Science.gov

Sample records for abundant bacterial groups

  1. Insight into the molecular basis of pathogen abundance: group A Streptococcus inhibitor of complement inhibits bacterial adherence and internalization into human cells.

    PubMed

    Hoe, Nancy P; Ireland, Robin M; DeLeo, Frank R; Gowen, Brian B; Dorward, David W; Voyich, Jovanka M; Liu, Mengyao; Burns, Eugene H; Culnan, Derek M; Bretscher, Anthony; Musser, James M

    2002-05-28

    Streptococcal inhibitor of complement (Sic) is a secreted protein made predominantly by serotype M1 Group A Streptococcus (GAS), which contributes to persistence in the mammalian upper respiratory tract and epidemics of human disease. Unexpectedly, an isogenic sic-negative mutant adhered to human epithelial cells significantly better than the wild-type parental strain. Purified Sic inhibited the adherence of a sic negative serotype M1 mutant and of non-Sic-producing GAS strains to human epithelial cells. Sic was rapidly internalized by human epithelial cells, inducing cell flattening and loss of microvilli. Ezrin and moesin, human proteins that functionally link the cytoskeleton to the plasma membrane, were identified as Sic-binding proteins by affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Sic colocalized with ezrin inside epithelial cells and bound to the F-actin-binding site region located in the carboxyl terminus of ezrin and moesin. Synthetic peptides corresponding to two regions of Sic had GAS adherence-inhibitory activity equivalent to mature Sic and inhibited binding of Sic to ezrin. In addition, the sic mutant was phagocytosed and killed by human polymorphonuclear leukocytes significantly better than the wild-type strain, and Sic colocalized with ezrin in discrete regions of polymorphonuclear leukocytes. The data suggest that binding of Sic to ezrin alters cellular processes critical for efficient GAS contact, internalization, and killing. Sic enhances bacterial survival by enabling the pathogen to avoid the intracellular environment. This process contributes to the abundance of M1 GAS in human infections and their ability to cause epidemics.

  2. Office space bacterial abundance and diversity in three metropolitan areas.

    PubMed

    Hewitt, Krissi M; Gerba, Charles P; Maxwell, Sheri L; Kelley, Scott T

    2012-01-01

    People in developed countries spend approximately 90% of their lives indoors, yet we know little about the source and diversity of microbes in built environments. In this study, we combined culture-based cell counting and multiplexed pyrosequencing of environmental ribosomal RNA (rRNA) gene sequences to investigate office space bacterial diversity in three metropolitan areas. Five surfaces common to all offices were sampled using sterile double-tipped swabs, one tip for culturing and one for DNA extraction, in 30 different offices per city (90 offices, 450 total samples). 16S rRNA gene sequences were PCR amplified using bar-coded "universal" bacterial primers from 54 of the surfaces (18 per city) and pooled for pyrosequencing. A three-factorial Analysis of Variance (ANOVA) found significant differences in viable bacterial abundance between offices inhabited by men or women, among the various surface types, and among cities. Multiplex pyrosequencing identified more than 500 bacterial genera from 20 different bacterial divisions. The most abundant of these genera tended to be common inhabitants of human skin, nasal, oral or intestinal cavities. Other commonly occurring genera appeared to have environmental origins (e.g., soils). There were no significant differences in the bacterial diversity between offices inhabited by men or women or among surfaces, but the bacterial community diversity of the Tucson samples was clearly distinguishable from that of New York and San Francisco, which were indistinguishable. Overall, our comprehensive molecular analysis of office building microbial diversity shows the potential of these methods for studying patterns and origins of indoor bacterial contamination. "[H]umans move through a sea of microbial life that is seldom perceived except in the context of potential disease and decay." - Feazel et al. (2009).

  3. Bacterial group II introns: not just splicing.

    PubMed

    Toro, Nicolás; Jiménez-Zurdo, José Ignacio; García-Rodríguez, Fernando Manuel

    2007-04-01

    Group II introns are both catalytic RNAs (ribozymes) and mobile retroelements that were discovered almost 14 years ago. It has been suggested that eukaryotic mRNA introns might have originated from the group II introns present in the alphaproteobacterial progenitor of the mitochondria. Bacterial group II introns are of considerable interest not only because of their evolutionary significance, but also because they could potentially be used as tools for genetic manipulation in biotechnology and for gene therapy. This review summarizes what is known about the splicing mechanisms and mobility of bacterial group II introns, and describes the recent development of group II intron-based gene-targetting methods. Bacterial group II intron diversity, evolutionary relationships, and behaviour in bacteria are also discussed.

  4. Archaeal and bacterial H-GDGTs are abundant in peat and their relative abundance is positively correlated with temperature

    NASA Astrophysics Data System (ADS)

    Naafs, B. D. A.; McCormick, D.; Inglis, G. N.; Pancost, R. D.; T-GRES Peat Database Collaborators

    2018-04-01

    Glycerol monoalkyl glycerol tetraether lipids (GMGTs; also called 'H-GDGTs') differ from the more commonly studied glycerol dialkyl glycerol tetraether (GDGTs) in that they have an additional covalent bond that links the two alkyl chains. Six different archaeal isoprenoidal H-GDGTs (H-isoGDGTs) and one branched H-GDGT (H-brGDGT), presumably produced by bacteria, have previously been found. However, the function of H-GDGTs in both domains of life is unknown. It is thought that the formation of this additional covalent bond results in enhanced membrane stability, accounting for the high abundance of H-GDGTs in extreme environments such as geothermal settings, but so far there has been little evidence to support this hypothesis. Here we report the distribution of H-GDGTs in a global peat database (n = 471) with a broad range in mean annual air temperature (MAAT) and pH. This is the first finding of H-GDGTs in soils (specifically, peat), highlighting that H-GDGTs are widespread in mesophilic settings. In addition, we report the presence of two new H-brGDGTs with one (H-1034) and two (H-1048) additional methyl groups, respectively. Our results suggest that the relative abundance of both bacterial and archaeal H-GDGTs compared to regular GDGTs is related to temperature with the highest relative abundance of H-GDGTs in tropical peats. Although other factors besides temperature likely also play a role, these results do support the hypothesis that H-GDGTs are an adaptation to temperature to maintain membrane stability. The observation that both bacterial and archaeal membrane lipids respond to temperature indicates the same adaption across the lipid divide between these two domains of life, suggesting parallel or convergent evolution (potentially facilitated by lateral gene transfer).

  5. Acidification of calf bedding reduces fly development and bacterial abundance.

    PubMed

    Calvo, M S; Gerry, A C; McGarvey, J A; Armitage, T L; Mitloehner, F M

    2010-03-01

    Environmental stressors, such as high fly density, can affect calf well-being. Sodium bisulfate (SBS) is an acidifier that reduces the pH of flooring and bedding, creating a medium that neither bacteria nor immature flies (also known as larvae or maggots) can thrive in. Two experiments were conducted to investigate the application of SBS to a mixture of rice hull calf bedding and calf slurry (BED) to reduce house fly (Musca domestica L.) larval density and the abundance of bacteria. In experiment 1, dish pans containing 1L of BED and 3,000 house fly eggs were treated with SBS at concentrations of 0, 8.9, 17.7, and 26.5g of SBS/0.05m(2) of BED (CON, LOW, MED, and HIGH, respectively), with each SBS concentration applied to 4 individual pans (16 pans total). Reapplication of the same SBS concentrations in each pan occurred 3 times/wk throughout the 23-d trial. Larval house fly survival was significantly reduced in all pans with SBS relative to CON pans, with lowest survival rates in the MED and HIGH pans (99% and 100% reduction, respectively). The mean pH for each treatment was inversely related to the SBS concentration. In experiment 2, pans containing 1L of BED and 3,000 house fly eggs were treated with either 0g of SBS (CON), 8.9g of SBS/0.05m(2) of BED with reapplication of the acidifier 3 times/wk (SB3x), or 8.9g of SBS/0.05m(2) of BED applied only once at 48h before the end of the 8 d-trial (SB48). Larval house fly survival and bacterial concentrations were reduced (90% larval reduction and 68% bacterial reduction) in the SB3x treatment relative to the CON. Mean pH was also reduced in SB3x pans relative to CON or SB48 pans. Overall, acidification of calf BED using the acidifier SBS resulted in a reduction of bacteria and house fly larval survival. This form of fly control might be expected to reduce adult fly production and, therefore, fly-related stress in calves.

  6. Bacterial gene abundances as indicators of greenhouse gas emission in soils.

    PubMed

    Morales, Sergio E; Cosart, Theodore; Holben, William E

    2010-06-01

    Nitrogen fixing and denitrifying bacteria, respectively, control bulk inputs and outputs of nitrogen in soils, thereby mediating nitrogen-based greenhouse gas emissions in an ecosystem. Molecular techniques were used to evaluate the relative abundances of nitrogen fixing, denitrifying and two numerically dominant ribotypes (based on the > or =97% sequence similarity at the 16S rRNA gene) of bacteria in plots representing 10 agricultural and other land-use practices at the Kellogg biological station long-term ecological research site. Quantification of nitrogen-related functional genes (nitrite reductase, nirS; nitrous oxide reductase, nosZ; and nitrogenase, nifH) as well as two dominant 16S ribotypes (belonging to the phyla Acidobacteria, Thermomicrobia) allowed us to evaluate the hypothesis that microbial community differences are linked to greenhouse gas emissions under different land management practices. Our results suggest that the successional stages of the ecosystem are strongly linked to bacterial functional group abundance, and that the legacy of agricultural practices can be sustained over decades. We also link greenhouse gas emissions with specific compositional responses in the soil bacterial community and assess the use of denitrifying gene abundances as proxies for determining nitrous oxide emissions from soils.

  7. Microbial dynamics during harmful dinoflagellate Ostreopsis cf. ovata growth: Bacterial succession and viral abundance pattern.

    PubMed

    Guidi, Flavio; Pezzolesi, Laura; Vanucci, Silvana

    2018-02-27

    Algal-bacterial interactions play a major role in shaping diversity of algal associated bacterial communities. Temporal variation in bacterial phylogenetic composition reflects changes of these complex interactions which occur during the algal growth cycle as well as throughout the lifetime of algal blooms. Viruses are also known to cause shifts in bacterial community diversity which could affect algal bloom phases. This study investigated on changes of bacterial and viral abundances, bacterial physiological status, and on bacterial successional pattern associated with the harmful benthic dinoflagellate Ostreopsis cf. ovata in batch cultures over the algal growth cycle. Bacterial community phylogenetic structure was assessed by 16S rRNA gene ION torrent sequencing. A comparison between bacterial community retrieved in cultures and that one co-occurring in situ during the development of the O. cf. ovata bloom from where the algal strain was isolated was also reported. Bacterial community growth was characterized by a biphasic pattern with the highest contributions (~60%) of highly active bacteria found at the two bacterial exponential growth steps. An alphaproteobacterial consortium composed by the Rhodobacteraceae Dinoroseobacter (22.2%-35.4%) and Roseovarius (5.7%-18.3%), together with Oceanicaulis (14.2-40.3%), was strongly associated with O. cf. ovata over the algal growth. The Rhodobacteraceae members encompassed phylotypes with an assessed mutualistic-pathogenic bimodal behavior. Fabibacter (0.7%-25.2%), Labrenzia (5.6%-24.3%), and Dietzia (0.04%-1.7%) were relevant at the stationary phase. Overall, the successional pattern and the metabolic and functional traits of the bacterial community retrieved in culture mirror those ones underpinning O. cf. ovata bloom dynamics in field. Viral abundances increased synoptically with bacterial abundances during the first bacterial exponential growth step while being stationary during the second step. Microbial trends

  8. Abundance of three bacterial populations in selected streams

    Treesearch

    O.A. Olapade; X. Gao; L.G. LEff

    2005-01-01

    The population sizes of three bacterial species, Acinetobacter calcoaceticw, Burkholderia cepacia, and Pseudomonas putida, were examined in water and sediment from nine streams in different parts of the United States using fluorescent in situ hybridization (FISH). Population sizes were determined from three sites (upstream,...

  9. Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian Savanna under different land use systems.

    PubMed

    Rampelotto, Pabulo Henrique; de Siqueira Ferreira, Adão; Barboza, Anthony Diego Muller; Roesch, Luiz Fernando Wurdig

    2013-10-01

    The Brazilian Savanna, also known as "Cerrado", is the richest and most diverse savanna in the world and has been ranked as one of the main hotspots of biodiversity. The Cerrado is a representative biome in Central Brazil and the second largest biome in species diversity of South America. Nevertheless, large areas of native vegetation have been converted to agricultural land including grain production, livestock, and forestry. In this view, understanding how land use affects microbial communities is fundamental for the sustainable management of agricultural ecosystems. The aim of this work was to analyze and compare the soil bacterial communities from the Brazilian Cerrado associated with different land use systems using high throughput pyrosequencing of 16S rRNA genes. Relevant differences were observed in the abundance and structure of bacterial communities in soils under different land use systems. On the other hand, the diversity of bacterial communities was not relevantly changed among the sites studied. Land use systems had also an important impact on specific bacterial groups in soil, which might change the soil function and the ecological processes. Acidobacteria, Proteobacteria, and Actinobacteria were the most abundant groups in the Brazilian Cerrado. These findings suggest that more important than analyzing the general diversity is to analyze the composition of the communities. Since soil type was the same among the sites, we might assume that land use was the main factor defining the abundance and structure of bacterial communities.

  10. Relative Abundance in Bacterial and Fungal Gut Microbes in Obese Children: A Case Control Study.

    PubMed

    Borgo, Francesca; Verduci, Elvira; Riva, Alessandra; Lassandro, Carlotta; Riva, Enrica; Morace, Giulia; Borghi, Elisa

    2017-02-01

    Differences in relative proportions of gut microbial communities in adults have been correlated with intestinal diseases and obesity. In this study we evaluated the gut microbiota biodiversity, both bacterial and fungal, in obese and normal-weight school-aged children. We studied 28 obese (mean age 10.03 ± 0.68) and 33 age- and sex-matched normal-weight children. BMI z-scores were calculated, and the obesity condition was defined according to the WHO criteria. Fecal samples were analyzed by 16S rRNA amplification followed by denaturing gradient gel electrophoresis (DGGE) analysis and sequencing. Real-time polymerase chain reaction (PCR) was performed to quantify the most representative microbial species and genera. DGGE profiles showed high bacterial biodiversity without significant correlations with BMI z-score groups. Compared to bacterial profiles, we observed lower richness in yeast species. Sequence of the most representative bands gave back Eubacterium rectale, Saccharomyces cerevisiae, Candida albicans, and C. glabrata as present in all samples. Debaryomyces hansenii was present only in two obese children. Obese children revealed a significantly lower abundance in Akkermansia muciniphyla, Faecalibacterium prausnitzii, Bacteroides/Prevotella group, Candida spp., and Saccharomyces spp. (P = 0.031, P = 0.044, P = 0.003, P = 0.047, and P = 0.034, respectively). Taking into account the complexity of obesity, our data suggest that differences in relative abundance of some core microbial species, preexisting or diet driven, could actively be part of its etiology. This study improved our knowledge about the fungal population in the pediatric school-age population and highlighted the need to consider the influence of cross-kingdom relationships.

  11. Bacterial Abundance and Activity across Sites within Two Northern Wisconsin Sphagnum Bogs.

    PubMed

    Fisher; Graham; Graham

    1998-11-01

    Abstract Bacterial abundance, temperature, pH, and dissolved organic carbon (DOC) concentration were compared across surface sites within and between two northern Wisconsin Sphagnum peatlands over the summer seasons in 1995 and 1996. Sites of interest were the Sphagnum mat surface, the water-filled moat (lagg) at the bog margin, and the bog lake littoral zone. Significant differences in both bacterial populations and water chemistry were observed between sites. pH was highest in the lake and lowest in the mat at both bogs; the opposite was true for DOC. Large populations of bacteria were present in surface interstitial water from the mat; abundance in this site was consistently higher than in the moat or lake. Bacterial abundance also increased across sites of increasing DOC concentration and declining pH. Bacterial activities (rates of [3H]leucine incorporation) and growth in dilution cultures (with grazers removed) were also assessed in lake, moat, and mat sites. Results using these measures generally supported the trends observed in abundance, although high rates of [3H]leucine incorporation were recorded in the moat at one of the bogs. Our results indicate that bacterial populations in Sphagnum peatlands are not adversely affected by acidity, and that DOC may be more important than pH in determining bacterial abundance in these environments.

  12. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil.

    PubMed

    Zhang, Fengli; Zhao, Xiaoxue; Li, Qingbo; Liu, Jia; Ding, Jizhe; Wu, Huiying; Zhao, Zongsheng; Ba, Yue; Cheng, Xuemin; Cui, Liuxin; Li, Hongping; Zhu, Jingyuan

    2018-04-01

    Soil contamination with heavy metals is a worldwide problem especially in China. The interrelation of soil bacterial community structure, antibiotic resistance genes, and heavy metal contamination in soil is still unclear. Here, seven agricultural areas (G1-G7) with heavy metal contamination were sampled with different distances (741 to 2556 m) to the factory. Denaturing gradient gel electrophoresis (DGGE) and Shannon index were used to analyze bacterial community diversity. Real-time fluorescence quantitative PCR was used to detect the relative abundance of ARGs sul1, sul2, tetA, tetM, tetW, one mobile genetic elements (MGE) inti1. Results showed that all samples were polluted by Cadmium (Cd), and some of them were polluted by lead (Pb), mercury (Hg), arsenic (As), copper (Cu), and zinc (Zn). DGGE showed that the most abundant bacterial species were found in G7 with the lightest heavy metal contamination. The results of the principal component analysis and clustering analysis both showed that G7 could not be classified with other samples. The relative abundance of sul1 was correlated with Cu, Zn concentration. Gene sul2 are positively related with total phosphorus, and tetM was associated with organic matter. Total gene abundances and relative abundance of inti1 both correlated with organic matter. Redundancy analysis showed that Zn and sul2 were significantly related with bacterial community structure. Together, our results indicate a complex linkage between soil heavy metal concentration, bacterial community composition, and some global disseminated ARG abundance.

  13. N-METHYL GROUPS IN BACTERIAL LIPIDS

    PubMed Central

    Goldfine, Howard; Ellis, Martha E.

    1964-01-01

    Goldfine, Howard (Harvard Medical School, Boston, Mass.), and Martha E. Ellis. N-methyl groups in bacterial lipids. J. Bacteriol. 87:8–15. 1964.—The ability of bacteria to synthesize lecithin was examined by measuring the incorporation of the methyl group of methionine into the water-soluble moieties obtained on acid hydrolysis of bacterial lipids. Of 21 species examined, mostly of the order Eubacteriales, only 2, Agrobacterium radiobacter and A. rhizogenes, incorporated the methyl group of methionine into lipid-bound choline. Evidence was also obtained for the formation of lipid-bound N-methylethanolamine and N,N′-dimethylethanolamine in these two organisms. Two other species, Clostridium butyricum and Proteus vulgaris, incorporated the methyl group of methionine into lipid-bound N-methylethanolamine, but did not appear to be able to further methylate these lipids to form lecithin. The results of this study lend further strength to the generalization that bacteria, with the exception of the genus Agrobacterium, are unable to synthesize lecithin. PMID:14102879

  14. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  15. Lead and uranium group abundances in cosmic rays

    NASA Technical Reports Server (NTRS)

    Yadav, J. S.; Perelygin, V. P.

    1985-01-01

    The importance of Lead and Uranium group abundances in cosmic rays is discussed in understanding their evolution and propagation. The electronic detectors can provide good charge resolution but poor data statistics. The plastic detectors can provide somewhat better statistics but charge resolution deteriorates. The extraterrestrial crystals can provide good statistics but with poor charge resolution. Recent studies of extraterrestrial crystals regarding their calibration to accelerated uranium ion beam and track etch kinetics are discussed. It is hoped that a charge resolution of two charge units can be achieved provided an additional parameter is taken into account. The prospects to study abundances of Lead group, Uranium group and superheavy element in extraterrestrial crystals are discussed, and usefulness of these studies in the light of studies with electronic and plastic detectors is assessed.

  16. Chemical Abundance Analysis of Moving Group W11450 (Latham 1)

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia E.; Martens, Kylee; Frinchaboy, Peter M.

    2016-12-01

    We present elemental abundances for all seven stars in Moving Group W11450 (Latham 1) to determine if they may be chemically related. These stars appear to be both spatially and kinematically related, but no spectroscopic abundance analysis exists in literature. Abundances for eight elements were derived via equivalent width analyses of high-resolution (R ˜ 60,000), high-signal-to-noise ratio (< {{S}}/{{N}}> ˜ 100) spectra obtained with the Otto Struve 2.1 m telescope and the Sandiford Echelle Spectrograph at McDonald Observatory. The large star-to-star scatter in metallicity, -0.55 ≤ [Fe/H] ≤slant 0.06 dex (σ = 0.25), implies these stars were not produced from the same chemically homogeneous molecular cloud, and are therefore not part of a remnant or open cluster as previously proposed. Prior to this analysis, it was suggested that two stars in the group, W11449 and W11450, are possible wide binaries. The candidate wide binary pair show similar chemical abundance patterns with not only iron but with other elements analyzed in this study, suggesting the proposed connection between these two stars may be real.

  17. SPECTROSCOPIC ABUNDANCES AND MEMBERSHIP IN THE WOLF 630 MOVING GROUP

    SciTech Connect

    Bubar, Eric J.; King, Jeremy R., E-mail: ebubar@gmail.co, E-mail: jking2@ces.clemson.ed

    The concept of kinematic assemblages evolving from dispersed stellar clusters has remained contentious since Eggen's initial formulation of moving groups in the 1960s. With high-quality parallaxes from the Hipparcos space astrometry mission, distance measurements for thousands of nearby, seemingly isolated stars are currently available. With these distances, a high-resolution spectroscopic abundance analysis can be brought to bear on the alleged members of these moving groups. If a structure is a relic of an open cluster, the members can be expected to be monolithic in age and abundance in as much as homogeneity is observed in young open clusters. In thismore » work, we have examined 34 putative members of the proposed Wolf 630 moving group using high-resolution stellar spectroscopy. The stars of the sample have been chemically tagged to determine abundance homogeneity and confirm the existence of a homogeneous subsample of 19 stars. Fitting the homogeneous subsample with Yale-Yonsei isochrones yields a single evolutionary sequence of {approx}2.7 {+-} 0.5 Gyr. It is concluded that this 19 star subsample of the Wolf 630 moving group sample of 34 stars could represent a dispersed cluster with an ([Fe/H]) = -0.01 {+-} 0.02 and an age of 2.7 {+-} 0.5 Gyr. In addition, chemical abundances of Na and Al in giants are examined for indications of enhancements as observed in field giants of old open clusters; overexcitation/ionization effects are explored in the cooler dwarfs of the sample; and oxygen is derived from the infrared triplet and the forbidden line at {lambda}6300.« less

  18. Variable effects of oxytetracycline on antibiotic resistance gene abundance and the bacterial community during aerobic composting of cow manure.

    PubMed

    Qian, Xun; Sun, Wei; Gu, Jie; Wang, Xiao-Juan; Sun, Jia-Jun; Yin, Ya-Nan; Duan, Man-Li

    2016-09-05

    Livestock manure is often subjected to aerobic composting but little is known about the variation in antibiotic resistance genes (ARGs) during the composting process under different concentrations of antibiotics. This study compared the effects of three concentrations of oxytetracycline (OTC; 10, 60, and 200mg/kg) on ARGs and the succession of the bacterial community during composting. Very similar trends were observed in the relative abundances (RAs) of each ARG among the OTC treatments and the control during composting. After composting, the RAs of tetC, tetX, sul1, sul2, and intI1 increased 2-43 times, whereas those of tetQ, tetM, and tetW declined by 44-99%. OTC addition significantly increased the absolute abundances and RAs of tetC and intI1, while 200mg/kg OTC also enhanced those of tetM, tetQ, and drfA7. The bacterial community could be grouped according to the composting time under different treatments. The highest concentration of OTC had a more persistent effect on the bacterial community. In the present study, the succession of the bacterial community appeared to have a greater influence on the variation of ARGs during composting than the presence of antibiotics. Aerobic composting was not effective in reducing most of the ARGs, and thus the compost product should be considered as an important reservoir for ARGs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Bacterial and enchytraeid abundance accelerate soil carbon turnover along a lowland vegetation gradient in interior Alaska

    USGS Publications Warehouse

    Waldrop, M.P.; Harden, Jennifer W.; Turetsky, M.R.; Petersen, D.G.; McGuire, A.D.; Briones, M.J.I.; Churchill, A.C.; Doctor, D.H.; Pruett, L.E.

    2012-01-01

    Boreal wetlands are characterized by a mosaic of plant communities, including forests, shrublands, grasslands, and fens, which are structured largely by changes in topography and water table position. The soil associated with these plant communities contain quantitatively and qualitatively different forms of soil organic matter (SOM) and nutrient availability that drive changes in biogeochemical cycling rates. Therefore different boreal plant communities likely contain different soil biotic communities which in turn affect rates of organic matter decomposition. We examined relationships between plant communities, microbial communities, enchytraeids, and soil C turnover in near-surface soils along a shallow topographic soil moisture and vegetation gradient in interior Alaska. We tested the hypothesis that as soil moisture increases along the gradient, surface soils would become increasingly dominated by bacteria and mesofauna and have more rapid rates of C turnover. We utilized bomb radiocarbon techniques to infer rates of C turnover and the 13C isotopic composition of SOM and respired CO2 to infer the degree of soil humification. Soil phenol oxidase and peroxidase enzyme activities were generally higher in the rich fen compared with the forest and bog birch sites. Results indicated greater C fluxes and more rapid C turnover in the surface soils of the fen sites compared to the wetland forest and shrub sites. Quantitative PCR analyses of soil bacteria and archaea, combined with enchytraeid counts, indicated that surface soils from the lowland fen ecosystems had higher abundances of these microbial and mesofaunal groups. Fungal abundance was highly variable and not significantly different among sites. Microbial data was utilized in a food web model that confirmed that rapidly cycling systems are dominated by bacterial activity and enchytraeid grazing. However, our results also suggest that oxidative enzymes play an important role in the C mineralization process in

  20. Consider a source: Microplastic in rivers is abundant, mobile, and selects for unique bacterial assemblages

    NASA Astrophysics Data System (ADS)

    Hoellein, T. J.; Kelly, J. J.; McCormick, A.; London, M.

    2016-02-01

    Microplastic particles (< 5mm) in oceans are an emerging ecological concern. While rivers are considered a major source of microplastic to oceans, little is known about microplastic abundance, transport, and biological interactions in rivers. Our initial research an urban river showed microplastic collected downstream of a wastewater treatment plant (WWTP) was more abundant than upstream, more abundant than many marine sites, and had higher occurrences of bacterial taxa associated with plastic decomposition and gastrointestinal pathogens than natural habitats (e.g., seston and water column). Based on these data, we conducted follow-up projects to measure 1) the role of WWTPs on microplastic abundance in 10 rivers, 2) microplastic concentrations in WWTP influent, sludge, and effluent, and 3) deposition rates of microplastic downstream of a WWTP point source. In each project, we characterized bacterial community composition on microplastic and natural habitats using next-generation Illumina sequencing. Although maximum concentrations varied among 10 sites, microplastic concentration was significantly higher downstream of WWTPs than upstream. WWTPs retained a significant component of microplastic in two activated sludge plants (>90%). Microplastic deposition length in an urban river was >2 km, and concentrations were orders of magnitude higher in the sediment than water column. Finally, bacterial communities were distinct on microplastic in water column and sediment habitats, yet communities became more similar with increasing distance from WWTP effluent sites. These data support the role of rivers as sources of microplastic to downstream ecosystems, but also illustrate that rivers are active sites of microplastic retention and bacterial colonization. Results will inform policies and engineering advances for mitigating microplastic inputs and redistribution. We advocate for research on plastic in the environment which synthesizes data from freshwater and marine

  1. Bacterial abundance and diversity in pond water supplied with different feeds

    NASA Astrophysics Data System (ADS)

    Qin, Ya; Hou, Jie; Deng, Ming; Liu, Quansheng; Wu, Chongwei; Ji, Yingjie; He, Xugang

    2016-10-01

    The abundance and diversity of bacteria in two types of ponds were investigated by quantitative PCR and Illumina MiSeq sequencing. The results revealed that the abundance of bacterial 16S rRNA genes in D ponds (with grass carp fed sudan grass) was significantly lower than that in E ponds (with grass carp fed commercial feed). The microbial communities were dominated by Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria in both E and D ponds, while the abundance of some genera was significantly different between the two types of ponds. Specifically, some potential pathogens such as Acinetobacter and Aeromonas were found to be significantly decreased, while some probiotics such as Comamonadaceae unclassified and Bacillales unclassified were significantly increased in D ponds. In addition, water quality of D ponds was better than that of E ponds. Temperature, dissolved oxygen and nutrients had significant influence on bacterial communities. The differences in bacterial community compositions between the two types of ponds could be partially explained by the different water conditions.

  2. Bacterial taxa abundance pattern in an industrial wastewater treatment system determined by the full rRNA cycle approach.

    PubMed

    Figuerola, Eva L M; Erijman, Leonardo

    2007-07-01

    The description of the diversity and structure of microbial communities through quantification of the constituent populations is one of the major objectives in environmental microbiology. The implications of models for community assembly are practical as well as theoretical, because the extent of biodiversity is thought to influence the function of ecosystems. Current attempts to predict species diversity in different environments derive the numbers of individuals for each operational taxonomic unit (OTU) from the frequency of clones in 16S rDNA gene libraries, which are subjected to a number of inherent biases and artefacts. We show that diversity of the bacterial community present in a complex microbial ensemble can be estimated by fitting the data of the full-cycle rRNA approach to a model of species abundance distribution. Sequences from a 16S rDNA gene library from activated sludge were reliably assigned to OTUs at a genetic distance of 0.04. A group of 17 newly designed rRNA-targeted oligonucleotide probes were used to quantify by fluorescence in situ hybridization, OTUs represented with more than three clones in the 16S rDNA clone library. Cell abundance distribution was best described by a geometric series, after the goodness of fit was evaluated by the Kolmogorov-Smirnov test. Although a complete mechanistic understanding of all the ecological processes involved is still not feasible, describing the distribution pattern of a complex bacterial assemblage model can shed light on the way bacterial communities operate.

  3. Contrasting ability to take up leucine and thymidine among freshwater bacterial groups: implications for bacterial production measurements

    PubMed Central

    Pérez, María Teresa; Hörtnagl, Paul; Sommaruga, Ruben

    2010-01-01

    We examined the ability of different freshwater bacterial groups to take up leucine and thymidine in two lakes. Utilization of both substrates by freshwater bacteria was examined at the community level by looking at bulk incorporation rates and at the single-cell level by combining fluorescent in situ hybridization and signal amplification by catalysed reporter deposition with microautoradiography. Our results showed that leucine was taken up by 70–80% of Bacteria-positive cells, whereas only 15–43% of Bacteria-positive cells were able to take up thymidine. When a saturating substrate concentration in combination with a short incubation was used, 80–90% of Betaproteobacteria and 67–79% of Actinobacteria were positive for leucine uptake, whereas thymidine was taken up by < 10% of Betaproteobacteria and by < 1% of the R-BT subgroup that dominated this bacterial group. Bacterial abundance was a good predictor of the relative contribution of bacterial groups to leucine uptake, whereas when thymidine was used Actinobacteria represented the large majority (> 80%) of the cells taking up this substrate. Increasing the substrate concentration to 100 nM did not affect the percentage of R-BT cells taking up leucine (> 90% even at low concentrations), but moderately increased the fraction of thymidine-positive R-BT cells to a maximum of 35% of the hybridized cells. Our results show that even at very high concentrations, thymidine is not taken up by all, otherwise active, bacterial cells. PMID:19725866

  4. Environmental distribution, abundance and activity of the Miscellaneous Crenarchaeotal Group

    NASA Astrophysics Data System (ADS)

    Lloyd, K. G.; Biddle, J.; Teske, A.

    2011-12-01

    Many marine sedimentary microbes have only been identified by 16S rRNA sequences. Consequently, little is known about the types of metabolism, activity levels, or relative abundance of these groups in marine sediments. We found that one of these uncultured groups, called the Miscellaneous Crenarchaeotal Group (MCG), dominated clone libraries made from reverse transcribed 16S rRNA, and 454 pyrosequenced 16S rRNA genes, in the White Oak River estuary. Primers suitable for quantitative PCR were developed for MCG and used to show that 16S rRNA DNA copy numbers from MCG account for nearly all the archaeal 16S rRNA genes present. RT-qPCR shows much less MCG rRNA than total archaeal rRNA, but comparisons of different primers for each group suggest bias in the RNA-based work relative to the DNA-based work. There is no evidence of a population shift with depth below the sulfate-methane transition zone, suggesting that the metabolism of MCG may not be tied to sulfur or methane cycles. We classified 2,771 new sequences within the SSU Silva 106 database that, along with the classified sequences in the Silva database was used to make an MCG database of 4,646 sequences that allowed us to increase the named subgroups of MCG from 7 to 19. Percent terrestrial sequences in each subgroup is positively correlated with percent of the marine sequences that are nearshore, suggesting that membership in the different subgroups is not random, but dictated by environmental selective pressures. Given their high phylogenetic diversity, ubiquitous distribution in anoxic environments, and high DNA copy number relative to total archaea, members of MCG are most likely anaerobic heterotrophs who are integral to the post-depositional marine carbon cycle.

  5. Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecosystems.

    PubMed

    Lynn, Tin Mar; Ge, Tida; Yuan, Hongzhao; Wei, Xiaomeng; Wu, Xiaohong; Xiao, Keqing; Kumaresan, Deepak; Yu, San San; Wu, Jinshui; Whiteley, Andrew S

    2017-04-01

    CO 2 assimilation by autotrophic microbes is an important process in soil carbon cycling, and our understanding of the community composition of autotrophs in natural soils and their role in carbon sequestration of these soils is still limited. Here, we investigated the autotrophic C incorporation in soils from three natural ecosystems, i.e., wetland (WL), grassland (GR), and forest (FO) based on the incorporation of labeled C into the microbial biomass. Microbial assimilation of 14 C ( 14 C-MBC) differed among the soils from three ecosystems, accounting for 14.2-20.2% of 14 C-labeled soil organic carbon ( 14 C-SOC). We observed a positive correlation between the cbbL (ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit gene) abundance, 14 C-SOC level, and 14 C-MBC concentration confirming the role of autotrophic bacteria in soil carbon sequestration. Distinct cbbL-bearing bacterial communities were present in each soil type; form IA and form IC RubisCO-bearing bacteria were most abundant in WL, followed by GR soils, with sequences from FO soils exclusively derived from the form IC clade. Phylogenetically, the diversity of CO 2 -fixing autotrophs and CO oxidizers differed significantly with soil type, whereas cbbL-bearing bacterial communities were similar when assessed using coxL. We demonstrate that local edaphic factors such as pH and salinity affect the C-fixation rate as well as cbbL and coxL gene abundance and diversity. Such insights into the effect of soil type on the autotrophic bacterial capacity and subsequent carbon cycling of natural ecosystems will provide information to enhance the sustainable management of these important natural ecosystems.

  6. Bacterial Group II Introns: Identification and Mobility Assay.

    PubMed

    Toro, Nicolás; Molina-Sánchez, María Dolores; Nisa-Martínez, Rafael; Martínez-Abarca, Francisco; García-Rodríguez, Fernando Manuel

    2016-01-01

    Group II introns are large catalytic RNAs and mobile retroelements that encode a reverse transcriptase. Here, we provide methods for their identification in bacterial genomes and further analysis of their splicing and mobility capacities.

  7. EXPLOSIVE RADIATION OF A BACTERIAL SPECIES GROUP

    PubMed Central

    Morlon, Hélène; Kemps, Brian D.; Plotkin, Joshua B.; Brisson, Dustin

    2013-01-01

    The current diversity of life on earth is the product of macroevolutionary processes that have shaped the dynamics of diversification. Although the tempo of diversification has been studied extensively in macroorganisms, much less is known about the rates of diversification in the exceedingly diverse and species-rich microbiota. Decreases in diversification rates over time, a signature of explosive radiations, are commonly observed in plant and animal lineages. However, the few existing analyses of microbial lineages suggest that the tempo of diversification in prokaryotes may be fundamentally different. Here, we use multilocus and genomic sequence data to test hypotheses about the rate of diversification in a well-studied pathogenic bacterial lineage, Borrelia burgdorferi sensu lato (sl). Our analyses support the hypothesis that an explosive radiation of lineages occurred near the origin of the clade, followed by a sharp decay in diversification rates. These results suggest that explosive radiations may be a general feature of evolutionary history across the tree of life. PMID:22834754

  8. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area

    NASA Astrophysics Data System (ADS)

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area.

  9. Bacterial abundance and activity in deep-sea sediments from the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Eardly, D. F.; Carton, M. W.; Gallagher, J. M.; Patching, J. W.

    Results are presented from four cruises to the Porcupine Abyssal Plain (PAP site) that took place during the BENGAL project from September 1996 to March 1998, and two cruises to the PAP and an oligotrophic site (EUMELI) that took place during the DEEPSEAS project between September 1993 and March 1994. Bacterial abundances in sediment and sediment contact water were measured by epifluorescence microscopy. Bacterial activity was determined by 3H-thymidine incorporation as a measure of DNA synthesis, and by 3H-leucine incorporation as a measure of protein synthesis. Activities were measured under atmospheric and in situ pressures and temperatures. Bacterial activity was usually higher in samples incubated at in situ pressure than those incubated at atmospheric pressure indicating that a barophilic community was dominant. Inter-cruise comparisons of abundance and activity during the BENGAL project showed no firm evidence of there being a seasonal response in the benthic microbial community to any episodic phytodetritus event. This was probably because of inter-annual variations in the quality and quantity of phytodetritus deposition at the PAP site, the rapid remineralization of fresh organic material by the microbial communities and the timing of cruises to the study area. 3H-thymidine and 3H-leucine incorporation in sediments was higher during the BENGAL period than the DEEPSEAS programme. A methodological change in the 3H-thymidine incorporation technique for sediments may explain the differences in DNA synthesis observed between the two projects, whereas the lower levels of protein synthesis observed during the DEEPSEAS programme probably reflected both inter-annual variations in activity at the PAP site and the lower productivity that prevailed at surface at the EUMELI oligotrophic site. Rates of 3H-thymidine incorporation in sediment contact water were similar during both projects.

  10. A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates.

    PubMed

    Helbling, Damian E; Johnson, David R; Lee, Tae Kwon; Scheidegger, Andreas; Fenner, Kathrin

    2015-03-01

    The rates at which wastewater treatment plant (WWTP) microbial communities biotransform specific substrates can differ by orders of magnitude among WWTP communities. Differences in taxonomic compositions among WWTP communities may predict differences in the rates of some types of biotransformations. In this work, we present a novel framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. We selected ten WWTPs with substantial variation in their environmental and operational metrics and measured the in situ ammonia biotransformation rate constants in nine of them. We isolated total RNA from samples from each WWTP and analyzed 16S rRNA sequence reads. We then developed multivariate models between the measured abundances of specific bacterial 16S rRNA sequence reads and the ammonia biotransformation rate constants. We constructed model scenarios that systematically explored the effects of model regularization, model linearity and non-linearity, and aggregation of 16S rRNA sequences into operational taxonomic units (OTUs) as a function of sequence dissimilarity threshold (SDT). A large percentage (greater than 80%) of model scenarios resulted in well-performing and significant models at intermediate SDTs of 0.13-0.14 and 0.26. The 16S rRNA sequences consistently selected into the well-performing and significant models at those SDTs were classified as Nitrosomonas and Nitrospira groups. We then extend the framework by applying it to the biotransformation rate constants of ten micropollutants measured in batch reactors seeded with the ten WWTP communities. We identified phylogenetic groups that were robustly selected into all well-performing and significant models constructed with biotransformation rates of isoproturon, propachlor, ranitidine, and venlafaxine. These phylogenetic groups can be used as predictive biomarkers of WWTP microbial community activity towards these specific

  11. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest.

    PubMed

    Shen, Ju-pei; Chen, C R; Lewis, Tom

    2016-01-20

    Effects of fire on biogeochemical cycling in terrestrial ecosystem are widely acknowledged, while few studies have focused on the bacterial community under the disturbance of long-term frequent prescribed fire. In this study, three treatments (burning every two years (B2), burning every four years (B4) and no burning (B0)) were applied for 38 years in an Australian wet sclerophyll forest. Results showed that bacterial alpha diversity (i.e. bacterial OTU) in the top soil (0-10 cm) was significantly higher in the B2 treatment compared with the B0 and B4 treatments. Non-metric multidimensional analysis (NMDS) of bacterial community showed clear separation of the soil bacterial community structure among different fire frequency regimes and between the depths. Different frequency fire did not have a substantial effect on bacterial composition at phylum level or bacterial 16S rRNA gene abundance. Soil pH and C:N ratio were the major drivers for bacterial community structure in the most frequent fire treatment (B2), while other factors (EC, DOC, DON, MBC, NH4(+), TC and TN) were significant in the less frequent burning and no burning treatments (B4 and B0). This study suggested that burning had a dramatic impact on bacterial diversity but not abundance with more frequent fire.

  12. Long term repeated fire disturbance alters soil bacterial diversity but not the abundance in an Australian wet sclerophyll forest

    PubMed Central

    Shen, Ju-pei; Chen, C. R.; Lewis, Tom

    2016-01-01

    Effects of fire on biogeochemical cycling in terrestrial ecosystem are widely acknowledged, while few studies have focused on the bacterial community under the disturbance of long-term frequent prescribed fire. In this study, three treatments (burning every two years (B2), burning every four years (B4) and no burning (B0)) were applied for 38 years in an Australian wet sclerophyll forest. Results showed that bacterial alpha diversity (i.e. bacterial OTU) in the top soil (0–10 cm) was significantly higher in the B2 treatment compared with the B0 and B4 treatments. Non-metric multidimensional analysis (NMDS) of bacterial community showed clear separation of the soil bacterial community structure among different fire frequency regimes and between the depths. Different frequency fire did not have a substantial effect on bacterial composition at phylum level or bacterial 16S rRNA gene abundance. Soil pH and C:N ratio were the major drivers for bacterial community structure in the most frequent fire treatment (B2), while other factors (EC, DOC, DON, MBC, NH4+, TC and TN) were significant in the less frequent burning and no burning treatments (B4 and B0). This study suggested that burning had a dramatic impact on bacterial diversity but not abundance with more frequent fire. PMID:26787458

  13. Effects of predation and dispersal on bacterial abundance and contaminant biodegradation.

    PubMed

    Otto, Sally; Harms, Hauke; Wick, Lukas Y

    2017-02-01

    Research into the biodegradation of soil contaminants has rarely addressed the consequences of predator-prey interactions. Here, we investigated the joint effect of predation and dispersal networks on contaminant degradation by linking spatial abundances of degrader (Pseudomonas fluorescens LP6a) and predator (Bdellovibrio bacteriovorus) bacteria to the degradation of the major soil contaminant phenanthrene (PHE). We used a laboratory microcosm with a PHE passive dosing system and a glass fiber network to facilitate bacterial dispersal. Different predator-to-prey ratios and spatial arrangements of prey and predator inoculation were used to study predation pressure effects on PHE degradation. We observed that predation resulted in (i) enhanced PHE-degradation at low predator counts (PC) compared to controls lacking predation, (ii) reduced PHE-degradation at elevated PC relative to low PC, and (iii) significant effects of the spatial arrangement of prey and predator inoculation on PHE degradation. Our data suggest that predation facilitated by dispersal networks (such as fungal mycelia) may support the build-up of an effective bacterial biomass and, hence, contaminant biodegradation in heterogeneous systems such as soil. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Abundance of antibiotic resistance genes and bacterial community composition in wild freshwater fish species.

    PubMed

    Marti, Elisabet; Huerta, Belinda; Rodríguez-Mozaz, Sara; Barceló, Damià; Marcé, Rafael; Balcázar, Jose Luis

    2018-04-01

    This study was aimed to determine the abundance of four antibiotic resistance genes (bla TEM , ermB, qnrS and sulI), as well as bacterial community composition associated with the intestinal mucus of wild freshwater fish species collected from the Foix and La Llosa del Cavall reservoirs, which represent ecosystems with high and low anthropogenic disturbance, respectively. Water and sediments from these reservoirs were also collected and analyzed to determine the pollution level by antibiotics. The bla TEM gene was only detected in brown trout and Ebro barbel, which were collected from La Llosa del Cavall reservoir. In contrast, the sulI and qnrS genes were only detected in common carp, which were collected from the Foix reservoir. Although the ermB gene was also detected in common carp, the values were below the limit of quantification. Likewise, water and sediment samples from the Foix reservoir had higher concentrations and more classes of antibiotics than those from La Llosa del Cavall. Pyrosequencing analysis of 16S rRNA genes revealed significant differences in bacterial communities associated with the intestinal mucus of fish species. Therefore, these findings suggest that anthropogenic activities are not only increasing the pollution of aquatic environments, but also contributing to the emergence and spread of antibiotic resistance in organisms that inhabit such environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches.

    PubMed

    Oster, Ryan J; Wijesinghe, Rasanthi U; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2014-12-16

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  16. Effects of High Hydrostatic Pressure on Coastal Bacterial Community Abundance and Diversity

    PubMed Central

    Marietou, Angeliki

    2014-01-01

    Hydrostatic pressure is an important parameter influencing the distribution of microbial life in the ocean. In this study, the response of marine bacterial populations from surface waters to pressures representative of those under deep-sea conditions was examined. Southern California coastal seawater collected 5 m below the sea surface was incubated in microcosms, using a range of temperatures (16 to 3°C) and hydrostatic pressure conditions (0.1 to 80 MPa). Cell abundance decreased in response to pressure, while diversity increased. The morphology of the community also changed with pressurization to a predominant morphotype of small cocci. The pressure-induced community changes included an increase in the relative abundance of Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Flavobacteria largely at the expense of Epsilonproteobacteria. Culturable high-pressure-surviving bacteria were obtained and found to be phylogenetically similar to isolates from cold and/or deep-sea environments. These results provide novel insights into the response of surface water bacteria to changes in hydrostatic pressure. PMID:25063663

  17. Characterization of the vaginal microbiota among sexual risk behavior groups of women with bacterial vaginosis.

    PubMed

    Muzny, Christina A; Sunesara, Imran R; Kumar, Ranjit; Mena, Leandro A; Griswold, Michael E; Martin, David H; Lefkowitz, Elliot J; Schwebke, Jane R; Swiatlo, Edwin

    2013-01-01

    The pathogenesis of bacterial vaginosis (BV) remains elusive. BV may be more common among women who have sex with women (WSW). The objective of this study was to use 454 pyrosequencing to investigate the vaginal microbiome of WSW, women who have sex with women and men (WSWM), and women who have sex with men (WSM) with BV to determine if there are differences in organism composition between groups that may inform new hypotheses regarding the pathogenesis of BV. Vaginal swab specimens from eligible women with BV at the Mississippi State Department of Health STD Clinic were used. After DNA extraction, 454 pyrosequencing of PCR-amplified 16S rRNA gene sequences was performed. Sequence data was classified using the Ribosomal Database Program classifer. Complete linkage clustering analysis was performed to compare bacterial community composition among samples. Differences in operational taxonomic units with an abundance of ≥ 2% between risk behavior groups were determined. Alpha and beta diversity were measured using Shannon's Index implemented in QIIME and Unifrac analysis, respectively. 33 WSW, 35 WSWM, and 44 WSM were included. The vaginal bacterial communities of all women clustered into four taxonomic groups with the dominant taxonomic group in each being Lactobacillus, Lachnospiraceae, Prevotella, and Sneathia. Regarding differences in organism composition between risk behavior groups, the abundance of Atopobium (relative ratio (RR)=0.24; 95%CI 0.11-0.54) and Parvimonas (RR=0.33; 95%CI 0.11-0.93) were significantly lower in WSW than WSM, the abundance of Prevotella was significantly higher in WSW than WSWM (RR=1.77; 95%CI 1.10-2.86), and the abundance of Atopobium (RR=0.41; 95%CI 0.18-0.88) was significantly lower in WSWM than WSM. Overall, WSM had the highest diversity of bacterial taxa. The microbiology of BV among women in different risk behavior groups is heterogeneous. WSM in this study had the highest diversity of bacterial taxa. Additional studies are

  18. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches

    USGS Publications Warehouse

    Oster, Ryan J.; Wijesinghe, Rasanthi U.; Fogarty, Lisa Reynolds; Haack, Sheridan K.; Fogarty, Lisa R.; Tucker, Taaja R.; Riley, Stephen

    2014-01-01

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  19. Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil.

    PubMed

    Lu, Xiao-Ming; Lu, Peng-Zhen; Yang, Ke

    2017-05-01

    Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH 4 + -N and NO 3 - -N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.

  20. Spatial-Temporal Survey and Occupancy-Abundance Modeling To Predict Bacterial Community Dynamics in the Drinking Water Microbiome

    PubMed Central

    Pinto, Ameet J.; Schroeder, Joanna; Lunn, Mary; Sloan, William

    2014-01-01

    ABSTRACT Bacterial communities migrate continuously from the drinking water treatment plant through the drinking water distribution system and into our built environment. Understanding bacterial dynamics in the distribution system is critical to ensuring that safe drinking water is being supplied to customers. We present a 15-month survey of bacterial community dynamics in the drinking water system of Ann Arbor, MI. By sampling the water leaving the treatment plant and at nine points in the distribution system, we show that the bacterial community spatial dynamics of distance decay and dispersivity conform to the layout of the drinking water distribution system. However, the patterns in spatial dynamics were weaker than those for the temporal trends, which exhibited seasonal cycling correlating with temperature and source water use patterns and also demonstrated reproducibility on an annual time scale. The temporal trends were driven by two seasonal bacterial clusters consisting of multiple taxa with different networks of association within the larger drinking water bacterial community. Finally, we show that the Ann Arbor data set robustly conforms to previously described interspecific occupancy abundance models that link the relative abundance of a taxon to the frequency of its detection. Relying on these insights, we propose a predictive framework for microbial management in drinking water systems. Further, we recommend that long-term microbial observatories that collect high-resolution, spatially distributed, multiyear time series of community composition and environmental variables be established to enable the development and testing of the predictive framework. PMID:24865557

  1. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances.

    PubMed

    Zhou, Xingang; Wang, Zhilin; Jia, Huiting; Li, Li; Wu, Fengzhi

    2018-01-01

    Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA) system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA , nirS , and nirK genes. Results showed that 1-2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity ( P < 0.05). Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile ( P < 0.001). At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria , Planctomycetes , and Cyanobacteria , the first cropping of JA with Actinobacteria , the second cropping of JA with Acidobacteria , Armatimonadetes , Gemmatimonadetes , and Proteobacteria . At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO terms

  2. The diversity and abundance of phytase genes (β-propeller phytases) in bacterial communities of the maize rhizosphere.

    PubMed

    Cotta, S R; Cavalcante Franco Dias, A; Seldin, L; Andreote, F D; van Elsas, J D

    2016-03-01

    The ecology of microbial communities associated with organic phosphorus (P) mineralization in soils is still understudied. Here, we assessed the abundance and diversity of bacteria harbouring genes encoding β-propeller phytases (BPP) in the rhizosphere of traditional and transgenic maize cultivated in two Brazilian soils. We found a soil-dependent effect towards a higher abundance of phytase genes in the rhizosphere, and an absence of any impact of plant genotype. Phylogenetic analyses indicated members of the genera Pseudomonas, Caulobacter, Idiomarina and Maricaulis, close to 'uncultured bacteria', to constitute the dominant bacteria hosting this gene. The results obtained validate a methodology to target bacteria that are involved in the organic P cycle, and depict the responsiveness of such bacteria to the rhizosphere, albeit in dependency of the soil in which maize is cultivated. The data also identified the major bacterial groups that are associated with the organic P mineralization function. Micro-organisms play a key role in nutrient balance in soil ecosystems that are essential to life on the planet. However, some processes such as organic phosphorus mineralization, an important source of phosphorus supply in soil, is poorly studied mainly due the absence of an efficient methodology to assess the phytase-producing micro-organisms. In this study, a method to assess beta-propeller phytase (BPP)-carrying bacteria in soil was validated. This method may contribute to the knowledge of how these micro-organisms behave in the environment and contribute for plant growth promotion. © 2015 The Society for Applied Microbiology.

  3. The Abundances of the Fe Group Elements in AV 304, an Abundance Standard in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Lanz, Thierry; Bouret, Jean-Claude; Proffitt, Charles R.; Adelman, Saul J.; Hubeny, Ivan

    2018-06-01

    AV 304 is a B0.5 IV field star in the Small Magellanic Cloud with ultra-sharp spectral lines that has emerged as an abundance standard. We have combined recent spectroscopic observations from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope with archival data from the Far Ultraviolet Spectroscopic Explorer (FUSE) and ESO’s VLT/UVES to determine the abundances of the Fe group elements (Ti, V, Cr, Mn, Fe, Co, & Ni). The analysis was carried through using the Hubeny/Lanz NLTE programs TLUSTY/SYNSPEC. The COS observations were secured with the G130M, G160M, G185M, and G225M gratings. Combined with the FUSE data, we have achieved spectral coverage in the UV from 950 to 2400 A. Measurable lines from the Fe group, except for a very few multiplets of Fe II, III are not observed in optical spectra. The following stellar parameters were found: Teff = 27500±500 K, log g = 3.7±0.1 cm/s2, Vturb= 1±1 km/s, and v sin i = 8 ±2 km/s. The Fe abundance appears to be only slightly lower than the mean depletion in the SMC, but the other Fe group elements are underabundant by 0.3 dex or more. This study confirmed the low abundance of nitrogen (-1.25 dex relative to the solar value) that was reported by Peters & Adelman (ASP Conf. Series, 348, p. 136, 2006). Whereas the light elements are delivered to the ISM by core-collapse supernovae (CCSNe), the Fe group elements are believed to come mostly from low/intermediate mass binaries containing white dwarfs that undergo SNe Ia explosions. A single SNe Ia can deliver 0.5 solar masses of pure Fe (and maybe Mn) to the ISM compared with about 0.07 solar masses from a CCSNe. It appears that there is very little processed material from its interior in the atmosphere of AV 304 and that the star did not form from an interstellar cloud that was enriched by material from earlier supernova activity. Support from STScI grants HST-GO-14081.002 and HST-GO-13346.022, and USC’s Women in Science and Engineering (WiSE) program is

  4. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community.

    PubMed

    Ren, Wenjie; Ren, Gaidi; Teng, Ying; Li, Zhengao; Li, Lina

    2015-10-30

    The increased application of graphene raises concerns about its environmental impact, but little information is available on the effect of graphene on the soil microbial community. This study evaluated the impact of graphene on the structure, abundance and function of the soil bacterial community based on quantitative real-time polymerase chain reaction (qPCR), pyrosequencing and soil enzyme activities. The results show that the enzyme activities of dehydrogenase and fluorescein diacetate (FDA) esterase and the biomass of the bacterial populations were transiently promoted by the presence of graphene after 4 days of exposure, but these parameters recovered completely after 21 days. Pyrosequencing analysis suggested a significant shift in some bacterial populations after 4 days, and the shift became weaker or disappeared as the exposure time increased to 60 days. During the entire exposure process, the majority of bacterial phylotypes remained unaffected. Some bacterial populations involved in nitrogen biogeochemical cycles and the degradation of organic compounds can be affected by the presence of graphene. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.

    PubMed

    Kamke, Janine; Soni, Priya; Li, Yang; Ganesh, Siva; Kelly, William J; Leahy, Sinead C; Shi, Weibing; Froula, Jeff; Rubin, Edward M; Attwood, Graeme T

    2017-08-08

    Ruminants are important contributors to global methane emissions via microbial fermentation in their reticulo-rumens. This study is part of a larger program, characterising the rumen microbiomes of sheep which vary naturally in methane yield (g CH 4 /kg DM/day) and aims to define differences in microbial communities, and in gene and transcript abundances that can explain the animal methane phenotype. Rumen microbiome metagenomic and metatranscriptomic data were analysed by Gene Set Enrichment, sparse partial least squares regression and the Wilcoxon Rank Sum test to estimate correlations between specific KEGG bacterial pathways/genes and high methane yield in sheep. KEGG genes enriched in high methane yield sheep were reassembled from raw reads and existing contigs and analysed by MEGAN to predict their phylogenetic origin. Protein coding sequences from Succinivibrio dextrinosolvens strains were analysed using Effective DB to predict bacterial type III secreted proteins. The effect of S. dextrinosolvens strain H5 growth on methane formation by rumen methanogens was explored using co-cultures. Detailed analysis of the rumen microbiomes of high methane yield sheep shows that gene and transcript abundances of bacterial type III secretion system genes are positively correlated with methane yield in sheep. Most of the bacterial type III secretion system genes could not be assigned to a particular bacterial group, but several genes were affiliated with the genus Succinivibrio, and searches of bacterial genome sequences found that strains of S. dextrinosolvens were part of a small group of rumen bacteria that encode this type of secretion system. In co-culture experiments, S. dextrinosolvens strain H5 showed a growth-enhancing effect on a methanogen belonging to the order Methanomassiliicoccales, and inhibition of a representative of the Methanobrevibacter gottschalkii clade. This is the first report of bacterial type III secretion system genes being associated with high

  6. Characterization of bacterial functional groups and microbial activity in microcosms with glyphosate application

    NASA Astrophysics Data System (ADS)

    Moyano, Sofia; Bonetto, Mariana; Baigorria, Tomas; Pegoraro, Vanesa; Ortiz, Jimena; Faggioli, Valeria; Conde, Belen; Cazorla, Cristian; Boccolini, Monica

    2017-04-01

    Glyphosate is a worldwide used herbicide as c. 90% of transgenic crops are tolerant to it. Microbial degradation of glyphosate molecule in soil is considered the most important process that determines its persistence in the environment. However, the impact of this herbicide on target groups of soil biota remains poorly understood. Our objective was to characterize the abundance of bacterial groups and global microbial activity, under controlled conditions with application of increasing doses of glyphosate. A bioassay was carried out in microcosms using an agricultural soil (Typic Argiudoll) with registered history of glyphosate application from National Institute of Agricultural Technology (INTA, EEA Marcos Juarez, Argentina). Glyphosate of commercial formulation (74.7%) was used and the following treatments were evaluated: Soil without glyphosate (control), and Soil with doses equivalent to 1.12 and 11.2 kg ai ha-1. Microbiological parameters were estimated at 3, 7, 14 and 21 days after herbicide application by counting heterotrophic, cellulolytic, nitrogen fixing (N), and nitrifying bacteria; and fluorescein diacetate hydrolysis (FDA), microbial respiration (MR) and microbial biomass (C-BM). The N cycle related bacteria showed greater sensitivity to glyphosate with significant increases in abundance. On the other hand the C cycle parameters were strongly conditioned by the time elapsed since the application of the herbicide, as did the MR. The FDA declined with the highest dose, while the C-BM was not affected. Therefore, we conclude that in the studied experimental conditions glyphosate stimulated bacterial growth (i.e. target abundances) representing a source of N, C and nutrients. On the other hand, enzymatic activity (FDA) decreased when glyphosate was applied in the highest dose, whereas, it had no effect on the MR nor C-BM, which could be attributable to the organic matter content of the soil. However, future research in field conditions is necessary, for

  7. Relationships Among Chondrite Groups as Inferred from Presolar-Grain Abundances

    NASA Technical Reports Server (NTRS)

    Huss, G. R.; Meshik, A. P.; Hohenberg, C. M.; Smith, J. B.

