Science.gov

Sample records for abundant cell surface

  1. Modulation of Na(+)-K(+)-ATPase cell surface abundance through structural determinants on the α1-subunit.

    PubMed

    Pierre, Sandrine V; Belliard, Aude; Sottejeau, Yoann

    2011-01-01

    Through their ion-pumping and non-ion-pumping functions, Na(+)-K(+)-ATPase protein complexes at the plasma membrane are critical to intracellular homeostasis and to the physiological and pharmacological actions of cardiotonic steroids. Alteration of the abundance of Na(+)-K(+)-ATPase units at the cell surface is one of the mechanisms for Na(+)-K(+)-ATPase regulation in health and diseases that has been closely examined over the past few decades. We here summarize these findings, with emphasis on studies that explicitly tested the involvement of defined regions or residues on the Na(+)-K(+)-ATPase α1 polypeptide. We also report new findings on the effect of manipulating Na(+)-K(+)-ATPase membrane abundance by targeting one of these defined regions: a dileucine motif of the form [D/E]XXXL[L/I]. In this study, opossum kidney cells stably expressing rat α1 Na(+)-K(+)-ATPase or a mutant where the motif was disrupted (α1-L499V) were exposed to 30 min of substrate/coverslip-induced-ischemia followed by reperfusion (I-R). Biotinylation studies suggested that I-R itself acted as an inducer of Na(+)-K(+)-ATPase internalization and that surface expression of the mutant was higher than the native Na(+)-K(+)-ATPase before and after ischemia. Annexin V/propidium iodide staining and lactate dehydrogenase release suggested that I-R injury was reduced in α1-L499V-expressing cells compared with α1-expressing cells. Hence, modulation of Na(+)-K(+)-ATPase cell surface abundance through structural determinants on the α-subunit is an important mechanism of regulation of cellular Na(+)-K(+)-ATPase in various physiological and pathophysiological conditions, with a significant impact on cell survival in face of an ischemic stress.

  2. Surface abundances of ON stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Simón-Díaz, S.; Palacios, A.; Howarth, I.; Georgy, C.; Walborn, N. R.; Bouret, J.-C.; Barbá, R.

    2015-06-01

    Context. Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient or when mass transfer in binary systems occurs, chemically processed material is observed at the surface of O and B stars. Aims: ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle is not known. Our goal is to answer this question. Methods: We performed a spectroscopic analysis of a sample of ON stars with atmosphere models. We determined the fundamental parameters as well as the He, C, N, and O surface abundances. We also measured the projected rotational velocities. We compared the properties of the ON stars to those of normal O stars. Results: We show that ON stars are usually rich in helium. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Mass transfer is therefore not a simple explanation for the observed chemical properties. Conclusions: We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present. Based on observations obtained 1) at the Anglo-Australian Telescope; 2) at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under programs 081.D-2008, 083.D-0589, 086.D-0997; 4) the Nordic Optical Telescope, operated on the island of La

  3. Staphylococcus epidermidis Affinity for Fibrinogen-Coated Surfaces Correlates with the Abundance of the SdrG Adhesin on the Cell Surface.

    PubMed

    Vanzieleghem, Thomas; Herman-Bausier, Philippe; Dufrene, Yves F; Mahillon, Jacques

    2015-04-28

    Staphylococcus epidermidis is a world-leading pathogen in healthcare facilities, mainly causing medical device-associated infections. These nosocomial diseases often result in complications such as bacteremia, fibrosis, or peritonitis. The virulence of S. epidermidis relies on its ability to colonize surfaces and develop thereupon in the form of biofilms. Bacterial adherence on biomaterials, usually covered with plasma proteins after implantation, is a critical step leading to biofilm infections. The cell surface protein SdrG mediates adhesion of S. epidermidis to fibrinogen (Fg) through a specific "dock, lock, and latch" mechanism, which results in greatly stabilized protein-ligand complexes. Here, we combine single-molecule, single-cell, and whole population assays to investigate the extent to which the surface density of SdrG determines the ability of S. epidermidis clinical strains HB, ATCC 35984, and ATCC 12228 to bind to Fg-coated surfaces. Strains that showed enhanced adhesion on Fg-coated polydimethylsiloxane (PDMS) were characterized by increased amounts of SdrG proteins on the cell surface, as observed by single-molecule analysis. Consistent with previous reports showing increased expression of SdrG following in vivo exposure, this work provides direct evidence that abundance of SdrG on the cell surface of S. epidermidis strains dramatically improves their ability to bind to Fg-coated implanted medical devices.

  4. Heterologous expression of rab4 reduces glucose transport and GLUT4 abundance at the cell surface in oocytes.

    PubMed Central

    Mora, S; Monden, I; Zorzano, A; Keller, K

    1997-01-01

    To evaluate the role of the small rab GTP-binding proteins in glucose transporter trafficking, we have heterologously co-expressed rab4 or rab5 and GLUT4 or GLUT1 glucose transporters in Xenopus oocytes. Co-injection of rab4 and GLUT4 cRNAs resulted in a dose-dependent decrease in glucose transport; this effect was specific for rab4, since co-injection of an inactive rab4 mutant or rab5 cRNA did not have any effect on glucose transport. The effect of rab4 was selective for GLUT4, since no effect was detected in GLUT1-expressing oocytes. The inhibitory effect of rab4 on GLUT4-induced glucose transport was not the result of a change in overall cellular levels of GLUT4 glucose transporters. However, rab4 expression caused a marked decrease in the abundance of GLUT4 transporters present at the cell surface. Finally, rab4 and inhibitors of PtdIns 3-kinase showed additive effects in decreasing glucose transport in GLUT4-expressing oocytes. We conclude that rab4 plays an important role in the regulation of the intracellular GLUT4 trafficking pathway, by contributing to the intracellular retention of GLUT4 through a PtdIns 3-kinase-independent mechanism. PMID:9182703

  5. Microbial abundance in surface ice on the Greenland Ice Sheet

    PubMed Central

    Stibal, Marek; Gözdereliler, Erkin; Cameron, Karen A.; Box, Jason E.; Stevens, Ian T.; Gokul, Jarishma K.; Schostag, Morten; Zarsky, Jakub D.; Edwards, Arwyn; Irvine-Fynn, Tristram D. L.; Jacobsen, Carsten S.

    2015-01-01

    Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet (GrIS), using three enumeration methods: epifluorescence microscopy (EFM), flow cytometry (FCM), and quantitative polymerase chain reaction (qPCR). In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (102–107 cells ml−1) and mineral particle (0.1–100 mg ml−1) concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ~ 2 × 103 to ~ 2 × 106 cells ml−1 while dust concentrations ranged from 0.01 to 2 mg ml−1. The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the GrIS. PMID:25852678

  6. Oxygen abundances in low surface-brightness galaxies

    NASA Technical Reports Server (NTRS)

    Roennback, Jari

    1993-01-01

    Recent theories predict that some protogalaxies, in low-density environments of the field, are contracting and interacting so slowly that global star formation can be delayed until today. These systems should be gas rich and have low surface-brightness. Blue compact galaxies (BCG's) and other compact HII region galaxies currently experiencing a burst of star formation are good candidates of truly young galaxies (in the sense that global star formation recently has been initiated). If they really are young, they ought to have a recent phase when their brightness was much lower than in the bursting phase. No claims of observations of such proto-BCG's exist. Observations of galaxies in their juvenile phases would undoubtedly be of great interest, e.g. the determination of the primordial helium abundance would improve. A proper place to search for young nearby galaxies could be among blue low surface-brightness galaxies (BLSBG's) in the local field. The study of low surface-brightness galaxies (LSBG's) as a group began relatively recently. They are galaxies with extraordinary properties both as individuals and as a group. A few years ago we started an optical study of a sample of BLSBG's selected from the ESO/Uppsala catalogue. Results of spectroscopic observations obtained on a subsample - 8 galaxies - of our selection are reported. The HII region oxygen chemical abundances and its relation to the blue absolute magnitude and surface-brightness is investigated.

  7. Reliable Quantitative Mineral Abundances of the Martian Surface using THEMIS

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Huang, J.; Ryan, A. J.; Christensen, P. R.

    2013-12-01

    The following presents a proof of concept that given quality data, Thermal Emission Imaging System (THEMIS) data can be used to derive reliable quantitative mineral abundances of the Martian surface using a limited mineral library. The THEMIS instrument aboard the Mars Odyssey spacecraft is a multispectral thermal infrared imager with a spatial resolution of 100 m/pixel. The relatively high spatial resolution along with global coverage makes THEMIS datasets powerful tools for comprehensive fine scale petrologic analyses. However, the spectral resolution of THEMIS is limited to 8 surface sensitive bands between 6.8 and 14.0 μm with an average bandwidth of ~ 1 μm, which complicates atmosphere-surface separation and spectral analysis. This study utilizes the atmospheric correction methods of both Bandfield et al. [2004] and Ryan et al. [2013] joined with the iterative linear deconvolution technique pioneered by Huang et al. [in review] in order to derive fine-scale quantitative mineral abundances of the Martian surface. In general, it can be assumed that surface emissivity combines in a linear fashion in the thermal infrared (TIR) wavelengths such that the emitted energy is proportional to the areal percentage of the minerals present. TIR spectra are unmixed using a set of linear equations involving an endmember library of lab measured mineral spectra. The number of endmembers allowed in a spectral library are restricted to a quantity of n-1 (where n = the number of spectral bands of an instrument), preserving one band for blackbody. Spectral analysis of THEMIS data is thus allowed only seven endmembers. This study attempts to prove that this limitation does not prohibit the derivation of meaningful spectral analyses from THEMIS data. Our study selects THEMIS stamps from a region of Mars that is well characterized in the TIR by the higher spectral resolution, lower spatial resolution Thermal Emission Spectrometer (TES) instrument (143 bands at 10 cm-1 sampling and 3

  8. Microsystems for the Capture of Low-Abundance Cells

    NASA Astrophysics Data System (ADS)

    Dharmasiri, Udara; Witek, Małgorzata A.; Adams, Andre A.; Soper, Steven A.

    2010-07-01

    Efficient selection and enumeration of low-abundance biological cells are highly important in a variety of applications. For example, the clinical utility of circulating tumor cells (CTCs) in peripheral blood is recognized as a viable biomarker for the management of various cancers, in which the clinically relevant number of CTCs per 7.5 ml of blood is two to five. Although there are several methods for isolating rare cells from a variety of heterogeneous samples, such as immunomagnetic-assisted cell sorting and fluorescence-activated cell sorting, they are fraught with challenges. Microsystem-based technologies are providing new opportunities for selecting and isolating rare cells from complex, heterogeneous samples. Such approaches involve reductions in target-cell loss, process automation, and minimization of contamination issues. In this review, we introduce different application areas requiring rare cell analysis, conventional techniques for their selection, and finally microsystem approaches for low-abundance-cell isolation and enumeration.

  9. Dielectrophoretic capture of low abundance cell population using thick electrodes

    PubMed Central

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C.; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-01-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force (FDEP) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10). PMID:26392836

  10. Observational Effects of Magnetism in O Stars: Surface Nitrogen Abundances

    NASA Technical Reports Server (NTRS)

    Martins, F.; Escolano, C.; Wade, G. A.; Donati, J. F.; Bouret, J. C.

    2011-01-01

    Aims. We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star Tau Sco.. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the transport of elements in stellar interiors. Methods. We conduct a quantitative spectroscopic analysis of the ample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. Results. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results shOuld be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.

  11. Optimization of yeast surface-displayed cDNA library screening for low abundance targets.

    PubMed

    Kim, Juh-Yung; Kim, Hyung Kyu; Jang, Hye Jeong; Kim, Eun-Kyung; Kim, Moon Kyu

    2015-04-01

    The yeast surface-displayed cDNA library has been used to identify unknown antigens. However, when unknown target antigens show moderate-to-low abundance, some modifications are needed in the screening process. In this study, a directional random-primed cDNA library was used to increase the number of candidates for the unknown antigen. To avoid the loss of target yeast clones that express proteins at a low frequency in the cDNA library, a comprehensive monitoring system based on magnetic-activated cell sorting, fluorescence-activated cell sorting, and immunofluorescence was established, and a small number of target yeast cells was successfully enriched. These results showed that our optimized method has potential application for identifying rare unknown antigens of the human monoclonal antibody.

  12. Mineralogic control on abundance and diversity of surface-adherent microbial communities

    USGS Publications Warehouse

    Mauck, Brena S.; Roberts, Jennifer A.

    2007-01-01

    In this study, we investigated the role of mineral-bound P and Fe in defining microbial abundance and diversity in a carbon-rich groundwater. Field colonization experiments of initially sterile mineral surfaces were combined with community structure characterization of the attached microbial population. Silicate minerals containing varying concentrations of P (∼1000 ppm P) and Fe (∼4 wt % Fe 2 O3), goethite (FeOOH), and apatite [Ca5(PO4)3(OH)] were incubated for 14 months in three biogeochemically distinct zones within a petroleum-contaminated aquifer. Phospholipid fatty acid analysis of incubated mineral surfaces and groundwater was used as a measure of microbial community structure and biomass. Microbial biomass on minerals exhibited distinct trends as a function of mineralogy depending on the environment of incubation. In the carbon-rich, aerobic groundwater attached biomass did not correlate to the P- or Fe- content of the mineral. In the methanogenic groundwater, however, biomass was most abundant on P-containing minerals. Similarly, in the Fe-reducing groundwater a correlation between Fe-content and biomass was observed. The community structure of the mineral-adherent microbial population was compared to the native groundwater community. These two populations were significantly different regardless of mineralogy, suggesting differentiation of the planktonic community through attachment, growth, and death of colonizing cells. Biomarkers specific for dissimilatory Fe-reducing bacteria native to the aquifer were identified only on Fe-containing minerals in the Fe-reducing groundwater. These results demonstrate that the trace nutrient content of minerals affects both the abundance and diversity of surface-adherent microbial communities. This behavior may be a means to access limiting nutrients from the mineral, creating a niche for a particular microbial population. These results suggest that heterogeneity of microbial populations and their associated

  13. Bioelectrochemistry of cell surfaces

    NASA Astrophysics Data System (ADS)

    Dolowy, Krzysztof

    This paper deals with processes and phenomena of cell surface bioelectrochemistry in which charges do not move across the cell membrane. First, electrochemical properties of the cell membrane and the cell medium interface are described, and different electric potentials present in biological systems are defined. Methods of cell electrophoresis are then discussed. It is shown that none of the simple electrochemical models of the cell membrane can explain the dependence of cell electrophoretic mobility upon ionic strength and other electrochemical properties of the cell membrane, such as the difference in cell membrane charge as determined electrochemically and biochemically, or the effect of neuraminidase, pH, or membrane potential change on cell electrophoretic mobility. Thus, it is apparent that conclusions drawn from electrophoretic mobility data on the basis of simple models are false. The more complex multilayer-electrochemical model of the cell membrane is then described and shown to explain most electrochemical properties of the cell membrane. Next, different electrochemical techniques that were applied to study cell surfaces are described. It is shown that colloid titration, isoelectric focusing, and partition of cells between two immiscible phases is dependent not only on electrical properties of the cell membrane, but also on the energy of adsorption at cell surfaces of organic molecules used in these methods. Powder electrodes, cell polarography, conductometric titration, and Donnan potential methods are described and it is shown that these methods also produce results of doubtful value and are also often misinterpreted. The contact potential difference method produces results difficult to interpret and only electro-osmotic measurements and potential sensitive molecules are valuable methods. The colloid particle interaction theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) as applied to cell interactions is discussed. It is shown that the

  14. Rapid detection of microbial cell abundance in aquatic systems.

    PubMed

    Rocha, Andrea M; Yuan, Quan; Close, Dan M; O'Dell, Kaela B; Fortney, Julian L; Wu, Jayne; Hazen, Terry C

    2016-11-15

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamic systems - the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10(3)-10(6) cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. This work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.

