summer), except Pseudonocardia abundance declined in females during the reproductive phase. Pseudonocardia species found on ants are phylogenetically different from those in gardens and soil, indicating ecological separation of these Pseudonocardia types. Because the pathogen Escovopsis is not known to infect gardens of T. septentrionalis, the ant-associated microbes do not seem to function in Escovopsis suppression, but could protect against ant diseases, help in nest sanitation, or serve unknown functions. PMID:22355719

  15. Variation in predator species abundance can cause variable selection pressure on warning signaling prey

    PubMed Central

    Valkonen, Janne K; Nokelainen, Ossi; Niskanen, Martti; Kilpimaa, Janne; Björklund, Mats; Mappes, Johanna

    2012-01-01

    Predation pressure is expected to drive visual warning signals to evolve toward conspicuousness. However, coloration of defended species varies tremendously and can at certain instances be considered as more camouflaged rather than conspicuous. Recent theoretical studies suggest that the variation in signal conspicuousness can be caused by variation (within or between species) in predators' willingness to attack defended prey or by the broadness of the predators' signal generalization. If some of the predator species are capable of coping with the secondary defenses of their prey, selection can favor reduced prey signal conspicuousness via reduced detectability or recognition. In this study, we combine data collected during three large-scale field experiments to assess whether variation in avian predator species (red kite, black kite, common buzzard, short-toed eagle, and booted eagle) affects the predation pressure on warningly and non-warningly colored artificial snakes. Predation pressure varied among locations and interestingly, if common buzzards were abundant, there were disadvantages to snakes possessing warning signaling. Our results indicate that predator community can have important consequences on the evolution of warning signals. Predators that ignore the warning signal and defense can be the key for the maintenance of variation in warning signal architecture and maintenance of inconspicuous signaling. PMID:22957197

  16. Variation in predator species abundance can cause variable selection pressure on warning signaling prey.

    PubMed

    Valkonen, Janne K; Nokelainen, Ossi; Niskanen, Martti; Kilpimaa, Janne; Björklund, Mats; Mappes, Johanna

    2012-08-01

    Predation pressure is expected to drive visual warning signals to evolve toward conspicuousness. However, coloration of defended species varies tremendously and can at certain instances be considered as more camouflaged rather than conspicuous. Recent theoretical studies suggest that the variation in signal conspicuousness can be caused by variation (within or between species) in predators' willingness to attack defended prey or by the broadness of the predators' signal generalization. If some of the predator species are capable of coping with the secondary defenses of their prey, selection can favor reduced prey signal conspicuousness via reduced detectability or recognition. In this study, we combine data collected during three large-scale field experiments to assess whether variation in avian predator species (red kite, black kite, common buzzard, short-toed eagle, and booted eagle) affects the predation pressure on warningly and non-warningly colored artificial snakes. Predation pressure varied among locations and interestingly, if common buzzards were abundant, there were disadvantages to snakes possessing warning signaling. Our results indicate that predator community can have important consequences on the evolution of warning signals. Predators that ignore the warning signal and defense can be the key for the maintenance of variation in warning signal architecture and maintenance of inconspicuous signaling. PMID:22957197

  17. Habitat fragmentation and effects of herbivore (howler monkey) abundances on bird species richness.

    PubMed

    Feeley, Kenneth J; Terborgh, John W

    2006-01-01

    Habitat fragmentation can alter herbivore abundances, potentially causing changes in the plant community that can propagate through the food web and eventually influence other important taxonomic groups such as birds. Here we test the relationship between the density of red howler monkeys (Alouatta seniculus) and bird species richness on a large set of recently isolated land-bridge islands in Lago Guri, Venezuela (n = 29 islands). Several of these islands host relict populations of howler monkeys at densities up to more than 30 times greater than those on the mainland. These "hyperabundant" herbivores previously have been shown to have a strong positive influence on aboveground plant productivity. We predicted that this should lead to a positive, indirect effect of howler monkey density on bird species richness. After accounting for passive sampling (the tendency for species richness to be positively associated with island area, regardless of differences in habitat quality) we found a significant positive correlation between howler monkey density and bird species richness. A path analysis incorporating data on tree growth rates from a subset of islands (n = 9) supported the hypothesis that the effect of howler monkeys on the resident bird communities is indirect and is mediated through changes in plant productivity and habitat quality. These results highlight the potential for disparate taxonomic groups to be related through indirect interactions and trophic cascades. PMID:16634305

  18. A near-infrared spectroscopy routine for unambiguous identification of cryptic ant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identification of species – of importance for most biological disciplines – is not always straightforward as cryptic species present a hurdle for traditional species discrimination. Fibre-optic near-infrared spectroscopy (NIRS) is a rapid and cheap method for a wide range of different applicatio...

  19. Connectivity and conditional models of access and abundance of species in stream networks.

    PubMed

    Chelgren, Nathan D; Dunham, Jason B

    2015-07-01

    Barriers to passage of aquatic organisms at stream road crossings are a major cause of habitat fragmentation in stream networks. Accordingly, large investments have been made to restore passage at these crossings, but often without estimation of population-level benefits. Here, we describe a broad-scale approach to quantifying the effectiveness of passage restoration in terms interpretable at population levels, namely numbers of fish and length of stream gained through restoration, by sampling abundance in a study design that accounts for variable biogeographic species pools, variable stream and barrier configurations, and variable probabilities of capture and detectability for multiple species. We modified an existing zero-inflated negative-binomial model to estimate the probability of site access, abundance conditional on access, and capture probability of individual fish. Therein, we modeled probability of access as a function of gradient, stream road-crossing type, and downstream access by fish simultaneously with a predictive model for abundance at sites accessible to fish. Results indicated that replacement of barriers with new crossing designs intended to allow for greater movement was associated with dramatically higher probability of access for all fishes, including migratory Pacific salmon, trout, sculpin, and lamprey. Conversely, existing non-replaced crossings negatively impacted fish distributions. Assuming no downstream constraints on access, we estimated the potential length of stream restored by the program ranged between 7.33 (lamprey) and 15.28 km (small coastal cutthroat and rainbow trout). These contributions represented a fraction of the total length available upstream (187 km) of replaced crossings. When limited ranges of species were considered, the estimated contributions of culvert replacement were reduced (1.65-km range, for longnose dace to 12.31 km for small coastal cutthroat and rainbow trout). Numbers of fish contributed ranged from

  20. MESSENGER Searches for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Mercury's exosphere is composed of material that originates at the planet's surface, whether that material is native or delivered by the solar wind and micrometeoroids. Many exospheric species have been detected by remote sensing, including H and He by Mariner 10, Na, K, and Ca by ground-based observations, and H, Na, Ca, Mg, and Ca+ by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Other exospheric species, including Fe, AI, Si, 0, S, Mn, CI, Ti, OH, and their ions, are expected to be present on the basis of MESSENGER surface measurements and models of Mercury's surface chemistry. Here we report on searches for these species made with the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). No obvious signatures of the listed species have yet been observed in Mercury's exosphere by the UVVS as of this writing. It is possible that detections are elusive because the optimum regions of the exosphere have not been sampled. The Sun-avoidance constraints on MESSENGER place tight limits on instrument boresight directions, and some regions are probed infrequently. If there are strong spatial gradients in the distribution of weakly emitting species, a high-resolution sampling of specific regions may be required to detect them. Summing spectra over time will also aid in the ability to detect weaker emission. Observations to date nonetheless permit strong upper limits to be placed on the abundances of many undetected species, in some cases as functions of time and space. As those limits are lowered with time, the absence of detections can provide insight into surface composition and the potential source mechanisms of exospheric material.

  1. MESSENGER Searches for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    NASA Astrophysics Data System (ADS)

    Vervack, R. J.; McClintock, W. E.; Killen, R. M.; Sprague, A. L.; Burger, M. H.; Merkel, A. W.; Sarantos, M.

    2011-12-01

    Mercury's exosphere is composed of material that originates at the planet's surface, whether that material is native or delivered by the solar wind and micrometeoroids. Many exospheric species have been detected by remote sensing, including H and He by Mariner 10, Na, K, and Ca by ground-based observations, and H, Na, Ca, Mg, and Ca+ by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Other exospheric species, including Fe, Al, Si, O, S, Mn, Cl, Ti, OH, and their ions, are expected to be present on the basis of MESSENGER surface measurements and models of Mercury's surface chemistry. Here we report on searches for these species made with the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). No obvious signatures of the listed species have yet been observed in Mercury's exosphere by the UVVS as of this writing. It is possible that detections are elusive because the optimum regions of the exosphere have not been sampled. The Sun-avoidance constraints on MESSENGER place tight limits on instrument boresight directions, and some regions are probed infrequently. If there are strong spatial gradients in the distribution of weakly emitting species, a high-resolution sampling of specific regions may be required to detect them. Summing spectra over time will also aid in the ability to detect weaker emission. Observations to date nonetheless permit strong upper limits to be placed on the abundances of many undetected species, in some cases as functions of time and space. As those limits are lowered with time, the absence of detections can provide insight into surface composition and the potential source mechanisms of exospheric material.

  2. Geographic mosaic of plant evolution: extrafloral nectary variation mediated by ant and herbivore assemblages.

    PubMed

    Nogueira, Anselmo; Rey, Pedro J; Alcántara, Julio M; Feitosa, Rodrigo M; Lohmann, Lúcia G

    2015-01-01

    Herbivory is an ecological process that is known to generate different patterns of selection on defensive plant traits across populations. Studies on this topic could greatly benefit from the general framework of the Geographic Mosaic Theory of Coevolution (GMT). Here, we hypothesize that herbivory represents a strong pressure for extrafloral nectary (EFN) bearing plants, with differences in herbivore and ant visitor assemblages leading to different evolutionary pressures among localities and ultimately to differences in EFN abundance and function. In this study, we investigate this hypothesis by analyzing 10 populations of Anemopaegma album (30 individuals per population) distributed through ca. 600 km of Neotropical savanna and covering most of the geographic range of this plant species. A common garden experiment revealed a phenotypic differentiation in EFN abundance, in which field and experimental plants showed a similar pattern of EFN variation among populations. We also did not find significant correlations between EFN traits and ant abundance, herbivory and plant performance across localities. Instead, a more complex pattern of ant-EFN variation, a geographic mosaic, emerged throughout the geographical range of A. album. We modeled the functional relationship between EFNs and ant traits across ant species and extended this phenotypic interface to characterize local situations of phenotypic matching and mismatching at the population level. Two distinct types of phenotypic matching emerged throughout populations: (1) a population with smaller ants (Crematogaster crinosa) matched with low abundance of EFNs; and (2) seven populations with bigger ants (Camponotus species) matched with higher EFN abundances. Three matched populations showed the highest plant performance and narrower variance of EFN abundance, representing potential plant evolutionary hotspots. Cases of mismatched and matched populations with the lowest performance were associated with abundant

  3. Phylogeography in Response to Reproductive Strategies and Ecogeographic Isolation in Ant Species on Madagascar: Genus Mystrium (Formicidae: Amblyoponinae)

    PubMed Central

    Graham, Natalie R.; Fisher, Brian L.; Girman, Derek J.

    2016-01-01

    The bulk of models used to understand the species diversification on Madagascar have been constructed using vertebrate taxa. It is not clear how these models affect less vagile species that may interact at a variety of spatial scales. Several studies on vertebrates have divided Madagascar into east-west bioclimatic regions, suggesting there is a fundamental division between eastern wet-adapted and western dry-adapted taxa. An alternative model of ecogeographic constraints shows a north-south division. We test whether the diversification in a small arthropod with variable degrees of dispersal conform to either model of ecogeographic constraints proposed for vertebrate taxa. We employ a molecular taxonomic dataset using ~2 kilobases nuDNA (Wg, LW Rh, Abd-A, 28s) and 790 basepairs mtDNA (CO1), along with geographic and habitat data, to examine the diversification patterns of the ant genus Mystrium Roger, 1862, (Subfamily Amblyoponinae) from Madagascar. The nuclear and mitochondrial phylogenies were both congruent with morphospecies as indicated in a recent revision of the genus. Species of Mystrium practice different colony reproductive strategies (winged queens vs non-winged queens). Alternate reproductive strategies led to inequalities in female dispersal ability among species, providing an additional layer for examination of the impacts of vagility on divergence, especially when measured using a maternally inherited locus. Mystrium species distribution patterns support these models of ecogeographic constraints. Reproductive strategy effected how Mystrium mtDNA lineages were associated with large-scale habitat distinctions and various topographical features. Furthermore, in some cases we find microgeographic population structure which appears to have been impacted by localized habitat differences (tsingy limestone formations, littoral forest) on a scale much smaller than that found in vertebrates. The current system offers a finer scale look at species

  4. Phylogeography in Response to Reproductive Strategies and Ecogeographic Isolation in Ant Species on Madagascar: Genus Mystrium (Formicidae: Amblyoponinae).

    PubMed

    Graham, Natalie R; Fisher, Brian L; Girman, Derek J

    2016-01-01

    The bulk of models used to understand the species diversification on Madagascar have been constructed using vertebrate taxa. It is not clear how these models affect less vagile species that may interact at a variety of spatial scales. Several studies on vertebrates have divided Madagascar into east-west bioclimatic regions, suggesting there is a fundamental division between eastern wet-adapted and western dry-adapted taxa. An alternative model of ecogeographic constraints shows a north-south division. We test whether the diversification in a small arthropod with variable degrees of dispersal conform to either model of ecogeographic constraints proposed for vertebrate taxa. We employ a molecular taxonomic dataset using ~2 kilobases nuDNA (Wg, LW Rh, Abd-A, 28s) and 790 basepairs mtDNA (CO1), along with geographic and habitat data, to examine the diversification patterns of the ant genus Mystrium Roger, 1862, (Subfamily Amblyoponinae) from Madagascar. The nuclear and mitochondrial phylogenies were both congruent with morphospecies as indicated in a recent revision of the genus. Species of Mystrium practice different colony reproductive strategies (winged queens vs non-winged queens). Alternate reproductive strategies led to inequalities in female dispersal ability among species, providing an additional layer for examination of the impacts of vagility on divergence, especially when measured using a maternally inherited locus. Mystrium species distribution patterns support these models of ecogeographic constraints. Reproductive strategy effected how Mystrium mtDNA lineages were associated with large-scale habitat distinctions and various topographical features. Furthermore, in some cases we find microgeographic population structure which appears to have been impacted by localized habitat differences (tsingy limestone formations, littoral forest) on a scale much smaller than that found in vertebrates. The current system offers a finer scale look at species

  5. Experimental evidence that human impacts drive fire ant invasions and ecological change

    PubMed Central

    King, Joshua R.; Tschinkel, Walter R.

    2008-01-01

    Biological invasions are often closely associated with human impacts and it is difficult to determine whether either or both are responsible for the negative impacts on native communities. Here, we show that human activity, not biological invasion, is the primary driver of negative effects on native communities and of the process of invasion itself. In a large-scale experiment, we combined additions of the exotic fire ant, Solenopsis invicta, with 2 disturbance treatments, mowing and plowing, in a fully crossed factorial design. Results indicate that plowing, in the absence of fire ants, greatly diminished total native ant abundance and diversity, whereas fire ants, even in the absence of disturbance, diminished some, but not all, native ant abundance and diversity. Transplanted fire ant colonies were favored by disturbance. In the absence of disturbance and on their own, fire ants do not invade the forest habitats of native ants. Our results demonstrate that fire ants are “passengers” rather than “drivers” of ecological change. We propose that fire ants may be representative of other invasive species that would be better described as disturbance specialists. Current pest management and conservation strategies should be reassessed to better account for the central role of human impacts in the process of biological invasion. PMID:19064909

  6. Relating large-scale climate variability to local species abundance: ENSO forcing and shrimp in Breton Sound, Louisiana, USA

    USGS Publications Warehouse

    Piazza, Bryan P.; LaPeyre, Megan K.; Keim, B.D.