    2002-01-01

    Presolar-grain abundances show that C chondrites consist of two quite distinct groups, those containing primitive material, and those consisting of processed material. Ordinary chondrites are intermediate in many properties between these groups. Additional information is contained in the original extended abstract.

  8. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  9. Accounting for imperfect detection of groups and individuals when estimating abundance.

    PubMed

    Clement, Matthew J; Converse, Sarah J; Royle, J Andrew

    2017-09-01

    If animals are independently detected during surveys, many methods exist for estimating animal abundance despite detection probabilities <1. Common estimators include double-observer models, distance sampling models and combined double-observer and distance sampling models (known as mark-recapture-distance-sampling models; MRDS). When animals reside in groups, however, the assumption of independent detection is violated. In this case, the standard approach is to account for imperfect detection of groups, while assuming that individuals within groups are detected perfectly. However, this assumption is often unsupported. We introduce an abundance estimator for grouped animals when detection of groups is imperfect and group size may be under-counted, but not over-counted. The estimator combines an MRDS model with an N-mixture model to account for imperfect detection of individuals. The new MRDS-Nmix model requires the same data as an MRDS model (independent detection histories, an estimate of distance to transect, and an estimate of group size), plus a second estimate of group size provided by the second observer. We extend the model to situations in which detection of individuals within groups declines with distance. We simulated 12 data sets and used Bayesian methods to compare the performance of the new MRDS-Nmix model to an MRDS model. Abundance estimates generated by the MRDS-Nmix model exhibited minimal bias and nominal coverage levels. In contrast, MRDS abundance estimates were biased low and exhibited poor coverage. Many species of conservation interest reside in groups and could benefit from an estimator that better accounts for imperfect detection. Furthermore, the ability to relax the assumption of perfect detection of individuals within detected groups may allow surveyors to re-allocate resources toward detection of new groups instead of extensive surveys of known groups. We believe the proposed estimator is feasible because the only additional field data

  10. Accounting for imperfect detection of groups and individuals when estimating abundance

    USGS Publications Warehouse

    Clement, Matthew J.; Converse, Sarah J.; Royle, J. Andrew

    2017-01-01

    If animals are independently detected during surveys, many methods exist for estimating animal abundance despite detection probabilities <1. Common estimators include double-observer models, distance sampling models and combined double-observer and distance sampling models (known as mark-recapture-distance-sampling models; MRDS). When animals reside in groups, however, the assumption of independent detection is violated. In this case, the standard approach is to account for imperfect detection of groups, while assuming that individuals within groups are detected perfectly. However, this assumption is often unsupported. We introduce an abundance estimator for grouped animals when detection of groups is imperfect and group size may be under-counted, but not over-counted. The estimator combines an MRDS model with an N-mixture model to account for imperfect detection of individuals. The new MRDS-Nmix model requires the same data as an MRDS model (independent detection histories, an estimate of distance to transect, and an estimate of group size), plus a second estimate of group size provided by the second observer. We extend the model to situations in which detection of individuals within groups declines with distance. We simulated 12 data sets and used Bayesian methods to compare the performance of the new MRDS-Nmix model to an MRDS model. Abundance estimates generated by the MRDS-Nmix model exhibited minimal bias and nominal coverage levels. In contrast, MRDS abundance estimates were biased low and exhibited poor coverage. Many species of conservation interest reside in groups and could benefit from an estimator that better accounts for imperfect detection. Furthermore, the ability to relax the assumption of perfect detection of individuals within detected groups may allow surveyors to re-allocate resources toward detection of new groups instead of extensive surveys of known groups. We believe the proposed estimator is feasible because the only additional field data

  11. The evolution of the lithium abundances of solar-type stars. II - The Ursa Major Group

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Pilachowski, Catherine A.; Fedele, Stephen B.; Jones, Burton F.

    1993-01-01

    We draw upon a recent study of the membership of the Ursa Major Group (UMaG) to examine lithium among 0.3 Gyr old solar-type stars. For most G and K dwarfs, Li confirms the conclusions about membership in UMaG reached on the basis of kinematics and chromospheric activity. G and K dwarfs in UMaG have less Li than comparable stars in the Pleiades. This indicates that G and K dwarfs undergo Li depletion while they are on the main sequence, in addition to any pre-main-sequence depletion they may have experienced. Moreover, the Li abundances of the Pleiades K dwarfs cannot be attributed to main-sequence depletion alone, demonstrating that pre-main-sequence depletion of Li also takes place. The sun's Li abundance implies that the main-sequence mechanism becomes less effective with age. The hottest stars in UMaG have Li abundances like those of hot stars in the Pleiades and Hyades and in T Tauris, and the two genuine UMaG members with temperatures near Boesgaard's Li chasm have Li abundances consistent with that chasm developing fully by 0.3 Gyr for stars with UMaG's metallicity. We see differences in the abundance of Li between UMaG members of the same spectral types, indicating that a real spread in the lithium abundance exists within this group.

  12. Wastewater Treatment Effluent Reduces the Abundance and Diversity of Benthic Bacterial Communities in Urban and Suburban Rivers

    PubMed Central

    Drury, Bradley; Rosi-Marshall, Emma

    2013-01-01

    In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization. PMID:23315724

  13. The Pattern of Change in the Abundances of Specific Bacterioplankton Groups Is Consistent across Different Nutrient-Enriched Habitats in Crete

    PubMed Central

    Fodelianakis, Stilianos; Papageorgiou, Nafsika; Pitta, Paraskevi; Kasapidis, Panagiotis; Karakassis, Ioannis

    2014-01-01

    A common source of disturbance for coastal aquatic habitats is nutrient enrichment through anthropogenic activities. Although the water column bacterioplankton communities in these environments have been characterized in some cases, changes in α-diversity and/or the abundances of specific taxonomic groups across enriched habitats remain unclear. Here, we investigated the bacterial community changes at three different nutrient-enriched and adjacent undisturbed habitats along the north coast of Crete, Greece: a fish farm, a closed bay within a town with low water renewal rates, and a city port where the level of nutrient enrichment and the trophic status of the habitat were different. Even though changes in α-diversity were different at each site, we observed across the sites a common change pattern accounting for most of the community variation for five of the most abundant bacterial groups: a decrease in the abundance of the Pelagibacteraceae and SAR86 and an increase in the abundance of the Alteromonadaceae, Rhodobacteraceae, and Cryomorphaceae in the impacted sites. The abundances of the groups that increased and decreased in the impacted sites were significantly correlated (positively and negatively, respectively) with the total heterotrophic bacterial counts and the concentrations of dissolved organic carbon and/or dissolved nitrogen and chlorophyll α, indicating that the common change pattern was associated with nutrient enrichment. Our results provide an in situ indication concerning the association of specific bacterioplankton groups with nutrient enrichment. These groups could potentially be used as indicators for nutrient enrichment if the pattern is confirmed over a broader spatial and temporal scale by future studies. PMID:24747897

  14. A New Method for Estimating Bacterial Abundances in Natural Samples using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert were heated to a temperature of 500 C for several seconds under reduced pressure. The sublimate was collected on a cold finger and the amount of adenine released from the samples then determined by high performance liquid chromatography (HPLC) with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approx. l0(exp 5) to l0(exp 9) E. coli cell equivalents per gram. For most of these samples, the sublimation based cell counts were in agreement with total bacterial counts obtained by traditional DAPI staining. The simplicity and robustness of the sublimation technique compared to the DAPI staining method makes this approach particularly attractive for use by spacecraft instrumentation. NASA is currently planning to send a lander to Mars in 2009 in order to assess whether or not organic compounds, especially those that might be associated with life, are present in Martian surface samples. Based on our analyses of the Atacama Desert soil samples, several million bacterial cells per gam of Martian soil should be detectable using this sublimation technique.

  15. Diversity and relative abundance of the bacterial pathogen, Flavobacterium spp., infecting reproductive ecotypes of kokanee salmon.

    PubMed

    Lemay, Matthew A; Russello, Michael A

    2014-11-04

    Understanding the distribution and abundance of pathogens can provide insight into the evolution and ecology of their host species. Previous research in kokanee, the freshwater form of sockeye salmon (Oncorhynchus nerka), found evidence that populations spawning in streams may experience a greater pathogen load compared with populations that spawn on beaches. In this study we tested for differences in the abundance and diversity of the gram-negative bacteria, Flavobacterium spp., infecting tissues of kokanee in both of these spawning habitats (streams and beaches). Molecular assays were carried out using primers designed to amplify a ~200 nucleotide region of the gene encoding the ATP synthase alpha subunit (AtpA) within the genus Flavobacterium. Using a combination of DNA sequencing and quantitative PCR (qPCR) we compared the diversity and relative abundance of Flavobacterium AtpA amplicons present in DNA extracted from tissue samples of kokanee collected from each spawning habitat. We identified 10 Flavobacterium AtpA haplotypes among the tissues of stream-spawning kokanee and seven haplotypes among the tissues of beach-spawning kokanee, with only two haplotypes shared between spawning habitats. Haplotypes occurring in the same clade as F. psychrophilum were the most prevalent (92% of all reads, 60% of all haplotypes), and occurred in kokanee from both spawning habitats (streams and beaches). Subsequent qPCR assays did not find any significant difference in the relative abundance of Flavobacterium AtpA amplicons between samples from the different spawning habitats. We confirmed the presence of Flavobacterium spp. in both spawning habitats and found weak evidence for increased Flavobacterium diversity in kokanee sampled from stream-spawning sites. However, the quantity of Flavobacterium DNA did not differ between spawning habitats. We recommend further study aimed at quantifying pathogen diversity and abundance in population-level samples of kokanee combined with

  16. Aryl Polyenes, a Highly Abundant Class of Bacterial Natural Products, Are Functionally Related to Antioxidative Carotenoids.

    PubMed

    Schöner, Tim A; Gassel, Sören; Osawa, Ayako; Tobias, Nicholas J; Okuno, Yukari; Sakakibara, Yui; Shindo, Kazutoshi; Sandmann, Gerhard; Bode, Helge B

    2016-02-02

    Bacterial pigments of the aryl polyene type are structurally similar to the well-known carotenoids with respect to their polyene systems. Their biosynthetic gene cluster is widespread in taxonomically distant bacteria, and four classes of such pigments have been found. Here we report the structure elucidation of the aryl polyene/dialkylresorcinol hybrid pigments of Variovorax paradoxus B4 by HPLC-UV-MS, MALDI-MS and NMR. Furthermore, we show for the first time that this pigment class protects the bacterium from reactive oxygen species, similarly to what is known for carotenoids. An analysis of the distribution of biosynthetic genes for aryl polyenes and carotenoids in bacterial genomes is presented; it shows a complementary distribution of these protective pigments in bacteria. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Seagrass vegetation and meiofauna enhance the bacterial abundance in the Baltic Sea sediments (Puck Bay).

    PubMed

    Jankowska, Emilia; Jankowska, Katarzyna; Włodarska-Kowalczuk, Maria

    2015-09-01

    This study presents the first report on bacterial communities in the sediments of eelgrass (Zostera marina) meadows in the shallow southern Baltic Sea (Puck Bay). Total bacterial cell numbers (TBNs) and bacteria biomass (BBM) assessed with the use of epifluorescence microscope and Norland's formula were compared between bare and vegetated sediments at two localities and in two sampling summer months. Significantly higher TBNs and BBM (PERMANOVA tests, P < 0.05) were recorded at bottom covered by the seagrass meadows in both localities and in both sampling months. The relationships between bacteria characteristics and environmental factors (grain size, organic matter, photopigments in sediments), meiofauna and macrofauna densities, as well as macrophyte vegetation characteristics (shoot density, phytobenthos biomass) were tested using PERMANOVA distance-based linear model (DISTLM) procedures and showed that the main factors explaining bacteria characteristics are bottom type (vegetated vs. unvegetated) and meiofauna density. These two factors explained together 48.3% of variability in TBN and 40.5% in BBM, and their impacts did not overlap (as indicated by DISTLM sequential tests) demonstrating the different natures of these relationships. The effects of seagrass were most probably related to the increase of organic matter and providing habitat while higher numbers of meiofauna organisms may have stimulated the bacterial growth by increased grazing.

  18. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano

    PubMed Central

    Banskar, Sunil; Bhute, Shrikant S.; Suryavanshi, Mangesh V.; Punekar, Sachin; Shouche, Yogesh S.

    2016-01-01

    Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals. PMID:27845426

  19. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano.

    PubMed

    Banskar, Sunil; Bhute, Shrikant S; Suryavanshi, Mangesh V; Punekar, Sachin; Shouche, Yogesh S

    2016-11-15

    Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals.

  20. Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors.

    PubMed

    Guo, Xueping; Pang, Weihai; Dou, Chunling; Yin, Daqiang

    2017-05-01

    The abundant microbial community in biological treatment processes in wastewater treatment plants (WWTPs) may potentially enhance the horizontal gene transfer of antibiotic resistance genes with the presence of antibiotics. A lab-scale sequencing batch reactor was designed to investigate response of sulfonamide resistance genes (sulI, sulII) and bacterial communities to various concentrations of sulfamethoxazole (SMX) and chemical oxygen demand (COD) of wastewater. The SMX concentrations (0.001 mg/L, 0.1 mg/L and 10 mg/L) decreased with treatment time and higher SMX level was more difficult to remove. The presence of SMX also significantly reduced the removal efficiency of ammonia nitrogen, affecting the normal function of WWTPs. All three concentrations of SMX raised both sulI and sulII genes with higher concentrations exhibiting greater increases. The abundance of sul genes was positive correlated with treatment time and followed the second-order reaction kinetic model. Interestingly, these two genes have rather similar activity. SulI and sulII gene abundance also performed similar response to COD. Simpson index and Shannon-Weiner index did not show changes in the microbial community diversity. However, the 16S rRNA gene cloning and sequencing results showed the bacterial community structures varied during different stages. The results demonstrated that influent antibiotics into WWTPs may facilitate selection of ARGs and affect the wastewater conventional treatment as well as the bacteria community structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Seasonal Variation in Abundance and Diversity of Bacterial Methanotrophs in Five Temperate Lakes

    PubMed Central

    Samad, Md Sainur; Bertilsson, Stefan

    2017-01-01

    Lakes are significant sources of methane (CH4) to the atmosphere. Within these systems, methanotrophs consume CH4 and act as a potential biofilter mitigating the emission of this potent greenhouse gas. However, it is still not well understood how spatial and temporal variation in environmental parameters influence the abundance, diversity, and community structure of methanotrophs in lakes. To address this gap in knowledge, we collected water samples from three depths (surface, middle, and bottom) representing oxic to suboxic or anoxic zones of five different Swedish lakes in winter (ice-covered) and summer. Methanotroph abundance was determined by quantitative real time polymerase chain reaction and a comparison to environmental variables showed that temperature, season as well as depth, phosphate concentration, dissolved oxygen, and CH4 explained the observed variation in methanotroph abundance. Due to minimal differences in methane concentrations (0.19 and 0.29 μM for summer and winter, respectively), only a weak and even negative correlation was observed between CH4 and methanotrophs, which was possibly due to usage of CH4. Methanotrophs were present at concentrations ranging from 105 to 106 copies/l throughout the oxic (surface) and suboxic/anoxic (bottom) water mass of the lakes, but always contributed less than 1.3% to the total microbial community. Relative methanotroph abundance was significantly higher in winter than in summer and consistently increased with depth in the lakes. Phylogenetic analysis of pmoA genes in two clone libraries from two of the ice-covered lakes (Ekoln and Ramsen) separated the methanotrophs into five distinct clusters of Methylobacter sp. (Type I). Terminal restriction fragment length polymorphism analysis of the pmoA gene further revealed significant differences in methanotrophic communities between lakes as well as between winter and summer while there were no significant differences between water layers. The study provides new

  2. The Abundances of the Iron Group Elements in Early B Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Peters, C.

    FUSE observations of four sharp-lined early B main-sequence band stars in the Magellanic Clouds will be carried through to determine the abundances of the heavy elements, especially those of the Fe group. The FUSE spectral region contains numerous Fe III lines, including the resonance multiplet (UV1) near 1130 A that is excellent for abundance determinations and two strong multiplets of V III, an ion that does not produce measurable lines longward of 1200 A in metal-deficient stars. In addition there are several measurable lines from Cr III and Mn III. Although abundances of the Fe-peak elements are of interest because they are important for assessing opacities for stellar evolution calculations and the validity of theoretical calculations of explosive nucleosynthesis, ground-based studies do not yield this information because measurable lines from these species, except for a few Fe III lines, are found only in the UV spectral region. The abundances of heavy elements provide information on the production of such elements in previous generations of stars. From FUSE data obtained in Cycle 3 we are determining the abundances of the Fe group elements in two sharp-lined early B stars in the SMC (AV 304, a field star, and NGC346-637, a star in a mini-starburst cluster). This project will allow one to compare the abundances in AV 304 and NGC346-637 with those in the LMC and other regions in the SMC and look for asymmetry in heavy element production in the Magellanic Clouds.

  3. Widespread Abundance of Functional Bacterial Amyloid in Mycolata and Other Gram-Positive Bacteria▿

    PubMed Central

    Jordal, Peter Bruun; Dueholm, Morten Simonsen; Larsen, Poul; Petersen, Steen Vang; Enghild, Jan Johannes; Christiansen, Gunna; Højrup, Peter; Nielsen, Per Halkjær; Otzen, Daniel Erik

    2009-01-01

    Until recently, extracellular functional bacterial amyloid (FuBA) has been detected and characterized in only a few bacterial species, including Escherichia coli, Salmonella, and the gram-positive organism Streptomyces coelicolor. Here we probed gram-positive bacteria with conformationally specific antibodies and revealed the existence of FuBA in 12 of 14 examined mycolata species, as well as six other distantly related species examined belonging to the phyla Actinobacteria and Firmicutes. Most of the bacteria produced extracellular fimbriae, sometimes copious amounts of them, and in two cases large extracellular fibrils were also produced. In three cases, FuBA was revealed only after extensive removal of extracellular material by saponification, indicating that there is integrated attachment within the cellular envelope. Spores of species in the genera Streptomyces, Bacillus, and Nocardia were all coated with amyloids. FuBA was purified from Gordonia amarae (from the cell envelope) and Geodermatophilus obscurus, and they had the morphology, tinctorial properties, and β-rich structure typical of amyloid. The presence of approximately 9-nm-wide amyloids in the cell envelope of G. amarae was visualized by transmission electron microscopy analysis. We conclude that amyloid is widespread among gram-positive bacteria and may in many species constitute a hitherto overlooked integral part of the spore and the cellular envelope. PMID:19395568

  4. Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm.

    PubMed

    Wang, Zhao; Yang, Yuyin; Sun, Weimin; Dai, Yu; Xie, Shuguang

    2015-02-01

    Nonylphenol (NP) can accumulate in river sediment. Bioaugmentation is an attractive option to dissipate heavy NP pollution in river sediment. In this study, two NP degraders were isolated from crude oil-polluted soil and river sediment. Microcosms were constructed to test their ability to degrade NP in river sediment. The shift in the proportion of NP-degrading genes and bacterial community structure in sediment microcosms were characterized using quantitative PCR assay and terminal restriction fragment length polymorphism analysis, respectively. Phylogenetic analysis indicated that the soil isolate belonged to genus Stenotrophomonas, while the sediment isolate was a Sphingobium species. Both of them could almost completely clean up a high level of NP in river sediment (150 mg/kg NP) in 10 or 14 days after inoculation. An increase in the proportion of alkB and sMO genes was observed in sediment microcosms inoculated with Stenotrophomonas strain Y1 and Sphingobium strain Y2, respectively. Moreover, bioaugmentation using Sphingobium strain Y2 could have a strong impact on sediment bacterial community structure, while inoculation of Stenotrophomonas strain Y1 illustrated a weak impact. This study can provide some new insights towards NP biodegradation and bioremediation.

  5. New insights into the spatial variability of biofilm communities and potentially negative bacterial groups in hydraulic concrete structures.

    PubMed

    Cai, Wei; Li, Yi; Niu, Lihua; Zhang, Wenlong; Wang, Chao; Wang, Peifang; Meng, Fangang

    2017-10-15

    The composition and distribution characteristics of bacterial communities in biofilms attached to hydraulic concrete structure (HCS) surfaces were investigated for the first time in four reservoirs in the middle and lower reaches of the Yangtze River Basin using 16S rRNA Miseq sequencing. High microbial diversity was found in HCS biofilms, and notable differences were observed in different types of HCS. Proteobacteria, Cyanobacteria and Chloroflexi were the predominant phyla, with respective relative abundances of 35.3%, 25.4% and 13.0%. The three most abundant genera were Leptolyngbya, Anaerolineaceae and Polynucleobacter. The phyla Beta-proteobacteria and Firmicutes and genus Lyngbya were predominant in CGP, whereas the phyla Cyanobacteria and Chloroflexi and genera Leptolyngbya, Anaerolinea and Polynucleobacter survived better in land walls and bank slopes. Dissolved oxygen, ammonia nitrogen and temperature were characterized as the main factors driving the bacterial community composition. The most abundant groups of metabolic functions were also identified as ammonia oxidizers, sulphate reducers, and dehalogenators. Additionally, functional groups related to biocorrosion were found to account for the largest proportion (14.0% of total sequences) in gate piers, followed by those in land walls (11.5%) and bank slopes (10.2%). Concrete gate piers were at the greatest risk of biocorrosion with the most abundant negative bacterial groups, especially for sulphate reducers. Thus, it should be paid high attention to the biocorrosion prevention of concrete gate piers. Overall, this study contributed to the optimization of microbial control and the improvement of the safety management for water conservation structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk

    PubMed Central

    Czirják, Gábor Á.; Volokhov, Dmitriy V.; Carrera, Jorge E.; Camus, Melinda S.; Navara, Kristen J.; Chizhikov, Vladimir E.; Fenton, M. Brock; Simmons, Nancy B.; Recuenco, Sergio E.; Gilbert, Amy T.

    2018-01-01

    Human activities create novel food resources that can alter wildlife–pathogen interactions. If resources amplify or dampen, pathogen transmission probably depends on both host ecology and pathogen biology, but studies that measure responses to provisioning across both scales are rare. We tested these relationships with a 4-year study of 369 common vampire bats across 10 sites in Peru and Belize that differ in the abundance of livestock, an important anthropogenic food source. We quantified innate and adaptive immunity from bats and assessed infection with two common bacteria. We predicted that abundant livestock could reduce starvation and foraging effort, allowing for greater investments in immunity. Bats from high-livestock sites had higher microbicidal activity and proportions of neutrophils but lower immunoglobulin G and proportions of lymphocytes, suggesting more investment in innate relative to adaptive immunity and either greater chronic stress or pathogen exposure. This relationship was most pronounced in reproductive bats, which were also more common in high-livestock sites, suggesting feedbacks between demographic correlates of provisioning and immunity. Infection with both Bartonella and haemoplasmas were correlated with similar immune profiles, and both pathogens tended to be less prevalent in high-livestock sites, although effects were weaker for haemoplasmas. These differing responses to provisioning might therefore reflect distinct transmission processes. Predicting how provisioning alters host–pathogen interactions requires considering how both within-host processes and transmission modes respond to resource shifts. This article is part of the theme issue ‘Anthropogenic resource subsidies and host–parasite dynamics in wildlife’. PMID:29531144

  7. Towards rationally redesigning bacterial signaling systems using information encoded in abundant sequence data

    NASA Astrophysics Data System (ADS)

    Cheng, Ryan; Morcos, Faruck; Levine, Herbert; Onuchic, Jose

    2014-03-01

    An important challenge in biology is to distinguish the subset of residues that allow bacterial two-component signaling (TCS) proteins to preferentially interact with their correct TCS partner such that they can bind and transfer signal. Detailed knowledge of this information would allow one to search sequence-space for mutations that can systematically tune the signal transmission between TCS partners as well as re-encode a TCS protein to preferentially transfer signals to a non-partner. Motivated by the notion that this detailed information is found in sequence data, we explore the mutual sequence co-evolution between signaling partners to infer how mutations can positively or negatively alter their interaction. Using Direct Coupling Analysis (DCA) for determining evolutionarily conserved interprotein interactions, we apply a DCA-based metric to quantify mutational changes in the interaction between TCS proteins and demonstrate that it accurately correlates with experimental mutagenesis studies probing the mutational change in the in vitro phosphotransfer. Our methodology serves as a potential framework for the rational design of TCS systems as well as a framework for the system-level study of protein-protein interactions in sequence-rich systems. This research has been supported by the NSF INSPIRE award MCB-1241332 and by the CTBP sponsored by the NSF (Grant PHY-1308264).

  8. Lateral-delivered organic matter boosts hadal bacterial abundance in the Mariana Trench: A hypothesis

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Liu, H.; Lu, F.; Zou, L.; Tian, J.

    2017-12-01

    Hadal trenches are part of the least investigated biosphere on Earth due to the great challenge of sampling. Limited studies on microbiology by far have suggested that the hadalsphere hosts a heterotrophic microbial community that is likely fed by organic matter from surface-sinking biomass or re-suspended and laterally transported sediments. The uniqueness of trench environment and its potential role in global carbon sequestration entitle a detailed study on microbial-driven carbon cycle of the trench system. In this study, we conducted a vertical sampling of the microbial community and measured the environmental factors from the epipelagic zone down to the hadal zone at the Mariana Trench. 16S rRNA gene composition showed high stratification at the first 1000 meters below surface (mbs) but a nearly uniformed microbial community composition was observed at the abyssopelagic and the hadalpelagic water columns. The deep-sea bacteria were generally chemoheterotrophs and the majority of them were similar to those present at the ocean surface, suggesting influence of epipelagic primary production on deep sea bacterial communication at the trench location. Several deep-sea-enriched but surface-depleted bacteria could be characterized by potential degraders of polysaccharides and n-alkanes. Therefore, recalcitrant hydrocarbons or carbohydrates are likely important carbon sources supporting the deep-sea biosphere. In spite of consistent community composition, a remarkable increase in biomass of small-sized microbial aggregates was detected at 8727 mbs. Enhanced CDOM proportions in the trench imply intensified microbial activity in hadal water compared to the above water column, which agree with the notion of possible extra carbon input from lateral transportation of slope material. These observations extend our understanding in carbon cycle driven by metabolically diverse microorganisms at the trench and may shed light on the complexity of hadal biogeochemistry.

  9. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  10. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments

    PubMed Central

    Kubo, Kyoko; Lloyd, Karen G; F Biddle, Jennifer; Amann, Rudolf; Teske, Andreas; Knittel, Katrin

    2012-01-01

    Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and quantification of MCG crenarchaeota in diverse types of marine sediments and microbial mats. In general, abundance of MCG (cocci, 0.4 μm) relative to other archaea was highest (12–100%) in anoxic, low-energy environments characterized by deeper sulfate depletion and lower microbial respiration rates (P=0.06 for slot blot and P=0.05 for qPCR). When studied in high depth resolution in the White Oak River estuary and Hydrate Ridge methane seeps, changes in MCG abundance relative to total archaea and MCG phylogenetic composition did not correlate with changes in sulfate reduction or methane oxidation with depth. In addition, MCG abundance did not vary significantly (P>0.1) between seep sites (with high rates of methanotrophy) and non-seep sites (with low rates of methanotrophy). This suggests that MCG are likely not methanotrophs. MCG crenarchaeota are highly diverse and contain 17 subgroups, with a range of intragroup similarity of 82 to 94%. This high diversity and widespread distribution in subsurface sediments indicates that this group is globally important in sedimentary processes. PMID:22551871

  11. Galaxy interactions in compact groups - II. Abundance and kinematic anomalies in HCG 91c

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Dopita, Michael A.; Borthakur, Sanchayeeta; Verdes-Montenegro, Lourdes; Heckman, Timothy M.; Yun, Min S.; Chambers, Kenneth C.

    2015-07-01

    Galaxies in Hickson Compact Group 91 (HCG 91) were observed with the WiFeS integral field spectrograph as part of our ongoing campaign targeting the ionized gas physics and kinematics inside star-forming members of compact groups. Here, we report the discovery of H II regions with abundance and kinematic offsets in the otherwise unremarkable star-forming spiral HCG 91c. The optical emission line analysis of this galaxy reveals that at least three H II regions harbour an oxygen abundance ˜0.15 dex lower than expected from their immediate surroundings and from the abundance gradient present in the inner regions of HCG 91c. The same star-forming regions are also associated with a small kinematic offset in the form of a lag of 5-10 km s-1 with respect to the local circular rotation of the gas. H I observations of HCG 91 from the Very Large Array and broad-band optical images from Pan-STARRS (Panoramic Survey Telescope And Rapid Response System) suggest that HCG 91c is caught early in its interaction with the other members of HCG 91. We discuss different scenarios to explain the origin of the peculiar star-forming regions detected with WiFeS, and show that evidence points towards infalling and collapsing extraplanar gas clouds at the disc-halo interface, possibly as a consequence of long-range gravitational perturbations of HCG 91c from the other group members. As such, HCG 91c provides evidence that some of the perturbations possibly associated with the early phase of galaxy evolution in compact groups impact the star-forming disc locally, and on sub-kpc scales.

  12. The interaction between bacterial abundance and selected pollutants concentration levels in an arctic catchment (southwest Spitsbergen, Svalbard).

    PubMed

    Kosek, Klaudia; Kozak, Katarzyna; Kozioł, Krystyna; Jankowska, Katarzyna; Chmiel, Stanisław; Polkowska, Żaneta

    2018-05-01

    Persistent organic pollutants (POPs) have been a topic of interest in environmental sciences for >60years. POPs in the Arctic have been investigated since the 1970s, when first atmospheric measurements revealed the presence of these pollutants in the polar regions. Major contaminant transport routes to the Arctic include atmospheric and oceanic transport, as well as inflow from rivers and sea ice. The sources of pollutants, such as industry, power generators, vehicle and ship exhausts, introduce the PAHs, phenols, formaldehyde or metals into the Arctic. Transport via sea currents, however, can take several years. The highest concentration levels of total PAHs were observed in two samples from the tributaries in July 2015 and were 1069ngL -1 and 3141ngL -1 and in September 2015, the highest concentrations were observed in samples collected from Revvatnet lake and were 978ngL -1 and 1823ngL -1 . The highest concentrations of trace elements in both months were 41μgL -1 in the sample from the highest tributary (July 2015) and 79μgL -1 in the same sample (September 2015). The purpose of this study was also to determine abundance of bacteria in the Arctic freshwater of different types. Microbes are omnipresent and represent diverse biological communities. In the freshwater ecosystems, microorganisms form the base of the food chain supporting higher trophic levels. Although microbes are generally thought to live in the warm regions of Earth, many of them develop in cold climates. In the Revelva catchment, the biggest number of bacteria were detected at the river estuary in July 2015 and at the sampling point located in the Revvatnet lake in September 2015. Generally, the bacterial abundance indices depended on nutrient levels to a small extent, showing the environment of the Revelva catchment not to be nutrient limited, which is in accordance with its rich biological life also in macroscale. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Influence of soil properties on the toxicity of TiO₂ nanoparticles on carbon mineralization and bacterial abundance.

    PubMed

    Simonin, Marie; Guyonnet, Julien P; Martins, Jean M F; Ginot, Morgane; Richaume, Agnès

    2015-01-01

    Information regarding the impact of low concentration of engineered nanoparticles on soil microbial communities is currently limited and the importance of soil characteristics is often neglected in ecological risk assessment. To evaluate the impact of TiO2 nanoparticles (NPs) on soil microbial communities (measured on bacterial abundance and carbon mineralization activity), 6 agricultural soils exhibiting contrasted textures and organic matter contents were exposed for 90 days to a low environmentally relevant concentration or to an accidental spiking of TiO2-NPs (1 and 500mgkg(-1) dry soil, respectively) in microcosms. In most soils, TiO2-NPs did not impact the activity and abundance of microbial communities, except in the silty-clay soil (high OM) where C-mineralization was significantly lowered, even with the low NPs concentration. Our results suggest that TiO2-NPs toxicity does not depend on soil texture but likely on pH and OM content. We characterized TiO2-NPs aggregation and zeta potential in soil solutions, in order to explain the difference of TiO2-NPs effects on soil C-mineralization. Zeta potential and aggregation of TiO2-NPs in the silty-clay (high OM) soil solution lead to a lower stability of TiO2-NP-aggregates than in the other soils. Further experiments would be necessary to evaluate the relationship between TiO2-NPs stability and toxicity in the soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Exploring the Abundance and Diversity of Bacterial Communities and Quantifying Antibiotic-Related Genes Along an Elevational Gradient in Taibai Mountain, China.

    PubMed

    Peng, Chu; Wang, He; Jiang, Yingying; Yang, Jinhua; Lai, Hangxian; Wei, Xiaomin

    2018-05-10

    Thus far, no studies have investigated the soil microbial diversity over an elevational gradient in Taibai Mountain, the central massif of the Qinling Mountain Range. Here, we used Illumina sequencing and quantitative PCR of the 16S rRNA gene to assess the diversity and abundance of bacterial communities along an elevational gradient in representative vegetation soils in Taibai Mountain. We identified the soil, climate, and vegetation factors driving the variations in soil bacterial community structure by Pearson correlation and redundancy analysis. We also evaluated the potential for antibiotic discovery by quantitative PCR of the PKS-I, PKS-II, and NRPS genes from Actinobacteria. The results showed that soil bacterial alpha diversity increased first and then decreased with an elevational rise in both the northern and southern slopes of Taibai Mountain. The bacterial abundance was significantly correlated with soil organic matter and nitrate nitrogen. The average relative abundance of Actinobacteria in Taibai Mountain was markedly higher than those in other mountain forest soils. The absolute abundance of PKS and NPRS gene was significantly higher in the tested soils compared with the gene copy numbers reported in tropical urban soils. Taibai Mountain is rich in actinomycete resources and has great potential for antibiotic excavation.

  15. Life strategies of a ubiquitous and abundant subsurface archaeal group Bathyarchaeota

    NASA Astrophysics Data System (ADS)

    He, Y.; Li, M.; Perumal, V.; Feng, X.; Sievert, S. M.; Wang, F.

    2015-12-01

    Archaea belonging to the Miscellaneous Crenarchaeota Group (MCG, "Candidatus Bathyarchaeota") are widespread and abundant in the deep biosphere, yet their life strategies and ecological roles remain elusive. Metagenomic sequencing of a sample enriched in Bathyarchaeota (up to 74%) that originated from Guaymas Basin deep-sea vent sediments revealed 6 partial to nearly completed Bathyarchaeota genomic bins. ranging ~900kb-3.3Mb. The Bathyarchaeota bin size ranged from approximately 0.9 to 3.3 Mb, with coverage ranging from approximately 10× to 28×. The phylogeny based on 110 concatenated conserved archaeal single copy genes confirmed the placement of Bathyarchaeota into a novel archaeal phylum. Genes encoding for enzymes involved in the degradation of organic polymers such as protein, cellulose, chitin, and aromatic compounds, were identified. In addition, genes encoding glycolysis/gluconeogenesis, beta-oxidation pathways and the tricarboxylic acid cycle (except citrate synthase) were present in all genomic bins highlighting the heterotrophic life style of Bathyarchaeota. The presence of a wide variety of transporters of organic compounds further supports the versatile heterotrophic metabolism of Bathyarchaeota. This study highlights the life strategies of a ubiquitous and abundant subsurface archaeal group that thrives under energy-limited conditions, and expands the metabolic potentials of Archaea that play important roles in carbon cycling in marine sediments.

  16. A normal abundance of faint satellites in the fossil group NGC 6482

    NASA Astrophysics Data System (ADS)

    Lieder, S.; Mieske, S.; Sánchez-Janssen, R.; Hilker, M.; Lisker, T.; Tanaka, M.

    2013-11-01

    A fossil group is considered the end product in a galaxy group's evolution. It is a massive central galaxy that dominates the luminosity budget of the group, and is the outcome of efficient merging between intermediate-luminosity members. Little is known, however, about the faint satellite systems of fossil groups. Here we present a Subaru/Suprime-Cam wide-field, deep imaging study in the B - and R -bands of the nearest fossil group NGC 6482 (Mtot ~ 4 × 1012M⊙), covering the virial radius out to 310 kpc. We performed detailed completeness estimations and selected group member candidates by a combination of automated object detection and visual inspection. A fiducial sample of 48 member candidates down to MR ~ -10.5 mag is detected, making this study the deepest of a fossil group to now. We investigate the photometric scaling relations, the color-magnitude relation, and the luminosity function of our galaxy sample. We find evidence of recent and ongoing merger events among bright group galaxies. The color-magnitude relation is comparable to that of nearby galaxy clusters, and it exhibits significant scatter at the faintest luminosities. The completeness-corrected luminosity function is dominated by early-type dwarfs and is characterized by a faint end slope α = -1.32 ± 0.05. We conclude that the NGC 6482 fossil group shows photometric properties consistent with those of regular galaxy clusters and groups, including a normal abundance of faint satellites. Appendix A is available in electronic form at http://www.aanda.orgThe reduced data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A76

  17. Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach.

    PubMed

    Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath

    2014-11-01

    Diazotrophs are key players of the globally important biogeochemical nitrogen cycle, having a significant role in maintaining ecosystem sustainability. Saline soils are pristine and unexplored habitats representing intriguing ecosystems expected to harbour potential diazotrophs capable of adapting in extreme conditions, and these implicated organisms are largely obscure. Differential occurrence of diazotrophs was studied by the nifH gene-targeted clone library approach. Four nifH gene clone libraries were constructed from different soil niches, that is saline soils (low and high salinity; EC 3.8 and 7.1 ds m(-1) ), and agricultural and rhizosphere soil. Additionally, the abundance of diazotrophic community members was assessed using quantitative PCR. Results showed environment-dependent metabolic versatility and the presence of nitrogen-fixing bacteria affiliated with a range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Cyanobacteria and Firmicutes. The analyses unveiled the dominance of Alphaproteobacteria and Gammaproteobacteria (Pseudomonas, Halorhodospira, Ectothiorhodospira, Bradyrhizobium, Agrobacterium, Amorphomonas) as nitrogen fixers in coastal-saline soil ecosystems, and Alphaproteobacteria and Betaproteobacteria (Bradyrhizobium, Azohydromonas, Azospirillum, Ideonella) in agricultural/rhizosphere ecosystems. The results revealed a repertoire of novel nitrogen-fixing bacterial guilds particularly in saline soil ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant.

    PubMed

    Lautenschlager, Karin; Hwang, Chiachi; Ling, Fangqiong; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Egli, Thomas; Hammes, Frederik

    2014-10-01

    Indigenous bacterial communities are essential for biofiltration processes in drinking water treatment systems. In this study, we examined the microbial community composition and abundance of three different biofilter types (rapid sand, granular activated carbon, and slow sand filters) and their respective effluents in a full-scale, multi-step treatment plant (Zürich, CH). Detailed analysis of organic carbon degradation underpinned biodegradation as the primary function of the biofilter biomass. The biomass was present in concentrations ranging between 2-5 × 10(15) cells/m(3) in all filters but was phylogenetically, enzymatically and metabolically diverse. Based on 16S rRNA gene-based 454 pyrosequencing analysis for microbial community composition, similar microbial taxa (predominantly Proteobacteria, Planctomycetes, Acidobacteria, Bacteriodetes, Nitrospira and Chloroflexi) were present in all biofilters and in their respective effluents, but the ratio of microbial taxa was different in each filter type. This change was also reflected in the cluster analysis, which revealed a change of 50-60% in microbial community composition between the different filter types. This study documents the direct influence of the filter biomass on the microbial community composition of the final drinking water, particularly when the water is distributed without post-disinfection. The results provide new insights on the complexity of indigenous bacteria colonizing drinking water systems, especially in different biofilters of a multi-step treatment plant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Testing surrogacy assumptions: can threatened and endangered plants be grouped by biological similarity and abundances?

    PubMed

    Che-Castaldo, Judy P; Neel, Maile C

    2012-01-01

    There is renewed interest in implementing surrogate species approaches in conservation planning due to the large number of species in need of management but limited resources and data. One type of surrogate approach involves selection of one or a few species to represent a larger group of species requiring similar management actions, so that protection and persistence of the selected species would result in conservation of the group of species. However, among the criticisms of surrogate approaches is the need to test underlying assumptions, which remain rarely examined. In this study, we tested one of the fundamental assumptions underlying use of surrogate species in recovery planning: that there exist groups of threatened and endangered species that are sufficiently similar to warrant similar management or recovery criteria. Using a comprehensive database of all plant species listed under the U.S. Endangered Species Act and tree-based random forest analysis, we found no evidence of species groups based on a set of distributional and biological traits or by abundances and patterns of decline. Our results suggested that application of surrogate approaches for endangered species recovery would be unjustified. Thus, conservation planning focused on individual species and their patterns of decline will likely be required to recover listed species.

  20. Testing Surrogacy Assumptions: Can Threatened and Endangered Plants Be Grouped by Biological Similarity and Abundances?

    PubMed Central

    Che-Castaldo, Judy P.; Neel, Maile C.

    2012-01-01

    There is renewed interest in implementing surrogate species approaches in conservation planning due to the large number of species in need of management but limited resources and data. One type of surrogate approach involves selection of one or a few species to represent a larger group of species requiring similar management actions, so that protection and persistence of the selected species would result in conservation of the group of species. However, among the criticisms of surrogate approaches is the need to test underlying assumptions, which remain rarely examined. In this study, we tested one of the fundamental assumptions underlying use of surrogate species in recovery planning: that there exist groups of threatened and endangered species that are sufficiently similar to warrant similar management or recovery criteria. Using a comprehensive database of all plant species listed under the U.S. Endangered Species Act and tree-based random forest analysis, we found no evidence of species groups based on a set of distributional and biological traits or by abundances and patterns of decline. Our results suggested that application of surrogate approaches for endangered species recovery would be unjustified. Thus, conservation planning focused on individual species and their patterns of decline will likely be required to recover listed species. PMID:23240051

  1. ISC, a Novel Group of Bacterial and Archaeal DNA Transposons That Encode Cas9 Homologs

    PubMed Central

    Kapitonov, Vladimir V.; Makarova, Kira S.

    2015-01-01

    ABSTRACT Bacterial genomes encode numerous homologs of Cas9, the effector protein of the type II CRISPR-Cas systems. The homology region includes the arginine-rich helix and the HNH nuclease domain that is inserted into the RuvC-like nuclease domain. These genes, however, are not linked to cas genes or CRISPR. Here, we show that Cas9 homologs represent a distinct group of nonautonomous transposons, which we denote ISC (insertion sequences Cas9-like). We identify many diverse families of full-length ISC transposons and demonstrate that their terminal sequences (particularly 3′ termini) are similar to those of IS605 superfamily transposons that are mobilized by the Y1 tyrosine transposase encoded by the TnpA gene and often also encode the TnpB protein containing the RuvC-like endonuclease domain. The terminal regions of the ISC and IS605 transposons contain palindromic structures that are likely recognized by the Y1 transposase. The transposons from these two groups are inserted either exactly in the middle or upstream of specific 4-bp target sites, without target site duplication. We also identify autonomous ISC transposons that encode TnpA-like Y1 transposases. Thus, the nonautonomous ISC transposons could be mobilized in trans either by Y1 transposases of other, autonomous ISC transposons or by Y1 transposases of the more abundant IS605 transposons. These findings imply an evolutionary scenario in which the ISC transposons evolved from IS605 family transposons, possibly via insertion of a mobile group II intron encoding the HNH domain, and Cas9 subsequently evolved via immobilization of an ISC transposon. IMPORTANCE Cas9 endonucleases, the effectors of type II CRISPR-Cas systems, represent the new generation of genome-engineering tools. Here, we describe in detail a novel family of transposable elements that encode the likely ancestors of Cas9 and outline the evolutionary scenario connecting different varieties of these transposons and Cas9. PMID:26712934

  2. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester.

    PubMed

    Ariesyady, Herto Dwi; Ito, Tsukasa; Okabe, Satoshi

    2007-04-01

    Functional Bacteria and Archaea community structures of a full-scale anaerobic sludge digester were investigated by using a full-cycle 16S rRNA approach followed by microautoradiography (MAR)-fluorescent in situ hybridization (FISH) technique and micromanipulation. FISH analysis with a comprehensive set of 16S and 23S rRNA-targeted oligonucleotide probes based on 16S rRNA clone libraries revealed that the Gram-positive bacteria represented by probe HGC69A-hybridized Actinobacteria (8.5+/-1.4% of total 4', 6-diamidino-2-phenylindole (DAPI)-stained cells) and probe LGC354-hybridized Firmicutes (3.8+/-0.8%) were the major phylogenetic bacterial phyla, followed by Bacteroidetes (4.0+/-1.2%) and Chloroflexi (3.7+/-0.8%). The probe MX825-hybridized Methanosaeta (7.6+/-0.8%) was the most abundant archaeal group, followed by Methanomicrobiales (2.8+/-0.6%) and Methanobacteriaceae (2.7+/-0.4%). The functional community structures (diversity and relative abundance) of major trophic groups were quantitatively analyzed by MAR-FISH. The results revealed that glucose-degrading microbial community had higher abundance (ca. 10.6+/-4.9% of total DAPI-stained cells) and diversity (at least seven phylogenetic groups) as compared with fatty acid-utilizing microbial communities, which were more specialized to a few phylogenetic groups. Despite the dominance of Betaproteobacteria, members of Chloroflexi, Smithella, Syntrophomonas and Methanosaeta groups dominated the [(14)C]glucose-, [(14)C]propionate-, [(14)C]butyrate- and [(14)C]acetate-utilizing microorganism community, and accounted for 27.7+/-4.3%, 29.6+/-7.0%, 34.5+/-7.6% and 18.2+/-9.5%, respectively. In spite of low abundance (ca. 1%), the hitherto unknown metabolic functions of Spirochaeta and candidate phylum of TM7 as well as Synergistes were found to be glucose and acetate utilization, respectively.

  3. Bacterial 16S rRNA gene analysis revealed that bacteria related to Arcobacter spp. constitute an abundant and common component of the oyster microbiota (Tiostrea chilensis).

    PubMed

    Romero, J; García-Varela, M; Laclette, J P; Espejo, R T

    2002-11-01

    To explore the bacterial microbiota in Chilean oyster (Tiostrea chilensis), a molecular approach that permits detection of different bacteria, independently of their capacity to grow in culture media, was used. Bacterial diversity was assessed by analysis of both the 16S rDNA and the 16S-23S intergenic region, obtained by PCR amplifications of DNA extracted from depurated oysters. RFLP of the PCR amplified 16S rDNA showed a prevailing pattern in most of the individuals analyzed, indicating that a few bacterial species were relatively abundant and common in oysters. Cloning and sequencing of the 16S rDNA with the prevailing RFLP pattern indicated that this rRNA was most closely related to Arcobacter spp. However, analysis by the size of the amplified 16S-23S rRNA intergenic regions revealed not Arcobacter spp. but Staphylococcus spp. related bacteria as a major and common component in oyster. These different results may be caused by the absence of target for one of the primers employed for amplification of the intergenic region. Neither of the two bacteria species found in large abundance was recovered after culturing under aerobic, anaerobic, or microaerophilic conditions. This result, however, is expected because the number of bacteria recovered after cultivation was less than 0.01% of the total. All together, these observations suggest that Arcobacter-related strains are probably abundant and common in the Chilean oyster bacterial microbiota.

  4. Differential Abundance of Microbial Functional Groups along the Elevation Gradient from the Coast to the Luquillo Mountains

    EPA Science Inventory

    Microbial communities respond to multiple abiotic and biotic factors that change along elevation gradients. We compare changes in microbial community composition in soil and review previous research on differential abundance of microbial functional groups along an elevation gradi...

  5. A Comparison of Anammox Bacterial Abundance and Community Structures in Three Different Emerged Plants-Related Sediments.

    PubMed

    Chu, Jinyu; Zhang, Jinping; Zhou, Xiaohong; Liu, Biao; Li, Yimin

    2015-09-01

    Quantitative polymerase chain reaction (qPCR) assays and 16S rRNA gene clone libraries were used to document the abundance, diversity and community structure of anaerobic ammonia-oxidising (anammox) bacteria in the rhizosphere and non-rhizosphere sediments of three emergent macrophyte species (Iris pseudacorus, Thalia dealbata and Typha orientalis). The qPCR results confirmed the existence of anammox bacteria (AMX) with observed log number of gene copies per dry gram sediment ranging from 5.00 to 6.78. AMX was more abundant in T. orientalis-associated sediments than in the other two plant species. The I. pseudacorus- and T. orientalis-associated sediments had higher Shannon diversity values, indicating higher AMX diversity in these sediments. Based on the 16S rRNA gene, Candidatus 'Brocadia', Candidatus 'Kuenenia', Candidatus 'Jettenia' and new clusters were observed with the predominant Candidatus 'Kuenenia' cluster. The I. pseudacorus-associated sediments contained all the sequences of the C. 'Jettenia' cluster. Sequences obtained from T. orientalis-associated sediments contributed more than 90 % sequences in the new cluster, whereas none was found from I. pseudacorus. The new cluster was distantly related to known sequences; thus, this cluster was grouped outside the known clusters, indicating that the new cluster may be a new Planctomycetales genus. Further studies should be undertaken to confirm this finding.

  6. Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates

    PubMed Central

    Sterngren, Anna E.; Rousk, Johannes

    2012-01-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient. PMID:22706045

  7. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.

    PubMed

    Bengtson, Per; Sterngren, Anna E; Rousk, Johannes

    2012-08-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.

  8. What Factors Control Platinum-Group Element (PGE) Abundances in Basalts From the Ontong Java Plateau?

    NASA Astrophysics Data System (ADS)

    Chazey, W. J.; Neal, C. R.

    2002-12-01

    Eleven samples encompassing four sites drilled by Ocean Drilling Program Leg 192 to the Ontong Java Plateau (OJP) were analyzed for major, trace and platinum-group (PGEs: Ir, Ru, Rh, Pt, and Pd) elements. Based on major and trace element chemistry, these are divided into two groups: a primitive group, which was newly discovered on Leg 192, and Kwaimbaita-type basalts, which are ubiquitous on the OJP (cf. Tejada et al., 2002, J. Pet. 43:449). The primitive group is relatively enriched in MgO, Ni, and Cr and relatively depleted in incompatible elements compared to the Kwaimbaita-type basalts. Petrography indicates that the fractionating phases during emplacement of both types of basalts were olivine and Cr-spinel +/- plagioclase +/- cpx. Normalized PGE profiles are fractionated, but exhibit a flattening between Ru and Ir and occasionally an enrichment in Ir. It has been shown that chromite can preferentially incorporate Os and Ru (Kd ?150) over Ir (Kd ?100), which may account for the Ir and Ru systematics. We do not consider sulfide to be a factor in fractionating the PGEs because it is either absent or present as a trace phase in these basalts and the OJP basalts are sulfur undersaturated (Michael and Cornell, 1996, EOS 77:714). Additionally, the primitive samples from the OJP also have Cu/Pd ratios (4500-8000) that are roughly similar to primitive mantle (7300), and have a generally flat transition from Pd to Y on a primitive mantle-normalized plot. It is unlikely that these samples reached sulfur saturation. The Kwaimbaita-type basalts have slightly elevated Cu/Pd ratios (9000-14000). While there are subtle differences between the PGE profiles of basalts from the Leg 192 drill cores compared to OJP basalts from subaerial outcrops in the Solomon Islands (e.g., the former have general lower Pt/Rh and higher Rh/Ru ratios), it is apparent that silicate and oxide phases are controlling the PGE profiles and abundances. For example, the six samples analyzed from Site

  9. Semiquantitative bacterial observations with group B streptococcal vulvovaginitis.

    PubMed Central

    Monif, G R

    1999-01-01

    OBJECTIVE: Group B streptococcal (GBS) vulvovaginitis is a poorly-delineated clinical entity. The purpose of this study is to report semiquantitative data from four cases of GBS vulvovaginitis and to comment on their significance in terms of the in vitro inhibitory capabilities of GBS. METHODOLOGY: Four patients whose clinical presentations were consistent with GBS vulvovaginitis, from whom GBS was isolated and for whom semi-quantitative as well as qualitative microbiologic data existed, were identified. RESULTS: To produce vulvovaginitis, GBS must be at a high multiplicity (10(8) CFU/g of vaginal fluid). Single coisolates were identified in three of the four cases (two cases of Escherichia coli and one case of Staphylococcus aureus). Group B streptococcus does not inhibit either of these bacteria in vitro. CONCLUSION: When the growth requirements for the demonstration of in vitro inhibition for GBS or lack thereof are met in vivo, the in vivo observations are consistent with those projected from the in vitro data. PMID:10524667

  10. Bacterial phenotype variants in group B streptococcal toxic shock syndrome.

    PubMed

    Sendi, Parham; Johansson, Linda; Dahesh, Samira; Van-Sorge, Nina M; Darenberg, Jessica; Norgren, Mari; Sjölin, Jan; Nizet, Victor; Norrby-Teglund, Anna

    2009-02-01

    We conducted genetic and functional analyses of isolates from a patient with group B streptococcal (GBS) necrotizing fasciitis and toxic shock syndrome. Tissue cultures simultaneously showed colonies with high hemolysis (HH) and low hemolysis (LH). Conversely, the HH and LH variants exhibited low capsule (LC) and high capsule (HC) expression, respectively. Molecular analysis demonstrated that the 2 GBS variants were of the same clonal origin. Genetic analysis found a 3-bp deletion in the covR gene of the HH/LC variant. Functionally, this isolate was associated with an increased growth rate in vitro and with higher interleukin-8 induction. However, in whole blood, opsonophagocytic and intracellular killing assays, the LH/HC phenotype demonstrated higher resistance to host phagocytic killing. In a murine model, LH/HC resulted in higher levels of bacteremia and increased host mortality rate. These findings demonstrate differences in GBS isolates of the same clonal origin but varying phenotypes.

  11. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution

    PubMed Central

    Lambowitz, Alan M.; Belfort, Marlene

    2015-01-01

    SUMMARY This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome’s small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns. PMID:25878921

  12. The abundance and organization of polypeptides associated with antigens of the Rh blood group system.

    PubMed

    Gardner, B; Anstee, D J; Mawby, W J; Tanner, M J; von dem Borne, A E

    1991-06-01

    Twelve murine monoclonal antibodies, which react with human red cells of common Rh phenotype but give weak or negative reactions with Rh null erythrocytes, were used in quantitative binding assays and competitive binding assays to investigate the abundance and organization of polypeptides involved in the expression of antigens of the Rh blood group system. Antibodies of the R6A-type (R6A, BRIC-69, BRIC-207) and the 2D10-type (MB-2D10, LA18.18, LA23.40) recognize related structures and 100,000-200,000 molecules of each antibody bind maximally to erythrocytes of common Rh phenotype. Antibodies of the BRIC-125 type (BRICs 32, 122, 125, 126, 168, 211) recognize structures that are unrelated to those recognized by R6A-type and 2D10-type antibodies and between 10,000 and 50,000 antibody molecules bind maximally to erythrocytes of the common Rh phenotype. The binding of antibodies of the R6A-type and the 2D10-type, but not of antibodies of the BRIC-125-type could be partially inhibited by human anti-D antibodies (polyclonal and monoclonal) and a murine anti-e-like antibody. These results are consistent with evidence (Moore & Green 1987; Avent et al., 1988b) that the Rh blood group antigens are associated with a complex that comprises two groups of related polypeptides of M(r) 30,000 and M(r) 35,000-100,000, respectively, and suggest that there are 1-2 x 10(5) copies of this complex per erythrocyte. The polypeptide recognized by antibodies of the BRIC-125 type is likely to be associated with this complex.

  13. Distribution, diversity and abundance of bacterial laccase-like genes in different particle size fractions of sediments in a subtropical mangrove ecosystem.

    PubMed

    Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong

    2015-10-01

    This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p < 0.05), and decreased in the order of sand > clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p < 0.05), while the total organic carbon contents were positively related to the abundance of bacterial laccase-like genes in particle size fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.

  14. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups

    PubMed Central

    Thomas, J.A

    2005-01-01

    Conservative estimates suggest that 50–90% of the existing insect species on Earth have still to be discovered, yet the named insects alone comprise more than half of all known species of organism. With such poor baseline knowledge, monitoring change in insect diversity poses a formidable challenge to scientists and most attempts to generalize involve large extrapolations from a few well-studied taxa. Butterflies are often the only group for which accurate measures of change can be obtained. Four schemes, used successfully to assess change in British butterflies, that are increasingly being applied across the world are described: Red Data Books (RDB) list the best judgements of experts of the conservation status of species in their field of expertise; mapping schemes plot the changing distributions of species at scales of 1–100 km2; transect monitoring schemes generate time series of changes in abundance in sample populations of species on fixed sites across the UK; and occasional surveys measure the number, boundaries and size of all populations of a (usually RDB) species at intervals of 10–30 years. All schemes describe consistent patterns of change, but if they are to be more generally useful, it is important to understand how well butterflies are representative of other taxa. Comparisons with similarly measured changes in native bird and plant species suggest that butterflies have declined more rapidly that these other groups in Britain; it should soon be possible to test whether this pattern exists elsewhere. It is also demonstrated that extinction rates in British butterflies are similar to those in a range of other insect groups over 100 years once recording bias is accounted for, although probably lower than in aquatic or parasitic taxa. It is concluded that butterflies represent adequate indicators of change for many terrestrial insect groups, but recommended that similar schemes be extended to other popular groups, especially dragonflies

  15. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups.