  15. The abundance properties of nearby late-type galaxies. II. The relation between abundance distributions and surface brightness profiles

    SciTech Connect

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.; Kniazev, A. Y. E-mail: grebel@ari.uni-heidelberg.de E-mail: akniazev@saao.ac.za

    2014-12-01

    The relations between oxygen abundance and disk surface brightness (OH–SB relation) in the infrared W1 band are examined for nearby late-type galaxies. The oxygen abundances were presented in Paper I. The photometric characteristics of the disks are inferred here using photometric maps from the literature through bulge-disk decomposition. We find evidence that the OH–SB relation is not unique but depends on the galactocentric distance r (taken as a fraction of the optical radius R{sub 25}) and on the properties of a galaxy: the disk scale length h and the morphological T-type. We suggest a general, four-dimensional OH–SB relation with the values r, h, and T as parameters. The parametric OH–SB relation reproduces the observed data better than a simple, one-parameter relation; the deviations resulting when using our parametric relation are smaller by a factor of ∼1.4 than that of the simple relation. The influence of the parameters on the OH–SB relation varies with galactocentric distance. The influence of the T-type on the OH–SB relation is negligible at the centers of galaxies and increases with galactocentric distance. In contrast, the influence of the disk scale length on the OH–SB relation is at a maximum at the centers of galaxies and decreases with galactocentric distance, disappearing at the optical edges of galaxies. Two-dimensional relations can be used to reproduce the observed data at the optical edges of the disks and at the centers of the disks. The disk scale length should be used as a second parameter in the OH–SB relation at the center of the disk while the morphological T-type should be used as a second parameter in the relation at optical edge of the disk. The relations between oxygen abundance and disk surface brightness in the optical B and infrared K bands at the center of the disk and at optical edge of the disk are also considered. The general properties of the abundance–surface brightness relations are similar for the

  16. Spectroscopic Variation of Water Ice Abundance Across Mimas and Tethys' Surface

    NASA Astrophysics Data System (ADS)

    Scipioni, Francesca; Schenk, Paul

    2014-11-01

    We present results from our ongoing work mapping the variation of the main water ice absorption bands across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). Mimas and Tethys are Enceladus’ orbital neighbours, lying inside and outside Enceladus’ orbit respectively. It is therefore likely that Mimas and Tethys surfaces interact with icy particles from the E-ring, resulting in a spectral, color modification. For all pixels in the selected VIMS cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak, whose value relates to grain size. To characterize the global variation of water-ice band depths across Mimas and Tethys, we divided the surface into a 1°x1° grid and then averaged the band depths and peak values inside each square cell. The most prominent feature on Mimas surface is the crater Herschel with a diameter of 130 km, one-third of the satellite's one. Mimas has the most uniform surface among Saturn's principal satellites, with its trailing side just 10% brighter and redder than the leading one. The uniformity of Mimas extends on spectral appearance too. The 1.52 and 2.02 μm H2O-ice absorption bands are ˜10% deeper on trailing hemisphere.On Tethys' leading hemisphere a 400 km in diameter crater, Odysseus, is present. Its dimension represents ˜40% of Tethys diameter.For both moons we find that large geologic features, such as the Odysseus and Herschel impact basin, do not correlate with water ice’s abundance variation.For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas the selected dataset covers just the leading hemisphere and a portion of the trailing side. From the analysis, the two hemispheres appear to be quite similar in water ice abundance, the trailing

  17. Investigation of SnSPR1, a novel and abundant surface protein of Sarcocystis neurona merozoites.

    PubMed

    Zhang, Deqing; Howe, Daniel K

    2008-04-15

    An expressed sequence tag (EST) sequencing project has produced over 15,000 partial cDNA sequences from the equine pathogen Sarcocystis neurona. While many of the sequences are clear homologues of previously characterized genes, a significant number of the S. neurona ESTs do not exhibit similarity to anything in the extensive sequence databases that have been generated. In an effort to characterize parasite proteins that are novel to S. neurona, a seemingly unique gene was selected for further investigation based on its abundant representation in the collection of ESTs and the predicted presence of a signal peptide and glycolipid anchor addition on the encoded protein. The gene was expressed in E. coli, and monospecific polyclonal antiserum against the recombinant protein was produced by immunization of a rabbit. Characterization of the native protein in S. neurona merozoites and schizonts revealed that it is a low molecular weight surface protein that is expressed throughout intracellular development of the parasite. The protein was designated Surface Protein 1 (SPR1) to reflect its display on the outer surface of merozoites and to distinguish it from the ubiquitous SAG/SRS surface antigens of the heteroxenous Coccidia. Interestingly, infection assays in the presence of the polyclonal antiserum suggested that SnSPR1 plays some role in attachment and/or invasion of host cells by S. neurona merozoites. The work described herein represents a general template for selecting and characterizing the various unidentified gene sequences that are plentiful in the EST databases for S. neurona and other apicomplexans. Furthermore, this study illustrates the value of investigating these novel sequences since it can offer new candidates for diagnostic or vaccine development while also providing greater insight into the biology of these parasites.

  18. A New View of the Surface of Mars: High-Resolution Rock Abundance from MGS TES

    NASA Astrophysics Data System (ADS)

    Nowicki, S.; Christensen, P.

    2001-12-01

    Mars Global Surveyor Thermal Emission Spectrometer data from the most dust-free seasons on Mars were used to calculate the areal percentage of rocks and finer materials such as dust and sand. Rock is defined as a surface material that has a thermal inertia of 1250 J/m2-s1/2-K (30 cal/cm2-s1/2-K) or greater. A surface with a high rock abundance value could be exposed bedrock, blocky debris, well-cemented materials or a combination. Globally, the TES and IRTM data agree well, with no rocks exposed in the large dusty regions such as Tharsis and Arabia, and exposure of rocks in small (a few km) areas where likely eolian or mass-wasting processes actively remove dust from the ancient rocky surface. Analysis of high-resolution TES rock abundance suggests that there are extremely varied surfaces within relatively small regions, and places an upper limit of ~45 % rocks in the rockiest regions. Thermal inertia and rock abundance are correlate to some degree over much of the planet, but the highest thermal inertia surfaces often do not have the highest rock abundances. A global perspective will be presented here, with detailed look at a few high-resolution ares including Ares Vallis/Pathfinder, Valles Marineris, and the proposed landing sites for the 2003 MER landers.

  19. Correlation of the Abundance of Betaproteobacteria on Mineral Surfaces with Mineral Weathering in Forest Soils

    PubMed Central

    Lepleux, C.; Turpault, M. P.; Oger, P.; Frey-Klett, P.

    2012-01-01

    Pyrosequencing-based analysis of 16S rRNA gene sequences revealed a significant correlation between apatite dissolution and the abundance of betaproteobacteria on apatite surfaces, suggesting a role for the bacteria belonging to this phylum in mineral weathering. Notably, the cultivation-dependent approach demonstrated that the most efficient mineral-weathering bacteria belonged to the betaproteobacterial genus Burhkolderia. PMID:22798365

  20. Surface Abundances of NGC 188 Blue Stragglers as a Clue to Formation History

    NASA Astrophysics Data System (ADS)

    Milliman, Katelyn; Mathieu, R. D.; Schuler, S. C.

    2013-06-01

    Studies of the old open cluster NGC 188 have discovered a blue straggler binary frequency nearly three times the binary fraction of main-sequence stars, and a secondary mass distribution peaking at 0.5 solar masses for long-period blue stragglers. These features suggest that asymptotic giant branch mass transfer in binary stars dominates the production of blue stragglers in open clusters. However, sophisticated N-body simulations point toward stellar collisions being the dominant formation process. These two mechanisms are expected to result in measurably different blue straggler surface abundances. Blue stragglers resulting from stellar collisions of main-sequence stars are predicted to retain roughly the same surface abundance as the more massive star in the collision. On the other hand, blue stragglers formed by mass transfer from an evolved companion will have a surface abundance altered by the nucleosynthesis that occurred within the evolved donor star. We present first results of a surface abundance study of 21 blue stragglers in NGC 188 using the Hydra multi-object spectrograph on the WIYN 3.5 m telescope. These results include measurements of barium, oxygen, and carbon and offer a clue to the formation history of blue stragglers in open clusters. We gratefully acknowledge funding from the National Science Foundation under grant AST-0908082.

  1. Glycopeptide capture for cell surface proteomics.

    PubMed

    Lee, M C Gilbert; Sun, Bingyun

    2014-05-09

    Cell surface proteins, including extracellular matrix proteins, participate in all major cellular processes and functions, such as growth, differentiation, and proliferation. A comprehensive characterization of these proteins provides rich information for biomarker discovery, cell-type identification, and drug-target selection, as well as helping to advance our understanding of cellular biology and physiology. Surface proteins, however, pose significant analytical challenges, because of their inherently low abundance, high hydrophobicity, and heavy post-translational modifications. Taking advantage of the prevalent glycosylation on surface proteins, we introduce here a high-throughput glycopeptide-capture approach that integrates the advantages of several existing N-glycoproteomics means. Our method can enrich the glycopeptides derived from surface proteins and remove their glycans for facile proteomics using LC-MS. The resolved N-glycoproteome comprises the information of protein identity and quantity as well as their sites of glycosylation. This method has been applied to a series of studies in areas including cancer, stem cells, and drug toxicity. The limitation of the method lies in the low abundance of surface membrane proteins, such that a relatively large quantity of samples is required for this analysis compared to studies centered on cytosolic proteins.

  2. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGES

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  3. Effects of mimosine on Wolbachia in mosquito cells: cell cycle suppression reduces bacterial abundance.

    PubMed

    Fallon, Ann M

    2015-10-01

    The plant allelochemical L-mimosine (β-[N-(3-hydroxy-4-pyridone)]-α-aminopropionic acid; leucenol) resembles the nonessential amino acid, tyrosine. Because the obligate intracellular alphaproteobacterium, Wolbachia pipientis, metabolizes amino acids derived from host cells, the effects of mimosine on infected and uninfected mosquito cells were investigated. The EC50 for mimosine was 6-7 μM with Aedes albopictus C7-10 and C/wStr cell lines, and was not influenced by infection status. Mosquito cells responded to concentrations of mimosine substantially lower than those used to synchronize the mammalian cell cycle; at concentrations of 30-35 μM, mimosine reversibly arrested the mosquito cell cycle at the G1/S boundary and inhibited growth of Wolbachia strain wStr. Although lower concentrations of mimosine slightly increased wStr abundance, concentrations that suppressed the cell cycle reduced Wolbachia levels.

  4. Correlation of Sulfuric Acid Hydrate Abundance with Charged Particle Flux at the Surface of Europa

    NASA Astrophysics Data System (ADS)

    Dalton, James B.; Paranicas, C. P.; Cassidy, T. A.; Shirley, J. H.

    2010-10-01

    The trailing hemisphere of Jupiter's moon Europa is bombarded by charged particles trapped within Jupiter's magnetosphere. Sulfur ion implantation and impacting energetic electrons strongly affect the surface chemistry of Europa. Understanding these processes is important for disentangling the extrinsic and intrinsic components of Europa's surface chemistry. In the sulfur cycle model of Carlson et al. (Science 286, 97, 1999), hydrated sulfuric acid represents the dominant reaction product of radiolytic surface modification processes on Europa. In recent compositional investigations employing linear mixture modeling, Dalton et al. (LPSC XV, #2511, 2009) and Shirley et al. (Icarus, in press, 2010) document a well-defined gradient of hydrated sulfuric acid abundance for a study area spanning the leading side - trailing side boundary in Argadnel Regio. Sulfuric acid hydrate abundance in this region increases toward the trailing side apex. Here we compare the derived sulfuric acid hydrate abundances at 41 locations on Europa's surface with independent model results describing 1) the sulfur ion flux (Hendrix et al., 2010, in preparation), and 2) the energetic electron flux, at the same locations. We improve upon the prior calculation of electron energy into the surface of Paranicas et al. (2009, in Europa, U. Arizona, p529; Pappalardo, McKinnon, & Khurana eds.) by incorporating a realistic pitch angle dependence of the distribution. While the sulfur ion implantation and electron energy deposition model distributions differ in important details, both show trailing side gradients similar to that found for the sulfuric acid hydrate. Correlation coefficients exceed 0.9 in comparisons of each of these models with the sulfuric acid hydrate distribution. Our results support models in which the electron energy flux drives reactions that utilize implanted sulfur to produce sulfuric acid hydrate. This work was performed at the California Institute of Technology-Jet Propulsion

  5. Measurement of clay surface areas by polyvinylpyrrolidone (PVP) sorption and its use for quantifying illite and smectite abundance

    USGS Publications Warehouse

    Blum, A.E.; Eberl, D.D.

    2004-01-01

    A new method has been developed for quantifying smectite abundance by sorbing polyvinylpyrrolidone (PVP) on smectite particles dispersed in aqueous solution. The sorption density of PVP-55K on a wide range of smectites, illites and kaolinites is ???0.99 mg/m2, which corresponds to ???0.72 g of PVP-55K per gram of montmorillonite. Polyvinylpyrrolidone sorption on smectites is independent of layer charge and solution pH. PVP sorption on Si02, Fe 2O3 and ZnO normalized to the BET surface area is similar to the sorption densities on smectites. ??-Al 2O3, amorphous Al(OH)3 and gibbsite have no PVP sorption over a wide range of pH, and sorption of PVP by organics is minimal. The insensitivity of PVP sorption densities to mineral layer charge, solution pH and mineral surface charge indicates that PVP sorption is not localized at charged sites, but is controlled by more broadly distributed sorption mechanisms such as Van der Waals' interactions and/or hydrogen bonding. Smectites have very large surface areas when dispersed as single unit-cell-thick particles (???725 m2/g) and usually dominate the total surface areas of natural samples in which smectites are present. In this case, smectite abundance is directly proportional to PVP sorption. In some cases, however, the accurate quantification of smectite abundance by PVP sorption may require minor corrections for PVP uptake by other phases, principally illite and kaolinite. Quantitative XRD can be combined with PVP uptake measurements to uniquely determine the smectite concentration in such sample. ?? 2004, The Clay Minerals Society.

  6. Abundance and Distribution Characteristics of Microplastics in Surface Seawaters of the Incheon/Kyeonggi Coastal Region.

    PubMed

    Chae, Doo-Hyeon; Kim, In-Sung; Kim, Seung-Kyu; Song, Young Kyoung; Shim, Won Joon

    2015-10-01

    Microplastics in marine environments are of emerging concern due to their widespread distribution, their ingestion by various marine organisms, and their roles as a source and transfer vector of toxic chemicals. However, our understanding of their abundance and distribution characteristics in surface seawater (SSW) remains limited. We investigated microplastics in the surface microlayer (SML) and the SSW at 12 stations near-shore and offshore of the Korean west coast, Incheon/Kyeonggi region. Variation between stations, sampling media, and sampling methods were compared based on abundances, size distribution, and composition profiles of microsized synthetic polymer particles. The abundance of microplastics was greater in the SML (152,688 ± 92,384 particles/m(3)) than in SSW and showed a significant difference based on the sampling method for SSWs collected using a hand net (1602 ± 1274 particles/m(3)) and a zooplankton trawl net (0.19 ± 0.14 particles/m(3)). Ship paint particles (mostly alkyd resin polymer) accounted for the majority of microplastics detected in both SML and SSWs, and increased levels were observed around the voyage routes of large vessels. This indicates that polymers with marine-based origins become an important contributor to microplastics in coastal SSWs of this coastal region.

  7. Mapping impervious surface type and sub-pixel abundance using hyperion hyperspectral imagery

    USGS Publications Warehouse

    Falcone, J.A.; Gomez, R.

    2005-01-01

    Impervious surfaces have been identified as an important and quantifiable indicator of environmental degradation in urban settings. A number of research efforts have been directed at mapping impervious surface type using multispectral imagery. To date, however, no studies have compared equivalent techniques using multispectral and hyperspectral imagery to that end. In this study, data from NASA's 220-channel Hyperion instrument were used to: a) delineate three types of impervious surface, and b) map sub-pixel percent abundance for a study site near Washington, D.C., USA. The results were compared with the results of similar methods using same-spatial-resolution Landsat ETM+ data for mapping impervious surface type, and with the results of the U.S. Geological Survey's National Land Cover Data (NLCD) 2001 impervious surface data layer, which is derived from Landsat and high-resolution Ikonos data. The accuracy of discriminating impervious surface type using Hyperion data was assessed at 88% versus Landsat at 59%. The sub-pixel percent impervious map corresponded well with the NLCD 2001; impervious surface in the study area was calculated at 29.3% for NLCD 2001 and 28.4% for the Hyperion-derived layer. The results suggest that fairly simple techniques using hyperspectral data are effective for quantifying impervious surface type, and that high-spectral- resolution imagery may be a good alternative to high-spatial-resolution data.

  8. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17O DNP-NMR spectroscopy

    DOE PAGES

    Perras, Frederic A.; Chaudhary, Umesh; Slowing, Igor I.; ...