    2010-01-01

    Climate creates environmental constraints (filters) that affect the abundance and distribution of species. In estuaries, these constraints often result from variability in water flow properties and environmental conditions (i.e. water flow, salinity, water temperature) and can have significant effects on the abundance and distribution of commercially important nekton species. We investigated links between large-scale climate variability and juvenile brown shrimp Farfantepenaeus aztecus abundance in Breton Sound estuary, Louisiana (USA). Our goals were to (1) determine if a teleconnection exists between local juvenile brown shrimp abundance and the El Niño Southern Oscillation (ENSO) and (2) relate that linkage to environmental constraints that may affect juvenile brown shrimp recruitment to, and survival in, the estuary. Our results identified a teleconnection between winter ENSO conditions and juvenile brown shrimp abundance in Breton Sound estuary the following spring. The physical connection results from the impact of ENSO on winter weather conditions in Breton Sound (air pressure, temperature, and precipitation). Juvenile brown shrimp abundance effects lagged ENSO by 3 mo: lower than average abundances of juvenile brown shrimp were caught in springs following winter El Niño events, and higher than average abundances of brown shrimp were caught in springs following La Niña winters. Salinity was the dominant ENSO-forced environmental filter for juvenile brown shrimp. Spring salinity was cumulatively forced by winter river discharge, winter wind forcing, and spring precipitation. Thus, predicting brown shrimp abundance requires incorporating climate variability into models.

  7. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    NASA Astrophysics Data System (ADS)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  8. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    PubMed Central

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to −25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g−1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  9. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China.

    PubMed

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 10(4) to 8.5 × 10(9) copies g(-1)), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  10. Seasonal Dynamics of Ant Community Structure in the Moroccan Argan Forest

    PubMed Central

    Keroumi, Abderrahim El; Naamani, Khalid; Soummane, Hassna; Dahbi, Abdallah

    2012-01-01

    In this study we describe the structure and composition of ant communities in the endemic Moroccan Argan forest, using pitfall traps sampling technique throughout the four seasons between May 2006 and February 2007. The study focused on two distinct climatic habitats within the Essaouira Argan forest, a semi-continental site at Lahssinate, and a coastal site at Boutazarte. Thirteen different ant species were identified, belonging to seven genera. Monomorium subopacum Smith and Tapinoma simrothi Krausse-Heldrungen (Hymenoptera: Formicidae) were the most abundant and behaviorally dominant ant species in the arganeraie. In addition, more specimens were captured in the semi-continental site than in the coastal area. However, no significant difference was observed in species richness, evenness, or diversity between both sites. Composition and community structure showed clear seasonal dynamics. The number of species, their abundance, their diversity, and their evenness per Argan tree were significantly dissimilar among seasons. The richness (except between summer and autumn), and the abundance and the evenness of ant species among communities, showed a significant difference between the dry period (summer and spring) and the rainy period (winter and autumn). Higher abundance and richness values occurred in the dry period of the year. Ant species dominance and seasonal climatic variations in the arganeraie might be among the main factors affecting the composition, structure, and foraging activity of ant communities. This study, together with recent findings on ant predation behavior below Argan trees, highlights the promising use of dominant ant species as potential agents of Mediterranean fruit fly bio-control in the Argan forest and surrounding ecosystems. PMID:23421815

  11. LogCauchy, log-sech and lognormal distributions of species abundances in forest communities

    USGS Publications Warehouse

    Yin, Z.-Y.; Peng, S.-L.; Ren, H.; Guo, Q.; Chen, Z.-H.

    2005-01-01

    Species-abundance (SA) pattern is one of the most fundamental aspects of biological community structure, providing important information regarding species richness, species-area relation and succession. To better describe the SA distribution (SAD) in a community, based on the widely used lognormal (LN) distribution model with exp(-x2) roll-off on Preston's octave scale, this study proposed two additional models, logCauchy (LC) and log-sech (LS), respectively with roll-offs of simple x-2 and e-x. The estimation of the theoretical total number of species in the whole community, S*, including very rare species not yet collected in sample, was derived from the left-truncation of each distribution. We fitted these three models by Levenberg-Marquardt nonlinear regression and measured the model fit to the data using coefficient of determination of regression, parameters' t-test and distribution's Kolmogorov-Smirnov (KS) test. Examining the SA data from six forest communities (five in lower subtropics and one in tropics), we found that: (1) on a log scale, all three models that are bell-shaped and left-truncated statistically adequately fitted the observed SADs, and the LC and LS did better than the LN; (2) from each model and for each community the S* values estimated by the integral and summation methods were almost equal, allowing us to estimate S* using a simple integral formula and to estimate its asymptotic confidence internals by regression of a transformed model containing it; (3) following the order of LC, LS, and LN, the fitted distributions became lower in the peak, less concave in the side, and shorter in the tail, and overall the LC tended to overestimate, the LN tended to underestimate, while the LS was intermediate but slightly tended to underestimate, the observed SADs (particularly the number of common species in the right tail); (4) the six communities had some similar structural properties such as following similar distribution models, having a common

  12. Species richness and relative abundance of breeding birds in forests of the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Nelms, C.O.; Twedt, D.J.

    1993-01-01

    In 1992, the Vicksburg Field Research Station of the National Wetlands Research Center initiated research on the ecology of migratory birds within forests of the Mississippi Alluvial Valley (MAV). The MAV was historically a nearly contiguous bottomland hardwood forest, however, only remnants remain. These remnants are fragmented and often influenced by drainage projects, silviculture, agriculture, and urban development. Our objectives are to assess species richness and relative abundance, and to relate these to the size, quality, and composition of forest stands. Species richness and relative abundance were estimated for 53 randomly selected forest sites using 1 to 8 point counts per site, depending on the size of the forest fragment. However, statistical comparisons among sites will be restricted to an equal number ofpoint counts within the sites being compared. Point counts, lasting five minutes, were conducted from 11 May to 29 June 1992, foltowing Ralph, Sauer, and Droege (Point Count Standards; memo dated 9 March 1992). Vegetation was measured at the first three points on each site using a modification of the methods employed by Martin and Roper (Condor 90: 5 1-57; 1988). During 252 counts, 7 1 species were encountered, but only 62 species were encountered within a 50-m radius of point center. The mean number of species encountered within 50 m of a point, was 7.3 (s.d. = 2.7) and the mean number of individuals was 11.2 (s.d. = 4.2). The mean number of species detected at any distance was 9.6 (s.d, = 2.8) and the mean number of individuals was 15.6 (s.d. = 7.9). The most frequently encountered warblers in the MAV were Prothonotary Warbler and Northern Parula. Rarely encountered warblers were American Redstart and Worm-eating Warbler. The genera, Quercus, Ulmus, Carya, and Celtis were each encountered at 80 or more of the 152 points at which vegetation was sampled. Species most frequentlyencountered were: sugarberry (Celtis laevagata), water hickory (Caqa

  13. Variation in local abundance and species richness of stream fishes in relation to dispersal barriers: Implications for management and conservation

    USGS Publications Warehouse

    Nislow, K.H.; Hudy, M.; Letcher, B.H.; Smith, E.P.

    2011-01-01

    1.Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream-dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population- and community-level effects can be difficult to detect. 2.In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above- and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3.Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4.Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at

  14. Declines in abundance and species richness of birds following a major flood on the upper Mississippi River

    USGS Publications Warehouse

    Knutson, M.G.; Klaas, E.E.

    1997-01-01

    We examined the abundance and species richness of birds breeding in floodplain forests of the Upper Mississippi River in 1992 through 1994, and used a two-way ANOVA with repeated measures to identify effects of a 1993 flood on the bird community. Sixty-five study plots were divided into treatment and control plots based on whether they were flooded in 1993. Among 84 species observed on all plots, 41 species decreased in abundance from 1992 to 1994, 13 increased, 5 were unchanged. Sample sizes were inadequate to evaluate trends for 25 species. Species richness declined over the three-year period. Of 36 species tested with the ANOVA, 20 had a significant main effect of Year. Cool, wet conditions may have contributed to poor reproductive success in 1993, and resulted in widespread decline in floodplain bird abundance during the year following the flood. Bird abundance increased on most unflooded plots in 1993, probably because birds were displaced from flooded plots. This pattern was most striking for neotropical migrants, species preferring habitat edges, lower canopy nesters, and species that forage in the air. We suggest that periodic major flooding may maintain suitable floodplain habitat for Prothonotary Warblers (Protonotaria citrea) in the face of competition from House Wrens (Troglodytes aedon) for nest sites.

  15. Predicting recovery criteria for threatened and endangered plant species on the basis of past abundances and biological traits.

    PubMed

    Neel, Maile C; Che-Castaldo, Judy P

    2013-04-01

    Recovery plans for species listed under the U.S. Endangered Species Act are required to specify measurable criteria that can be used to determine when the species can be delisted. For the 642 listed endangered and threatened plant species that have recovery plans, we applied recursive partitioning methods to test whether the number of individuals or populations required for delisting can be predicted on the basis of distributional and biological traits, previous abundance at multiple time steps, or a combination of traits and previous abundances. We also tested listing status (threatened or endangered) and the year the recovery plan was written as predictors of recovery criteria. We analyzed separately recovery criteria that were stated as number of populations and as number of individuals (population-based and individual-based criteria, respectively). Previous abundances alone were relatively good predictors of population-based recovery criteria. Fewer populations, but a greater proportion of historically known populations, were required to delist species that had few populations at listing compared with species that had more populations at listing. Previous abundances were also good predictors of individual-based delisting criteria when models included both abundances and traits. The physiographic division in which the species occur was also a good predictor of individual-based criteria. Our results suggest managers are relying on previous abundances and patterns of decline as guidelines for setting recovery criteria. This may be justifiable in that previous abundances inform managers of the effects of both intrinsic traits and extrinsic threats that interact and determine extinction risk. PMID:23293869

  16. Species composition and seasonal abundance of sandflies (Diptera: Psychodidae: Phlebotominae) in coffee agroecosystems.

    PubMed

    Pérez, Jeanneth; Virgen, Armando; Rojas, Julio Cesar; Rebollar-Téllez, Eduardo Alfonso; Alfredo, Castillo; Infante, Francisco; Mikery, Oscar; Marina, Carlos Felix; Ibáñez-Bernal, Sergio

    2014-02-01

    The composition and seasonal occurrence of sandflies were investigated in coffee agroecosystems in the Soconusco region of Chiapas, Mexico. Insect sampling was performed on three plantations located at different altitudes: Finca Guadalupe Zajú [1,000 m above sea level (a.s.l.)], Finca Argovia (613 m a.s.l.) and Teotihuacán del Valle (429 m a.s.l.). Sandflies were sampled monthly from August 2007-July 2008 using three sampling methods: Shannon traps, CDC miniature light traps and Disney traps. Sampling was conducted for 3 h during three consecutive nights, beginning at sunset. A total of 4,387 sandflies were collected during the course of the study: 2,718 individuals in Finca Guadalupe Zajú, 605 in Finca Argovia and 1,064 in Teotihuacán del Valle. The Shannon traps captured 94.3% of the total sandflies, while the CDC light traps and Disney traps captured 4.9% and 0.8%, respectively. More females than males were collected at all sites. While the number of sandflies captured was positively correlated with temperature and relative humidity, a negative correlation was observed between sandfly numbers and rainfall. Five species of sandflies were captured: Lutzomyia cruciata , Lutzomyia texana , Lutzomyia ovallesi , Lutzomyia cratifer / undulata and Brumptomyia sp. Lu. cruciata , constituting 98.8% of the total, was the most abundant species. None of the captured sandflies was infected with Leishmania spp. PMID:24271002

  17. Historical abundance and morphology of Didymosphenia species in Naknek Lake, Alaska

    USGS Publications Warehouse

    Pite, D.P.; Lane, K.A.; Hermann, A.K.; Spaulding, S.A.; Finney, B.P.

    2009-01-01

    Since the 1980s, nuisance blooms of Didymosphenia geminata (Lyngbye) M. Schmidt have been documented in sites that are warmer and more mesotrophic than historical records indicate. While the invasion of D. geminata in New Zealand is well documented, it is less clear whether nuisance blooms in North America are a new phenomenon. In order to test the hypothesis that D. geminata blooms have increased in recent years, we examined the historical record of this species in sediments of Naknek Lake, in Katmai National Park, Alaska. Chronological control was established by relating the presence of two ash layers to known volcanic eruptions. We identified two species of Didymosphenia within the sediment record: D. geminata and D. clavaherculis (Ehrenberg) Metzeltin et Lange-Bertalot. This is the first published record of D. clavaherculis in North America. We found no statistically significant change in the numerical presence of D. geminata or D. clavaherculis, as a group, in Naknek Lake between the years 1218 and 2003. While there has been no sudden, or recent, increase in abundance of Didymosphenia in Naknek Lake, morphological features of D. geminata populations in Naknek Lake are distinct compared to morphological features of D. geminata in streams containing nuisance blooms from sites in North America and New Zealand. Variance in the morphology of Didymosphenia cells may help determine relationships between distinct sub-populations and establish the history of habitat invasion.

  18. Species composition and seasonal abundance of sandflies (Diptera: Psychodidae: Phlebotominae) in coffee agroecosystems

    PubMed Central

    Pérez, Jeanneth; Virgen, Armando; Rojas, Julio Cesar; Rebollar-Téllez, Eduardo Alfonso; Alfredo, Castillo; Infante, Francisco; Mikery, Oscar; Marina, Carlos Felix; Ibáñez-Bernal, Sergio

    2013-01-01

    The composition and seasonal occurrence of sandflies were investigated in coffee agroecosystems in the Soconusco region of Chiapas, Mexico. Insect sampling was performed on three plantations located at different altitudes: Finca Guadalupe Zajú [1,000 m above sea level (a.s.l.)], Finca Argovia (613 m a.s.l.) and Teotihuacán del Valle (429 m a.s.l.). Sandflies were sampled monthly from August 2007-July 2008 using three sampling methods: Shannon traps, CDC miniature light traps and Disney traps. Sampling was conducted for 3 h during three consecutive nights, beginning at sunset. A total of 4,387 sandflies were collected during the course of the study: 2,718 individuals in Finca Guadalupe Zajú, 605 in Finca Argovia and 1,064 in Teotihuacán del Valle. The Shannon traps captured 94.3% of the total sandflies, while the CDC light traps and Disney traps captured 4.9% and 0.8%, respectively. More females than males were collected at all sites. While the number of sandflies captured was positively correlated with temperature and relative humidity, a negative correlation was observed between sandfly numbers and rainfall. Five species of sandflies were captured: Lutzomyia cruciata , Lutzomyia texana , Lutzomyia ovallesi , Lutzomyia cratifer / undulata and Brumptomyia sp. Lu. cruciata , constituting 98.8% of the total, was the most abundant species. None of the captured sandflies was infected with Leishmania spp. PMID:24271002

  19. Field tests of interspecific competition in ant assemblages: revisiting the dominant red wood ants.

    PubMed

    Gibb, Heloise; Johansson, Therese

    2011-05-01

    1. There has been considerable debate on the importance of competition in ecological communities, but its importance in structuring ant assemblages has often been uncritically accepted. Here, we briefly review field experiments examining competition in ant assemblages and use a removal experiment to test the effect of the classical territorial dominant ant, Formica aquilonia. Ants of this species group are thought to structure communities through a dominance hierarchy. 2. First, we used pitfall traps to compare the abundance of other ants in replicated sites with low and high densities of F. aquilonia. We found differences in community composition, in particular, Camponotus herculeanus was more common in low-density sites, in accordance with predictions. Differences in ant assemblages were not owing to differences in measured habitat variables. 3. We removed F. aquilonia from a set of high-density sites, using physical and chemical methods, and repeated these procedures at procedural control sites. One year after removal, abundances of F. aquilonia at removal sites were similar to those at low-density sites. However, the composition of other species did not change in response to F. aquilonia removal. Replication rates were identical in the mensurative and experimental components of this study, so this is unlikely to be owing to the analysis being insufficiently powerful. 4. We suggest three possibilities for the lack of difference. First, the study may have been too short term or small scale to detect differences. However, previous studies have shown effects on smaller spatial- and temporal-scales. Second, priority effects may be important in the successful colonisation by F. aquilonia. Thirdly, boreal ant assemblages may be too depauperate for redundancy in ecological roles and for competition to play an important structuring role. 5. We thus recommend that long-term large-scale experiments be considered essential if we are to distinguish between competing

  20. Acoustic communication by ants

    NASA Astrophysics Data System (ADS)

    Hickling, Robert

    2002-05-01

    Many ant species communicate acoustically by stridulating, i.e., running a scraper over a washboard-like set of ridges. Ants appear to be insensitive to airborne sound. Consequently, myrmecologists have concluded that the stridulatory signals are transmitted through the substrate. This has tended to diminish the importance of acoustic communication, and it is currently believed that ant communication is based almost exclusively on pheromones, with acoustic communication assigned an almost nonexistent role. However, it can be shown that acoustic communication between ants is effective only if the medium is air and not the substrate. How, then, is it possible for ants to appear deaf to airborne sound and yet communicate through the air? An explanation is provided in a paper [R. Hickling and R. L. Brown, ``Analysis of acoustic communication by ants,'' J. Acoust. Soc. Am. 108, 1920-1929 (2000)]. Ants are small relative to the wavelengths they generate. Hence, they create a near field, which is characterized by a major increase in sound velocity (particle velocity of sound) in the vicinity of the source. Hair sensilla on the ants' antennae respond to sound velocity. Thus, ants are able to detect near-field sound from other ants and to exclude extraneous airborne sound.