    PubMed

    Thomas, J A

    2005-02-28

    Conservative estimates suggest that 50-90% of the existing insect species on Earth have still to be discovered, yet the named insects alone comprise more than half of all known species of organism. With such poor baseline knowledge, monitoring change in insect diversity poses a formidable challenge to scientists and most attempts to generalize involve large extrapolations from a few well-studied taxa. Butterflies are often the only group for which accurate measures of change can be obtained. Four schemes, used successfully to assess change in British butterflies, that are increasingly being applied across the world are described: Red Data Books (RDB) list the best judgements of experts of the conservation status of species in their field of expertise; mapping schemes plot the changing distributions of species at scales of 1-100 km2; transect monitoring schemes generate time series of changes in abundance in sample populations of species on fixed sites across the UK; and occasional surveys measure the number, boundaries and size of all populations of a (usually RDB) species at intervals of 10-30 years. All schemes describe consistent patterns of change, but if they are to be more generally useful, it is important to understand how well butterflies are representative of other taxa. Comparisons with similarly measured changes in native bird and plant species suggest that butterflies have declined more rapidly that these other groups in Britain; it should soon be possible to test whether this pattern exists elsewhere. It is also demonstrated that extinction rates in British butterflies are similar to those in a range of other insect groups over 100 years once recording bias is accounted for, although probably lower than in aquatic or parasitic taxa. It is concluded that butterflies represent adequate indicators of change for many terrestrial insect groups, but recommended that similar schemes be extended to other popular groups, especially dragonflies, bumblebees

  16. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments

    SciTech Connect

    Guibert, Lilian M.; Loviso, Claudia L.; Borglin, Sharon

    We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlatedmore » with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.« less

  17. Spatio-temporal patterns of major bacterial groups in alpine waters.

    PubMed

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart E G; Robinson, Christopher T

    2014-01-01

    Glacial alpine landscapes are undergoing rapid transformation due to changes in climate. The loss of glacial ice mass has directly influenced hydrologic characteristics of alpine floodplains. Consequently, hyporheic sediment conditions are likely to change in the future as surface waters fed by glacial water (kryal) become groundwater dominated (krenal). Such environmental shifts may subsequently change bacterial community structure and thus potential ecosystem functioning. We quantitatively investigated the structure of major bacterial groups in glacial and groundwater-fed streams in three alpine floodplains during different hydrologic periods. Our results show the importance of several physico-chemical variables that reflect local geological characteristics as well as water source in structuring bacterial groups. For instance, Alpha-, Betaproteobacteria and Cytophaga-Flavobacteria were influenced by pH, conductivity and temperature as well as by inorganic and organic carbon compounds, whereas phosphorous compounds and nitrate showed specific influence on single bacterial groups. These results can be used to predict future bacterial group shifts, and potential ecosystem functioning, in alpine landscapes under environmental transformation.

  18. Changes of the Bacterial Abundance and Communities in Shallow Ice Cores from Dunde and Muztagata Glaciers, Western China

    PubMed Central

    Chen, Yong; Li, Xiang-Kai; Si, Jing; Wu, Guang-Jian; Tian, Li-De; Xiang, Shu-Rong

    2016-01-01

    In this study, six bacterial community structures were analyzed from the Dunde ice core (9.5-m-long) using 16S rRNA gene cloning library technology. Compared to the Muztagata mountain ice core (37-m-long), the Dunde ice core has different dominant community structures, with five genus-related groups Blastococcus sp./Propionibacterium, Cryobacterium-related., Flavobacterium sp., Pedobacter sp., and Polaromas sp. that are frequently found in the six tested ice layers from 1990 to 2000. Live and total microbial density patterns were examined and related to the dynamics of physical-chemical parameters, mineral particle concentrations, and stable isotopic ratios in the precipitations collected from both Muztagata and Dunde ice cores. The Muztagata ice core revealed seasonal response patterns for both live and total cell density, with high cell density occurring in the warming spring and summer months indicated by the proxy value of the stable isotopic ratios. Seasonal analysis of live cell density for the Dunde ice core was not successful due to the limitations of sampling resolution. Both ice cores showed that the cell density peaks were frequently associated with high concentrations of particles. A comparison of microbial communities in the Dunde and Muztagata glaciers showed that similar taxonomic members exist in the related ice cores, but the composition of the prevalent genus-related groups is largely different between the two geographically different glaciers. This indicates that the micro-biogeography associated with geographic differences was mainly influenced by a few dominant taxonomic groups. PMID:27847503

  19. Abundance and activity of 16S rRNA, amoA and nifH bacterial genes during assisted phytostabilization of mine tailings

    PubMed Central

    Nelson, Karis N.; Neilson, Julia W.; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings. PMID:25495940

  20. Abundance and Activity of 16S rRNA, AmoA and NifH Bacterial Genes During Assisted Phytostabilization of Mine Tailings.

    PubMed

    Nelson, Karis N; Neilson, Julia W; Root, Robert A; Chorover, Jon; Maier, Raina M

    2015-01-01

    Mine tailings in semiarid regions are highly susceptible to erosion and are sources of dust pollution and potential avenues of human exposure to toxic metals. One constraint to revegetation of tailings by phytostabilization is the absence of microbial communities critical for biogeochemical cycling of plant nutrients. The objective of this study was to evaluate specific genes as in situ indicators of biological soil response during phytoremediation. The abundance and activity of 16S rRNA, nifH, and amoA were monitored during a nine month phytostabilization study using buffalo grass and quailbush grown in compost-amended, metalliferous tailings. The compost amendment provided a greater than 5-log increase in bacterial abundance, and survival of this compost-inoculum was more stable in planted treatments. Despite increased abundance, the activity of the introduced community was low, and significant increases were not detected until six and nine months in quailbush, and unplanted compost and buffalo grass treatments, respectively. In addition, increased abundances of nitrogen-fixation (nifH) and ammonia-oxidizing (amoA) genes were observed in rhizospheres of buffalo grass and quailbush, respectively. Thus, plant establishment facilitated the short term stabilization of introduced bacterial biomass and supported the growth of two key nitrogen-cycling populations in compost-amended tailings.

  1. Changes in composition and abundance of functional groups of arctic fungi in response to long-term summer warming

    PubMed Central

    Semenova, Tatiana A.; Morgado, Luis N.; Welker, Jeffrey M.

    2016-01-01

    We characterized fungal communities in dry and moist tundra and investigated the effect of long-term experimental summer warming on three aspects of functional groups of arctic fungi: richness, community composition and species abundance. Warming had profound effects on community composition, abundance, and, to a lesser extent, on richness of fungal functional groups. In addition, our data show that even within functional groups, the direction and extent of response to warming tend to be species-specific and we recommend that studies on fungal communities and their roles in nutrient cycling take into account species-level responses. PMID:27881760

  2. Abundance and Distribution of Dimethylsulfoniopropionate Degradation Genes and the Corresponding Bacterial Community Structure at Dimethyl Sulfide Hot Spots in the Tropical and Subtropical Pacific Ocean

    PubMed Central

    Suzuki, Shotaro; Omori, Yuko; Wong, Shu-Kuan; Ijichi, Minoru; Kaneko, Ryo; Kameyama, Sohiko; Tanimoto, Hiroshi; Hamasaki, Koji

    2015-01-01

    Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton but is released into the microbial food web and degraded by marine bacteria to dimethyl sulfide (DMS) and other products. To reveal the abundance and distribution of bacterial DMSP degradation genes and the corresponding bacterial communities in relation to DMS and DMSP concentrations in seawater, we collected surface seawater samples from DMS hot spot sites during a cruise across the Pacific Ocean. We analyzed the genes encoding DMSP lyase (dddP) and DMSP demethylase (dmdA), which are responsible for the transformation of DMSP to DMS and DMSP assimilation, respectively. The averaged abundance (±standard deviation) of these DMSP degradation genes relative to that of the 16S rRNA genes was 33% ± 12%. The abundances of these genes showed large spatial variations. dddP genes showed more variation in abundances than dmdA genes. Multidimensional analysis based on the abundances of DMSP degradation genes and environmental factors revealed that the distribution pattern of these genes was influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibited significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possessed dmdA genes, were suggested to be the main potential DMSP consumers. The Roseobacter clade members possessing dddP genes in oligotrophic subtropical regions were possible DMS producers. These results suggest that DMSP degradation genes are abundant and widely distributed in the surface seawater and that the marine bacteria possessing these genes influence the degradation of DMSP and regulate the emissions of DMS in subtropical gyres of the Pacific Ocean. PMID:25862229

  3. Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical pacific ocean.

    PubMed

    Cui, Yingshun; Suzuki, Shotaro; Omori, Yuko; Wong, Shu-Kuan; Ijichi, Minoru; Kaneko, Ryo; Kameyama, Sohiko; Tanimoto, Hiroshi; Hamasaki, Koji

    2015-06-15

    Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton but is released into the microbial food web and degraded by marine bacteria to dimethyl sulfide (DMS) and other products. To reveal the abundance and distribution of bacterial DMSP degradation genes and the corresponding bacterial communities in relation to DMS and DMSP concentrations in seawater, we collected surface seawater samples from DMS hot spot sites during a cruise across the Pacific Ocean. We analyzed the genes encoding DMSP lyase (dddP) and DMSP demethylase (dmdA), which are responsible for the transformation of DMSP to DMS and DMSP assimilation, respectively. The averaged abundance (±standard deviation) of these DMSP degradation genes relative to that of the 16S rRNA genes was 33% ± 12%. The abundances of these genes showed large spatial variations. dddP genes showed more variation in abundances than dmdA genes. Multidimensional analysis based on the abundances of DMSP degradation genes and environmental factors revealed that the distribution pattern of these genes was influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibited significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possessed dmdA genes, were suggested to be the main potential DMSP consumers. The Roseobacter clade members possessing dddP genes in oligotrophic subtropical regions were possible DMS producers. These results suggest that DMSP degradation genes are abundant and widely distributed in the surface seawater and that the marine bacteria possessing these genes influence the degradation of DMSP and regulate the emissions of DMS in subtropical gyres of the Pacific Ocean. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. The Abundances of the Fe Group Elements in Early B Stars in the Magellanic Clouds and Our Galaxy

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine Joan; Adelman, Saul Joseph

    2015-08-01

    The abundances of the Fe-peak elements (Ti, V, Cr, Mn, Fe, Co, and Ni) are of interest as they are important for assessing opacities for stellar evolution calculations, confirming theoretical calculations of explosive nucleosynthesis, and inferring the past history of supernova activity in a galaxy. FUSE FUV spectra of early B stars in the LMC and SMC and HST/STIS FUV/NUV spectra of nearby B stars in our galaxy are analyzed with the Hubeny/Lanz programs TLUSTY/SYNSPEC to determine abundance for the Fe group elements and produce a map of these abundances in the Magellanic Clouds (MC) and Magellanic Bridge (MB). Except for four weak multiplets of Fe III there are no measurable lines from the Fe group in the optical region. The Fe group species found in the FUV spectra of early B stars are primarily in the second stage of ionization. The best set of lines in the FUSE spectral region are Fe III (UV1), V III 1150 Å, and Cr III 1137 Å. Analysis of the galactic B stars provides a good assessment of the reliability of the atomic parameters that are used for the MC calculations. Twenty-two early B stars in the MC and MB and five in our galaxy were analyzed. In general the Fe group abundances range from solar to slightly below solar in our region of the galaxy. But in the MCs the abundances of V, Cr, and Fe tend to be significantly lower than the mean metal abundances for the galaxy. Maps of the Fe group abundances and their variations in the LMC and SMC, tracers of recent enrichment of the ISM from supernova activity, are shown. Support from NASA grants NAG5-13212, NNX10AD66G, STScI HST-GO-13346.22, and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  5. The Abundances of the Fe Group Elements in Early B Stars in the Magellanic Clouds and Bridge

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Adelman, Saul J.

    2016-01-01

    The abundances of three Fe Group elements (V, Cr, and Fe) in 9 early main-sequence band B stars in the LMC, 7 in the SMC , and two in the Magellanic Bridge have been determined from archival FUSE observations and the Hubeny/Lanz NLTE programs TLUSTY/SYNSPEC. Lines from the Fe group elements, except for a few weak multiplets of Fe III, are not observable in the optical spectral region. The best set of lines in the FUSE spectral region are Fe III (UV1), V III 1150 Å, and Cr III 1137 Å. The abundances of these elements in early B stars are a marker for recent SNe Ia activity, as a single exploding white dwarf can deliver 0.5 solar masses of Ni-56 that decays into Fe to the ISM. The Fe group abundances in an older population of stars primarily reflect SNe II activity, in which a single explosion delivers only 0.07 solar masses of Ni-56 to the ISM (the rest remains trapped in the neutron star). The abundances of the Fe group elements in early B stars not only track SNe Ia activity but are also important for computing evolutionary tracks for massive stars. In general, the Fe abundance relative to the sun's value is comparable to the mean abundances for the lighter elements in the Clouds/Bridge but the values of [V,Cr/Fe]sun are smaller. This presentation will discuss the spatial distribution of the Fe Group elements in the Magellanic Clouds, and compare it with our galaxy in which the abundance of Fe declines with radial distance from the center. Support from NASA grants NAG5-13212, NNX10AD66G, STScI HST-GO-13346.22, and USC's Women in Science and Engineering (WiSE) program is greatly appreciated.

  6. Abundances of Local Group Globular Clusters Using High Resolution Integrated Light Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; McWilliam, A.; Venn, K.; Shetrone, M. D.; Dotter, A. L.; Mackey, D.

    2014-01-01

    Abundances and kinematics of extragalactic globular clusters provide valuable clues about galaxy and globular cluster formation in a wide variety of environments. In order to obtain such information about distant, unresolved systems, specific observational techniques are required. An Integrated Light Spectrum (ILS) provides a single spectrum from an entire stellar population, and can therefore be used to determine integrated cluster abundances. This dissertation investigates the accuracy of high resolution ILS analysis methods, using ILS (taken with the Hobby-Eberly Telescope) of globular clusters associated with the Milky Way (47 Tuc, M3, M13, NGC 7006, and M15) and then applies the method to globular clusters in the outer halo of M31 (from the Pan-Andromeda Archaeological Survey, or PAndAS). Results show that: a) as expected, the high resolution method reproduces individual stellar abundances for elements that do not vary within a cluster; b) the presence of multiple populations does affect the abundances of elements that vary within the cluster; c) certain abundance ratios are very sensitive to systematic effects, while others are not; and d) certain abundance ratios (e.g. [Ca/Fe]) can be accurately obtained from unresolved systems. Applications of ILABUNDS to the PAndAS clusters reveal that accretion may have played an important role in the formation of M31's outer halo.

  7. Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion

    NASA Astrophysics Data System (ADS)

    Escala, Ivanna; Wetzel, Andrew; Kirby, Evan N.; Hopkins, Philip F.; Ma, Xiangcheng; Wheeler, Coral; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot

    2018-02-01

    We investigate stellar metallicity distribution functions (MDFs), including Fe and α-element abundances, in dwarf galaxies from the Feedback in Realistic Environment (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a Milky Way-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles towards the average metallicity. This effect provides significantly better agreement with observed abundance distributions in dwarf galaxies in the Local Group, including small intrinsic scatter in [α/Fe] versus [Fe/H] of ≲0.1 dex. This small intrinsic scatter arises in our simulations because the interstellar medium in dwarf galaxies is well mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to ≲0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.

  8. Differential abundance of microbial functional groups along the elevation gradient from the coast to the Luquillo Mountains

    Treesearch

    Sharon A. Cantrell; D. Jean Lodge; Carlos A. Cruz; Luis M. García; Jose R. Pérez-Jiménez; Marirosa Molina

    2013-01-01

    Microbial communities respond to multiple abiotic and biotic factors that change along elevation gradients. We compare changes in microbial community composition in soil and review previous research on differential abundance of microbial functional groups along an elevation gradient in eastern Puerto Rico. Previous studies within the Luquillo Mountains showed that...

  9. A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments

    NASA Technical Reports Server (NTRS)

    Franklin, Rima B.; Blum, Linda K.; McComb, Alison C.; Mills, Aaron L.

    2002-01-01

    Small-scale variations in bacterial abundance and community structure were examined in salt marsh sediments from Virginia's eastern shore. Samples were collected at 5 cm intervals (horizontally) along a 50 cm elevation gradient, over a 215 cm horizontal transect. For each sample, bacterial abundance was determined using acridine orange direct counts and community structure was analyzed using randomly amplified polymorphic DNA fingerprinting of whole-community DNA extracts. A geostatistical analysis was used to determine the degree of spatial autocorrelation among the samples, for each variable and each direction (horizontal and vertical). The proportion of variance in bacterial abundance that could be accounted for by the spatial model was quite high (vertical: 60%, horizontal: 73%); significant autocorrelation was found among samples separated by 25 cm in the vertical direction and up to 115 cm horizontally. In contrast, most of the variability in community structure was not accounted for by simply considering the spatial separation of samples (vertical: 11%, horizontal: 22%), and must reflect variability from other parameters (e.g., variation at other spatial scales, experimental error, or environmental heterogeneity). Microbial community patch size based upon overall similarity in community structure varied between 17 cm (vertical) and 35 cm (horizontal). Overall, variability due to horizontal position (distance from the creek bank) was much smaller than that due to vertical position (elevation) for both community properties assayed. This suggests that processes more correlated with elevation (e.g., drainage and redox potential) vary at a smaller scale (therefore producing smaller patch sizes) than processes controlled by distance from the creek bank. c2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  10. Effects of superabsorbent polymers on the abundances of antibiotic resistance genes, mobile genetic elements, and the bacterial community during swine manure composting.

    PubMed

    Guo, Aiyun; Gu, Jie; Wang, Xiaojuan; Zhang, Ranran; Yin, Yanan; Sun, Wei; Tuo, Xiaxia; Zhang, Li

    2017-11-01

    Superabsorbent polymers (SAPs) are considered suitable amendments for reducing the selection pressure due to heavy metals and the abundances of antibiotic resistance genes (ARGs) during composting. In this study, three SAP (sodium polyacrylate) levels (0, 5, and 15mgkg -1 of compost) were applied and their effects on the abundances of ARGs, mobile genetic elements (MGEs), and the bacterial community were investigated. After composting, the abundances of ARGs and MGEs decreased to different extent, where the removal efficiencies for tetW, dfrA7, ermX, aac(6')-ib-cr and MGEs exceeded 90%. The high SAP concentration significantly reduced the abundances of ARGs and MGEs, and changed the microbial community. Redundancy analysis indicated that the moisture content mainly explained the changes in ARGs and MGEs. Network analysis determined the potential hosts of ARGs and MGEs, and their co-occurrence. The results suggested that applying 15mgkg -1 SAP is appropriate for reducing ARGs in compost. Copyright © 2017. Published by Elsevier Ltd.

  11. Factors influencing ruminal bacterial community diversity and composition and microbial fibrolytic enzyme abundance in lactating dairy cows with a focus on the role of active dry yeast.

    PubMed

    AlZahal, Ousama; Li, Fuyong; Guan, Le Luo; Walker, Nicola D; McBride, Brian W

    2017-06-01

    The objective of the current study was to employ a DNA-based sequencing technology to study the effect of active dry yeast (ADY) supplementation, diet type, and sample location within the rumen on rumen bacterial community diversity and composition, and to use an RNA-based method to study the effect of ADY supplementation on rumen microbial metabolism during high-grain feeding (HG). Our previous report demonstrated that the supplementation of lactating dairy cows with ADY attenuated the effect of subacute ruminal acidosis. Therefore, we used samples from that study, where 16 multiparous, rumen-cannulated lactating Holstein cows were randomly assigned to 1 of 2 dietary treatments: ADY (Saccharomyces cerevisiae strain Y1242, 80 billion cfu/animal per day) or control (carrier only). Cows received a high-forage diet (77:23, forage:concentrate), then were abruptly switched to HG (49:51, forage:concentrate). Rumen bacterial community diversity and structure were highly influenced by diet and sampling location (fluid, solids, epimural). The transition to HG reduced bacterial diversity, but epimural bacteria maintained a greater diversity than fluid and solids. Analysis of molecular variance indicated a significant separation due to diet × sampling location, but not due to treatment. Across all samples, the analysis yielded 6,254 nonsingleton operational taxonomic units (OTU), which were classified into several phyla: mainly Firmicutes, Bacteroidetes, Fibrobacteres, Tenericutes, and Proteobacteria. High forage and solids were dominated by OTU from Fibrobacter, whereas HG and fluid were dominated by OTU from Prevotella. Epimural samples, however, were dominated in part by Campylobacter. Active dry yeast had no effect on bacterial community diversity or structure. The phylum SR1 was more abundant in all ADY samples regardless of diet or sampling location. Furthermore, on HG, OTU2 and OTU3 (both classified into Fibrobacter succinogenes) were more abundant with ADY in fluid

  12. The abundance of ultra-diffuse galaxies from groups to clusters. UDGs are relatively more common in more massive haloes

    NASA Astrophysics Data System (ADS)

    van der Burg, Remco F. J.; Hoekstra, Henk; Muzzin, Adam; Sifón, Cristóbal; Viola, Massimo; Bremer, Malcolm N.; Brough, Sarah; Driver, Simon P.; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Klaes, Dominik; Kuijken, Konrad; McGee, Sean; Nakajima, Reiko; Napolitano, Nicola; Norberg, Peder; Taylor, Edward N.; Valentijn, Edwin

    2017-11-01

    In recent years, many studies have reported substantial populations of large galaxies with low surface brightness in local galaxy clusters. Various theories that aim to explain the presence of such ultra-diffuse galaxies (UDGs) have since been proposed. A key question that will help to distinguish between models is whether UDGs have counterparts in host haloes with lower masses, and if so, what their abundance as a function of halo mass is. We here extend our previous study of UDGs in galaxy clusters to galaxy groups. We measure the abundance of UDGs in 325 spectroscopically selected groups from the Galaxy And Mass Assembly (GAMA) survey. We make use of the overlapping imaging from the ESO Kilo-Degree Survey (KiDS), from which we can identify galaxies with mean surface brightnesses within their effective radii down to 25.5 mag arcsec-2 in the r band. We are able to measure a significant overdensity of UDGs (with sizes reff ≥ 1.5 kpc) in galaxy groups down to M200 = 1012 M⊙, a regime where approximately only one in ten groups contains a UDG that we can detect. We combine measurements of the abundance of UDGs in haloes that cover three orders of magnitude in halo mass, finding that their numbers scale quite steeply with halo mass: NUDG(R < R200) ∝ M2001.11±0.07. To better interpret this, we also measure the mass-richness relation for brighter galaxies down to Mr* + 2.5 in the same GAMA groups, and find a much shallower relation of NBright(R < R200) ∝ M2000.78±0.05. This shows that compared to bright galaxies, UDGs are relatively more abundant in massive clusters than in groups. We discuss the implications, but it is still unclear whether this difference is related to a higher destruction rate of UDGs in groups or if massive haloes have a positive effect on UDG formation.

  13. Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome

    PubMed Central

    Yang, Luhua; Danzberger, Jasmin; Schöler, Anne; Schröder, Peter; Schloter, Michael; Radl, Viviane

    2017-01-01

    Endophytes are microorganisms colonizing plant internal tissues. They are ubiquitously associated with plants and play an important role in plant growth and health. In this work, we grew five modern cultivars of barley in axenic systems using sterile sand mixture as well as in greenhouse with natural soil. We characterized the potentially active microbial communities associated with seeds and roots using rRNA based amplicon sequencing. The seeds of the different cultivars share a great part of their microbiome, as we observed a predominance of a few bacterial OTUs assigned to Phyllobacterium, Paenibacillus, and Trabusiella. Seed endophytes, particularly members of the Enterobacteriacea and Paenibacillaceae, were important members of root endophytes in axenic systems, where there were no external microbes. However, when plants were grown in soil, seed endophytes became less abundant in root associated microbiome. We observed a clear enrichment of Actinobacteriacea and Rhizobiaceae, indicating a strong influence of the soil bacterial communities on the composition of the root microbiome. Two OTUs assigned to Phyllobacteriaceae were found in all seeds and root samples growing in soil, indicating a relationship between seed-borne and root associated microbiome in barley. Even though the role of endophytic bacteria remains to be clarified, it is known that many members of the genera detected in our study produce phytohormones, shape seedling exudate profile and may play an important role in germination and establishment of the seedlings. PMID:28663753

  14. Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome.

    PubMed

    Yang, Luhua; Danzberger, Jasmin; Schöler, Anne; Schröder, Peter; Schloter, Michael; Radl, Viviane

    2017-01-01

    Endophytes are microorganisms colonizing plant internal tissues. They are ubiquitously associated with plants and play an important role in plant growth and health. In this work, we grew five modern cultivars of barley in axenic systems using sterile sand mixture as well as in greenhouse with natural soil. We characterized the potentially active microbial communities associated with seeds and roots using rRNA based amplicon sequencing. The seeds of the different cultivars share a great part of their microbiome, as we observed a predominance of a few bacterial OTUs assigned to Phyllobacterium , Paenibacillus , and Trabusiella . Seed endophytes, particularly members of the Enterobacteriacea and Paenibacillaceae, were important members of root endophytes in axenic systems, where there were no external microbes. However, when plants were grown in soil, seed endophytes became less abundant in root associated microbiome. We observed a clear enrichment of Actinobacteriacea and Rhizobiaceae, indicating a strong influence of the soil bacterial communities on the composition of the root microbiome. Two OTUs assigned to Phyllobacteriaceae were found in all seeds and root samples growing in soil, indicating a relationship between seed-borne and root associated microbiome in barley. Even though the role of endophytic bacteria remains to be clarified, it is known that many members of the genera detected in our study produce phytohormones, shape seedling exudate profile and may play an important role in germination and establishment of the seedlings.

  15. Investigation of Endophytic Bacterial Community in Supposedly Axenic Cultures of Pineapple and Orchids with Evidence on Abundant Intracellular Bacteria.

    PubMed

    Esposito-Polesi, Natalia Pimentel; de Abreu-Tarazi, Monita Fiori; de Almeida, Cristina Vieira; Tsai, Siu Mui; de Almeida, Marcílio

    2017-01-01

    Asepsis, defined as the absence of microbial contamination, is one of the most important requirements of plant micropropagation. In long-term micropropagated cultures, there may occasionally occur scattered microorganism growth in the culture medium. These microorganisms are common plant components and are known as latent endophytes. Thus, the aim of this research was to investigate the presence of endophytic bacteria in asymptomatic pineapple and orchid microplants, which were cultivated in three laboratories for 1 year. Isolation and characterization of bacterial isolates, PCR-DGGE from total genomic DNA of microplants and ultrastructural analysis of leaves were performed. In the culture-dependent technique, it was only possible to obtain bacterial isolates from pineapple microplants. In this case, the bacteria genera identified in the isolation technique were Bacillus, Acinetobacter, and Methylobacterium. The scanning electron microscopy and transmission electron microscopy (SEM and TEM) analyses revealed the presence of endophytic bacteria in intracellular spaces in the leaves of pineapple and orchid microplants, independent of the laboratory or cultivation protocol. Our results strongly indicate that there are endophytic bacterial communities inhabiting the microplants before initiation of the in vitro culture and that some of these endophytes persist in their latent form and can also grow in the culture medium even after long-term micropropagation, thus discarding the concept of "truly axenic plants."

  16. Abundance and Diversity of Bacterial Nitrifiers and Denitrifiers and Their Functional Genes in Tannery Wastewater Treatment Plants Revealed by High-Throughput Sequencing

    PubMed Central

    Wang, Zhu; Zhang, Xu-Xiang; Lu, Xin; Liu, Bo; Li, Yan; Long, Chao; Li, Aimin

    2014-01-01

    Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs) due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB) amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment. PMID:25420093

  17. Detailed abundance analysis of globular clusters in the Local Group. NGC 147, NGC 6822, and Messier 33

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.; Brodie, J. P.; Wasserman, A.; Strader, J.

    2018-06-01

    Context. Globular clusters (GCs) are emerging as powerful tracers of the chemical composition of extragalactic stellar populations. Aims: We present new abundance measurements for 11 GCs in the Local Group galaxies NGC 147, NGC 6822, and Messier 33. These are combined with previously published observations of four GCs in the Fornax and Wolf-Lundmark-Melotte (WLM) galaxies. Methods: The abundances were determined from analyses of integrated-light spectra obtained with the HIRES spectrograph on the Keck I telescope and with UVES on the Very Large Telescope (VLT). We used our analysis technique that was developed for this purpose and tested on Milky Way GCs. Results: We find that the clusters with [Fe/H] < -1.5 are all α-enhanced at about the same level as Milky Way GCs. Their Na abundances are also generally enhanced relative to Milky Way halo stars, suggesting that these extragalactic GCs resemble their Milky Way counterparts in containing large numbers of Na-rich stars. For [Fe/H] > -1.5, the GCs in M33 are also α-enhanced, while the GCs that belong to dwarfs (NGC 6822 SC7 and Fornax 4) have closer to solar-scaled α-element abundances. The abundance patterns in SC7 are remarkably similar to those in the Galactic GC Ruprecht 106, including significantly subsolar [Na/Fe] and [Ni/Fe] ratios. In NGC 147, the GCs with [Fe/H] < -2.0 account for about 6% of the total luminosity of stars in the same metallicity range, a lower fraction than those previously found in the Fornax and WLM galaxies, but substantially higher than in the Milky Way halo. Conclusions: At low metallicities, the abundance patterns suggest that GCs in the Milky Way, dwarf galaxies, and M33 experienced similar enrichment histories and/or processes. At higher metallicities, the lower levels of α-enhancement in the GCs found in dwarf galaxies resemble the abundance patterns observed in field stars in nearby dwarfs. Constraining the presence of multiple populations in these GCs is complicated by lack

  18. The Abundances of the Fe Group Elements in Three Early B Stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Peters, G. J.; Adelman, S. J.

    2005-12-01

    The photospheric abundances of V, Cr, and Fe have been determined for three sharp-lined early B stars in the Large Magellanic Cloud using FUV spectra obtained from the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Kurucz LTE model atmosphere/spectrum synthesis codes ATLAS9/SYNTHE. The program stars include NGC1818/D1, NGC2004/B15, and NGC2004/B30 (star designations are from Robertson 1974, A&AS, 15, 261). The calculations were carried through with model parameters close to those adopted by Korn et al. (2000, A&A, 353, 655). Values of Teff, log g, ξ T, and v sin I are 25000/4.0/0/30, 20000/3.1/6/25, and 23500/3.3/14/30 for NGC1818/D1, NGC2004/B15, and NGC2004/B30, respectively. The abundances quoted below are in sequence for the latter stars. The vanadium abundances, [V/H], determined from V III λ λ 1150,1152 (UV 2), are -0.6, -0.9, and -0.9 dex. Cr was determined from Cr III λ λ 1118,1136. Values of -0.5, -0.8, and -0.7 dex were found. Uncertainties in the V and Cr abundances are ˜0.3 dex. The Fe abundance is primarily from 7 lines of Fe III (UV 1) in the region λ λ 1122-32. Values are -0.8±0.3, ˜-1.1, and -0.4±0.3. Since there is no evidence for N enhancement in the program stars ([N/H] ˜ -0.9, -1.0, and -0.6 from the N III doublet at 1183,1184 Å) the photospheric abundances have probably not been altered by mixing of processed material from the star's interior and the derived abundances represent pristine values for the two young clusters in the LMC. It should be noted that the N and Fe abundances derived for NGC1818/D1 are about 0.5 dex lower than those determined by Korn et al. from much weaker optical lines. We will discuss possible reasons for the discrepancy. The generally low abundances for the Fe group elements in these young cluster B stars imply that supernova activity has been minimal in the regions of the LMC in which the stars were formed. GJP appreciates support from NASA grant NAG5-13212.

  19. Guanidino Groups Greatly Enhance the Action of Antimicrobial Peptidomimetics Against Bacterial Cytoplasmic Membranes

    DTIC Science & Technology

    2014-05-28

    SECURITY CLASSIFICATION OF: Antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the...effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial ?- peptide ...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Antimicrobial peptidomimetics; Peptide –peptoid chimeras; Guanidinium cation; Bacterial

  20. Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil

    PubMed Central

    Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Guerrero, Leandro; Seely, Mary; Cowan, Don A.

    2017-01-01

    Microbes in hot desert soil partake in core ecosystem processes e.g., biogeochemical cycling of carbon. Nevertheless, there is still a fundamental lack of insights regarding short-term (i.e., over a 24-hour [diel] cycle) microbial responses to highly fluctuating microenvironmental parameters like temperature and humidity. To address this, we employed T-RFLP fingerprinting and 454 pyrosequencing of 16S rRNA-derived cDNA to characterize potentially active bacteria in Namib Desert soil over multiple diel cycles. Strikingly, we found that significant shifts in active bacterial groups could occur over a single 24-hour period. For instance, members of the predominant Actinobacteria phyla exhibited a significant reduction in relative activity from morning to night, whereas many Proteobacterial groups displayed an opposite trend. Contrary to our leading hypothesis, environmental parameters could only account for 10.5% of the recorded total variation. Potential biotic associations shown through co-occurrence networks indicated that non-random inter- and intra-phyla associations were ‘time-of-day-dependent’ which may constitute a key feature of this system. Notably, many cyanobacterial groups were positioned outside and/or between highly interconnected bacterial associations (modules); possibly acting as inter-module ‘hubs’ orchestrating interactions between important functional consortia. Overall, these results provide empirical evidence that bacterial communities in hot desert soils exhibit complex and diel-dependent inter-community associations. PMID:28071697

  1. Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil

    NASA Astrophysics Data System (ADS)

    Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Guerrero, Leandro; Seely, Mary; Cowan, Don A.

    2017-01-01

    Microbes in hot desert soil partake in core ecosystem processes e.g., biogeochemical cycling of carbon. Nevertheless, there is still a fundamental lack of insights regarding short-term (i.e., over a 24-hour [diel] cycle) microbial responses to highly fluctuating microenvironmental parameters like temperature and humidity. To address this, we employed T-RFLP fingerprinting and 454 pyrosequencing of 16S rRNA-derived cDNA to characterize potentially active bacteria in Namib Desert soil over multiple diel cycles. Strikingly, we found that significant shifts in active bacterial groups could occur over a single 24-hour period. For instance, members of the predominant Actinobacteria phyla exhibited a significant reduction in relative activity from morning to night, whereas many Proteobacterial groups displayed an opposite trend. Contrary to our leading hypothesis, environmental parameters could only account for 10.5% of the recorded total variation. Potential biotic associations shown through co-occurrence networks indicated that non-random inter- and intra-phyla associations were ‘time-of-day-dependent’ which may constitute a key feature of this system. Notably, many cyanobacterial groups were positioned outside and/or between highly interconnected bacterial associations (modules); possibly acting as inter-module ‘hubs’ orchestrating interactions between important functional consortia. Overall, these results provide empirical evidence that bacterial communities in hot desert soils exhibit complex and diel-dependent inter-community associations.

  2. Platinum group element abundances in the upper continental crust revisited - New constraints from analyses of Chinese loess

    NASA Astrophysics Data System (ADS)

    Park, Jung-Woo; Hu, Zhaochu; Gao, Shan; Campbell, Ian H.; Gong, Hujun

    2012-09-01

    Platinum group element (PGE) abundances in the upper continental crust (UCC) are poorly constrained with published values varying by up to an order of magnitude. We evaluated the validity of using loess to estimate PGE abundances in the UCC by measuring these elements in seven Chinese loess samples using a precise method that combines NiS fire assay with isotope dilution. Major and trace elements of the Chinese loess show a typical upper crustal composition and PGE abundances are consistent with literature data on Chinese loess, except for Ru, which is a factor of 10 lowe than published values. We suggest that the high Ru data and RuN/IrN values of Chinese loess reported by Peucker-Ehrenbrink and Jahn (2001) (Geochem. Geophys. Geosys.2, 2001GC000172) are an analytical artifact, rather than a true geochemical characteristic of loess because likely sources of loess are not significantly enriched in Ru and transport and deposition processes cannot preferentially enrich Ru in loess. The effect of eolian fractionation on PGE abundances in loess appears to be limited because Chinese loess from different locations shows similar PGE patterns and concentrations. This conclusion is supported by strong positive correlations between the PGE (except for Pt) and other compatible elements such as Fe2O3, Ni, Cr, Co. Using a compilation of PGE data for loess from China, Argentina and Europe, including our data but excluding one sample with an anomalously high Pt content, we propose average PGE abundances for global loess of Ir = 0.022 ppb (ng/g), Ru = 0.030 ppb, Rh = 0.018 ppb, Pt = 0.599 ppb, and Pd = 0.526 ppb, and suggest that these are the best current estimates for the PGE abundances of the UCC.

  3. Evaluation of bacterial pathogen diversity, abundance and health risks in urban recreational water by amplicon next-generation sequencing and quantitative PCR.

    PubMed

    Cui, Qijia; Fang, Tingting; Huang, Yong; Dong, Peiyan; Wang, Hui

    2017-07-01

    The microbial quality of urban recreational water is of great concern to public health. The monitoring of indicator organisms and several pathogens alone is not sufficient to accurately and comprehensively identify microbial risks. To assess the levels of bacterial pathogens and health risks in urban recreational water, we analyzed pathogen diversity and quantified four pathogens in 46 water samples collected from waterbodies in Beijing Olympic Forest Park in one year. The pathogen diversity revealed by 16S rRNA gene targeted next-generation sequencing (NGS) showed that 16 of 40 genera and 13 of 76 reference species were present. The most abundant species were Acinetobacter johnsonii, Mycobacterium avium and Aeromonas spp. Quantitative polymerase chain reaction (qPCR) of Escherichia coli (uidA), Aeromonas (aerA), M. avium (16S rRNA), Pseudomonas aeruginosa (oaa) and Salmonella (invA) showed that the aerA genes were the most abundant, occurring in all samples with concentrations of 10 4-6 genome copies/100mL, followed by oaa, invA and M. avium. In total, 34.8% of the samples harbored all genes, indicating the prevalence of these pathogens in this recreational waterbody. Based on the qPCR results, a quantitative microbial risk assessment (QMRA) showed that the annual infection risks of Salmonella, M. avium and P. aeruginosa in five activities were mostly greater than the U.S. EPA risk limit for recreational contacts, and children playing with water may be exposed to the greatest infection risk. Our findings provide a comprehensive understanding of bacterial pathogen diversity and pathogen abundance in urban recreational water by applying both NGS and qPCR. Copyright © 2016. Published by Elsevier B.V.

  4. Bacterial and archaeal symbionts in the South China Sea sponge Phakellia fusca: community structure, relative abundance, and ammonia-oxidizing populations.

    PubMed

    Han, Minqi; Liu, Fang; Zhang, Fengli; Li, Zhiyong; Lin, Houwen

    2012-12-01

    Many biologically active natural products have been isolated from Phakellia fusca, an indigenous sponge in the South China Sea; however, the microbial symbionts of Phakellia fusca remain unknown. The present investigations on sponge microbial community are mainly based on qualitative analysis, while quantitative analysis, e.g., relative abundance, is rarely carried out, and little is known about the roles of microbial symbionts. In this study, the community structure and relative abundance of bacteria, actinobacteria, and archaea associated with Phakellia fusca were revealed by 16S rRNA gene library-based sequencing and quantitative real time PCR (qRT-PCR). The ammonia-oxidizing populations were investigated based on amoA gene and anammox-specific 16S rRNA gene libraries. As a result, it was found that bacterial symbionts of sponge Phakellia fusca consist of Proteobacteria including Gamma-, Alpha-, and Delta-proteobacteria, Cyanobacteria with Gamma-proteobacteria as the predominant components. In particular, the diversity of actinobacterial symbionts in Phakellia fusca is high, which is composed of Corynebacterineae, Acidimicrobidae, Frankineae, Micrococcineae, and Streptosporangineae. All the observed archaea in sponge Phakellia fusca belong to Crenarchaeota, and the detected ammonia-oxidizing populations are ammonia-oxidizing archaea, suggesting the nitrification function of sponge archaeal symbionts. According to qRT-PCR analysis, bacterial symbionts dominated the microbial community, while archaea represented the second predominant symbionts, followed by actinobacteria. The revealed diverse prokaryotic symbionts of Phakellia fusca are valuable for the understanding and in-depth utilization of Phakellia fusca microbial symbionts. This study extends our knowledge of the community, especially the relative abundance of microbial symbionts in sponges.

  5. Nucleosynthesis of intermediate mass stars: inferences from the observed abundances in photoionized nebulae of the Local Group

    NASA Astrophysics Data System (ADS)

    Maciel, W. J.; Costa, R. D. D.; Cavichia, O.

    2018-01-01

    Photoionized nebulae, comprising HII regions and planetary nebulae, are excellent laboratories to investigate the nucleosynthesis and chemical evolution of several elements in the Galaxy and other galaxies of the Local Group. Our purpose in this investigation is threefold: (i) to compare the abundances of HII regions and planetary nebulae in each system in order to investigate the differences derived from the age and origin of these objects, (ii) to compare the chemical evolution in different systems, such as the Milky Way, the Magellanic Clouds, and other galaxies of the Local Group, and (iii) to investigate to what extent the nucleosynthesis contributions from the progenitor stars affect the observed abundances in planetary nebulae, especially for oxygen and neon, which places constraints on the amount of these elements that can be produced by intermediate mass stars.

  6. Abundance and Relative Distribution of Frankia Host Infection Groups Under Actinorhizal Alnus glutinosa and Non-actinorhizal Betula nigra Trees.

    PubMed

    Samant, Suvidha; Huo, Tian; Dawson, Jeffrey O; Hahn, Dittmar

    2016-02-01

    Quantitative polymerase chain reaction (qPCR) was used to assess the abundance and relative distribution of host infection groups of the root-nodule forming, nitrogen-fixing actinomycete Frankia in four soils with similar physicochemical characteristics, two of which were vegetated with a host plant, Alnus glutinosa, and two with a non-host plant, Betula nigra. Analyses of DAPI-stained cells at three locations, i.e., at a distance of less than 1 m (near stem), 2.5 m (middle crown), and 3-5 m (crown edge) from the stems of both tree species revealed no statistically significant differences in abundance. Frankiae generally accounted for 0.01 to 0.04 % of these cells, with values between 4 and 36 × 10(5) cells (g soil)(-1). In three out of four soils, abundance of frankiae was significantly higher at locations "near stem" and/or "middle crown" compared to "crown edge," while numbers at these locations were not different in the fourth soil. Frankiae of the Alnus host infection group were dominant in all samples accounting for about 75 % and more of the cells, with no obvious differences with distance to stem. In three of the soils, all of these cells were represented by strain Ag45/Mut15. In the fourth soil that was vegetated with older A. glutinosa trees, about half of these cells belonged to a different subgroup represented by strain ArI3. In all soils, the remaining cells belonged to the Elaeagnus host infection group represented by strain EAN1pec. Casuarina-infective frankiae were not found. Abundance and relative distribution of Frankia host infection groups were similar in soils under the host plant A. glutinosa and the non-host plant B. nigra. Results did thus not reveal any specific effects of plant species on soil Frankia populations.

  7. Group-theoretic models of the inversion process in bacterial genomes.

    PubMed

    Egri-Nagy, Attila; Gebhardt, Volker; Tanaka, Mark M; Francis, Andrew R

    2014-07-01

    The variation in genome arrangements among bacterial taxa is largely due to the process of inversion. Recent studies indicate that not all inversions are equally probable, suggesting, for instance, that shorter inversions are more frequent than longer, and those that move the terminus of replication are less probable than those that do not. Current methods for establishing the inversion distance between two bacterial genomes are unable to incorporate such information. In this paper we suggest a group-theoretic framework that in principle can take these constraints into account. In particular, we show that by lifting the problem from circular permutations to the affine symmetric group, the inversion distance can be found in polynomial time for a model in which inversions are restricted to acting on two regions. This requires the proof of new results in group theory, and suggests a vein of new combinatorial problems concerning permutation groups on which group theorists will be needed to collaborate with biologists. We apply the new method to inferring distances and phylogenies for published Yersinia pestis data.

  8. Realized niches explain spatial gradients in seasonal abundance of phytoplankton groups in the South China Sea

    NASA Astrophysics Data System (ADS)

    Xiao, Wupeng; Wang, Lei; Laws, Edward; Xie, Yuyuan; Chen, Jixin; Liu, Xin; Chen, Bingzhang; Huang, Bangqin

    2018-03-01

    A basic albeit elusive goal of ocean science is to predict the structure of biological communities from the multitude of environmental conditions they experience. Estimates of the realized niche-based traits (realized traits) of phytoplankton species or functional groups in temperate seas have shown that response traits can help reveal the mechanisms responsible for structuring phytoplankton communities, but such approaches have not been tested in tropical and subtropical marginal seas. Here, we used decadal-scale studies of pigment-based phytoplankton groups and environmental conditions in the South China Sea to test whether realized traits could explain the biogeographic patterns of phytoplankton variability. We estimated the mean and breadth of the phytoplankton realized niches based on responses of the group-specific phytoplankton composition to key environmental factors, and we showed that variations of major phytoplankton groups in this system can be explained by different adaptive trade-offs to constraints imposed by temperature, irradiance, and nutrient concentrations. Differences in the patterns of trade-offs clearly separated the dominant groups from one another and generated four sets of realized traits that mirrored the observed biogeographic distribution patterns. The phytoplankton realized niches and their associated traits that we characterized in the present study could help to predict responses of phytoplankton to changes in environmental conditions in the South China Sea and could be incorporated into global biogeochemical models to anticipate shifts in community structure under future climate scenarios.

  9. The abundance of functional genes, cbbL, nifH, amoA and apsA, and bacterial community structure of intertidal soil from Arabian Sea.

    PubMed

    Keshri, Jitendra; Yousuf, Basit; Mishra, Avinash; Jha, Bhavanath

    2015-06-01

    The Gulf of Cambay is a trumpet-shaped inlet of the Arabian Sea, located along the west coast of India and confronts a high tidal range with strong water currents. The region belongs to a semi-arid zone and saline alkaline intertidal soils are considered biologically extreme. The selected four soil types (S1-S4) were affected by salinity, alkalinity and sodicity. Soil salinity ranged from 20 to 126 dS/m, soil pH 8.6-10.0 with high sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP). Abundance of the key functional genes like cbbL, nifH, amoA and apsA involved in biogeochemical cycling were targeted using qPCR, which varied from (2.36 ± 0.03) × 10(4) to (2.87 ± 0.26) × 10(8), (1.18 ± 0.28) × 10(6) to (1.01 ± 0.26) × 10(9), (1.41 ± 0.21) × 10(6) to (1.29 ± 0.05) × 10(8) and (8.47 ± 0.23) × 10(4) to (1.73 ± 0.01) × 10(6) per gram dry weight, respectively. The microbial community structure revealed that soils S1 and S3 were dominated by phylum Firmicutes whereas S4 and S2 showed an abundance of Proteobacterial clones. These soils also represented Bacteroidetes, Chloroflexi, Actinobacteria, Planctomycetes and Acidobacteria clones. Molecular phylogeny showed a significant variation in the bacterial community distribution among the intertidal soil types. A high number of novel taxonomic units were observed which makes the intertidal zone a unique reservoir of unidentified bacterial taxa that may be explored further. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Molecular survey of neglected bacterial pathogens reveals an abundant diversity of species and genotypes in ticks collected from animal hosts across Romania.

    PubMed

    Andersson, Martin O; Tolf, Conny; Tamba, Paula; Stefanache, Mircea; Radbea, Gabriel; Frangoulidis, Dimitrios; Tomaso, Herbert; Waldenström, Jonas; Dobler, Gerhard; Chitimia-Dobler, Lidia

    2018-03-20

    Ticks are transmitting a wide range of bacterial pathogens that cause substantial morbidity and mortality in domestic animals. The full pathogen burden transmitted by tick vectors is incompletely studied in many geographical areas, and extensive studies are required to fully understand the diversity and distribution of pathogens transmitted by ticks. We sampled 824 ticks of 11 species collected in 19 counties in Romania. Ticks were collected mainly from dogs, but also from other domestic and wild animals, and were subjected to molecular screening for pathogens. Rickettsia spp. was the most commonly detected pathogen, occurring in 10.6% (87/824) of ticks. Several species were detected: Rickettsia helvetica, R. raoultii, R. massiliae, R. monacensis, R. slovaca and R. aeschlimannii. A single occurrence of the zoonotic bacterium Bartonella vinsonii berkhoffii was detected in a tick collected from a dog. Anaplasma phagocytophilum occurred in four samples, and sequences similar to Anaplasma marginale/ovis were abundant in ticks from ruminants. In addition, molecular screening showed that ticks from dogs were carrying an Ehrlichia species identical to the HF strain as well as the enigmatic zoonotic pathogen "Candidatus Neoehrlichia mikurensis". An organism similar to E. chaffeensis or E. muris was detected in an Ixodes ricinus collected from a fox. We describe an abundant diversity of bacterial tick-borne pathogens in ticks collected from animal hosts in Romania, both on the level of species and genotypes/strains within these species. Several findings were novel for Romania, including Bartonella vinsonii subsp. berkhoffii that causes bacteremia and endocarditis in dogs. "Candidatus Neoehrlichia mikurensis" was detected in a tick collected from a dog. Previously, a single case of infection in a dog was diagnosed in Germany. The results warrant further studies on the consequences of tick-borne pathogens in domestic animals in Romania.

  11. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease.

    PubMed

    Lowe-Power, Tiffany M; Hendrich, Connor G; von Roepenack-Lahaye, Edda; Li, Bin; Wu, Dousheng; Mitra, Raka; Dalsing, Beth L; Ricca, Patrizia; Naidoo, Jacinth; Cook, David; Jancewicz, Amy; Masson, Patrick; Thomma, Bart; Lahaye, Thomas; Michael, Anthony J; Allen, Caitilyn

    2018-04-01

    Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants. Untargeted GC/MS metabolomics identified 22 metabolites enriched in R. solanacearum-infected sap. Eight of these could serve as sole carbon or nitrogen sources for R. solanacearum. Putrescine, a polyamine that is not a sole carbon or nitrogen source for R. solanacearum, was enriched 76-fold to 37 µM in R. solanacearum-infected sap. R. solanacearum synthesized putrescine via a SpeC ornithine decarboxylase. A ΔspeC mutant required ≥ 15 µM exogenous putrescine to grow and could not grow alone in xylem even when plants were treated with putrescine. However, co-inoculation with wildtype rescued ΔspeC growth, indicating R. solanacearum produced and exported putrescine to xylem sap. Intriguingly, treating plants with putrescine before inoculation accelerated wilt symptom development and R. solanacearum growth and systemic spread. Xylem putrescine concentration was unchanged in putrescine-treated plants, so the exogenous putrescine likely accelerated disease indirectly by affecting host physiology. These results indicate that putrescine is a pathogen-produced virulence metabolite. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Radial metal abundance profiles in the intra-cluster medium of cool-core galaxy clusters, groups, and ellipticals

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Kaastra, J. S.; Zhang, Y.-Y.; Akamatsu, H.; Gu, L.; Kosec, P.; Mao, J.; Pinto, C.; Reiprich, T. H.; Sanders, J. S.; Simionescu, A.; Werner, N.

    2017-07-01

    The hot intra-cluster medium (ICM) permeating galaxy clusters and groups is not pristine, as it has been continuously enriched by metals synthesised in Type Ia (SNIa) and core-collapse (SNcc) supernovae since the major epoch of star formation (z ≃ 2-3). The cluster/group enrichment history and mechanisms responsible for releasing and mixing the metals can be probed via the radial distribution of SNIa and SNcc products within the ICM. In this paper, we use deep XMM-Newton/EPIC observations from a sample of 44 nearby cool-core galaxy clusters, groups, and ellipticals (CHEERS) to constrain the average radial O, Mg, Si, S, Ar, Ca, Fe, and Ni abundance profiles. The radial distributions of all these elements, averaged over a large sample for the first time, represent the best constrained profiles available currently. Specific attention is devoted to a proper modelling of the EPIC spectral components, and to other systematic uncertainties that may affect our results. We find an overall decrease of the Fe abundance with radius out to 0.9 r500 and 0.6 r500 for clusters and groups, respectively, in good agreement with predictions from the most recent hydrodynamical simulations. The average radial profiles of all the other elements (X) are also centrally peaked and, when rescaled to their average central X/Fe ratios, follow well the Fe profile out to at least 0.5 r500. As predicted by recent simulations, we find that the relative contribution of SNIa (SNcc) to the total ICM enrichment is consistent with being uniform at all radii, both for clusters and groups using two sets of SNIa and SNcc yield models that reproduce the X/Fe abundance pattern in the core well. In addition to implying that the central metal peak is balanced between SNIa and SNcc, our results suggest that the enriching SNIa and SNcc products must share the same origin and that the delay between the bulk of the SNIa and SNcc explosions must be shorter than the timescale necessary to diffuse out the metals

  13. Relative Abundance and Diversity of Bacterial Methanotrophs at the Oxic–Anoxic Interface of the Congo Deep-Sea Fan

    PubMed Central

    Bessette, Sandrine; Moalic, Yann; Gautey, Sébastien; Lesongeur, Françoise; Godfroy, Anne; Toffin, Laurent

    2017-01-01

    Sitting at ∼5,000 m water depth on the Congo-Angola margin and ∼760 km offshore of the West African coast, the recent lobe complex of the Congo deep-sea fan receives large amounts of fluvial sediments (3–5% organic carbon). This organic-rich sedimentation area harbors habitats with chemosynthetic communities similar to those of cold seeps. In this study, we investigated relative abundance, diversity and distribution of aerobic methane-oxidizing bacteria (MOB) communities at the oxic–anoxic interface of sedimentary habitats by using fluorescence in situ hybridization and comparative sequence analysis of particulate mono-oxygenase (pmoA) genes. Our findings revealed that sedimentary habitats of the recent lobe complex hosted type I and type II MOB cells and comparisons of pmoA community compositions showed variations among the different organic-rich habitats. Furthermore, the pmoA lineages were taxonomically more diverse compared to methane seep environments and were related to those found at cold seeps. Surprisingly, MOB phylogenetic lineages typical of terrestrial environments were observed at such water depth. In contrast, MOB cells or pmoA sequences were not detected at the previous lobe complex that is disconnected from the Congo River inputs. PMID:28487684

  14. Relative Abundance and Diversity of Bacterial Methanotrophs at the Oxic-Anoxic Interface of the Congo Deep-Sea Fan.

    PubMed

    Bessette, Sandrine; Moalic, Yann; Gautey, Sébastien; Lesongeur, Françoise; Godfroy, Anne; Toffin, Laurent

    2017-01-01

    Sitting at ∼5,000 m water depth on the Congo-Angola margin and ∼760 km offshore of the West African coast, the recent lobe complex of the Congo deep-sea fan receives large amounts of fluvial sediments (3-5% organic carbon). This organic-rich sedimentation area harbors habitats with chemosynthetic communities similar to those of cold seeps. In this study, we investigated relative abundance, diversity and distribution of aerobic methane-oxidizing bacteria (MOB) communities at the oxic-anoxic interface of sedimentary habitats by using fluorescence in situ hybridization and comparative sequence analysis of particulate mono-oxygenase ( pmoA ) genes. Our findings revealed that sedimentary habitats of the recent lobe complex hosted type I and type II MOB cells and comparisons of pmoA community compositions showed variations among the different organic-rich habitats. Furthermore, the pmoA lineages were taxonomically more diverse compared to methane seep environments and were related to those found at cold seeps. Surprisingly, MOB phylogenetic lineages typical of terrestrial environments were observed at such water depth. In contrast, MOB cells or pmoA sequences were not detected at the previous lobe complex that is disconnected from the Congo River inputs.

  15. The linkage between nutrient supply, intracellular enzyme abundances and bacterial growth: New evidences from the central carbon metabolism of Corynebacterium glutamicum.

    PubMed

    Noack, Stephan; Voges, Raphael; Gätgens, Jochem; Wiechert, Wolfgang

    2017-09-20

    Corynebacterium glutamicum serves as important production host for small molecular compounds that are derived from precursor molecules of the central carbon metabolism. It is therefore a well-studied model organism of industrial biotechnology. However, a deeper understanding of the regulatory principles underlying the synthesis of central metabolic enzymes under different environmental conditions as well as its impact on cell growth is still missing. We studied enzyme abundances in C. glutamicum in response to growth on: (i) one limiting carbon source by sampling chemostat and fed-batch cultivations and (ii) changing carbon sources provided in excess by sampling batch cultivations. The targeted quantification of 20 central metabolic enzymes by isotope dilution mass spectrometry revealed that cells maintain stable enzyme concentrations when grown on d-glucose as single carbon and energy source and, most importantly, independent of its availability. By contrast, switching from d-glucose to d-fructose, d-mannose, d-arabitol, acetate, l-lactate or l-glutamate results in highly specific enzyme regulation patterns that can partly be explained by the activity of known transcriptional regulators. Based on these experimental results we propose a simple framework for modeling cell population growth as a nested function of nutrient supply and intracellular enzyme abundances. In summary, our study extends the basis for the formulation of predictive mechanistic models of bacterial growth, applicable in industrial bioprocess development. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. pH feedback and phenotypic diversity within bacterial functional groups of the human gut.