    2016-05-06

    Dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly being used as a tool for the atomic-level characterization of surface sites. DNP surface-enhanced SSNMR spectroscopy of materials has, however, been limited to studying relatively receptive nuclei, and the particularly rare 17O nuclide, which is of great interest for materials science, has not been utilized. We demonstrate that advanced 17O SSNMR experiments can be performed on surface species at natural isotopic abundance using DNP. We use 17O DNP surface-enhanced 2D SSNMR to measure 17O{1H} HETCOR spectra as well as dipolar oscillations on a series of thermally treatedmore » mesoporous silica nanoparticle samples having different pore diameters. These experiments allow for a nonintrusive and unambiguous characterization of hydrogen bonding and dynamics at the surface of the material; no other single experiment can give such details about the interactions at the surface. Lastly, our data show that, upon drying, strongly hydrogen-bonded surface silanols, whose motions are greatly restricted by the interaction when compared to lone silanols, are selectively dehydroxylated.« less

  9. Surface Abundance and Binary Properties of Alternative-Evolution Stars in Open Clusters

    NASA Astrophysics Data System (ADS)

    Milliman, Katelyn Elise

    There is a large population of stars not described by single-star stellar evolution narratives. These non-standard stars are broadly known as blue stragglers (BS), yellow giants, and subsubgiants (SSG). In this thesis I present my work on the non-standard stellar populations in open clusters focussing on the role of binaries and the information learned from surface abundance measurements, particularly for BS formation. Formation theories for BSs include mergers in hierarchical triple systems, collisions during dynamical encounters, and mass transfer from an evolved companion. Such mass transfer events can pollute the surface abundance of the BS with the nucleosynthesis products from the evolved donor. Specifically, asymptotic giant branch (AGB) mass transfer should enhance the surface abundances of s-process elements, like barium, created during the thermally-pulsing phase of AGB evolution. The products of mergers and collisions would have no such enhancements. This makes barium an excellent marker for a mass-transfer formation history with an AGB-donor. In this thesis I start with the radial velocity (RV) surveys of the open clusters NGC 6819 and NGC 7789. I then introduce my discovery of five barium enriched BSs in NGC 6819, four of which have no RV evidence of a companion. Next, I triple the number of confirmed open cluster SSGs through my discovery of four such systems in NGC 6791 and present robust orbital solutions for three of them. And finally I discuss the implications of my work in context with the extensively studied open clusters M67 and NGC 188.

  10. roAp stars: surface lithium abundance distribution and magnetic field configuration

    NASA Astrophysics Data System (ADS)

    Polosukhina, N.; Shulyak, D.; Shavrina, A.; Lyashko, D.; Drake, N. A.; Glagolevski, Yu.; Kudryavtsev, D.; Smirnova, M.

    2014-08-01

    High-resolution spectra obtained with the 6m BTA telescope, Russia, and with HARPS and VLT/UVES telescopes at ESO, Chile, were used for Doppler Imaging analysis of two roAp stars, HD 12098 and HD 60435, showing strong and variable Li resonance line in their spectra. We found that Li has highly inhomogeneous distribution on the surfaces of these stars. We compared our results with previously obtained Doppler Imaging mapping of two CP2 stars, HD 83368 and HD 3980, and discuss the correlation between the position of the high Li-abundance spots and magnetic field.

  11. Kinematics of Subluminous O and B Stars by Surface Helium Abundance

    NASA Astrophysics Data System (ADS)

    Martin, P.; Jeffery, C. S.; Naslim, N.; Woolf, V. M.

    2016-12-01

    The majority of hot subdwarf stars are low-mass core-helium-burning stars. Their atmospheres are generally helium deficient; however a minority have extremely helium-rich surfaces. An additional fraction have an intermediate surface-helium abundance, occasionally accompanied by peculiar abundances of other elements. We have identified a sample of 88 hot subdwarfs including 38 helium-deficient, 27 intermediate-helium and 23 extreme-helium stars for which radial-velocity and proper-motion measurements, together with distances, allow a calculation of Galactic space velocities. We have investigated the kinematics of these three groups to determine whether they belong to similar or different Galactic populations. The majority of helium-deficient subdwarfs in our sample show a kinematic distribution similar to that of thick disk stars. Helium-rich sdBs show a more diverse kinematic distribution. Although the majority are probably disk stars, a minority show a much higher velocity dispersion consistent with membership of a Galactic halo population. Several of the halo subdwarfs are members of the class of "heavy-metal" subdwarfs discovered by Naslim et al. (2011, 2013).

  12. Solar Cells from Earth-Abundant Semiconductors with Plasmon-Enhanced Light Absorption

    SciTech Connect

    Atwater, Harry

    2012-04-30

    Progress is reported in these areas: Plasmonic Light Trapping in Thin Film a-Si Solar Cells; Plasmonic Light Trapping in Thin InGaN Quantum Well Solar Cells; and Earth Abundant Cu{sub 2}O and Zn{sub 3}P{sub 2} Solar Cells.

  13. Will greater shrub abundance greatly impact tundra surface-atmosphere exchanges of energy and carbon?

    NASA Astrophysics Data System (ADS)

    Humphreys, E.; Lafleur, P.

    2015-12-01

    Increasing deciduous shrub abundance, productivity, and range in the Arctic comes with the potential for both negative and positive feedbacks to the climate system. This study presents six seasons of eddy covariance measurements of carbon dioxide (CO2) and latent and sensible heat fluxes along a shrub gradient in Canada's Low Arctic. Three flux tower sites with 17, 45, and 64% dwarf birch cover were established within a few kilometers of each other to investigate differences in microclimate, energy and carbon exchanges. As expected, there was greater winter snow depth but less summer soil thaw with greater shrub cover. However, snowmelt timing and speed were usually similar among sites. Despite a reduction in albedo in spring and greater leaf area through summer, latent heat fluxes were consistently lower with greater shrub cover. Offset by small differences in sensible heat fluxes, total seasonal atmospheric heating (combined sensible and latent heat fluxes) was similar among sites. We anticipated greater net uptake of CO2 through the growing season with greater shrub cover. However, that was only the case in some years. There was much more week-to-week and year-to-year variability in CO2 fluxes at the shrubbiest site suggesting photosynthesis and respiration processes were more sensitive to weather variations. Shrub abundance does impact tundra surface-atmosphere exchanges of energy and carbon but these observations also highlight the complexity involved in predicting the net climate feedback effect of current and future Arctic vegetation change.

  14. Abundance gradients in low surface brightness spirals: clues on the origin of common gradients in galactic discs

    NASA Astrophysics Data System (ADS)

    Bresolin, F.; Kennicutt, R. C.

    2015-12-01

    We acquired spectra of 141 H II regions in 10 late-type low surface brightness galaxies (LSBGs). The analysis of the chemical abundances obtained from the nebular emission lines shows that metallicity gradients are a common feature of LSBGs, contrary to previous claims concerning the absence of such gradients in this class of galaxies. The average slope, when expressed in units of the isophotal radius, is found to be significantly shallower in comparison to galaxies of high surface brightness. This result can be attributed to the reduced surface brightness range measured across their discs, when combined with a universal surface mass density-metallicity relation. With a similar argument we explain the common abundance gradient observed in high surface brightness galaxy (HSBG) discs and its approximate dispersion. This conclusion is reinforced by our result that LSBGs share the same common abundance gradient with HSBGs, when the slope is expressed in terms of the exponential disc scalelength.

  15. Depletion of cells and abundant proteins from biological samples by enhanced dielectrophoresis✩

    PubMed Central

    Gupta, C.; Provine, J.; Davis, R.W.; Howe, R.T.

    2016-01-01

    Platforms that are sensitive and specific enough to assay low-abundance protein biomarkers, in a high throughput multiplex format, within a complex biological fluid specimen, are necessary to enable protein biomarker based diagnostics for diseases such as cancer. The signal from an assay for a low-abundance protein biomarker in a biological fluid sample like blood is typically buried in a background that arises from the presence of blood cells and from high-abundance proteins that make up 90% of the assayed protein mass. We present an automated on-chip platform for the depletion of cells and highly abundant serum proteins in blood. Our platform consists of two components, the first of which is a microfluidic mixer that mixes beads containing antibodies against the highly abundant proteins in the whole blood. This complex mixture (consisting of beads, cells, and serum proteins) is then injected into the second component of our microfluidic platform, which comprises a filter trench to capture all the cells and the beads. The size-based trapping of the cells and beads into the filter trench is significantly enhanced by leveraging additional negative dielectrophoretic forces to push the micron sized particles (cells and beads which have captured the highly abundant proteins) down into the trench, allowing the serum proteins of lower abundance to flow through. In general, dielectrophoresis using bare electrodes is incapable of producing forces beyond the low piconewton range that tend to be insufficient for separation applications. However, by using electrodes passivated with atomic layer deposition, we demonstrate the application of enhanced negative DEP electrodes together with size-based flltration induced by the filter trench, to deplete 100% of the micron sized particles in the mixture. PMID:26924893

  16. Antifungal leaf-surface metabolites correlate with fungal abundance in sagebrush populations.

    PubMed

    Talley, Sharon M; Coley, Phyllis D; Kursar, Thomas A

    2002-11-01

    A central component in understanding plant-enemy interactions is to determine whether plant enemies, such as herbivores and pathogens, mediate the evolution of plant secondary metabolites. Using 26 populations of a broadly distributed plant species, sagebrush (Artemisia tridentata), we examined whether sagebrush populations in habitats with a greater prevalence of fungi contained antifungal secondary metabolites on leaf surfaces that were more active and diverse than sagebrush populations in habitats less favorable to fungi. Because moisture and temperature play a key role in the epidemiology of most plant-pathogen interactions, we also examined the relationship between the antifungal activity of secondary metabolites and the climate of a site. We evaluated the antifungal activity of sagebrush secondary metabolites against two fungi, a wild Penicillium sp. and a laboratory yeast, Saccharomyces cerevisiae, using a filter-paper disk assay and bioautography. Comparing the 26 sagebrush populations, we found that fungal abundance was a good predictor of both the activity (r2 = 0.36 for Saccharomyces, r2 = 0.37 for Penicillium) and number (r2 = 0.34 for Saccharomyces) of antifungal secondary metabolites. This suggests that selection imposed by fungal pathogens has led to more effective antifungal secondary metabolites. We found that the antifungal activity of sagebrush secondary metabolites was negatively related to average vapor pressure deficit of the habitat (r2 = 0.60 for Saccharomyces, r2 = 0.61 for Penicillium). Differences in antifungal activity among populations were not due to the amount of secondary metabolites, but rather to qualitative differences in the composition of antifungal compounds. Although all populations in habitats with high fungal prevalence had secondary metabolites with high antifungal activity, different suites of compounds were responsible for this activity, suggesting independent outcomes of selection on plants by fungal pathogens. The

  17. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals.

    PubMed

    Wang, Jundong; Peng, Jinping; Tan, Zhi; Gao, Yifan; Zhan, Zhiwei; Chen, Qiuqiang; Cai, Liqi

    2017-03-01

    While large quantities of studies on microplastics in the marine environment have been widely carried out, few were available in the freshwater environment. The occurrence and characteristics, including composition, abundance, surface texture and interaction with heavy metals, of microplastics in the surface sediments from Beijiang River littoral zone were investigated. The concentrations of microplastics ranged from 178 ± 69 to 544 ± 107 items/kg sediment. SEM images illustrated that pits, fractures, flakes and adhering particles were the common patterns of degradation. Chemical weathering of microplastics was also observed and confirmed by μ-FTIR. EDS spectra displayed difference in the elemental types of metals on the different surface sites of individual microplastic, indicating that some metals carried by microplastics were not inherent but were derived from the environment. The content of metals (Ni, Cd, Pb, Cu, Zn and Ti) in microplastics after ultrasonic cleaning has been analyzed by ICP-MS. Based on data from the long-term sorption of metals by microplastics and a comparison of metal burden between microplastics, macroplastics and fresh plastic products, we suggested that the majority of heavy metals carried by microplastics were derived from inherent load.

  18. Fluorescent peptide biosensor for probing the relative abundance of cyclin-dependent kinases in living cells.

    PubMed

    Kurzawa, Laetitia; Pellerano, Morgan; Coppolani, J B; Morris, May C

    2011-01-01

    Cyclin-dependant kinases play a central role in coordinating cell growth and division, and in sustaining proliferation of cancer cells, thereby constituting attractive pharmacological targets. However, there are no direct means of assessing their relative abundance in living cells, current approaches being limited to antigenic and proteomic analysis of fixed cells. In order to probe the relative abundance of these kinases directly in living cells, we have developed a fluorescent peptide biosensor with biligand affinity for CDKs and cyclins in vitro, that retains endogenous CDK/cyclin complexes from cell extracts, and that bears an environmentally-sensitive probe, whose fluorescence increases in a sensitive fashion upon recognition of its targets. CDKSENS was introduced into living cells, through complexation with the cell-penetrating carrier CADY2 and applied to assess the relative abundance of CDK/Cyclins through fluorescence imaging and ratiometric quantification. This peptide biosensor technology affords direct and sensitive readout of CDK/cyclin complex levels, and reports on differences in complex formation when tampering with a single CDK or cyclin. CDKSENS further allows for detection of differences between different healthy and cancer cell lines, thereby enabling to distinguish cells that express high levels of these heterodimeric kinases, from cells that present decreased or defective assemblies. This fluorescent biosensor technology provides information on the overall status of CDK/Cyclin complexes which cannot be obtained through antigenic detection of individual subunits, in a non-invasive fashion which does not require cell fixation or extraction procedures. As such it provides promising perspectives for monitoring the response to therapeutics that affect CDK/Cyclin abundance, for cell-based drug discovery strategies and fluorescence-based cancer diagnostics.

  19. BARIUM SURFACE ABUNDANCES OF BLUE STRAGGLERS IN THE OPEN CLUSTER NGC 6819

    SciTech Connect

    Milliman, Katelyn E.; Mathieu, Robert D.; Schuler, Simon C.

    2015-09-15

    We present a barium surface abundance of 12 blue stragglers (BSs) and 18 main-sequence (MS) stars in the intermediate-age open cluster NGC 6819 (2.5 Gyr) based on spectra obtained from the Hydra Multi-object Spectrograph on the WIYN 3.5 m telescope. For the MS stars we find [Fe/H] = +0.05 ± 0.04 and [Ba/Fe] = −0.01 ± 0.10. The majority of the BS stars are consistent with these values. We identify five BSs with significant barium enhancement. These stars most likely formed through mass transfer from an asymptotic giant branch star that polluted the surface of the BS with the nucleosynthesis products generated during thermal pulsations. This conclusion aligns with the results from the substantial work done on the BSs in old open cluster NGC 188 that identifies mass transfer as the dominant mechanism for BS formation in that open cluster. However, four of the BSs with enhanced barium show no radial-velocity evidence for a companion. The one star that is in a binary is a double-lined system, meaning the companion is not a white dwarf and not the remnant of a prior AGB star. In this paper we attempt to develop a consistent scenario to explain the origin of these five BSs.

  20. Chemical abundances in low surface brightness galaxies: Implications for their evolution

    NASA Technical Reports Server (NTRS)

    Mcgaugh, S. S.; Bothun, G. D.

    1993-01-01

    Low Surface Brightness (LSB) galaxies are an important but often neglected part of the galaxy content of the universe. Their importance stems both from the selection effects which cause them to be under-represented in galaxy catalogs, and from what they can tell us about the physical processes of galaxy evolution that has resulted in something other than the traditional Hubble sequence of spirals. An important constraint for any evolutionary model is the present day chemical abundances of LSB disks. Towards this end, spectra for a sample of 75 H 2 regions distributed in 20 LSB disks galaxies were obtained. Structurally, this sample is defined as having B(0) fainter than 23.0 mag arcsec(sup -2) and scale lengths that cluster either around 3 kpc or 10 kpc. In fact, structurally, these galaxies are very similar to the high surface brightness spirals which define the Hubble sequence. Thus, our sample galaxies are not dwarf galaxies but instead have masses comparable to or in excess of the Milky Way. The basic results from these observations are summarized.

  1. Theoretical Near-IR Spectra for Surface Abundance Studies of Massive Stars

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Bouret, J.