  1. Pre-adaptive cadmium tolerance in the black garden ant.

    PubMed

    Grześ, Irena M; Okrutniak, Mateusz

    2016-04-01

    The black garden ant Lasius niger is a common component of habitats subjected to anthropological stress. The species can develop very abundant populations in metal-polluted areas. In this study, we raised the question of its tolerance to Cd pollution. Workers of L. niger were collected from 54 colonies, originating from 19 sites located along an increasing gradient of Cd pollution in Poland. Ants were exposed to a range of dietary Cd concentrations in a controlled 14-day laboratory experiment in order to test Cd-sensitivity in the investigated ants. The level of ant mortality was recorded as the endpoint of the experiment. We used much higher concentrations of dietary Cd than those the ants are most likely exposed to in field conditions. The investigated ants were highly Cd-tolerant; even a very high dietary Cd concentration of approx. 1300 mg/kg did not affect mortality of workers when compared to the control. Mortality was unrelated to Cd-pollution along the pollution gradient, meaning that high Cd-tolerance can be found even in ants from unpolluted areas. The results stress the importance of pre-adaptive mechanisms in the development of metal tolerance in ants. PMID:26820778

  2. Models of Experimentally Derived Competitive Effects Predict Biogeographical Differences in the Abundance of Invasive and Native Plant Species

    PubMed Central

    Xiao, Sa; Ni, Guangyan; Callaway, Ragan M.

    2013-01-01

    Mono-dominance by invasive species provides opportunities to explore determinants of plant distributions and abundance; however, linking mechanistic results from small scale experiments to patterns in nature is difficult. We used experimentally derived competitive effects of an invader in North America, Acroptilon repens, on species with which it co-occurs in its native range of Uzbekistan and on species with which it occurs in its non-native ranges in North America, in individual-based models. We found that competitive effects yielded relative abundances of Acroptilon and other species in models that were qualitatively similar to those observed in the field in the two ranges. In its non-native range, Acroptilon can occur in nearly pure monocultures at local scales, whereas such nearly pure stands of Acroptilon appear to be much less common in its native range. Experimentally derived competitive effects of Acroptilon on other species predicted Acroptilon to be 4–9 times more proportionally abundant than natives in the North American models, but proportionally equal to or less than the abundance of natives in the Eurasian models. Our results suggest a novel way to integrate complex combinations of interactions simultaneously, and that biogeographical differences in the competitive effects of an invader correspond well with biogeographical differences in abundance and impact. PMID:24265701

  3. Plankton studies in San Francisco Bay; VI, Zooplankton species composition and abundance in the North Bay, 1979-1980

    USGS Publications Warehouse

    Hutchinson, Anne

    1982-01-01

    Data are presented that summarize zooplankton species composition and abundance in North San Francisco Bay during 1979 and 1980. Sampling was conducted once monthly at six stations during 1979 and twice monthly at sixteen stations during 1980. Samples were collected by pump at three depths in the shipping channel and at one depth over the shoals. Subsamples were enumerated while alive. Total zooplankton biomass, as carbon, was calculated from estimated carbon quotas and abundances of each organism enumerated.

  4. Modelling the Abundances of Two Major Culicoides (Diptera: Ceratopogonidae) Species in the Niayes Area of Senegal.

    PubMed

    Diarra, Maryam; Fall, Moussa; Lancelot, Renaud; Diop, Aliou; Fall, Assane G; Dicko, Ahmadou; Seck, Momar Talla; Garros, Claire; Allène, Xavier; Rakotoarivony, Ignace; Bakhoum, Mame Thierno; Bouyer, Jérémy; Guis, Hélène

    2015-01-01

    In Senegal, considerable mortality in the equine population and hence major economic losses were caused by the African horse sickness (AHS) epizootic in 2007. Culicoides oxystoma and Culicoides imicola, known or suspected of being vectors of bluetongue and AHS viruses are two predominant species in the vicinity of horses and are present all year-round in Niayes area, Senegal. The aim of this study was to better understand the environmental and climatic drivers of the dynamics of these two species. Culicoides collections were obtained using OVI (Onderstepoort Veterinary Institute) light traps at each of the 5 sites for three nights of consecutive collection per month over one year. Cross Correlation Map analysis was performed to determine the time-lags for which environmental variables and abundance data were the most correlated. C. oxystoma and C. imicola count data were highly variable and overdispersed. Despite modelling large Culicoides counts (over 220,000 Culicoides captured in 354 night-traps), using on-site climate measures, overdispersion persisted in Poisson, negative binomial, Poisson regression mixed-effect with random effect at the site of capture models. The only model able to take into account overdispersion was the Poisson regression mixed-effect model with nested random effects at the site and date of capture levels. According to this model, meteorological variables that contribute to explaining the dynamics of C. oxystoma and C. imicola abundances were: mean temperature and relative humidity of the capture day, mean humidity between 21 and 19 days prior a capture event, density of ruminants, percentage cover of water bodies within a 2 km radius and interaction between temperature and humidity for C. oxystoma; mean rainfall and NDVI of the capture day and percentage cover of water bodies for C. imicola. Other variables such as soil moisture, wind speed, degree days, land cover or landscape metrics could be tested to improve the models. Further work

  5. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community

    PubMed Central

    Labra, Fabio A; Hernández-Miranda, Eduardo; Quiñones, Renato A

    2015-01-01

    We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species-averaged values with individual-based estimates which allow species to potentially occupy multiple size classes. For individual-based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species-based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual-based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species-based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic

  6. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community.

    PubMed

    Labra, Fabio A; Hernández-Miranda, Eduardo; Quiñones, Renato A

    2015-01-01

    We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species-averaged values with individual-based estimates which allow species to potentially occupy multiple size classes. For individual-based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species-based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual-based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species-based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic

  7. Temnothorax crasecundus sp. n. – a cryptic Eurocaucasian ant species (Hymenoptera, Formicidae) discovered by Nest Centroid Clustering

    PubMed Central

    Seifert, Bernhard; Csösz, Sandor

    2015-01-01

    Abstract The paper integrates two independent studies of numeric morphology-based alpha-taxonomy of the cryptic ant species Temnothorax crassispinus (Karavajev, 1926) and Temnothorax crasecundus sp. n. conducted by different investigators, using different equipment, considering different character combinations and evaluating different samples. Samples investigated included 603 individual workers from 203 nests – thereof 104 nest samples measured by Seifert and 99 by Csösz. The material originated from Europe, Asia Minor and Caucasia. There was a very strong interspecific overlap in any of the 29 shape characters recorded and subjective expert determination failed in many cases. Primary classification hypotheses were formed by the exploratory data analysis Nest Centroid (NC) clustering and corrected to final species hypotheses by an iterative linear discriminant analysis algorithm. The evaluation of Seifert’s and Csösz’s data sets arrived at fully congruent conclusions. NC-Ward and NC-K-means clustering disagreed from the final species hypothesis in only 1.9 and 1.9% of the samples in Seifert’s data set and by 1.1 and 2.1% in Csösz’s data set which is a strong argument for heterospecificity. The type series of Temnothorax crassispinus and Temnothorax crasecundus sp. n. were allocated to different clusters with p = 0.9851 and p = 0.9912 respectively. The type series of the junior synonym Temnothorax slavonicus (Seifert, 1995) was allocated to the Temnothorax crassispinus cluster with p = 0.9927. Temnothorax crasecundus sp. n. and Temnothorax crassispinus are parapatric species with a long contact zone stretching from the Peloponnisos peninsula across Bulgaria northeast to the southern Ukraine. There is no indication for occurrence of interspecifically mixed nests or intraspecific polymorphism. However, a significant reduction of interspecific morphological distance at sites with syntopic occurrence of both species indicates local hybridization. The

  8. Determinants of distribution and abundance of two shrub species, Guiera senegalensis and Piliostigma reticulatum, in Peanut Basin, Senegal

    NASA Astrophysics Data System (ADS)

    Lufafa, A.; Diédhiou, I.; Ndiaye, N.; Kizito, F.; Dick, R.; Noller, J. S.

    2005-05-01

    The ability to predict and manage the course of landscape-level ecological change and its longer-term consequences on ecosystem functions (e.g. carbon stabilization and soil degradation mitigation) depends on the ability to understand how a particular ecosystem functions and the mechanisms that control the distribution, configuration and abundance of key species. Guiera senegalensis and Piliostigma reticulatum are two native shrub species that are widely found in Sub-Saharan Africa but unrecognized in their potential role in regulating hydrological and carbon cycles in both natural and agro-ecosystems. Our objective was to conduct a study on the determinants of landscape-level distribution and abundance of these shrub species as a basis for ecological modeling and management of this fragile semiarid environment. Formal Recursive Inference Modeling was used to adduce determinants of species presence while logistic regression and geostatistical approaches were used to estimate shrub abundance within their communities. The results showed that distribution of the shrubs is controlled by four factors: geological substrate, mean annual temperature, mean annual rainfall and landform (profile convexity). Relative abundance within the shrub communities is under the influence of mean annual rainfall, maximum annual temperature and elevation (for G. senegalensis) and mean annual rainfall, mean annual temperature, elevation and landform (profile convexity) (for P. reticulatum). Predictive models for shrub distribution and abundance were generally poor, probably highlighting the weakness of statistical models in analysis and quantification of the spatial structure of ecosystems.

  9. Species Diversity, Abundance, and Host Preferences of Mosquitoes (Diptera: Culicidae) in Two Different Ecotypes of Madagascar With Recent RVFV Transmission.

    PubMed

    Jean Jose Nepomichene, Thiery Nirina; Elissa, Nohal; Cardinale, Eric; Boyer, Sebastien

    2015-09-01

    Mosquito diversity and abundance were examined in six Madagascan villages in either arid (Toliary II district) or humid (Mampikony district) ecotypes, each with a history of Rift Valley fever virus transmission. Centers for Disease Control and Prevention light traps without CO2 (LT) placed near ruminant parks and animal-baited net trap (NT) baited with either zebu or sheep/goat were used to sample mosquitoes, on two occasions between March 2011 and October 2011. Culex tritaeniorhynchus (Giles) was the most abundant species, followed by Culex antennatus (Becker) and Anopheles squamosus/cydippis (Theobald/de Meillon). These three species comprised more than half of all mosquitoes collected. The NT captured more mosquitoes in diversity and in abundance than the LT, and also caught more individuals of each species, except for An. squamosus/cydippis. Highest diversity and abundance were observed in the humid and warm district of Mampikony. No host preference was highlighted, except for Cx. tritaeniorhynchus presenting a blood preference for zebu baits. The description of species diversity, abundance, and host preference described herein can inform the development of control measures to reduce the risk of mosquito-borne diseases in Madagascar. PMID:26336259

  10. Geographic Mosaic of Plant Evolution: Extrafloral Nectary Variation Mediated by Ant and Herbivore Assemblages

    PubMed Central

    Nogueira, Anselmo; Rey, Pedro J.; Alcántara, Julio M.; Feitosa, Rodrigo M.; Lohmann, Lúcia G.

    2015-01-01

    Herbivory is an ecological process that is known to generate different patterns of selection on defensive plant traits across populations. Studies on this topic could greatly benefit from the general framework of the Geographic Mosaic Theory of Coevolution (GMT). Here, we hypothesize that herbivory represents a strong pressure for extrafloral nectary (EFN) bearing plants, with differences in herbivore and ant visitor assemblages leading to different evolutionary pressures among localities and ultimately to differences in EFN abundance and function. In this study, we investigate this hypothesis by analyzing 10 populations of Anemopaegma album (30 individuals per population) distributed through ca. 600 km of Neotropical savanna and covering most of the geographic range of this plant species. A common garden experiment revealed a phenotypic differentiation in EFN abundance, in which field and experimental plants showed a similar pattern of EFN variation among populations. We also did not find significant correlations between EFN traits and ant abundance, herbivory and plant performance across localities. Instead, a more complex pattern of ant–EFN variation, a geographic mosaic, emerged throughout the geographical range of A. album. We modeled the functional relationship between EFNs and ant traits across ant species and extended this phenotypic interface to characterize local situations of phenotypic matching and mismatching at the population level. Two distinct types of phenotypic matching emerged throughout populations: (1) a population with smaller ants (Crematogaster crinosa) matched with low abundance of EFNs; and (2) seven populations with bigger ants (Camponotus species) matched with higher EFN abundances. Three matched populations showed the highest plant performance and narrower variance of EFN abundance, representing potential plant evolutionary hotspots. Cases of mismatched and matched populations with the lowest performance were associated with abundant

  11. [Effects of environmental factors on the ant fauna of restinga community in Rio de Janeiro, Brazil].