    PubMed

    Kettle, Helen; Donnelly, Ruairi; Flint, Harry J; Marion, Glenn

    2014-02-07

    Microbial diversity in the human colon is very high with apparently large functional redundancy such that within each bacterial functional group there are many coexisting strains. Modelling this mathematically is problematic since strains within a functional group are often competing for the same limited number of resources and therefore competitive exclusion theory predicts a loss of diversity over time. Here we investigate, through computer simulation, a fluctuation dependent mechanism for the promotion of diversity. A variable pH environment caused by acidic by-products of bacterial growth on a fluctuating substrate coupled with small differences in acid tolerance between strains promotes diversity under both equilibrium and far-from-equilibrium conditions. Under equilibrium conditions pH fluctuations and relative nonlinearity in pH limitation among strains combine to prevent complete competitive exclusion. Under far-from-equilibrium conditions, loss of diversity through extinctions is made more difficult because pH cycling leads to fluctuations in the competitive ranking of strains, thereby helping to equalise fitness. We assume a trade-off between acid tolerance and maximum growth rate so that our microbial system consists of strains ranging from specialists to generalists. By altering the magnitude of the effect of the system on its pH environment (e.g. the buffering capacity of the colon) and the pattern of incoming resource we explore the conditions that promote diversity. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  17. Localization of a bacterial group II intron-encoded protein in human cells.

    PubMed

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; García Pérez, José Luis; Toro, Nicolás

    2015-08-05

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells.

  18. Localization of a bacterial group II intron-encoded protein in human cells

    PubMed Central

    Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; Pérez, José Luis García; Toro, Nicolás

    2015-01-01

    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells. PMID:26244523

  19. Differentiation of some species of Neisseriaceae and other bacterial groups by DNA-DNA hybridization.

    PubMed

    Tønjum, T; Bukholm, G; Bøvre, K

    1989-05-01

    DNA-DNA hybridization using total genomic DNA probes may represent a way of differentiating between miscellaneous bacterial species. This was studied with type and reference strains of 20 species in Moraxella, Kingella, and other selected Gram-negative groups. Both radioactive and biotin labelling were employed. Most of the species examined were easily distinguished, such as Moraxella (Branhamella) catarrhalis, M.(B.) ovis, M. atlantae, M. phenylpyruvica, M. osloensis, Neisseria elongata, N. meningitidis, Kingella kingae, K. indologenes, K. dentrificans, Oligella urethralis, Eikenella corrodens, Cardiobacterium hominis, Haemophilus aphrophilus, Actinobacillus actinomycetemcomitans, Gardnerella vaginalis, and DF-2. This reflected the extent of the genetic distances between them as a basis for identification by hybridization. There was some clustering in the Moraxella group. Especially the closely related Moraxella nonliquefaciens, M. lacunata and M. bovis showed strong hybridization affinities. This leads to potential problems in distinguishing these three species from each other by DNA-DNA hybridization with total genomic probes alone.

  20. Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A Streptococcus.

    PubMed

    Beres, Stephen B; Richter, Ellen W; Nagiec, Michal J; Sumby, Paul; Porcella, Stephen F; DeLeo, Frank R; Musser, James M

    2006-05-02

    In recent years we have studied the relationship between strain genotypes and patient phenotypes in group A Streptococcus (GAS), a model human bacterial pathogen that causes extensive morbidity and mortality worldwide. We have concentrated our efforts on serotype M3 organisms because these strains are common causes of pharyngeal and invasive infections, produce unusually severe invasive infections, and can exhibit epidemic behavior. Our studies have been hindered by the lack of genome-scale phylogenies of multiple GAS strains and whole-genome sequences of multiple serotype M3 strains recovered from individuals with defined clinical phenotypes. To remove some of these impediments, we sequenced to closure the genome of four additional GAS strains and conducted comparative genomic resequencing of 12 contemporary serotype M3 strains representing distinct genotypes and phenotypes. Serotype M3 strains are a single phylogenetic lineage. Strains from asymptomatic throat carriers were significantly less virulent for mice than sterile-site isolates and evolved to a less virulent phenotype by multiple genetic pathways. Strain persistence or extinction between epidemics was strongly associated with presence or absence, respectively, of the prophage encoding streptococcal pyrogenic exotoxin A. A serotype M3 clone significantly underrepresented among necrotizing fasciitis cases has a unique frameshift mutation that truncates MtsR, a transcriptional regulator controlling expression of genes encoding iron-acquisition proteins. Expression microarray analysis of this clone confirmed significant alteration in expression of genes encoding iron metabolism proteins. Our analysis provided unprecedented detail about the molecular anatomy of bacterial strain genotype-patient phenotype relationships.

  1. Distribution and abundance of archaeal and bacterial ammonia oxidizers in the sediments of the Dongjiang River, a drinking water supply for Hong Kong.

    PubMed

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

    2013-01-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrification. However, limited information about the characteristics of AOA and AOB in the river ecosystem is available. The distribution and abundance of AOA and AOB in the sediments of the Dongjiang River, a drinking water source for Hong Kong, were investigated by clone library analysis and quantitative real-time PCR. Phylogenetic analysis showed that Group 1.1b- and Group 1.1b-associated sequences of AOA predominated in sediments with comparatively high carbon and nitrogen contents (e.g. total carbon (TC) >13 g kg(-1) sediment, NH4(+)-N >144 mg kg(-1) sediment), while Group 1.1a- and Group 1.1a-associated sequences were dominant in sediments with opposite conditions (e.g. TC <4 g kg(-1) sediment, NH4(+)-N <93 mg kg(-1) sediment). Although Nitrosomonas- and Nitrosospira-related sequences of AOB were detected in the sediments, nearly 70% of the sequences fell into the Nitrosomonas-like B cluster, suggesting similar sediment AOB communities along the river. Higher abundance of AOB than AOA was observed in almost all of the sediments in the Dongjiang River, while significant correlations were only detected between the distribution of AOA and the sediment pH and TC, which suggested that AOA responded more sensitively than AOB to variations of environmental factors. These results extend our knowledge about the environmental responses of ammonia oxidizers in the river ecosystem.

  2. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling.

    PubMed

    Bode, Antonio; Estévez, M Graciela; Varela, Manuel; Vilar, José A

    2015-09-01

    Phytoplankton is a sentinel of marine ecosystem change. Composed by many species with different life-history strategies, it rapidly responds to environment changes. An analysis of the abundance of 54 phytoplankton species in Galicia (NW Spain) between 1989 and 2008 to determine the main components of temporal variability in relation to climate and upwelling showed that most of this variability was stochastic, as seasonality and long term trends contributed to relatively small fractions of the series. In general, trends appeared as non linear, and species clustered in 4 groups according to the trend pattern but there was no defined pattern for diatoms, dinoflagellates or other groups. While, in general, total abundance increased, no clear trend was found for 23 species, 14 species decreased, 4 species increased during the early 1990s, and only 13 species showed a general increase through the series. In contrast, series of local environmental conditions (temperature, stratification, nutrients) and climate-related variables (atmospheric pressure indices, upwelling winds) showed a high fraction of their variability in deterministic seasonality and trends. As a result, each species responded independently to environmental and climate variability, measured by generalized additive models. Most species showed a positive relationship with nutrient concentrations but only a few showed a direct relationship with stratification and upwelling. Climate variables had only measurable effects on some species but no common response emerged. Because its adaptation to frequent disturbances, phytoplankton communities in upwelling ecosystems appear less sensitive to changes in regional climate than other communities characterized by short and well defined productive periods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes

    DOE PAGES

    Andreev, Konstantin; Bianchi, Christopher; Laursen, Jonas S.; ...

    2014-05-28

    In this study, antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide–β-peptoid chimeras. Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria, while lipopolysaccharide Kdo2-lipid A monolayers were mimicking the outer membrane of Gram-negative species. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity tomore » study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.« less

  4. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes

    SciTech Connect

    Andreev, Konstantin; Bianchi, Christopher; Laursen, Jonas S.

    In this study, antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide–β-peptoid chimeras. Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria, while lipopolysaccharide Kdo2-lipid A monolayers were mimicking the outer membrane of Gram-negative species. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity tomore » study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.« less

  5. Guanidino Groups Greatly Enhance the Action of Antimicrobial Peptidomimetics Against Bacterial Cytoplasmic Membranes

    PubMed Central

    Laursen, Jonas S.; Citterio, Linda; Hein-Kristensen, Line; Gram, Lone; Kuzmenko, Ivan; Olsen, Christian A.; Gidalevitz, David

    2014-01-01

    A promising class of potential new antibiotics are the antimicrobial peptides or their synthetic mimics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide–β-peptoid chimeras. Two separate Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) and lipopolysaccharide Kdo2-lipid A were applied to model the outer membranes of Gram-positive and Gram-negative bacteria, respectively. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity to study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies. PMID:24878450

  6. Potential for local and systemic bacterial infection in some occupational groups in Benin City, Nigeria.

    PubMed

    Hugbo, P G; Okonkwo, J O

    1992-06-01

    Many Third World countries may not have adequate facilities for rapid sensitivity testing of antibiotics as an aid to diagnosis and chemotherapy. It may therefore be valuable to relate bacterial carriage on the skin to type of work a person does. Given areas of skin in workers from 10 occupational groups were sampled. The bacteria obtained were analyzed after growth on appropriate media. The sensitivity profiles of potential pathogens isolated from these groups, as well as of those (Staphylococcus aureus only) isolated from patients with certified infections, were carried out and the results were analyzed. Staphylococcus aureus constituted the most widely and frequently isolated potential pathogen. Proteus mirabilis, Escherichia coli, and Klebsiella species were also frequent colonizers of skin. There was a statistical relationship between work type and overall prevalence of bacteria on skin (p less than 0.01). Most isolates of the work groups were highly sensitive to gentamicin and cefuroxine but not to penicillin G, ampicillin, and trimethoprim plus sulfamethoxazole; isolates from infected persons were generally more resistant than were the community-acquired ones. A relationship may exist between the types of bacteria carried on the skin and the type of work in which a person is engaged.

  7. Bacterial Growth, Necromass Turnover, And Endospore Abundance In The Deep Subseafloor Sediments Of The Greenland Shelf Using D:L Amino Acid Model.

    NASA Astrophysics Data System (ADS)

    Mhatre, S. S.; Braun, S.; Jaussi, M.; Røy, H.; Jørgensen, B. B.; Lomstein, B. A.

    2015-12-01

    The subsurface realm is colonized by a large number of microorganisms- about 3 × 1029. Microbial cells in these very stable and oligotrophic settings catabolize at a much slower rate than model organisms in nutrient rich cultures. The aim of this work was to use recently developed D:L-amino acid racemization model for studying the turnover times of microbial biomass and microbial necromass in a ~12,000 years old Greenland shelf marine sediment samples. Sediments were analyzed for total hydrolysable amino acids (THAA), the bacterial endospore marker dipicolinic acid (DPA), and amino acid enantiomers of aspartic acid. The percentage amino acid carbon content (%TAAC) and the percentage amino acid nitrogen content (%TAAN) were used for determining the degradation state of the organic matter. Endospores quantified using DPA quantification method were found to be as abundant as vegetative cells. The microbial necromass turnover times were thousand years, and biomass turnover times were in the range of tens to hundred years. Studies with deeper sediment cores will further improve our understanding of the energetic limits of life in the deep biosphere.

  8. Association of viridans group streptococci from pregnant women with bacterial vaginosis and upper genital tract infection.

    PubMed Central

    Rabe, L K; Winterscheid, K K; Hillier, S L

    1988-01-01

    The prevalence and role of viridans group streptococci in the female genital tract have not been well described. In this study of 482 pregnant women, 147 (30%) were culture positive for viridans group streptococci. Of 392 women with predominant Lactobacillus morphotypes by Gram stain (normal), 110 (28%) were colonized with viridans group streptococci, compared with 37 (41%) of 90 women with bacterial vaginosis (BV) (P = 0.02). To determine whether any species were associated with BV, 177 consecutively isolated viridans group streptococci from the vagina were identified to the species level by using the Facklam scheme. The most frequently isolated species from the vagina was Streptococcus intermedius (13%), followed by Streptococcus acidominimus (6%), Streptococcus constellatus (5%), Streptococcus sanguis II (4%), Streptococcus mitis (2%), Streptococcus salivarius (2%), Streptococcus morbillorum (2%), Streptococcus sanguis I (1%), Streptococcus mutans (0.2%), and Streptococcus uberis (0.2%) with an average of 1.2 species per woman. The distribution of the species among women with BV compared with normal women was not significantly different, with the exception of two species which were associated with BV: S. acidominimus (18% versus 3%, P less than 0.001) and S. morbillorum (6% versus 0.7%, P = 0.005). Amniotic fluid and placenta cultures yielded 54 isolates: S. sanguis II (13 isolates), S. acidominimus (9 isolates), S. intermedius (10 isolates), S. constellatus (3 isolates), S. mitis (4 isolates), S. sanguis I (4 isolates), S. morbillorum (5 isolates), S. mutans (2 isolates), S. uberis (1 isolate), mannitol-positive S. intermedius (1 isolate), and 2 isolates which were not classified. The distribution of species isolated from the upper genital tract was not a reflection of the distribution in the lower genital tract. Dextran-producing species of viridans group streptococci may have a greater pathogenic potential in the placenta than the non

  9. Association of viridans group streptococci from pregnant women with bacterial vaginosis and upper genital tract infection.

    PubMed

    Rabe, L K; Winterscheid, K K; Hillier, S L

    1988-06-01

    The prevalence and role of viridans group streptococci in the female genital tract have not been well described. In this study of 482 pregnant women, 147 (30%) were culture positive for viridans group streptococci. Of 392 women with predominant Lactobacillus morphotypes by Gram stain (normal), 110 (28%) were colonized with viridans group streptococci, compared with 37 (41%) of 90 women with bacterial vaginosis (BV) (P = 0.02). To determine whether any species were associated with BV, 177 consecutively isolated viridans group streptococci from the vagina were identified to the species level by using the Facklam scheme. The most frequently isolated species from the vagina was Streptococcus intermedius (13%), followed by Streptococcus acidominimus (6%), Streptococcus constellatus (5%), Streptococcus sanguis II (4%), Streptococcus mitis (2%), Streptococcus salivarius (2%), Streptococcus morbillorum (2%), Streptococcus sanguis I (1%), Streptococcus mutans (0.2%), and Streptococcus uberis (0.2%) with an average of 1.2 species per woman. The distribution of the species among women with BV compared with normal women was not significantly different, with the exception of two species which were associated with BV: S. acidominimus (18% versus 3%, P less than 0.001) and S. morbillorum (6% versus 0.7%, P = 0.005). Amniotic fluid and placenta cultures yielded 54 isolates: S. sanguis II (13 isolates), S. acidominimus (9 isolates), S. intermedius (10 isolates), S. constellatus (3 isolates), S. mitis (4 isolates), S. sanguis I (4 isolates), S. morbillorum (5 isolates), S. mutans (2 isolates), S. uberis (1 isolate), mannitol-positive S. intermedius (1 isolate), and 2 isolates which were not classified. The distribution of species isolated from the upper genital tract was not a reflection of the distribution in the lower genital tract. Dextran-producing species of viridans group streptococci may have a greater pathogenic potential in the placenta than the non

  10. Effect of the pollution level on the functional bacterial groups aiming at degrading bisphenol A and nonylphenol in natural biofilms of an urban river.

    PubMed

    Cai, Wei; Li, Yi; Wang, Peifang; Niu, Lihua; Zhang, Wenlong; Wang, Chao

    2016-08-01

    Bisphenol A (BPA) and 4-nonylphenol (NP) are ubiquitous pollutants with estrogenic activity in aquatic environment and have attracted global concern due to their disruption of endocrine systems. This study investigated the spatial distribution characteristics of the bacterial groups involved in the degradation of BPA and NP within biofilms in an urban river using terminal restriction fragment length polymorphism based on 16S rRNA gene sequences. The effects of the pollution level and water parameters on these groups were also assessed. Hierarchical cluster analysis grouped the sampling sites into three clusters reflecting their varying nutrient pollution levels of relatively slight pollution (SP), moderate pollution (MP), and high pollution (HP) based on water quality data and Environmental Quality Standard for Surface Water of China (GB3838-2002). The BPA and NP concentration in river water ranged from 0.8 to 77.5 and 10.2 to 162.9 ng L(-1), respectively. Comamonadaceae, Pseudomonadaceae, Alcaligenaceae, Bacillaceae, Sphingomonadacea, Burkholderiaceae, and Rhizobiaceae were the dominant bacterial taxa involved in BPA and NP degradation, comprising an average of 9.8, 8.1, 7.6, 6.7, 6.2, 4.1, and 2.8 % of total sequences, respectively. The total abundance of these groups showed a slight upward trend and subsequently rapidly decreased with increasing pollution levels. The average proportion of Comamonadaceae in MP river sections was almost 1.5-2 times than that in SP or HP one. The distribution of functional groups was found related to environmental variables, especially pH, conductivity, ammonium nitrogen (NH3-N), and BPA. The abundance of Comamonadaceae and Rhizobiaceae was both closely related to higher values of pH and conductivity as well as lower concentrations of NP and BPA. Alcaligenaceae and Pseudomonadaceae were associated with higher concentrations of TP and CODMn and inversely correlated with DO concentration. This study might provide effective data on

  11. Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid.

    PubMed

    Nge, Thi Thi; Sugiyama, Junji

    2007-04-01

    The apatite forming ability of biopolymer bacterial cellulose (BC) has been investigated by soaking different BC specimens in a simulated body fluid (1.5 SBF) under physiological conditions, at 37 degrees C and pH 7.4, mimicking the natural process of apatite formation. From ATR-FTIR spectra and ICP-AES analysis, the crystalline phase nucleated on the BC microfibrils surface was calcium deficient carbonated apatite through initial formation of octacalcium phosphate (OCP) or OCP like calcium phosphate phase regardless of the substrates. Morphology of the deposits from SEM, FE-SEM, and TEM observations revealed the fine structure of thin film plates uniting together to form apatite globules of various size (from <1 mum to 3 mum) with respect to the substrates. Surface modification by TEMPO (2,2,6,6-tetramethylpyperidine-1-oxyl)-mediated oxidation, which can readily form active carboxyl functional groups upon selective oxidation of primary hydroxyl groups on the surface of BC microfibrils, enhanced the rate of apatite nucleation. Ion exchanged treatment with calcium chloride solution after TEMPO-mediated oxidation was found to be remarkably different from other BC substrates with the highest deposit weight and the smallest apatite globules size. The role of BC substrates to induce mineralization rate differs according to the nature of the BC substrates, which strongly influences the growth behavior of the apatite crystals. (c) 2006 Wiley Periodicals, Inc.

  12. Study of model systems to test the potential function of Artemia group 1 late embryogenesis abundant (LEA) proteins.

    PubMed

    Warner, Alden H; Guo, Zhi-hao; Moshi, Sandra; Hudson, John W; Kozarova, Anna

    2016-01-01

    Embryos of the brine shrimp, Artemia franciscana, are genetically programmed to develop either ovoviparously or oviparously depending on environmental conditions. Shortly upon their release from the female, oviparous embryos enter diapause during which time they undergo major metabolic rate depression while simultaneously synthesize proteins that permit them to tolerate a wide range of stressful environmental events including prolonged periods of desiccation, freezing, and anoxia. Among the known stress-related proteins that accumulate in embryos entering diapause are the late embryogenesis abundant (LEA) proteins. This large group of intrinsically disordered proteins has been proposed to act as molecular shields or chaperones of macromolecules which are otherwise intolerant to harsh conditions associated with diapause. In this research, we used two model systems to study the potential function of the group 1 LEA proteins from Artemia. Expression of the Artemia group 1 gene (AfrLEA-1) in Escherichia coli inhibited growth in proportion to the number of 20-mer amino acid motifs expressed. As well, clones of E. coli, transformed with the AfrLEA-1 gene, expressed multiple bands of LEA proteins, either intrinsically or upon induction with isopropyl-β-thiogalactoside (IPTG), in a vector-specific manner. Expression of AfrLEA-1 in E. coli did not overcome the inhibitory effects of high concentrations of NaCl and KCl but modulated growth inhibition resulting from high concentrations of sorbitol in the growth medium. In contrast, expression of the AfrLEA-1 gene in Saccharomyces cerevisiae did not alter the growth kinetics or permit yeast to tolerate high concentrations of NaCl, KCl, or sorbitol. However, expression of AfrLEA-1 in yeast improved its tolerance to drying (desiccation) and freezing. Under our experimental conditions, both E. coli and S. cerevisiae appear to be potentially suitable hosts to study the function of Artemia group 1 LEA proteins under environmentally

  13. Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance.

    PubMed

    Castillo Diaz, Jean Manuel; Martin-Laurent, Fabrice; Beguet, Jérèmie; Nogales, Rogelio; Romero, Esperanza

    2017-02-01

    The fate and impact of pesticide on soil depend partly on the agricultural practices, such as prior treatment with pesticide and/or organic amendments. As a means of determining how the previous soil conditions can affect the fate of imidacloprid (IMI) and its effect on soil functions, experiments were made with soil samples, double-amended or not with either vine-shoot (W) or olive cake (O) vermicompost or contaminated or not with IMI. These soil samples, incubated for 3months, were placed in two microcosms (M1 with the pre-amended soils and M2 with the pre-exposed soils), treated with IMI and amended with vermicomposts and then incubated for 3months. The IMI distribution on soil fractions, sorption processes, dissipation kinetics, and biochemical as well as genetic structure and bacterial abundance were determined to assess the fate and impact of IMI on the soil. The addition of W vermicompost to the soil reduced the IMI availability. The dissipation kinetic in soils from M1 and M2 followed, respectively, a single first-order and a double first-order in parallel models. The lowest IMI persistence corresponded to the soil from M2 amended with O-vermicompost with DT50 and DT90 values of 67d and 265d, while in the other soils 90% dissipation required >512d. The vermicomposts-amended contaminated soils increased the dehydrogenase activity by 2- and 4-fold respect the control soils. However, the urease activity decreased due to the IMI influence. The changes in the bacterial community in the contaminated soil amended with O-vermicompost during incubation were correlated with the dissipation rate constant of IMI, suggesting a better tolerance of microorganisms to IMI. Thus, in the soil contaminated with IMI, the amendment with the vermicompost from olive cake can mitigate the impact of this insecticide on soil functions and promote its depuration capability while minimizing environmental risks. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons

    PubMed Central

    Wallisch, Stefanie; Gril, Tjasa; Dong, Xia; Welzl, Gerd; Bruns, Christian; Heath, Ester; Engel, Marion; Suhadolc, Marjetka; Schloter, Michael

    2014-01-01

    Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and

  15. Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons.

    PubMed

    Wallisch, Stefanie; Gril, Tjasa; Dong, Xia; Welzl, Gerd; Bruns, Christian; Heath, Ester; Engel, Marion; Suhadolc, Marjetka; Schloter, Michael

    2014-01-01

    Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and

  16. A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta

    PubMed Central

    Whidbey, Christopher; Harrell, Maria Isabel; Burnside, Kellie; Ngo, Lisa; Becraft, Alexis K.; Iyer, Lakshminarayan M.; Aravind, L.; Hitti, Jane

    2013-01-01

    Microbial infection of the amniotic fluid is a significant cause of fetal injury, preterm birth, and newborn infections. Group B Streptococcus (GBS) is an important human bacterial pathogen associated with preterm birth, fetal injury, and neonatal mortality. Although GBS has been isolated from amniotic fluid of women in preterm labor, mechanisms of in utero infection remain unknown. Previous studies indicated that GBS are unable to invade human amniotic epithelial cells (hAECs), which represent the last barrier to the amniotic cavity and fetus. We show that GBS invades hAECs and strains lacking the hemolysin repressor CovR/S accelerate amniotic barrier failure and penetrate chorioamniotic membranes in a hemolysin-dependent manner. Clinical GBS isolates obtained from women in preterm labor are hyperhemolytic and some are associated with covR/S mutations. We demonstrate for the first time that hemolytic and cytolytic activity of GBS is due to the ornithine rhamnolipid pigment and not due to a pore-forming protein toxin. Our studies emphasize the importance of the hemolytic GBS pigment in ascending infection and fetal injury. PMID:23712433

  17. The Relative Abundance and Transcriptional Activity of Marine Sponge-Associated Microorganisms Emphasizing Groups Involved in Sulfur Cycle.

    PubMed

    Jensen, Sigmund; Fortunato, Sofia A V; Hoffmann, Friederike; Hoem, Solveig; Rapp, Hans Tore; Øvreås, Lise; Torsvik, Vigdis L

    2017-04-01

    During the last decades, our knowledge about the activity of sponge-associated microorganisms and their contribution to biogeochemical cycling has gradually increased. Functional groups involved in carbon and nitrogen metabolism are well documented, whereas knowledge about microorganisms involved in the sulfur cycle is still limited. Both sulfate reduction and sulfide oxidation has been detected in the cold water sponge Geodia barretti from Korsfjord in Norway, and with specimens from this site, the present study aims to identify extant versus active sponge-associated microbiota with focus on sulfur metabolism. Comparative analysis of small subunit ribosomal RNA (16S rRNA) gene (DNA) and transcript (complementary DNA (cDNA)) libraries revealed profound differences. The transcript library was predominated by Chloroflexi despite their low abundance in the gene library. An opposite result was found for Acidobacteria. Proteobacteria were detected in both libraries with representatives of the Alpha- and Gammaproteobacteria related to clades with presumably thiotrophic bacteria from sponges and other marine invertebrates. Sequences that clustered with sponge-associated Deltaproteobacteria were remotely related to cultivated sulfate-reducing bacteria. The microbes involved in sulfur cycling were identified by the functional gene aprA (adenosine-5'-phosphosulfate reductase) and its transcript. Of the aprA sequences (DNA and cDNA), 87 % affiliated with sulfur-oxidizing bacteria. They clustered with Alphaproteobacteria and with clades of deep-branching Gammaproteobacteria. The remaining sequences clustered with sulfate-reducing Archaea of the phylum Euryarchaeota. These results indicate an active role of yet uncharacterized Bacteria and Archaea in the sponge's sulfur cycle.

  18. Abundances and profiles of antibiotic resistance genes as well as co-occurrences with human bacterial pathogens in ship ballast tank sediments from a shipyard in Jiangsu Province, China.

    PubMed

    Lv, Baoyi; Cui, Yuxue; Tian, Wen; Li, Jing; Xie, Bing; Yin, Fang

    2018-08-15

    Ship ballasting operations may transfer harmful aquatic organisms across global ocean. This study aims to reveal the occurrences and abundances of antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs) in ballast tank sediments. Nine samples were collected and respectively analyzed by real-time quantitative PCR and high-throughput sequencing technologies. Ten ARGs (aadA1, blaCTX-M, blaTEM, ermB, mefA, strB, sul1, sul2, tetM, and tetQ) and the Class-I integron gene (intI1) were highly prevalent (10 5 -10 9 gene copies/g) in ballast tank sediments. The sul1 was the most abundant ARG with the concentration of 10 8 -10 9 copies/g and intI1 was much more abundant than the ARGs in ballast tank sediments. The strong positive correlations between intI1 and ARGs (blaCTX-M, sul1, sul2 and tetM) indicated the potential spread of ARGs via horizontal gene transfer. In ballast tank sediments, 44 bacterial species were identified as HBPs and accounted for 0.13-21.46% of the total bacterial population although the three indicator pathogenic microbes (Vibrio cholerae, Escherichia coli, and Enterococci) proposed by the International Maritime Organization were not detected. Pseudomonas pseudoalcaligenes, Enterococcus hirae, Shigella sonnei and Bacillus anthracis were the dominant pathogens in ballast tank sediments. Zn and P in sediments had positive effects on the ARGs. Network analysis results indicated that sul1 and sul2 genes existed in several bacterial pathogens. Ballast tank sediments could be regarded as a carrier for the migration of ARGs. It is important to manage ballast tank sediments reasonably in order to prevent the dissemination of ARGs and bacterial pathogens. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Composition and abundance of zooplankton groups from a coral reef lagoon in Puerto Morelos, Quintana Roo, Mexico, during an annual cycle.

    PubMed

    Alvarez-Cadena, José N; Ordóñez-López, Uriel; Almaral-Mendivil, Alma Rosa; Uicab-Sabido, Amira

    2009-09-01

    Zooplankton sampling was carried out monthly from January to December 1990 at station A near the coastline, and station B near the reef barrier, in a tropical coral reef lagoon in the Mexican Caribbean Sea. Samplings were made at midnight, near surface, with a conical net (mouth 0.40 m, mesh 330 microm) for 10 min. Salinity varied from 35.1 to 36.3 psu and temperature from 26.3 to 30.2 degrees C. The Bray-Curtis test applied to these results has defined two seasons: the dry season from November to May, and the wet season from June to October. A total of 37 zooplankton groups were found. Copepods were the most abundant contributing 49.0% of the total capture with Acartia espinata, Calanopia americana and Farranula gracilis as the most numerous. In the total zooplankton, however, cirripeds captured in only 15 samples of 24 were second in abundance (20.9%). Decapods, present all year-round and more abundant during the wet season, were third and contributed 19.2%. The rest of the groups were scarce and only amphipods (2.4%) and larvaceans (2.0%) were relatively abundant. The abundance of captured organisms correlated with the abiotic factors measured, thus, in the dry season, abundance was lower (mean 7.3 orgs/m3), while in the wet season the mean catch was 36.8 orgs/m3.

  20. Localization of a bacterial group II intron-encoded protein in eukaryotic nuclear splicing-related cell compartments.

    PubMed

    Nisa-Martínez, Rafael; Laporte, Philippe; Jiménez-Zurdo, José Ignacio; Frugier, Florian; Crespi, Martin; Toro, Nicolás

    2013-01-01

    Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP) in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.

  1. Localization of a Bacterial Group II Intron-Encoded Protein in Eukaryotic Nuclear Splicing-Related Cell Compartments

    PubMed Central

    Nisa-Martínez, Rafael; Laporte, Philippe; Jiménez-Zurdo, José Ignacio; Frugier, Florian; Crespi, Martin; Toro, Nicolás

    2013-01-01

    Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP) in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns. PMID:24391881

  2. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates.

    PubMed

    Delaire, Caroline; van Genuchten, Case M; Amrose, Susan E; Gadgil, Ashok J

    2016-10-15

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment option for groundwater containing arsenic and bacterial contamination. However, the mechanisms of bacteria attenuation and the impact of major groundwater ions are not well understood. In this work, using the model indicator Escherichia coli (E. coli), we show that physical removal via enmeshment in EC precipitate flocs is the primary process of bacteria attenuation in the presence of HCO3(-), which significantly inhibits inactivation, possibly due to a reduction in the lifetime of reactive oxidants. We demonstrate that the adhesion of EC precipitates to cell walls, which results in bacteria encapsulation in flocs, is driven primarily by interactions between EC precipitates and phosphate functional groups on bacteria surfaces. In single solute electrolytes, both P (0.4 mM) and Ca/Mg (1-13 mM) inhibited the adhesion of EC precipitates to bacterial cell walls, whereas Si (0.4 mM) and ionic strength (2-200 mM) did not impact E. coli attenuation. Interestingly, P (0.4 mM) did not affect E. coli attenuation in electrolytes containing Ca/Mg, consistent with bivalent cation bridging between bacterial phosphate groups and inorganic P sorbed to EC precipitates. Finally, we found that EC precipitate adhesion is largely independent of cell wall composition, consistent with comparable densities of phosphate functional groups on Gram-positive and Gram-negative cells. Our results are critical to predict the performance of Fe-EC to eliminate bacterial contaminants from waters with diverse chemical compositions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Richness and abundance of the cardini group of Drosophila (Diptera, Drosophilidae) in the Caatinga and Atlantic Forest biomes in northeastern Brazil.

    PubMed

    Rohde, Cláudia; Silva, Diva Maria Izabel O; Oliveira, Geórgia F; Monteiro, Liv S; Montes, Martín A; Garcia, Ana Cristina L

    2014-12-01

    Brazil has a high diversity of flies of the genus Drosophila, and part of this richness is represented by the cardini group. We analyzed the fluctuations in the richness and abundance of this group, in environments that had never previously been studied in the northeastern region of Brazil. Among the 28,204 drosophilids sampled, 1,294 belonged to the cardini group and were represented by D. polymorpha, D. cardini, D. neocardini and D. cardinoides. Occurrences of D. neocardini and D. cardinoides were registered for the first time in the Caatinga. In this biome, D. cardini stood out as having the highest abundance, and D. polymorpha was not observed. In the coastal Atlantic Forest, D. cardini was not registered, but D. polymorpha was found in all the localities investigated. Mangrove swamps were the environment with the lowest abundance and richness of the cardini group. The High-altitude Forest presented the highest richness of this group. We suggest that the high abundance of D. polymorpha in the High-altitude Forest and in the coastal Atlantic Forest may be a reflection of the historical relationship between these two environments.

  4. Richness and abundance of the cardini group of Drosophila (Diptera, Drosophilidae) in the Caatinga and Atlantic Forest biomes in northeastern Brazil.

    PubMed

    Rohde, Cláudia; Silva, Diva Maria Izabel O; Oliveira, Geórgia F; Monteiro, Liv S; Montes, Martín A; Garcia, Ana Cristina L

    2014-11-11

    Brazil has a high diversity of flies of the genus Drosophila, and part of this richness is represented by the cardini group. We analyzed the fluctuations in the richness and abundance of this group, in environments that had never previously been studied in the northeastern region of Brazil. Among the 28,204 drosophilids sampled, 1,294 belonged to the cardini group and were represented by D. polymorpha, D. cardini, D. neocardini and D. cardinoides. Occurrences of D. neocardini and D. cardinoides were registered for the first time in the Caatinga. In this biome, D. cardini stood out as having the highest abundance, and D. polymorpha was not observed. In the coastal Atlantic Forest, D. cardini was not registered, but D. polymorpha was found in all the localities investigated. Mangrove swamps were the environment with the lowest abundance and richness of the cardini group. The High-altitude Forest presented the highest richness of this group. We suggest that the high abundance of D. polymorpha in the High-altitude Forest and in the coastal Atlantic Forest may be a reflection of the historical relationship between these two environments.

  5. Platinum-group element abundance and distribution in chromite deposits of the Acoje Block, Zambales Ophiolite Complex, Philippines

    USGS Publications Warehouse

    Bacuta, G.C.; Kay, R.W.; Gibbs, A.K.; Lipin, B.R.

    1990-01-01

    Platinum-group elements (PGE) occur in ore-grade concentration in some of the chromite deposits related to the ultramafic section of the Acoje Block of the Zambales Ophiolite Complex. The deposits are of three types: Type 1 - associated with cumulate peridotites at the base of the crust; Type 2 - in dunite pods from the top 1 km of mantle harzburgite; and Type 3 - like Type 2, but in deeper levels of the harzburgite. Most of the deposites have chromite compositions that are high in Cr with Cr/(Cr + Al) (expressed as chromium index, Cr#) > 0.6; high-Al (Cr# Pd, thought to be characteristic of PGE-barren deposits) and positive slope (Ir < Pd, characteristic of PGE-rich deposits). Iridium, Ru and Os commonly occur as micron-size laurite (sulfide) inclusions in unfractured chromite. Laurite and native Os are also found as inclusions in interstitial sulfides. Platinum and Pd occur as alloy inclusions (and possibly as solid solution) in interstitial Ni-Cu sulfides and as tellurobismuthides in serpentine and altered sulfides. Variability of PGE distribution may be explained by alteration, crystal fractionation or partial melting processes. Alteration and metamorphism were ruled out, because PGE contents do not correlate with degree of serpentinization or the abundance and type (hydroxyl versus non-hydroxyl) of silicate inclusions in chromite. Preliminary Os isotopic data do not support crustal contamination as a source of the PGEs in the Acoje deposits. The anomalous PGE concentrations in Type 1 high-Cr chromite deposits are attributed to two stages of enrichment: an early enrichment of their mantle source from previous melting events and a later stage of sulfide segregation accompanying chromite crystallization. High-Al chromite deposits which crystallized from basalts derived from relatively low degrees of melting owe their low PGE content to partitioning of PGEs in sulfides and alloys that remain in the mantle. High-Cr deposits crystallized from melts that were

  6. Identification of Bacterial Groups Preferentially Associated with Mycorrhizal Roots of Medicago truncatula▿

    PubMed Central

    Offre, P.; Pivato, B.; Siblot, S.; Gamalero, E.; Corberand, T.; Lemanceau, P.; Mougel, C.

    2007-01-01

    The genetic structures of bacterial communities associated with Medicago truncatula Gaertn. cv. Jemalong line J5 (Myc+ Nod+) and its symbiosis-defective mutants TRV48 (Myc+ Nod−) and TRV25 (Myc− Nod−) were compared. Plants were cultivated in a fertile soil (Châteaurenard, France) and in soil from the Mediterranean basin showing a low fertility (Mas d'Imbert, France). Plant growth, root architecture, and the efficiency of root symbiosis of the three plant genotypes were characterized in the two soils. Structures of the bacterial communities were assessed by automated-ribosomal intergenic spacer analysis (A-RISA) fingerprinting from DNA extracted from the rhizosphere soil and root tissues. As expected, the TRV25 mutant did not develop endomycorrhizal symbiosis in any of the soils, whereas mycorrhization of line J5 and the TRV48 mutant occurred in both soils but at a higher intensity in the Mas d'Imbert (low fertility) than in the Châteaurenard soil. However, modifications of plant growth and root architecture, between mycorrhizal (J5 and TRV48) and nonmycorrhizal (TRV25) plants, were recorded only when cultivated in the Mas d'Imbert soil. Similarly, the genetic structures of bacterial communities associated with mycorrhizal and nonmycorrhizal plants differed significantly in the Mas d'Imbert soil but not in the Châteaurenard soil. Multivariate analysis of the patterns allowed the identification of molecular markers, explaining these differences, and markers were further sequenced. Molecular marker analysis allowed the delineation of 211 operational taxonomic units. Some of those belonging to the Comamonadaceae and Oxalobacteraceae (β-Proteobacteria) families were found to be significantly more represented within bacterial communities associated with the J5 line and the TRV48 mutant than within those associated with the TRV25 mutant, indicating that these bacterial genera were preferentially associated with mycorrhizal roots in the Mas d'Imbert soil. PMID

  7. Platinum Group Element (PGE) Abundances in Lava Flows Generated by the Hawaiian Plume: Insights into Plume Evolution

    NASA Astrophysics Data System (ADS)

    Shafer, J. T.; Neal, C. R.

    2003-12-01

    Picritic and high-MgO (7.7-24 wt.%) basalt samples from Detroit (/sim81-76 Ma) and Koko (/sim48 Ma) Seamounts along the ESC have been analyzed for PGEs (Ru, Rh, Pd, Ir, and Pt) allowing an examination of how the PGEs in lavas from the Hawaiian plume have changed over time. Major and trace element (including the PGEs) concentrations were quantified by ICP methods at the University of Notre Dame. See Ely et al. (1999, Chem. Geol. 157:219) for the PGE analytical method. Bennett et al. (2000) analyzed Hawaiian picrites and found PGE abundances slightly greater than average MORB and comparable to the low-PGE basaltic komatiites. These authors modeled the PGE abundances of these picrites by using variable amounts of residual sulfide during melting, such that Koolau (low PGE contents) formed from a relatively sulfide-rich source and Loihi (high PGEs) from a sulfide-poor source. Our PGE data from Detroit Seamount show slightly higher PGE abundances than Loihi and Kilauea, suggesting these picrites formed from a source lacking residual sulfide. These results suggest that, if the model of Bennett et al. (2000) is correct, the dilution of plume lava with MORB source, as hypothesized on the basis of depleted isotope ratios and lower trace element abundances than modern Hawaii (Keller et al., 2000, Nature 405:603; Kinman & Neal, 2002, Eos 83:F1282; Regelous et al., 2003, JPet 44:113), was not the controlling factor in PGE abundances. However, since MORB PGE concentrations are not substantially different than low-PGE Hawaiian picrites, incorporation of MORB material within the Hawaiian plume at Detroit Seamount would not have drastically reduced the PGE abundances. Koko Seamount has relatively high PGE concentrations (/sim3-12 times greater than those from Detroit lavas). This may be the result of a lack of residual sulfide facilitated by higher degrees of partial melting. Although our initial data are consistent with variable degrees of partial melting and/or source

  8. A Stable Bacterial Peroxidase with Novel Halogenating Activity and an Autocatalytically Linked Heme Prosthetic Group*

    PubMed Central

    Auer, Markus; Gruber, Clemens; Bellei, Marzia; Pirker, Katharina F.; Zamocky, Marcel; Kroiss, Daniela; Teufer, Stefan A.; Hofbauer, Stefan; Soudi, Monika; Battistuzzi, Gianantonio; Furtmüller, Paul G.; Obinger, Christian

    2013-01-01

    Reconstructing the phylogenetic relationships of the main evolutionary lines of the mammalian peroxidases lactoperoxidase and myeloperoxidase revealed the presence of novel bacterial heme peroxidase subfamilies. Here, for the first time, an ancestral bacterial heme peroxidase is shown to possess a very high bromide oxidation activity (besides conventional peroxidase activity). The recombinant protein allowed monitoring of the autocatalytic peroxide-driven formation of covalent heme to protein bonds. Thereby, the high spin ferric rhombic heme spectrum became similar to lactoperoxidase, the standard reduction potential of the Fe(III)/Fe(II) couple shifted to more positive values (−145 ± 10 mV at pH 7), and the conformational and thermal stability of the protein increased significantly. We discuss structure-function relationships of this new peroxidase in relation to its mammalian counterparts and ask for its putative physiological role. PMID:23918925

  9. The primary case is not enough: Variation among individuals, groups and social networks modify bacterial transmission dynamics.

    PubMed

    Keiser, Carl N; Pinter-Wollman, Noa; Ziemba, Michael J; Kothamasu, Krishna S; Pruitt, Jonathan N

    2018-03-01

    The traits of the primary case of an infectious disease outbreak, and the circumstances for their aetiology, potentially influence the trajectory of transmission dynamics. However, these dynamics likely also depend on the traits of the individuals with whom the primary case interacts. We used the social spider Stegodyphus dumicola to test how the traits of the primary case, group phenotypic composition and group size interact to facilitate the transmission of a GFP-labelled cuticular bacterium. We also compared bacterial transmission across experimentally generated "daisy-chain" vs. "star" networks of social interactions. Finally, we compared social network structure across groups of different sizes. Groups of 10 spiders experienced more bacterial transmission events compared to groups of 30 spiders, regardless of groups' behavioural composition. Groups containing only one bold spider experienced the lowest levels of bacterial transmission regardless of group size. We found no evidence for the traits of the primary case influencing any transmission dynamics. In a second experiment, bacteria were transmitted to more individuals in experimentally induced star networks than in daisy-chains, on which transmission never exceeded three steps. In both experimental network types, transmission success depended jointly on the behavioural traits of the interacting individuals; however, the behavioural traits of the primary case were only important for transmission on star networks. Larger social groups exhibited lower interaction density (i.e. had a low ratio of observed to possible connections) and were more modular, i.e. they had more connections between nodes within a subgroup and fewer connections across subgroups. Thus, larger groups may restrict transmission by forming fewer interactions and by isolating subgroups that interacted with the primary case. These findings suggest that accounting for the traits of single exposed hosts has less power in predicting transmission

  10. ATR-FTIR Spectroscopic Evidence for Biomolecular Phosphorus and Carboxyl Groups Facilitating Bacterial Adhesion to Iron Oxides

    PubMed Central

    Parikh, Sanjai J.; Mukome, Fungai N.D.; Zhang, Xiaoming

    2014-01-01

    Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy has been used to probe the binding of bacteria to hematite (α-Fe2O3) and goethite (α-FeOOH). In situ ATR-FTIR experiments with bacteria (Pseudomonas putida, P. aeruginosa, Escherichia coli), mixed amino acids, polypeptide extracts, deoxyribonucleic acid (DNA), and a suite of model compounds were conducted. These compounds represent carboxyl, catecholate, amide, and phosphate groups present in siderophores, amino acids, polysaccharides, phospholipids, and DNA. Due in part to the ubiquitous presence of carboxyl groups in biomolecules, numerous IR peaks corresponding to outer-sphere or unbound (1400 cm−1) and inner-sphere (1310-1320 cm−1) coordinated carboxyl groups are noted following reaction of bacteria and biomolecules with α-Fe2O3 and α-FeOOH. However, the data also reveal that the presence of low-level amounts (i.e., 0.45-0.79%) of biomolecular phosphorous groups result in strong IR bands at ~1043 cm−1, corresponding to inner-sphere Fe-O-P bonds, underscoring the importance of bacteria associated P-containing groups in biomolecule and cell adhesion. Spectral comparisons also reveal slightly greater P-O-Fe contributions for bacteria (Pseudomonad, E. coli) deposited on α-FeOOH, as compared to α-Fe2O3. This data demonstrates that slight differences in bacterial adhesion to Fe oxides can be attributed to bacterial species and Fe-oxide minerals. However, more importantly, the strong binding affinity of phosphate in all bacteria samples to both Fe-oxides results in the formation of inner-sphere Fe-O-P bonds, signifying the critical role of biomolecular P in the initiation of bacterial adhesion. PMID:24859052

  11. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome

    PubMed Central

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes. PMID:25482895

  12. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome.

    PubMed

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.

  13. Molecular and Ecological Evidence for Species Specificity and Coevolution in a Group of Marine Algal-Bacterial Symbioses

    PubMed Central

    Ashen, Jon B.; Goff, Lynda J.

    2000-01-01

    The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the α subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation. PMID:10877801

  14. [Group B streptococcus meningitis and infection surrounding the spinal canal caused by bacterial transmission from rectal ulcer via Batson's plexus].

    PubMed

    Tsutsumi, Ryosuke; Saito, Masaaki; Yoshizawa, Toshihiro

    2011-07-01

    A 62-year-old man was admitted to our hospital because of fever and disturbed consciousness. He suffered from persistent constipation due to diabetic autonomic neuropathy. On admission, neck stiffness and weakness of the lower extremities were observed. Cerebrospinal fluid (CSF) pleocytosis and decreased CSF glucose concentration showed the presence of meningitis. Bacterial culture of CSF was negative. One week after admission, he suddenly suffered from massive bleeding from the rectum, where a hemorrhagic ulcer caused by severe persistent constipation was observed. Contrast-enhanced CT scans and gadolinium-enhanced MR scans demonstrated a lumbar spinal epidural abscess, paraspinal muscle abscess, and cervical osteomyelitis. Streptococcus agalactiae, a bacterial species belonging to the group B streptococci, was isolated from pus obtained by needle puncture of the paraspinal muscle abscess. His entire condition was treated successfully with ampicillin and cefotaxime. Group B streptococci normally colonize the mucous membrane of the genital or lower gastrointestinal regions and rarely cause a spinal epidural abscess. However, in this case, the existence of a rectal ulcer probably made it possible for S. agalactiae to cause an infection of the epidural space or paraspinal muscles via the spinal valveless venous system named Batson's plexus communicating with the sacral, pelvic, and prostatic venous plexus. Our case indicated the importance of Batson's plexus in group B streptococcus infections surrounding the spinal canal and the necessity to explore for intrapelvic lesions including a rectal ulcer.

  15. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups.

    PubMed

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into "species groups". However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.

  16. Comparative Genomics of the Bacterial Genus Streptococcus Illuminates Evolutionary Implications of Species Groups

    PubMed Central

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706

  17. Seagrass (Zostera marina) Colonization Promotes the Accumulation of Diazotrophic Bacteria and Alters the Relative Abundances of Specific Bacterial Lineages Involved in Benthic Carbon and Sulfur Cycling

    PubMed Central

    Sun, Feifei; Zhang, Xiaoli; Zhang, Qianqian; Liu, Fanghua

    2015-01-01

    Seagrass colonization changes the chemistry and biogeochemical cycles mediated by microbes in coastal sediments. In this study, we molecularly characterized the diazotrophic assemblages and entire bacterial community in surface sediments of a Zostera marina-colonized coastal lagoon in northern China. Higher nitrogenase gene (nifH) copy numbers were detected in the sediments from the vegetated region than in the sediments from the unvegetated region nearby. The nifH phylotypes detected were mostly affiliated with the Geobacteraceae, Desulfobulbus, Desulfocapsa, and Pseudomonas. Redundancy analysis based on terminal restriction fragment length polymorphism analysis showed that the distribution of nifH genotypes was mostly shaped by the ratio of total organic carbon to total organic nitrogen, the concentration of cadmium in the sediments, and the pH of the overlying water. High-throughput sequencing and phylogenetic analyses of bacterial 16S rRNA genes also indicated the presence of Geobacteraceae and Desulfobulbaceae phylotypes in these samples. A comparison of these results with those of previous studies suggests the prevalence and predominance of iron(III)-reducing Geobacteraceae and sulfate-reducing Desulfobulbaceae diazotrophs in coastal sedimentary environments. Although the entire bacterial community structure was not significantly different between these two niches, Desulfococcus (Deltaproteobacteria) and Anaerolineae (Chloroflexi) presented with much higher proportions in the vegetated sediments, and Flavobacteriaceae (Bacteroidetes) occurred more frequently in the bare sediments. These data suggest that the high bioavailability of organic matter (indicated by relatively lower carbon-to-nitrogen ratios) and the less-reducing anaerobic condition in vegetated sediments may favor Desulfococcus and Anaerolineae lineages, which are potentially important populations in benthic carbon and sulfur cycling in the highly productive seagrass ecosystem. PMID:26209674

  18. Seagrass (Zostera marina) Colonization Promotes the Accumulation of Diazotrophic Bacteria and Alters the Relative Abundances of Specific Bacterial Lineages Involved in Benthic Carbon and Sulfur Cycling.

    PubMed

    Sun, Feifei; Zhang, Xiaoli; Zhang, Qianqian; Liu, Fanghua; Zhang, Jianping; Gong, Jun

    2015-10-01

    Seagrass colonization changes the chemistry and biogeochemical cycles mediated by microbes in coastal sediments. In this study, we molecularly characterized the diazotrophic assemblages and entire bacterial community in surface sediments of a Zostera marina-colonized coastal lagoon in northern China. Higher nitrogenase gene (nifH) copy numbers were detected in the sediments from the vegetated region than in the sediments from the unvegetated region nearby. The nifH phylotypes detected were mostly affiliated with the Geobacteraceae, Desulfobulbus, Desulfocapsa, and Pseudomonas. Redundancy analysis based on terminal restriction fragment length polymorphism analysis showed that the distribution of nifH genotypes was mostly shaped by the ratio of total organic carbon to total organic nitrogen, the concentration of cadmium in the sediments, and the pH of the overlying water. High-throughput sequencing and phylogenetic analyses of bacterial 16S rRNA genes also indicated the presence of Geobacteraceae and Desulfobulbaceae phylotypes in these samples. A comparison of these results with those of previous studies suggests the prevalence and predominance of iron(III)-reducing Geobacteraceae and sulfate-reducing Desulfobulbaceae diazotrophs in coastal sedimentary environments. Although the entire bacterial community structure was not significantly different between these two niches, Desulfococcus (Deltaproteobacteria) and Anaerolineae (Chloroflexi) presented with much higher proportions in the vegetated sediments, and Flavobacteriaceae (Bacteroidetes) occurred more frequently in the bare sediments. These data suggest that the high bioavailability of organic matter (indicated by relatively lower carbon-to-nitrogen ratios) and the less-reducing anaerobic condition in vegetated sediments may favor Desulfococcus and Anaerolineae lineages, which are potentially important populations in benthic carbon and sulfur cycling in the highly productive seagrass ecosystem. Copyright © 2015

  19. Changes in abundance of heterotrophic and coliform bacteria resident in stored water bodies in relation to incoming bacterial loads following rain events.

    PubMed

    Martin, Anthony Richard; Coombes, Peter John; Harrison, Tracey Lee; Hugh Dunstan, R

    2010-01-01

    Microbial properties of harvested rainwater were assessed at two study sites at Newcastle on the east coast of Australia. The investigation monitored daily counts of heterotrophic bacteria (HPC), total coliforms and E. coli during a mid-winter month (July). Immediately after a major rainfall event, increases in bacterial loads were observed at both sites, followed by gradual reductions in numbers to prior baseline levels within 7 days. Baseline HPC levels ranged from 500-1000 cfu/mL for the sites evaluated, and the loads following rain peaked at 3590-6690 cfu/mL. Baseline levels of total coliforms ranged from 0-100 cfu/100 mL and peaked at 480-1200 cfu/100 mL following rain. At Site 1, there was no evidence of E. coli loading associated with the rain events assessed, and Site 2 had no detectable E.coli colonies at baseline, with a peak load of 17 cfu/100 mL following rain which again diminished to baseline levels. It was concluded that rainfall events contributed to the bacterial load in rainwater storage systems, but processes within the rainwater storage ensured these incoming loads were not sustained.

  20. A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries

    PubMed Central

    Kim, Ki Jae; Lee, Seung-Wook; Yim, Taeeun; Kim, Jae-Geun; Choi, Jang Wook; Kim, Jung Ho; Park, Min-Sik; Kim, Young-Jun

    2014-01-01

    The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved. The energy efficiency of the VRFB cell employing the surface modified carbon felt electrodes is improved by 7% at high current density (148 mA cm−2). Such improvement is attributed to the faster charge transfer and better wettability allowed by surface-active oxygen functional groups. Moreover, this method is much more competitive than other surface treatments in terms of processing time, production costs, and electrochemical performance. PMID:25366060

  1. Depth of focus extended microscope configuration for imaging of incorporated groups of molecules, DNA constructs and clusters inside bacterial cells

    NASA Astrophysics Data System (ADS)

    Fessl, Tomas; Ben-Yaish, Shai; Vacha, Frantisek; Adamec, Frantisek; Zalevsky, Zeev

    2009-07-01

    Imaging of small objects such as single molecules, DNA clusters and single bacterial cells is problematic not only due to the lateral resolution that is obtainable in currently existing microscopy but also, and as much fundamentally limiting, due to the lack of sufficient axial depth of focus to have the full object focused simultaneously. Extension in depth of focus is helpful also for single molecule steady state FRET measurements. In this technique it is crucial to obtain data from many well focused molecules, which are often located in different axial depths. In this paper we present the implementation of an all-optical and a real time technique of extension in the depth of focus that may be incorporated in any high NA microscope system and to be used for the above mentioned applications. We demonstrate experimentally how after the integration of special optical element in high NA 100× objective lens of a single molecule imaging microscope system, the depth of focus is significantly improved while maintaining the same lateral resolution in imaging applications of incorporated groups of molecules, DNA constructs and clusters inside bacterial cells.

  2. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition.

    PubMed

    Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas

    2016-02-01

    Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis. © The Author(s) 2015.

  3. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes

    SciTech Connect

    Andreev, Konstantin; Bianchi, Christopher; Laursen, Jonas S.

    Antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanismof antimicrobial α-peptide–β-peptoid chimeras. Langmuirmonolayers composed of 1,2-dipalmitoylsn- glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria,while lipopolysaccharide Kdo2-lipid Amonolayersweremimicking the outer membrane of Gram-negative species.We report the results of themeasurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity to study the molecularmechanisms of peptidomimetic interaction with bacterialmembranes.We found guanidinomore » group-containing chimeras to exhibit greater disruptive activity on DPPGmonolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharidemonolayerswhere the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.« less

  4. Bacterial Phenotype Variants in Group B Streptococcal Toxic Shock Syndrome1

    PubMed Central

    Johansson, Linda; Dahesh, Samira; Van Sorge, Nina M.; Darenberg, Jessica; Norgren, Mari; Sjölin, Jan; Nizet, Victor; Norrby-Teglund, Anna

    2009-01-01

    We conducted genetic and functional analyses of isolates from a patient with group B streptococcal (GBS) necrotizing fasciitis and toxic shock syndrome. Tissue cultures simultaneously showed colonies with high hemolysis (HH) and low hemolysis (LH). Conversely, the HH and LH variants exhibited low capsule (LC) and high capsule (HC) expression, respectively. Molecular analysis demonstrated that the 2 GBS variants were of the same clonal origin. Genetic analysis found a 3-bp deletion in the covR gene of the HH/LC variant. Functionally, this isolate was associated with an increased growth rate in vitro and with higher interleukin-8 induction. However, in whole blood, opsonophagocytic and intracellular killing assays, the LH/HC phenotype demonstrated higher resistance to host phagocytic killing. In a murine model, LH/HC resulted in higher levels of bacteremia and increased host mortality rate. These findings demonstrate differences in GBS isolates of the same clonal origin but varying phenotypes. PMID:19193266

  5. The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells.

    PubMed

    Molinari, G; Rohde, M; Talay, S R; Chhatwal, G S; Beckert, S; Podbielski, A

    2001-04-01

    Group A streptococci (GAS) specifically attach to and internalize into human epithelial host cells. In some GAS isolates, fibronectin-binding proteins were identified as being responsible for these virulence traits. In the present study, the previously identified global negative regulator Nra was shown to control the binding of soluble fibronectin probably via regulation of protein F2 and/or SfbII expression in the serotype M49 strain 591. According to results from a conventional invasion assay based on the recovery of viable intracellular bacteria, the increased fibronectin binding did not affect bacterial adherence to HEp-2 epithelial cells, but was associated with a reduction in the internalization rates. However, when examined by confocal and electron microscopy techniques, the nra-mutant bacteria were shown to exhibit higher adherence and internalization rates than the corresponding wild type. The mutant bacteria escaped from the phagocytic vacuoles much faster, promoting consistent morphological changes which resulted in severe host cell damage. The apoptotic and lytic processes observed in nra-mutant infected host cells were correlated with an increased expression of the genes encoding superantigen SpeA, the cysteine protease SpeB, and streptolysin S in the nra-mutant bacteria. Adherence and internalization rates of a nra/speB-double mutant at wild-type levels indicated that the altered speB expression in the nra mutant contributed to the observed changes in both processes. The Nra-dependent effects on bacterial virulence were confined to infections carried out with stationary growth phase bacteria. In conclusion, the obtained results demonstrated that the global GAS regulator Nra modulates virulence genes, which are involved in host cell damage. Thus, by helping to achieve a critical balance of virulence factor expression that avoids the injury of target cells, Nra may facilitate GAS persistence in a safe intracellular niche.

  6. Bacterial Conversion of Hydroxylamino Aromatic Compounds by both Lyase and Mutase Enzymes Involves Intramolecular Transfer of Hydroxyl Groups

    PubMed Central

    Nadeau, Lloyd J.; He, Zhongqi; Spain, Jim C.