    2011-01-01

    We present initial results of a study of abundance and mass loss properties of O-type stars based on theoretical near-IR spectra computed with state-of-the-art stellar atmosphere models. The James Webb Space Telescope (JWST) will be a powerful tool to obtain high signal-to-noise ratio near-IR (1-5 micron) spectra of massive stars in different environments of local galaxies. Our goal is to analyze model near-IR spectra corresponding to those expected from NIRspec on JWST in order to map the wind properties and surface composition across the parameter range of 0 stars and to determine projected rotational velocities. As a massive star evolves, internal coupling, related mixing, and mass loss impact its intrinsic rotation rate. These three parameters form an intricate loop, where enhanced rotation leads to more mixing which in turn changes the mass loss rate, the latter thus affecting the rotation rate. Since the effects of rotation are expected to be much more pronounced at low metallicity, we pay special attention to models for massive stars in the the Small Magellanic Cloud. This galaxy provides a unique opportunity to probe stellar evolution, and the feedback of massive stars on galactic evol.ution in conditions similar to the epoch of maximal star formation. Plain-Language Abstract: We present initial results of a study of abundance and mass loss properties of massive stars based on theoretical near-infrared (1-5 micron) spectra computed with state-of-the-art stellar atmosphere models. This study is to prepare for observations by the James Webb Space Telescope.

  2. Furrowing in altered cell surfaces.

    PubMed

    Rappaport, R

    1976-02-01

    Understanding the process which established the cell division mechanism requires analysis of the role of the responding surface as well as that of stimulatory subsurface structures. Cell surface was altered by the expansion which occurs during exovate formation. Exovates appear on the surface of fertilized Arbacia lixula, Paracentrotus lividus and Echinarachnius parma eggs in response to extreme flattening. They result from cytoplasmic outflow initiated in a very restricted portion of the egg surface. Observations of the formation process in pigmented A. lixula eggs revealed that the original surface may be expanded about 100 fold as the exovate swells. When exovates formed 15-30 minutes after fertilization contain the mitotic apparatus, they divide synchronously with flattened controls. If nucleated exovates are established after the beginning of first cleavage, furrows appear in ten minutes. Exovates established after the beginning of second cleavage develop furrows four minutes after the entrance of the the mitsotic apparatus. Cytoplasm beneath damaged exovate surfaces sometimes develops partial constrictions independently of the surface in the plane the furrow would have occupied. These results suggest that normal surface structure is unnecessary for furrow establishment and function.

  3. A Surface-Controlled Solar Cell

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1987-01-01

    Open-circuit voltage and cell efficiency increased. Proposed technique for controlling recombination velocity on solar-cell surfaces provides cells of increased efficiency and open-circuit voltage. In present cells, uncontrolled surface recombination velocity degrades opencircuit voltage and efficiency. In cell using proposed technique, transparent conducting layer, insulated from cell contacts, biased to enable variable control of surface recombination velocity.

  4. NREL Explores Earth-Abundant Materials for Future Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    Researchers at the National Renewable Energy Laboratory (NREL) are using a theory-driven technique - sequential cation mutation - to understand the nature and limitations of promising solar cell materials that can replace today's technologies. Finding new materials that use Earth-abundant elements and are easily manufactured is important for large-scale solar electricity deployment.

  5. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry

    PubMed Central

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  6. Critical evaluation of 13C natural abundance techniques to partition soil-surface CO2 efflux

    NASA Astrophysics Data System (ADS)

    Snell, H.; Midwood, A. J.; Robinson, D.

    2013-12-01

    Soil is the largest terrestrial store of carbon and the flux of CO2 from soils to the atmosphere is estimated at around 98 Pg (98 billion tonnes) of carbon per year. The CO2 efflux from the soil surface is derived from plant root and rhizosphere respiration (autotrophically fuelled) and microbial degradation of soil organic matter (heterotrophic respiration). Heterotrophic respiration is a key determinant of an ecosystem's long-term C balance, but one that is difficult to measure in the field. One approach involves partitioning the total soil-surface CO2 efflux between heterotrophic and autotrophic components; this can be done using differences in the natural abundance stable isotope ratios (δ13C) of autotrophic and heterotrophic CO2 as the end-members of a simple mixing model. In most natural, temperate ecosystems, current and historical vegetation cover (and therefore also plant-derived soil organic matter) is produced from C3 photosynthesis so the difference in δ13C between the autotrophic and heterotrophic CO2 sources is small. Successful partitioning therefore requires accurate and precise measurements of the δ13CO2 of the autotrophic and heterotrophic end-members (obtained by measuring the δ13CO2 of soil-free roots and root-free soil) and of total soil CO2 efflux. There is currently little consensus on the optimum measurement protocols. Here we systematically tested some of the most commonly used techniques to identify and minimise methodological errors. Using soil-surface chambers to sample total CO2 efflux and a cavity ring-down spectrometer to measure δ13CO2 in a partitioning study on a Scottish moorland, we found that: using soil-penetrating collars leads to a more depleted chamber measurement of total soil δ13CO2 as a result of severing roots and fungal hyphae or equilibrating with δ13CO2 at depth or both; root incubations provide an accurate estimate of in-situ root respired δ13CO2 provided they are sampled within one hour; the δ13CO2 from root

  7. The Future of Using Earth-Abundant Elements in Counter Electrodes for Dye-Sensitized Solar Cells.

    PubMed

    Briscoe, Joe; Dunn, Steve

    2016-05-01

    With limited global resources for many of the elements that are found in some of the most common renewable energy technologies, there is a growing need to use "Earth-abundant" elements as a long-term solution to growing energy demands. The dye-sensitized solar cell has the potential to produce low-cost renewable energy, with inexpensive production and most components using Earth-abundant elements. However, the most commonly used material for the cell counter electrode (CE) is platinum, an extremely expensive and rare element. A selection of the materials investigated as alternative CEs are discussed, including metal sulfides, oxides, carbides, and nitrides and carbon-based materials such as carbon nanotubes, graphene, and conductive polymers. As well as having the potential for lower cost, these materials can also produce more-efficient devices due to their high surface area and catalytic activity. Therefore, once issues such as stability have been studied in more detail and scale-up of production methods are considered, there is a very promising future for the replacement of Pt in DSSCs with lower-cost, Earth-abundant alternatives.

  8. Diversity of rare and abundant bacteria in surface waters of the Southern Adriatic Sea.

    PubMed

    Quero, Grazia Marina; Luna, Gian Marco

    2014-10-01

    Bacteria are fundamental players in the functioning of the ocean, yet relatively little is known about the diversity of bacterioplankton assemblages and the factors shaping their spatial distribution. We investigated the diversity and community composition of bacterioplankton in surface waters of the Southern Adriatic sub-basin (SAd) in the Mediterranean Sea, across an environmental gradient from coastal to offshore stations. Bacterioplankton diversity was investigated using a whole-assemblage genetic fingerprinting technique (Automated Ribosomal Intergenic Spacer Analysis, ARISA) coupled with 16S rDNA amplicon pyrosequencing. The main physico-chemical variables showed clear differences between coastal and offshore stations, with the latter displaying generally higher temperature, salinity and oxygen content. Bacterioplankton richness was higher in coastal than offshore waters. Bacterial community composition (BCC) differed significantly between coastal and offshore waters, and appeared to be influenced by temperature (explaining up to 30% of variance) and by the trophic state. Pyrosequencing evidenced dominance of Alphaproteobacteria (SAR11 cluster), uncultured Gammaproteobacteria (Rhodobacteraceae) and Cyanobacteria (Synechococcus). Members of the Bacteroidetes phylum were also abundant, and accounted for 25% in the station characterized by the higher organic carbon availability. Bacterioplankton assemblages included a few dominant taxa and a very large proportion (85%) of rare (<0.1%) bacteria, the vast majority of which was unique to each sampling station. The first detailed census of bacterioplankton taxa in the SAd sub-basin, performed using next generation sequencing, indicates that assemblages are highly heterogeneous, spatially structured according to the environmental conditions, and comprise a large number of rare taxa. The high turnover diversity, particularly evident at the level of the rare taxa, suggests to direct future investigations toward larger

  9. Predicting the risk of toxic blooms of golden alga from cell abundance and environmental covariates

    USGS Publications Warehouse

    Patino, Reynaldo; VanLandeghem, Matthew M.; Denny, Shawn

    2016-01-01

    Golden alga (Prymnesium parvum) is a toxic haptophyte that has caused considerable ecological damage to marine and inland aquatic ecosystems worldwide. Studies focused primarily on laboratory cultures have indicated that toxicity is poorly correlated with the abundance of golden alga cells. This relationship, however, has not been rigorously evaluated in the field where environmental conditions are much different. The ability to predict toxicity using readily measured environmental variables and golden alga abundance would allow managers rapid assessments of ichthyotoxicity potential without laboratory bioassay confirmation, which requires additional resources to accomplish. To assess the potential utility of these relationships, several a priori models relating lethal levels of golden alga ichthyotoxicity to golden alga abundance and environmental covariates were constructed. Model parameters were estimated using archived data from four river basins in Texas and New Mexico (Colorado, Brazos, Red, Pecos). Model predictive ability was quantified using cross-validation, sensitivity, and specificity, and the relative ranking of environmental covariate models was determined by Akaike Information Criterion values and Akaike weights. Overall, abundance was a generally good predictor of ichthyotoxicity as cross validation of golden alga abundance-only models ranged from ∼ 80% to ∼ 90% (leave-one-out cross-validation). Environmental covariates improved predictions, especially the ability to predict lethally toxic events (i.e., increased sensitivity), and top-ranked environmental covariate models differed among the four basins. These associations may be useful for monitoring as well as understanding the abiotic factors that influence toxicity during blooms.

  10. Beryllium in the Galactic halo - Surface abundances from standard, diffusive, and rotational stellar evolution, and implications

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Pinsonneault, Marc H.

    1990-01-01

    The recently observed upper limits to the beryllium abundances in population II stars are much lower than population I detections. This difference reflects an intrinsic difference in the initial abundances and is not caused by different degrees of depletion driven by stellar evolution processes from similar initial abundances. Evolutionary sequences of models from the early premain sequence to beyond the turnoff that correspond to halo dwarfs with Fe/H abundances of -1.3, -2.3, and -3.3 are constructed, and standard, diffusive, and rotational mechanisms are used to estimate a maximal possible beryllium depletion. Halo star models in the T(eff) range 6000 to 5000 K might be rotationally depleted by a factor of 1.5-2, and the total depletion should be no more than (conservatively) a factor of 3. Implications for cosmology, cosmic-ray theory, and Galactic chemical evolution are discussed.

  11. Cell surface engineering of industrial microorganisms for biorefining applications.

    PubMed

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed.

  12. Genetics of single-cell protein abundance variation in large yeast populations

    NASA Astrophysics Data System (ADS)

    Albert, Frank W.; Treusch, Sebastian; Shockley, Arthur H.; Bloom, Joshua S.; Kruglyak, Leonid

    2014-02-01

    Variation among individuals arises in part from differences in DNA sequences, but the genetic basis for variation in most traits, including common diseases, remains only partly understood. Many DNA variants influence phenotypes by altering the expression level of one or several genes. The effects of such variants can be detected as expression quantitative trait loci (eQTL). Traditional eQTL mapping requires large-scale genotype and gene expression data for each individual in the study sample, which limits sample sizes to hundreds of individuals in both humans and model organisms and reduces statistical power. Consequently, many eQTL are probably missed, especially those with smaller effects. Furthermore, most studies use messenger RNA rather than protein abundance as the measure of gene expression. Studies that have used mass-spectrometry proteomics reported unexpected differences between eQTL and protein QTL (pQTL) for the same genes, but these studies have been even more limited in scope. Here we introduce a powerful method for identifying genetic loci that influence protein expression in the yeast Saccharomyces cerevisiae. We measure single-cell protein abundance through the use of green fluorescent protein tags in very large populations of genetically variable cells, and use pooled sequencing to compare allele frequencies across the genome in thousands of individuals with high versus low protein abundance. We applied this method to 160 genes and detected many more loci per gene than previous studies. We also observed closer correspondence between loci that influence protein abundance and loci that influence mRNA abundance of a given gene. Most loci that we detected were clustered in `hotspots' that influence multiple proteins, and some hotspots were found to influence more than half of the proteins that we examined. The variants that underlie these hotspots have profound effects on the gene regulatory network and provide insights into genetic variation in cell

  13. Cell abundance and microbial community composition along a complete oil sand mining and reclamation process

    NASA Astrophysics Data System (ADS)

    Lappé, M.; Schneider, B.; Kallmeyer, J.

    2012-12-01

    Hydrocarbons constitute an important energy source for microbes but can also be of environmental concern. Microbial activity causes hydrocarbon degradation and thereby loss of economical value, but also helps to remove hydrocarbons from the environment. The present study characterizes the abundance of microbes along the oil sand mining process in Alberta, Canada, as a first approach to assess the impact of mining and oil extraction on the microbial population. After mining the oil is extracted from the sediment by a hot-water extraction (50-60°C), resulting in three major fractions: crude oil, tailings sand and fine tailings. The tailings sand is used as substratum for newly developing soils on the reclamation areas. The very liquid fine tailings still have a TOC content of about 4.3% and are pumped into tailings ponds, where they need up to three decades to settle and solidify. After deposition, these mature fine tailings (MFTs) are enriched in organics (TOC content between 9.6 and 16.8%) and dredged out of the ponds and put on dumps for several years for dewatering. Finally they are brought out onto the reclamation sites and deposited below the sand layer. Cells were extracted from oily sediments according to the protocol of Lappé and Kallmeyer (2011), stained with SYBR Green I and counted by fluorescence microscopy. Cell abundance in the unprocessed oil sand is around 1.6 x 107 cells cm-3. After processing the fresh fine tailings still contain around 1.6 x 107 cells cm-3. Cell counts in the processed MFTs are 5.8 x 107 cells cm-3, whereas in the sand used as substratum for newly developing soils, they are twice as high (1.4 x 108). In root-bearing horizons, cell counts reach 1.1 x 109 cell cm-3. Cell numbers calculated from cultivation experiments are in the same range. Higher cell counts in the tailings sand are probably due to a higher nitrogen supply through the addition of a 35 cm top layer of a peat-mineral mix. In the sand nitrate concentrations are high

  14. Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: coordinated analyses of Raman spectra, reflectance spectra and elemental abundances.

    PubMed

    Bishop, Janice L; Englert, Peter A J; Patel, Shital; Tirsch, Daniela; Roy, Alex J; Koeberl, Christian; Böttger, Ute; Hanke, Franziska; Jaumann, Ralf

    2014-12-13

    Surface sediments at Lakes Fryxell, Vanda and Brownworth in the Antarctic Dry Valleys (ADV) were investigated as analogues for the cold, dry environment on Mars. Sediments were sampled from regions surrounding the lakes and from the ice cover on top of the lakes. The ADV sediments were studied using Raman spectra of individual grains and reflectance spectra of bulk particulate samples and compared with previous analyses of subsurface and lakebottom sediments. Elemental abundances were coordinated with the spectral data in order to assess trends in sediment alteration. The surface sediments in this study were compared with lakebottom sediments (Bishop JL et al. 2003 Int. J. Astrobiol. 2, 273-287 (doi:10.1017/S1473550403001654)) and samples from soil pits (Englert P et al. 2013 In European Planetary Science Congress, abstract no. 96; Englert P et al. 2014 In 45th Lunar and Planetary Science Conf., abstract no. 1707). Feldspar, quartz and pyroxene are common minerals found in all the sediments. Minor abundances of carbonate, chlorite, actinolite and allophane are also found in the surface sediments, and are similar to minerals found in greater abundance in the lakebottom sediments. Surface sediment formation is dominated by physical processes; a few centimetres below the surface chemical alteration sets in, whereas lakebottom sediments experience biomineralization. Characterizing the mineralogical variations in these samples provides insights into the alteration processes occurring in the ADV and supports understanding alteration in the cold and dry environment on Mars.