    PubMed

    Vargas, André B; Mayhé-Nunes, Antônio J; Queiroz, Jarbas M; Souza, Guilherme O; Ramos, Elaine F

    2007-01-01

    The effects of environmental factors on the richness, diversity and abundance of ants were studied in the Restinga da Marambaia, south coast of Rio de Janeiro State, Brazil. The samples were taken using pitfall traps in August/2004 (winter) and March/2005 (summer) in three different vegetation types: (1) herbaceous ridge palmoid (homogeneous habitat); (2) shrub dune thicket and (3) ridge forest (heterogeneous habitats). At each habitat a range of environmental attributes was recorded: soil temperature and humidity, percentage of soil covering by litter and litter depth. Ninety-two ant species belonging to 36 genera and eight subfamilies were recorded. Density of ant species and abundance varied significantly between habitats and seasons; ant diversity varied only between habitats. Homogeneous habitat had lower ant species density, abundance and diversity than heterogeneous habitats. The two first variables were positively correlated with litter depth and both were higher in summer than in winter samples. There were more species of Ponerinae and Ectatomminae in heterogeneous than in the homogeneous habitat, whereas the Formicinae species were more abundant in the later. PMID:17420859

  12. Arbovirus circulation, temporal distribution, and abundance of mosquito species in two Carolina bay habitats.

    PubMed

    Ortiz, D I; Wozniak, A; Tolson, M W; Turner, P E

    2005-01-01

    Carolina bays, a type of geomorphic feature, may be important in the ecology of mosquito vectors in South Carolina. Their hydrology varies from wetland habitats with marked flooding/drying regimes to permanently flooded spring-fed lakes. Moreover, they possess characteristics that contribute to the support of a particularly abundant and diverse invertebrate fauna. Although it has been estimated that 2,700+ bays exist in South Carolina, approximately 97% have been altered; < or = 200 bays remain intact, and only 36 are protected by state-funded conservation projects. We conducted a study in two distinct Carolina bay habitats, Savage Bay Heritage Preserve (SBHP) and Woods Bay State Park (WBSP), from June 1997 to July 1998 to determine mosquito temporal distribution, species composition, and the occurrence of arbovirus activity. The largest mosquito collection was obtained at WBSP (n = 31,172) representing 25 species followed by SBHP (n = 3,940) with 24 species. Anopheles crucians complex were the most common species encountered in both bays. Two virus isolates were obtained from SBHP in 1997: Keystone (KEY) virus from Ochlerotatus atlanticus-tormentor and Cache Valley (CV) virus from Oc. canadensis canadensis. Twenty-nine (29) arbovirus-positive pools were obtained from WBSP: 28 in 1997 and one in 1998. KEY virus was isolated from three pools of Oc. atlanticus-tormentor and Tensaw (TEN) virus was isolated from two pools of An. crucians complex; 10 isolates could not be identified with the sera available. Additionally, 14 pools of An. crucians complex tested positive for Eastern equine encephalitis (EEE) virus antigen. These represent the first record of KEY and CV viruses in South Carolina. Our data indicate the presence of high mosquito density and diversity in both Carolina bay habitats, which may be influenced, in part, by seasonal changes in their hydroperiods. The study of mosquito and arbovirus ecology in Carolina Bay habitats could provide more information on

  13. [Species-abundance distribution patterns along succession series of Phyllostachys glauca forest in a limestone mountain].

    PubMed

    Shi, Jian-min; Fan, Cheng-fang; Liu, Yang; Yang, Qing-pei; Fang, Kai; Fan, Fang-li; Yang, Guang-yao

    2015-12-01

    To detect the ecological process of the succession series of Phyllostachys glauca forest in a limestone mountain, five niche models, i.e., broken stick model (BSM), niche preemption model (NPM), dominance preemption model (DPM), random assortment model (RAM) and overlap- ping niche model (ONM) were employed to describe the species-abundance distribution patterns (SDPs) of 15 samples. χ² test and Akaike information criterion (AIC) were used to test the fitting effects of the five models. The results showed that the optimal SDP models for P. glauca forest, bamboo-broadleaved mixed forest and broadleaved forest were DPM (χ² = 35.86, AIC = -69.77), NPM (χ² = 1.60, AIC = -94.68) and NPM (χ² = 0.35, AIC = -364.61), respectively. BSM also well fitted the SDP of bamboo-broadleaved mixed forest and broad-leaved forest, while it was unsuitable to describe the SDP of P. glauca forest. The fittings of RAM and ONM in the three forest types were all rejected by the χ² test and AIC. With the development of community succession from P. glauca forest to broadleaved forest, the species richness and evenness increased, and the optimal SDP model changed from DPM to NPM. It was inferred that the change of ecological process from habitat filtration to interspecific competition was the main driving force of the forest succession. The results also indicated that the application of multiple SDP models and test methods would be beneficial to select the best model and deeply understand the ecological process of community succession. PMID:27111994

  14. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    PubMed Central

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  15. Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the Upper Manu National Park, Southeastern Peru.

    PubMed

    Catenazzi, Alessandro; Lehr, Edgar; Rodriguez, Lily O; Vredenburg, Vance T

    2011-04-01

    Amphibians are declining worldwide, but these declines have been particularly dramatic in tropical mountains, where high endemism and vulnerability to an introduced fungal pathogen, Batrachochytrium dendrobatidis (Bd), is associated with amphibian extinctions. We surveyed frogs in the Peruvian Andes in montane forests along a steep elevational gradient (1200-3700 m). We used visual encounter surveys to sample stream-dwelling and arboreal species and leaf-litter plots to sample terrestrial-breeding species. We compared species richness and abundance among the wet seasons of 1999, 2008, and 2009. Despite similar sampling effort among years, the number of species (46 in 1999) declined by 47% between 1999 and 2008 and by 38% between 1999 and 2009. When we combined the number of species we found in 2008 and 2009, the decline from 1999 was 36%. Declines of stream-dwelling and arboreal species (a reduction in species richness of 55%) were much greater than declines of terrestrial-breeding species (reduction of 20% in 2008 and 24% in 2009). Similarly, abundances of stream-dwelling and arboreal frogs were lower in the combined 2008-2009 period than in 1999, whereas densities of frogs in leaf-litter plots did not differ among survey years. These declines may be associated with the infection of frogs with Bd. B. dendrobatidis prevalence correlated significantly with the proportion of species that were absent from the 2008 and 2009 surveys along the elevational gradient. Our results suggest Bd may have arrived at the site between 1999 and 2007, which is consistent with the hypothesis that this pathogen is spreading in epidemic waves along the Andean cordilleras. Our results also indicate a rapid decline of frog species richness and abundance in our study area, a national park that contains many endemic amphibian species and is high in amphibian species richness. PMID:21054530

  16. Spatial patterns in the abundance of the coastal horned lizard

    USGS Publications Warehouse

    Fisher, R.N.; Suarez, A.V.; Case, T.J.

    2002-01-01

    Coastal horned lizards (Phrynosoma coronatum) have undergone severe declines in southern California and are a candidate species for state and federal listing tender the Endangered Species Act. Quantitative data on their habitat use, abundance, and distribution are lacking, however. We investigated the determinants of abundance for coastal horned lizards at multiple spatial scales throughout southern California. Specifically, we estimated lizard distribution and abundance by establishing 256 pitfall trap arrays clustered within 21 sites across four counties. These arrays were sampled bimonthly for 2-3 years. At each array we measured 26 "local" site descriptors and averaged these values with other "regional" measures to determine site characteristics. Our analyses were successful at identifying factors within and among sites correlated with the presence and abundance of coastal horned lizards. These factors included the absence of the invasive Argentine ant (Linepithema humile) (and presence of native ant species eaten by the lizards), the presence of chaparral community plants, and the presence of sandy substrates. At a regional scale the relative abundance of Argentine ants was correlated with the relative amount of developed edge around a site. There was no evidence for spatial autocorrelation, even at the scale of the arrays within sites, suggesting that the determinants of the presence or absence and abundance of horned lizard can vary over relatively small spatial scales (hundreds of meters). Our results suggest that a gap-type approach may miss some of the fine-scale determinants of species abundance in fragmented habitats.

  17. A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    PubMed Central

    Davies, Claire H.; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C.; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A. David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M.; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W.; Uribe-Palomino, Julian; Waite, Anya M.; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J.

    2016-01-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels. PMID:27328409

  18. A database of marine phytoplankton abundance, biomass and species composition in Australian waters.

    PubMed

    Davies, Claire H; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W; Uribe-Palomino, Julian; Waite, Anya M; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J

    2016-01-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels. PMID:27328409

  19. Semiparametric bivariate zero-inflated Poisson models with application to studies of abundance for multiple species

    USGS Publications Warehouse

    Arab, Ali; Holan, Scott H.; Wikle, Christopher K.; Wildhaber, Mark L.

    2012-01-01

    Ecological studies involving counts of abundance, presence–absence or occupancy rates often produce data having a substantial proportion of zeros. Furthermore, these types of processes are typically multivariate and only adequately described by complex nonlinear relationships involving externally measured covariates. Ignoring these aspects of the data and implementing standard approaches can lead to models that fail to provide adequate scientific understanding of the underlying ecological processes, possibly resulting in a loss of inferential power. One method of dealing with data having excess zeros is to consider the class of univariate zero-inflated generalized linear models. However, this class of models fails to address the multivariate and nonlinear aspects associated with the data usually encountered in practice. Therefore, we propose a semiparametric bivariate zero-inflated Poisson model that takes into account both of these data attributes. The general modeling framework is hierarchical Bayes and is suitable for a broad range of applications. We demonstrate the effectiveness of our model through a motivating example on modeling catch per unit area for multiple species using data from the Missouri River Benthic Fishes Study, implemented by the United States Geological Survey.

  20. [Seasonal evaluation of mammal species richness and abundance in the "Mário Viana" municipal reserve, Mato Grosso, Brasil].

    PubMed

    Rocha, Ednaldo Cândido; Silva, Elias; Martins, Sebastião Venâncio; Barreto, Francisco Cândido Cardoso

    2006-09-01

    We evaluated seasonal species presence and richness, and abundance of medium and large sized mammalian terrestrial fauna in the "Mário Viana" Municipal Biological Reserve, Nova Xavantina, Mato Grosso, Brazil. During 2001, two monthly visits were made to an established transect, 2,820 m in length. Records of 22 mammal species were obtained and individual footprint sequences quantified for seasonal calculation of species richness and relative abundance index (x footprints/km traveled). All 22 species occurred during the rainy season, but only 18 during the dry season. Pseudalopex vetulus (Lund, 1842) (hoary fox), Eira barbara (Linnaeus, 1758) (tayra), Puma concolor (Linnaeus, 1771) (cougar) and Hydrochaeris hydrochaeris (Linnaeus, 1766) (capybara) were only registered during the rainy season. The species diversity estimated using the Jackknife procedure in the dry season (19.83, CI = 2.73) was smaller than in the rainy season (25.67, CI = 3.43). Among the 18 species common in the two seasons, only four presented significantly different abundance indexes: Dasypus novemcinctus Linnaeus, 1758 (nine-banded armadillo), Euphractus sexcinctus (Linnaeus, 1758) (six-banded armadillo), Dasyprocta azarae Lichtenstein, 1823 (Azara's Agouti) and Tapirus terrestris (Linnaeus, 1758) (tapir). On the other hand, Priodontes maximus (Kerr, 1792) (giant armadillo) and Leopardus pardalis (Linnaeus, 1758) (ocelot) had identical abundance index over the two seasons. Distribution of species abundance in the sampled area followed the expected pattern for communities in equilibrium, especially in the rainy season, suggesting that the environment still maintains good characteristics for mammal conservation. The present study shows that the reserve, although only 470 ha in size, plays an important role for conservation of mastofauna of the area as a refuge in an environment full of anthropic influence (mainly cattle breeding in exotic pasture). PMID:18491629

  1. Physical factors affecting the abundance and species richness of fishes in the shallow waters of the southern Bothnian Sea (Sweden)

    NASA Astrophysics Data System (ADS)

    Thorman, Staffan

    1986-03-01

    The relationship between the composition of the fish assemblages and the abiotic environment in seven shallow areas within the same geographical range in the southern Bothnian Sea were studied in May, July, September and November 1982. Eighteen species were found in the areas and the major species were Pungitius pungitius (L.), Pomatoschistus minutus (Pallas), Gasterosteus aculeatus (L.), Phoxinus phoxinus (L.), Pomatoschistus microps (Krøyer) and Gobius niger L. The main purpose of the study was to examine the possible effects of exposure, organic contents in sediments and habitat heterogeneity on species richness and abundance of the assemblages. There was a negative correlation between the organic contents of the sediment and exposure. There were no significant correlations between exposure, organic contents, size of the areas and species numbers but habitat heterogeneity was positively correlated with species number. There were no correlations between fish abundance and heterogeneity of the areas. Negative correlations occurred between the exposure of the areas and fish abundance. The amounts of the pooled benthic fauna were negatively correlated to the exposure. The species/area hypothesis finds no support in the results, because there was no correlation between habitat heterogeneity of an area and its size. The effective fetch combined with the heterogeneity measurement of the areas seemed to be useful indicators of the species composition and fish abundance. Habitat heterogeneity and exposure were the most important structuring factors of these shallow water fish assemblages during the ice-free period and within the local geographical range. The assemblages consist of a mixture of species with marine or limnic origin and they have probably not evolved in the Bothnian Sea or together. They are most likely regulated by their physiological plasticity and not by interactions with other species.

  2. Relationship between Reproductive Allocation and Relative Abundance among 32 Species of a Tibetan Alpine Meadow: Effects of Fertilization and Grazing

    PubMed Central

    Niu, Kechang; Schmid, Bernhard; Choler, Philippe; Du, Guozhen

    2012-01-01

    Background Understanding the relationship between species traits and species abundance is an important goal in ecology and biodiversity science. Although theoretical studies predict that traits related to performance (e.g. reproductive allocation) are most directly linked to species abundance within a community, empirical investigations have rarely been done. It also remains unclear how environmental factors such as grazing or fertilizer application affect the predicted relationship. Methodology We conducted a 3-year field experiment in a Tibetan alpine meadow to assess the relationship between plant reproductive allocation (RA) and species relative abundance (SRA) on control, grazed and fertilized plots. Overall, the studied plant community contained 32 common species. Principal Findings At the treatment level, (i) RA was negatively correlated with SRA on control plots and during the first year on fertilized plots. (ii) No negative RA–SRA correlations were observed on grazed plots and during the second and third year on fertilized plots. (iii) Seed size was positively correlated with SRA on control plots. At the plot level, the correlation between SRA and RA were not affected by treatment, year or species composition. Conclusions/Significance Our study shows that the performance-related trait RA can negatively affect SRA within communities, which is possibly due to the tradeoffs between clonal growth (for space occupancy) and sexual reproduction. We propose that if different species occupy different positions along these tradeoffs it will contribute to biodiversity maintenance in local communities or even at lager scale. PMID:22536385

  3. Disentangling the Diversity of Arboreal Ant Communities in Tropical Forest Trees

    PubMed Central

    Klimes, Petr; Fibich, Pavel; Idigel, Cliffson; Rimandai, Maling

    2015-01-01

    Tropical canopies are known for their high abundance and diversity of ants. However, the factors which enable coexistence of so many species in trees, and in particular, the role of foragers in determining local diversity, are not well understood. We censused nesting and foraging arboreal ant communities in two 0.32 ha plots of primary and secondary lowland rainforest in New Guinea and explored their species diversity and composition. Null models were used to test if the records of species foraging (but not nesting) in a tree were dependent on the spatial distribution of nests in surrounding trees. In total, 102 ant species from 389 trees occurred in the primary plot compared with only 50 species from 295 trees in the secondary forest plot. However, there was only a small difference in mean ant richness per tree between primary and secondary forest (3.8 and 3.3 sp. respectively) and considerably lower richness per tree was found only when nests were considered (1.5 sp. in both forests). About half of foraging individuals collected in a tree belonged to species which were not nesting in that tree. Null models showed that the ants foraging but not nesting in a tree are more likely to nest in nearby trees than would be expected at random. The effects of both forest stage and tree size traits were similar regardless of whether only foragers, only nests, or both datasets combined were considered. However, relative abundance distributions of species differed between foraging and nesting communities. The primary forest plot was dominated by native ant species, whereas invasive species were common in secondary forest. This study demonstrates the high contribution of foragers to arboreal ant diversity, indicating an important role of connectivity between trees, and also highlights the importance of primary vegetation for the conservation of native ant communities. PMID:25714831

  4. Dynamics of the abundance of some bivalve species in Russian waters of the Sea of Japan and its prognosis

    NASA Astrophysics Data System (ADS)

    Gabaev, D. D.