    2003-01-01

    Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H218O did not indicate any 18O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was 18O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups. PMID:12732549

  7. Estimating abundance

    USGS Publications Warehouse

    Sutherland, Chris; Royle, Andy

    2016-01-01

    This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).

  8. [Bacterial meningitis].

    PubMed

    Brouwer, M C; van de Beek, D

    2012-05-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria meningtidis group C and Streptococcus pneumoniae. Due to these vaccines, meningitis is now predominantly a disease occurring in adults, caused especially by Streptococcus pneumoniae, while it was formerly a child disease which was largely caused by Haemophilus influenzae. Bacterial meningitis is often difficult to recognize since the classical presentation with neck stiffness, reduced awareness and fever occurs in less than half of the patients. The only way to diagnose or exclude bacterial meningitis is by performing low-threshold cerebrospinal fluid examination with a suspicion of bacterial meningitis. The treatment consists of the prescription of antibiotics and dexamethasone.

  9. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia

    NASA Technical Reports Server (NTRS)

    Baur, M. E.; Hayes, J. M.; Studley, S. A.; Walter, M. R.

    1985-01-01

    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron.

  10. Spatially Correlated Gene Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell Interactions.

    PubMed

    van Vliet, Simon; Dal Co, Alma; Winkler, Annina R; Spriewald, Stefanie; Stecher, Bärbel; Ackermann, Martin

    2018-04-25

    Gene expression levels in clonal bacterial groups have been found to be spatially correlated. These correlations can partly be explained by the shared lineage history of nearby cells, although they could also arise from local cell-cell interactions. Here, we present a quantitative framework that allows us to disentangle the contributions of lineage history, long-range spatial gradients, and local cell-cell interactions to spatial correlations in gene expression. We study pathways involved in toxin production, SOS stress response, and metabolism in Escherichia coli microcolonies and find for all pathways that shared lineage history is the main cause of spatial correlations in gene expression levels. However, long-range spatial gradients and local cell-cell interactions also contributed to spatial correlations in SOS response, amino acid biosynthesis, and overall metabolic activity. Together, our data show that the phenotype of a cell is influenced by its lineage history and population context, raising the question of whether bacteria can arrange their activities in space to perform functions they cannot achieve alone. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Conformational differences between the methoxy groups of QA and QB site ubisemiquinones in bacterial reaction centers: a key role for methoxy group orientation in modulating ubiquinone redox potential.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2013-07-09

    Ubiquinone is an almost universal, membrane-associated redox mediator. Its ability to accept either one or two electrons allows it to function in critical roles in biological electron transport. The redox properties of ubiquinone in vivo are determined by its environment in the binding sites of proteins and by the dihedral angle of each methoxy group relative to the ring plane. This is an attribute unique to ubiquinone among natural quinones and could account for its widespread function with many different redox complexes. In this work, we use the photosynthetic reaction center as a model system for understanding the role of methoxy conformations in determining the redox potential of the ubiquinone/semiquinone couple. Despite the abundance of X-ray crystal structures for the reaction center, quinone site resolution has thus far been too low to provide a reliable measure of the methoxy dihedral angles of the primary and secondary quinones, QA and QB. We performed 2D ESEEM (HYSCORE) on isolated reaction centers with ubiquinones (13)C-labeled at the headgroup methyl and methoxy substituents, and have measured the (13)C isotropic and anisotropic components of the hyperfine tensors. Hyperfine couplings were compared to those derived by DFT calculations as a function of methoxy torsional angle allowing estimation of the methoxy dihedral angles for the semiquinones in the QA and QB sites. Based on this analysis, the orientation of the 2-methoxy groups are distinct in the two sites, with QB more out of plane by 20-25°. This corresponds to an ≈50 meV larger electron affinity for the QB quinone, indicating a substantial contribution to the experimental difference in redox potentials (60-75 mV) of the two quinones. The methods developed here can be readily extended to ubiquinone-binding sites in other protein complexes.

  12. Conformation of a Group 2 Late Embryogenesis Abundant Protein from Soybean. Evidence of Poly (l-Proline)-type II Structure1

    PubMed Central

    Soulages, Jose L.; Kim, Kangmin; Arrese, Estela L.; Walters, Christina; Cushman, John C.

    2003-01-01

    Late embryogenesis abundant (LEA) proteins are members of a large group of hydrophilic, glycine-rich proteins found in plants, algae, fungi, and bacteria known collectively as hydrophilins that are preferentially expressed in response to dehydration or hyperosmotic stress. Group 2 LEA (dehydrins or responsive to abscisic acid) proteins are postulated to stabilize macromolecules against damage by freezing, dehydration, ionic, or osmotic stress. However, the structural and physicochemical properties of group 2 LEA proteins that account for such functions remain unknown. We have analyzed the structural properties of a recombinant form of a soybean (Glycine max) group 2 LEA (rGmDHN1). Differential scanning calorimetry of purified rGmDHN1 demonstrated that the protein does not display a cooperative unfolding transition upon heating. Ultraviolet absorption and circular dichroism spectroscopy revealed that the protein is in a largely hydrated and unstructured conformation in solution. However, ultraviolet absorption and circular dichroism measurements collected at different temperatures showed that the protein exists in equilibrium between two extended conformational states: unordered and left-handed extended helical or poly (l-proline)-type II structures. It is estimated that 27% of the residues of rGmDHN1 adopt or poly (l-proline)-type II-like helical conformation at 12°C. The content of extended helix gradually decreases to 15% as the temperature is increased to 80°C. Studies of the conformation of the protein in solution in the presence of liposomes, trifluoroethanol, and sodium dodecyl sulfate indicated that rGmDHN1 has a very low intrinsic ability to adopt α-helical structure and to interact with phospholipid bilayers through amphipathic α-helices. The ability of the protein to remain in a highly extended conformation at low temperatures could constitute the basis of the functional role of GmDHN1 in the prevention of freezing, desiccation, ionic, or osmotic

  13. Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups

    PubMed Central

    Long, Gaobo; Yang, Xiao-lan; Zhang, Yi; Pu, Jun; Liu, Lin; Liu, Hong-bo; Li, Yuan-li; Liao, Fei

    2013-01-01

    Purpose Magnetic submicron particles (MSPs) are pivotal biomaterials for magnetic separations in bioanalyses, but their preparation remains a technical challenge. In this report, a facile one-step coating approach to MSPs suitable for magnetic separations was investigated. Methods Polyethylene glycol) (PEG) was derived into PEG-bis-(maleic monoester) and maleic monoester-PEG-succinic monoester as the monomers. Magnetofluids were prepared via chemical co-precipitation and dispersion with the monomers. MSPs were prepared via one-step coating of magnetofluids in a water-in-oil microemulsion system of aerosol-OT and heptane by radical co-polymerization of such monomers. Results The resulting MSPs contained abundant carboxyl groups, exhibited negligible nonspecific adsorption of common substances and excellent suspension stability, appeared as irregular particles by electronic microscopy, and had submicron sizes of broad distribution by laser scattering. Saturation magnetizations and average particle sizes were affected mainly by the quantities of monomers used for coating magnetofluids, and steric hindrance around carboxyl groups was alleviated by the use of longer monomers of one polymerizable bond for coating. After optimizations, MSPs bearing saturation magnetizations over 46 emu/g, average sizes of 0.32 μm, and titrated carboxyl groups of about 0.21 mmol/g were obtained. After the activation of carboxyl groups on MSPs into N-hydroxysuccinimide ester, biotin was immobilized on MSPs and the resulting biotin-functionalized MSPs isolated the conjugate of streptavidin and alkaline phosphatase at about 2.1 mg/g MSPs; streptavidin was immobilized at about 10 mg/g MSPs and retained 81% ± 18% (n = 5) of the specific activity of the free form. Conclusion The facile approach effectively prepares MSPs for magnetic separations. PMID:23589687

  14. A Group 6 Late Embryogenesis Abundant Protein from Common Bean Is a Disordered Protein with Extended Helical Structure and Oligomer-forming Properties*

    PubMed Central

    Rivera-Najera, Lucero Y.; Saab-Rincón, Gloria; Battaglia, Marina; Amero, Carlos; Pulido, Nancy O.; García-Hernández, Enrique; Solórzano, Rosa M.; Reyes, José L.; Covarrubias, Alejandra A.

    2014-01-01

    Late embryogenesis-abundant proteins accumulate to high levels in dry seeds. Some of them also accumulate in response to water deficit in vegetative tissues, which leads to a remarkable association between their presence and low water availability conditions. A major sub-group of these proteins, also known as typical LEA proteins, shows high hydrophilicity and a high percentage of glycine and other small amino acid residues, distinctive physicochemical properties that predict a high content of structural disorder. Although all typical LEA proteins share these characteristics, seven groups can be distinguished by sequence similarity, indicating structural and functional diversity among them. Some of these groups have been extensively studied; however, others require a more detailed analysis to advance in their functional understanding. In this work, we report the structural characterization of a group 6 LEA protein from a common bean (Phaseolus vulgaris L.) (PvLEA6) by circular dichroism and nuclear magnetic resonance showing that it is a disordered protein in aqueous solution. Using the same techniques, we show that despite its unstructured nature, the addition of trifluoroethanol exhibited an intrinsic potential in this protein to gain helicity. This property was also promoted by high osmotic potentials or molecular crowding. Furthermore, we demonstrate that PvLEA6 protein is able to form soluble homo-oligomeric complexes that also show high levels of structural disorder. The association between PvLEA6 monomers to form dimers was shown to occur in plant cells by bimolecular fluorescence complementation, pointing to the in vivo functional relevance of this association. PMID:25271167

  15. Variations of the relative abundances of He, (C,N,O) and Fe-group nuclei in solar cosmic rays and their relationship to solar particle acceleration

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Biswas, S.; Fichtel, C. E.; Pellerin, C. J.; Reames, D. V.

    1973-01-01

    Measurements of the flux of helium nuclei in the 24 January 1971 event and of helium and (C,N,O) nuclei in the 1 September 1971 event are combined with previous measurements to obtain the relative abundances of helium, (C,N,O), and Fe-group nuclei in these events. These data are then summarized together with previously reported results to show that, even when the same detector system using a dE/dx plus range technique is used, differences in the He/(C,N,O) value in the same energy/nucleon interval are observed in solar cosmic ray events. Further, when the He/(C,N,O) value is lower the He/(Fe-group nuclei) value is also systematically lower in these large events. When solar particle acceleration theory is analyzed, it is seen that the results suggest that, for large events, Coulomb energy loss probably does not play a major role in determining solar particle composition at higher energies (10 MeV). The variations in multicharged nuclei composition are more likely due to partial ionization during the acceleration phase.

  16. Invasive bacterial disease trends and characterization of group B streptococcal isolates among young infants in southern Mozambique, 2001-2015.

    PubMed

    Sigaúque, Betuel; Kobayashi, Miwako; Vubil, Delfino; Nhacolo, Ariel; Chaúque, Alberto; Moaine, Benild; Massora, Sérgio; Mandomando, Inácio; Nhampossa, Tacilta; Bassat, Quique; Pimenta, Fabiana; Menéndez, Clara; Carvalho, Maria da Gloria; Macete, Eusebio; Schrag, Stephanie J

    2018-01-01

    Maternal group B streptococcal (GBS) vaccines under development hold promise to prevent GBS disease in young infants. Sub-Saharan Africa has the highest estimated disease burden, although data on incidence and circulating strains are limited. We described invasive bacterial disease (IBD) trends among infants <90 days in rural Mozambique during 2001-2015, with a focus on GBS epidemiology and strain characteristics. Community-level birth and mortality data were obtained from Manhiça's demographic surveillance system. IBD cases were captured through ongoing surveillance at Manhiça district hospital. Stored GBS isolates from cases underwent serotyping by multiplex PCR, antimicrobial susceptibility testing, and whole genome sequencing. There were 437 IBD cases, including 57 GBS cases. Significant declines in overall IBD, neonatal mortality, and stillbirth rates were observed (P<0.0001), but not for GBS (P = 0.17). In 2015, GBS was the leading cause of young infant IBD (2.7 per 1,000 live births). Among 35 GBS isolates available for testing, 31 (88.6%) were highly related serotype III isolates within multilocus sequence types (STs) 17 (68.6%) or 109 (20.0%). All seven ST109 isolates (21.9%) had elevated minimum inhibitory concentration (MIC) to penicillin (≥0.12 μg/mL) associated with penicillin-binding protein (PBP) 2x substitution G398A. Epidemiologic and molecular data suggest this is a well-established clone. A notable young infant GBS disease burden persisted despite improvements in overall maternal and neonatal health. We report an established strain with pbp2x point mutation, a first-step mutation associated with reduced penicillin susceptibility within a well-known virulent lineage in rural Mozambique. Our findings further underscores the need for non-antibiotic GBS prevention strategies.

  17. Invasive bacterial disease trends and characterization of group B streptococcal isolates among young infants in southern Mozambique, 2001–2015

    PubMed Central

    Sigaúque, Betuel; Kobayashi, Miwako; Vubil, Delfino; Nhacolo, Ariel; Chaúque, Alberto; Moaine, Benild; Massora, Sérgio; Mandomando, Inácio; Nhampossa, Tacilta; Bassat, Quique; Pimenta, Fabiana; Menéndez, Clara; Carvalho, Maria da Gloria; Macete, Eusebio; Schrag, Stephanie J.

    2018-01-01

    Background Maternal group B streptococcal (GBS) vaccines under development hold promise to prevent GBS disease in young infants. Sub-Saharan Africa has the highest estimated disease burden, although data on incidence and circulating strains are limited. We described invasive bacterial disease (IBD) trends among infants <90 days in rural Mozambique during 2001–2015, with a focus on GBS epidemiology and strain characteristics. Methods Community-level birth and mortality data were obtained from Manhiça’s demographic surveillance system. IBD cases were captured through ongoing surveillance at Manhiça district hospital. Stored GBS isolates from cases underwent serotyping by multiplex PCR, antimicrobial susceptibility testing, and whole genome sequencing. Results There were 437 IBD cases, including 57 GBS cases. Significant declines in overall IBD, neonatal mortality, and stillbirth rates were observed (P<0.0001), but not for GBS (P = 0.17). In 2015, GBS was the leading cause of young infant IBD (2.7 per 1,000 live births). Among 35 GBS isolates available for testing, 31 (88.6%) were highly related serotype III isolates within multilocus sequence types (STs) 17 (68.6%) or 109 (20.0%). All seven ST109 isolates (21.9%) had elevated minimum inhibitory concentration (MIC) to penicillin (≥0.12 μg/mL) associated with penicillin-binding protein (PBP) 2x substitution G398A. Epidemiologic and molecular data suggest this is a well-established clone. Conclusion A notable young infant GBS disease burden persisted despite improvements in overall maternal and neonatal health. We report an established strain with pbp2x point mutation, a first-step mutation associated with reduced penicillin susceptibility within a well-known virulent lineage in rural Mozambique. Our findings further underscores the need for non-antibiotic GBS prevention strategies. PMID:29351318

  18. Structural and Molecular Basis for the Novel Catalytic Mechanism and Evolution of DddP, an Abundant Peptidase-Like Bacterial Dimethylsulfoniopropionate Lyase: A New Enzyme from an Old Fold

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Wang, P.; Chen, X. L.; Li, C. Y.; Gao, X.; Zhu, D.; Xie, B. B.; Qin, Q. L.; Zhang, X. Y.; Su, H. N.; Zhou, B. C.; Xun, L.

    2015-12-01

    The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile dimethyl sulfide (DMS) and is an important step in global sulfur and carbon cycles. DddP is a DMSP lyase in marine bacteria and the deduced dddP gene product is abundant in marine metagenomic data sets. However, DddP belongs to the M24 peptidase family according to sequence alignment. Peptidases hydrolyze C-N bonds but DddP is deduced to cleave C-S bonds. Mechanisms responsible for this striking functional shift are currently unknown. We determined the structures of DMSP lyase RlDddP (the DddP from Ruegeria lacuscaerulensis ITI_1157) bound to inhibitory 2-(N-morpholino) ethanesulfonic acid or PO43- and of two mutants of RlDddP bound to acrylate. Based on structural, mutational and biochemical analyses, we characterized a new ion-shift catalytic mechanism of RlDddP for DMSP cleavage. Further, we suggested the structural mechanism leading to the loss of peptidase activity and the subsequent development of DMSP lyase activity in DddP. This study sheds light on the catalytic mechanism and the divergent evolution of DddP, leading to a better understanding of marine bacterial DMSP catabolism and global DMS production.

  19. Stronger warming effects on microbial abundances in colder regions

    DOE PAGES

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; ...

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra,more » and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.« less

  20. Stronger warming effects on microbial abundances in colder regions

    PubMed Central

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji

    2015-01-01

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra, and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our findings therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions. PMID:26658882

  1. One-pot preparation of conducting composite containing abundant amino groups on electrode surface for electrochemical detection of von willebrand factor

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Ma, Chao; Li, Yi; Liu, Baihui; Tan, Liang

    2018-03-01

    A one-pot protocol based on cyclic voltammetric scan was employed to prepare new conducting composite that was abundant in amino groups. The scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy and infrared spectrum characterization demonstrate that poly(azure A), gold nanoparticles, chitosan and cysteine were immobilized simultaneously on glassy carbon electrode surface. Von Willebrand factor (vWF) antibody (Ab) was subsequently assembled by using glutaraldehyde to construct the Ab/composite-modified electrode. The capture of vWF could inhibit the charge transfer between the ferri-/ferrocyanide probe and the electrode and exert the negative effect on the electrochemical response of the dye polymer in the conducting composite due to the strong steric hindrance effect. The DPV peak current change before and after the immunoreaction was found to be proportional to the logarithm of the vWF concentration from 0.001 to 100 μg mL-1 with a detection limit of 0.4 ng mL-1. The proposed label-free electrochemical method was employed in the investigation on the release of vWF by oxidation-injured vascular endothelial cells. The experimental results exhibit that the vWF content in growth medium was increased when the oxidation injury of the cells was intensified in the presence of H2O2.

  2. [Bacterial diversity within different sections of summer sea-ice samples from the Prydz Bay, Antarctica].

    PubMed

    Ma, Jifei; Du, Zongjun; Luo, Wei; Yu, Yong; Zeng, Yixin; Chen, Bo; Li, Huirong

    2013-02-04

    In order to assess bacterial abundance and diversity within three different sections of summer sea-ice samples collected from the Prydz Bay, Antarctica. Fluorescence in situ hybridization was applied to determine the proportions of Bacteria in sea-ice. Bacterial community composition within sea ice was analyzed by 16S rRNA gene clone library construction. Correlation analysis was performed between the physicochemical parameters and the bacterial diversity and abundance within sea ice. The result of fluorescence in situ hybridization shows that bacteria were abundant in the bottom section, and the concentration of total organic carbon, total organic nitrogen and phosphate may be the main factors for bacterial abundance. In bacterial 16S rRNA gene libraries of sea-ice, nearly complete 16S rRNA gene sequences were grouped into three distinct lineages of Bacteria (gamma-Proteobacteria, alpha-Proteobacteria and Bacteroidetes). Most clone sequences were related to cultured bacterial isolates from the marine environment, arctic and Antarctic sea-ice with high similarity. The member of Bacteroidetes was not detected in the bottom section of sea-ice. The bacterial communities within sea-ice were little heterogeneous at the genus-level between different sections, and the concentration of NH4+ may cause this distribution. The number of bacteria was abundant in the bottom section of sea-ice. Gamma-proteobacteria was the dominant bacterial lineage in sea-ice.

  3. Effect of Probiotic Lactobacillus reuteri on Salivary Cariogenic Bacterial Counts among Groups of Preschool Children in Jeddah, Saudi Arabia: A Randomized Clinical Trial.

    PubMed

    Alamoudi, Najlaa M; Almabadi, Eman S; El Ashiry, Eman A; El Derwi, Douaa A

    2018-05-15

    To evaluate the effect of probiotic Lactobacilli reuteri lozenges on caries-associated salivary bacterial counts (Mutans streptococci and Lactobacillus), dental plaque accumulation, and salivary buffer capacity in a group of preschool children. The study group consisted of 178 healthy children (aged 3-6 years). Children were randomly grouped: the experimental group (n = 90) received L. reuteri probiotic lozenges and the control group (n = 88) received placebo lozenges, twice daily, for 28 days. Salivary Mutans streptococci and Lactobacillus counts, and buffer capacity were assessed using chair-side caries-risk test (CRT®) kits. The Simplified Oral Hygiene index (OHI-S) was used to assess dental plaque accumulation at baseline and after 28 days. After 28 days, the experimental group had a statistically significant reduction in Mutans streptococci and lactobacilli (p = 0.000 and p = 0.020, respectively) and both groups had less plaque accumulation than at baseline. While the buffer capacity in the experimental group increased more than in the control group, it was not statistically significant (p = 0.577). Compliance was 90%, with no adverse events. Consumption of probiotic lozenges containing L. reuteri reduces caries-associated bacterial counts significantly. Probiotics consumption may have a beneficial caries-preventive effect.

  4. Changes in bacterial gut community of Reticulitermes flavipes (Kollar) and Reticulitermes tibialis Banks after feeding on termiticidal bait material

    Treesearch

    Rachel A. Arango; Frederick Green III; Kenneth F. Raffa

    2014-01-01

    In this study, 454-pyrosequencing was used to evaluate the effect of two termiticidal baits, hexaflumuron and diflubenzuron, on the bacterial gut community in two Reticulitermes flavipes colonies and one Reticulitermes tibialis colony. Results showed two bacterial groups to be most abundant in the gut, the Bacteroidetes and...

  5. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate.

    PubMed

    Niu, Jiaojiao; Chao, Jin; Xiao, Yunhua; Chen, Wu; Zhang, Chao; Liu, Xueduan; Rang, Zhongwen; Yin, Huaqun; Dai, Linjian

    2017-01-01

    Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Roles of the bacterial cell wall and capsule in induction of tumor necrosis factor alpha by type III group B streptococci.

    PubMed Central

    Vallejo, J G; Baker, C J; Edwards, M S

    1996-01-01

    Group B streptococci (GBS) are the major cause of sepsis and fatal shock in neonates in the United States. The precise role of tumor necrosis factor alpha (TNF-alpha) in the development of human GBS sepsis has not been defined; however, whole GBS have been shown to induce the production of this inflammatory cytokine. We sought to determine which bacterial cell wall components of GBS are responsible for triggering TNF-alpha production. Human cord blood monocytes were stimulated with encapsulated (COH1) or unencapsulated (COH1-13) whole type III GBS or with purified bacterial components, including type III capsular polysaccharide (III-PS), group B polysaccharide (GB-PS), lipoteichoic acid (LTA), or peptidoglycan (PG). Lipopolysaccharide from Escherichia coli served as a control. Supernatants were harvested at specific timed intervals, and TNF-alpha levels were measured by enzyme-linked immunosorbent assay. Monocytes exposed to COH1 and COH1-13 induced similar amounts of TNF-alpha. III-PS, GB-PS, LTA, and PG each induced TNF-alpha in a time- and concentration-dependent manner. However, TNF-alpha release was significantly greater after stimulation by the GB-PS or PG than after stimulation by III-PS or LTA (P < 0.05). Our findings indicate that GB-PS and PG are the bacterial cell wall components primarily evoking TNF-alpha release. These, alone or in concert with other factors, may be responsible for septic shock accompanying GBS sepsis. PMID:8945544

  7. Bacterial colonization of a fumigated alkaline saline soil.

    PubMed

    Bello-López, Juan M; Domínguez-Mendoza, Cristina A; de León-Lorenzana, Arit S; Delgado-Balbuena, Laura; Navarro-Noya, Yendi E; Gómez-Acata, Selene; Rodríguez-Valentín, Analine; Ruíz-Valdiviezo, Victor M; Luna-Guido, Marco; Verhulst, Nele; Govaerts, Bram; Dendooven, Luc

    2014-07-01

    After chloroform fumigating an arable soil, the relative abundance of phylotypes belonging to only two phyla (Actinobacteria and Firmicutes) and two orders [Actinomycetales and Bacillales (mostly Bacillus)] increased in a subsequent aerobic incubation, while it decreased for a wide range of bacterial groups. It remained to be seen if similar bacterial groups were affected when an extreme alkaline saline soil was fumigated. Soil with electrolytic conductivity between 139 and 157 dS m(-1), and pH 10.0 and 10.3 was fumigated and the bacterial community structure determined after 0, 1, 5 and 10 days by analysis of the 16S rRNA gene, while an unfumigated soil served as control. The relative abundance of the Firmicutes increased in the fumigated soil (52.8%) compared to the unfumigated soil (34.2%), while that of the Bacteroidetes decreased from 16.2% in the unfumigated soil to 8.8% in the fumigated soil. Fumigation increased the relative abundance of the genus Bacillus from 14.7% in the unfumigated soil to 25.7%. It was found that phylotypes belonging to the Firmicutes, mostly of the genus Bacillus, were dominant in colonizing the fumigated alkaline saline as found in the arable soil, while the relative abundance of a wide range of bacterial groups decreased.

  8. Protein covalent immobilization via its scarce thiol versus abundant amine groups: Effect on orientation, cell binding domain exposure and conformational lability.

    PubMed

    Ba, O M; Hindie, M; Marmey, P; Gallet, O; Anselme, K; Ponche, A; Duncan, A C

    2015-10-01

    Quantity, orientation, conformation and covalent linkage of naturally cell adhesive proteins adsorbed or covalently linked to a surface, are known to influence the preservation of their subsequent long term cell adhesion properties and bioactivity. In the present work, we explore two different strategies for the covalent linking of plasma fibronectin (pFN) - used as a cell adhesive model protein, onto a polystyrene (PS) surface. One is aimed at tethering the protein to the surface in a semi-oriented fashion (via one of the 4 free thiol reactive groups on the protein) with a heterofunctional coupling agent (SSMPB method). The other aims to immobilize the protein in a more random fashion by reaction between the abundant pendant primary amine bearing amino acids of the pFN and activated carboxylic surface functions obtained after glutaric anhydride surface treatment (GA method). The overall goal will be to verify the hypothesis of a correlation between covalent immobilization of a model cell adhesive protein to a PS surface in a semi-oriented configuration (versus randomly oriented) with promotion of enhanced exposure of the protein's cell binding domain. This in turn would lead to enhanced cell adhesion. Ideally the goal is to elaborate substrates exhibiting a long term stable protein monolayer with preserved cell adhesive properties and bioactivity for biomaterial and/or cell adhesion commercial plate applications. However, the initial restrictive objective of this paper is to first quantitatively and qualitatively investigate the reversibly (merely adsorbed) versus covalently irreversibly bound protein to the surface after the immobilization procedure. Although immobilized surface amounts were similar (close to the monolayer range) for all immobilization approaches, covalent grafting showed improved retention and stronger "tethering" of the pFN protein to the surface (roughly 40%) after SDS rinsing compared to that for mere adsorption (0%) suggesting an added value

  9. A soft biomolecule actuator based on a highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups.

    PubMed

    Wang, Fan; Jeon, Jin-Han; Park, Sukho; Kee, Chang-Doo; Kim, Seong-Jun; Oh, Il-Kwon

    2016-01-07

    Upcoming human-related applications such as soft wearable electronics, flexible haptic systems, and active bio-medical devices will require bio-friendly actuating materials. Here, we report a soft biomolecule actuator based on carboxylated bacterial cellulose (CBC), ionic liquid (IL), and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) electrodes. Soft and biocompatible polymer-IL composites were prepared via doping of CBC with ILs. The highly conductive PSS layers were deposited on both sides of the CBC-IL membranes by a dip-coating technique to yield a sandwiched actuator system. Ionic conductivity and ionic exchange capacity of the CBC membrane can be increased up to 22.8 times and 1.5 times compared with pristine bacterial cellulose (BC), respectively, resulting in 8 times large bending deformation than the pure BC actuators with metallic electrodes in an open air environment. The developed CBC-IL actuators show significant progress in the development of biocompatible and soft actuating materials with quick response, low operating voltage and comparatively large bending deformation.

  10. Absolute quantification of microbial taxon abundances.

    PubMed

    Props, Ruben; Kerckhof, Frederiek-Maarten; Rubbens, Peter; De Vrieze, Jo; Hernandez Sanabria, Emma; Waegeman, Willem; Monsieurs, Pieter; Hammes, Frederik; Boon, Nico

    2017-02-01

    High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys.

  11. The group B streptococcal sialic acid O-acetyltransferase is encoded by neuD, a conserved component of bacterial sialic acid biosynthetic gene clusters.

    PubMed

    Lewis, Amanda L; Hensler, Mary E; Varki, Ajit; Nizet, Victor

    2006-04-21

    Nearly two dozen microbial pathogens have surface polysaccharides or lipo-oligosaccharides that contain sialic acid (Sia), and several Sia-dependent virulence mechanisms are known to enhance bacterial survival or result in host tissue injury. Some pathogens are also known to O-acetylate their Sias, although the role of this modification in pathogenesis remains unclear. We report that neuD, a gene located within the Group B Streptococcus (GBS) Sia biosynthetic gene cluster, encodes a Sia O-acetyltransferase that is itself required for capsular polysaccharide (CPS) sialylation. Homology modeling and site-directed mutagenesis identified Lys-123 as a critical residue for Sia O-acetyltransferase activity. Moreover, a single nucleotide polymorphism in neuD can determine whether GBS displays a "high" or "low" Sia O-acetylation phenotype. Complementation analysis revealed that Escherichia coli K1 NeuD also functions as a Sia O-acetyltransferase in GBS. In fact, NeuD homologs are commonly found within Sia biosynthetic gene clusters. A bioinformatic approach identified 18 bacterial species with a Sia biosynthetic gene cluster that included neuD. Included in this list are the sialylated human pathogens Legionella pneumophila, Vibrio parahemeolyticus, Pseudomonas aeruginosa, and Campylobacter jejuni, as well as an additional 12 bacterial species never before analyzed for Sia expression. Phylogenetic analysis shows that NeuD homologs of sialylated pathogens share a common evolutionary lineage distinct from the poly-Sia O-acetyltransferase of E. coli K1. These studies define a molecular genetic approach for the selective elimination of GBS Sia O-acetylation without concurrent loss of sialylation, a key to further studies addressing the role(s) of this modification in bacterial virulence.

  12. Genital tract shedding of herpes simplex virus type 2 in women: effects of hormonal contraception, bacterial vaginosis, and vaginal group B Streptococcus colonization.

    PubMed

    Cherpes, Thomas L; Melan, Melissa A; Kant, Jeffrey A; Cosentino, Lisa A; Meyn, Leslie A; Hillier, Sharon L

    2005-05-15

    Genital infections due to herpes simplex virus type 2 (HSV-2) are characterized by frequent reactivation and shedding of the virus and by the attendant risk of transmission to sexual partners. We investigated the effects of vaginal coinfections and hormonal contraceptive use on genital tract shedding of HSV-2 in women. A total of 330 HSV-2-seropositive women were followed every 4 months for a year. At each visit, one vaginal swab specimen was obtained for detection of HSV-2 by polymerase chain reaction, a second vaginal swab specimen was obtained for detection of group B Streptococcus (GBS) organisms and yeast by culture, and a vaginal smear was obtained for the diagnosis of bacterial vaginosis by Gram staining. HSV-2 DNA was detected in 88 (9%) of 956 vaginal swab specimens. Independent predictors of genital tract shedding of HSV-2 were HSV-2 seroconversion during the previous 4 months (adjusted odds ratio [aOR], 3.0; 95% confidence interval [CI], 1.3-6.8), bacterial vaginosis (aOR, 2.3; 95% CI, 1.3-4.0), high-density vaginal GBS colonization (aOR, 2.2; 95% CI, 1.3-3.8), and use of hormonal contraceptives (aOR, 1.8; 95% CI, 1.1-2.8). The present study identifies hormonal contraceptive use, bacterial vaginosis, and high-density vaginal GBS colonization as risk factors for genital tract shedding of HSV-2 in women. Because hormonal contraceptives are used by millions of women worldwide and because bacterial vaginosis and vaginal GBS colonization are common vaginal conditions, even modest associations with HSV-2 shedding would result in substantial attributable risks for transmission of the virus.

  13. Intravenous drug addicts: a high risk group for infection with human immunodeficiency virus, hepatitis viruses, cytomegalo virus and bacterial infections in Alexandria Egypt.

    PubMed

    el-Ghazzawi, E; Drew, L; Hamdy, L; El-Sherbini, E; Sadek, S el-D; Saleh, E

    1995-01-01

    In this work the seroprevalence of HIV, HBV, HCV and CMV were studied among two groups of population; IVDA (intravenous drug addicts) (100) and control group (40). Syphilis and other bacterial infections which may be encountered among IVDA were also investigated. It was found that all serum samples (of both groups) were negative for anti-HIV. Regarding HBV markers, the prevalence of HBc antibodies was significantly higher among IVDA (62%) than the control group (27.5%). Also HBsAg was detected in 16% of IVDA while it was 75% among the control group. Prevalence of anti-HCV was significantly higher among IVDA (63%) than the control group (27.5%). The prevalence of co-infection with HBV and HCV was significantly higher in IVDA (40%) than the control group (15%). Sharing of needles and duration of drug use were positively associated with the presence of both HBV markers and anti-HCV. CMV seroprevalence was high in both groups. Antibodies to Syphilis were found in sera of 3 IVDA and one control using MHA-TP test. Although HIV infection has not yet been sufficiently introduced among IVDA in Alexandria but potentials for its spread among addicts are high as supported by observation that other infections with similar mode of transmission are common among addicts.

  14. Changes in soil bacterial community structure with increasing disturbance frequency.

    PubMed

    Kim, Mincheol; Heo, Eunjung; Kang, Hojeong; Adams, Jonathan

    2013-07-01

    Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found to decline with the increasing disturbance frequencies. Total bacterial abundance was, however, higher at intermediate and high disturbance frequencies, compared to low and no-disturbance treatments. Changing disturbance frequency also led to changes in community composition, with changes in overall species composition and some groups becoming abundant at the expense of others. Some phylogenetic groups were found to be relatively more disturbance-sensitive or tolerant than others. With increasing disturbance frequency, phylogenetic species variability (an index of community composition) itself became more variable from one sample to another, suggesting a greater role of chance in community composition. Compared to the tightly clustered community of the original undisturbed soil, in all the aged disturbed soils the lists of most abundant operational taxonomic units (OTUs) in each replicate were very different, suggesting a possible role of stochasticity in resource colonization and exploitation in the aged and disturbed soils. For example, colonization may be affected by whichever localized concentrations of bacterial populations happen to survive the last disturbance and be reincorporated in abundance into each pot. Overall, it appears that the soil bacterial community is very sensitive to physical disturbance, losing diversity, and that certain groups have identifiable 'high disturbance' vs. 'low disturbance' niches.

  15. Linking isoprenoidal GDGT membrane lipid distributions with gene abundances of ammonia-oxidizing Thaumarchaeota and uncultured crenarchaeotal groups in the water column of a tropical lake (Lake Challa, East Africa).

    PubMed

    Buckles, Laura K; Villanueva, Laura; Weijers, Johan W H; Verschuren, Dirk; Damsté, Jaap S Sinninghe

    2013-09-01

    Stratified lakes are important reservoirs of microbial diversity and provide habitats for niche differentiation of Archaea. In this study, we used a lipid biomarker/DNA-based approach to reveal the diversity and abundance of Archaea in the water column of Lake Challa (East Africa). Concentrations of intact polar lipid (IPL) crenarchaeol, a specific biomarker of Thaumarchaeota, were enhanced (1 ng l(-1) ) at the oxycline/nitrocline. The predominance of the more labile IPL hexose-phosphohexose crenarchaeol indicated the presence of an actively living community of Thaumarchaeota. Archaeal 16S rRNA clone libraries revealed the presence of thaumarchaeotal groups 1.1a and 1.1b at and above the oxycline. In the anoxic deep water, amoA gene abundance was an order of magnitude lower than at the oxycline and high abundance (∼90 ng l(-1) ) of an IPL with the acyclic glycerol dialkyl glycerol tetraether (GDGT-0) was evident. The predominance of archaeal 16S rRNA sequences affiliated to the uncultured crenarchaeota groups 1.2 and miscellaneous crenarchaeotic group (MCG) points to an origin of GDGT-0 from uncultured crenarchaeota. This study demonstrates the importance of thermal stratification and nutrient availability in the distribution of archaeal groups in lakes, which is relevant to constrain and validate temperature proxies based on archaeal GDGTs (i.e. TEX86 ). © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow.

    PubMed

    Lenart, Anna; Wolny-Koładka, Katarzyna

    2013-01-01

    The present study aimed to identify the effect of heavy metal concentration and soil pH on the abundance of the selected soil microorganisms within ArcelorMittal Poland steelworks, Cracow. The analysis included 20 soil samples, where the concentration of Fe, Zn, Cd, Pb, Ni, Cu, Mn, Cr and soil pH were evaluated together with the number of mesophilic bacteria, fungi, Actinomycetes and Azotobacter spp. In the majority of samples soil pH was alkaline. The limits of heavy metals exceeded in eight samples and in one sample, the concentration of Zn exceeded 31-fold. Chromium was the element which most significantly limited the number of bacteria and Actinomycetes.

  17. Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae.

    PubMed

    Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F

    2014-10-01

    Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3' terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species.

  18. Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae

    PubMed Central

    Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F

    2014-01-01

    Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3′ terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species. PMID:24736785

  19. Stellar Oxygen Abundances

    NASA Astrophysics Data System (ADS)

    King, Jeremy

    1994-04-01

    . [1989, ARAA, 27, 279], persists despite the addition of more O data and may betray the occurrence of a hiatus in star formation between the end of halo formation and the beginning of star formation in the disk. It is noted that the slope of the [O/Fe] versus [Fe/H] relation for [Fe/H] >/= -1 depends on the statistical regression utilized. Hence, alleged "observed" [O/H] - age relations, which do not use truly observed O abundances (but, rather, adopt O abundances based on Fe abundances), should be regarded with caution. Systematic effects on O abundances derived from the 6300A [O I] and 7774A O I lines are considered next. While our Solar observations confirm the disagreement between the observed 7774A O I equivalent widths and LTE model calculations at low microns, we stress that Solar O abundance determinations made from flux spectra are in very good agreement with the meteoritic value. We find the 6300A [O I] equivalent width value appears to be uncertain for the Sun. Given this uncertainty, the inability of authors to reproduce each others' 6300A O abundances, and the results of recent quasi-two-stream calculations, we do not believe it can be readily claimed (as is usually done) that these abundances are more reliable than those derived from the 7774A O I triplet. In a sample of relatively metal-rich F and G dwarfs, we find no systematic difference between the 6300 and 7774A O abundances for Teff abundances are also determined for 8 open clusters or moving groups. A very clear relation between cluster age and O abundance is seen; this is in stark contrast to the lack of any relation between age and Fe abundance in the same clusters. Hence, despite possible a priori objections, O abundances may prove to be a superior chronometer (as others have suggested) in the study of Galactic chemical evolution. Somewhat surprisingly, our our [O/Fe] ratios appear to be larger for the

  20. Pregnancy-related group a streptococcal infections: temporal relationships between bacterial acquisition, infection onset, clinical findings, and outcome.

    PubMed

    Hamilton, Stephanie M; Stevens, Dennis L; Bryant, Amy E

    2013-09-01

    Puerperal sepsis caused by group A Streptococcus (GAS) remains an important cause of maternal and infant mortality worldwide, including countries with modern antibiotic regimens, intensive care measures and infection control practices. To provide insights into the genesis of modern GAS puerperal sepsis, we reviewed the published cases and case series from 1974 to 2009, specifically seeking relationships between the likely source of pathogen acquisition, clinical signs, and symptoms at infection onset and patient outcomes that could provide clues for early diagnosis. Results suggest that the pathogenesis of pregnancy-related GAS infections in modern times is complex and not simply the result of exposure to GAS in the hospital setting. Additional research is needed to further explore the source of GAS, the specific M types involved, and the pathogenesis of these pregnancy-related infections to generate novel preventative and therapeutic strategies.

  1. Pregnancy-Related Group A Streptococcal Infections: Temporal Relationships Between Bacterial Acquisition, Infection Onset, Clinical Findings, and Outcome

    PubMed Central

    Hamilton, Stephanie M.; Stevens, Dennis L.; Bryant, Amy E.

    2013-01-01

    Puerperal sepsis caused by group A Streptococcus (GAS) remains an important cause of maternal and infant mortality worldwide, including countries with modern antibiotic regimens, intensive care measures and infection control practices. To provide insights into the genesis of modern GAS puerperal sepsis, we reviewed the published cases and case series from 1974 to 2009, specifically seeking relationships between the likely source of pathogen acquisition, clinical signs, and symptoms at infection onset and patient outcomes that could provide clues for early diagnosis. Results suggest that the pathogenesis of pregnancy-related GAS infections in modern times is complex and not simply the result of exposure to GAS in the hospital setting. Additional research is needed to further explore the source of GAS, the specific M types involved, and the pathogenesis of these pregnancy-related infections to generate novel preventative and therapeutic strategies. PMID:23645851

  2. Mechanisms of Innovation Diffusion under Information Abundance and Information Scarcity--On the Contribution of Social Networks in Group vs. Individual Extension Approaches in Semi-Arid Kenya

    ERIC Educational Resources Information Center

    Darr, Dietrich; Pretzsch, Jurgen

    2008-01-01

    Purpose: The objective of this paper is to assess the effectiveness of innovation diffusion under group-oriented and individual-oriented extension. Current theoretical notions of innovation diffusion in social networks shall be briefly reviewed, and the concepts of "search" and "innovation" vis-a-vis "transfer" and…

  3. Chemical Abundances of Planetary Nebulae in the Substructures of M31. II. The Extended Sample and a Comparison Study with the Outer-disk Group

    NASA Astrophysics Data System (ADS)

    Fang, Xuan; García-Benito, Rubén; Guerrero, Martín A.; Zhang, Yong; Liu, Xiaowei; Morisset, Christophe; Karakas, Amanda I.; Miller Bertolami, Marcelo M.; Yuan, Haibo; Cabrera-Lavers, Antonio

    2018-01-01

    We report deep spectroscopy of 10 planetary nebulae (PNe) in the Andromeda Galaxy (M31) using the 10.4 m Gran Telescopio Canarias (GTC). Our targets reside in different regions of M31, including halo streams and the dwarf satellite M32, and kinematically deviate from the extended disk. The temperature-sensitive [O III] λ4363 line is observed in all PNe. For four PNe, the GTC spectra extend beyond 1 μm, enabling the explicit detection of the [S III] λ6312 and λλ9069, 9531 lines and thus determination of the [S III] temperature. Abundance ratios are derived and generally consistent with AGB model predictions. Our PNe probably all evolved from low-mass (<2 M ⊙) stars, as analyzed with the most up-to-date post-AGB evolutionary models, and their main-sequence ages are mostly ∼2–5 Gyr. Compared to the underlying, smooth, metal-poor halo of M31, our targets are uniformly metal rich ([O/H] ≳ ‑0.4), and seem to resemble the younger population in the stream. We thus speculate that our halo PNe formed in the Giant Stream’s progenitor through extended star formation. Alternatively, they might have formed from the same metal-rich gas as did the outer-disk PNe but were displaced into their present locations as a result of galactic interactions. These interpretations are, although speculative, qualitatively in line with the current picture, as inferred from previous wide-field photometric surveys, that M31's halo is the result of complex interactions and merger processes. The behavior of the N/O of the combined sample of the outer-disk and our halo/substructure PNe signifies that hot bottom burning might actually occur at <3 M ⊙ but careful assessment is needed. Based on observations made with the Gran Telescopio Canarias, installed at the Spanish Observatorio del Roque de los Muchachos of Instituto de Astrofísica de Canarias, in the island of La Palma. The observations presented in this paper are associated with GTC programs #GTC66-16A and #GTC25-16B.

  4. Gram-Positive Bacterial Infections: Research Priorities, Accomplishments, and Future Directions of the Antibacterial Resistance Leadership Group.

    PubMed

    Doernberg, Sarah B; Lodise, Thomas P; Thaden, Joshua T; Munita, Jose M; Cosgrove, Sara E; Arias, Cesar A; Boucher, Helen W; Corey, G Ralph; Lowy, Franklin D; Murray, Barbara; Miller, Loren G; Holland, Thomas L

    2017-03-15

    Antimicrobial resistance in gram-positive bacteria remains a challenge in infectious diseases. The mission of the Gram-Positive Committee of the Antibacterial Resistance Leadership Group (ARLG) is to advance knowledge in the prevention, management, and treatment of these challenging infections to improve patient outcomes. Our committee has prioritized projects involving methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) due to the scope of the medical threat posed by these pathogens. Approved ARLG projects involving gram-positive pathogens include (1) a pharmacokinetics/pharmacodynamics study to evaluate the impact of vancomycin dosing on patient outcome in MRSA bloodstream infection (BSI); (2) defining, testing, and validating innovative assessments of patient outcomes for clinical trials of MRSA-BSI; (3) testing new strategies for "step-down" antibiotic therapy for MRSA-BSI; (4) management of staphylococcal BSIs in neonatal intensive care units; and (5) defining the impact of VRE bacteremia and daptomycin susceptibility on patient outcomes. This article outlines accomplishments, priorities, and challenges for research of infections caused by gram-positive organisms. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  5. Abundance of Jackfruit ( Artocarpus heterophyllus) Affects Group Characteristics and Use of Space by Golden-Headed Lion Tamarins ( Leontopithecus chrysomelas) in Cabruca Agroforest

    NASA Astrophysics Data System (ADS)

    Oliveira, Leonardo C.; Neves, Leonardo G.; Raboy, Becky E.; Dietz, James M.

    2011-08-01

    Cabruca is an agroforest of cacao trees shaded by native forest trees. It is the predominant vegetation type throughout eastern part of the range of the golden-headed lion tamarins, Leontopithecus chrysomelas, an endangered primate endemic to Atlantic Forest. Understanding how lion tamarins use this agroforest is a conservation priority. To address this question, we documented the diet, home range size, group sizes and composition, density, number of litters and body condition of lion tamarins living in cabruca, and other habitats. Jackfruit, Artocarpus heterophyllus, was the most used species used by lion tamarins in cabruca and was widely available and used throughout the year. In cabruca, home range size was the smallest (22-28 ha) and density of lion tamarins was the highest (1.7 ind/ha) reported for the species. Group size averaged 7.4 individuals and was not significantly different among the vegetation types. In cabruca, groups produced one or two litters a year, and all litters were twins. Adult males in cabruca were significantly heavier than males in primary forest. Our study is the first to demonstrate that breeding groups of golden-headed lion tamarins can survive and reproduce entirely within cabruca agroforest. Jackfruit proved to be a keystone resource for lion tamarins in cabruca, and bromeliads were important as an animal prey foraging microhabitat. In cases where cabruca contains concentrated resources, such as jackfruit and bromeliads, lion tamarins may not only survive and reproduce but may fare better than in other forest types, at least for body condition and reproduction.

  6. Abundance of jackfruit (Artocarpus heterophyllus) affects group characteristics and use of space by golden-headed lion tamarins (Leontopithecus chrysomelas) in Cabruca agroforest.

    PubMed

    Oliveira, Leonardo C; Neves, Leonardo G; Raboy, Becky E; Dietz, James M

    2011-08-01

    Cabruca is an agroforest of cacao trees shaded by native forest trees. It is the predominant vegetation type throughout eastern part of the range of the golden-headed lion tamarins, Leontopithecus chrysomelas, an endangered primate endemic to Atlantic Forest. Understanding how lion tamarins use this agroforest is a conservation priority. To address this question, we documented the diet, home range size, group sizes and composition, density, number of litters and body condition of lion tamarins living in cabruca, and other habitats. Jackfruit, Artocarpus heterophyllus, was the most used species used by lion tamarins in cabruca and was widely available and used throughout the year. In cabruca, home range size was the smallest (22-28 ha) and density of lion tamarins was the highest (1.7 ind/ha) reported for the species. Group size averaged 7.4 individuals and was not significantly different among the vegetation types. In cabruca, groups produced one or two litters a year, and all litters were twins. Adult males in cabruca were significantly heavier than males in primary forest. Our study is the first to demonstrate that breeding groups of golden-headed lion tamarins can survive and reproduce entirely within cabruca agroforest. Jackfruit proved to be a keystone resource for lion tamarins in cabruca, and bromeliads were important as an animal prey foraging microhabitat. In cases where cabruca contains concentrated resources, such as jackfruit and bromeliads, lion tamarins may not only survive and reproduce but may fare better than in other forest types, at least for body condition and reproduction.

  7. Bacterial infections in pediatric hematopoietic stem cell transplantation recipients: incidence, epidemiology, and spectrum of pathogens: report of the Polish Pediatric Group for Hematopoietic Stem Cell Transplantation.

    PubMed

    Zając-Spychała, O; Wachowiak, J; Pieczonka, A; Siewiera, K; Frączkiewicz, J; Kałwak, K; Gorczyńska, E; Chybicka, A; Czyżewski, K; Jachna-Sawicka, K; Wysocki, M; Klepacka, J; Goździk, J; Zaucha-Prażmo, A; Kowalczyk, J R; Styczyński, J

    2016-10-01

    Infectious complications are a significant cause of hematopoietic stem cell transplantation (HSCT) failure, especially allogeneic HSCT (allo-HSCT) because of delayed immune reconstitution and graft-versus-host disease (GVHD) occurrence. Identifying the factors responsible for bacterial infections (BI) in patients undergoing HSCT will provide much more effective empirical antimicrobial treatment in this group of patients. The aim of this study was to evaluate the epidemiology and profile of BI in patients after HSCT in 5 centers of the Polish Pediatric Group for Hematopoietic Stem Cell Transplantation in 2012-2013. In 308 HSCT recipients, we retrospectively analyzed 273 episodes of BI in 113 (36.7%) children aged 0.02-22 years (median age: 7 years), 92 after allo-HSCT and 22 after autologous HSCT (auto-HSCT). We assessed incidence of BI in different HSCT types by calculating the Index of Bacterial Infection (IBI) as a ratio of patients with at least 1 BI to all patients who underwent this type of HSCT in the analyzed period. We assessed the profile of BI with particular emphasis on multidrug-resistant organisms, and impact of underlying disease and of graft-versus-host disease on BI episodes. In the studied group, 273 episodes of BI were diagnosed, including 237 episodes after allo-HSCT and 36 after auto-HSCT. Among allo-HSCT recipients diagnosed with at least 1 BI, the IBI was 0.4 (matched sibling donor-HSCT 0.3; matched donor-HSCT 0.4; mismatched unrelated donor [MMUD]-HSCT 0.8; P = 0.027) and after auto-HSCT 0.3 per 1 transplanted patient. In patient after allo-HSCT because of myelo- or lymphoproliferative diseases and bone marrow failures, the major cause of infections was Enterobacteriaceae, while gram-positive bacteria predominated in the group with primary immunodeficiencies. In all patients after auto-HSCT, the dominant pathogen of BI were Enterobacteriaceae (P = 0.011). Time from each type of HSCT to infection caused by different pathogens did not differ

  8. Microbial Abundances Predict Methane and Nitrous Oxide Fluxes from a Windrow Composting System

    PubMed Central

    Li, Shuqing; Song, Lina; Gao, Xiang; Jin, Yaguo; Liu, Shuwei; Shen, Qirong; Zou, Jianwen

    2017-01-01

    Manure composting is a significant source of atmospheric methane (CH4) and nitrous oxide (N2O) that are two potent greenhouse gases. The CH4 and N2O fluxes are mediated by methanogens and methanotrophs, nitrifying and denitrifying bacteria in composting manure, respectively, while these specific bacterial functional groups may interplay in CH4 and N2O emissions during manure composting. To test the hypothesis that bacterial functional gene abundances regulate greenhouse gas fluxes in windrow composting systems, CH4 and N2O fluxes were simultaneously measured using the chamber method, and molecular techniques were used to quantify the abundances of CH4-related functional genes (mcrA and pmoA genes) and N2O-related functional genes (amoA, narG, nirK, nirS, norB, and nosZ genes). The results indicate that changes in interacting physicochemical parameters in the pile shaped the dynamics of bacterial functional gene abundances. The CH4 and N2O fluxes were correlated with abundances of specific compositional genes in bacterial community. The stepwise regression statistics selected pile temperature, mcrA and NH4+ together as the best predictors for CH4 fluxes, and the model integrating nirK, nosZ with pmoA gene abundances can almost fully explain the dynamics of N2O fluxes over windrow composting. The simulated models were tested against measurements in paddy rice cropping systems, indicating that the models can also be applicable to predicting the response of CH4 and N2O fluxes to elevated atmospheric CO2 concentration and rising temperature. Microbial abundances could be included as indicators in the current carbon and nitrogen biogeochemical models. PMID:28373862

  9. Insights from the Genome Sequence of Acidovorax citrulli M6, a Group I Strain of the Causal Agent of Bacterial Fruit Blotch of Cucurbits.

    PubMed

    Eckshtain-Levi, Noam; Shkedy, Dafna; Gershovits, Michael; Da Silva, Gustavo M; Tamir-Ariel, Dafna; Walcott, Ron; Pupko, Tal; Burdman, Saul

    2016-01-01

    Acidovorax citrulli is a seedborne bacterium that causes bacterial fruit blotch of cucurbit plants including watermelon and melon. A. citrulli strains can be divided into two major groups based on DNA fingerprint analyses and biochemical properties. Group I strains have been generally isolated from non-watermelon cucurbits, while group II strains are closely associated with watermelon. In the present study, we report the genome sequence of M6, a group I model A. citrulli strain, isolated from melon. We used comparative genome analysis to investigate differences between the genome of strain M6 and the genome of the group II model strain AAC00-1. The draft genome sequence of A. citrulli M6 harbors 139 contigs, with an overall approximate size of 4.85 Mb. The genome of M6 is ∼500 Kb shorter than that of strain AAC00-1. Comparative analysis revealed that this size difference is mainly explained by eight fragments, ranging from ∼35-120 Kb and distributed throughout the AAC00-1 genome, which are absent in the M6 genome. In agreement with this finding, while AAC00-1 was found to possess 532 open reading frames (ORFs) that are absent in strain M6, only 123 ORFs in M6 were absent in AAC00-1. Most of these M6 ORFs are hypothetical proteins and most of them were also detected in two group I strains that were recently sequenced, tw6 and pslb65. Further analyses by PCR assays and coverage analyses with other A. citrulli strains support the notion that some of these fragments or significant portions of them are discriminative between groups I and II strains of A. citrulli. Moreover, GC content, effective number of codon values and cluster of orthologs' analyses indicate that these fragments were introduced into group II strains by horizontal gene transfer events. Our study reports the genome sequence of a model group I strain of A. citrulli, one of the most important pathogens of cucurbits. It also provides the first comprehensive comparison at the genomic level between the

  10. Insights from the Genome Sequence of Acidovorax citrulli M6, a Group I Strain of the Causal Agent of Bacterial Fruit Blotch of Cucurbits

    PubMed Central

    Eckshtain-Levi, Noam; Shkedy, Dafna; Gershovits, Michael; Da Silva, Gustavo M.; Tamir-Ariel, Dafna; Walcott, Ron; Pupko, Tal; Burdman, Saul

    2016-01-01

    Acidovorax citrulli is a seedborne bacterium that causes bacterial fruit blotch of cucurbit plants including watermelon and melon. A. citrulli strains can be divided into two major groups based on DNA fingerprint analyses and biochemical properties. Group I strains have been generally isolated from non-watermelon cucurbits, while group II strains are closely associated with watermelon. In the present study, we report the genome sequence of M6, a group I model A. citrulli strain, isolated from melon. We used comparative genome analysis to investigate differences between the genome of strain M6 and the genome of the group II model strain AAC00-1. The draft genome sequence of A. citrulli M6 harbors 139 contigs, with an overall approximate size of 4.85 Mb. The genome of M6 is ∼500 Kb shorter than that of strain AAC00-1. Comparative analysis revealed that this size difference is mainly explained by eight fragments, ranging from ∼35–120 Kb and distributed throughout the AAC00-1 genome, which are absent in the M6 genome. In agreement with this finding, while AAC00-1 was found to possess 532 open reading frames (ORFs) that are absent in strain M6, only 123 ORFs in M6 were absent in AAC00-1. Most of these M6 ORFs are hypothetical proteins and most of them were also detected in two group I strains that were recently sequenced, tw6 and pslb65. Further analyses by PCR assays and coverage analyses with other A. citrulli strains support the notion that some of these fragments or significant portions of them are discriminative between groups I and II strains of A. citrulli. Moreover, GC content, effective number of codon values and cluster of orthologs’ analyses indicate that these fragments were introduced into group II strains by horizontal gene transfer events. Our study reports the genome sequence of a model group I strain of A. citrulli, one of the most important pathogens of cucurbits. It also provides the first comprehensive comparison at the genomic level between

  11. Analysis of Two-Component Systems in Group B Streptococcus Shows That RgfAC and the Novel FspSR Modulate Virulence and Bacterial Fitness

    PubMed Central

    Faralla, Cristina; Metruccio, Matteo M.; De Chiara, Matteo; Mu, Rong; Patras, Kathryn A.; Muzzi, Alessandro; Grandi, Guido; Margarit, Immaculada; Doran, Kelly S.

    2014-01-01

    ABSTRACT Group B Streptococcus (GBS), in the transition from commensal organisms to pathogens, will encounter diverse host environments and, thus, require coordinated control of the transcriptional responses to these changes. This work was aimed at better understanding the role of two-component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knockout strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1% to 3% of the genome. Interestingly, two sugar phosphotransferase systems appeared to be differentially regulated in the TCS-16 knockout strain (TCS loci were numbered in order of their appearance on the chromosome), suggesting an involvement in monitoring carbon source availability. High-throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for the growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16, with concomitant dramatic upregulation of the adjacent operon, which encodes a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and the data also provide experimental evidence for TCS-17/RgfAC involvement in virulence. PMID:24846378

  12. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    PubMed

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  13. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History

    PubMed Central

    Correa-Galeote, David; Bedmar, Eulogio J.; Arone, Gregorio J.

    2018-01-01

    The bacterial endophytic communities residing within roots of maize (Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities. PMID:29662471

  14. A 2,4-dichlorophenoxyacetic acid degradation plasmid pM7012 discloses distribution of an unclassified megaplasmid group across bacterial species.