  15. A monoallelic-to-biallelic T-cell transcriptional switch regulates GATA3 abundance

    PubMed Central

    Ku, Chia-Jui; Lim, Kim-Chew; Kalantry, Sundeep; Maillard, Ivan; Engel, James Douglas; Hosoya, Tomonori

    2015-01-01

    Protein abundance must be precisely regulated throughout life, and nowhere is the stringency of this requirement more evident than during T-cell development: A twofold increase in the abundance of transcription factor GATA3 results in thymic lymphoma, while reduced GATA3 leads to diminished T-cell production. GATA3 haploinsufficiency also causes human HDR (hypoparathyroidism, deafness, and renal dysplasia) syndrome, often accompanied by immunodeficiency. Here we show that loss of one Gata3 allele leads to diminished expansion (and compromised development) of immature T cells as well as aberrant induction of myeloid transcription factor PU.1. This effect is at least in part mediated transcriptionally: We discovered that Gata3 is monoallelically expressed in a parent of origin-independent manner in hematopoietic stem cells and early T-cell progenitors. Curiously, half of the developing cells switch to biallelic Gata3 transcription abruptly at midthymopoiesis. We show that the monoallelic-to-biallelic transcriptional switch is stably maintained and therefore is not a stochastic phenomenon. This unique mechanism, if adopted by other regulatory genes, may provide new biological insights into the rather prevalent phenomenon of monoallelic expression of autosomal genes as well as into the variably penetrant pathophysiological spectrum of phenotypes observed in many human syndromes that are due to haploinsufficiency of the affected gene. PMID:26385963

  16. Purification and Characterization of Abundant Secreted Protein in Suspension-Cultured Pumpkin Cells 1

    PubMed Central

    Esaka, Muneharu; Enoki, Keiko; Kouchi, Bonko; Sasaki, Takuji

    1990-01-01

    The abundant secreted protein with molecular weight of 32,000 was purified from the culture medium of suspension-cultured pumpkin (Cucurbita sp.) cells. Two steps, ammonium sulfate fractionation and Sepharose 6B column chromatography, were sufficient for purification to homogeneity. Antibodies against the pure protein were used to show that a protein of the same size is made by callus cells. There is considerable homology between the amino-terminal amino acid sequence of this secreted protein and chitinase isolated from tobacco (Nicotiana tabacum L.) or bean (Phaseolus vulgaris L.). Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667554

  17. Cells behaviors and genotoxicity on topological surface.

    PubMed

    Yang, N; Yang, M K; Bi, S X; Chen, L; Zhu, Z Y; Gao, Y T; Du, Z

    2013-08-01

    To investigate different cells behaviors and genotoxicity, which were driven by specific microenvironments, three patterned surfaces (pillars, wide grooves and narrow grooves) and one smooth surface were prepared by template-based technique. Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques and associates with cell-cell and cell-matrix junctions, which can promote cell adhesion and spreading. The immunofluorescence staining of vinculin revealed that the narrow grooves patterned substrate was favorable for L929 cell adhesion. For cell multiplication, the narrow grooves surface was fitted for the proliferation of L929, L02 and MSC cells, the pillars surface was only in favor of L929 cells to proliferate during 7 days of cell cultivation. Cell genetic toxicity was evaluated by cellular micronuclei test (MNT). The results indicated that topological surfaces were more suitable for L929 cells to proliferate and maintain the stability of genome. On the contrary, the narrow grooves surface induced higher micronuclei ratio of L02 and MSC cells than other surfaces. With the comprehensive results of cell multiplication and MNT, it was concluded that the wide grooves surface was best fitted for L02 cells to proliferate and have less DNA damages, and the smooth surface was optimum for the research of MSC cells in vitro.

  18. Pericyte abundance affects sucrose permeability in cultures of rat brain microvascular endothelial cells.

    PubMed

    Parkinson, Fiona E; Hacking, Cindy

    2005-07-05

    The blood-brain barrier is a physical and metabolic barrier that restricts diffusion of blood-borne substances into brain. In vitro models of the blood-brain barrier are used to characterize this structure, examine mechanisms of damage and repair and measure permeability of test substances. The core component of in vitro models of the blood-brain barrier is brain microvascular endothelial cells. We cultured rat brain microvascular endothelial cells (RBMEC) from isolated rat cortex microvessels. After 2-14 days in vitro (DIV), immunohistochemistry of these cells showed strong labeling for zona occludens 1 (ZO-1), a tight junction protein expressed in endothelial cells. Pericytes were also present in these cultures, as determined by expression of alpha-actin. The present study was performed to test different cell isolation methods and to compare the resulting cell cultures for abundance of pericytes and for blood-brain barrier function, as assessed by 14C-sucrose flux. Two purification strategies were used. First, microvessels were preabsorbed onto uncoated plastic for 4 h, then unattached microvessels were transferred to coated culture ware. Second, microvessels were incubated with an antibody to platelet-endothelial cell adhesion molecule 1 (PECAM-1; CD31) precoupled to magnetic beads, and a magnetic separation procedure was performed. Our results indicate that immunopurification, but not preadsorption, was an effective method to purify microvessels and reduce pericyte abundance in the resulting cultures. This purification significantly reduced 14C-sucrose fluxes across cell monolayers. These data indicate that pericytes can interfere with the development of blood-brain barrier properties in in vitro models that utilize primary cultures of RBMECs.

  19. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    SciTech Connect

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurement of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.

  20. Cell attachment on microscopically textured silicon surfaces

    NASA Astrophysics Data System (ADS)

    Turner, Stephen W.; Kam, Lance; Isaacson, Michael; Craighead, Harold G.; Szarowski, Donald H.; Turner, James N.; Shain, W.

    1997-03-01

    To assess the effect of surface topography on cell attachment, central nervous system (astroglial cells) cells were grown on surfaces patterned with two different types of texture. Reactive ion etching (RIE) was used to induce nanometer-scale roughness in silicon wafers. In a subsequent wet etch, photo-patterned resist protected selected areas of the surface, resulting in a pattern of modified and unmodified texture. Scanning electron microscopy (SEM) showed that the RIE-roughened 'primary' surface consists of randomly positioned columnar structures (diameter approximately equals 50 nm, height approximately equals 250 nm). The wet-etched 'secondary' surfaces had shorter and more sparsely distributed projections, controlled to a degree by wet etch duration. Confocal microscopy and SEM demonstrated that transformed astroglial (LRM55) cells preferred secondary surfaces. The morphology of cells on secondary surfaces depended on wet etch duration. with brief wet etch, cells hade stellate or mounded morphology and were not closely adherent to the surface. With long wet etch, cells had an epithelial-like morphology and were closely adherent to substrates. Under all conditions, cells discriminated between primary and secondary surfaces. In contrast to LRM55 cells, astrocytes in primary cell culture preferred primary surfaces. Thus changes in surface topography produce cell-specific selectivity and change cell attachment characteristics.

  1. Diatom Abundance in Surface Sediments: A Quantitative Proxy for Primary Productivity at the Global Level?

    NASA Astrophysics Data System (ADS)

    Abrantes, F. F. G.; Lopes, C.; Romero, O. E.; Matos, L.; Rufino, M. M.; Magalhaes, V. H.; Cermeno, P.

    2014-12-01

    Diatom abundance and assemblage composition has for long been considered one of the best proxies for primary production, in particular for low latitude coastal upwelling areas, where they constitute the dominant phytoplankton. To investigate productivity conditions at those upwelling systems at any time and at the global level would be of great use for C export estimations and climate modeling, since primary production and C export in those systems is of major importance in controlling Earth's climate. To assess the value of the diatom sediment record at the global level, total abundance of marine diatoms was determined for 730 sites distributed by the five most important coastal upwelling systems of the modern ocean, and compared to several meaningful ecological parameters. Investigations of the satellite estimated primary productivity; upwelling index; water column physical properties and nutrient content, reveal a clear relation between sediment diatom abundance and primary production - although different between areas. Furthermore, upwelled waters [Si] appear as a determinant factor of the observed global diatom distribution.

  2. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells.

    PubMed

    An, Hyun Joo; Gip, Phung; Kim, Jaehan; Wu, Shuai; Park, Kun Wook; McVaugh, Cheryl T; Schaffer, David V; Bertozzi, Carolyn R; Lebrilla, Carlito B

    2012-04-01

    Most cell membrane proteins are known or predicted to be glycosylated in eukaryotic organisms, where surface glycans are essential in many biological processes including cell development and differentiation. Nonetheless, the glycosylation on cell membranes remains not well characterized because of the lack of sensitive analytical methods. This study introduces a technique for the rapid profiling and quantitation of N- and O-glycans on cell membranes using membrane enrichment and nanoflow liquid chromatography/mass spectrometry of native structures. Using this new method, the glycome analysis of cell membranes isolated from human embryonic stem cells and somatic cell lines was performed. Human embryonic stem cells were found to have high levels of high mannose glycans, which contrasts with IMR-90 fibroblasts and a human normal breast cell line, where complex glycans are by far the most abundant and high mannose glycans are minor components. O-Glycosylation affects relatively minor components of cell surfaces. To verify the quantitation and localization of glycans on the human embryonic stem cell membranes, flow cytometry and immunocytochemistry were performed. Proteomics analyses were also performed and confirmed enrichment of plasma membrane proteins with some contamination from endoplasmic reticulum and other membranes. These findings suggest that high mannose glycans are the major component of cell surface glycosylation with even terminal glucoses. High mannose glycans are not commonly presented on the surfaces of mammalian cells or in serum yet may play important roles in stem cell biology. The results also mean that distinguishing stem cells from other mammalian cells may be facilitated by the major difference in the glycosylation of the cell membrane. The deep structural analysis enabled by this new method will enable future mechanistic studies on the biological significance of high mannose glycans on stem cell membranes and provide a general tool to examine

  3. The surface nitrogen abundance of a massive star in relation to its oscillations, rotation, and magnetic field

    SciTech Connect

    Aerts, C.; Molenberghs, G.; Kenward, M. G.; Neiner, C.

    2014-02-01

    We have composed a sample of 68 massive stars in our galaxy whose projected rotational velocity, effective temperature, and gravity are available from high-precision spectroscopic measurements. The additional seven observed variables considered here are their surface nitrogen abundance, rotational frequency, magnetic field strength, and the amplitude and frequency of their dominant acoustic and gravity modes of oscillation. A multiple linear regression to estimate the nitrogen abundance combined with principal component analysis, after addressing the incomplete and truncated nature of the data, reveals that the effective temperature and the frequency of the dominant acoustic oscillation mode are the only two significant predictors for the nitrogen abundance, while the projected rotational velocity and the rotational frequency have no predictive power. The dominant gravity mode and the magnetic field strength are correlated with the effective temperature but have no predictive power for the nitrogen abundance. Our findings are completely based on observations and their proper statistical treatment and call for a new strategy in evaluating the outcome of stellar evolution computations.

  4. Sensing Small Changes in Protein Abundance: Stimulation of Caco-2 Cells by Human Whey Proteins.

    PubMed

    Cundiff, Judy K; McConnell, Elizabeth J; Lohe, Kimberly J; Maria, Sarah D; McMahon, Robert J; Zhang, Qiang

    2016-01-04

    Mass spectrometry (MS)-based proteomic approaches have largely facilitated our systemic understanding of cellular processes and biological functions. Cutoffs in protein expression fold changes (FCs) are often arbitrarily determined in MS-based quantification with no demonstrable determination of small magnitude changes in protein expression. Therefore, many biological insights may remain veiled due to high FC cutoffs. Herein, we employ the intestinal epithelial cell (IEC) line Caco-2 as a model system to demonstrate the dynamicity of tandem-mass-tag (TMT) labeling over a range of 5-40% changes in protein abundance, with the variance controls of ± 5% FC for around 95% of TMT ratios when sampling 9-12 biological replicates. We further applied this procedure to examine the temporal proteome of Caco-2 cells upon exposure to human whey proteins (WP). Pathway assessments predict subtle effects due to WP in moderating xenobiotic metabolism, promoting proliferation and various other cellular functions in differentiating enterocyte-like Caco-2 cells. This demonstration of a sensitive MS approach may open up new perspectives in the system-wide exploration of elusive or transient biological effects by facilitating scrutiny of narrow windows of proteome abundance changes. Furthermore, we anticipate this study will encourage more investigations of WP on infant gastrointestinal tract development.

  5. Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation.

    PubMed

    Li, Shumin; Chakraborty, Nilay; Borcar, Apurva; Menze, Michael A; Toner, Mehmet; Hand, Steven C

    2012-12-18

    Expression of late embryogenesis abundant (LEA) proteins is highly correlated with desiccation tolerance in anhydrobiotic animals, selected land plants, and bacteria. Genes encoding two LEA proteins, one localized to the cytoplasm/nucleus (AfrLEA2) and one targeted to mitochondria (AfrLEA3m), were stably transfected into human HepG2 cells. A trehalose transporter was used for intracellular loading of this disaccharide. Cells were rapidly and uniformly desiccated to low water content (<0.12 g H(2)O/g dry weight) with a recently developed spin-drying technique. Immediately on rehydration, control cells without LEA proteins or trehalose exhibited 0% membrane integrity, compared with 98% in cells loaded with trehalose and expressing AfrLEA2 or AfrLEA3m; surprisingly, AfrLEA3m without trehalose conferred 94% protection. Cell proliferation across 7 d showed an 18-fold increase for cells dried with AfrLEA3m and trehalose, compared with 27-fold for nondried controls. LEA proteins dramatically enhance desiccation tolerance in mammalian cells and offer the opportunity for engineering biostability in the dried state.

  6. The Effect of Metallicity on Surface Lithium Abundance in Hyades-Aged Open Clusters

    NASA Astrophysics Data System (ADS)

    Gayetsky, Lisa; Cummings, J.; Deliyannis, C. P.; Steinhauer, A.; James, D.; Sarajedini, A.

    2007-12-01

    Two of the most important predictions from standard stellar evolution theory about the lithium depletion of solar-type F and G dwarfs are that it occurs primarily during the pre-main sequence and that it depends on metallicity. Abundant evidence from star clusters shows that Li depletion does indeed occur during the pre-main sequence, but then also continues during the main sequence, perhaps due to the effects of (non-standard) rotationally-induced or wave-induced mixing. However, little is known about whether Li depletion depends on metallicity. To test the predicted dependence of standard Li depletion on metallicity, a program has begun that compares the Li-Teff relation in Hyades-aged clusters of different metallicities. Here, we present high resolution results from WIYN/Hydra observations of IC 4756. We find, first, that our data qualitatively support the prediction that stars with higher metallicity have depleted more Li. Second, if a reasonable adjustment is made to the (unknown) initial cluster Li abundances that is consistent with knowledge of Galactic Li production from the field dwarf Li-Fe relation, then our data are also in good quantitative agreement with the metallicity-dependence of the Li depletion from standard theory. This work has been supported by the National Science Foundation under grants AST-0452975 and AST-0206202.

  7. The VLT-FLAMES Tarantula Survey. XXV. Surface nitrogen abundances of O-type giants and supergiants

    NASA Astrophysics Data System (ADS)

    Grin, N. J.; Ramírez-Agudelo, O. H.; de Koter, A.; Sana, H.; Puls, J.; Brott, I.; Crowther, P. A.; Dufton, P. L.; Evans, C. J.; Gräfener, G.; Herrero, A.; Langer, N.; Lennon, D. J.; van Loon, J. Th.; Markova, N.; de Mink, S. E.; Najarro, F.; Schneider, F. R. N.; Taylor, W. D.; Tramper, F.; Vink, J. S.; Walborn, N. R.

    2017-04-01

    Context. Theoretically, rotation-induced chemical mixing in massive stars has far reaching evolutionary consequences, affecting the sequence of morphological phases, lifetimes, nucleosynthesis, and supernova characteristics. Aims: Using a sample of 72 presumably single O-type giants to supergiants observed in the context of the VLT-FLAMES Tarantula Survey (VFTS), we aim to investigate rotational mixing in evolved core-hydrogen burning stars initially more massive than 15 M⊙ by analysing their surface nitrogen abundances. Methods: Using stellar and wind properties derived in a previous VFTS study we computed synthetic spectra for a set of up to 21 N ii-v lines in the optical spectral range, using the non-LTE atmosphere code FASTWIND. We constrained the nitrogen abundance by fitting the equivalent widths of relatively strong lines that are sensitive to changes in the abundance of this element. Given the quality of the data, we constrained the nitrogen abundance in 38 cases; for 34 stars only upper limits could be derived, which includes almost all stars rotating at νesini> 200 km s-1. Results: We analysed the nitrogen abundance as a function of projected rotation rate νesini and confronted it with predictions of rotational mixing. We found a group of N-enhanced slowly-spinning stars that is not in accordance with predictions of rotational mixing in single stars. Among O-type stars with (rotation-corrected) gravities less than log gc = 3.75 this group constitutes 30-40 percent of the population. We found a correlation between nitrogen and helium abundance which is consistent with expectations, suggesting that, whatever the mechanism that brings N to the surface, it displays CNO-processed material. For the rapidly-spinning O-type stars we can only provide upper limits on the nitrogen abundance, which are not in violation with theoretical expectations. Hence, the data cannot be used to test the physics of rotation induced mixing in the regime of high spin rates

  8. Renal type a intercalated cells contain albumin in organelles with aldosterone-regulated abundance.

    PubMed

    Jensen, Thomas Buus; Cheema, Muhammad Umar; Szymiczek, Agata; Damkier, Helle Hasager; Praetorius, Jeppe

    2015-01-01

    Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1), late endosomes/lysosomes (cathepsin D) or recycling endosomes (Rab11). Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells.