    2009-04-01

    The abundance dynamics of several species of bivalve mollusks spats were studied on scallop collectors situated in Minonosok bay of Pos’eta Gulf for 27 years and for 4 years in Kit bay of the Sea of Japan (Russia). A significant positive relation was found between the species having similar thermopathy: the Japanese scallop Mizuhopecten yessoensis and Swift’s scallop Swiftopecten swifti, as well as between the wrinkled rock borer Hiatella arctica and Swift’s scallop Swiftopecten swifti. A significant reverse relation was found between the bay mussel Mytilus trossulus and the Northern Pacific seastar Asterias amurensis. Some of the studied mollusks of Minonosok bay and the remote Kit bay display a significant reversed interrelation in their abundance dynamics caused by the precipitation regime. The one-way dispersion analysis a revealed significant influence of the water temperature in June and the precipitation abundance in the summer on Swift’s scallop’s dynamic abundance. The two-way dispersion analysis showed a significant influence of the ice period duration and the solar activity expressed in Wolf’s numbers on the Japanese scallop abundance dynamics. The uneven years in the period from 1977 to 1984 were usually productive for M. yessoensis and S. swifti spat. After 1985, the even years became more productive (there was asynchronicity in the abundance dynamics compared with 1977-1984). Such asynchronicity appeared with the advent of the new 22-year solar cycle, which caused a change in the magnet polarity in 1986.

  5. Effects of climate and land-use change on species abundance in a Central European bird community.

    PubMed

    Lemoine, Nicole; Bauer, Hans-Günther; Peintinger, Markus; Böhning-Gaese, Katrin

    2007-04-01

    Although it is known that changes in land use and climate have an impact on ecological communities, it is unclear which of these factors is currently most important. We sought to determine the influence of land-use and climate alteration on changes in the abundance of Central European birds. We examined the impact of these factors by contrasting abundance changes of birds of different breeding habitat, latitudinal distribution, and migratory behavior. We examined data from the semiquantitative Breeding Bird Atlas of Lake Constance, which borders Germany, Switzerland, and Austria. Changes in the regional abundance of the 159 coexisting bird species from 1980-1981 to 2000-2002 were influenced by all three factors. Farmland birds, species with northerly ranges, and long-distance migrants declined, and wetland birds and species with southerly ranges increased in abundance. A separate analysis of the two decades between 1980-1981 and 1990-1992 and between 1990-1992 and 2000-2002 showed that the impact of climate change increased significantly over time. Latitudinal distribution was not significant in the first decade and became the most significant predictor of abundance changes in the second decade. Although the spatial scale and temporal resolution of our study is limited, this is the first study that suggests that climate change has overtaken land-use modification in determining population trends of Central European birds. PMID:17391199

  6. Climate warming increases biodiversity of small rodents by favoring rare or less abundant species in a grassland ecosystem.

    PubMed

    Jiang, Guangshun; Liu, Jun; Xu, Lei; Yu, Guirui; He, Honglin; Zhang, Zhibin

    2013-06-01

    Our Earth is facing the challenge of accelerating climate change, which imposes a great threat to biodiversity. Many published studies suggest that climate warming may cause a dramatic decline in biodiversity, especially in colder and drier regions. In this study, we investigated the effects of temperature, precipitation and a normalized difference vegetation index on biodiversity indices of rodent communities in the current or previous year for both detrended and nondetrended data in semi-arid grassland of Inner Mongolia during 1982-2006. Our results demonstrate that temperature showed predominantly positive effects on the biodiversity of small rodents; precipitation showed both positive and negative effects; a normalized difference vegetation index showed positive effects; and cross-correlation function values between rodent abundance and temperature were negatively correlated with rodent abundance. Our results suggest that recent climate warming increased the biodiversity of small rodents by providing more benefits to population growth of rare or less abundant species than that of more abundant species in Inner Mongolia grassland, which does not support the popular view that global warming would decrease biodiversity in colder and drier regions. We hypothesized that higher temperatures might benefit rare or less abundant species (with smaller populations and more folivorous diets) by reducing the probability of local extinction and/or by increasing herbaceous food resources. PMID:23731812

  7. Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen.

    PubMed

    Sébastien, Alexandra; Lester, Philip J; Hall, Richard J; Wang, Jing; Moore, Nicole E; Gruber, Monica A M

    2015-09-01

    When exotic animal species invade new environments they also bring an often unknown microbial diversity, including pathogens. We describe a novel and widely distributed virus in one of the most globally widespread, abundant and damaging invasive ants (Argentine ants, Linepithema humile). The Linepithema humile virus 1 is a dicistrovirus, a viral family including species known to cause widespread arthropod disease. It was detected in samples from Argentina, Australia and New Zealand. Argentine ants in New Zealand were also infected with a strain of Deformed wing virus common to local hymenopteran species, which is a major pathogen widely associated with honeybee mortality. Evidence for active replication of viral RNA was apparent for both viruses. Our results suggest co-introduction and exchange of pathogens within local hymenopteran communities. These viral species may contribute to the collapse of Argentine ant populations and offer new options for the control of a globally widespread invader. PMID:26562935

  8. Utilization of Anting-Anting (Acalypha indica) Leaves as Antibacterial

    NASA Astrophysics Data System (ADS)

    Batubara, Irmanida; Wahyuni, Wulan Tri; Firdaus, Imam

    2016-01-01

    Anting-anting (Acalypha indica) plants is a species of plant having catkin type of inflorescence. This research aims to utilize anting-anting as antibacterial toward Streptococcus mutans and degradation of biofilm on teeth. Anting-anting leaves were extracted by maceration technique using methanol, chloroform, and n-hexane. Antibacterial and biofilm degradation assays were performed using microdilution technique with 96 well. n-Hexane extracts of anting-anting leaves gave the best antibacterial potency with minimum inhibitory concentration and minimum bactericidal concentration value of 500 μg/mL and exhibited good biofilm degradation activity. Fraction of F3 obtained from fractionation of n-hexane's extract with column chromatography was a potential for degradation of biofilm with IC50 value of 56.82 μg/mL. Alkaloid was suggested as antibacterial and degradation of biofilm in the active fraction.

  9. Predicting foundation bunchgrass species abundances: Model-assisted decision-making in protected-area sagebrush steppe

    USGS Publications Warehouse

    Rodhouse, Thomas J.; Irvine, Kathryn M.; Sheley, Roger L.; Smith, Brenda S.; Hoh, Shirley; Esposito, Daniel M.; Mata-Gonzalez, Ricardo

    2014-01-01

    Foundation species are structurally dominant members of ecological communities that can stabilize ecological processes and influence resilience to disturbance and resistance to invasion. Being common, they are often overlooked for conservation but are increasingly threatened from land use change, biological invasions, and over-exploitation. The pattern of foundation species abundances over space and time may be used to guide decision-making, particularly in protected areas for which they are iconic. We used ordinal logistic regression to identify the important environmental influences on the abundance patterns of bluebunch wheatgrass (Pseudoroegneria spicata), Thurber's needlegrass (Achnatherum thurberianum), and Sandberg bluegrass (Poa secunda) in protected-area sagebrush steppe. We then predicted bunchgrass abundances along gradients of topography, disturbance, and invasive annual grass abundance. We used model predictions to prioritize the landscape for implementation of a management and restoration decision-support tool. Models were fit to categorical estimates of grass cover obtained from an extensive ground-based monitoring dataset. We found that remnant stands of abundant wheatgrass and bluegrass were associated with steep north-facing slopes in higher and more remote portions of the landscape outside of recently burned areas where invasive annual grasses were less abundant. These areas represented only 25% of the landscape and were prioritized for protection efforts. Needlegrass was associated with south-facing slopes, but in low abundance and in association with invasive cheatgrass (Bromus tectorum). Abundances of all three species were strongly negatively correlated with occurrence of another invasive annual grass, medusahead (Taeniatherum caput-medusae). The rarity of priority bunchgrass stands underscored the extent of degradation and the need for prioritization. We found no evidence that insularity reduced invasibility; annual grass invasion represents

  10. Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder

    USGS Publications Warehouse

    Menke, S.B.; Holway, D.A.; Fisher, R.N.; Jetz, W.

    2009-01-01

    Aim: Species distribution models (SDMs) or, more specifically, ecological niche models (ENMs) are a useful and rapidly proliferating tool in ecology and global change biology. ENMs attempt to capture associations between a species and its environment and are often used to draw biological inferences, to predict potential occurrences in unoccupied regions and to forecast future distributions under environmental change. The accuracy of ENMs, however, hinges critically on the quality of occurrence data. ENMs often use haphazardly collected data rather than data collected across the full spectrum of existing environmental conditions. Moreover, it remains unclear how processes affecting ENM predictions operate at different spatial scales. The scale (i.e. grain size) of analysis may be dictated more by the sampling regime than by biologically meaningful processes. The aim of our study is to jointly quantify how issues relating to region and scale affect ENM predictions using an economically important and ecologically damaging invasive species, the Argentine ant (Linepithema humile). Location: California, USA. Methods: We analysed the relationship between sampling sufficiency, regional differences in environmental parameter space and cell size of analysis and resampling environmental layers using two independently collected sets of presence/absence data. Differences in variable importance were determined using model averaging and logistic regression. Model accuracy was measured with area under the curve (AUC) and Cohen's kappa. Results: We first demonstrate that insufficient sampling of environmental parameter space can cause large errors in predicted distributions and biological interpretation. Models performed best when they were parametrized with data that sufficiently sampled environmental parameter space. Second, we show that altering the spatial grain of analysis changes the relative importance of different environmental variables. These changes apparently result

  11. A New Methodology for the Detection of Low-Abundance Species in the Ism: Detection of Interstellar Carbodiimide (HNCNH)

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Loomis, Ryan A.; Charness, Cameron M.; Corby, Joanna F.; Blake, Geoffrey A.; Hollis, Jan M.; Lovas, Frank J.; Jewell, Philip R.; Remijan, Anthony J.

    2013-06-01

    We present the first interstellar detection of carbodiimide (HNCNH) in observations towards Sgr B2(N) using data from the publicly available Green Bank Telescope PRebiotic Interstellar MOlecular Survey project. Recent laboratory work predicts an abundance of HNCNH of ˜10% of the abundance of its tautomer, cyanamide (NH_2CN), or ˜ 2× 10^{13} cm^{-2} in Sgr B2(N). Given this abundance at LTE conditions, the strongest rotational transitions of HNCNH have intensities at or below the noise level of current observations of this source. A thermal population of HNCNH is therefore likely undetectable. Instead, HNCNH is identified via maser emission features at centimeter wavelengths. This detection presents a new methodology for the detection of low-abundance species and further demonstrates the power of cm-wave observations to make definitive identifications based on a small number of observed features.

  12. Postfire Succession of Ants (Hymenoptera: Formicidae) Nesting in Dead Wood of Northern Boreal Forest.

    PubMed

    Boucher, Philippe; Hébert, Christian; Francoeur, André; Sirois, Luc

    2015-10-01

    Dead wood decomposition begins immediately after tree death and involves a large array of invertebrates. Ecological successions are still poorly known for saproxylic organisms, particularly in boreal forests. We investigated the use of dead wood as nesting sites for ants along a 60-yr postfire chronosequence in northeastern coniferous forests. We sampled a total of 1,625 pieces of dead wood, in which 263 ant nests were found. Overall, ant abundance increased during the first 30 yr after wildfire, and then declined. Leptothorax cf. canadensis Provancher, the most abundant species in our study, was absent during the first 2 yr postfire, but increased steadily until 30 yr after fire, whereas Myrmica alaskensis Wheeler, second in abundance, was found at all stages of succession in the chronosequence. Six other species were less frequently found, among which Camponotus herculeanus (Linné), Formica neorufibarbis Emery, and Formica aserva Forel were locally abundant, but more scarcely distributed. Dead wood lying on the ground and showing numerous woodborer holes had a higher probability of being colonized by ants. The C:N ratio was lower for dead wood colonized by ants than for noncolonized dead wood, showing that the continuous occupation of dead wood by ants influences the carbon and nitrogen dynamics of dead wood after wildfire in northern boreal forests. PMID:26314011

  13. Effectiveness and biases of Winkler litter extraction and pitfall trapping for collecting ground-dwelling ants in northern temperate forests.

    PubMed

    Ivanov, Kaloyan; Keiper, Joe

    2009-12-01

    The sampling efficiency of pitfall traps and Winkler litter extraction in northern deciduous forests was compared using ants. Both techniques are among the most common methods used to measure the diversity of organisms active on the forest floor. During 2005-2006, 90 Winkler and 180 pitfall trap samples from urban forest fragments in northeastern Ohio obtained 9,203 ants representing 31 species. Winklers captured all 31 species, whereas pitfall traps collected a total of 24 species. Winkler samples accumulated species more rapidly than did pitfall traps and had greater total species richness and higher abundance of ants recorded. Consistent with other studies, Winkler sampling was found to catch a greater number of smaller ants, whereas pitfall trapping caught a greater number of large-bodied ants. According to estimates of expected species richness, the combination of the two sampling techniques allowed for the collection of approximately 90% of the ants expected in the surveyed area. Site variation had little effect on the inherent differences in sampling efficacy between the two methods. Either technique adequately collected samples for broad comparisons and documentation of the more typical and representative ant fauna, but Winkler extraction exhibited the advantage of a more complete inventory. The application of both techniques should be considered if the aims of a study require estimation of community properties, such as relative abundance. PMID:20021769

  14. MANAGING IMPORTED FIRE ANTS IN URBAN AREAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two species of imported fire ants (red imported fire ant, Solenopsis invicta, and black imported fire ant, Solenopsis richteri) and their sexually reproducing hybrid are invasive insects whose stings can cause serious medical problems. Imported fire ants interfere with outdoor activities and ha...