    PubMed

    Sakai, Yoriko; Ogawa, Naoto; Shimomura, Yumi; Fujii, Takeshi

    2014-03-01

    Analysis of the complete nucleotide sequence of plasmid pM7012 from 2,4-dichlorophenoxyacetic-acid (2,4-D)-degrading bacterium Burkholderia sp. M701 revealed that the plasmid had 582 142 bp, with 541 putative protein-coding sequences and 39 putative tRNA genes for the transport of the standard 20 aa. pM7012 contains sequences homologous to the regions involved in conjugal transfer and plasmid maintenance found in plasmids byi_2p from Burkholderia sp. YI23 and pBVIE01 from Burkholderia sp. G4. No relaxase gene was found in any of these plasmids, although genes for a type IV secretion system and type IV coupling proteins were identified. Plasmids with no relaxase gene have been classified as non-mobile plasmids. However, nucleotide sequences with a high level of similarity to the genes for plasmid transfer, plasmid maintenance, 2,4-D degradation and arsenic resistance contained on pM7012 were also detected in eight other megaplasmids (~600 or 900 kb) found in seven Burkholderia strains and a strain of Cupriavidus, which were isolated as 2,4-D-degrading bacteria in Japan and the United States. These results suggested that the 2,4-D degradation megaplasmids related to pM7012 are mobile and distributed across various bacterial species worldwide, and that the plasmid group could be distinguished from known mobile plasmid groups.

  15. Strains of the Group I Lineage of Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch of Cucurbitaceous Crops, are Predominant in Brazil.

    PubMed

    Silva, Gustavo M; Souza, Ricardo M; Yan, Lichun; Júnior, Rui S; Medeiros, Flavio H V; Walcott, Ron R

    2016-12-01

    Bacterial fruit blotch (BFB), caused by the seedborne bacterium Acidovorax citrulli, is an economically important threat to cucurbitaceous crops worldwide. Since the first report of BFB in Brazil in 1990, outbreaks have occurred sporadically on watermelon and, more frequently, on melon, resulting in significant yield losses. At present, the genetic diversity and the population structure of A. citrulli strains in Brazil remain unclear. A collection of 74 A. citrulli strains isolated from naturally infected tissues of different cucurbit hosts in Brazil between 2000 and 2014 and 18 A. citrulli reference strains from other countries were compared by pulsed-field gel electrophoresis (PFGE), multilocus sequence analysis (MLSA) of housekeeping and virulence-associated genes, and pathogenicity tests on seedlings of different cucurbit species. The Brazilian population comprised predominantly group I strains (98%), regardless of the year of isolation, geographical region, or host. Whole-genome restriction digestion and PFGE analysis revealed that three unique and previously unreported A. citrulli haplotypes (assigned as haplotypes B22, B23, and B24) occurred in Brazil. The greatest diversity of A. citrulli (four haplotypes) was found among strains collected from the northeastern region of Brazil, which accounts for more than 90% of the country's melon production. MLSA clearly distinguished A. citrulli strains into two well-supported clades, in agreement with observations based on PFGE analysis. Five Brazilian A. citrulli strains, representing different group I haplotypes, were moderately aggressive on watermelon seedlings compared with four group II strains that were highly aggressive. In contrast, no significant differences in BFB severity were observed between group I and II A. citrulli strains on melon and squash seedlings. Finally, we observed a differential effect of temperature on in vitro growth of representative group I and II A. citrulli haplotypes. Specifically, of

  16. Bacterial biofilm composition in caries and caries-free subjects.

    PubMed

    Wolff, D; Frese, C; Maier-Kraus, T; Krueger, T; Wolff, B

    2013-01-01

    Certain major pathogens such as Streptococcus mutans, Lactobacillus spp. and others have been reported to be involved in caries initiation and progression. Yet, in addition to those leading pathogens, microbial communities seem to be much more diverse and individually differing. The aim of this study, therefore, was to analyze the bacterial composition of carious dentin and the plaque of caries-free patients by using a custom-made, real-time quantitative polymerase chain reaction assay (RQ-PCR). The study included 26 patients with caries and 28 caries-free controls. Decayed tooth substance and plaque samples were harvested. Bacterial DNA was extracted and tested for the presence of 43 bacterial species or species groups using RQ-PCR. Relative quantification revealed that Propionibacterium acidifaciens was significantly more abundant in caries samples than were other microorganisms (fold change 169.12, p = 0.023). In the caries-free samples, typical health-associated species were significantly more prevalent. Unsupervised hierarchical cluster analysis showed a high abundance of P. acidifaciens in caries subjects and distinct but individually differing bacterial clusters in the caries-free subjects. The distribution of 11 bacteria allowed full discrimination between caries and caries-free subjects. Within the investigated cohort, P. acidifaciens was the only pathogen significantly more abundant in caries subjects. Cluster analysis yielded a diverse flora in caries-free subjects, whereas it was narrowed down to a small range of a few outcompeting members in caries subjects. Copyright © 2012 S. Karger AG, Basel.

  17. Platinum-group element abundances and Re-Os isotopic systematics of the upper continental crust through time: Evidence from glacial diamictites

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Walker, Richard J.; Rudnick, Roberta L.; Gao, Shan; Gaschnig, Richard M.; Puchtel, Igor S.; Tang, Ming; Hu, Zhao-Chu

    2016-10-01

    The fine-grained matrix of glacial diamictites, deposited periodically by continental ice sheets over much of Earth history, provides insights into the average composition and chemical evolution of the upper continental crust (UCC) (Gaschnig et al., 2016, and references therein). The concentrations of platinum-group elements (PGEs, including Os, Ir, Ru, Pt and Pd) and the geochemically related Re, as well as 187Re/188Os and 187Os/188Os ratios, are reported here for globally-distributed glacial diamictites that were deposited during the Mesoarchean, Paleoproterozoic, Neoproterozoic and Paleozoic eras. The medians and averages of PGE concentrations of these diamictite composites decrease from the Mesoarchean to the Neoproterozoic, mimicking decreases in the concentrations of first-row transition elements (Sc, V, Cr, Co and Ni). By contrast, Re concentrations are highly variable with no discernable trend, owing to its high solubility. Assuming these diamictites are representative of average UCC through time, the new data are fully consistent with the previous inference that the Archean UCC contained a greater proportion of mafic-ultramafic rocks relative to younger UCC. Linear regressions of PGEs versus Cr and Ni concentrations in all the diamictite composites from the four time periods are used to estimate the following concentrations of the PGEs in the present-day UCC: 0.059 ± 0.016 ng/g Os, 0.036 ± 0.008 ng/g Ir, 0.079 ± 0.026 ng/g Ru, 0.80 ± 0.22 ng/g Pt and 0.80 ± 0.26 ng/g Pd (2σ of 10,000 bootstrapping regression results). These PGE estimates are slightly higher than the estimates obtained from loess samples. We suggest this probably results from loess preferentially sampling younger UCC rocks that have lower PGE concentrations, or PGEs being fractionated during loess formation. A Re concentration of 0.25 ± 0.12 ng/g (2σ) is obtained from a regression of Re versus Mo. From this, time-integrated 187Re/188Os and 187Os/188Os ratios for the UCC are

  18. Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products.

    PubMed

    Delgado-Andrade, Cristina; Pastoriza de la Cueva, Silvia; Peinado, M Jesús; Rufián-Henares, José Ángel; Navarro, M Pilar; Rubio, Luis A

    2017-10-01

    Bread crust (BC) is one of the major sources of Maillard reaction products (MRPs) in the Western diet. This work was designed to analyze the impact of diets containing important levels of MRPs from BC on intestinal bacterial growth and short chain fatty acids (SCFAs) production in adult rats. Additionally, the pools of compounds excreted in feces attending to their molecular weights were analyzed. Rats were fed for 88days a control diet or diets containing BC or its soluble high molecular weight (HMW), soluble low molecular weight (LMW) or insoluble fractions, respectively. Intestinal (cecum) microbiota composition was determined by qPCR analysis. Consumption of the BC diet lowered (P<0.05) Lactobacillus spp. and Bifidobacterium spp. log 10 counts (8 and 14%, respectively), an effect for which soluble LMW and HMW fractions of BC seemed to be responsible. In these same animals, Escherichia/Shigella counts increased by around 45% (P<0.05), a fact which correlated with a higher production of formic acid in feces (r=0.8197, P=0.0458), and likely caused by the combined consumption of all MRPs contained in the BC. A significant 5-fold increment (P<0.05) was detected in the fecal proportion of propionic acid in the BC group, one of the products that have largely been associated with anti-inflammatory actions. Regarding the distribution of MRPs in feces, only the LMW fed group exhibited a predominance of those ranging between 90,000-1000Da, whereas the rest of the groups presented higher amounts of products above 90,000Da. It is concluded that dietary Maillard reaction products are in vivo fermented by the gut microbiota, thereby changing both the pattern of SCFAs production and the microbiota composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [The composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora].

    PubMed

    Lei, D; Lin, Y; Jiang, X; Lan, L; Zhang, W; Wang, B X

    2017-03-02

    Objective: To explore the composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora. Method: Twenty-four specimens were collected from pregnant Kunming mouse including 8 mice of early embryonic (12-13 days) gastrointestinal tissues, 8 cases of late embryonic (19-20 days)gastrointestinal tissues, 8 of late pregnancy placental tissues.The 24 samples were extracted by DNeasy Blood & Tissue kit for high-throughput DNA sequencing. Result: The level of Proteobacteria, Bacteroidetes, Actino-bacteria and Firmicutes were predominantin all specimens.The relative content of predominant bacterial phyla in each group: Proteobacteria (95.00%, 88.14%, 87.26%), Bacteroidetes(1.71%, 2.15%, 2.63%), Actino-Bacteria(1.16%, 4.10%, 3.38%), Firmicutes(0.75%, 2.62%, 2.01%). At the level of family, there were nine predominant bacterial families in which Enterobacteriaeae , Shewanel laceae and Moraxellaceae were dominant.The relative content of dominant bacterial family in eachgroup: Enterobacteriaeae (46.99%, 44.34%, 41.08%), Shewanellaceae (21.99%, 21.10%, 19.05%), Moraxellaceae (9.18%, 7.09%, 5.64%). From the species of flora, the flora from fetal gastrointestinal in early pregnancy and late pregnancy (65.44% and 62.73%) were the same as that from placenta tissue in the late pregnancy.From the abundance of bacteria, at the level of family, the same content of bacteria in three groups accounted for 78.16%, 72.53% and 65.78% respectively. Conclusion: It was proved that the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora were colonized. At the same time the bacteria are classified.

  20. Bacterial community initial development in proglacial soils of Larsemann hill, East Antarctica

    NASA Astrophysics Data System (ADS)

    Ma, H.; Yan, W.; Shi, G.; Sun, B.; Zhang, Y.; Xiao, X.

    2016-12-01

    Glacial forefields are considered ideal places to explore how microbial communities will response to climate-driven environmental changes. Our knowledge of how the bacterial community activities and structure was influenced by changing environment due to glacier retreat is still very limited, especially at the initial stage of glacier retreat. The short gradient soil samples including the ice free and ice covered sites were sampled in the forehead of East Antarctica ice sheet, in Larsemann Hills. By employing the Miseq sequencing methods, 1.8 x104 high-quality sequences were gotten for each sample and the bacterial diversity including abundant bacteria and rare bacteria were studied and compared between the gradient samples. Even though in such an extreme stress condition, the bacterial diversity was high. The coefficient of variance between the five sites of abundant group was 0.886 which was higher than that of the top 20 rare group (0.159) significantly (unpaired t test, p-value<0.0001) suggesting that the abundant bacterial communities were more sensitive to the ice sheet change in the initial stage than rare bacteria did. And the abundant bacteria contributed the community structure more than the rare bacteria did. The rare group acted more like seed bank to keep the community functionality in the forehead of sheet. And the ice thickness was the major factor to affect the abundant bacterial community. Given the fact that Antarctica environment was more sensitive to the global warming, the study about abundant and rare bacteria response to condition change will be helpful to precisely predict community response to climate change in polar region. This finding will improve the understanding about the relationship between community structure and environment condition in extreme stress condition.

  1. Distributions of Bacterial Generalists among the Guts of Birds ...

    EPA Pesticide Factsheets

    Complex distributions of bacterial taxa within diverse animal microbiomes have inspired ecological and biogeographical approaches to revealing the functions of taxa that may be most important for host health. Of particular interest are bacteria that find many diverse habitats suitable for growth and remain competitive amongst finely-tuned host specialists. While previous work has focused on identifying these specialists, here our aims were to 1) identify generalist taxa, 2) identify taxonomic clades with enriched generalist diversity, and 3) describe the distribution of the largest generalist groups among hosts. We analyzed existing bacterial rRNA tag-sequencing data (v6) available on VAMPs (vamps.mbl.edu) from the microbiomes of 12 host species (106 samples total) spanning birds, mammals, and fish for generalist taxa using the CLAM test. OTUs with approximately equal abundance and a minimum of 10 reads in two hosts were classified as generalists. Generalist OTUs (n=2,982) were found in all hosts tested. Bacterial families Alcaligenaceae and Burkholderiaceae were significantly enriched with generalists OTUs compared to other families. Bacterial families such as Bacteroidaceae and Lachnospiraceae significantly lacked generalists OTUs compared to other families. Enterobacteriaceae, Peptostreptococcaceae, and Erysipelotrichaceae more so than other bacterial families were widely distributed and abundant in birds, mammals, and fish suggesting that these taxa mainta

  2. An EPA pilot study characterizing fungal and bacterial ...

    EPA Pesticide Factsheets

    The overall objective of this program is to characterize fungal and bacterial populations in the MPC residences in San Juan, Puerto Rico, following flooding events. These profiles will be generated by comparing the fungal and bacterial populations in two groups of residences: homes with flooding events and non-flooded homes. Dust and air samples from indoors and outdoors will be collected at all homes participating in the study. The characterization of fungal and bacterial populations from the dust and air samples will be done using culture-independent molecular technologies and conventional volumetric microbiological methods. This study will attempt to address the following environmental questions: (1) how do flooding events impact the types of fungal and bacterial populations inside affected homes? (2) are there any differences in the absolute abundances of fungi and bacteria in flooded relative to non-flooded homes? and (3) if there are noticeable effects of flooding on the fungal and bacterial composition and/or abundance, can the effects of flooding be correlated with other environmental variables such as % relative humidity, air exchange rate and temperature inside the homes? The proposed study has selected the Martin Peña Channel (MPC) urban community located within the San Juan National Estuary in the northeastern region of the island as a case study to advance the research into indoor air quality improvement at MPC residences with flooding events. T

  3. Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments.

    PubMed

    Zhao, Dayong; He, Xiaowei; Huang, Rui; Yan, Wenming; Yu, Zhongbo

    2017-07-01

    Ammonia oxidation is a crucial process in global nitrogen cycling, which is catalyzed by the ammonia oxidizers. Emergent plants play important roles in the freshwater ecosystem. Therefore, it is meaningful to investigate the effects of emergent macrophytes on the abundance and community composition of ammonia oxidizers. In the present study, two commonly found emergent macrophytes (Zizania caduciflora and Phragmitas communis) were obtained from freshwater lakes and the abundance and community composition of the ammonia-oxidizing prokaryotes in the rhizosphere sediments of these emergent macrophytes were investigated. The abundance of the bacterial amoA gene was higher in the rhizosphere sediments of the emergent macrophytes than those of bulk sediments. Significant positive correlation was found between the potential nitrification rates (PNRs) and the abundance of bacterial amoA gene, suggesting that ammonia-oxidizing bacteria (AOB) might play an important role in the nitrification process of the rhizosphere sediments of emergent macrophytes. The Nitrosotalea cluster is the dominant ammonia-oxidizing archaea (AOA) group in all the sediment samples. Analysis of AOB group showed that the N. europaeal cluster dominated the rhizosphere sediments of Z. caduciflora and the bulk sediments, whereas the Nitrosospira cluster was the dominant AOB group in the rhizosphere sediments of P. communis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bacterial community structure in the drinking water microbiome is governed by filtration processes.

    PubMed

    Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde

    2012-08-21

    The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.

  5. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  6. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level

    PubMed Central

    Jiang, Yuji; Liu, Manqiang; Zhang, Jiabao; Chen, Yan; Chen, Xiaoyun; Chen, Lijun; Li, Huixin; Zhang, Xue-Xian; Sun, Bo

    2017-01-01

    Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial–microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner. PMID:28742069

  7. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level.

    PubMed

    Jiang, Yuji; Liu, Manqiang; Zhang, Jiabao; Chen, Yan; Chen, Xiaoyun; Chen, Lijun; Li, Huixin; Zhang, Xue-Xian; Sun, Bo

    2017-12-01

    Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial-microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner.

  8. Bacterial Diversity in the South Adriatic Sea during a Strong, Deep Winter Convection Year

    PubMed Central

    Korlević, M.; Pop Ristova, P.; Garić, R.; Amann, R.

    2014-01-01

    The South Adriatic Sea is the deepest part of the Adriatic Sea and represents a key area for both the Adriatic Sea and the deep eastern Mediterranean. It has a role in dense water formation for the eastern Mediterranean deep circulation cell, and it represents an entry point for water masses originating from the Ionian Sea. The biodiversity and seasonality of bacterial picoplankton before, during, and after deep winter convection in the oligotrophic South Adriatic waters were assessed by combining comparative 16S rRNA sequence analysis and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The picoplankton communities reached their maximum abundance in the spring euphotic zone when the maximum value of the chlorophyll a in response to deep winter convection was recorded. The communities were dominated by Bacteria, while Archaea were a minor constituent. A seasonality of bacterial richness and diversity was observed, with minimum values occurring during the winter convection and spring postconvection periods and maximum values occurring under summer stratified conditions. The SAR11 clade was the main constituent of the bacterial communities and reached the maximum abundance in the euphotic zone in spring after the convection episode. Cyanobacteria were the second most abundant group, and their abundance strongly depended on the convection event, when minimal cyanobacterial abundance was observed. In spring and autumn, the euphotic zone was characterized by Bacteroidetes and Gammaproteobacteria. Bacteroidetes clades NS2b, NS4, and NS5 and the gammaproteobacterial SAR86 clade were detected to co-occur with phytoplankton blooms. The SAR324, SAR202, and SAR406 clades were present in the deep layer, exhibiting different seasonal variations in abundance. Overall, our data demonstrate that the abundances of particular bacterial clades and the overall bacterial richness and diversity are greatly impacted by strong winter convection. PMID:25548042

  9. Responses of Baltic Sea Ice and Open-Water Natural Bacterial Communities to Salinity Change

    PubMed Central

    Kaartokallio, Hermanni; Laamanen, Maria; Sivonen, Kaarina

    2005-01-01

    To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure. PMID:16085826

  10. Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases).

    PubMed

    Hillier, Andrew; Lloyd, David H; Weese, J Scott; Blondeau, Joseph M; Boothe, Dawn; Breitschwerdt, Edward; Guardabassi, Luca; Papich, Mark G; Rankin, Shelley; Turnidge, John D; Sykes, Jane E

    2014-06-01

    Superficial bacterial folliculitis (SBF) is usually caused by Staphylococcus pseudintermedius and routinely treated with systemic antimicrobial agents. Infection is a consequence of reduced immunity associated with alterations of the skin barrier and underlying diseases that may be difficult to diagnose and resolve; thus, SBF is frequently recurrent and repeated treatment is necessary. The emergence of multiresistant bacteria, particularly meticillin-resistant S. pseudintermedius (MRSP), has focused attention on the need for optimal management of SBF. Provision of an internationally available resource guiding practitioners in the diagnosis, treatment and prevention of SBF. The guidelines were developed by the Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases, with consultation and advice from diplomates of the American and European Colleges of Veterinary Dermatology. They describe optimal methods for the diagnosis and management of SBF, including isolation of the causative organism, antimicrobial susceptibility testing, selection of antimicrobial drugs, therapeutic protocols and advice on infection control. Guidance is given for topical and systemic modalities, including approaches suitable for MRSP. Systemic drugs are classified in three tiers. Tier one drugs are used when diagnosis is clear cut and risk factors for antimicrobial drug resistance are not present. Otherwise, tier two drugs are used and antimicrobial susceptibility tests are mandatory. Tier three includes drugs reserved for highly resistant infections; their use is strongly discouraged and, when necessary, they should be used in consultation with specialists. Optimal management of SBF will improve antimicrobial use and reduce selection of MRSP and other multidrug-resistant bacteria affecting animal and human health. © 2014 ESVD and ACVD.

  11. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial.

    PubMed

    van Zanten, Gabriella C; Krych, Lukasz; Röytiö, Henna; Forssten, Sofia; Lahtinen, Sampo J; Abu Al-Soud, Waleed; Sørensen, Søren; Svensson, Birte; Jespersen, Lene; Jakobsen, Mogens

    2014-10-01

    Probiotics, prebiotics, and combinations thereof, that is synbiotics, have been reported to modulate gut microbiota of humans. In this study, effects of a novel synbiotic on the composition and metabolic activity of human gut microbiota were investigated. Healthy volunteers (n = 18) were enrolled in a double-blinded, randomized, and placebo-controlled cross-over study and received synbiotic [Lactobacillus acidophilus NCFM (10(9) CFU) and cellobiose (5 g)] or placebo daily for 3 weeks. Fecal samples were collected and lactobacilli numbers were quantified by qPCR. Furthermore, 454 tag-encoded amplicon pyrosequencing was used to monitor the effect of synbiotic on the composition of the microbiota. The synbiotic increased levels of Lactobacillus spp. and relative abundances of the genera Bifidobacterium, Collinsella, and Eubacterium while the genus Dialister was decreased (P < 0.05). No other effects were found on microbiota composition. Remarkably, however, the synbiotic increased concentrations of branched-chain fatty acids, measured by gas chromatography, while short-chain fatty acids were not affected. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Marine Mesocosm Bacterial Colonisation of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Witt, V.; Cimarelli, C.; Ayris, P. M.; Kueppers, U.; Erpenbeck, D.; Dingwell, D. B.; Woerheide, G.

    2014-12-01

    Explosive volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local or regional scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, ash deposition may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, it is currently unknown which bacteria are involved in pioneer colonisation. We hypothesize that physico-chemical properties (i.e., morphology, chemistry, mineralogy) of the ash may dictate bacterial colonisation. We have tested the effect of substrate properties on bacterial diversity and abundance colonising five substrates: i) quartz sand ii) crystalline ash from the Sakurajima volcano (Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size - by incubation in a controlled marine mesocosm (coral reef aquarium) under low light conditions for three months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis Of Similarity supports significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community and carried the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community

  13. The crystal structure of a bacterial Sufu-like protein defines a novel group of bacterial proteins that are similar to the N-terminal domain of human Sufu

    PubMed Central

    Das, Debanu; Finn, Robert D; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Sri Krishna, S; Kumar, Abhinav; Lam, Winnie W; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Yeh, Andrew; Zhou, Jiadong; Hodgson, Keith O; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2010-01-01

    Sufu (Suppressor of Fused), a two-domain protein, plays a critical role in regulating Hedgehog signaling and is conserved from flies to humans. A few bacterial Sufu-like proteins have previously been identified based on sequence similarity to the N-terminal domain of eukaryotic Sufu proteins, but none have been structurally or biochemically characterized and their function in bacteria is unknown. We have determined the crystal structure of a more distantly related Sufu-like homolog, NGO1391 from Neisseria gonorrhoeae, at 1.4 Å resolution, which provides the first biophysical characterization of a bacterial Sufu-like protein. The structure revealed a striking similarity to the N-terminal domain of human Sufu (r.m.s.d. of 2.6 Å over 93% of the NGO1391 protein), despite an extremely low sequence identity of ∼15%. Subsequent sequence analysis revealed that NGO1391 defines a new subset of smaller, Sufu-like proteins that are present in ∼200 bacterial species and has resulted in expansion of the SUFU (PF05076) family in Pfam. PMID:20836087

  14. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder

    SciTech Connect

    Denef, Vincent J.; Carrick, Hunter J.; Cavaletto, Joann

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptiblemore » to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions.Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  15. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder.

    PubMed

    Denef, Vincent J; Carrick, Hunter J; Cavaletto, Joann; Chiang, Edna; Johengen, Thomas H; Vanderploeg, Henry A

    2017-01-01

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptible to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions. IMPORTANCE Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  16. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder

    PubMed Central

    Carrick, Hunter J.; Cavaletto, Joann; Chiang, Edna; Johengen, Thomas H.; Vanderploeg, Henry A.

    2017-01-01

    ABSTRACT One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptible to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions. IMPORTANCE Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a

  17. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder

    DOE PAGES

    Denef, Vincent J.; Carrick, Hunter J.; Cavaletto, Joann; ...

    2017-05-31

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptiblemore » to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions.Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  18. Response of bacterial community structure and function to experimental rainwater additions in a coastal eutrophic embayment

    NASA Astrophysics Data System (ADS)

    Teira, Eva; Hernando-Morales, Víctor; Martínez-García, Sandra; Figueiras, Francisco G.; Arbones, Belén; Álvarez-Salgado, Xosé Antón

    2013-03-01

    Although recognized as a potentially important source of both inorganic and organic nutrients, the impact of rainwater on microbial populations from marine planktonic systems has been poorly assessed. The effect of rainwater additions on bacterioplankton metabolism and community composition was evaluated in microcosm experiments enclosing natural marine plankton populations from the Ría de Vigo (NW Spain). The experiments were conducted during three different seasons (spring, autumn and winter) using rainwater collected at three different locations: marine, urban and rural sites. Bacterial abundance and production significantly increased up to 1.3 and 1.8-fold, respectively, after urban rainwater additions in spring, when ambient nutrient concentration was very low. Overall, the increments in bacterial production were higher than those in bacterial respiration, which implies that a higher proportion of carbon consumed by bacteria would be available to higher trophic levels. The response of the different bacterial groups to distinct rainwater types differed between seasons. The most responsive bacterial groups were Betaproteobacteria which significantly increased their abundance after urban (in spring and winter) and marine (in spring) rainwater additions, and Bacteroidetes which positively responded to all rainwater treatments in spring and to urban rainwater in autumn. Gammaproteobacteria and Roseobacter responded only to urban (in spring) and marine (in winter) rainwater treatment, respectively. The responses to rainwater additions were moderate and transient, and the resulting bacterial community structure was not importantly altered.

  19. Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in the Loess Hilly Region (LHR) of China

    NASA Astrophysics Data System (ADS)

    Ren, Chengjie; Sun, Pingsheng; Kang, Di; Zhao, Fazhu; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui; Yang, Gaihe

    2016-06-01

    In the present paper, we investigated the effects of afforestation on nitrogen fractions and microbial communities. A total of 24 soil samples were collected from farmland (FL) and three afforested lands, namely Robinia pseudoacacia L (RP), Caragana korshinskii Kom (CK), and abandoned land (AL), which have been arable for the past 40 years. Quantitative PCR and Illumina sequencing of 16S rRNA genes were used to analyze soil bacterial abundance, diversity, and composition. Additionally, soil nitrogen (N) stocks and fractions were estimated. The results showed that soil N stock, N fractions, and bacterial abundance and diversity increased following afforestation. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla of soil bacterial compositions. Overall, soil bacterial compositions generally changed from Actinobacteria (Acidobacteria)-dominant to Proteobacteria-dominant following afforestation. Soil N fractions, especially for dissolved organic nitrogen (DON), were significantly correlated with most bacterial groups and bacterial diversity, while potential competitive interactions between Proteobacteria (order Rhizobiales) and Cyanobacteria were suggested. In contrast, nitrate nitrogen (NO3--N) influenced soil bacterial compositions less than other N fractions. Therefore, the present study demonstrated that bacterial diversity and specific species respond to farmland-to-forest conversion and hence have the potential to affect N dynamic processes in the Loess Plateau.

  20. Grazers structure the bacterial and algal diversity of aquatic metacommunities.

    PubMed

    Birtel, Julia; Matthews, Blake

    2016-12-01

    Consumers can have strong effects on the biotic and abiotic dynamics of spatially-structured ecosystems. In metacommunities, dispersing consumers can alter local assembly dynamics either directly through trophic interactions or indirectly by modifying local environmental conditions. In aquatic systems, very little is known about how key grazers, such as Daphnia, structure the microbial diversity of metacommunities and influence bacterial-mediated ecosystem functions. In an outdoor mesocosm experiment with replicate metacommunities (two 300 L mesocosms), we tested how the presence and absence of Daphnia and the initial density of the microbial community (manipulated via dilution) influenced the diversity and community structure of algae and bacteria, and several ecosystem properties (e.g., pH, dissolved substances) and functions (e.g., enzyme activity, respiration). We found that Daphnia strongly affected the local and regional diversity of both phytoplankton and bacteria, the taxonomic composition of bacterial communities, the biomass of algae, and ecosystem metabolism (i.e., respiration). Diluting the microbial inoculum (0.2-5 μm size fraction) to the metacommunities increased local phytoplankton diversity, decreased bacteria beta-diversity, and changed the relative abundance of bacterial classes. Changes in the rank abundance of different bacterial groups exhibited phylogenetic signal, implying that closely related bacteria species might share similar responses to the presence of Daphnia. © 2016 by the Ecological Society of America.

  1. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia.

    PubMed

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.

  2. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia

    PubMed Central

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G.; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches. PMID:26934492

  3. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei) Larvae and Rearing Water across Different Growth Stages.

    PubMed

    Zheng, Yanfen; Yu, Min; Liu, Jiwen; Qiao, Yanlu; Wang, Long; Li, Zhitao; Zhang, Xiao-Hua; Yu, Mingchao

    2017-01-01

    Bacterial communities are called another "organ" for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy) and growth stages (i.e., zoea, mysis, and early postlarvae periods) were examined using 454-pyrosequencing of the 16S rRNA gene. Bacterial communities with significant difference were observed between healthy and diseased rearing water, and several bacterial groups, such as genera Nautella and Kordiimonas could also distinguish healthy and diseased shrimp. Rhodobacteraceae was widely distributed in rearing water at all growth stages but there were several stage-specific groups, indicating that bacterial members in rearing water assembled into distinct communities throughout the larval development. However, Gammaproteobacteria , mainly family Enterobacteriaceae , was the most abundant group (accounting for more than 85%) in shrimp larvae at all growth stages. This study compared bacterial communities associated with healthy and diseased L . vannamei larvae and rearing water, and identified several health- and growth stage-specific bacterial groups, which might be provided as indicators for monitoring the healthy status of shrimp larvae in hatchery.

  4. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp (Litopenaeus vannamei) Larvae and Rearing Water across Different Growth Stages

    PubMed Central

    Zheng, Yanfen; Yu, Min; Liu, Jiwen; Qiao, Yanlu; Wang, Long; Li, Zhitao; Zhang, Xiao-Hua; Yu, Mingchao

    2017-01-01

    Bacterial communities are called another “organ” for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy) and growth stages (i.e., zoea, mysis, and early postlarvae periods) were examined using 454-pyrosequencing of the 16S rRNA gene. Bacterial communities with significant difference were observed between healthy and diseased rearing water, and several bacterial groups, such as genera Nautella and Kordiimonas could also distinguish healthy and diseased shrimp. Rhodobacteraceae was widely distributed in rearing water at all growth stages but there were several stage-specific groups, indicating that bacterial members in rearing water assembled into distinct communities throughout the larval development. However, Gammaproteobacteria, mainly family Enterobacteriaceae, was the most abundant group (accounting for more than 85%) in shrimp larvae at all growth stages. This study compared bacterial communities associated with healthy and diseased L. vannamei larvae and rearing water, and identified several health- and growth stage-specific bacterial groups, which might be provided as indicators for monitoring the healthy status of shrimp larvae in hatchery. PMID:28769916

  5. Abundance and Genetic Diversity of Aerobic Anoxygenic Phototrophic Bacteria of Coastal Regions of the Pacific Ocean

    PubMed Central

    Ritchie, Anna E.

    2012-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities. PMID:22307290

  6. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents.

    PubMed

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2015-01-01

    Environmental gradients generate countless ecological niches in deep-sea hydrothermal vent systems, which foster diverse microbial communities. The majority of distinct microbial lineages in these communities occur in very low abundance. However, the ecological role and distribution of rare and abundant lineages, particularly in deep, hot subsurface environments, remain unclear. Here, we use 16S rRNA tag sequencing to describe biogeographic patterning and microbial community structure of both rare and abundant archaea and bacteria in hydrothermal vent systems. We show that while rare archaeal lineages and almost all bacterial lineages displayed geographically restricted community structuring patterns, the abundant lineages of archaeal communities displayed a much more cosmopolitan distribution. Finally, analysis of one high-volume, high-temperature fluid sample representative of the deep hot biosphere described a unique microbial community that differed from microbial populations in diffuse flow fluid or sulfide samples, yet the rare thermophilic archaeal groups showed similarities to those that occur in sulfides. These results suggest that while most archaeal and bacterial lineages in vents are rare and display a highly regional distribution, a small percentage of lineages, particularly within the archaeal domain, are successful at widespread dispersal and colonization. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Bacterial prostatitis.

    PubMed

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  8. Spatial distribution of marine airborne bacterial communities

    PubMed Central

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters – temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  9. Sunspots, Starspots, and Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Doschek, George A.; Warren, Harry P.

    2017-08-01

    The composition of plasma in solar and stellar atmospheres is not fixed, but varies from feature to feature. These variations are organized by the First Ionization Potential (FIP) of the element. Solar measurements often indicate that low FIP elements (< 10eV, such as Fe, Si, Mg) are enriched by factors of 3-4 in the corona relative to high FIP elements (>10 eV, such as C, N, O, Ar, He) compared to abundances in the photosphere. Stellar observations have also shown similar enrichments. An inverse FIP effect, where the low FIP elements are depleted, has been observed in stellar coronae of stars believed to have large starspots in their photospheres. The abundances are important for determining radiative loss rates in models, tracing the origin of the slow solar wind, and for understanding wave propagation in the chromosphere and corona. Recently, inverse FIP effects have been discovered in the Sun (Doschek, Warren, & Feldman 2015, ApJ, 808, L7) from spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. The inverse FIP regions seem always to be near sunspots and cover only a very small area (characteristic length = a few arcseconds). However, in pursuing the search for inverse FIP regions, we have found that in some sunspot groups the coronal abundance at a temperature of 3-4 MK can be near photospheric over much larger areas of the sun near the sunspots (e.g., 6,000 arcsec2). Also, sometimes the abundances at 3-4 MK are in between coronal and photospheric values. This can occur in small areas of an active region. It is predicted (Laming 2015, Sol. Phys., 12, 2) that the FIP effect should be highly variable in the corona. Several examples of coronal abundance variations are presented. Our work indicates that a comprehensive re-investigation of solar abundances is highly desirable. This work is supported by a NASA Hinode grant.

  10. Development of Soil Bacterial Communities in Volcanic Ash Microcosms in a Range of Climates.

    PubMed

    Kerfahi, Dorsaf; Tateno, Ryunosuke; Takahashi, Koichi; Cho, HyunJun; Kim, Hyoki; Adams, Jonathan M

    2017-05-01

    There is considerable interest in understanding the processes of microbial development in volcanic ash. We tested the predictions that there would be (1) a distinctive bacterial community associated with soil development on volcanic ash, including groups previously implicated in weathering studies; (2) a slower increase in bacterial abundance and soil C and N accumulation in cooler climates; and (3) a distinct communities developing on the same substrate in different climates. We set up an experiment, taking freshly fallen, sterilized volcanic ash from Sakurajima volcano, Japan. Pots of ash were positioned in multiple locations, with mean annual temperature (MAT) ranging from 18.6 to -3 °C. Within 12 months, bacteria were detectable by qPCR in all pots. By 24 months, bacterial copy numbers had increased by 10-100 times relative to a year before. C and N content approximately doubled between 12 and 24 months. HiSeq and MiSeq sequencing of the 16S rRNA gene revealed a distinctive bacterial community, different from developed vegetated soils in the same areas, for example in containing an abundance of unclassified bacterial groups. Community composition also differed between the ash pots at different sites, while showing no pattern in relation to MAT. Contrary to our predictions, the bacterial abundance did not show any relation to MAT. It also did not correlate to pH or N, and only C was statistically significant. It appears that bacterial community development on volcanic ash can be a rapid process not closely sensitive to temperature, involving distinct communities from developed soils.

  11. Bacterial membrane proteomics.

    PubMed

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  12. Solar abundance of silicon

    SciTech Connect

    Holweger, H.

    1973-07-01

    An analysis of 19 photospheric Si I lines whose oscillator strengths have recently been detertmined by Garz (1973) leads to a solar abundance of silicon, log epsilon /sub Si/ = 7.65 plus or minus 0.07, on the scale where log epsilon /sub H/ = 12. Together with the sodium abundance determained earlier by the same method, a solar abundance ratio /sup epsilon /Na//sup epsilon /Si = 0.045 ( plus or minus 10%) results. Within the error limits this a grees wtth the meteoritic ratio found in carbonaceous chondrites. Results concerning line-broadening by hydrogen are discussed. (auth)

  13. A study on the ability of quaternary ammonium groups attached to a polyurethane foam wound dressing to inhibit bacterial attachment and biofilm formation.

    PubMed

    Tran, Phat L; Hamood, Abdul N; de Souza, Anselm; Schultz, Gregory; Liesenfeld, Bernd; Mehta, Dilip; Reid, Ted W

    2015-01-01

    Bacterial infection of acute and chronic wounds impedes wound healing significantly. Part of this impediment is the ability of bacterial pathogens to grow in wound dressings. In this study, we examined the effectiveness of a polyurethane (PU) foam wound dressings coated with poly diallyl-dimethylammonium chloride (pDADMAC-PU) to inhibit the growth and biofilm development by three main wound pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, within the wound dressing. pDADMAC-PU inhibited the growth of all three pathogens. Time-kill curves were conducted both with and without serum to determine the killing kinetic of pDADMAC-PU. pDADMAC-PU killed S. aureus, A. baumannii, and P. aeruginosa. The effect of pDADMAC-PU on biofilm development was analyzed quantitatively and qualitatively. Quantitative analysis, colony-forming unit assay, revealed that pDADMAC-PU dressing produced more than eight log reduction in biofilm formation by each pathogen. Visualization of the biofilms by either confocal laser scanning microscopy or scanning electron microscopy confirmed these findings. In addition, it was found that the pDADMAC-PU-treated foam totally inhibited migration of bacteria through the foam for all three bacterial strains. These results suggest that pDADMAC-PU is an effective wound dressing that inhibits the growth of wound pathogens both within the wound and in the wound dressing. © 2014 by the Wound Healing Society.

  14. Bacterial Meningitis

    MedlinePlus

    ... Links Vaccine Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Language: English (US) Español (Spanish) Recommend ... can also be associated with another serious illness, sepsis . Sepsis is the body’s overwhelming and life-threatening ...

  15. Bacterial meningitis.

    PubMed

    Heckenberg, Sebastiaan G B; Brouwer, Matthijs C; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained, preceding any imaging studies. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, and an altered level of consciousness but signs may be scarce in children, in the elderly, and in meningococcal disease. Host genetic factors are major determinants of susceptibility to meningococcal and pneumococcal disease. Dexamethasone therapy has been implemented as adjunctive treatment of adults with pneumococcal meningitis. Adequate and prompt treatment of bacterial meningitis is critical to outcome. In this chapter we review the epidemiology, pathophysiology, and management of bacterial meningitis. © 2014 Elsevier B.V. All rights reserved.

  16. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant.

    PubMed

    Narciso-da-Rocha, Carlos; Rocha, Jaqueline; Vaz-Moreira, Ivone; Lira, Felipe; Tamames, Javier; Henriques, Isabel; Martinez, José Luis; Manaia, Célia M

    2018-06-05

    Urban wastewater treatment plants (UWTPs) are reservoirs of antibiotic resistance. Wastewater treatment changes the bacterial community and inevitably impacts the fate of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Some bacterial groups are major carriers of ARGs and hence, their elimination during wastewater treatment may contribute to increasing resistance removal efficiency. This study, conducted at a full-scale UWTP, evaluated variations in the bacterial community and ARGs loads and explored possible associations among them. With that aim, the bacterial community composition (16S rRNA gene Illumina sequencing) and ARGs abundance (real-time PCR) were characterized in samples of raw wastewater (RWW), secondary effluent (sTWW), after UV disinfection (tTWW), and after a period of 3 days storage to monitoring possible bacterial regrowth (tTWW-RE). Culturable enterobacteria were also enumerated. Secondary treatment was associated with the most dramatic bacterial community variations and coincided with reductions of ~2 log-units in the ARGs abundance. In contrast, no significant changes in the bacterial community composition and ARGs abundance were observed after UV disinfection of sTWW. Nevertheless, after UV treatment, viability losses were indicated ~2 log-units reductions of culturable enterobacteria. The analysed ARGs (qnrS, bla CTX-M , bla OXA-A , bla TEM , bla SHV , sul1, sul2, and intI1) were strongly correlated with taxa more abundant in RWW than in the other types of water, and which associated with humans and animals, such as members of the families Campylobacteraceae, Comamonadaceae, Aeromonadaceae, Moraxellaceae, and Bacteroidaceae. Further knowledge of the dynamics of the bacterial community during wastewater treatment and its relationship with ARGs variations may contribute with information useful for wastewater treatment optimization, aiming at a more effective resistance control. Copyright © 2018 Elsevier Ltd. All rights

  17. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands.

    PubMed

    Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma

    2015-02-15

    Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. [Effect of ground mulch managements on soil bacterial community structure and diversity in the non-irrigated apple orchard in Weibei Loess Plateau].

    PubMed

    Chen, Yuexing; Wen, Xiaoxia; Sun, Yulin; Zhang, Junli; Lin, Xiaoli; Liao, Yuncheng

    2015-07-04

    We studied the changes in soil bacterial communities induced by ground mulch managements at different apple growth periods. We adopted the denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments to determine soil bacterial community structure and diversity. Soil bacterial community structure with different ground mulch managements were significantly different. Both the mulch management strategies and apple growth periods affected the predominant groups and their abundance in soil bacterial communities. Grass mulch and cornstalk mulch treatments had higher bacterial diversity and richness than the control at young fruit period and fruit expanding period, whereas film mulch treatment had no significant difference compared with the control. During mature period, bacterial diversity in the control reached its maximum, which may be ascribed to the rapid growth and reproduction of the r-selection bacteria. The clustering and detrended correspondence analysis revealed that differences in soil bacterial communities were closely correlated to apple growth periods and ground mulch managements. Soil samples from the grass mulch and cornstalk mulch treatments clustered together while those mulched with plastic film treatment were similar to the control. The most abundant phylum in soil bacterial community was Proteobacteria followed by Bacteroidetes. Some other phyla were also detected, such as Acidobacteria, Firmicutes, Actinobacteria and Chloroflexi. Mulching with plant (Grass/Cornstalk) had great effects on soil bacterial community structure and enhanced the diversity while film mulch management had no significant effects.

  19. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes.

    PubMed

    Yang, Chao; Fei, Yuda; Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients.

  20. Bacterial Flora Changes in Conjunctiva of Rats with Streptozotocin-Induced Type I Diabetes

    PubMed Central

    Qin, Yali; Luo, Dan; Yang, Shufei; Kou, Xinyun; Zi, Yingxin; Deng, Tingting; Jin, Ming

    2015-01-01

    Background The microbiota of both humans and animals plays an important role in their health and the development of disease. Therefore, the bacterial flora of the conjunctiva may also be associated with some diseases. However, there are no reports on the alteration of bacterial flora in conjunctiva of diabetic rats in the literature. Therefore, we investigated the changes in bacterial flora in bulbar conjunctiva of rats with streptozotocin (STZ)-induced type I diabetes. Methods A high dose of STZ (60 mg/kg, i.p.) was injected into Sprague-Dawley (SD) rats to induce type I diabetes mellitus (T1DM). The diabetic rats were raised in the animal laboratory and at 8 months post-injection of STZ swab samples were taken from the bulbar conjunctiva for cultivation of aerobic bacteria. The bacterial isolates were identified by Gram staining and biochemical features. The identified bacteria from both diabetic and healthy rats were then compared. Results The diabetic and healthy rats had different bacterial flora present in their bulbar conjunctiva. In total, 10 and 8 bacterial species were found in the STZ and control groups, respectively, with only three species (Enterococcus faecium, Enterococcus gallinarum and Escherichia coli) shared between the two groups. Gram-positive bacteria were common in both groups and the most abundant was Enterococcus faecium. However, after the development of T1DM, the bacterial flora in the rat bulbar conjunctiva changed considerably, with a reduced complexity evident. Conclusions STZ-induced diabetes caused alterations of bacterial flora in the bulbar conjunctiva in rats, with some bacterial species disappearing and others emerging. Our results indicate that the conjunctival bacterial flora in diabetic humans should be surveyed for potential diagnostic markers or countermeasures to prevent eye infections in T1DM patients. PMID:26176548

  1. Responses of bacterial communities in seagrass sediments to polycyclic aromatic hydrocarbon-induced stress.

    PubMed

    Ling, Juan; Jiang, Yu-Feng; Wang, You-Shao; Dong, Jun-De; Zhang, Yan-Ying; Zhang, Yuan-Zhou

    2015-10-01

    The seagrass meadows represent one of the highest productive marine ecosystems, and have the great ecological and economic values. Bacteria play important roles in energy flow, nutrient biogeochemical cycle and organic matter turnover in marine ecosystems. The seagrass meadows are experiencing a world-wide decline, and the pollution is one of the main reasons. Polycyclic aromatic hydrocarbons (PAHs) are thought be the most common. Bacterial communities in the seagrass Enhalus acoroides sediments were analyzed for their responses to PAHs induced stress. Dynamics of the composition and abundance of bacterial communities during the incubation period were explored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative PCR assay, respectively. Both the incubation time and the PAHs concentration played significant roles in determining the microbial diversity, as reflected by the detected DGGE bands. Analysis of sequencing results showed that the Gammaproteobacteria were dominant in the seagrass sediments, accounting for 61.29 % of all sequenced bands. As PAHs could be used as carbon source for microbes, the species and diversity of the PAH-added groups (group 1 and 2) presented higher Shannon Wiener index than the group CK, with the group 1 showing the highest values almost through the same incubation stage. Patterns of changes in abundance of the three groups over the experiment time were quite different. The bacterial abundance of the group CK and group 2 decreased sharply from 4.15 × 10(11) and 6.37 × 10(11) to 1.17 × 10(10) and 1.07 × 10(10) copies/g from day 2 to 35, respectively while bacterial abundance of group 1 increased significantly from 1.59 × 10(11) copies/g at day 2 to 8.80 × 10(11) copies/g at day 7, and then dropped from day 14 till the end of the incubation. Statistical analysis (UMPGA and PCA) results suggested that the bacterial community were more likely to be affected by the incubation time than the

  2. Characterization of the Bacterial Community of the Chemically Defended Hawaiian Sacoglossan Elysia rufescens

    PubMed Central

    Davis, Jeanette; Fricke, W. Florian; Hamann, Mark T.; Esquenazi, Eduardo; Dorrestein, Pieter C.

    2013-01-01

    Sacoglossans are characterized by the ability to sequester functional chloroplasts from their algal diet through a process called kleptoplasty, enabling them to photosynthesize. The bacterial diversity associated with sacoglossans is not well understood. In this study, we coupled traditional cultivation-based methods with 454 pyrosequencing to examine the bacterial communities of the chemically defended Hawaiian sacoglossan Elysia rufescens and its secreted mucus. E. rufescens contains a defense molecule, kahalalide F, that is possibly of bacterial origin and is of interest because of its antifungal and anticancer properties. Our results showed that there is a diverse bacterial assemblage associated with E. rufescens and its mucus, with secreted mucus harboring higher bacterial richness than entire-E. rufescens samples. The most-abundant bacterial groups affiliated with E. rufescens and its mucus are Mycoplasma spp. and Vibrio spp., respectively. Our analyses revealed that the Vibrio spp. that were highly represented in the cultivable assemblage were also abundant in the culture-independent community. Epifluorescence microscopy and matrix-assisted laser desorption–ionization mass spectrometry (MALDI-MS) were utilized to detect the chemical defense molecule kahalalide F on a longitudinal section of the sacoglossan. PMID:24014539

  3. Mechanical Homogenization Increases Bacterial Homogeneity in Sputum

    PubMed Central

    Stokell, Joshua R.; Khan, Ammad

    2014-01-01

    Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710

  4. Estimating abundance: Chapter 27

    USGS Publications Warehouse

    Royle, J. Andrew

    2016-01-01

    This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).

  5. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    SciTech Connect

    Cherrier, J.

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblagesmore » collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO{sub 2} could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO{sub 2} was used as the indicator of hydrocarbon degradation and {delta}{sup 13}C analysis of the resultant CO{sub 2} was used to evaluate the source of the respired CO{sub 2} (i.e. petroleum hydrocarbons or the pinfish cometabolite

  6. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTEmore » analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.« less

  7. Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria

    PubMed Central

    Srinivasan, Sujatha; Hoffman, Noah G.; Morgan, Martin T.; Matsen, Frederick A.; Fiedler, Tina L.; Hall, Robert W.; Ross, Frederick J.; McCoy, Connor O.; Bumgarner, Roger; Marrazzo, Jeanne M.; Fredricks, David N.

    2012-01-01

    Background Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. Methodology/Principal Findings Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel’s clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel’s criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. Conclusions/Significance The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in

  8. Microdiversity of an Abundant Terrestrial Bacterium Encompasses Extensive Variation in Ecologically Relevant Traits

    SciTech Connect

    Chase, Alexander B.; Karaoz, Ulas; Brodie, Eoin L.

    level by classifying diversity into taxa (OTUs) defined by 16S rRNA sequence similarity. However, these classifications potentially obscure variation in traits that result in fine-scale ecological differentiation among closely related strains. Here, we investigated “microdiversity” in a highly diverse and poorly characterized soil system (leaf litter in a southern Californian grassland). We focused on the most abundant bacterium, Curtobacterium , which by standard methods is grouped into only one OTU. We find that the degree of carbohydrate usage and temperature preference vary within the OTU, whereas its responses to changes in precipitation are relatively uniform. These results suggest that microdiversity may be key to understanding how soil bacterial diversity is linked to ecosystem functioning.« less

  9. Microdiversity of an Abundant Terrestrial Bacterium Encompasses Extensive Variation in Ecologically Relevant Traits

    DOE PAGES

    Chase, Alexander B.; Karaoz, Ulas; Brodie, Eoin L.; ...

    2017-11-14

    level by classifying diversity into taxa (OTUs) defined by 16S rRNA sequence similarity. However, these classifications potentially obscure variation in traits that result in fine-scale ecological differentiation among closely related strains. Here, we investigated “microdiversity” in a highly diverse and poorly characterized soil system (leaf litter in a southern Californian grassland). We focused on the most abundant bacterium, Curtobacterium , which by standard methods is grouped into only one OTU. We find that the degree of carbohydrate usage and temperature preference vary within the OTU, whereas its responses to changes in precipitation are relatively uniform. These results suggest that microdiversity may be key to understanding how soil bacterial diversity is linked to ecosystem functioning.« less

  10. viral abundance distribution in deep waters of the Northern of South China Sea

    NASA Astrophysics Data System (ADS)

    He, Lei; Yin, Kedong

    2017-04-01

    Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.

  11. Acidification of calf bedding reduces fly development and bacterial abundance

    USDA-ARS?s Scientific Manuscript database

    Environmental stressors, such as high fly density, can impact calf well-being. Sodium bisulfate (SBS) is an acidifier that reduces the pH of flooring and bedding, creating a medium that neither bacteria nor immature flies (also known as larvae or maggots) can thrive in. Two experiments were conducte...

  12. Top-down Controls on Bacterial Transport in Oxic and Suboxic Subsurface Environments

    NASA Astrophysics Data System (ADS)

    Choi, K.; Dobbs, F. C.

    2001-12-01

    The purpose of this investigation was to assess the impact of top-down processes (protistan grazing and viral infection) on bacterial transport through a shallow, unconfined, sandy aquifer at the Department of Energy study site in Oyster, Virginia. A cultured, adhesion-deficient, viably stained, indigenous bacterial strain (DA001) was injected during a field experiment performed at an oxic site in October 1999, while DA001 and an iron-reducing bacterial strain (OY107) were co-injected at a nearby suboxic site in July 2001. Groundwater samples were collected before and after injection and abundance of protists and virus-like particles (the latter at the oxic site only) was determined. Three major groups of protists (flagellates, amoebae, and ciliates) were found at both sites during the experiments, with flagellate abundance greatly dominating the others. Following bacterial injections, concentrations up to 5000 and 3000 protists per ml were observed at the oxic and suboxic sites, respectively. However, removal of bacteria in groundwater by predation, estimated with a mass balance approach, was apparently minimal. Elevated hydraulic gradients during the injections may explain the estimated low impact of predation. The abundance of virus-like particles increased as much as six-fold in the month following injection of DA001 at the oxic site, yet plaque assays revealed no evidence supporting lytic infection of the injected bacteria.

  13. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil

    PubMed Central

    Richardson, Stephen D.; Aitken, Michael D.

    2011-01-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated ‘‘Pyrene Group 2’’ were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil. PMID:21369833

  14. Bacterial Cell Mechanics.

    PubMed

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  15. Phytoplankton-Associated Bacterial Community Composition and Succession during Toxic Diatom Bloom and Non-Bloom Events

    PubMed Central

    Sison-Mangus, Marilou P.; Jiang, Sunny; Kudela, Raphael M.; Mehic, Sanjin

    2016-01-01

    Pseudo-nitzschia blooms often occur in coastal and open ocean environments, sometimes leading to the production of the neurotoxin domoic acid that can cause severe negative impacts to higher trophic levels. Increasing evidence suggests a close relationship between phytoplankton bloom and bacterial assemblages, however, the microbial composition and succession during a bloom process is unknown. Here, we investigate the bacterial assemblages before, during and after toxic and non-toxic Pseudo-nitzschia blooms to determine the patterns of bacterial succession in a natural bloom setting. Opportunistic sampling of bacterial community profiles were determined weekly at Santa Cruz Municipal Wharf by 454 pyrosequencing and analyzed together with domoic acid levels, phytoplankton community and biomass, nutrients and temperature. We asked if the bacterial communities are similar between bloom and non-bloom events and if domoic acid or the presence of toxic algal species acts as a driving force that can significantly structure phytoplankton-associated bacterial communities. We found that bacterial diversity generally increases when Pseudo-nitzschia numbers decline. Furthermore, bacterial diversity is higher when the low-DA producing P. fraudulenta dominates the algal bloom while bacterial diversity is lower when high-DA producing P. australis dominates the algal bloom, suggesting that the presence of algal toxin can structure bacterial community. We also found bloom-related succession patterns among associated bacterial groups; Gamma-proteobacteria, were dominant during low toxic P. fraudulenta blooms comprising mostly of Vibrio spp., which increased in relative abundance (6–65%) as the bloom progresses. On the other hand, Firmicutes bacteria comprising mostly of Planococcus spp. (12–86%) dominate during high toxic P. australis blooms, with the bacterial assemblage showing the same bloom-related successional patterns in three independent bloom events. Other environmental

  16. Microdiversity of an Abundant Terrestrial Bacterium Encompasses Extensive Variation in Ecologically Relevant Traits

    DOE PAGES

    Chase, Alexander B.; Karaoz, Ulas; Brodie, Eoin L.; ...

    2017-11-14

    diversity into taxa (OTUs) defined by 16S rRNA sequence similarity. However, these classifications potentially obscure variation in traits that result in fine-scale ecological differentiation among closely related strains. Here, we investigated “microdiversity” in a highly diverse and poorly characterized soil system (leaf litter in a southern Californian grassland). Here, we focused on the most abundant bacterium,Curtobacterium, which by standard methods is grouped into only one OTU. We find that the degree of carbohydrate usage and temperature preference vary within the OTU, whereas its responses to changes in precipitation are relatively uniform. These results suggest that microdiversity may be key to understanding how soil bacterial diversity is linked to ecosystem functioning.« less

  17. Application of Bioorganic Fertilizer Significantly Increased Apple Yields and Shaped Bacterial Community Structure in Orchard Soil.

    PubMed

    Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2017-02-01

    Application of bioorganic fertilizers has been reported to improve crop yields and change soil bacterial community structure; however, little work has been done in apple orchard soils where the biological properties of the soils are being degraded due to long-term application of chemical fertilizers. In this study, we used Illumina-based sequencing approach to characterize the bacterial community in the 0-60-cm soil profile under different fertilizer regimes in the Loess Plateau. The experiment includes three treatments: (1) control without fertilization (CK); (2) application of chemical fertilizer (CF); and (3) application of bioorganic fertilizer and organic-inorganic mixed fertilizer (BOF). The results showed that the treatment BOF increased the apple yields by 114 and 67 % compared to the CK and CF treatments, respectively. The treatment BOF also increased the soil organic matter (SOM) by 22 and 16 % compared to the CK and CF treatments, respectively. The Illumina-based sequencing showed that Acidobacteria and Proteobacteria were the predominant phyla and Alphaproteobacteria and Gammaproteobacteria were the most abundant classes in the soil profile. The bacterial richness for ACE was increased after the addition of BOF. Compared to CK and CF treatments, BOF-treated soil revealed higher abundance of Proteobacteria, Alphaproteobacteria and Gammaproteobacteria, Rhizobiales, and Xanthomonadales while Acidobacteria, Gp7, Gp17, and Sphaerobacter were found in lower abundance throughout the soil profile. Bacterial community structure varied with soil depth under different fertilizer treatments, e.g., the bacterial richness, diversity, and the relative abundance of Verruccomicrobia, Candidatus Brocadiales, and Skermanella were decreased with the soil depth in all three treatments. Permutational multivariate analysis showed that the fertilizer regime was the major factor than soil depth in the variations of the bacterial community composition. Two groups, Lysobacter

  18. [Bacterial vaginosis].

    PubMed

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  19. Comparison of Bacterial Community Composition of Primary and Persistent Endodontic Infections Using Pyrosequencing.