  9. Renal Type A Intercalated Cells Contain Albumin in Organelles with Aldosterone-Regulated Abundance

    PubMed Central

    Jensen, Thomas Buus; Cheema, Muhammad Umar; Szymiczek, Agata; Damkier, Helle Hasager; Praetorius, Jeppe

    2015-01-01

    Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1), late endosomes/lysosomes (cathepsin D) or recycling endosomes (Rab11). Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells. PMID:25874770

  10. Virus-specific CD4+ memory phenotype T cells are abundant in unexposed adults

    PubMed Central

    Su, Laura F.; Kidd, Brian A.; Han, Arnold; Kotzin, Jonathan J.; Davis, Mark M.

    2013-01-01

    While T cell memory is generally thought to require direct antigen exposure, we find an abundance of memory phenotype cells (20–90%, averaging over 50%) of CD4+ T cells specific for viral antigens in adults that have never been infected. These cells express the appropriate memory markers and genes, rapidly produce cytokines, and have clonally expanded. This contrasts with newborns where the same T cell receptor (TCR) specificities are almost entirely naïve, which may explain the vulnerability of young children to infections. One mechanism for this phenomenon is TCR cross-reactivity to environmental antigens and in support of this we find extensive cross-recognition by HIV-1 and influenza-reactive T lymphocytes to other microbial peptides and the expansion of one of these following influenza vaccination. Thus the presence of these memory phenotype T cells has significant implications for immunity to novel pathogens, child and adult health, and the influence of pathogen-rich versus hygienic environments. PMID:23395677

  11. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17O DNP-NMR spectroscopy

    SciTech Connect

    Perras, Frederic A.; Chaudhary, Umesh; Slowing, Igor I.; Pruski, Marek

    2016-05-06

    Dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly being used as a tool for the atomic-level characterization of surface sites. DNP surface-enhanced SSNMR spectroscopy of materials has, however, been limited to studying relatively receptive nuclei, and the particularly rare 17O nuclide, which is of great interest for materials science, has not been utilized. We demonstrate that advanced 17O SSNMR experiments can be performed on surface species at natural isotopic abundance using DNP. We use 17O DNP surface-enhanced 2D SSNMR to measure 17O{1H} HETCOR spectra as well as dipolar oscillations on a series of thermally treated mesoporous silica nanoparticle samples having different pore diameters. These experiments allow for a nonintrusive and unambiguous characterization of hydrogen bonding and dynamics at the surface of the material; no other single experiment can give such details about the interactions at the surface. Lastly, our data show that, upon drying, strongly hydrogen-bonded surface silanols, whose motions are greatly restricted by the interaction when compared to lone silanols, are selectively dehydroxylated.

  12. Quantitative Comparison of Abundance Structures of Generalized Communities: From B-Cell Receptor Repertoires to Microbiomes

    PubMed Central

    Saeedghalati, Mohammadkarim; Farahpour, Farnoush; Lange, Anja; Westendorf, Astrid M.; Seifert, Marc; Küppers, Ralf

    2017-01-01

    The community, the assemblage of organisms co-existing in a given space and time, has the potential to become one of the unifying concepts of biology, especially with the advent of high-throughput sequencing experiments that reveal genetic diversity exhaustively. In this spirit we show that a tool from community ecology, the Rank Abundance Distribution (RAD), can be turned by the new MaxRank normalization method into a generic, expressive descriptor for quantitative comparison of communities in many areas of biology. To illustrate the versatility of the method, we analyze RADs from various generalized communities, i.e. assemblages of genetically diverse cells or organisms, including human B cells, gut microbiomes under antibiotic treatment and of different ages and countries of origin, and other human and environmental microbial communities. We show that normalized RADs enable novel quantitative approaches that help to understand structures and dynamics of complex generalized communities. PMID:28114391

  13. TAZ Protein Accumulation Is Negatively Regulated by YAP Abundance in Mammalian Cells*

    PubMed Central

    Finch-Edmondson, Megan L.; Strauss, Robyn P.; Passman, Adam M.; Sudol, Marius; Yeoh, George C.; Callus, Bernard A.

    2015-01-01

    The mammalian Hippo signaling pathway regulates cell growth and survival and is frequently dysregulated in cancer. YAP and TAZ are transcriptional coactivators that function as effectors of this signaling pathway. Aberrant YAP and TAZ activity is reported in several human cancers, and normally the expression and nuclear localization of these proteins is tightly regulated. We sought to establish whether a direct relationship exists between YAP and TAZ. Using knockdown and overexpression experiments we show YAP inversely regulates the abundance of TAZ protein by proteasomal degradation. Interestingly this phenomenon was uni-directional since TAZ expression did not affect YAP abundance. Structure/function analyses suggest that YAP-induced TAZ degradation is a consequence of YAP-targeted gene transcription involving TEAD factors. Subsequent investigation of known regulators of TAZ degradation using specific inhibitors revealed a role for heat shock protein 90 and glycogen synthase kinase 3 but not casein kinase 1 nor LATS in YAP-mediated TAZ loss. Importantly, this phenomenon is conserved from mouse to human; however, interestingly, different YAP isoforms varied in their ability to degrade TAZ. Since shRNA-mediated TAZ depletion in HeLa and D645 cells caused apoptotic cell death, we propose that isoform-specific YAP-mediated TAZ degradation may contribute to the contradicting roles reported for YAP overexpression. This study identifies a novel mechanism of TAZ regulation by YAP, which has significant implications for our understanding of Hippo pathway regulation, YAP-isoform specific signaling, and the role of these proteins in cell proliferation, apoptosis, and tumorigenesis. PMID:26432639

  14. Concise review: alchemy of biology: generating desired cell types from abundant and accessible cells.

    PubMed

    Pournasr, Behshad; Khaloughi, Keynoush; Salekdeh, Ghasem Hosseini; Totonchi, Mehdi; Shahbazi, Ebrahim; Baharvand, Hossein

    2011-12-01

    A major goal of regenerative medicine is to produce cells to participate in the generation, maintenance, and repair of tissues that are damaged by disease, aging, or trauma, such that function is restored. The establishment of induced pluripotent stem cells, followed by directed differentiation, offers a powerful strategy for producing patient-specific therapies. Given how laborious and lengthy this process can be, the conversion of somatic cells into lineage-specific stem/progenitor cells in one step, without going back to, or through, a pluripotent stage, has opened up tremendous opportunities for regenerative medicine. However, there are a number of obstacles to overcome before these cells can be widely considered for clinical applications. Here, we focus on induced transdifferentiation strategies to convert mature somatic cells to other mature cell types or progenitors, and we summarize the challenges that need to be met if the potential applications of transdifferentiation technology are to be achieved.

  15. T cell abundance in blood predicts acute organ toxicity in chemoradiotherapy for head and neck cancer

    PubMed Central

    Reichardt, Sybille D.; Rave-Fränk, Margret; Schirmer, Markus A.; Stadelmann, Christine; Canis, Martin; Wolff, Hendrik A.

    2016-01-01

    Treatment of head and neck squamous cell carcinoma (HNSCC) by chemoradiotherapy (CRT) often results in high-grade acute organ toxicity (HGAOT). As these adverse effects impair the patients' quality of life and the feasibility of the planned therapy, we sought to analyze immunological parameters in tumor material and blood samples obtained from 48 HNSCC patients in order to assess the potential to predict the individual acute organ toxicity. T cells in the tumor stroma were enriched in patients developing HGAOT whereas levels of soluble factors in the plasma and gene expression in whole blood did not coincide with the occurrence of acute organ toxicity. In contrast, the frequency and absolute numbers of selected leukocyte subpopulations measured in samples of peripheral blood mononuclear cells (PBMCs) directly before the beginning of CRT were significantly different in patients with HGAOT as compared to those without. When we validated several potential markers including the abundance of T cells in a small prospective study with 16 HNSCC patients, we were able to correctly predict acute organ toxicity in up to 81% of the patients. We conclude that analysis of PBMCs by fluorescence-activated cell sorting (FACS) might be a convenient strategy to identify patients at risk of developing HGAOT caused by CRT, which might allow to adapt the treatment regimen and possibly improve disease outcome. PMID:27589568

  16. Entry Kinetics and Cell-Cell Transmission of Surface-Bound Retroviral Vector Particles

    PubMed Central

    O’Neill, Lee S.; Skinner, Amy M.; Woodward, Josha A.; Kurre, Peter

    2010-01-01

    Background Transduction with recombinant Human Immunodeficiency Virus (HIV) -1 derived lentivirus vectors is a multi-step process initiated by surface attachment and subsequent receptor-directed uptake into the target cell. We previously reported the retention of vesicular stomatitis virus G protein (VSV-G) pseudotyped particles on murine progenitor cells and their delayed cell-cell transfer. Methods To examine the underlying mechanism in more detail we used a combination of approaches focused on investigating the role of receptor-independent factors in modulating attachment. Results Studies of synchronized transduction herein reveal cell-type specific rates of vector particle clearance with substantial delays during particle entry into murine hematopoietic progenitor cells. The observed uptake kinetics from the surface of the 1° cell correlate inversely with the magnitude of transfer to 2° targets, corresponding with our initial observation of preferential cell-cell transfer in the context of brief vector exposures. We further demonstrate that vector particle entry into cells is associated with the cell–type specific abundance of extracellular matrix fibronectin. Residual particle – ECM binding and 2° transfer can be competitively disrupted by heparin exposure without affecting murine progenitor homing and repopulation. Conclusions While cellular attachment factors, including fibronectin, aid gene transfer by colocalizing particles to cells and disfavoring early dissociation from targets, they also appear to stabilize particles on the cell surface. Our study highlights the inadvertent consequences for cell entry and cell-cell transfer. PMID:20440757

  17. The surface abundance and stratigraphy of lunar rocks from data about their albedo

    NASA Technical Reports Server (NTRS)

    Shevchenko, V. V.

    1977-01-01

    The data pf ground-based studies and surveys of the lunar surface by the Zond and Apollo spacecraft have been used to construct an albedo map covering 80 percent of the lunar sphere. Statistical analysis of the distribution of areas with various albedos shows several types of lunar surface. Comparison of albedo data for maria and continental areas with the results of geochemical orbital surveys allows the identification of the types of surface with known types of lunar rock. The aluminum/silcon and magnesium/silicon ratios as measured by the geochemical experiments on the Apollo 15 and Apollo 16 spacecraft were used as an indication of the chemical composition of the rock. The relationship of the relative aluminum content to the age of crystalline rocks allows a direct dependence to be constructed between the mean albedo of areas and the age of the rocks of which they are composed.

  18. Standing surface acoustic wave based cell coculture.

    PubMed

    Li, Sixing; Guo, Feng; Chen, Yuchao; Ding, Xiaoyun; Li, Peng; Wang, Lin; Cameron, Craig E; Huang, Tony Jun

    2014-10-07

    Precise reconstruction of heterotypic cell-cell interactions in vitro requires the coculture of different cell types in a highly controlled manner. In this article, we report a standing surface acoustic wave (SSAW)-based cell coculture platform. In our approach, different types of cells are patterned sequentially in the SSAW field to form an organized cell coculture. To validate our platform, we demonstrate a coculture of epithelial cancer cells and endothelial cells. Real-time monitoring of cell migration dynamics reveals increased cancer cell mobility when cancer cells are cocultured with endothelial cells. Our SSAW-based cell coculture platform has the advantages of contactless cell manipulation, high biocompatibility, high controllability, simplicity, and minimal interference of the cellular microenvironment. The SSAW technique demonstrated here can be a valuable analytical tool for various biological studies involving heterotypic cell-cell interactions.

  19. A membrane reservoir at the cell surface

    PubMed Central

    Figard, Lauren; Sokac, Anna Marie

    2014-01-01

    Cell surface expansion is a necessary part of cell shape change. One long-standing hypothesis proposes that membrane for this expansion comes from the flattening out of cell surface projections such as microvilli and membrane folds. Correlative EM data of cells undergoing phagocytosis, cytokinesis, and morphogenesis has hinted at the existence of such an unfolding mechanism for decades; but unfolding has only recently been confirmed using live-cell imaging and biophysical approaches. Considering the wide range of cells in which plasma membrane unfolding has now been reported, it likely represents a fundamental mechanism of cell shape change. PMID:24844289

  20. Enzymatic passaging of human embryonic stem cells alters central carbon metabolism and glycan abundance

    PubMed Central

    Badur, Mehmet G.; Zhang, Hui; Metallo, Christian M.

    2016-01-01

    To realize the potential of human embryonic stem cells (hESCs) in regenerative medicine and drug discovery applications, large numbers of cells that accurately recapitulate cell and tissue function must be robustly produced. Previous studies have suggested that genetic instability and epigenetic changes occur as a consequence of enzymatic passaging. However, the potential impacts of such passaging methods on the metabolism of hESCs have not been described. Using stable isotope tracing and mass spectrometry-based metabolomics, we have explored how different passaging reagents impact hESC metabolism. Enzymatic passaging caused significant decreases in glucose utilization throughout central carbon metabolism along with attenuated de novo lipogenesis. In addition, we developed and validated a method for rapidly quantifying glycan abundance and isotopic labeling in hydrolyzed biomass. Enzymatic passaging reagents significantly altered levels of glycans immediately after digestion but surprisingly glucose contribution to glycans was not affected. These results demonstrate that there is an immediate effect on hESC metabolism after enzymatic passaging in both central carbon metabolism and biosynthesis. HESCs subjected to enzymatic passaging are routinely placed in a state requiring re-synthesis of biomass components, subtly influencing their metabolic needs in a manner that may impact cell performance in regenerative medicine applications. PMID:26289220

  1. Enzymatic passaging of human embryonic stem cells alters central carbon metabolism and glycan abundance.

    PubMed

    Badur, Mehmet G; Zhang, Hui; Metallo, Christian M

    2015-10-01

    To realize the potential of human embryonic stem cells (hESCs) in regenerative medicine and drug discovery applications, large numbers of cells that accurately recapitulate cell and tissue function must be robustly produced. Previous studies have suggested that genetic instability and epigenetic changes occur as a consequence of enzymatic passaging. However, the potential impacts of such passaging methods on the metabolism of hESCs have not been described. Using stable isotope tracing and mass spectrometry-based metabolomics, we have explored how different passaging reagents impact hESC metabolism. Enzymatic passaging caused significant decreases in glucose utilization throughout central carbon metabolism along with attenuated de novo lipogenesis. In addition, we developed and validated a method for rapidly quantifying glycan abundance and isotopic labeling in hydrolyzed biomass. Enzymatic passaging reagents significantly altered levels of glycans immediately after digestion but surprisingly glucose contribution to glycans was not affected. These results demonstrate that there is an immediate effect on hESC metabolism after enzymatic passaging in both central carbon metabolism and biosynthesis. HESCs subjected to enzymatic passaging are routinely placed in a state requiring re-synthesis of biomass components, subtly influencing their metabolic needs in a manner that may impact cell performance in regenerative medicine applications.