  15. Ecological effects of cell-level processes: genome size, functional traits and regional abundance of herbaceous plant species

    PubMed Central

    Herben, Tomáš; Suda, Jan; Klimešová, Jitka; Mihulka, Stanislav; Říha, Pavel; Šímová, Irena

    2012-01-01

    Background and Aims Genome size is known to be correlated with a number of phenotypic traits associated with cell sizes and cell-division rates. Genome size was therefore used as a proxy for them in order to assess how common plant traits such as height, specific leaf area and seed size/number predict species regional abundance. In this study it is hypothesized that if there is residual correlation between genome size and abundance after these traits are partialled out, there must be additional ecological effects of cell size and/or cell-division rate. Methods Variation in genome size, plant traits and regional abundance were examined in 436 herbaceous species of central European flora, and relationships were sought for among these variables by correlation and path analysis. Key Results Species regional abundance was weakly but significantly correlated with genome size; the relationship was stronger for annuals (R2 = 0·145) than for perennials (R2 = 0·027). In annuals, genome size was linked to abundance via its effect on seed size, which constrains seed number and hence population growth rate. In perennials, it weakly affected (via height and specific leaf area) competitive ability. These relationships did not change qualitatively after phylogenetic correction. In both annuals and perennials there was an unresolved effect of genome size on abundance. Conclusions The findings indicate that additional predictors of regional abundance should be sought among variables that are linked to cell size and cell-division rate. Signals of these cell-level processes remain identifiable even at the landscape scale, and show deep differences between perennials and annuals. Plant population biology could thus possibly benefit from more systematic use of indicators of cell-level processes. PMID:22628380

  16. First cytogenetic characterization of a species of the arboreal ant genus Azteca Forel, 1978 (Dolichoderinae, Formicidae)

    PubMed Central

    Cardoso, Danon Clemes; Cristiano, Maykon Passos; Barros, Luísa Antônia Campos; Lopes, Denilce Meneses; Pompolo, Silvia das Graças

    2012-01-01

    Abstract In this paper we present, for the first time, a detailed karyotype characterization of a species of the genus Azteca (Dolichoderinae, Formicidae). Cerebral ganglia from Azteca trigona Emery, 1893 were excised and submitted to colchicine hypotonic solution and chromosomal preparations were analyzed through conventional staining with Giemsa, C-banding, silver nitrate staining (AgNO3) and sequential base-specific fluorochromes. The analysis shows that Azteca trigona has a diploid number of 28 chromosomes. The karyotype consists of five metacentric pairs, seven acrocentric pairs and two pseudo-acrocentric pairs, which represents a karyotype formula 2K= 10M + 14A + 4AM and a diploid number of the arms 2AN = 38. The analysis of heterochromatin distribution revealed a positive block on distal region of the short arm of fourth metacentric pair, which was coincident with Ag-NOR band and CMA3 fluorochrome staining, meaning that rDNA sequences are interspaced by GC-rich base pairs sequences. The C-banding also marked short arms of other chromosomes, indicating centric fissions followed by heterochromatin growth. The karyotype analysis of Azteca trigona allowed the identification of cytogenetic markers that will be helpful in a difficult taxonomic group as Azteca and discussion about evolutionary aspects of the genome organization. PMID:24260655

  17. Direct and indirect effects of ants on a forest-floor food web.

    PubMed

    Moya-Laraño, Jordi; Wise, David H

    2007-06-01

    Interactions among predators that prey on each other and are potential competitors for shared prey (intraguild [IG] predators) are widespread in terrestrial ecosystems and have the potential to strongly influence the dynamics of terrestrial food webs. Ants and spiders are abundant and ubiquitous terrestrial IG predators, yet the strength and consequences of interactions between them are largely unknown. In the leaf-litter food web of a deciduous forest in Kentucky (USA), we tested the direct and indirect effects of ants on spiders and a category of shared prey (Collembola) by experimentally subsidizing ants in open plots in two field experiments. In the first experiment, ant activity was increased, and the density of ants in the litter was doubled, by placing carbohydrate and protein baits in the center of each plot. Gnaphosa spiders were almost twice as abundant and Schizocosa spiders were half as abundant in baited plots relative to controls. There were more tomocerid Collembola in baited plots, suggesting possible indirect effects on Collembola caused by ant-spider interactions. The second experiment, in which screening of two mesh sizes selectively excluded large and small worker ants from a sugar bait, revealed that the large ants, primarily Camponotus, could alone induce similar effects on spiders. Gnaphosa biomass density was almost twice as high in the plots where large ants were more active, whereas Schizocosa biomass density was reduced by half in these plots. Although tomocerid densities did not differ between treatments, tomocerid numbers were negatively correlated with the activity of Formica, another large ant species. Path analysis failed to support the hypothesis that the ant Camponotus indirectly affected tomocerid Collembola through effects on densities of spiders. However, path analysis also revealed other indirect effects of Camponotus affecting tomocerids. These results illustrate the complexity of interactions between and within two major IG

  18. MetaCluster 5.0: a two-round binning approach for metagenomic data for low-abundance species in a noisy sample

    PubMed Central

    Wang, Yi; Leung, Henry C.M.; Yiu, S.M.; Chin, Francis Y.L.

    2012-01-01

    Motivation: Metagenomic binning remains an important topic in metagenomic analysis. Existing unsupervised binning methods for next-generation sequencing (NGS) reads do not perform well on (i) samples with low-abundance species or (ii) samples (even with high abundance) when there are many extremely low-abundance species. These two problems are common for real metagenomic datasets. Binning methods that can solve these problems are desirable. Results: We proposed a two-round binning method (MetaCluster 5.0) that aims at identifying both low-abundance and high-abundance species in the presence of a large amount of noise due to many extremely low-abundance species. In summary, MetaCluster 5.0 uses a filtering strategy to remove noise from the extremely low-abundance species. It separate reads of high-abundance species from those of low-abundance species in two different rounds. To overcome the issue of low coverage for low-abundance species, multiple w values are used to group reads with overlapping w-mers, whereas reads from high-abundance species are grouped with high confidence based on a large w and then binning expands to low-abundance species using a relaxed (shorter) w. Compared to the recent tools, TOSS and MetaCluster 4.0, MetaCluster 5.0 can find more species (especially those with low abundance of say 6× to 10×) and can achieve better sensitivity and specificity using less memory and running time. Availability: http://i.cs.hku.hk/~alse/MetaCluster/ Contact: chin@cs.hku.hk PMID:22962452

  19. The Impact of Land Abandonment on Species Richness and Abundance in the Mediterranean Basin: A Meta-Analysis

    PubMed Central

    Plieninger, Tobias; Hui, Cang; Gaertner, Mirijam; Huntsinger, Lynn

    2014-01-01

    Land abandonment is common in the Mediterranean Basin, a global biodiversity hotspot, but little is known about its impacts on biodiversity. To upscale existing case-study insights to the Pan-Mediterranean level, we conducted a meta-analysis of the effects of land abandonment on plant and animal species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1) which taxonomic groups (arthropods, birds, lichen, vascular plants) are more affected by land abandonment; (2) at which spatial and temporal scales the effect of land abandonment on species richness and abundance is pronounced; (3) whether previous land use and current protected area status affect the magnitude of changes in the number and abundance of species; and (4) how prevailing landforms and climate modify the impacts of land abandonment. After identifying 1240 potential studies, 154 cases from 51 studies that offered comparisons of species richness and abundance and had results relevant to our four areas of investigation were selected for meta-analysis. Results are that land abandonment showed slightly increased (effect size  = 0.2109, P<0.0001) plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no “one-size-fits-all” conservation approach that applies to the diverse contexts of land abandonment in the Mediterranean Basin. Instead, conservation policies should strive to increase awareness of this heterogeneity and the potential trade-offs after abandonment. The strong role of factors at the farm and landscape scales that was revealed by the analysis indicates that purposeful management at these scales can have a powerful impact on biodiversity. PMID:24865979

  20. The impact of land abandonment on species richness and abundance in the Mediterranean Basin: a meta-analysis.

    PubMed

    Plieninger, Tobias; Hui, Cang; Gaertner, Mirijam; Huntsinger, Lynn

    2014-01-01

    Land abandonment is common in the Mediterranean Basin, a global biodiversity hotspot, but little is known about its impacts on biodiversity. To upscale existing case-study insights to the Pan-Mediterranean level, we conducted a meta-analysis of the effects of land abandonment on plant and animal species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1) which taxonomic groups (arthropods, birds, lichen, vascular plants) are more affected by land abandonment; (2) at which spatial and temporal scales the effect of land abandonment on species richness and abundance is pronounced; (3) whether previous land use and current protected area status affect the magnitude of changes in the number and abundance of species; and (4) how prevailing landforms and climate modify the impacts of land abandonment. After identifying 1240 potential studies, 154 cases from 51 studies that offered comparisons of species richness and abundance and had results relevant to our four areas of investigation were selected for meta-analysis. Results are that land abandonment showed slightly increased (effect size  = 0.2109, P<0.0001) plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no "one-size-fits-all" conservation approach that applies to the diverse contexts of land abandonment in the Mediterranean Basin. Instead, conservation policies should strive to increase awareness of this heterogeneity and the potential trade-offs after abandonment. The strong role of factors at the farm and landscape scales that was revealed by the analysis indicates that purposeful management at these scales can have a powerful impact on biodiversity. PMID:24865979

  1. Valuing the recreational benefits of wetland adaptation to climate change: a trade-off between species' abundance and diversity.

    PubMed

    Faccioli, Michela; Riera Font, Antoni; Torres Figuerola, Catalina M

    2015-03-01

    Climate change will further exacerbate wetland deterioration, especially in the Mediterranean region. On the one side, it will accelerate the decline in the populations and species of plants and animals, this resulting in an impoverishment of biological abundance. On the other one, it will also promote biotic homogenization, resulting in a loss of species' diversity. In this context, different climate change adaptation policies can be designed: those oriented to recovering species' abundance and those aimed at restoring species' diversity. Based on the awareness that knowledge about visitors' preferences is crucial to better inform policy makers and secure wetlands' public use and conservation, this paper assesses the recreational benefits of different adaptation options through a choice experiment study carried out in S'Albufera wetland (Mallorca). Results show that visitors display positive preferences for an increase in both species' abundance and diversity, although they assign a higher value to the latter, thus suggesting a higher social acceptability of policies pursuing wetlands' differentiation. This finding acquires special relevance not only for adaptation management in wetlands but also for tourism planning, as most visitors to S'Albufera are tourists. Thus, given the growing competition to attract visitors and the increasing demand for high environmental quality and unique experiences, promoting wetlands' differentiation could be a good strategy to gain competitive advantage over other wetland areas and tourism destinations. PMID:25472830

  2. Effects of habitat-forming species richness, evenness, identity, and abundance on benthic intertidal community establishment and productivity.

    PubMed

    Lemieux, Julie; Cusson, Mathieu

    2014-01-01

    In a context of reduced global biodiversity, the potential impacts from the loss of habitat-forming species (HFS) on ecosystem structure and functioning must be established. These species are often the main community primary producers and have a major role in the establishment of organisms through facilitation processes. This study focuses on macroalgae and mussels as HFS within an intertidal zone along the St. Lawrence estuary (Quebec, Canada). Over a 16-week period, we manipulated the in situ diversity profile (richness, evenness, identity, and abundance) of the dominant HFS (Fucus distichus edentatus, F. vesiculosus, and Mytilus spp.) in order to define their role in both the establishment of associated species and community primary production. Contrary to expectation, no general change in HFS richness, evenness, abundance, or identity on associated species community establishment was observed. However, over the study period, the HFS diversity profile modified the structure within the trophic guilds, which may potentially affect further community functions. Also, our results showed that the low abundance of HFS had a negative impact on the primary productivity of the community. Our results suggest that HFS diversity profiles have a limited short-term role in our study habitat and may indicate that biological forcing in these intertidal communities is less important than environmental conditions. As such, there was an opportunistic establishment of species that ensured rapid colonization regardless of the absence, or the diversity profile, of facilitators such as HFS. PMID:25313459

  3. Valuing the Recreational Benefits of Wetland Adaptation to Climate Change: A Trade-off Between Species' Abundance and Diversity

    NASA Astrophysics Data System (ADS)

    Faccioli, Michela; Riera Font, Antoni; Torres Figuerola, Catalina M.

    2015-03-01

    Climate change will further exacerbate wetland deterioration, especially in the Mediterranean region. On the one side, it will accelerate the decline in the populations and species of plants and animals, this resulting in an impoverishment of biological abundance. On the other one, it will also promote biotic homogenization, resulting in a loss of species' diversity. In this context, different climate change adaptation policies can be designed: those oriented to recovering species' abundance and those aimed at restoring species' diversity. Based on the awareness that knowledge about visitors' preferences is crucial to better inform policy makers and secure wetlands' public use and conservation, this paper assesses the recreational benefits of different adaptation options through a choice experiment study carried out in S'Albufera wetland (Mallorca). Results show that visitors display positive preferences for an increase in both species' abundance and diversity, although they assign a higher value to the latter, thus suggesting a higher social acceptability of policies pursuing wetlands' differentiation. This finding acquires special relevance not only for adaptation management in wetlands but also for tourism planning, as most visitors to S'Albufera are tourists. Thus, given the growing competition to attract visitors and the increasing demand for high environmental quality and unique experiences, promoting wetlands' differentiation could be a good strategy to gain competitive advantage over other wetland areas and tourism destinations.

  4. Effects of Habitat-Forming Species Richness, Evenness, Identity, and Abundance on Benthic Intertidal Community Establishment and Productivity

    PubMed Central

    Lemieux, Julie; Cusson, Mathieu

    2014-01-01

    In a context of reduced global biodiversity, the potential impacts from the loss of habitat-forming species (HFS) on ecosystem structure and functioning must be established. These species are often the main community primary producers and have a major role in the establishment of organisms through facilitation processes. This study focuses on macroalgae and mussels as HFS within an intertidal zone along the St. Lawrence estuary (Quebec, Canada). Over a 16-week period, we manipulated the in situ diversity profile (richness, evenness, identity, and abundance) of the dominant HFS (Fucus distichus edentatus, F. vesiculosus, and Mytilus spp.) in order to define their role in both the establishment of associated species and community primary production. Contrary to expectation, no general change in HFS richness, evenness, abundance, or identity on associated species community establishment was observed. However, over the study period, the HFS diversity profile modified the structure within the trophic guilds, which may potentially affect further community functions. Also, our results showed that the low abundance of HFS had a negative impact on the primary productivity of the community. Our results suggest that HFS diversity profiles have a limited short-term role in our study habitat and may indicate that biological forcing in these intertidal communities is less important than environmental conditions. As such, there was an opportunistic establishment of species that ensured rapid colonization regardless of the absence, or the diversity profile, of facilitators such as HFS. PMID:25313459

  5. Where to nest? Ecological determinants of chimpanzee nest abundance and distribution at the habitat and tree species scale.

    PubMed

    Carvalho, Joana S; Meyer, Christoph F J; Vicente, Luis; Marques, Tiago A

    2015-02-01

    Conversion of forests to anthropogenic land-uses increasingly subjects chimpanzee populations to habitat changes and concomitant alterations in the plant resources available to them for nesting and feeding. Based on nest count surveys conducted during the dry season, we investigated nest tree species selection and the effect of vegetation attributes on nest abundance of the western chimpanzee, Pan troglodytes verus, at Lagoas de Cufada Natural Park (LCNP), Guinea-Bissau, a forest-savannah mosaic widely disturbed by humans. Further, we assessed patterns of nest height distribution to determine support for the anti-predator hypothesis. A zero-altered generalized linear mixed model showed that nest abundance was negatively related to floristic diversity (exponential form of the Shannon index) and positively with the availability of smaller-sized trees, reflecting characteristics of dense-canopy forest. A positive correlation between nest abundance and floristic richness (number of plant species) and composition indicated that species-rich open habitats are also important in nest site selection. Restricting this analysis to feeding trees, nest abundance was again positively associated with the availability of smaller-sized trees, further supporting the preference for nesting in food tree species from dense forest. Nest tree species selection was non-random, and oil palms were used at a much lower proportion (10%) than previously reported from other study sites in forest-savannah mosaics. While this study suggests that human disturbance may underlie the exclusive arboreal nesting at LCNP, better quantitative data are needed to determine to what extent the construction of elevated nests is in fact a response to predators able to climb trees. Given the importance of LCNP as refuge for Pan t. verus our findings can improve conservation decisions for the management of this important umbrella species as well as its remaining suitable habitats. PMID:25224379

  6. Estimating number of species and relative abundances in stream-fish communities: effects of sampling effort and discontinuous spatial distributions

    USGS Publications Warehouse

    Angermeier, Paul L.; Smogor, Roy A.

    1995-01-01

    We sampled fishes and measured microhabitat in series of contiguous habitat units (riffles, runs, pools) in three Virginia streams. We used Monte Carlo simulations to construct hypothetical series of habitat units, then examined how number of species, similarity in relative abundances, and number of microhabitats accumulated with increasing number of habitat units (i.e., sampling effort). Proportions of all species and microhabitats represented were relatively low and variable at low sampling effort, but increased asymptotically and became less variable with greater sampling effort. To facilitate comparisons among streams, we fitted simulation results to negative exponential curves. The curves indicated that 90% of the species present were usually found by sampling 5 to 14 habitat units (stream length of 22–67 stream widths). Estimates of species relative abundances required less sampling effort for a given accuracy than estimates of number of species. Rates of species accumulation (with effort) varied among streams and reflected discontinuity in species distributions among habitat units. Most discontinuity seemed to be due to low population density rather than to habitat selectivity. Results from an Illinois stream corroborated our findings from Virginia, and suggested that greater sampling effort is needed to characterize fish community structure in more homogeneous stream reaches.