    PubMed

    Tzanetakis, Giorgos N; Azcarate-Peril, M Andrea; Zachaki, Sophia; Panopoulos, Panos; Kontakiotis, Evangelos G; Madianos, Phoebus N; Divaris, Kimon

    2015-08-01

    Elucidating the microbial ecology of endodontic infections (EIs) is a necessary step in developing effective intracanal antimicrobials. The aim of the present study was to investigate the bacterial composition of symptomatic and asymptomatic primary and persistent infections in a Greek population using high-throughput sequencing methods. 16S amplicon pyrosequencing of 48 root canal bacterial samples was conducted, and sequencing data were analyzed using an oral microbiome-specific and a generic (Greengenes) database. Bacterial abundance and diversity were examined by EI type (primary or persistent), and statistical analysis was performed by using non-parametric and parametric tests accounting for clustered data. Bacteroidetes was the most abundant phylum in both infection groups. Significant, albeit weak associations of bacterial diversity were found, as measured by UniFrac distances with infection type (analyses of similarity, R = 0.087, P = .005) and symptoms (analyses of similarity, R = 0.055, P = .047). Persistent infections were significantly enriched for Proteobacteria and Tenericutes compared with primary ones; at the genus level, significant differences were noted for 14 taxa, including increased enrichment of persistent infections for Lactobacillus, Streptococcus, and Sphingomonas. More but less abundant phyla were identified using the Greengenes database; among those, Cyanobacteria (0.018%) and Acidobacteria (0.007%) were significantly enriched among persistent infections. Persistent infections showed higher phylogenetic diversity (PD) (asymptomatic: PD = 9.2, standard error [SE] = 1.3; symptomatic: PD = 8.2, SE = 0.7) compared with primary infections (asymptomatic: PD = 5.9, SE = 0.8; symptomatic: PD = 7.4, SE = 1.0). The present study revealed a high bacterial diversity of EI and suggests that persistent infections may have more diverse bacterial communities than primary infections. Copyright © 2015 American Association of Endodontists. Published by

  20. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses.

    PubMed

    Roux, Simon; Brum, Jennifer R; Dutilh, Bas E; Sunagawa, Shinichi; Duhaime, Melissa B; Loy, Alexander; Poulos, Bonnie T; Solonenko, Natalie; Lara, Elena; Poulain, Julie; Pesant, Stéphane; Kandels-Lewis, Stefanie; Dimier, Céline; Picheral, Marc; Searson, Sarah; Cruaud, Corinne; Alberti, Adriana; Duarte, Carlos M; Gasol, Josep M; Vaqué, Dolors; Bork, Peer; Acinas, Silvia G; Wincker, Patrick; Sullivan, Matthew B

    2016-09-29

    Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting 'global ocean virome' dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where they

  1. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses

    NASA Astrophysics Data System (ADS)

    2016-09-01

    Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting ‘global ocean virome’ dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where

  2. Relationships between Host Phylogeny, Host Type and Bacterial Community Diversity in Cold-Water Coral Reef Sponges

    PubMed Central

    Schöttner, Sandra; Hoffmann, Friederike; Cárdenas, Paco; Rapp, Hans Tore; Boetius, Antje; Ramette, Alban

    2013-01-01

    Cold-water coral reefs are known to locally enhance the diversity of deep-sea fauna as well as of microbes. Sponges are among the most diverse faunal groups in these ecosystems, and many of them host large abundances of microbes in their tissues. In this study, twelve sponge species from three cold-water coral reefs off Norway were investigated for the relationship between sponge phylogenetic classification (species and family level), as well as sponge type (high versus low microbial abundance), and the diversity of sponge-associated bacterial communities, taking also geographic location and water depth into account. Community analysis by Automated Ribosomal Intergenic Spacer Analysis (ARISA) showed that as many as 345 (79%) of the 437 different bacterial operational taxonomic units (OTUs) detected in the dataset were shared between sponges and sediments, while only 70 (16%) appeared purely sponge-associated. Furthermore, changes in bacterial community structure were significantly related to sponge species (63% of explained community variation), sponge family (52%) or sponge type (30%), whereas mesoscale geographic distances and water depth showed comparatively small effects (<5% each). In addition, a highly significant, positive relationship between bacterial community dissimilarity and sponge phylogenetic distance was observed within the ancient family of the Geodiidae. Overall, the high diversity of sponges in cold-water coral reefs, combined with the observed sponge-related variation in bacterial community structure, support the idea that sponges represent heterogeneous, yet structured microbial habitats that contribute significantly to enhancing bacterial diversity in deep-sea ecosystems. PMID:23393586

  3. Bacterial community of biofilms developed under different water supply conditions in a distribution system.

    PubMed

    Sun, Huifang; Shi, Baoyou; Bai, Yaohui; Wang, Dongsheng

    2014-02-15

    In order to understand the bacterial community characteristics of biofilms developed under different finished water supply histories in drinking water distribution systems (DWDS), biofilm samples on different type of iron corrosion scales in a real DWDS were collected and systematically investigated using 454 pyrosequencing of 16S rRNA gene. The richness and diversity estimators showed that biofilms formed in DWDS transporting finished groundwater (GW) had the lowest level of bacterial diversity. From phylum to genus level, the dominant bacterial groups found in the biofilms under finished surface water (SW) and GW conditions were distinct. Proteobacteria was the dominant group in all biofilm samples (in the range of 40%-97%), but was relatively higher in biofilms with GW. The relative abundance of Firmicutes in biofilms with SW (28%-35%) was significantly higher (p<0.01) than that in biofilms with GW (0.5%-2.88%). Statistical analysis (Spearman's rank) revealed that alkalinity and chemical oxygen demand (CODMn) positively correlated with the relative abundance of Proteobacteria and Firmicutes, respectively. The abundance of sequences affiliated to iron-reducing bacteria (mainly Bacillus) and iron-oxidizing bacteria (mainly Acidovorax) were relatively higher in biofilms with SW, which might contribute to the formation of much thicker or tubercle-formed corrosion scales under SW supply condition. Several potential opportunistic pathogens, such as Burkholderia fungorum, Mycobacterium neoaurum, Mycobacterium frederiksbergense were detected in the biofilms. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Diversity and composition of the bacterial community in Amphioxus feces.

    PubMed

    Pan, Minming; Yuan, Dongjuan; Chen, Shangwu; Xu, Anlong

    2015-11-01

    Amphioxus is a typical filter feeder animal and is confronted with a complex bacterial community in the seawater of its habitat. It has evolved a strong innate immune system to cope with the external bacterial stimulation, however, the ecological system of the bacterial community in Amphioxus remains unknown. Through massive parallel 16S rRNA gene tag pyrosequencing, the investigation indicated that the composition of wild and lab-cultured Amphioxus fecal bacteria was complex with more than 85,000 sequence tags being assigned to 12/13 phyla. The bacterial diversity between the two fecal samples was similar according to OTU richness of V4 tag, Chao1 index, Shannon index and Rarefaction curves, however, the most prominent bacteria in wild feces were genera Pseudoalteromonas (gamma Proteobacteria) and Arcobacter (epsilon Proteobacteria); the highly abundant bacteria in lab-cultured feces were other groups, including Leisingera, Phaeobacter (alpha Proteobacteria), and Vibrio (gamma Proteobacteria). Such difference indicates the complex fecal bacteria with the potential for multi-stability. The bacteria of habitat with 28 assigned phyla had the higher bacterial diversity and species richness than both fecal bacteria. Shared bacteria between wild feces and its habitat reached to approximately 90% (153/169 genera) and 28% (153/548 genera), respectively. As speculative, the less diversity of both fecal bacteria compared to its habitat partly because Amphioxus lives buried and the feces will ultimately end up in the sediment. Therefore, our study comprehensively investigates the complex bacterial community of Amphioxus and provides evidence for understanding the relationship of this basal chordate with the environment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The 2-Methoxy Group Orientation Regulates the Redox Potential Difference between the Primary (QA) and Secondary (QB) Quinones of Type II Bacterial Photosynthetic Reaction Centers.

    PubMed

    de Almeida, Wagner B; Taguchi, Alexander T; Dikanov, Sergei A; Wraight, Colin A; O'Malley, Patrick J

    2014-08-07

    Recent studies have shown that only quinones with a 2-methoxy group can act simultaneously as the primary (Q A ) and secondary (Q B ) electron acceptors in photosynthetic reaction centers from purple bacteria such as Rb. sphaeroides . 13 C HYSCORE measurements of the 2-methoxy group in the semiquinone states, SQ A and SQ B , were compared with DFT calculations of the 13 C hyperfine couplings as a function of the 2-methoxy dihedral angle. X-ray structure comparisons support 2-methoxy dihedral angle assignments corresponding to a redox potential gap (Δ E m ) between Q A and Q B of 175-193 mV. A model having a methyl group substituted for the 2-methoxy group exhibits no electron affinity difference. This is consistent with the failure of a 2-methyl ubiquinone analogue to function as Q B in mutant reaction centers with a Δ E m of ∼160-195 mV. The conclusion reached is that the 2-methoxy group is the principal determinant of electron transfer from Q A to Q B in type II photosynthetic reaction centers with ubiquinone serving as both acceptor quinones.

  6. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus

    DOE PAGES

    Howard-Varona, Cristina; Roux, Simon; Dore, Hugo; ...

    2016-05-17

    Microbes impact human health and disease, industrial processes and natural ecosystems, but do so under the influence of viruses. Problematically, knowledge of viral infection efficiencies and outcomes (e.g. lysis, lysogeny) derives from few model systems that over-represent efficient, lytic infections and under-represent virus-host natural diversity. Here we sought to understand how infection efficiency is regulated in an environmental Bacteroidetes virus that represents a globally abundant viral group and has drastically different infection efficiencies when infecting two nearly identical bacterial strains. To this end, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout the infection of bothmore » bacterial hosts. While the phage transcriptome was similar during both infections, host transcriptional differences appeared to have altered infection efficiency. Specifically, host transcriptomes suggested that the phage failed to repress early host expression in the inefficient nfection, thereby allowing the host to respond against infection by delaying phage DNA replication and protein translation. Further measurements showed that phage DNA and particle production were delayed (by >30 minutes) and reduced (by >50%) in the inefficient versus efficient infection as the host over-expressed DNA degradation genes and under-expressed translation genes, respectively. Together these results suggest that multiple levels of regulation can impact infection efficiencies as failure to repress host transcription allowed the host to defend against both phage DNA and protein production. Given that this phage type is ubiquitous and abundant in the global oceans and that variably efficient viral infections are likely common in any ecosystem with varying phage-host abundances and physiological states, these data provide a critically needed foundation for understanding and modeling viral infection efficiency in nature.« less

  7. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus

    SciTech Connect

    Howard-Varona, Cristina; Roux, Simon; Dore, Hugo

    Microbes impact human health and disease, industrial processes and natural ecosystems, but do so under the influence of viruses. Problematically, knowledge of viral infection efficiencies and outcomes (e.g. lysis, lysogeny) derives from few model systems that over-represent efficient, lytic infections and under-represent virus-host natural diversity. Here we sought to understand how infection efficiency is regulated in an environmental Bacteroidetes virus that represents a globally abundant viral group and has drastically different infection efficiencies when infecting two nearly identical bacterial strains. To this end, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout the infection of bothmore » bacterial hosts. While the phage transcriptome was similar during both infections, host transcriptional differences appeared to have altered infection efficiency. Specifically, host transcriptomes suggested that the phage failed to repress early host expression in the inefficient nfection, thereby allowing the host to respond against infection by delaying phage DNA replication and protein translation. Further measurements showed that phage DNA and particle production were delayed (by >30 minutes) and reduced (by >50%) in the inefficient versus efficient infection as the host over-expressed DNA degradation genes and under-expressed translation genes, respectively. Together these results suggest that multiple levels of regulation can impact infection efficiencies as failure to repress host transcription allowed the host to defend against both phage DNA and protein production. Given that this phage type is ubiquitous and abundant in the global oceans and that variably efficient viral infections are likely common in any ecosystem with varying phage-host abundances and physiological states, these data provide a critically needed foundation for understanding and modeling viral infection efficiency in nature.« less

  8. Pyrosequencing analysis of bacterial diversity in dental unit waterlines.

    PubMed

    Costa, Damien; Mercier, Anne; Gravouil, Kevin; Lesobre, Jérôme; Delafont, Vincent; Bousseau, Anne; Verdon, Julien; Imbert, Christine

    2015-09-15

    Some infections cases due to exposure to output water from dental unit waterlines (DUWL) have been reported in the literature. However, this type of healthcare-associated risk has remained unclear and up until now the overall bacterial composition of DUWL has been poorly documented. In this study, 454 high-throughput pyrosequencing was used to investigate the bacterial community in seven dental offices (N = 7) and to identify potential bacterial pathogenic sequences. Dental unit waters (DUW) were collected from the tap water supplying units (Incoming Water; IW) to the output exposure point of the turbine handpiece (Output water; OW) following a stagnation period (OWS), and immediately after the last patient of the sampling day (OWA). A high bacterial diversity was revealed in DUW with 394 operational taxonomic units detected at the genus level. In addition to the inter-unit variability observed, results showed increased total bacterial cell concentration and shifts in bacterial community composition and abundance at the genus level, mainly within the Gamma- and Alpha-Proteobacteria class, as water circulated in the dental unit (DU). Results showed that 96.7%, 96.8% and 97.4% of the total sequences from IW, OWS and OWA respectively were common to the 3 defined water groups, thereby highlighting a common core microbiome. Results also suggested that stagnation and DU maintenance practices were critical to composition of the bacterial community. The presence of potentially pathogenic genera was detected, including Pseudomonas and Legionella spp. Emerging and opportunistic pathogenic genera such as Mycobacterium, Propionibacterium and Stenotrophomonas were likewise recovered in DUW. For the first time, an exhaustive evaluation of the bacterial communities present in DUW was performed taking into account the circulation of water within the DU. This study highlights an ignored diversity of the DUWL bacterial community. Our findings also contribute to a better

  9. Bacterial communities in floral nectar.

    PubMed

    Fridman, Svetlana; Izhaki, Ido; Gerchman, Yoram; Halpern, Malka

    2012-02-01

    Floral nectar is regarded as the most important reward available to animal-pollinated plants to attract pollinators. Despite the vast amount of publications on nectar properties, the role of nectar as a natural bacterial habitat is yet unexplored. To gain a better understanding of bacterial communities inhabiting floral nectar, culture-dependent and -independent (454-pyrosequencing) methods were used. Our findings demonstrate that bacterial communities in nectar are abundant and diverse. Using culture-dependent method we showed that bacterial communities of nectar displayed significant variation among three plant species: Amygdalus communis, Citrus paradisi and Nicotiana glauca. The dominant class in the nectar bacterial communities was Gammaproteobacteria. About half of the isolates were novel species (< 97% similarities of the 16S rRNA gene with known species). Using 454-pyrosequencing we demonstrated that nectar microbial community are distinct for each of the plant species while there are no significant differences between nectar microbial communities within nectars taken from different plants of the same species. Primary selection of the nectar bacteria is unclear; it may be affected by variations in the chemical composition of the nectar in each plant. The role of the rich and diverse nectar microflora in the attraction-repulsion relationships between the plant and its nectar consumers has yet to be explored. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Rhizospheric Bacterial Community of Endemic Rhododendron arboreum Sm. Ssp. delavayi along Eastern Himalayan Slope in Tawang

    PubMed Central

    Debnath, Rajal; Yadav, Archana; Gupta, Vijai K.; Singh, Bhim P.; Handique, Pratap J.; Saikia, Ratul

    2016-01-01

    Information on rhizosphere microbiome of endemic plants from high mountain ecosystems against those of cultivated plantations is inadequate. Comparative bacterial profiles of endemic medicinal plant Rhododendron arboreum Sm. subsp. delavayi rhizosphere pertaining to four altitudinal zonation Pankang Thang (PTSO), Nagula, Y-junction and Bum La (Indo-China border; in triplicates each) along cold adapted Eastern slope of Himalayan Tawang region, India is described here. Significant differences in DGGE profile between below ground bulk vs. rhizospheric community profile associated with the plant was identified. Tagged 16S amplicon sequencing from PTSO (3912 m) to Bum La (4509 m), revealed that soil pH, total nitrogen (TN), organic matter (OM) significantly influenced the underlying bacterial community structure at different altitudes. The relative abundance of Acidobacteria was inversely related to pH, as opposed to TN which was positively correlated to Acidobacteria and Proteobacteria abundance. TN was also the significant predictor for less abundant taxonomic groups Chloroflexi, Gemmatimonadetes, and Nitrospirae. Bum La soil harbored less bacterial diversity compared to other sites at lower altitudes. The most abundant phyla at 3% genetic difference were Acidobacteria, Actinobacteria, and Proteobacteria amongst others. Analysis of similarity indicated greater similarity within lower altitudinal than higher altitudinal group (ANOSIM, R = 0.287, p = 0.02). Constraining the ordination with the edaphic factor explained 83.13% of variation. Unique phylotypes of Bradyrhizobium and uncultured Rhizobiales were found in significant proportions at the four regions. With over 1% relative abundance Actinobacteria (42.6%), Acidobacteria (24.02%), Proteobacteria (16.00%), AD3 (9.23%), WPS-2 (5.1%), and Chloroflexi (1.48%) dominated the core microbiome. PMID:27642287

  11. Bacterial diversity and community composition from seasurface to subseafloor.

    PubMed

    Walsh, Emily A; Kirkpatrick, John B; Rutherford, Scott D; Smith, David C; Sogin, Mitchell; D'Hondt, Steven

    2016-04-01

    We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4-v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450,104 pyrotags representing 29,814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment.

  12. Bacterial Communities in Boreal Forest Mushrooms Are Shaped Both by Soil Parameters and Host Identity

    PubMed Central

    Pent, Mari; Põldmaa, Kadri; Bahram, Mohammad

    2017-01-01

    Despite recent advances in understanding the microbiome of eukaryotes, little is known about microbial communities in fungi. Here we investigate the structure of bacterial communities in mushrooms, including common edible ones, with respect to biotic and abiotic factors in the boreal forest. Using a combination of culture-based and Illumina high-throughput sequencing, we characterized the bacterial communities in fruitbodies of fungi from eight genera spanning four orders of the class Agaricomycetes (Basidiomycota). Our results revealed that soil pH followed by fungal identity are the main determinants of the structure of bacterial communities in mushrooms. While almost half of fruitbody bacteria were also detected from soil, the abundance of several bacterial taxa differed considerably between the two environments. The effect of host identity was significant at the fungal genus and order level and could to some extent be ascribed to the distinct bacterial community of the chanterelle, representing Cantharellales—the earliest diverged group of mushroom-forming basidiomycetes. These data suggest that besides the substantial contribution of soil as a major taxa source of bacterial communities in mushrooms, the structure of these communities is also affected by the identity of the host. Thus, bacteria inhabiting fungal fruitbodies may be non-randomly selected from environment based on their symbiotic functions and/or habitat requirements. PMID:28539921

  13. Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China

    PubMed Central

    Wu, Yucheng; Tan, Liangcheng; Liu, Wuxing; Wang, Baozhan; Wang, Jianjun; Cai, Yanjun; Lin, Xiangui

    2015-01-01

    Bacteria and archaea sustain subsurface cave ecosystems by dominating primary production and fueling biogeochemical cyclings, despite the permanent darkness and shortage of nutrients. However, the heterogeneity and underlying mechanism of microbial diversity in caves, in particular those well connect to surface environment are largely unexplored. In this study, we examined the bacterial abundance and composition in Jinjia Cave, a small and shallow limestone cave located on the western Loess Plateau of China, by enumerating and pyrosequencing small subunit rRNA genes. The results clearly reveal the contrasting bacterial community compositions in relation to cave habitat types, i.e., rock wall deposit, aquatic sediment, and sinkhole soil, which are differentially connected to the surface environment. The deposits on the cave walls were dominated by putative cave-specific bacterial lineages within the γ-Proteobacteria or Actinobacteria that are routinely found on cave rocks around the world. In addition, sequence identity with known functional groups suggests enrichments of chemolithotrophic bacteria potentially involved in autotrophic C fixation and inorganic N transformation on rock surfaces. By contrast, bacterial communities in aquatic sediments were more closely related to those in the overlying soils. This is consistent with the similarity in elemental composition between the cave sediment and the overlying soil, implicating the influence of mineral chemistry on cave microhabitat and bacterial composition. These findings provide compelling molecular evidence of the bacterial community heterogeneity in an East Asian cave, which might be controlled by both subsurface and surface environments. PMID:25870592

  14. Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China.

    PubMed

    Wu, Yucheng; Tan, Liangcheng; Liu, Wuxing; Wang, Baozhan; Wang, Jianjun; Cai, Yanjun; Lin, Xiangui

    2015-01-01

    Bacteria and archaea sustain subsurface cave ecosystems by dominating primary production and fueling biogeochemical cyclings, despite the permanent darkness and shortage of nutrients. However, the heterogeneity and underlying mechanism of microbial diversity in caves, in particular those well connect to surface environment are largely unexplored. In this study, we examined the bacterial abundance and composition in Jinjia Cave, a small and shallow limestone cave located on the western Loess Plateau of China, by enumerating and pyrosequencing small subunit rRNA genes. The results clearly reveal the contrasting bacterial community compositions in relation to cave habitat types, i.e., rock wall deposit, aquatic sediment, and sinkhole soil, which are differentially connected to the surface environment. The deposits on the cave walls were dominated by putative cave-specific bacterial lineages within the γ-Proteobacteria or Actinobacteria that are routinely found on cave rocks around the world. In addition, sequence identity with known functional groups suggests enrichments of chemolithotrophic bacteria potentially involved in autotrophic C fixation and inorganic N transformation on rock surfaces. By contrast, bacterial communities in aquatic sediments were more closely related to those in the overlying soils. This is consistent with the similarity in elemental composition between the cave sediment and the overlying soil, implicating the influence of mineral chemistry on cave microhabitat and bacterial composition. These findings provide compelling molecular evidence of the bacterial community heterogeneity in an East Asian cave, which might be controlled by both subsurface and surface environments.

  15. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean.

    PubMed

    Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji

    2011-06-01

    Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms.

  16. 454 pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas.

    PubMed

    Li, Yuanyuan; Chen, Longqian; Wen, Hongyu; Zhou, Tianjian; Zhang, Ting; Gao, Xiali

    2014-03-28

    Significant alteration in the microbial community can occur across reclamation areas suffering subsidence from mining. A reclamation site undergoing fertilization practices and an adjacent coal-excavated subsidence site (sites A and B, respectively) were examined to characterize the bacterial diversity using 454 high-throughput 16S rDNA sequencing. The dominant taxonomic groups in both the sites were Proteobacteria, Acidobacteria, Bacteroidetes, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, and Firmicutes. However, the bacterial communities' abundance, diversity, and composition differed significantly between the sites. Site A presented higher bacterial diversity and more complex community structures than site B. The majority of sequences related to Proteobacteria, Gemmatimonadetes, Chloroflexi, Nitrospirae, Firmicutes, Betaproteobacteria, Deltaproteobacteria, and Anaerolineae were from site A; whereas those related to Actinobacteria, Planctomycetes, Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Nitriliruptoria, Alphaproteobacteria, and Phycisphaerae originated from site B. The distribution of some bacterial groups and subgroups in the two sites correlated with soil properties and vegetation due to reclamation practice. Site A exhibited enriched bacterial community, soil organic matter (SOM), and total nitrogen (TN), suggesting the presence of relatively diverse microorganisms. SOM and TN were important factors shaping the underlying microbial communities. Furthermore, the specific plant functional group (legumes) was also an important factor influencing soil microbial community composition. Thus, the effectiveness of 454 pyrosequencing in analyzing soil bacterial diversity was validated and an association between land ecological system restoration, mostly mediated by microbial communities, and an improvement in soil properties in coalmining reclamation areas was suggested.

  17. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium.

    PubMed

    Pereira, Arthur Prudêncio de Araujo; Andrade, Pedro Avelino Maia de; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil.

  18. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium

    PubMed Central

    de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690

  19. Bacterial Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  20. Bacterial Actins.

    PubMed

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  1. Abiotic and biotic factors influencing nanoflagellate abundance and distribution in three different seasons in PRE, South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Shi, Zhen; Huang, Xiaoping; Li, Xiangfu

    2017-07-01

    Spatial distribution characteristics of two nanoflagellate groups, together with physico-chemical and biological factors, were studied in three seasons in the Pearl River Estuary (PRE), South China Sea. Nanoflagellates were more abundant in warm periods than that in winter. The average abundance in the three observations (spring, summer and winter) was as follow: 1.28 ± 1.17, 0.88 ± 1.02 and 0.28 ± 0.23 × 103 cells ml-1 of heterotrophic nanoflagellate (HNF), and 1.26 ± 0.85, 0.89 ± 0.77 and 0.65 ± 0.52 × 103 cells ml-1 of pigmented nanoflagellate (PNF). In our three studied seasons, NF density was generally higher in the inner estuary and decreasing to the lowest in the outer estuary. Our results suggested that PNF classes were more sensitive than HNF groups to freshwater discharge. The proportion of PNF gradually increased from spring (49.7%) to winter (67.7%), with the river flow was accordingly decreasing. Moreover, spatial distribution pattern in three seasons showed the response of PNF populations to freshwater input was similar to phytoplankton assemblages in the PRE. Total bacterial and live bacterial abundance (measured by LIVE/DEAD kit) were associated with both two NF components, which implied that NF was a potential predator controlling the bulk abundance of bacteria and proportion of active cells. These results revealed the seasonal and spatial variations of NF abundance in diverse conditions in the PRE and how their response to different ecological processes.

  2. Neglected Bacterial Zoonoses

    PubMed Central

    Chikeka, Ijeuru; Dumler, J. Stephen

    2015-01-01

    Bacterial zoonoses comprise a group of diseases in humans or animals acquired by direct contact with or by oral consumption of contaminated animal materials, or via arthropod vectors. Among neglected infections, bacterial zoonoses are among the most neglected given emerging data on incidence and prevalence as causes of acute febrile illness, even in areas where recognized neglected tropical diseases occur frequently. While many other bacterial infections could also be considered in this neglected category, five distinct infections stand out because they are globally distributed, are acute febrile diseases, have high rates of morbidity and case fatality, and are reported as commonly as malaria, typhoid or dengue virus infections in carefully designed studies in which a broad spectrum diagnoses are actively sought. Thus, this review will focus attention on leptospirosis, relapsing fever borreliosis, and rickettsioses, including scrub typhus, murine typhus and spotted fever group rickettsiosis. Of greatest interest is the lack of distinguishing clinical features among these infections when in humans, which confounds diagnosis where laboratory confirmation is lacking, and in regions where clinical diagnosis is often attributed to one of several perceived more common threats. As diseases such as malaria come under improved control, the real impact of these common and under-recognized infections will become evident, as will the requirement for the strategies and allocation of resources for their control. PMID:25964152

  3. Neglected bacterial zoonoses.

    PubMed

    Chikeka, I; Dumler, J S

    2015-05-01

    Bacterial zoonoses comprise a group of diseases in humans or animals acquired by direct contact with or by oral consumption of contaminated animal materials, or via arthropod vectors. Among neglected infections, bacterial zoonoses are among the most neglected given emerging data on incidence and prevalence as causes of acute febrile illness, even in areas where recognized neglected tropical diseases occur frequently. Although many other bacterial infections could also be considered in this neglected category, five distinct infections stand out because they are globally distributed, are acute febrile diseases, have high rates of morbidity and case fatality, and are reported as commonly as malaria, typhoid or dengue virus infections in carefully designed studies in which broad-spectrum diagnoses are actively sought. This review will focus attention on leptospirosis, relapsing fever borreliosis and rickettsioses, including scrub typhus, murine typhus and spotted fever group rickettsiosis. Of greatest interest is the lack of distinguishing clinical features among these infections when in humans, which confounds diagnosis where laboratory confirmation is lacking, and in regions where clinical diagnosis is often attributed to one of several perceived more common threats. As diseases such as malaria come under improved control, the real impact of these common and under-recognized infections will become evident, as will the requirement for the strategies and allocation of resources for their control. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Bacterial diversity and community structure in lettuce soil are shifted by cultivation time

    NASA Astrophysics Data System (ADS)

    Liu, Yiqian; Chang, Qing; Guo, Xu; Yi, Xinxin

    2017-08-01

    Compared with cereal production, vegetable production usually requires a greater degree of management and larger input of nutrients and irrigation, but these systems are not sustainable in the long term. This study aimed to what extent lettuce determine the bacterial community composition in the soil, during lettuce cultivation, pesticides and fertilizers were not apply to soil. Soil samples were collected from depths of 0-20cm and 20-40cm. A highthroughput sequencing approach was employed to investigate bacterial communities in lettuce-cultivated soil samples in a time-dependent manner. The dominant bacteria in the lettuce soil samples were mainly Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Firmicutes, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Gemmatimo nadetes, Cyanobacteria. Proteobacteria was the most abundant phylum in the 6 soil samples. The relative abundance of Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria decreased through time of lettuce cultivation, but the relative abundance of Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Nitrospirae increased over time. In the 0-20cm depth group and the 20-40cm depth soil, a similar pattern was observed that the percentage number of only shared OTUs between the early and late stage was lower than that between the early and middle stage soil, the result showed that lettuce growth can affect structure of soil bacterial communities.

  5. Comparison of benthic bacterial community composition in nine streams

    Treesearch

    Xueqing Gao; Ola A. Olapade; Laura G. Leff

    2005-01-01

    In this study, the abundance of major bacterial taxa (based on fluorescent in situ hybridization, FISH) and the structure of the bacterial community (based on denaturing gradient gel electrophoresis, DGGE) were determined in the benthos of 9 streams in the southeastern and midwestern United States and related to differences in environmental...

  6. Camparison of benthic bacterial community composition in nine streams

    Treesearch

    Xuqing Gao; Ola A. Olapade; Laura G. Leff

    2005-01-01

    In this study, the abundance of major bacterial taxa (based on fluorescent in situ hybridization, FISH) and the structure of the bacterial community (based on denaturing gradient gel electrophoresis, DGGE) were determined in the benthos of 9 streams in the southeastern and midwestern United States and related to differences in environmental conditions. Taxa examined...

  7. Different Types of Dietary Fibers Trigger Specific Alterations in Composition and Predicted Functions of Colonic Bacterial Communities in BALB/c Mice

    PubMed Central

    Luo, Yuheng; Zhang, Ling; Li, Hua; Smidt, Hauke; Wright, André-Denis G.; Zhang, Keying; Ding, Xuemei; Zeng, Qiufeng; Bai, Shiping; Wang, Jianping; Li, Jian; Zheng, Ping; Tian, Gang; Cai, Jingyi; Chen, Daiwen

    2017-01-01

    Soluble dietary fibers (SDF) are fermented more than insoluble dietary fibers (IDF), but their effect on colonic bacterial community structure and function remains unclear. Thus, bacterial community composition and function in the colon of BALB/c mice (n = 7) fed with a high level (approximately 20%) of typical SDF, oat-derived β-glucan (G), microcrystalline cellulose (M) as IDF, or their mixture (GM), were compared. Mice in group G showed a lowest average feed intake (p < 0.05) but no change on the average body weight gain (p > 0.05) compared to other groups, which may be associated with the highest concentration of colonic propionate (p < 0.05) in these mice. The bacterial α-diversity of group G was significantly lower than other groups (p < 0.01). In group G, the relative abundance of bacteria belonging to the phylum Bacteroidetes was significantly increased, whereas bacteria from the phylum Firmicutes were significantly decreased (p < 0.01). The core bacteria for different treatments showed distinct differences. Bacteroides, Dehalobacterium, and Prevotella, including known acetogens and carbohydrate fermenting organisms, were significantly increased in relative abundance in group G. In contrast, Adlercreutzia, Odoribacter, and Coprococcus were significantly more abundant in group M, whereas Oscillospira, Desulfovibrio, and Ruminoccaceae, typical hydrogenotrophs equipped with multiple carbohydrate active enzymes, were remarkably enriched in group GM (p < 0.05). The relative abundance of bacteria from the three classes of Proteobacteria, Betaproteobacteria, Gammaproteobacteria (including Enterobacteriaceae) and Deltaproteobacteria, were significantly more abundant in group G, indicating a higher ratio of conditional pathogenic bacteria in mice fed dietary β-glucan in current study. The predicted colonic microbial function showed an enrichment of “Energy metabolism” and “Carbohydrate metabolism” pathways in mice from group G and M, suggesting that the

  8. Different Types of Dietary Fibers Trigger Specific Alterations in Composition and Predicted Functions of Colonic Bacterial Communities in BALB/c Mice.

    PubMed

    Luo, Yuheng; Zhang, Ling; Li, Hua; Smidt, Hauke; Wright, André-Denis G; Zhang, Keying; Ding, Xuemei; Zeng, Qiufeng; Bai, Shiping; Wang, Jianping; Li, Jian; Zheng, Ping; Tian, Gang; Cai, Jingyi; Chen, Daiwen

    2017-01-01

    Soluble dietary fibers (SDF) are fermented more than insoluble dietary fibers (IDF), but their effect on colonic bacterial community structure and function remains unclear. Thus, bacterial community composition and function in the colon of BALB/c mice ( n = 7) fed with a high level (approximately 20%) of typical SDF, oat-derived β-glucan (G), microcrystalline cellulose (M) as IDF, or their mixture (GM), were compared. Mice in group G showed a lowest average feed intake ( p < 0.05) but no change on the average body weight gain ( p > 0.05) compared to other groups, which may be associated with the highest concentration of colonic propionate ( p < 0.05) in these mice. The bacterial α-diversity of group G was significantly lower than other groups ( p < 0.01). In group G, the relative abundance of bacteria belonging to the phylum Bacteroidetes was significantly increased, whereas bacteria from the phylum Firmicutes were significantly decreased ( p < 0.01). The core bacteria for different treatments showed distinct differences. Bacteroides , Dehalobacterium , and Prevotella , including known acetogens and carbohydrate fermenting organisms, were significantly increased in relative abundance in group G. In contrast, Adlercreutzia , Odoribacter , and Coprococcus were significantly more abundant in group M, whereas Oscillospira , Desulfovibrio , and Ruminoccaceae , typical hydrogenotrophs equipped with multiple carbohydrate active enzymes, were remarkably enriched in group GM ( p < 0.05). The relative abundance of bacteria from the three classes of Proteobacteria , Betaproteobacteria , Gammaproteobacteria (including Enterobacteriaceae ) and Deltaproteobacteria , were significantly more abundant in group G, indicating a higher ratio of conditional pathogenic bacteria in mice fed dietary β-glucan in current study. The predicted colonic microbial function showed an enrichment of "Energy metabolism" and "Carbohydrate metabolism" pathways in mice from group G and M, suggesting

  9. Clustering in the stellar abundance space

    NASA Astrophysics Data System (ADS)

    Boesso, R.; Rocha-Pinto, H. J.

    2018-03-01

    We have studied the chemical enrichment history of the interstellar medium through an analysis of the n-dimensional stellar abundance space. This work is a non-parametric analysis of the stellar chemical abundance space. The main goal is to study the stars from their organization within this abundance space. Within this space, we seek to find clusters (in a statistical sense), that is, stars likely to share similar chemo-evolutionary history, using two methods: the hierarchical clustering and the principal component analysis. We analysed some selected abundance surveys available in the literature. For each sample, we labelled the group of stars according to its average abundance curve. In all samples, we identify the existence of a main enrichment pattern of the stars, which we call chemical enrichment flow. This flow is set by the structured and well-defined mean rate at which the abundances of the interstellar medium increase, resulting from the mixture of the material ejected from the stars and stellar mass-loss and interstellar medium gas. One of the main results of our analysis is the identification of subgroups of stars with peculiar chemistry. These stars are situated in regions outside of the enrichment flow in the abundance space. These peculiar stars show a mismatch in the enrichment rate of a few elements, such as Mg, Si, Sc and V, when compared to the mean enrichment rate of the other elements of the same stars. We believe that the existence of these groups of stars with peculiar chemistry may be related to the accretion of planetary material on to stellar surfaces or may be due to production of the same chemical element by different nucleosynthetic sites.

  10. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  11. Soil bacterial community response to vegetation succession after fencing in the grassland of China.

    PubMed

    Zeng, Quanchao; An, Shaoshan; Liu, Yang

    2017-12-31

    Natural succession is an important process in terrestrial system, playing an important role in enhancing soil quality and plant diversity. Soil bacteria is the linkage between soil and plant, has an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems, driving the decomposition of soil organic matter and plant litter. However, the role of soil bacteria in the secondary succession has not been well understood, particularly in the degraded soil of Loess Plateau. In this study, we investigated soil nutrients and soil bacterial community during the secondary succession after a long-term fencing in the grassland, in the Yuwu Mountain, northwest China. The chronosequence included 1year, 12years, 20years and 30years. The soil bacterial community composition was determined by the Illumina HiSeq sequencing method. The data showed that soil bacterial diversity had no significant changes along the chronosequence, but soil bacterial community compositions significantly changed. Proteobacteria, Acidobacteria and Actinobacteria were the main phyla in all the samples across succession. With the accumulation of soil organic matter and nutrients, the relative abundance of Actinobacteria decreased, whereas Proteobacteria increased. These shifts may be caused by the increase of the available nutrients across the secondary succession. In the younger sites, soils were dominated by oligotrophic groups, whereas soil in the late-succession site were dominated by copiotrophic groups, indicating the dependence of soil bacterial community composition on the contents of soil available nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bacterial Diversity in Submarine Groundwater along the Coasts of the Yellow Sea

    PubMed Central

    Ye, Qi; Liu, Jianan; Du, Jinzhou; Zhang, Jing

    2016-01-01

    Submarine groundwater (SGD) is one of the most significant pathways for the exchange of groundwater and/or source of nutrients, metals and carbon to the ocean, subsequently cause deleterious impacts on the coastal ecosystems. Microorganisms have been recognized as the important participators in the biogeochemical processes in the SGD. In this study, by utilizing 16S rRNA-based Illumina Miseq sequencing technology, we investigated bacterial diversity and distribution in both fresh well water and brackish recirculated porewater along the coasts in the Yellow Sea. The results showed that Actinobacteria and Betaproteobacteria, especially Comamonas spp. and Limnohabitans spp. were dominated in fresh well samples. Distinct patterns of bacterial communities were found among the porewater samples due to different locations, for examples, Cyanbacteria was the most abundant in the porewater samples far from the algal bloomed areas. The analysis of correlation between representative bacterial taxonomic groups and the contexture environmental parameters showed that fresh well water and brackish porewater might provide different nutrients to the coastal waters. Potential key bacterial groups such as Comamonas spp. may be excellent candidates for the bioremediation of the natural pollutants in the SGD. Our comprehensive understanding of bacterial diversity in the SGD along the coasts of the Yellow Sea will create a basis for designing the effective clean-up approach in-situ, and provide valuable information for the coastal management. PMID:26779172

  13. Organic carbon and nitrogen availability determine bacterial community composition in paddy fields of the Indo-Gangetic plain.

    PubMed

    Kumar, Arvind; Rai, Lal Chand

    2017-07-01

    Soil quality is an important factor and maintained by inhabited microorganisms. Soil physicochemical characteristics determine indigenous microbial population and rice provides food security to major population of the world. Therefore, this study aimed to assess the impact of physicochemical variables on bacterial community composition and diversity in conventional paddy fields which could reflect a real picture of the bacterial communities operating in the paddy agro-ecosystem. To fulfill the objective; soil physicochemical characterization, bacterial community composition and diversity analysis was carried out using culture-independent PCR-DGGE method from twenty soils distributed across eight districts. Bacterial communities were grouped into three clusters based on UPGMA cluster analysis of DGGE banding pattern. The linkage of measured physicochemical variables with bacterial community composition was analyzed by canonical correspondence analysis (CCA). CCA ordination biplot results were similar to UPGMA cluster analysis. High levels of species-environment correlations (0.989 and 0.959) were observed and the largest proportion of species data variability was explained by total organic carbon (TOC), available nitrogen, total nitrogen and pH. Thus, results suggest that TOC and nitrogen are key regulators of bacterial community composition in the conventional paddy fields. Further, high diversity indices and evenness values demonstrated heterogeneity and co-abundance of the bacterial communities.

  14. Twilight of Abundance

    NASA Astrophysics Data System (ADS)

    Archibald, David

    2014-03-01

    Baby boomers enjoyed the most benign period in human history: fifty years of relative peace, cheap energy, plentiful grain supply, and a warming climate due to the highest solar activity for 8,000 years. The party is over - prepare for the twilight of abundance. David Archibald reveals the grim future the world faces on its current trajectory: massive fuel shortages, the bloodiest warfare in human history, a global starvation crisis, and a rapidly cooling planet. Archibald combines pioneering science with keen economic knowledge to predict the global disasters that could destroy civilization as we know it - disasters that are waiting just around the corner. But there's good news, too: We can have a good future if we prepare for it. Advanced, civilized countries can have a permanently high standard of living if they choose to invest in the technologies that will get them there. Archibald, a climate scientist as well as an inventor and a financial specialist, explains which scientific breakthroughs can save civilization in the coming crisis - if we can cut through the special interest opposition to these innovations and allow free markets to flourish.

  15. Microbial Distribution and Abundance in the Digestive System of Five Shipworm Species (Bivalvia: Teredinidae)

    PubMed Central

    Betcher, Meghan A.; Fung, Jennifer M.; Han, Andrew W.; O’Connor, Roberta; Seronay, Romell; Concepcion, Gisela P.; Distel, Daniel L.; Haygood, Margo G.

    2012-01-01

    Marine bivalves of the family Teredinidae (shipworms) are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes) of the gills (ctenidia). These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH) and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis). These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose. PMID:23028923

  16. Microbial distribution and abundance in the digestive system of five shipworm species (Bivalvia: Teredinidae).

    PubMed

    Betcher, Meghan A; Fung, Jennifer M; Han, Andrew W; O'Connor, Roberta; Seronay, Romell; Concepcion, Gisela P; Distel, Daniel L; Haygood, Margo G

    2012-01-01

    Marine bivalves of the family Teredinidae (shipworms) are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes) of the gills (ctenidia). These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH) and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis). These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose.

  17. Functional anatomy of the colonic bioreactor: Impact of antibiotics and Saccharomyces boulardii on bacterial composition in human fecal cylinders.

    PubMed

    Swidsinski, Alexander; Loening-Baucke, Vera; Schulz, Stefan; Manowsky, Julia; Verstraelen, Hans; Swidsinski, Sonja

    2016-02-01

    Sections of fecal cylinders were analyzed using fluorescence in situ hybridization targeting 180 bacterial groups. Samples were collected from three groups of women (N=20 each) treated for bacterial vaginosis with ciprofloxacin+metronidazole. Group A only received the combined antibiotic regimen, whereas the A/Sb group received concomitant Saccharomyces boulardii CNCM I-745 treatment, and the A_Sb group received S. boulardii prophylaxis following the 14-day antibiotic course. The number of stool cylinders analyzed was 188 out of 228 in group A, 170 out of 228 in group A/Sb, and 172 out of 216 in group A_Sb. The colonic biomass was organized into a separate mucus layer with no bacteria, a 10-30μm broad unstirred transitional layer enriched with bacteria, and a patchy fermentative area that mixed digestive leftovers with bacteria. The antibiotics suppressed bacteria mainly in the fermentative area, whereas abundant bacterial clades retreated to the transitional mucus and survived. As a result, the total concentration of bacteria decreased only by one order. These effects were lasting, since the overall recovery of the microbial mass, bacterial diversity and concentrations were still below pre-antibiotic values 4 months after the end of antibiotic treatment. Sb-prophylaxis markedly reduced antibiotic effects and improved the recovery rates. Since the colon is a sophisticated bioreactor, the study indicated that the spatial anatomy of its biomass was crucial for its function. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  18. Distinct Soil Bacterial Communities Revealed under a Diversely Managed Agroecosystem

    PubMed Central

    Shange, Raymon S.; Ankumah, Ramble O.; Ibekwe, Abasiofiok M.; Zabawa, Robert; Dowd, Scot E.

    2012-01-01

    Land-use change and management practices are normally enacted to manipulate environments to improve conditions that relate to production, remediation, and accommodation. However, their effect on the soil microbial community and their subsequent influence on soil function is still difficult to quantify. Recent applications of molecular techniques to soil biology, especially the use of 16S rRNA, are helping to bridge this gap. In this study, the influence of three land-use systems within a demonstration farm were evaluated with a view to further understand how these practices may impact observed soil bacterial communities. Replicate soil samples collected from the three land-use systems (grazed pine forest, cultivated crop, and grazed pasture) on a single soil type. High throughput 16S rRNA gene pyrosequencing was used to generate sequence datasets. The different land use systems showed distinction in the structure of their bacterial communities with respect to the differences detected in cluster analysis as well as diversity indices. Specific taxa, particularly Actinobacteria, Acidobacteria, and classes of Proteobacteria, showed significant shifts across the land-use strata. Families belonging to these taxa broke with notions of copio- and oligotrphy at the class level, as many of the less abundant groups of families of Actinobacteria showed a propensity for soil environments with reduced carbon/nutrient availability. Orders Actinomycetales and Solirubrobacterales showed their highest abundance in the heavily disturbed cultivated system despite the lowest soil organic carbon (SOC) values across the site. Selected soil properties ([SOC], total nitrogen [TN], soil texture, phosphodiesterase [PD], alkaline phosphatase [APA], acid phosphatase [ACP] activity, and pH) also differed significantly across land-use regimes, with SOM, PD, and pH showing variation consistent with shifts in community structure and composition. These results suggest that use of pyrosequencing

  19. Distinct soil bacterial communities revealed under a diversely managed agroecosystem.

    PubMed

    Shange, Raymon S; Ankumah, Ramble O; Ibekwe, Abasiofiok M; Zabawa, Robert; Dowd, Scot E

    2012-01-01

    Land-use change and management practices are normally enacted to manipulate environments to improve conditions that relate to production, remediation, and accommodation. However, their effect on the soil microbial community and their subsequent influence on soil function is still difficult to quantify. Recent applications of molecular techniques to soil biology, especially the use of 16S rRNA, are helping to bridge this gap. In this study, the influence of three land-use systems within a demonstration farm were evaluated with a view to further understand how these practices may impact observed soil bacterial communities. Replicate soil samples collected from the three land-use systems (grazed pine forest, cultivated crop, and grazed pasture) on a single soil type. High throughput 16S rRNA gene pyrosequencing was used to generate sequence datasets. The different land use systems showed distinction in the structure of their bacterial communities with respect to the differences detected in cluster analysis as well as diversity indices. Specific taxa, particularly Actinobacteria, Acidobacteria, and classes of Proteobacteria, showed significant shifts across the land-use strata. Families belonging to these taxa broke with notions of copio- and oligotrphy at the class level, as many of the less abundant groups of families of Actinobacteria showed a propensity for soil environments with reduced carbon/nutrient availability. Orders Actinomycetales and Solirubrobacterales showed their highest abundance in the heavily disturbed cultivated system despite the lowest soil organic carbon (SOC) values across the site. Selected soil properties ([SOC], total nitrogen [TN], soil texture, phosphodiesterase [PD], alkaline phosphatase [APA], acid phosphatase [ACP] activity, and pH) also differed significantly across land-use regimes, with SOM, PD, and pH showing variation consistent with shifts in community structure and composition. These results suggest that use of pyrosequencing

  20. Phages Infecting Vibrio vulnificus Are Abundant and Diverse in Oysters (Crassostrea virginica) Collected from the Gulf of Mexico

    PubMed Central

    DePaola, Angelo; Motes, Miles L.; Chan, Amy M.; Suttle, Curtis A.

    1998-01-01

    Phages infecting Vibrio vulnificus were abundant (>104 phages g of oyster tissue−1) throughout the year in oysters (Crassostrea virginica) collected from estuaries adjacent to the Gulf of Mexico (Apalachicola Bay, Fla.; Mobile Bay, Ala.; and Black Bay, La.). Estimates of abundance ranged from 101 to 105 phages g of oyster tissue−1 and were dependent on the bacterial strain used to assay the sample. V. vulnificus was near or below detection limits (<0.3 cell g−1) from January through March and was most abundant (103 to 104 cells g−1) during the summer and fall, when phage abundances also tended to be greatest. The phages isolated were specific to strains of V. vulnificus, except for one isolate that caused lysis in a few strains of V. parahaemolyticus. Based on morphological evidence obtained by transmission electron microscopy, the isolates belonged to the Podoviridae, Styloviridae, and Myoviridae, three families of double-stranded DNA phages. One newly described morphotype belonging to the Podoviridae appears to be ubiquitous in Gulf Coast oysters. Isolates of this morphotype have an elongated capsid (mean, 258 nm; standard deviation, 4 nm; n = 35), with some isolates having a relatively broad host range among strains of V. vulnificus. Results from this study indicate that a morphologically diverse group of phages which infect V. vulnificus is abundant and widely distributed in oysters from estuaries bordering the northeastern Gulf of Mexico. PMID:9435088

  1. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.

    PubMed

    Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-05-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  2. Small bowel bacterial overgrowth

    MedlinePlus

    Overgrowth - intestinal bacteria; Bacterial overgrowth - intestine; Small intestinal bacterial overgrowth; SIBO ... intestine does not have a high number of bacteria. Excess bacteria in the small intestine may use ...

  3. Soil bacterial community shifts associated with sugarcane straw removal

    NASA Astrophysics Data System (ADS)

    Pimentel, Laisa; Gumiere, Thiago; Andreote, Fernando; Cerri, Carlos

    2017-04-01

    In Brazil, the adoption of the mechanical unburned sugarcane harvest potentially increase the quantity of residue left in the field after harvesting. Economically, this material has a high potential for second generation ethanol (2G) production. However, crop residues have an essential role in diverse properties and processes in the soil. The greater part of the uncertainties about straw removal for 2G ethanol production is based on its effects in soil microbial community. In this sense, it is important to identify the main impacts of sugarcane straw removal on soil microbial community. Therefore, we conducted a field study, during one year, in Valparaíso (São Paulo state - Brazil) to evaluate the effects of straw decomposition on soil bacterial community. Specifically, we wanted: i) to compare the rates of straw removal and ii) to evaluate the effects of straw decomposition on soil bacterial groups over one year. The experiment was in a randomized block design with treatments arranged in strip plot. The treatments are different rates of sugarcane straw removal, namely: no removal, 50, 75 and 100% of straw removal. Soil sampling was carried out at 0, 4, 8 and 12 months after the sugarcane harvest (August 2015). Total DNA was extracted from soil using the PowersoilTM DNA Isolation kit. And the abundance of bacterial in each soil sample was estimated via quantification of 16S rRNA gene. The composition of the bacterial communities was estimated via terminal restriction fragment length polymorphism (T-RFLP) analysis, and the T-RF sizes were performed on a 3500 Genetic Analyzer. Finally, the results were examined with GeneMapper 4.1 software. There was bacterial community shifts through the time and among the rates of sugarcane straw removal. Bacterial community was firstly determined by the time scale, which explained 29.16% of total variation. Rates of straw removal explained 11.55% of shifts on bacterial community. Distribution through the time is an important

  4. Nodulation-dependent communities of culturable bacterial endophytes from stems of field-grown soybeans.

    PubMed

    Okubo, Takashi; Ikeda, Seishi; Kaneko, Takakazu; Eda, Shima; Mitsui, Hisayuki; Sato, Shusei; Tabata, Satoshi; Minamisawa, Kiwamu

    2009-01-01

    Endophytic bacteria (247 isolates) were randomly isolated from surface-sterilized stems of non-nodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans (Glycine max [L.] Merr) on three agar media (R2A, nutrient agar, and potato dextrose agar). Their diversity was compared on the basis of 16S rRNA gene sequences. The phylogenetic composition depended on the soybean nodulation phenotype, although diversity indexes were not correlated with nodulation phenotype. The most abundant phylum throughout soybean lines tested was Proteobacteria (58-79%). Gammaproteobacteria was the dominant class (21-72%) with a group of Pseudomonas sp. significantly abundant in Nod(+) soybeans. A high abundance of Alphaproteobacteria was observed in Nod(-) soybeans, which was explained by the increase in bacterial isolates of the families Rhizobiaceae and Sphingomonadaceae. A far greater abundance of Firmicutes was observed in Nod(-) and Nod(++) mutant soybeans than in Nod(+) soybeans. An impact of culture media on the diversity of isolated endophytic bacteria was also observed: The highest diversity indexes were obtained on the R2A medium, which enabled us to access Alphaproteobacteria and other phyla more frequently. The above results indicated that the extent of nodulation changes the phylogenetic composition of culturable bacterial endophytes in soybean stems.

  5. Effect of disopyramide on bacterial diversity in drinking water

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Zhao, Xiaofei; Tian, Qi; Wang, Lei; Zhao, Xinhua

    2018-02-01

    Disopyramide was detected in drinking water by LC-MS/MS and the microbial diversity was investigated by PCR and high-throughput sequencing. The results showed that bacteria community structure in drinking water changed a lot when added different concentrations of disopyramide. The results of Shannon index showed that the total number and abundance of bacterial community species in drinking water samples decreased significantly after the addition of disopyramide. However, the number and abundance of community structure did not change with the concentration of disopyramide. Disopyramide inhibits the activity of bacterial community in drinking water and also can reduce the bacterial community diversity in drinking water.

  6. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing.

    PubMed

    Lopes, Ana R; Manaia, Célia M; Nunes, Olga C

    2014-03-01

    Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and 'Solibacterales' and negatively with lineages such as Chloroflexi 'Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Multilayer Approach for Characterization of Bacterial Diversity in a Marginal Sea: From Surface to Seabed

    NASA Technical Reports Server (NTRS)

    Ivana, Babic; Maja, Mucko; Ivica, Vilibic; Hrvoje, Mihanovic; Reffaella, Casotti; Zrinka, Ljubesic; Ivona, Cetinic; Cecilia, Balestra; Ines, Petric; Suncica, Bosak; hide

    2018-01-01

    Bacteria are the most important microorganisms in the world oceans, accounting for up to 75% of the total biomass. They are responsible for fundamental biogeochemical processes and therefore often used as ecological indicators. In this study, bacteria were quantified by flow cytometry and their diversity assessed by High Throughput Sequencing (HTS) in the southern Adriatic Sea. The most abundant bacterial groups were also quantified by qPCR. The samples were collected from the surface to the seabed over a total of 16 different depths at four stations during the late winter BIOTA (BIO-Tracing Adriatic water masses) cruise conducted in March 2016. The investigated area showed unusual water mass properties and was characterized by a shallow mixed layer, which differed from the usual winter convection conditions, typical of middle-altitude ecosystems and important for the seasonal picoplankton dynamics of this area. Heterotrophic bacteria were separated into HNA (relative High Nucleic Acid content) and LNA (Low Nucleic Acid content) subpopulations with abundances up to 1.8×10(exp 5) and 8.8×10(exp 5) cells/mL, respectively. HNA dominated at offshore stations reaching their maximum at depths below the euphotic zone. The bacterial community was dominated by Alphaproteobacteria, accounting for greater than 40% of the total sequence reads and were mainly represented by the SAR11 clade (90.84%), followed by Marinimicrobia (18% of the total sequence reads), mainly represented by clade SAR406 (8.44%). Distinctive bacterial groups were found in the euphotic layer (Bacteroidetes and Actinobacteria) and aphotic layer samples (Deltaproteobacteria, Marinimicrobia, Chloroflexi, Acidobacteria and Planctomycetes). Results of the qPCR analyses further confirmed HTS results with highest abundances obtained for Alphaproteobacteria, followed by Gammaproteobacteria and Bacteroidetes. The adopted multiple approach, combining different molecular tools, critically supported by optics and

  8. Herpesvirus in the oral cavity of children with leukaemia and its impact on the oral bacterial community profile.

    PubMed

    Bezerra, Tacíria M; Ferreira, Dennis C; Carmo, Flávia L; Pinheiro, Raquel; Leite, Deborah C A; Cavalcante, Fernanda S; Belinho, Raquel A; Peixoto, Raquel S; Rosado, Alexandre S; dos Santos, Kátia R N; Castro, Gloria F B A

    2015-03-01

    This cross-sectional study investigated the association between eight herpesviruses and the bacterial community profiles from the oral cavity of children with and without leukaemia. Sixty participants (aged 3-13), divided into the leukaemia group (LG) and healthy group (HG), were evaluated. Collection of medical data, intraoral examination and collection of clinical specimens were carried out. Single PCR and nested-PCR techniques were used to identify the viral types; denaturing gradient gel electrophoresis (DGGE) and real-time PCR techniques were used to evaluate the profile and abundance of bacterial communities. All the children with leukaemia were positive for at least one type of herpesvirus, compared with healthy participants (33.3%; p<0.000). Human cytomegalovirus (HCMV; 46.7%), human herpesvirus-7 (HHV-7; 20%) and HHV-8 (77.3%) were in higher prevalence in the LG (p ≤ 0.01). Children with leukaemia had positive associations with the presence of HCMV, HHV-7 and HHV-8 in the oral cavity when under chemotherapy (p<0.05). There was a qualitative (means of DGGE bands) and quantitative (means of 16S rRNA gene abundance) difference in relation to the bacterial community between the two groups (p<0.05). Based on the results, the prevalence of herpesviruses and the qualitative bacterial profiles was higher in children with leukaemia and HCMV, HHV-7 and HHV-8 were related to the use of chemotherapy. Moreover, HHV-6 was correlated with an increased bacterial community profile in patients with leukaemia (p<0.05). More attention should be paid to the oral health of these individuals, mainly those under chemotherapy, in order to prevent infections by opportunistic pathogens. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Quality of Irrigation Water Affects Soil Functionality and Bacterial Community Stability in Response to Heat Disturbance.