  2. Tailored enrichment strategy detects low abundant small noncoding RNAs in HIV-1 infected cells

    PubMed Central

    2012-01-01

    Background The various classes of small noncoding RNAs (sncRNAs) are important regulators of gene expression across divergent types of organisms. While a rapidly increasing number of sncRNAs has been identified over recent years, the isolation of sncRNAs of low abundance remains challenging. Virally encoded sncRNAs, particularly those of RNA viruses, can be expressed at very low levels. This is best illustrated by HIV-1 where virus encoded sncRNAs represent approximately 0.1-1.0% of all sncRNAs in HIV-1 infected cells or were found to be undetected. Thus, we applied a novel, sequence targeted enrichment strategy to capture HIV-1 derived sncRNAs in HIV-1 infected primary CD4+ T-lymphocytes and macrophages that allows a greater than 100-fold enrichment of low abundant sncRNAs. Results Eight hundred and ninety-two individual HIV-1 sncRNAs were cloned and sequenced from nine different sncRNA libraries derived from five independent experiments. These clones represent up to 90% of all sncRNA clones in the generated libraries. Two hundred and sixteen HIV-1 sncRNAs were distinguishable as unique clones. They are spread throughout the HIV-1 genome, however, forming certain clusters, and almost 10% show an antisense orientation. The length of HIV-1 sncRNAs varies between 16 and 89 nucleotides with an unexpected peak at 31 to 50 nucleotides, thus, longer than cellular microRNAs or short-interfering RNAs (siRNAs). Exemplary HIV-1 sncRNAs were also generated in cells infected with different primary HIV-1 isolates and can inhibit HIV-1 replication. Conclusions HIV-1 infected cells generate virally encoded sncRNAs, which might play a role in the HIV-1 life cycle. Furthermore, the enormous capacity to enrich low abundance sncRNAs in a sequence specific manner highly recommends our selection strategy for any type of investigation where origin or target sequences of the sought-after sncRNAs are known. PMID:22458358

  3. GRLD-1 regulates cell-wide abundance of glutamate receptor through post-transcriptional regulation

    PubMed Central

    Wang, George J.; Kang, Lijun; Kim, Julie E.; Maro, Géraldine S.; Xu, X. Z. Shawn; Shen, Kang

    2011-01-01

    AMPA receptors mediate most of the fast postsynaptic response at glutamatergic synapses. The abundance of AMPA receptors in neurons and at postsynaptic membranes is tightly regulated. Changes in synaptic AMPA receptor levels have been proposed to be a key regulatory event in synaptic plasticity and learning and memory. While the local, synapse-specific regulation of AMPA receptors has been intensely studied, the global, cell-wide control is less well understood. Using a forward genetic approach, we identified Glutamate Receptor Level Decreased-1 (GRLD-1), a putative RNA-binding protein that is required for efficient production of GLR-1 in the AVE interneurons in the nematode Caenorhabditis elegans. In grld-1 mutants, GLR-1 levels were drastically reduced. Consistently, both glutamate-induced currents in AVE and glr-1-dependent nose-touch avoidance behavior were defective in grld-1 mutants. We propose that this evolutionarily conserved family of proteins controls the abundance of GLR-1 by regulating glr-1 transcript splicing. PMID:21037582

  4. The MiMeS survey of magnetism in massive stars: CNO surface abundances of Galactic O stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Hervé, A.; Bouret, J.-C.; Marcolino, W.; Wade, G. A.; Neiner, C.; Alecian, E.; Grunhut, J.; Petit, V.

    2015-03-01

    Context. The evolution of massive stars is still partly unconstrained. Mass, metallicity, mass loss, and rotation are the main drivers of stellar evolution. Binarity and the magnetic field may also significantly affect the fate of massive stars. Aims: Our goal is to investigate the evolution of single O stars in the Galaxy. Methods: For that, we used a sample of 74 objects comprising all luminosity classes and spectral types from O4 to O9.7. We relied on optical spectroscopy obtained in the context of the MiMeS survey of massive stars. We performed spectral modelling with the code CMFGEN. We determined the surface properties of the sample stars, with special emphasis on abundances of carbon, nitrogen, and oxygen. Results: Most of our sample stars have initial masses in the range of 20 to 50 M⊙. We show that nitrogen is more enriched and carbon and oxygen are more depleted in supergiants than in dwarfs, with giants showing intermediate degrees of mixing. CNO abundances are observed in the range of values predicted by nucleosynthesis through the CNO cycle. More massive stars, within a given luminosity class, appear to be more chemically enriched than lower mass stars. We compare our results with predictions of three types of evolutionary models and show that for two sets of models, 80% of our sample can be explained by stellar evolution including rotation. The effect of magnetism on surface abundances is unconstrained. Conclusions: Our study indicates that in the 20-50 M⊙ mass range, the surface chemical abundances of most single O stars in the Galaxy are fairly well accounted for by stellar evolution of rotating stars. Based on observations obtained at 1) the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France; 2) at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut

  5. Solar wind H-3 and C-14 abundances and solar surface processes. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.; Defelice, J.; Damico, J.

    1976-01-01

    Tritium is measured as a function of depth in a Surveyor 3 sample. The upper limit for solar-wind-implanted tritium gives an H-3/H-1 limit for the solar wind of 10 to the -11th power. The temperature-release patterns of C-14 from lunar soils are measured. The C-14 release pattern from surface soils differs from a trench-bottom soil and gives positive evidence for the presence of C-14 in the solar wind with a C-14/H-1 ratio of approximately 6 by 10 to the -11th power. This C-14 content fixes a minimal magnitude for nuclear processes on the solar surface averaged over the past 10,000 yr. The H-3 and C-14 contents combine to require that either the mixing rate above the photosphere be rapid or that the H-3 produced by nuclear reactions be destroyed by secondary nuclear reactions before escaping in the solar wind.

  6. Human SERPINB12 Is an Abundant Intracellular Serpin Expressed in Most Surface and Glandular Epithelia.

    PubMed

    Niehaus, Jason Z; Good, Misty; Jackson, Laura E; Ozolek, John A; Silverman, Gary A; Luke, Cliff J

    2015-11-01

    The intracellular serine protease inhibitors (serpins) are an important family of proteins that protect cells form proteinase-mediated injury. Understanding the tissue and cellular expression pattern of this protein family can provide important insights into their physiologic roles. For example, high expression in epithelial tissues, such as lung, may suggest a biologic function in cellular defense, secretion, or selective absorption. Although the expression pattern of many of the intracellular serpins has been well described, one member of this class, SERPINB12, has not been carefully examined. We generated a mouse monoclonal antibody directed against human SERPINB12 and delineated its specificity and tissue and cell type distribution pattern through immunoblotting and immunohistochemistry, respectively. This monoclonal antibody was human specific and did not cross-react with other human intracellular serpins or mouse Serpinb12. SERPINB12 was found in nearly all the tissues investigated. In addition, this serpin was found in multiple cell types within individual tissues but primarily the epithelium. These data suggest that SERPINB12, like some other intracellular serpins, may play a vital role in barrier function by providing protection of epithelial cells.

  7. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells

    PubMed Central

    Tichon, Ailone; Gil, Noa; Lubelsky, Yoav; Havkin Solomon, Tal; Lemze, Doron; Itzkovitz, Shalev; Stern-Ginossar, Noam; Ulitsky, Igor

    2016-01-01

    Thousands of long noncoding RNA (lncRNA) genes are encoded in the human genome, and hundreds of them are evolutionarily conserved, but their functions and modes of action remain largely obscure. Particularly enigmatic lncRNAs are those that are exported to the cytoplasm, including NORAD—an abundant and highly conserved cytoplasmic lncRNA. Here we show that most of the sequence of NORAD is comprised of repetitive units that together contain at least 17 functional binding sites for the two mammalian Pumilio homologues. Through binding to PUM1 and PUM2, NORAD modulates the mRNA levels of their targets, which are enriched for genes involved in chromosome segregation during cell division. Our results suggest that some cytoplasmic lncRNAs function by modulating the activities of RNA-binding proteins, an activity which positions them at key junctions of cellular signalling pathways. PMID:27406171

  8. Standing Surface Acoustic Wave Based Cell Coculture

    PubMed Central

    2015-01-01

    Precise reconstruction of heterotypic cell–cell interactions in vitro requires the coculture of different cell types in a highly controlled manner. In this article, we report a standing surface acoustic wave (SSAW)-based cell coculture platform. In our approach, different types of cells are patterned sequentially in the SSAW field to form an organized cell coculture. To validate our platform, we demonstrate a coculture of epithelial cancer cells and endothelial cells. Real-time monitoring of cell migration dynamics reveals increased cancer cell mobility when cancer cells are cocultured with endothelial cells. Our SSAW-based cell coculture platform has the advantages of contactless cell manipulation, high biocompatibility, high controllability, simplicity, and minimal interference of the cellular microenvironment. The SSAW technique demonstrated here can be a valuable analytical tool for various biological studies involving heterotypic cell–cell interactions. PMID:25232648

  9. High throughput screening for compounds that alter muscle cell glycosylation identifies new role for N-glycans in regulating sarcolemmal protein abundance and laminin binding.

    PubMed

    Cabrera, Paula V; Pang, Mabel; Marshall, Jamie L; Kung, Raymond; Nelson, Stanley F; Stalnaker, Stephanie H; Wells, Lance; Crosbie-Watson, Rachelle H; Baum, Linda G

    2012-06-29

    Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function.

  10. High Throughput Screening for Compounds That Alter Muscle Cell Glycosylation Identifies New Role for N-Glycans in Regulating Sarcolemmal Protein Abundance and Laminin Binding*

    PubMed Central

    Cabrera, Paula V.; Pang, Mabel; Marshall, Jamie L.; Kung, Raymond; Nelson, Stanley F.; Stalnaker, Stephanie H.; Wells, Lance; Crosbie-Watson, Rachelle H.; Baum, Linda G.

    2012-01-01

    Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. PMID:22570487

  11. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    NASA Astrophysics Data System (ADS)

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-09-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes.

  12. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    PubMed Central

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-01-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes. PMID:27678172

  13. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae.

    PubMed

    Stibal, Marek; Sabacká, Marie; Kastovská, Klára

    2006-11-01

    Microbial communities occurring in three types of supraglacial habitats--cryoconite holes, medial moraines, and supraglacial kames--at several glaciers in the Arctic archipelago of Svalbard were investigated. Abundance, biovolume, and community structure were evaluated by using epifluorescence microscopy and culturing methods. Particular emphasis was laid on distinctions in the chemical and physical properties of the supraglacial habitats and their relation to the microbial communities, and quantitative multivariate analyses were used to assess potential relationships. Varying pH (4.8 in cryoconite; 8.5 in a moraine) and texture (the proportion of coarse fraction 2% of dry weight in cryoconite; 99% dw in a kame) were found, and rather low concentrations of organic matter (0.3% of dry weight in a kame; 22% dw in cryoconite) and nutrients (nitrogen up to 0.4% dw, phosphorus up to 0.8% dw) were determined in the samples. In cryoconite sediment, the highest numbers of bacteria, cyanobacteria, and algae were found, whereas relatively low microbial abundances were recorded in moraines and kames. Cyanobacterial cells were significantly more abundant than microalgal ones in cryoconite and supraglacial kames. Different species of the cyanobacterial genus Leptolyngbya were by far the most represented in all samples, and cyanobacteria of the genera Phormidium and Nostoc prevailed in cultures isolated from cryoconite samples. These species are considered opportunistic organisms with wide ecological valency and strong colonizing potential rather than glacial specialists. Statistical analyses suggest that fine sediment with higher water content is the most suitable condition for bacteria, cyanobacteria, and algae. Also, a positive impact of lower pH on microbial growth was found. The fate of a microbial cell deposited on the glacier surface seems therefore predetermined by the physical and chemical factors such as texture of sediment and water content rather than spatial factors

  14. Back surface reflectors for solar cells

    NASA Technical Reports Server (NTRS)

    Chai, A. T.

    1980-01-01

    Sample solar cells were fabricated to study the effects of various back surface reflectors on the device performance. They are typical 50 micrometers thick, space quality, silicon solar cells except for variations of the back contact configuration. The back surfaces of the sample cells are polished to a mirror like finish, and have either conventional full contacts or grid finger contacts. Measurements and evaluation of various metallic back surface reflectors, as well as cells with total internal reflection, are presented. Results indicate that back surface reflectors formed using a grid finger back contact are more effective reflectors than cells with full back metallization and that Au, Ag, or Cu are better back surface reflector metals than Al.

  15. Cell behavior on surface modified polydimethylsiloxane (PDMS).

    PubMed

    Stanton, Morgan M; Rankenberg, Johanna M; Park, Byung-Wook; McGimpsey, W Grant; Malcuit, Christopher; Lambert, Christopher R

    2014-07-01

    Designing complex tissue culture systems requires cell alignment and directed extracellular matrix (ECM) and gene expression. Here, a micro-rough, polydimethylsiloxane (PDMS) surface, that also integrates a micro-pattern of 50 µm wide lines of fibronectin (FN) separated by 60 µm wide lines of bovine serum albumin (BSA), is developed. Human fibroblasts cultured on the rough, patterned substrate have aligned growth and a significant change in morphology when compared to cells on a flat, patterned surface. The rough PDMS topography significantly decreases cell area and induces the upregulation of several ECM related genes by two-fold when compared to cells cultured on flat PDMS. This study describes a simple surface engineering procedure for creating surface architecture for scaffolds to design and control the cell-surface interface.

  16. Computational Model Reveals Limited Correlation between Germinal Center B-Cell Subclone Abundancy and Affinity: Implications for Repertoire Sequencing

    PubMed Central

    Reshetova, Polina; van Schaik, Barbera D. C.; Klarenbeek, Paul L.; Doorenspleet, Marieke E.; Esveldt, Rebecca E. E.; Tak, Paul-Peter; Guikema, Jeroen E. J.; de Vries, Niek; van Kampen, Antoine H. C.

    2017-01-01

    Immunoglobulin repertoire sequencing has successfully been applied to identify expanded antigen-activated B-cell clones that play a role in the pathogenesis of immune disorders. One challenge is the selection of the Ag-specific B cells from the measured repertoire for downstream analyses. A general feature of an immune response is the expansion of specific clones resulting in a set of subclones with common ancestry varying in abundance and in the number of acquired somatic mutations. The expanded subclones are expected to have BCR affinities for the Ag higher than the affinities of the naive B cells in the background population. For these reasons, several groups successfully proceeded or suggested selecting highly abundant subclones from the repertoire to obtain the Ag-specific B cells. Given the nature of affinity maturation one would expect that abundant subclones are of high affinity but since repertoire sequencing only provides information about abundancies, this can only be verified with additional experiments, which are very labor intensive. Moreover, this would also require knowledge of the Ag, which is often not available for clinical samples. Consequently, in general we do not know if the selected highly abundant subclone(s) are also the high(est) affinity subclones. Such knowledge would likely improve the selection of relevant subclones for further characterization and Ag screening. Therefore, to gain insight in the relation between subclone abundancy and affinity, we developed a computational model that simulates affinity maturation in a single GC while tracking individual subclones in terms of abundancy and affinity. We show that the model correctly captures the overall GC dynamics, and that the amount of expansion is qualitatively comparable to expansion observed from B cells isolated from human lymph nodes. Analysis of the fraction of high- and low-affinity subclones among the unexpanded and expanded subclones reveals a limited correlation between

  17. Activity, distribution, and abundance of methane-oxidizing bacteria in the near surface soils of onshore oil and gas fields.

    PubMed

    Xu, Kewei; Tang, Yuping; Ren, Chun; Zhao, Kebin; Wang, Wanmeng; Sun, Yongge

    2013-09-01

    Methane-oxidizing bacteria (MOB) have long been used as an important biological indicator for oil and gas prospecting, but the ecological characteristics of MOB in hydrocarbon microseep systems are still poorly understood. In this study, the activity, distribution, and abundance of aerobic methanotrophic communities in the surface soils underlying an oil and gas field were investigated using biogeochemical and molecular ecological techniques. Measurements of potential methane oxidation rates and pmoA gene copy numbers showed that soils inside an oil and gas field are hot spots of methane oxidation and MOB abundance. Correspondingly, terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of pmoA genes also revealed considerable differences in the methanotrophic community composition between oil and gas fields and the surrounding soils. Principal component analysis ordination furthermore indicated a coincidence between elevated CH4 oxidation activity and the methanotrophic community structure with type I methanotrophic Methylococcus and Methylobacter, in particular, as indicator species of oil and gas fields. Collectively, our results show that trace methane migrated from oil and gas reservoirs can considerably influence not only the quantity but also the structure of the methanotrophic community.

  18. Abundance and single-cell activity of heterotrophic bacterial groups in the western Arctic Ocean in summer and winter.

    PubMed

    Nikrad, Mrinalini P; Cottrell, M T; Kirchman, D L

    2012-04-01

    Environmental conditions in the western Arctic Ocean range from constant light and nutrient depletion in summer to complete darkness and sea ice cover in winter. This seasonal environmental variation is likely to have an effect on the use of dissolved organic matter (DOM) by heterotrophic bacteria in surface water. However, this effect is not well studied and we know little about the activity of specific bacterial clades in the surface oceans. The use of DOM by three bacterial subgroups in both winter and summer was examined by microautoradiography combined with fluorescence in situ hybridization. We found selective use of substrates by these groups, although the abundances of Ant4D3 (Antarctic Gammaproteobacteria), Polaribacter (Bacteroidetes), and SAR11 (Alphaproteobacteria) were not different between summer and winter in the Beaufort and Chukchi Seas. The number of cells taking up glucose within all three bacterial groups decreased significantly from summer to winter, while the percentage of cells using leucine did not show a clear pattern between seasons. The uptake of the amino acid mix increased substantially from summer to winter by the Ant4D3 group, although such a large increase in uptake was not seen for the other two groups. Use of glucose by bacteria, but not use of leucine or the amino acid mix, related strongly to inorganic nutrients, chlorophyll a, and other environmental factors. Our results suggest a switch in use of dissolved organic substrates from summer to winter and that the three phylogenetic subgroups examined fill different niches in DOM use in the two seasons.