  7. Generalized additive models used to predict species abundance in the Gulf of Mexico: an ecosystem modeling tool.

    PubMed

    Drexler, Michael; Ainsworth, Cameron H

    2013-01-01

    Spatially explicit ecosystem models of all types require an initial allocation of biomass, often in areas where fisheries independent abundance estimates do not exist. A generalized additive modelling (GAM) approach is used to describe the abundance of 40 species groups (i.e. functional groups) across the Gulf of Mexico (GoM) using a large fisheries independent data set (SEAMAP) and climate scale oceanographic conditions. Predictor variables included in the model are chlorophyll a, sediment type, dissolved oxygen, temperature, and depth. Despite the presence of a large number of zeros in the data, a single GAM using a negative binomial distribution was suitable to make predictions of abundance for multiple functional groups. We present an example case study using pink shrimp (Farfantepenaeus duroarum) and compare the results to known distributions. The model successfully predicts the known areas of high abundance in the GoM, including those areas where no data was inputted into the model fitting. Overall, the model reliably captures areas of high and low abundance for the large majority of functional groups observed in SEAMAP. The result of this method allows for the objective setting of spatial distributions for numerous functional groups across a modeling domain, even where abundance data may not exist. PMID:23691223

  8. Generalized Additive Models Used to Predict Species Abundance in the Gulf of Mexico: An Ecosystem Modeling Tool

    PubMed Central

    Drexler, Michael; Ainsworth, Cameron H.

    2013-01-01

    Spatially explicit ecosystem models of all types require an initial allocation of biomass, often in areas where fisheries independent abundance estimates do not exist. A generalized additive modelling (GAM) approach is used to describe the abundance of 40 species groups (i.e. functional groups) across the Gulf of Mexico (GoM) using a large fisheries independent data set (SEAMAP) and climate scale oceanographic conditions. Predictor variables included in the model are chlorophyll a, sediment type, dissolved oxygen, temperature, and depth. Despite the presence of a large number of zeros in the data, a single GAM using a negative binomial distribution was suitable to make predictions of abundance for multiple functional groups. We present an example case study using pink shrimp (Farfantepenaeus duroarum) and compare the results to known distributions. The model successfully predicts the known areas of high abundance in the GoM, including those areas where no data was inputted into the model fitting. Overall, the model reliably captures areas of high and low abundance for the large majority of functional groups observed in SEAMAP. The result of this method allows for the objective setting of spatial distributions for numerous functional groups across a modeling domain, even where abundance data may not exist. PMID:23691223

  9. Ants in the Hospital Environment: Ecological Parameters as Support for Future Management Strategies.

    PubMed

    de Castro, M M; Almeida, M; Fernandes, E F; Prezoto, F

    2016-06-01

    Urban ants cause many losses to human society, and they represent a potential threat to public health in hospital environments due to their ability to transport pathogenic organisms. We evaluated several ecological parameters (richness, abundance, constancy, and evenness), their fluctuation during the seasons, and identified species that occur outside the natural range of the ant fauna of a hospital environment, as support for future management strategies. Ant sampling was held every 2 months by using attractive bait traps in the morning and evening, leading to the sampling of 10,342 individuals belonging to six subfamilies and 26 species. Myrmicinae showed higher richness (n = 12) and abundance (n = 7336), with Pheidole susannae Forel being the most abundant species. The most constant species (100%) were P. susannae and Tetramorium simillimum (Smith). Among the most abundant species, Monomorium floricola (Jerdon) and Tapinoma melanocephalum (Fabricius) are considered as species that occur outside the natural range. No difference was observed between species richness and abundance. The Shannon (2.247), dominance (0.1395) and evenness indices (0.6897) indicated a stability of the community throughout the year with high diversity and low dominance of species. The sampled data constitute a new series of information on a long-term ecological approach to support future management strategies in hospital environments and allow for more efficient pest control. PMID:26883447

  10. Detrimental effects of highly efficient interference competition: invasive Argentine ants outcompete native ants at toxic baits.

    PubMed

    Buczkowski, Grzegorz; Bennett, Gary W

    2008-06-01

    The Argentine ant (Linepithema humile) is an invasive species that disrupts the balance of natural ecosystems by displacing indigenous ant species throughout its introduced range. Previous studies that examined the mechanisms by which Argentine ants attain ecological dominance showed that superior interference and exploitation competition are key to the successful displacement of native ant species. The objective of this research was to test the hypothesis that effective interference competition by Argentine ants may also be detrimental to the survival of Argentine ant colonies where Argentine ants and native ants compete at toxic baits used to slow the spread of Argentine ants. To study this hypothesis, we examined the competitive interactions between Argentine ants and native odorous house ants, Tapinoma sessile, in the presence and absence of toxic baits. Results showed that Argentine ants aggressively outcompete T. sessile from toxic baits through efficient interference competition and monopolize bait resources. This has severe negative consequences for the survival of Argentine ants as colonies succumb to the toxic effects of the bait. In turn, T. sessile avoid areas occupied by Argentine ants, give up baits, and consequently suffer minimal mortality. Our results provide experimental evidence that highly efficient interference competition may have negative consequences for Argentine ants in areas where toxic baits are used and may provide a basis for designing innovative management programs for Argentine ants. Such programs would have the double benefit of selectively eliminating the invasive species while simultaneously protecting native ants from the toxic effects of baits. PMID:18559180

  11. Chilean blue whales as a case study to illustrate methods to estimate abundance and evaluate conservation status of rare species.

    PubMed

    Williams, Rob; Hedley, Sharon L; Branch, Trevor A; Bravington, Mark V; Zerbini, Alexandre N; Findlay, Ken P

    2011-06-01

    Often abundance of rare species cannot be estimated with conventional design-based methods, so we illustrate with a population of blue whales (Balaenoptera musculus) a spatial model-based method to estimate abundance. We analyzed data from line-transect surveys of blue whales off the coast of Chile, where the population was hunted to low levels. Field protocols allowed deviation from planned track lines to collect identification photographs and tissue samples for genetic analyses, which resulted in an ad hoc sampling design with increased effort in areas of higher densities. Thus, we used spatial modeling methods to estimate abundance. Spatial models are increasingly being used to analyze data from surveys of marine, aquatic, and terrestrial species, but estimation of uncertainty from such models is often problematic. We developed a new, broadly applicable variance estimator that showed there were likely 303 whales (95% CI 176-625) in the study area. The survey did not span the whales' entire range, so this is a minimum estimate. We estimated current minimum abundance relative to pre-exploitation abundance (i.e., status) with a population dynamics model that incorporated our minimum abundance estimate, likely population growth rates from a meta-analysis of rates of increase in large baleen whales, and two alternative assumptions about historic catches. From this model, we estimated that the population was at a minimum of 9.5% (95% CI 4.9-18.0%) of pre-exploitation levels in 1998 under one catch assumption and 7.2% (CI 3.7-13.7%) of pre-exploitation levels under the other. Thus, although Chilean blue whales are probably still at a small fraction of pre-exploitation abundance, even these minimum abundance estimates demonstrate that their status is better than that of Antarctic blue whales, which are still <1% of pre-exploitation population size. We anticipate our methods will be broadly applicable in aquatic and terrestrial surveys for rarely encountered species

  12. Statistical analysis of polychaete population density: dynamics of dominant species and scaling properties in relative abundance fluctuations

    NASA Astrophysics Data System (ADS)

    Quiroz-Martinez, B.; Schmitt, F. G.; Dauvin, J.-C.

    2012-01-01

    We consider here the dynamics of two polychaete populations based on a 20 yr temporal benthic survey of two muddy fine sand communities in the Bay of Morlaix, Western English Channel. These populations display high temporal variability, which is analyzed here using scaling approaches. We find that population densities have heavy tailed probability density functions. We analyze the dynamics of relative species abundance in two different communities of polychaetes by estimating in a novel way a "mean square drift" coefficient which characterizes their fluctuations in relative abundance over time. We show the usefulness of using new tools to approach and model such highly variable population dynamics in marine ecosystems.

  13. Plankton studies in San Francisco Bay; V, Zooplankton species composition and abundance in the South Bay, 1980-1981

    USGS Publications Warehouse

    Hutchinson, Anne

    1982-01-01

    Data are presented that summarize zooplankton species composition and abundance in South San Francisco Bay during 1980 and 1981. Sampling was conducted at least twice monthly at thirteen stations, from the southern extremity of the South Bay to the Golden Gate Bridge between January 1980 and May 1981. Samples were collected by pump at three depths in the shipping channel and one depth over the shoals. Subsamples were enumerated while alive. Total zooplankton biomass as carbon was calculated from estimated carbon quotas and abundances of each organism enumerated.

  14. Power to detect trends in abundance of secretive marsh birds: effects of species traits and sampling effort

    USGS Publications Warehouse

    Steidl, Robert J.; Conway, Courtney J.; Litt, Andrea R.

    2013-01-01

    Standardized protocols for surveying secretive marsh birds have been implemented across North America, but the efficacy of surveys to detect population trends has not been evaluated. We used survey data collected from populations of marsh birds across North America and simulations to explore how characteristics of bird populations (proportion of survey stations occupied, abundance at occupied stations, and detection probability) and aspects of sampling effort (numbers of survey routes, stations/route, and surveys/station/year) affect statistical power to detect trends in abundance of marsh bird populations. In general, the proportion of survey stations along a route occupied by a species had a greater relative effect on power to detect trends than did the number of birds detected per survey at occupied stations. Uncertainty introduced by imperfect detection during surveys reduced power to detect trends considerably, but across the range of detection probabilities for most species of marsh birds, variation in detection probability had only a minor influence on power. For species that occupy a relatively high proportion of survey stations (0.20), have relatively high abundances at occupied stations (2.0 birds/station), and have high detection probability (0.50), ≥40 routes with 10 survey stations per route surveyed 3 times per year would provide an 80% chance of detecting a 3% annual decrease in abundance after 20 years of surveys. Under the same assumptions but for species that are less common, ≥100 routes would be needed to achieve the same power. Our results can help inform the design of programs to monitor trends in abundance of marsh bird populations, especially with regards to the amount of sampling effort necessary to meet programmatic goals.

  15. Determining the Diversity and Species Abundance Patterns in Arctic Soils using Rational Methods for Exploring Microbial Diversity

    NASA Astrophysics Data System (ADS)

    Ovreas, L.; Quince, C.; Sloan, W.; Lanzen, A.; Davenport, R.; Green, J.; Coulson, S.; Curtis, T.

    2012-12-01

    Arctic microbial soil communities are intrinsically interesting and poorly characterised. We have inferred the diversity and species abundance distribution of 6 Arctic soils: new and mature soil at the foot of a receding glacier, Arctic Semi Desert, the foot of bird cliffs and soil underlying Arctic Tundra Heath: all near Ny-Ålesund, Spitsbergen. Diversity, distribution and sample sizes were estimated using the rational method of Quince et al., (Isme Journal 2 2008:997-1006) to determine the most plausible underlying species abundance distribution. A log-normal species abundance curve was found to give a slightly better fit than an inverse Gaussian curve if, and only if, sequencing error was removed. The median estimates of diversity of operational taxonomic units (at the 3% level) were 3600-5600 (lognormal assumed) and 2825-4100 (inverse Gaussian assumed). The nature and origins of species abundance distributions are poorly understood but may yet be grasped by observing and analysing such distributions in the microbial world. The sample size required to observe the distribution (by sequencing 90% of the taxa) varied between ~ 106 and ~105 for the lognormal and inverse Gaussian respectively. We infer that between 5 and 50 GB of sequencing would be required to capture 90% or the metagenome. Though a principle components analysis clearly divided the sites into three groups there was a high (20-45%) degree of overlap in between locations irrespective of geographical proximity. Interestingly, the nearest relatives of the most abundant taxa at a number of most sites were of alpine or polar origin. Samples plotted on first two principal components together with arbitrary discriminatory OTUs

  16. Ant allergens and hypersensitivity reactions in response to ant stings.

    PubMed

    Potiwat, Rutcharin; Sitcharungsi, Raweerat

    2015-12-01

    Hypersensitivity reactions caused by ant stings are increasingly recognized as an important cause of death by anaphylaxis. Only some species of ants ( e.g. Solenopsis spp., Myrmecia spp., and Pachycondyla spp.) cause allergic reactions. Ant species are identified by evaluating the morphologic structures of worker ants or by molecular techniques. Ant venom contains substances, including acids and alkaloids, that cause toxic reactions, and those from Solenopsis invicta or the imported fire ant have been widely studied. Piperidine alkaloids and low protein contents can cause local reactions (sterile pustules) and systemic reactions (anaphylaxis). Imported fire ant venoms are cross-reactive; for example, the Sol i 1 allergen from S. invicta has cross-reactivity with yellow jacket phospholipase. The Sol i 3 allergen is a member of the antigen 5 family that has amino acid sequence identity with vespid antigen 5. The clinical presentations of ant hypersensitivity are categorized into immediate and delayed reactions: immediate reactions, such as small local reactions, large local reactions, and systemic reactions, occur within 1-4 hours after the ant stings, whereas delayed reactions, such as serum sickness and vasculitis, usually occur more than 4 hours after the stings. Tools for the diagnosis of ant hypersensitivity are skin testing, serum specific IgE, and sting challenge tests. Management of ant hypersensitivity can be divided into immediate (epinephrine, corticosteroids), symptomatic (antihistamines, bronchodilators), supportive (fluid resuscitation, oxygen therapy), and preventive (re-sting avoidance and immunotherapy) treatments. PMID:26708389

  17. Predicting changes in the distribution and abundance of species under environmental change

    PubMed Central

    Ehrlén, Johan; Morris, William F

    2015-01-01

    Environmental changes are expected to alter both the distribution and the abundance of organisms. A disproportionate amount of past work has focused on distribution only, either documenting historical range shifts or predicting future occurrence patterns. However, simultaneous predictions of abundance and distribution across landscapes would be far more useful. To critically assess which approaches represent advances towards the goal of joint predictions of abundance and distribution, we review recent work on changing distributions and on effects of environmental drivers on single populations. Several methods have been used to predict changing distributions. Some of these can be easily modified to also predict abundance, but others cannot. In parallel, demographers have developed a much better understanding of how changing abiotic and biotic drivers will influence growth rate and abundance in single populations. However, this demographic work has rarely taken a landscape perspective and has largely ignored the effects of intraspecific density. We advocate a synthetic approach in which population models accounting for both density dependence and effects of environmental drivers are used to make integrated predictions of equilibrium abundance and distribution across entire landscapes. Such predictions would constitute an important step forward in assessing the ecological consequences of environmental changes. PMID:25611188

  18. Predicting changes in the distribution and abundance of species under environmental change.

    PubMed

    Ehrlén, Johan; Morris, William F

    2015-03-01

    Environmental changes are expected to alter both the distribution and the abundance of organisms. A disproportionate amount of past work has focused on distribution only, either documenting historical range shifts or predicting future occurrence patterns. However, simultaneous predictions of abundance and distribution across landscapes would be far more useful. To critically assess which approaches represent advances towards the goal of joint predictions of abundance and distribution, we review recent work on changing distributions and on effects of environmental drivers on single populations. Several methods have been used to predict changing distributions. Some of these can be easily modified to also predict abundance, but others cannot. In parallel, demographers have developed a much better understanding of how changing abiotic and biotic drivers will influence growth rate and abundance in single populations. However, this demographic work has rarely taken a landscape perspective and has largely ignored the effects of intraspecific density. We advocate a synthetic approach in which population models accounting for both density dependence and effects of environmental drivers are used to make integrated predictions of equilibrium abundance and distribution across entire landscapes. Such predictions would constitute an important step forward in assessing the ecological consequences of environmental changes. PMID:25611188

  19. The Importance of Using Multiple Approaches for Identifying Emerging Invasive Species: The Case of the Rasberry Crazy Ant in the United States

    PubMed Central

    Gotzek, Dietrich; Brady, Seán G.; Kallal, Robert J.; LaPolla, John S.