    PubMed

    Frenk, Sammy; Hadar, Yitzhak; Minz, Dror

    2018-02-15

    Anthropogenic activities alter the structure and function of a bacterial community. Furthermore, bacterial communities structured by the conditions the anthropogenic activities present may consequently reduce their stability in response to an unpredicted acute disturbance. The present mesocosm-scale study exposed soil bacterial communities to different irrigation water types, including freshwater, fertilized freshwater, treated wastewater, and artificial wastewater, and evaluated their response to a disturbance caused by heat. These effectors may be considered deterministic and stochastic forces common in agricultural operations of arid and semiarid regions. Bacterial communities under conditions of high mineral and organic carbon availability (artificial wastewater) differed from the native bacterial community and showed a proteobacterial dominance. These bacterial communities had a lower resistance to the heat treatment disturbance than soils under conditions of low resource availability (high-quality treated wastewater or freshwater). The latter soil bacterial communities showed a higher abundance of operational taxonomic units (OTUs) classified as Bacilli These results were elucidated by soil under conditions of high resource availability, which lost higher degrees of functional potential and had a greater bacterial community composition change. However, the functional resilience, after the disturbance ended, was higher under a condition of high resource availability despite the bacterial community composition shift and the decrease in species richness. The functional resilience was directly connected to the high growth rates of certain Bacteroidetes and proteobacterial groups. A high stability was found in samples that supported the coexistence of both resistant OTUs and fast-growing OTUs. IMPORTANCE This report presents the results of a study employing a hypothesis-based experimental approach to reveal the forces involved in determining the stability of a

  10. Testing association between soil bacterial diversity and soil carbon storage on the Loess Plateau.

    PubMed

    Yang, Yang; Dou, Yanxing; An, Shaoshan

    2018-06-01

    Bacteria are widely distributed and play an important role in soil carbon (C) cycling. The impact of soil bacterial diversity on soil C storage has been well established, yet little is known about the underlying mechanisms and the interactions among them. Here, we examined the association between soil bacterial diversity and soil C storage in relation to vegetation restoration on the Loess Plateau. The dominant phyla among land use types (artificial forest, Af; natural shrubland, Ns; artificial grassland, Ag; natural grassland, Ng; slope cropland, Sc) were Acidobacteria, Actinobacteria, Alphaproteobacteria, and Betaproteobacteria, which transited from Acidobacteria-dominant to Actinobacteria-dominant community due to vegetation restoration. Soil C storage and the Shannon diversity index of soil bacterial community (H Bacteria ) showed the order Ns > Ng > Af > Ag > Sc, whereas no significant difference was found in Good's coverage (p > .05). Further, a strong relationship was observed between the relative abundance of dominant bacterial groups and soil C storage (p < .05). Additionally, soil bacterial diversity was closely related to soil C storage based on the structural equation model (SEM) and generalized additive models (GAMs). Specifically, soil C storage had the largest deterministic effects, explaining >70% of the variation and suggesting a strong association between soil C storage and soil bacterial diversity. Overall, we propose that further studies are necessary with a focus on the soil bacterial groups with specific functions in relation to soil C storage on the Loess Plateau. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings

    USGS Publications Warehouse

    Borrok, D.; Turner, B.F.; Fein, J.B.

    2005-01-01

    Adsorption onto bacterial cell walls can significantly affect the speciation and mobility of aqueous metal cations in many geologic settings. However, a unified thermodynamic framework for describing bacterial adsorption reactions does not exist. This problem originates from the numerous approaches that have been chosen for modeling bacterial surface protonation reactions. In this study, we compile all currently available potentiometric titration datasets for individual bacterial species, bacterial consortia, and bacterial cell wall components. Using a consistent, four discrete site, non-electrostatic surface complexation model, we determine total functional group site densities for all suitable datasets, and present an averaged set of 'universal' thermodynamic proton binding and site density parameters for modeling bacterial adsorption reactions in geologic systems. Modeling results demonstrate that the total concentrations of proton-active functional group sites for the 36 bacterial species and consortia tested are remarkably similar, averaging 3.2 ?? 1.0 (1??) ?? 10-4 moles/wet gram. Examination of the uncertainties involved in the development of proton-binding modeling parameters suggests that ignoring factors such as bacterial species, ionic strength, temperature, and growth conditions introduces relatively small error compared to the unavoidable uncertainty associated with the determination of cell abundances in realistic geologic systems. Hence, we propose that reasonable estimates of the extent of bacterial cell wall deprotonation can be made using averaged thermodynamic modeling parameters from all of the experiments that are considered in this study, regardless of bacterial species used, ionic strength, temperature, or growth condition of the experiment. The average site densities for the four discrete sites are 1.1 ?? 0.7 ?? 10-4, 9.1 ?? 3.8 ?? 10-5, 5.3 ?? 2.1 ?? 10-5, and 6.6 ?? 3.0 ?? 10-5 moles/wet gram bacteria for the sites with pKa values of 3

  12. Deoxygenation alters bacterial diversity and community composition in the ocean's largest oxygen minimum zone.

    PubMed

    Beman, J Michael; Carolan, Molly T

    2013-01-01

    Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans' largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.

  13. Deoxygenation alters bacterial diversity and community composition in the ocean’s largest oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Beman, J. Michael; Carolan, Molly T.

    2013-10-01

    Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans’ largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.

  14. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide.

    PubMed

    Dunbar, John; Eichorst, Stephanie A; Gallegos-Graves, La Verne; Silva, Shannon; Xie, Gary; Hengartner, N W; Evans, R David; Hungate, Bruce A; Jackson, Robert B; Megonigal, J Patrick; Schadt, Christopher W; Vilgalys, Rytas; Zak, Donald R; Kuske, Cheryl R

    2012-05-01

    Six terrestrial ecosystems in the USA were exposed to elevated atmospheric CO(2) in single or multifactorial experiments for more than a decade to assess potential impacts. We retrospectively assessed soil bacterial community responses in all six-field experiments and found ecosystem-specific and common patterns of soil bacterial community response to elevated CO(2) . Soil bacterial composition differed greatly across the six ecosystems. No common effect of elevated atmospheric CO(2) on bacterial biomass, richness and community composition across all of the ecosystems was identified, although significant responses were detected in individual ecosystems. The most striking common trend across the sites was a decrease of up to 3.5-fold in the relative abundance of Acidobacteria Group 1 bacteria in soils exposed to elevated CO(2) or other climate factors. The Acidobacteria Group 1 response observed in exploratory 16S rRNA gene clone library surveys was validated in one ecosystem by 100-fold deeper sequencing and semi-quantitative PCR assays. Collectively, the 16S rRNA gene sequencing approach revealed influences of elevated CO(2) on multiple ecosystems. Although few common trends across the ecosystems were detected in the small surveys, the trends may be harbingers of more substantive changes in less abundant, more sensitive taxa that can only be detected by deeper surveys. Representative bacterial 16S rRNA gene clone sequences were deposited in GenBank with Accession No. JQ366086–JQ387568. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  15. Salinity Drives the Virioplankton Abundance but Not Production in Tropical Coastal Lagoons.

    PubMed

    Junger, Pedro C; Amado, André M; Paranhos, Rodolfo; Cabral, Anderson S; Jacques, Saulo M S; Farjalla, Vinicius F

    2018-01-01

    Viruses are the most abundant components of microbial food webs and play important ecological and biogeochemical roles in aquatic ecosystems. Virioplankton is regulated by several environmental factors, such as salinity, turbidity, and humic substances. However, most of the studies aimed to investigate virioplankton regulation were conducted in temperate systems combining a limited range of environmental variables. In this study, virus abundance and production were determined and their relation to bacterial and limnological variables was assessed in 20 neighboring shallow tropical coastal lagoons that present wide environmental gradients of turbidity (2.32-571 NTU), water color (1.82-92.49 m -1 ), dissolved organic carbon (0.71-16.7 mM), salinity (0.13-332.1‰), and chlorophyll-a (0.28 to 134.5 μg L -1 ). Virus abundance varied from 0.37 × 10 8 to 117 × 10 8 virus-like-particle (VLP) mL -1 , with the highest values observed in highly salty aquatic systems. Salinity and heterotrophic bacterial abundance were the main variables positively driving viral abundances in these lagoons. We suggest that, with increased salinity, there is a decrease in the protozoan control on bacterial populations and lower bacterial diversity (higher encounter rates with virus specific hosts), both factors positively affecting virus abundance. Virus production varied from 0.68 × 10 7 to 56.5 × 10 7 VLP mL -1 h -1 and was regulated by bacterial production and total phosphorus, but it was not directly affected by salinity. The uncoupling between virus abundance and virus production supports that the hypothesis that the lack of grazing pressure on viral and bacterial populations is an important mechanism causing virus abundance to escalate with increasing salt concentrations.

  16. Differing Growth Responses of Major Phylogenetic Groups of Marine Bacteria to Natural Phytoplankton Blooms in the Western North Pacific Ocean ▿ †

    PubMed Central

    Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji

    2011-01-01

    Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms. PMID:21515719

  17. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    PubMed Central

    Dias, Juliana; Marcondes, Marcos I.; Noronha, Melline F.; Resende, Rafael T.; Machado, Fernanda S.; Mantovani, Hilário C.; Dill-McFarland, Kimberly A.; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative

  18. Development of a Microarray-Based Tool To Characterize Vaginal Bacterial Fluctuations and Application to a Novel Antibiotic Treatment for Bacterial Vaginosis

    PubMed Central

    Cruciani, Federica; Biagi, Elena; Severgnini, Marco; Consolandi, Clarissa; Calanni, Fiorella; Donders, Gilbert; Brigidi, Patrizia

    2015-01-01

    The healthy vaginal microbiota is generally dominated by lactobacilli that confer antimicrobial protection and play a crucial role in health. Bacterial vaginosis (BV) is the most prevalent lower genital tract infection in women in reproductive age and is characterized by a shift in the relative abundances of Lactobacillus spp. to a greater abundance of strictly anaerobic bacteria. In this study, we designed a new phylogenetic microarray-based tool (VaginArray) that includes 17 probe sets specific for the most representative bacterial groups of the human vaginal ecosystem. This tool was implemented using the ligase detection reaction-universal array (LDR-UA) approach. The entire probe set properly recognized the specific targets and showed an overall sensitivity of 6 to 12 ng per probe. The VaginArray was applied to assess the efficacy of rifaximin vaginal tablets for the treatment of BV, analyzing the vaginal bacterial communities of 22 BV-affected women treated with rifaximin vaginal tablets at a dosage of 25 mg/day for 5 days. Our results showed the ability of rifaximin to reduce the growth of various BV-related bacteria (Atopobium vaginae, Prevotella, Megasphaera, Mobiluncus, and Sneathia spp.), with the highest antibiotic susceptibility for A. vaginae and Sneathia spp. Moreover, we observed an increase of Lactobacillus crispatus levels in the subset of women who maintained remission after 1 month of therapy, opening new perspectives for the treatment of BV. PMID:25733514

  19. The Gut Bacterial Community of Mammals from Marine and Terrestrial Habitats

    PubMed Central

    Nelson, Tiffanie M.; Rogers, Tracey L.; Brown, Mark V.

    2013-01-01

    After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals) and the marine herbivore (dugong) possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores) feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness. PMID:24386245

  20. Effect of sugarcane burning or green harvest methods on the Brazilian Cerrado soil bacterial community structure.

    PubMed

    Rachid, Caio T C C; Santos, Adriana L; Piccolo, Marisa C; Balieiro, Fabiano C; Coutinho, Heitor L C; Peixoto, Raquel S; Tiedje, James M; Rosado, Alexandre S

    2013-01-01

    The Brazilian Cerrado is one of the most important biodiversity reservoirs in the world. The sugarcane cultivation is expanding in this biome and necessitates the study of how it may impact the soil properties of the Cerrado. There is a lack of information especially about the impacts of different sugarcane management on the native bacterial communities of Cerrado soil. Therefore, our objective was to evaluate and compare the soil bacterial community structure of the Cerrado vegetation with two sugarcane systems. We evaluated samples under native vegetation and the impact of the two most commonly used management strategies for sugarcane cultivation (burnt cane and green cane) on this diversity using pyrosequencing and quantitative PCR of the rrs gene (16S rRNA). Nineteen different phyla were identified, with Acidobacteria (≈35%), Proteobacteria (≈24%) and Actinobacteria (≈21%) being the most abundant. Many of the sequences were represented by few operational taxonomic units (OTUs, 3% of dissimilarity), which were found in all treatments. In contrast, there were very strong patterns of local selection, with many OTUs occurring only in one sample. Our results reveal a complex bacterial diversity, with a large fraction of microorganisms not yet described, reinforcing the importance of this biome. As possible sign of threat, the qPCR detected a reduction of the bacterial population in agricultural soils compared with native Cerrado soil communities. We conclude that sugarcane cultivation promoted significant structural changes in the soil bacterial community, with Firmicutes phylum and Acidobacteria classes being the groups most affected.

  1. The gut bacterial community of mammals from marine and terrestrial habitats.

    PubMed

    Nelson, Tiffanie M; Rogers, Tracey L; Brown, Mark V

    2013-01-01

    After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals) and the marine herbivore (dugong) possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores) feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness.

  2. Bacterial Degradation of Aromatic Compounds

    PubMed Central

    Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.

    2009-01-01

    Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms. PMID:19440284

  3. Bacterial Community Structure and Physiological State within an Industrial Phenol Bioremediation System

    PubMed Central

    Whiteley, Andrew S.; Bailey, Mark J.

    2000-01-01

    The structure of bacterial populations in specific compartments of an operational industrial phenol remediation system was assessed to examine bacterial community diversity, distribution, and physiological state with respect to the remediation of phenolic polluted wastewater. Rapid community fingerprinting by PCR-based denaturing gradient gel electrophoresis (DGGE) of 16S rDNA indicated highly structured bacterial communities residing in all nine compartments of the treatment plant and not exclusively within the Vitox biological reactor. Whole-cell targeting by fluorescent in situ hybridization with specific oligonucleotides (directed to the α, β and γ subclasses of the class Proteobacteria [α-, β-, and γ-Proteobacteria, respectively], the Cytophaga-Flavobacterium group, and the Pseudomonas group) tended to mirror gross changes in bacterial community composition when compared with DGGE community fingerprinting. At the whole-cell level, the treatment compartments were numerically dominated by cells assigned to the Cytophaga-Flavobacterium group and to the γ-Proteobacteria. The α subclass Proteobacteria were of low relative abundance throughout the treatment system whilst the β subclass of the Proteobacteria exhibited local dominance in several of the processing compartments. Quantitative image analyses of cellular fluorescence was used as an indicator of physiological state within the populations probed with rDNA. For cells hybridized with EUB338, the mean fluorescence per cell decreased with increasing phenolic concentration, indicating the strong influence of the primary pollutant upon cellular rRNA content. The γ subclass of the Proteobacteria had a ribosome content which correlated positively with total phenolics and thiocyanate. While members of the Cytophaga-Flavobacterium group were numerically dominant in the processing system, their abundance and ribosome content data for individual populations did not correlate with any of the measured chemical

  4. Linking Compositional and Functional Predictions to Decipher the Biogeochemical Significance in DFAA Turnover of Abundant Bacterioplankton Lineages in the North Sea.

    PubMed

    Wemheuer, Bernd; Wemheuer, Franziska; Meier, Dimitri; Billerbeck, Sara; Giebel, Helge-Ansgar; Simon, Meinhard; Scherber, Christoph; Daniel, Rolf

    2017-11-05

    Deciphering the ecological traits of abundant marine bacteria is a major challenge in marine microbial ecology. In the current study, we linked compositional and functional predictions to elucidate such traits for abundant bacterioplankton lineages in the North Sea. For this purpose, we investigated entire and active bacterioplankton composition along a transect ranging from the German Bight to the northern North Sea by pyrotag sequencing of bacterial 16S rRNA genes and transcripts. Functional profiles were inferred from 16S rRNA data using Tax4Fun. Bacterioplankton communities were dominated by well-known marine lineages including clusters/genera that are affiliated with the Roseobacter group and the Flavobacteria . Variations in community composition and function were significantly explained by measured environmental and microbial properties. Turnover of dissolved free amino acids (DFAA) showed the strongest correlation to community composition and function. We applied multinomial models, which enabled us to identify bacterial lineages involved in DFAA turnover. For instance, the genus Planktomarina was more abundant at higher DFAA turnover rates, suggesting its vital role in amino acid degradation. Functional predictions further indicated that Planktomarina is involved in leucine and isoleucine degradation. Overall, our results provide novel insights into the biogeochemical significance of abundant bacterioplankton lineages in the North Sea.

  5. Biogeographic congruency among bacterial communities from terrestrial sulfidic springs

    PubMed Central

    Headd, Brendan; Engel, Annette S.

    2014-01-01

    Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria), up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria) occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria), but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria) occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or climate change. PMID

  6. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes

    PubMed Central

    Fauteux, Lisa; Cottrell, Matthew T.; Kirchman, David L.; Borrego, Carles M.; Garcia-Chaves, Maria Carolina; del Giorgio, Paul A.

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex. PMID:25927833

  7. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes.

    PubMed

    Fauteux, Lisa; Cottrell, Matthew T; Kirchman, David L; Borrego, Carles M; Garcia-Chaves, Maria Carolina; Del Giorgio, Paul A

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.

  8. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Karoonuthaisiri, Nitsara

    2016-01-01

    The intestinal microbiota play important roles in health of their host, contributing to maintaining the balance and resilience against pathogen. To investigate effects of pathogen to intestinal microbiota, the bacterial dynamics upon a shrimp pathogen, Vibrio harveyi, exposures were determined in two economically important shrimp species; the black tiger shrimp (BT) and the Pacific white shrimp (PW). Both shrimp species were reared under the same diet and environmental conditions. Shrimp survival rates after the V. harveyi exposure revealed that the PW shrimp had a higher resistance to the pathogen than the BT shrimp. The intestinal bacterial profiles were determined by denaturing gradient gel electrophoresis (DGGE) and barcoded pyrosequencing of the 16S rRNA sequences under no pathogen challenge control and under pathogenic V. harveyi challenge. The DGGE profiles showed that the presence of V. harveyi altered the intestinal bacterial patterns in comparison to the control in BT and PW intestines. This implies that bacterial balance in shrimp intestines was disrupted in the presence of V. harveyi. The barcoded pyrosequencing analysis showed the similar bacterial community structures in intestines of BT and PW shrimp under a normal condition. However, during the time course exposure to V. harveyi, the relative abundance of bacteria belong to Vibrio genus was higher in the BT intestines at 12h after the exposure, whereas relative abundance of vibrios was more stable in PW intestines. The principle coordinates analysis based on weighted-UniFrac analysis showed that intestinal bacterial population in the BT shrimp lost their ability to restore their bacterial balance during the 72-h period of exposure to the pathogen, while the PW shrimp were able to reestablish their bacterial population to resemble those seen in the unexposed control group. This observation of bacterial disruption might correlate to different mortality rates observed between the two shrimp species

  9. Oxygen abundances in halo stars

    NASA Astrophysics Data System (ADS)

    Bessell, Michael S.; Sutherland, Ralph S.; Ruan, Kui

    1991-12-01

    The present study determines the oxygen abundance for a sample of metal-poor G dwarfs by analysis of OH lines between 3080 and 3200 A and the permitted high-excitation far-red O I triple. The oxygen abundances determined from the low-excitation OH lines are up to 0.55 dex lower than those measured from the high-excitation O I lines. The abundances for the far-red O I triplet lines agree with those rederived from Abia and Rebolo (1989), and the abundances from the OH lines in dwarfs and giants are in agreement with the rederived O abundances of Barbuy (1988) and others from the forbidden resonance O I line. Because the chi = 0.1.7 eV OH lines are formed in the same layers as the majority of Fe, Ti, and other neutral metal lines used for abundance analyses, it is argued that the OH lines and the forbidden O I line yield the true oxygen abundances relative to the metals.

  10. Diagnosis of bacterial vaginosis by Amsel's criteria.

    PubMed

    Iftikhar, Razia

    2003-02-01

    To evaluate Amsel's criteria for the diagnosis of bacterial vaginosis in reproductive age group. Prospective study. This study was conducted in a private hospital in Jeddah, K.S.A between January, 2001 and January, 2002. Patients attending the clinic with complaint of vaginal discharge were selected and screened out for bacterial vaginosis on the basis of Amsel's criteria. Ot of 100 cases 35 (35%) cases were diagnosed as bacterial vaginosis, 25 (25%) were of Candida albicans and 15 (15%) were suffering from trichomoniasis. No pathogen was found in 25 patients. Amsel's criteria is an accurate test for the diagnosis of bacterial vaginosis.

  11. Dynamic Succession of Soil Bacterial Community during Continuous Cropping of Peanut (Arachis hypogaea L.)

    PubMed Central

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    Plant health and soil fertility are affected by plant–microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including Acidobacteriales

  12. Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum).

    PubMed

    Williams-Newkirk, Amanda Jo; Rowe, Lori A; Mixson-Hayden, Tonya R; Dasch, Gregory A

    2014-01-01

    The lone star tick (Amblyomma americanum) is an abundant and aggressive biter of humans, domestic animals, and wildlife in the southeastern-central USA and an important vector of several known and suspected zoonotic bacterial pathogens. However, the biological drivers of bacterial community variation in this tick are still poorly defined. Knowing the community context in which tick-borne bacterial pathogens exist and evolve is required to fully understand the ecology and immunobiology of the ticks and to design effective public health and veterinary interventions. We performed a metagenomic survey of the bacterial communities of questing A. americanum and tested 131 individuals (66 nymphs, 24 males, and 41 females) from five sites in three states. Pyrosequencing was performed with barcoded eubacterial primers targeting variable 16S rRNA gene regions 5-3. The bacterial communities were dominated by Rickettsia (likely R. amblyommii) and an obligate Coxiella symbiont, together accounting for 6.7-100% of sequences per tick. DNAs from Midichloria, Borrelia, Wolbachia, Ehrlichia, Pseudomonas, or unidentified Bacillales, Enterobacteriaceae, or Rhizobiales groups were also detected frequently. Wolbachia and Midichloria significantly co-occurred in Georgia (p<0.00001), but not in other states. The significance of the Midichloria-Wolbachia co-occurrence is unknown. Among ticks collected in Georgia, nymphs differed from adults in both the composition (p = 0.002) and structure (p = 0.002) of their bacterial communities. Adults differed only in their community structure (p = 0.002) with males containing more Rickettsia and females containing more Coxiella. Comparisons among adult ticks collected in New York and North Carolina supported the findings from the Georgia collection despite differences in geography, collection date, and sample handling, implying that the differences detected are consistent attributes. The data also suggest that some members of the

  13. Seasonal variability in airborne bacterial communities at a high elevation site and their relationship to other air studies and to potential sources

    NASA Astrophysics Data System (ADS)

    Bowers, R. M.; Mccubbin, I. B.; Hallar, A. G.; Fierer, N.

    2012-12-01

    Airborne bacteria are a large component of the near-surface atmospheric aerosol; however we know surprisingly little about their spatiotemporal dynamics and even less about their distributions at high-elevation. With this work, we describe seasonal shifts in bacterial abundances, total particle abundances, and bacterial community structure at a high-elevation research station located in Colorado, USA. In addition, we describe the unique composition of these high-elevation airborne bacterial communities as compared to the bacteria commonly observed throughout the lower elevation atmosphere as well as bacteria common to major sources such as leaf surfaces, soils, water bodies and various other surfaces. To address these knowledge gaps, we collected aerosol samples on the rooftop of Storm Peak Laboratory (3200 m ASL) over the course of 2-3 week periods during each of the four calendar seasons. Total bacterial abundances were assessed via flow cytometry, total particle abundances were calculated with an aerodynamic particle sizer, and bacterial communities were characterized using a high-throughput barcoded DNA sequencing approach. The airborne bacterial communities at Storm Peak Lab were then used in a meta-analysis comparing Storm Peak bacteria to other near-surface (lower elevation) bacterial communities and to the communities of likely source environments. Bacterial abundances varied by season, which was similar but not identical to the changes in total particle abundances across the same sampling period. Airborne bacterial community structure varied significantly by season, with the summer communities being the most distinct. Season specific bacterial groups were identified, suggesting that a large proportion of the airborne community may be derived from nearby sources. However following a multi-environment meta-analysis using several air and source derived bacterial community datasets, the high-elevation air communities were the most distinct as compared to the

  14. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species.

    PubMed

    Desgarennes, Damaris; Garrido, Etzel; Torres-Gomez, Miryam J; Peña-Cabriales, Juan J; Partida-Martinez, Laila P

    2014-12-01

    Agaves are major biotic resources in arid and semi-arid ecosystems. Despite their ecological, economical and cultural relevance, many aspects of the microbial communities associated with agaves are still unknown. Here, we investigated the bacterial communities associated with two Agave species by 16S rRNA- Denaturing gradient gel electrophoresis fingerprinting and sequencing. We also evaluated the effects of biotic and abiotic factors in the structure of the bacterial communities. In parallel, we isolated and characterized diazotrophic bacteria associated with agaves, as Agave soils are characterized by their low nitrogen content. Our results demonstrate that in Agave, the structure of prokaryotic assemblages was mostly influenced by the community group, where the soil, episphere, and endosphere were clearly distinct. Proteobacteria (γ and α), Actinobacteria, and Acidobacteria were the dominant phyla. Bacterial communities in the episphere of agaves were mainly influenced by the host species, whereas in the endosphere were affected by the season. Fifteen bacterial taxa were common and abundant in the endosphere of both Agave species during the dry season. Notably, some of the confirmed diazotrophic strains belonged to this group, suggesting a possible beneficial role in planta. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. The boron abundance of Procyon

    NASA Technical Reports Server (NTRS)

    Lemke, Michael; Lambert, David L.; Edvardsson, Bengt

    1993-01-01

    The B I 2496.8 A resonance line and HST/GHRS echelle spectra are used with model atmospheres and synthetic spectra to derive the B abundance of the F dwarfs Procyon (Alpha Canis Minoris), Theta Ursae Majoris, and Iota Pegasi. The B abundance of Theta UMa and Iota Peg is similar to that derived by Boesgaard and Heacox (1978) from the B II resonance line in spectra of A- and B-type stars. These two dwarfs show normal abundances of Li, Be, and B. Procyon, which is highly depleted in Li and Be, is depleted in B by a factor of at least 3. Comparison of the spectra of Procyon and the halo dwarf HD 140283 shows that the B abundance assigned by Duncan et al. (1992) to three halo dwarfs is not greatly overestimated as a result of contamination of the B I line by an unidentified line.

  16. Bacterial Population in Intestines of the Black Tiger Shrimp (Penaeus monodon) under Different Growth Stages

    PubMed Central

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities. PMID:23577162

  17. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  18. Diverse bacterial PKS sequences derived from okadaic acid-producing dinoflagellates.

    PubMed

    Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S

    2008-05-22

    Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum.

  19. Bacterial complexes of a high moor related to different elements of microrelief

    NASA Astrophysics Data System (ADS)

    Dobrovol'skaya, T. G.; Golovchenko, A. V.; Yakushev, A. V.; Yurchenko, E. N.; Manucharov, N. A.; Chernov, I. Yu.

    2017-04-01

    The analysis of bacterial complexes, including the number, taxonomic composition, physiological state, and proportion of ecological trophic groups was performed in a high moorland related to different elements of the microrelief. The abundance of bacteria, their ability for hydrolysis of polymers and the share of r-strategists were found to be higher in the sphagnum hillocks than on the flat surfaces. The total prokaryote biomass was 4 times greater in the sphagnum samples from microhighs (hillocks). On these elements of the microrelief, the density of actinomycetal mycelium was higher. Bacteria of the hydrolytic complex ( Cytophaga and Chitinophaga genera) were found only in microhigh samples.

  20. Diverse Bacterial PKS Sequences Derived From Okadaic Acid-Producing Dinoflagellates

    PubMed Central

    Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S.

    2008-01-01

    Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum. PMID:18728765

  1. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    PubMed

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Neptune: a bioinformatics tool for rapid discovery of genomic variation in bacterial populations

    PubMed Central

    Marinier, Eric; Zaheer, Rahat; Berry, Chrystal; Weedmark, Kelly A.; Domaratzki, Michael; Mabon, Philip; Knox, Natalie C.; Reimer, Aleisha R.; Graham, Morag R.; Chui, Linda; Patterson-Fortin, Laura; Zhang, Jian; Pagotto, Franco; Farber, Jeff; Mahony, Jim; Seyer, Karine; Bekal, Sadjia; Tremblay, Cécile; Isaac-Renton, Judy; Prystajecky, Natalie; Chen, Jessica; Slade, Peter

    2017-01-01

    Abstract The ready availability of vast amounts of genomic sequence data has created the need to rethink comparative genomics algorithms using ‘big data’ approaches. Neptune is an efficient system for rapidly locating differentially abundant genomic content in bacterial populations using an exact k-mer matching strategy, while accommodating k-mer mismatches. Neptune’s loci discovery process identifies sequences that are sufficiently common to a group of target sequences and sufficiently absent from non-targets using probabilistic models. Neptune uses parallel computing to efficiently identify and extract these loci from draft genome assemblies without requiring multiple sequence alignments or other computationally expensive comparative sequence analyses. Tests on simulated and real datasets showed that Neptune rapidly identifies regions that are both sensitive and specific. We demonstrate that this system can identify trait-specific loci from different bacterial lineages. Neptune is broadly applicable for comparative bacterial analyses, yet will particularly benefit pathogenomic applications, owing to efficient and sensitive discovery of differentially abundant genomic loci. The software is available for download at: http://github.com/phac-nml/neptune. PMID:29048594

  3. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography

    PubMed Central

    Nayfach, Stephen; Rodriguez-Mueller, Beltran; Garud, Nandita

    2016-01-01

    We present the Metagenomic Intra-species Diversity Analysis System (MIDAS), which is an integrated computational pipeline for quantifying bacterial species abundance and strain-level genomic variation, including gene content and single-nucleotide polymorphisms (SNPs), from shotgun metagenomes. Our method leverages a database of more than 30,000 bacterial reference genomes that we clustered into species groups. These cover the majority of abundant species in the human microbiome but only a small proportion of microbes in other environments, including soil and seawater. We applied MIDAS to stool metagenomes from 98 Swedish mothers and their infants over one year and used rare SNPs to track strains between hosts. Using this approach, we found that although species compositions of mothers and infants converged over time, strain-level similarity diverged. Specifically, early colonizing bacteria were often transmitted from an infant’s mother, while late colonizing bacteria were often transmitted from other sources in the environment and were enriched for spore-formation genes. We also applied MIDAS to 198 globally distributed marine metagenomes and used gene content to show that many prevalent bacterial species have population structure that correlates with geographic location. Strain-level genetic variants present in metagenomes clearly reveal extensive structure and dynamics that are obscured when data are analyzed at a coarser taxonomic resolution. PMID:27803195

  4. Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest.

    PubMed

    Du, Can; Geng, Zengchao; Wang, Qiang; Zhang, Tongtong; He, Wenxiang; Hou, Lin; Wang, Yueling

    2017-09-01

    Microbial communities in subsurface soil are specialized for their environment, which is distinct from that of the surface communities. However, little is known about the microbial communities (bacteria and fungi) that exist in the deeper soil horizons. Vertical changes in microbial alpha-diversity (Chao1 and Shannon indices) and community composition were investigated at four soil depths (0-10, 10-20, 20-40, and 40-60 cm) in a natural secondary forest of Betula albosinensis by high-throughput sequencing of the 16S and internal transcribed spacer rDNA regions. The numbers of operational taxonomic units (OTUs), and the Chao1 and Shannon indices decreased in the deeper soil layers. Each soil layer contained both mutual and specific OTUs. In the 40-60 cm soil layer, 175 and 235 specific bacterial and fungal OTUs were identified, respectively. Acidobacteria was the most dominant bacterial group in all four soil layers, but reached its maximum at 40-60 cm (62.88%). In particular, the 40-60 cm soil layer typically showed the highest abundance of the fungal genus Inocybe (47.46%). The Chao1 and Shannon indices were significantly correlated with the soil organic carbon content. Redundancy analysis indicated that the bacterial communities were closely correlated with soil organic carbon content (P = 0.001). Collectively, these results indicate that soil nutrients alter the microbial diversity and relative abundance and affect the microbial composition.

  5. Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches.

    PubMed

    Hao, Da Cheng; Ge, Guang Bo; Yang, Ling

    2008-07-01

    The regional variability of Taxus rhizosphere bacterial community composition and diversity was studied by comparative analysis of three large 16S rRNA gene clone libraries from the Taxus rhizosphere in different regions of China (subtropical and temperate regions). One hundred and forty-six clones were screened for three libraries. Phylogenetic analysis of 16S rRNA gene sequences demonstrated that the abundance of sequences affiliated with Gammaproteobacteria, Betaproteobacteria, and Actinobacteria was higher in the library from the T. xmedia rhizosphere of the temperate region compared with the subtropical Taxus mairei rhizosphere. On the other hand, Acidobacteria was more abundant in libraries from the subtropical Taxus mairei rhizosphere. Richness estimates and diversity indices of three libraries revealed major differences, indicating a higher richness in the Taxus rhizosphere bacterial communities of the subtropical region and considerable variability in the bacterial community composition within this region. By enrichment culture, a novel Actinobacteria strain DICP16 was isolated from the T. xmedia rhizosphere of the temperate region and was identified as Leifsonia shinshuensis sp. via 16S rRNA gene and gyrase B sequence analyses. DICP16 was able to remove the xylosyl group from 7-xylosyl-10-deacetylbaccatin III and 7-xylosyl-10-deacetylpaclitaxel, thereby making the xylosyltaxanes available as sources of 10-deacetylbaccatin III and the anticancer drug paclitaxel. Taken together, the present studies provide, for the first time, the knowledge of the biodiversity of microorganisms populating Taxus rhizospheres.

  6. Metagenomic analyses of the dominant bacterial community in the Fildes Peninsula, King George Island (South Shetland Islands)

    NASA Astrophysics Data System (ADS)

    Foong, Choon Pin; Wong Vui Ling, Clemente Michael; González, Marcelo

    2010-08-01

    There is little information on the bacterial diversity of the Fildes Peninsula, King George Island. Hence, this study was conducted to determine the bacterial population of sediments and soils from the lakes, river, glacier and an abandoned oil tank area in the Fildes Peninsula, using a metagenomic approach. DNA was extracted from the sediment and soil samples, and analyzed using the 16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). A total of 299 DNA fragments resolved using the DGGE were sequenced. The results of the analysis provided an overview of the predominant groups of bacteria and the diversity of the bacterial communities. The most abundant phyla of bacteria in Fildes Peninsula were Bacteroidetes, Proteobacteria, Acidobacteria, Gemmatimonadetes, Nitrospira, Firmicutes, Actinobacteria, Chloroflexi, Cyanobacteria, Spirochaetes, Deinococcus-Thermus, WS3 and BRC1. All of the sediment samples from the lakes had different representatives of dominant bacterial species. Interestingly, 15% of the operational taxonomic units (OTUs) did not group into any of the existing phyla in the Ribosomal Database Project (RDP). One of the OTUs had a similarity of <0.90 when compared to the GenBank sequences and probably was a novel bacterium specific to that location. The majority of the bacterial 16S rDNA sequences were found to be closely related to those found elsewhere.

  7. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis.

    PubMed

    Parulekar, Niranjan Nitin; Kolekar, Pandurang; Jenkins, Andrew; Kleiven, Synne; Utkilen, Hans; Johansen, Anette; Sawant, Sangeeta; Kulkarni-Kale, Urmila; Kale, Mohan; Sæbø, Mona

    2017-01-01

    Interactions between different phytoplankton taxa and heterotrophic bacterial communities within aquatic environments can differentially support growth of various heterotrophic bacterial species. In this study, phytoplankton diversity was studied using traditional microscopic techniques and the bacterial communities associated with phytoplankton bloom were studied using High Throughput Sequencing (HTS) analysis of 16S rRNA gene amplicons from the V1-V3 and V3-V4 hypervariable regions. Samples were collected from Lake Akersvannet, a eutrophic lake in South Norway, during the growth season from June to August 2013. Microscopic examination revealed that the phytoplankton community was mostly represented by Cyanobacteria and the dinoflagellate Ceratium hirundinella. The HTS results revealed that Proteobacteria (Alpha, Beta, and Gamma), Bacteriodetes, Cyanobacteria, Actinobacteria and Verrucomicrobia dominated the bacterial community, with varying relative abundances throughout the sampling season. Species level identification of Cyanobacteria showed a mixed population of Aphanizomenon flos-aquae, Microcystis aeruginosa and Woronichinia naegeliana. A significant proportion of the microbial community was composed of unclassified taxa which might represent locally adapted freshwater bacterial groups. Comparison of cyanobacterial species composition from HTS and microscopy revealed quantitative discrepancies, indicating a need for cross validation of results. To our knowledge, this is the first study that uses HTS methods for studying the bacterial community associated with phytoplankton blooms in a Norwegian lake. The study demonstrates the value of considering results from multiple methods when studying bacterial communities.

  8. Bacterially mediated mineralization of vaterite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Navarro, Carlos; Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Gonzalez-Muñoz, Maria Teresa; Rodriguez-Gallego, Manuel

    2007-03-01

    Myxococcus xanthus, a common soil bacterium, plays an active role in the formation of spheroidal vaterite. Bacterial production of CO 2 and NH 3 and the transformation of the NH 3 to NH4+ and OH -, thus increasing solution pH and carbonate alkalinity, set the physicochemical conditions (high supersaturation) leading to vaterite precipitation in the microenvironment around cells, and directly onto the surface of bacterial cells. In the latter case, fossilization of bacteria occurs. Vaterite crystals formed by aggregation of oriented nanocrystals with c-axis normal to the bacterial cell-wall, or to the core of the spherulite when bacteria were not encapsulated. While preferred orientation of vaterite c-axis appears to be determined by electrostatic affinity (ionotropic effect) between vaterite crystal (0001) planes and the negatively charged functional groups of organic molecules on the bacterium cell-wall or on extracellular polymeric substances (EPS), analysis of the changes in the culture medium chemistry as well as high resolution transmission electron microscopy (HRTEM) observations point to polymorph selection by physicochemical (kinetic) factors (high supersaturation) and stabilization by organics, both connected with bacterial activity. The latter is in agreement with inorganic precipitation of vaterite induced by NH 3 and CO 2 addition in the protein-rich sterile culture medium. Our results as well as recent studies on vaterite precipitation in the presence of different types of bacteria suggest that bacterially mediated vaterite precipitation is not strain-specific, and could be more common than previously thought.

  9. Community-acquired bacterial meningitis.

    PubMed

    van de Beek, Diederik; Brouwer, Matthijs; Hasbun, Rodrigo; Koedel, Uwe; Whitney, Cynthia G; Wijdicks, Eelco

    2016-11-03

    Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma (nosocomial bacterial meningitis). Despite advances in treatment and vaccinations, community-acquired bacterial meningitis remains one of the most important infectious diseases worldwide. Streptococcus pneumoniae and Neisseria meningitidis are the most common causative bacteria and are associated with high mortality and morbidity; vaccines targeting these organisms, which have designs similar to the successful vaccine that targets Haemophilus influenzae type b meningitis, are now being used in many routine vaccination programmes. Experimental and genetic association studies have increased our knowledge about the pathogenesis of bacterial meningitis. Early antibiotic treatment improves the outcome, but the growing emergence of drug resistance as well as shifts in the distribution of serotypes and groups are fuelling further development of new vaccines and treatment strategies. Corticosteroids were found to be beneficial in high-income countries depending on the bacterial species. Further improvements in the outcome are likely to come from dampening the host inflammatory response and implementing preventive measures, especially the development of new vaccines.

  10. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge.

    PubMed

    Morgan-Sagastume, Fernando; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2008-11-01

    The denitrification capacity of different phylogenetic bacterial groups was investigated on addition of different substrates in activated sludge from two nutrient-removal plants. Nitrate/nitrite consumption rates (CRs) were calculated from nitrate and nitrite biosensor, in situ measurements. The nitrate/nitrite CRs depended on the substrate added, and acetate alone or combined with other substrates yielded the highest rates (3-6 mg N gVSS(-1) h(-1)). The nitrate CRs were similar to the nitrite CRs for most substrates tested. The structure of the active denitrifying population was investigated using heterotrophic CO2 microautoradiography (HetCO2-MAR) and FISH. Probe-defined denitrifiers appeared as specialized substrate utilizers despite acetate being preferentially used by most of them. Azoarcus and Accumulibacter abundance in the two different sludges was related to differences in their substrate-specific nitrate/nitrite CRs. Aquaspirillum-related bacteria were the most abundant potential denitrifiers (c. 20% of biovolume); however, Accumulibacter (3-7%) and Azoarcus (2-13%) may have primarily driven denitrification by utilizing pyruvate, ethanol, and acetate. Activated sludge denitrification was potentially conducted by a diverse, versatile population including not only Betaproteobacteria (Aquaspirillum, Thauera, Accumulibacter, and Azoarcus) but also some Alphaproteobacteria and Gammaproteobacteria, as indicated by the assimilation of 14CO2 by these probe-defined groups with a complex substrate mixture as an electron donor and nitrite as an electron acceptor in HetCO2-MAR-FISH tests.

  11. Response of Intestinal Bacterial Flora to the Long-term Feeding of Aflatoxin B1 (AFB1) in Mice.

    PubMed

    Yang, Xiai; Liu, Liangliang; Chen, Jing; Xiao, Aiping

    2017-10-12

    In order to investigate the influence of aflatoxin B1 (AFB1) on intestinal bacterial flora, 24 Kunming mice (KM mice) were randomly placed into four groups, which were labeled as control, low-dose, medium-dose, and high-dose groups. They were fed intragastrically with 0.4 mL of 0 mg/L, 2.5 mg/L, 4 mg/L, or 10 mg/L of AFB1 solutions, twice a day for 2 months. The hypervariable region V3 + V4 on 16S rDNA of intestinal bacterial flora was sequenced by the use of a high-flux sequencing system on a Miseq Illumina platform; then, the obtained sequences were analyzed. The results showed that, when compared with the control group, both genera and phyla of intestinal bacteria in the three treatment groups decreased. About one third of the total genera and one half of the total phyla remained in the high-dose group. The dominant flora were Lactobacillus and Bacteroides in all groups. There were significant differences in the relative abundance of intestinal bacterial flora among groups. Most bacteria decreased as a whole from the control to the high-dose groups, but several beneficial and pathogenic bacterial species increased significantly with increasing dose of AFB1. Thus, the conclusion was that intragastric feeding with 2.5~10 mg/mL AFB1 for 2 months could decrease the majority of intestinal bacterial flora and induce the proliferation of some intestinal bacteria flora.

  12. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation.

    PubMed

    Ramya, Shanivarsanthe Leelesh; Venkatesan, Thiruvengadam; Srinivasa Murthy, Kottilingam; Jalali, Sushil Kumar; Verghese, Abraham

    2016-01-01

    Diamondback moth (DBM), Plutella xylostella (Linnaeus), is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n=13) and adults (n=12) of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%), followed by bacilli (15.4%). Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%), bacilli (16.7%) and flavobacteria (16.7%). Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32μmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus - KC985225 and Pantoea agglomerans - KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26μmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. The normal vaginal and uterine bacterial microbiome in giant pandas (Ailuropoda melanoleuca).

    PubMed

    Yang, Xin; Cheng, Guangyang; Li, Caiwu; Yang, Jiang; Li, Jianan; Chen, Danyu; Zou, Wencheng; Jin, SenYan; Zhang, Hemin; Li, Desheng; He, Yongguo; Wang, Chengdong; Wang, Min; Wang, Hongning

    2017-06-01

    While the health effects of the colonization of the reproductive tracts of mammals by bacterial communities are widely known, there is a dearth of knowledge specifically in relation to giant panda microbiomes. In order to investigate the vaginal and uterine bacterial diversity of healthy giant pandas, we used high-throughput sequence analysis of portions of the 16S rRNA gene, based on samples taken from the vaginas (GPV group) and uteri (GPU group) of these animals. Results showed that the four most abundant phyla, which contained in excess of 98% of the total sequences, were Proteobacteria (59.2% for GPV and 51.4% for GPU), Firmicutes (34.4% for GPV and 23.3% for GPU), Actinobacteria (5.2% for GPV and 14.0% for GPU) and Bacteroidetes (0.3% for GPV and 10.3% for GPU). At the genus level, Escherichia was most abundant (11.0%) in the GPV, followed by Leuconostoc (8.7%), Pseudomonas (8.0%), Acinetobacter (7.3%), Streptococcus (6.3%) and Lactococcus (6.0%). In relation to the uterine samples, Janthinobacterium had the highest prevalence rate (20.2%), followed by Corynebacterium (13.2%), Streptococcus (19.6%), Psychrobacter (9.3%), Escherichia (7.5%) and Bacteroides (6.2%). Moreover, both Chao1 and abundance-based coverage estimator (ACE) species richness indices, which were operating at the same sequencing depth for each sample, demonstrated that GPV had more species richness than GPU, while Simpson and Shannon indices of diversity indicated that GPV had the higher bacterial diversity. These findings contribute to our understanding of the potential influence abnormal reproductive tract microbial communities have on negative pregnancy outcomes in giant pandas. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing

    PubMed Central

    Wang, Zuo; Elekwachi, Chijioke; Jiao, Jinzhen; Wang, Min; Tang, Shaoxun; Zhou, Chuanshe; Tan, Zhiliang; Forster, Robert J.

    2017-01-01

    The objective of this present study was to explore the initial establishment of metabolically active bacteria and subsequent evolution in four fractions: rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) through early weaning and supplementing rhubarb root powder in 7 different age groups (1, 10, 20, 38, 41, 50, and 60 d) during rumen development. Results of the 16S rRNA sequencing based on RNA isolated from the four fractions revealed that the potentially active bacterial microbiota in four fractions were dominated by the phyla Proteobacteria, Firmicutes, and Bacteroidetes regardless of different ages. An age-dependent increment of Chao 1 richness was observed in the fractions of RL and RE. The principal coordinate analysis (PCoA) indicated that samples in four fractions all clustered based on different age groups, and the structure of the bacterial community in RE was distinct from those in other three fractions. The abundances of Proteobacteria decreased significantly (P < 0.05) with age, while increases in the abundances of Firmicutes and Bacteroidetes were noted. At the genus level, the abundance of the predominant genus Mannheimia in the Proteobacteria phylum decreased significantly (P < 0.05) after 1 d, while the genera Quinella, Prevotella, Fretibacterium, Ruminococcus, Lachnospiraceae NK3A20 group, and Atopobium underwent different manners of increases and dominated the bacterial microbiota across four fractions. Variations of the distributions of some specific bacterial genera across fractions were observed, and supplementation of rhubarb affected the relative abundance of various genera of bacteria. PMID:28223972

  15. Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing.

    PubMed

    Wang, Zuo; Elekwachi, Chijioke; Jiao, Jinzhen; Wang, Min; Tang, Shaoxun; Zhou, Chuanshe; Tan, Zhiliang; Forster, Robert J

    2017-01-01

    The objective of this present study was to explore the initial establishment of metabolically active bacteria and subsequent evolution in four fractions: rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) through early weaning and supplementing rhubarb root powder in 7 different age groups (1, 10, 20, 38, 41, 50, and 60 d) during rumen development. Results of the 16S rRNA sequencing based on RNA isolated from the four fractions revealed that the potentially active bacterial microbiota in four fractions were dominated by the phyla Proteobacteria, Firmicutes , and Bacteroidetes regardless of different ages. An age-dependent increment of Chao 1 richness was observed in the fractions of RL and RE. The principal coordinate analysis (PCoA) indicated that samples in four fractions all clustered based on different age groups, and the structure of the bacterial community in RE was distinct from those in other three fractions. The abundances of Proteobacteria decreased significantly ( P < 0.05) with age, while increases in the abundances of Firmicutes and Bacteroidetes were noted. At the genus level, the abundance of the predominant genus Mannheimia in the Proteobacteria phylum decreased significantly ( P < 0.05) after 1 d, while the genera Quinella, Prevotella, Fretibacterium, Ruminococcus, Lachnospiraceae NK3A20 group , and Atopobium underwent different manners of increases and dominated the bacterial microbiota across four fractions. Variations of the distributions of some specific bacterial genera across fractions were observed, and supplementation of rhubarb affected the relative abundance of various genera of bacteria.

  16. Abundances in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer Anne

    We measured the abundances of 35 elements in 22 field red giants and a red giant in the globular cluster M92. We found the [Zn/Fe] ratio increases with decreasing [Fe/H], reaching ~0.3 at [Fe/H] = -3.0. While this is a larger [Zn/Fe] than found by previous investigators, it is not sufficient to account for the [Zn/Fe] observed in the damped Lyα systems. We test different models for the production of the s-process elements by comparing our [Y/Zr] values, which have been produced by the r- process, to predictions of what the s-process does not produce. We find that the models of Arlandini et al. (1999), which calculate s-process production in a model AGB star, agree the best. We then look at the r-process abundances across a wide range in mass. The [Y/Ba] values for most of our stars cluster around -0.30, but there are three outliers with [Y/Ba] values up to 1 dex higher. Thus the heavy element abundances do not show the same pattern from Z = 39 to Z = 56. However, our abundances ratios from Pd (Z = 46) to Yb (Z = 70) are consistent with a scaled solar system r- process pattern, arguing that at least the heavy r- process elements are made in a universal pattern. If we assume that this same pattern hold through thorium, we can determine the ages of our stars from the present abundance of radioactive thorium and an initial thorium abundance based on the abundance of stable heavy elements. Our results for five stars are consistent with those stars being the same age. Our mean age is 10.8 +/- 2 Gyr. However that result depends critically on the assumed Th/stable ratio, which we adopt from models of the r-process. For an average age of 15 Gyrs, the initial Th/Eu ratio we would need is 0.590. Finally, the [element/Fe] ratios for elements in the iron group and lower do not show any dispersion, unlike for the r- process elements such as Y and Ba. Therefore the individual contributions of supernovae have been erased for the lighter elements.

  17. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure.

    PubMed

    Henderson, Peter A; Magurran, Anne E

    2010-05-22

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance.

  18. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure

    PubMed Central

    Henderson, Peter A.; Magurran, Anne E.

    2010-01-01

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance. PMID:20071388

  19. Bacterial Succession in the Broiler Gastrointestinal Tract

    PubMed Central

    Lawley, Blair; Tannock, Gerald; Engberg, Ricarda M.

    2016-01-01

    A feeding trial was performed with broilers receiving a diet of wheat-based feed (WBF), maize-based feed (MBF), or maize-based concentrates supplemented with 15% or 30% crimped kernel maize silage (CKMS-15 or CKMS-30, respectively). The aim of the study was to investigate the bacterial community compositions of the crop, gizzard, ileum, and cecum contents in relation to the feeding strategy and age (8, 15, 22, 25, 29, or 36 days). Among the four dietary treatments, bacterial diversity was analyzed for MBF and CKMS-30 by 454 pyrosequencing of the 16S rRNA gene. Since the diets had no significant influence on bacterial diversity, data were pooled for downstream analysis. With increasing age, a clear succession of bacterial communities and increased bacterial diversity were observed. Lactobacillaceae (belonging mainly to the genus Lactobacillus) represented most of the Firmicutes at all ages and in all segments of the gut except the cecum. The development of a “mature” microbiota in broilers occurred during the period from days 15 to 22. Striking increases in the relative abundances of Lactobacillus salivarius (17 to 36%) and clostridia (11 to 18%), and a concomitant decrease in the relative abundance of Lactobacillus reuteri, were found in the ileum after day 15. The concentration of deconjugated bile salts increased in association with the increased populations of L. salivarius and clostridia. Both L. salivarius and clostridia deconjugate bile acids, and increases in the abundances of these bacteria might be associated with growth reduction and gastrointestinal (GI) disorders occurring in the critical period of broiler life between days 20 and 30. PMID:26873323

  20. Collective Functionality through Bacterial Individuality

    NASA Astrophysics Data System (ADS)

    Ackermann, Martin

    According to the conventional view, the properties of an organism are a product of nature and nurture - of its genes and the environment it lives in. Recent experiments with unicellular organisms have challenged this view: several molecular mechanisms generate phenotypic variation independently of environmental signals, leading to variation in clonal groups. My presentation will focus on the causes and consequences of this microbial individuality. Using examples from bacterial genetic model systems, I will first discuss different molecular and cellular mechanisms that give rise to bacterial individuality. Then, I will discuss the consequences of individuality, and focus on how phenotypic variation in clonal populations of bacteria can promote interactions between individuals, lead to the division of labor, and allow clonal groups of bacteria to cope with environmental uncertainty. Variation between individuals thus provides clonal groups with collective functionality.

  1. Effect of copper on the performance and bacterial communities of activated sludge using Illumina MiSeq platforms.

    PubMed

    Sun, Fu-Lin; Fan, Lei-Lei; Xie, Guang-Jian

    2016-08-01

    The anaerobic-anoxic-aerobic (A2O) process is a highly efficient sewage treatment method, which uses complex bacterial communities. However, the effect of copper on this process and the bacterial communities involved remains unknown. In this study, a systematic investigation of the effect of persistent exposure of copper in the A2O wastewater treatment system was performed. An A2O device was designed to examine the effect of copper on the removal efficiency and microbial community compositions of activated sludge that was continuously treated with 10, 20, and 40 mg L(-1) copper, respectively. Surprisingly, a decrease in chemical oxygen demand (COD) and ammonia nitrogen (NH4N) removal efficiency was observed, and the toxicity of high copper concentration was significantly greater at 7d than at 1d. Proteobacteria, Bacteroidetes, Acidobacteria, Chlorobi, and Nitrospirae were the dominant bacterial taxa in the A2O system, and significant changes in microbial community were observed during the exposure period. Most of the dominant bacterial groups were easily susceptible to copper toxicity and diversely changed at different copper concentrations. However, not all the bacterial taxa were inhibited by copper treatment. At high copper concentration, many bacterial species were stimulated and their abundance increased. Cluster analysis and principal coordinate analysis (PCoA) based on operational taxonomic units (OTUs) revealed clear differences in the bacterial communities among the samples. These findings indicated that copper severely affected the performance and key microbial populations in the A2O system as well as disturbed the stability of the bacterial communities in the system, thus decreasing the removal efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Proteogenomic Analysis of a Thermophilic Bacterial Consortium Adapted to Deconstruct Switchgrass

    SciTech Connect

    D'haeseleer, Patrik; Gladden, John M.; Allgaier, Martin

    2013-07-19

    Thermophilic bacteria are a potential source of enzymes for the deconstruction of lignocellulosic biomass. However, the complement of proteins used to deconstruct biomass and the specific roles of different microbial groups in thermophilic biomass deconstruction are not well-explored. Here we report on the metagenomic and proteogenomic analyses of a compost-derived bacterial consortium adapted to switchgrass at elevated temperature with high levels of glycoside hydrolase activities. Near-complete genomes were reconstructed for the most abundant populations, which included composite genomes for populations closely related to sequenced strains of Thermus thermophilus and Rhodothermus marinus, and for novel populations that are related to thermophilicmore » Paenibacilli and an uncultivated subdivision of the littlestudied Gemmatimonadetes phylum. Partial genomes were also reconstructed for a number of lower abundance thermophilic Chloroflexi populations. Identification of genes for lignocellulose processing and metabolic reconstructions suggested Rhodothermus, Paenibacillus and Gemmatimonadetes as key groups for deconstructing biomass, and Thermus as a group that may primarily metabolize low molecular weight compounds. Mass spectrometry-based proteomic analysis of the consortium was used to identify .3000 proteins in fractionated samples from the cultures, and confirmed the importance of Paenibacillus and Gemmatimonadetes to biomass deconstruction. These studies also indicate that there are unexplored proteins with important roles in bacterial lignocellulose deconstruction.« less

  3. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    PubMed

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier

  4. Interstellar abundances - Gas and dust

    NASA Technical Reports Server (NTRS)

    Field, G. B.

    1974-01-01

    Data on abundances of interstellar atoms, ions and molecules in front of zeta Oph are assembled and analyzed. The gas-phase abundances of at least 11 heavy elements are significantly lower, relative to hydrogen, than in the solar system. The abundance deficiencies of certain elements correlate with the temperatures derived theoretically for particle condensation in stellar atmospheres or nebulae, suggesting that these elements have condensed into dust grains near stars. There is evidence that other elements have accreted onto such grains after their arrival in interstellar space. The extinction spectrum of zeta Oph can be explained qualitatively and, to a degree, quantitatively by dust grains composed of silicates, graphite, silicon carbide, and iron, with mantles composed of complex molecules of H, C, N, and O. This composition is consistent with the observed gas-phase deficiencies.

  5. Robust Abundance Estimation in Animal Abundance Surveys with Imperfect Detection

    EPA Science Inventory

    Surveys of animal abundance are central to the conservation and management of living natural resources. However, detection uncertainty complicates the sampling process of many species. One sampling method employed to deal with this problem is depletion (or removal) surveys in whi...

  6. Comprehensive phylogenetic analysis of bacterial reverse transcriptases.

    PubMed

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.

  7. Comprehensive Phylogenetic Analysis of Bacterial Reverse Transcriptases

    PubMed Central

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology. PMID:25423096

  8. Variations in bacterial communities during foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau.

    PubMed

    Zhao, Yeyi; Wu, Fuzhong; Yang, Wanqin; Tan, Bo; He, Wei

    2016-01-01

    Bacterial communities are the primary engineers during litter decomposition and related material cycling, and they can be strongly controlled by seasonal changes in temperature and other environmental factors. However, limited information is available on changes in the bacterial community from winter to the growing season as litter decomposition proceeds in cold climates. Here, we investigated the abundance and structure of bacterial communities using real-time quantitative PCR and denaturing gradient gel electrophoresis (DGGE) during a 2-year field study of the decomposition of litter of 4 species in the winter and growing seasons of an alpine forest of the eastern Tibetan Plateau. The abundance of the bacterial 16S rRNA gene was relatively high during decomposition of cypress and birch litter in the first winter, but for the other litters 16S rRNA abundance during both winters was significantly lower than during the following growing season. A large number of bands were observed on the DGGE gels, and their intensities and number from the winter samples were lower than those from the growing season during the 2-year decomposition experiment. Eighty-nine sequences from the bands of bacteria that had been cut from the DGGE gels were affiliated with 10 distinct classes of bacteria and an unknown group. A redundancy analysis indicated that the moisture, mass loss, and elemental content (e.g., C, N, and P) of the litter significantly affected the bacterial communities. Collectively, the results suggest that uneven seasonal changes in climate regulate bacterial communities and other decomposers, thus affecting their contribution to litter decomposition processes in the alpine forest.

  9. Coronal Abundances and Their Variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1996-01-01

    This contract supported the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution soft X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study were a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This is the Final Report, summarizing the data analysis and reporting activities which occurred during the period of performance, June 1993 - December 1996.

  10. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the