    2012-01-01

    In the past decade, Houston, Texas has been virtually overrun by an unidentified ant species, the sudden appearance and enormous population sizes and densities of which have received national media attention. The Rasberry Crazy Ant, as it has become known due to its uncertain species status, has since spread to neighboring states and is still a major concern to pest control officials. Previous attempts at identifying this species have resulted in widely different conclusions in regards to its native range, source, and biology. We identify this highly invasive pest species as Nylanderia fulva (Mayr) using morphometric data measured from 14 characters, molecular sequence data consisting of 4,669 aligned nucleotide sites from six independent loci and comparison with type specimens. This identification will allow for the study and control of this emerging pest species to proceed unencumbered by taxonomic uncertainty. We also show that N. fulva has a much wider distribution than previously thought and has most likely invaded all of the Gulf Coast states. PMID:23056657

  20. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling.

    PubMed

    Bode, Antonio; Estévez, M Graciela; Varela, Manuel; Vilar, José A

    2015-09-01

    Phytoplankton is a sentinel of marine ecosystem change. Composed by many species with different life-history strategies, it rapidly responds to environment changes. An analysis of the abundance of 54 phytoplankton species in Galicia (NW Spain) between 1989 and 2008 to determine the main components of temporal variability in relation to climate and upwelling showed that most of this variability was stochastic, as seasonality and long term trends contributed to relatively small fractions of the series. In general, trends appeared as non linear, and species clustered in 4 groups according to the trend pattern but there was no defined pattern for diatoms, dinoflagellates or other groups. While, in general, total abundance increased, no clear trend was found for 23 species, 14 species decreased, 4 species increased during the early 1990s, and only 13 species showed a general increase through the series. In contrast, series of local environmental conditions (temperature, stratification, nutrients) and climate-related variables (atmospheric pressure indices, upwelling winds) showed a high fraction of their variability in deterministic seasonality and trends. As a result, each species responded independently to environmental and climate variability, measured by generalized additive models. Most species showed a positive relationship with nutrient concentrations but only a few showed a direct relationship with stratification and upwelling. Climate variables had only measurable effects on some species but no common response emerged. Because its adaptation to frequent disturbances, phytoplankton communities in upwelling ecosystems appear less sensitive to changes in regional climate than other communities characterized by short and well defined productive periods. PMID:26283032

  1. How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew.

    PubMed

    Blüthgen, N; Verhaagh, M; Goitía, W; Jaffé, K; Morawetz, W; Barthlott, W

    2000-10-01

    Ant-plant interactions in the canopy of a lowland Amazonian rainforest of the upper Orinoco, Venezuela, were studied using a modified commercial crane on rails (Surumoni project). Our observations show a strong correlation between plant sap exudates and both abundance of ants and co-occurrence of ant species in tree canopies. Two types of plant sap sources were compared: extrafloral nectaries (EFNs) and honeydew secretions by homopterans. EFNs were a frequent food source for ants on epiphytes (Philodendron spp., Araceae) and lianas (Dioclea, Fabaceae), but rare on canopy trees in the study area, whereas the majority of trees were host to aggregations of homopterans tended by honeydew-seeking ants (on 62% of the trees examined). These aggregations rarely occurred on epiphytes. Baited ant traps were installed on plants with EFNs and in the crowns of trees from three common genera, including trees with and without ant-tended homopterans: Goupia glabra (Celastraceae), Vochysia spp. (Vochysiaceae), and Xylopia spp. (Annonaceae). The number of ant workers per trap was significantly higher on plants offering one of the two plant sap sources than on trees without such resources. Extrafloral nectaries were used by a much broader spectrum of ant species and genera than honeydew, and co-occurrence of ant species (in traps) was significantly higher on plants bearing EFNs than on trees. Homopteran honeydew (Coccidae and Membracidae), on the other hand, was mostly monopolised by a single ant colony per tree. Homopteran-tending ants were generally among the most dominant ants in the canopy. The most prominent genera were Azteca, Dolichoderus (both Dolichoderinae), Cephalotes, Pheidole, Crematogaster (all Myrmicinae), and Ectatomma (Ponerinae). Potential preferences were recorded between ant and homopteran species, and also between ant-homopteran associations and tree genera. We hypothesize that the high availability of homopteran honeydew provides a key resource for ant mosaics

  2. A Low-Abundance Biofilm Species Orchestrates Inflammatory Periodontal Disease through the Commensal Microbiota and the Complement Pathway

    PubMed Central

    Hajishengallis, George; Liang, Shuang; Payne, Mark A.; Hashim, Ahmed; Jotwani, Ravi; Eskan, Mehmet A.; McIntosh, Megan L.; Alsam, Asil; Kirkwood, Keith L.; Lambris, John D.; Darveau, Richard P.; Curtis, Michael A.

    2011-01-01

    SUMMARY Porphyromonas gingivalis is a low-abundance oral anaerobic bacterium implicated in periodontitis, a polymicrobial inflammatory disease, and the associated systemic conditions. However, the mechanism by which P. gingivalis contributes to inflammation and disease has remained elusive. Here we show that P. gingivalis, at very low colonization levels, triggers changes to the amount and composition of the oral commensal microbiota leading to inflammatory periodontal bone loss. The commensal microbiota and the complement pathway were both required for P. gingivalis-induced bone loss as germ-free mice or conventionally raised C3a and C5a receptor deficient mice did not develop bone loss after inoculation with P. gingivalis. These findings demonstrate that a single, low-abundance species can disrupt host-microbial homeostasis to cause inflammatory disease. The identification and targeting of similar low-abundance pathogens with community-wide impact may be important for treating inflammatory diseases of polymicrobial etiology. PMID:22036469

  3. A selection mosaic in the facultative mutualism between ants and wild cotton.

    PubMed

    Rudgers, Jennifer A; Strauss, Sharon Y

    2004-12-01

    In protection mutualisms, one mutualist defends its partner against a natural enemy in exchange for a reward, usually food or shelter. For both partners, the costs and benefits of these interactions often vary considerably in space because the outcome (positive, negative or neutral) depends on the local abundance of at least three species: the protector, the beneficiary of protection and the beneficiary's natural enemy. In Gossypium thurberi (wild cotton), ants benefit nutritionally from the plant's extrafloral nectaries and guard plants from herbivores. Experimentally altering the availability of both ants and extrafloral nectar in three populations demonstrated that the mutualism is facultative, depending, in part, on the abundance of ants and the level of herbivore damage. The species composition of ants and a parasitic alga that clogs extrafloral nectaries were also implicated in altering the outcome of plant-ant interactions. Furthermore, experimental treatments that excluded ants (the putative selective agents) in combination with phenotypic selection analyses revealed that selection on extrafloral nectary traits was mediated by ants and, importantly, varied across populations. This work is some of the first to manipulate interactions experimentally across multiple sites and thereby document that geographically variable selection, mediated by a mutualist, can shape the evolution of plant traits. PMID:15590599

  4. Field trapping the little fire ant, Wasmannia auropunctata.

    PubMed

    Derstine, Nathan T; Troyer, Elisa J; Suttles, Caitlyn N; Siderhurst, Leigh A; Jang, Eric B; Siderhurst, Matthew S

    2012-01-01

    Two detection methods for the little fire ant, Wasmannia auropunctata (Roger) (Hymenoptera: Formicidae), both employing the pheromone attractant 2,5-dimethyl-3-(2-methylbutyl)pyrazine (2-MeBu-diMePy), were compared with peanut butter based detection, in order to evaluate differences in species specificity and detection reliability. Trapping was conducted using a transect through a macadamia orchard on the island of Hawaii. The transect consisted of a series of three-tree plots, each plot contained a peanut butter coated stick (the most common detection method used for W. auropunctata in Hawaii), a one-way trap treated with 2-MeBu-diMePy, and a piece of double-sided tape treated with 2-MeBu-diMePy. While there were no differences in the number of W. auropunctata counted with each detection method, and no differences in detection reliability (detecting the known presence of W. auropunctata in a plot), the pheromone-incorporating methods showed greater species specificity, retaining W. auropunctata almost exclusively. These results demonstrate the potential of pheromone-detection methods to selectively capture target ant species even when other ants are present and abundant. Combined data from all three detection methods and a previous visual survey along the transect showed a marked difference in the frequency of cohabitation among ant species. Of the 10 ant species collected, W. auropunctata was found as the sole ant species on a given tree at a significantly higher frequency than all other ant species except Pheidole fervens. 94% percent of the trees with W. auropunctata had only W. auropunctata, supporting previous observations that this species tends to displace other ant species. In addition, W. auropunctata microhabitat preferences were investigated using one-way traps containing 2-MeBu-diMePy, which were placed in three arboreal and three non-arboreal locations. While the number of ants captured did not differ by trap placement, when grouped, captures were

  5. Field Trapping the Little Fire Ant, Wasmannia auropunctata

    PubMed Central

    Derstine, Nathan T.; Troyer, Elisa J.; Suttles, Caitlyn N.; Siderhurst, Leigh A.; Jang, Eric B.; Siderhurst, Matthew S.

    2012-01-01

    Two detection methods for the little fire ant, Wasmannia auropunctata (Roger) (Hymenoptera: Formicidae), both employing the pheromone attractant 2,5-dimethyl-3-(2-methylbutyl)pyrazine (2-MeBu-diMePy), were compared with peanut butter based detection, in order to evaluate differences in species specificity and detection reliability. Trapping was conducted using a transect through a macadamia orchard on the island of Hawaii. The transect consisted of a series of three-tree plots, each plot contained a peanut butter coated stick (the most common detection method used for W. auropunctata in Hawaii), a one—way trap treated with 2-MeBu-diMePy, and a piece of double-sided tape treated with 2-MeBu-diMePy. While there were no differences in the number of W. auropunctata counted with each detection method, and no differences in detection reliability (detecting the known presence of W. auropunctata in a plot), the pheromone—incorporating methods showed greater species specificity, retaining W. auropunctata almost exclusively. These results demonstrate the potential of pheromone—detection methods to selectively capture target ant species even when other ants are present and abundant. Combined data from all three detection methods and a previous visual survey along the transect showed a marked difference in the frequency of cohabitation among ant species. Of the 10 ant species collected, W. auropunctata was found as the sole ant species on a given tree at a significantly higher frequency than all other ant species except Pheidole fervens. 94% percent of the trees with W. auropunctata had only W. auropunctata, supporting previous observations that this species tends to displace other ant species. In addition, W. auropunctata microhabitat preferences were investigated using one—way traps containing 2-MeBu-diMePy, which were placed in three arboreal and three non—arboreal locations. While the number of ants captured did not differ by trap placement, when grouped

  6. Abundance, diversity, and resource use in an assemblage of Conus species in Enewetak lagoon

    SciTech Connect

    Kohn, A.J.

    1980-10-01

    Eight species of the gastropod genus Conus co-occur in sand substrate and an adjacent meadow of Halimeda stuposa in Enewetak lagoon, an unusually diverse assemblage for this type of habitat. Population density is high, and large species predominate; they represent all major feeding groups in the genus: predators on polychaetes, enteropneusts, gastropods, and fishes. Although the two most common Conus species eat primarily the same prey species, they mainly take prey of different sizes in different microhabitats. The results suggest that sufficient microhabitat heterogeneity and prey diversity exist to permit spatial segregation and specialization on different prey resources by the different Conus species present. Between-species dissimilarity in resource use thus agrees with previous observations on more diverse Conus assemblages of subtidal coral reef platforms. Prey species diversity is inversely related to body size, confirming and extending a previously identified pattern among Conus species that prey on sedentary polychaetes.

  7. Are ant assemblages of Brazilian veredas characterised by location or habitat type?

    PubMed

    Costa-Milanez, C B; Lourenço-Silva, G; Castro, P T A; Majer, J D; Ribeiro, S P

    2014-02-01

    Wetland areas in the Brazilian Cerrado, known as "veredas", represent ecosystems formed on sandy soils with high concentrations of peat, and are responsible for the recharge of aquiferous reservoirs. They are currently under threat by various human activities, most notably the clearing of vegetation for Eucalyptus plantations. Despite their ecological importance and high conservation value, little is known about the actual effects of human disturbance on the animal community. To assess how habitat within different veredas, and plantations surrounding them affect ant assemblages, we selected four independent vereda locations, two being impacted by Eucalyptus monoculture (one younger and one mature plantation) and two controls, where the wetland was surrounded by cerrado vegetation. Ant sampling was conducted in May 2010 (dry season) using three complementary methods, namely baits, pitfall traps, and hand collection, in the wetland and in the surrounding habitats. A total of 7,575 ants were sampled, belonging to seven subfamilies, 32 genera and 124 species. Ant species richness and abundance did not differ between vereda locations, but did between the habitats. When impacted by the monoculture, ant species richness and abundance decreased in wetlands, but were less affected in the cerrado habitat. Ant species composition differed between the three habitats and between vereda locations. Eucalyptus plantations had an ant species composition defined by high dominance of Pheidole sp. and Solenopsis invicta, while natural habitats were defined by Camponotus and Crematogaster species. Atta sexdens was strictly confined to native habitats of non-impacted "veredas". Eucalyptus monocultures require high quantities of water in the early stages, which may have caused a decrease in groundwater level in the wetland, allowing hypogeic ants such as Labidus praedator to colonise this habitat. PMID:25055090

  8. Ecological consequences of interactions between ants and honeydew-producing insects

    PubMed Central

    Styrsky, John D; Eubanks, Micky D

    2006-01-01

    Interactions between ants and honeydew-producing hemipteran insects are abundant and widespread in arthropod food webs, yet their ecological consequences are very poorly known. Ant–hemipteran interactions have potentially broad ecological effects, because the presence of honeydew-producing hemipterans dramatically alters the abundance and predatory behaviour of ants on plants. We review several studies that investigate the consequences of ant–hemipteran interactions as ‘keystone interactions’ on arthropod communities and their host plants. Ant–hemipteran interactions have mostly negative effects on the local abundance and species richness of several guilds of herbivores and predators. In contrast, out of the 30 studies that document the effects of ant–hemipteran interactions on plants, the majority (73%) shows that plants actually benefit indirectly from these interactions. In these studies, increased predation or harassment of other, more damaging, herbivores by hemipteran-tending ants resulted in decreased plant damage and/or increased plant growth and reproduction. The ecological consequences of mutualistic interactions between honeydew-producing hemipterans and invasive ants relative to native ants have rarely been studied, but they may be of particular importance owing to the greater abundance, aggressiveness and extreme omnivory of invasive ants. We argue that ant–hemipteran interactions are largely overlooked and underappreciated interspecific interactions that have strong and pervasive effects on the communities in which they are embedded. PMID:17148245

  9. Tanaidacean fauna of the Kuril-Kamchatka Trench and adjacent abyssal plain - abundance, diversity and rare species

    NASA Astrophysics Data System (ADS)

    Błażewicz-Paszkowycz, Magdalena; Pabis, Krzysztof; Jóźwiak, Piotr

    2015-01-01

    Here we examine the distribution patterns, abundance, and species richness of tanaidacean peracarids in the abyssal-hadal transition zone. Material was collected in the region of Kuril-Kamchatka Trench during the German-Russian KuramBio Expedition with use of a giant boxcorer (GKG) of sampling area 0.25 m2. In the 23 samples collected from depths 4900 to 5800 m 48 species of Tanaidacea belonging to 11 families have been identified; most of the species (80%) are new to science. There was no evidence of a distribution pattern associated with depth or geographic location of sta