  19. High vacuum cells for classical surface techniques

    SciTech Connect

    Martinez, Imee Su; Baldelli, Steven

    2010-04-15

    Novel glass cells were designed and built to be able to perform surface potential and surface tension measurements in a contained environment. The cells can withstand pressures of approximately 1x10{sup -6} Torr, providing a reasonable level of control in terms of the amounts of volatile contaminants during experimentation. The measurements can take several hours; thus the cells help maintain the integrity of the sample in the course of the experiment. To test for the feasibility of the cell design, calibration measurements were performed. For the surface potential cell, the modified TREK 6000B-7C probe exhibited performance comparable to its unmodified counterpart. The correlation measurements between applied potential on the test surface and the measured potential showed R-values very close to 1 as well as standard deviation values of less than 1. Results also demonstrate improved measurement values for experiments performed in vacuum. The surface tension cell, on the other hand, which was used to perform the pendant drop method, was tested on common liquids and showed percentage errors of 0.5% when compared to literature values. The fabricated cells redefine measurements using classical surface techniques, providing unique and novel methods of sample preparation, premeasurement preparation, and sample analysis at highly beneficial expenditure cost.

  20. The endomembrane requirement for cell surface repair

    NASA Technical Reports Server (NTRS)

    McNeil, Paul L.; Miyake, Katsuya; Vogel, Steven S.

    2003-01-01

    The capacity to reseal a plasma membrane disruption rapidly is required for cell survival in many physiological environments. Intracellular membrane (endomembrane) is thought to play a central role in the rapid resealing response. We here directly compare the resealing response of a cell that lacks endomembrane, the red blood cell, with that of several nucleated cells possessing an abundant endomembrane compartment. RBC membrane disruptions inflicted by a mode-locked Ti:sapphire laser, even those initially smaller than hemoglobin, failed to reseal rapidly. By contrast, much larger laser-induced disruptions made in sea urchin eggs, fibroblasts, and neurons exhibited rapid, Ca(2+)-dependent resealing. We conclude that rapid resealing is not mediated by simple physiochemical mechanisms; endomembrane is required.

  1. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  2. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  3. Probes for anionic cell surface detection

    DOEpatents

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  4. High abundance of CD271+ multipotential stromal cells (MSCs) in intramedullary cavities of long bones

    PubMed Central

    Cox, George; Boxall, Sally A.; Giannoudis, Peter V.; Buckley, Conor T.; Roshdy, Tarek; Churchman, Sarah M.; McGonagle, Dennis; Jones, Elena

    2012-01-01

    Aspiration of iliac crest bone marrow (ICBM) remains the most frequent technique used in harvesting multipotential stromal cells (MSCs) for bone regeneration. Although this tissue type is easily accessed by a surgeon, it has a low frequency of MSCs, which is significant given the high cell numbers required for bone regeneration strategies. Lipoaspirates possess higher MSC frequencies, albeit cells with a differentiation profile less suited to orthopaedic interventions. Intra-medullary cavities of long bones have previously been shown to harbour MSCs in animals, however evaluation of their frequency, differentiation capacity and phenotype in humans had not previously been performed. Long bone fatty bone marrow (LBFBM) was collected prior to harvesting bone graft. Basic cellular compositions of donor-matched LBFBM and ICBM aspirates, including the numbers of CD34+ hematopoietic stem cells and CD31+ endothelial cells, were similar. MSCs were enumerated using colony-forming-unit-fibroblast assays and flow cytometry for the presence of a resident LBFBM CD45−/low CD271+ MSC population and revealed a trend for higher MSC numbers (average 5 fold, n = 6) per millilitre of LBFBM compared to donor-matched ICBM. Functional characteristics of resident MSCs, including their growth rates, differentiation potentials and surface phenotypes (CD73+CD105+CD90+) before and after culture-amplification, were similar. Enhanced numbers of MSCs could be recovered following brief enzymatic treatment of solid fragments of LBFBM. Our findings therefore reveal that the intramedullary cavity of the human femur is a depot of MSCs, which, although closely associated with fat, have a differentiation profile equivalent to ICBM. This anatomical site is frequently accessed by the orthopaedic/trauma surgeon and aspiration of the intramedullary cavity represents a ‘low-tech’ method of harvesting potentially large numbers of MSCs for regenerative therapies and research. This article is part of a

  5. Detection of Cell Surface Dopamine Receptors

    PubMed Central

    Xiao, Jiping; Bergson, Clare

    2014-01-01

    Dopamine receptors are a class of metabotropic G protein-coupled receptors. Plasma membrane expression is a key determinant of receptor signaling, and one that is regulated both by extra and intracellular cues. Abnormal dopamine receptor signaling is implicated in several neuropsychiatric disorders, including schizophrenia and attention deficit hyperactivity disorder, as well as drug abuse. Here, we describe in detail the application of two complementary applications of protein biotinylation and enzyme-linked immunoabsorbant assay (ELISA) for detecting and quantifying levels of dopamine receptors expressed on the cell surface. In the biotinylation method, cell surface receptors are labeled with Sulfo-NHS-biotin. The charge on the sulfonyl facilitates water solubility of the reactive biotin compound and prevents its diffusion across the plasma membrane. In the ELISA method, cells surface labeling is achieved with antibodies specific to extracellular epitopes on the receptors, and by fixing the cells without detergent such that the plasma membrane remains intact. PMID:23296774

  6. The cell walls of syncytia formed by Heterodera schachtii in Arabidopsis thaliana are abundant in methyl-esterified pectin.

    PubMed

    Davies, Laura Jane; Urwin, Peter E

    2012-11-01

    Plant-parasitic cyst nematodes form a specialized feeding site, termed a syncytium, in the roots of host plants. Monoclonal antibodies to defined glycans, in addition to a cellulose-binding module, were used to characterize the cell walls of a functioning syncytia in situ. Cell walls of syncytia were found to contain cellulose, xyloglucan and mannan. Analysis of the pectin network revealed syncytial cell walls are abundant in homogalacturonan, which was heavily methyl-esterified. Arabinan was also detected and the results suggest the cell walls of syncytia are highly flexible.

  7. Mechanical guidance through cell-cell and cell-surface contact during multicellular streaming

    NASA Astrophysics Data System (ADS)

    Wang, Chenlu; Driscoll, Meghan; Gupta, Satyandra K.; Parent, Carole; Losert, Wolfgang

    2014-03-01

    During collective cell migration, mechanical forces arise from the extracellular matrix (ECM) through cell-surface contact and from other cells through cell-cell contact. These forces regulate the motion of migrating cell groups. To determine how these mechanical interactions balance during cell migration, we measured the shape dynamics of Dictyostelium discoideum cells at the multicellular streaming stage. We found that cells can coordinate their motion by synchronizing protrusion waves that travel along their membranes when they form proper cell-cell adhesion and cell-surface adhesion. In addition, our experiments on live actin labeled cells show that intracellular actin polymerization actively responds to the change of cell-cell/surface adhesion and helps to stabilize multicellular migration streams. Our finding suggests that the coordination of motion between neighboring cells in collective migration requires a balance between cell-cell adhesion and cell-surface adhesion, and that the cell cytoskeleton plays an important role in this balance.

  8. Detection of cells captured with antigens on shear horizontal surface-acoustic-wave sensors.

    PubMed

    Hao, Hsu-Chao; Chang, Hwan-You; Wang, Tsung-Pao; Yao, Da-Jeng

    2013-02-01

    Techniques to separate cells are widely applied in immunology. The technique to separate a specific antigen on a microfluidic platform involves the use of a shear horizontal surface-acoustic-wave (SH-SAW) sensor. With specific antibodies conjugated onto the surface of the SH-SAW sensors, this technique can serve to identify specific cells in bodily fluids. Jurkat cells, used as a target in this work, provide a model of cells in small abundance (1:1000) for isolation and purification with the ultimate goal of targeting even more dilute cells. T cells were separated from a mixed-cell medium on a chip (Jurkat cells/K562 cells, 1/1000). A novel microchamber was developed to capture cells during the purification, which required a large biosample. Cell detection was demonstrated through the performance of genetic identification on the chip.

  9. Proteomic analysis of cell surface proteins from Clostridium difficile.

    PubMed

    Wright, Anne; Wait, Robin; Begum, Shajna; Crossett, Ben; Nagy, Judit; Brown, Katherine; Fairweather, Neil

    2005-06-01

    Clostridium difficile is a bacterium that causes disease of the large intestine, particularly after treatment with antibiotics. The bacterium produces two toxins (A and B) that are responsible for the pathology of the disease. In addition, a number of bacterial virulence factors associated with adhesion to the gut have previously been identified, including the cell wall protein Cwp66, the high-molecular weight surface layer protein (HMW-SLP) and the flagella. As the genome sequence predicts many other cell wall associated proteins, we have investigated the diversity of proteins in cell wall extracts, with the aim of identifying further virulence factors. We have used a number of methods to remove the proteins associated with the cell wall of C. difficile. Two of the resulting extracts, obtained using low pH glycine treatment and lysozyme digestion of the cell wall, have been analysed in detail by two-dimensional electrophoresis and mass spectrometry. One hundred and nineteen spots, comprising 49 different proteins, have been identified. The two surface layer proteins (SLPs) are the most abundant proteins, and we have also found components of the flagellum. Interestingly, we have also determined that a number of paralogs of the HMW-SLP are expressed, and these could represent targets for further investigation as virulence factors.

  10. Abundances of microRNAs in human cells can be estimated as a function of the abundances of YRHB and RHHK tetranucleotides in these microRNAs as an ill-posed inverse problem solution.

    PubMed

    Ponomarenko, Mikhail P; Suslov, Valentin V; Ponomarenko, Petr M; Gunbin, Konstantin V; Stepanenko, Irina L; Vishnevsky, Oleg V; Kolchanov, Nikolay A

    2013-01-01

    Mature microRNAs (miRNAs) are small endogenous non-coding RNAs 18-25 nt in length. They program the RNA Induced Silencing Complex (RISC) to make it inhibit either messenger RNAs or promoter DNAs. We have found that the mean abundance of miRNAs in Arabidopsis is correlated with the abundance of DRYD tetranucleotides near the 3'-end and the abundance of WRHB tetranucleotides in the center of the miRNA sequence. Based on this correlation, we have estimated miRNA abundances in seven organs of this plant, namely: inflorescences, stems, siliques, seedlings, roots, cauline, and rosette leaves. We have also found that the mean affinity of miRNAs for two proteins in the Argonaute family (Ago2 and Ago3) in man is correlated with the abundance of YRHB tetranucleotides near the 3'-end and that the preference of miRNAs for Ago2 is correlated with the abundance of RHHK tetranucleotides in the center of the miRNA sequence. This allowed us to obtain statistically significant estimates of miRNA abundances in human embryonic kidney cells, HEK293T. These findings in relation to two taxonomically distant entities (man and Arabidopsis) fit one another like pieces of a jigsaw puzzle, which allowed us to heuristically generalize them and state that the miRNA abundance in the human brain may be determined by the abundance of YRHB and RHHK tetranucleotides in these miRNAs.

  11. Surface cell immobilization within perfluoroalkoxy microchannels

    NASA Astrophysics Data System (ADS)

    Stojkovič, Gorazd; Krivec, Matic; Vesel, Alenka; Marinšek, Marjan; Žnidaršič-Plazl, Polona

    2014-11-01

    Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor® and Topas®.

  12. Characterization and use of crystalline bacterial cell surface layers

    NASA Astrophysics Data System (ADS)

    Sleytr, Uwe B.; Sára, Margit; Pum, Dietmar; Schuster, Bernhard

    2001-10-01

    Crystalline bacterial cell surface layers (S-layers) are one of the most common outermost cell envelope components of prokaryotic organisms (archaea and bacteria). S-layers are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. S-layers as the most abundant of prokaryotic cellular proteins are appealing model systems for studying the structure, synthesis, genetics, assembly and function of proteinaceous supramolecular structures. The wealth of information existing on the general principle of S-layers have revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for chemical modifications and binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from a variety of organisms are capable of recrystallizing as closed monolayers onto solid supports (e.g., metals, polymers, silicon wafers) at the air-water interface, on lipid films or onto the surface of liposomes; (iv) functional domains can be incorporated in S-layer proteins by genetic engineering. Thus, S-layer technologies particularly provide new approaches for biotechnology, biomimetics, molecular nanotechnology, nanopatterning of surfaces and formation of ordered arrays of metal clusters or nanoparticles as required for nanoelectronics.

  13. Inconsistencies in Estimates of Near-Surface Water Abundance are Resolved by the Volcanic Origin of Martian Outflow Channels

    NASA Astrophysics Data System (ADS)

    Leverington, D. W.

    2010-12-01

    A long-standing problem in the study of Mars has been the incompatibility between 1) geochemically-based expectations for low near-surface water abundance; and 2) the large water volumes required of aqueous interpretations of the outflow channels. On the basis of the compositions of SNC meteorites and the current Martian atmosphere, the early water content of Mars has been estimated by several groups to be equivalent to a global layer of ~6 to 200 m thickness, only a proportion of which would have been outgassed to the near-surface environment. In contrast, previous estimates of the minimum near-surface water volume required if the Martian outflow channels formed through aqueous mechanisms are equivalent to a global water layer of 300-500 m thickness, assuming unrealistic sediment loads of 40% and an absence of infiltration or evaporation during flow, and ignoring volumes such as those required of hypothesized cryospheric seals. Under more realistic outflow scenarios, required volumes are likely to be equivalent to an Earth-like global layer of at least several kilometers thickness, even assuming the past operation of a vigorous hydrological cycle. Some workers have suggested that disagreement between geochemical and geomorphological estimates of near-surface water volumes on Mars might be resolved if the amount of water outgassed by the planet was greater than expected, or if especially large volumes of water were contributed to the surface by impacts of volatile-rich bodies late in the heavy bombardment of Mars. However, resolution is instead likely to follow from changes in perspectives regarding outflow channel origins. Though most workers currently accept aqueous interpretations, recent work has indicated that the outflow channels of Mars are very likely to be the products of volcanic processes involving incision by low-viscosity mafic lavas. Volcanic interpretations are consistent with numerous considerations, including the absence of channel deposits of

  14. Molecular Investigation of the Short-term Sequestration of Natural Abundance 13C -labelled Cow Dung in the Surface Horizons of a Temperate Grassland Soil

    NASA Astrophysics Data System (ADS)

    Dungait, J.; Bol, R.; Evershed, R. P.

    2004-12-01

    An adequate understanding of the carbon (C) sequestration potential of grasslands requires that the quantity and residence times of C inputs be measured. Herbivore dung is largely comprised of plant cell wall material, a significant source of stable C in intensively grazed temperate grassland ecosystems that contributes to the soil carbon budget. Our work uses compound-specific isotope analysis to identify the pattern of input of dung-derived compounds from natural abundance 13C/-labelled cow dung into the surface horizons of a temperate grassland soil over one year. C4 dung (δ 13C \\-12.6 ‰ ) from maize fed cows was applied to a temperate grassland surface (δ 13C \\-29.95 ‰ ) at IGER-North Wyke (Devon, UK), and dung remains and soil cores beneath the treatments collected at ŧ = 7, 14, 28, 56, 112, 224 and 372 days. Bulk dung carbon present in the 0\\-1 cm and 1\\-5 cm surface horizons of a grassland soil over one year was estimated using Δ 13C between C4 dung and C3 dung, after Bol {\\et al.} (2000). The major biochemical components of dung were quantified using proximate forage fibre analyses, after Goering and Van Soest (1970) and identified using `wet' chemical and GC-MS methods. Plant cell wall polysaccharides and lignin were found to account for up to 67 {%} of dung dry matter. Hydrolysed polysaccharides were prepared as alditol acetates for analyses (after Docherty {\\et al.}, 2001), and a novel application of an off-line pyrolysis method applied to measure lignin-derived phenolic compounds (after Poole & van Bergen, 2002). This paper focuses on major events in the incorporation of dung carbon, estimated using natural abundance 13C&-slash;labelling technique. This revealed a major bulk input of dung carbon after a period of significant rainfall with a consequent decline in bulk soil δ 13C values until the end of the experiment (Dungait {\\et al.}, submitted). Findings will be presented revealing contribution of plant cell wall polysaccharides and

  15. Detection of cell surface dopamine receptors.

    PubMed

    Xiao, Jiping; Bergson, Clare

    2013-01-01

    Dopamine receptors are a class of metabotropic G protein-coupled receptors. Plasma membrane expression is a key determinant of receptor signaling, and one that is regulated both by extra and intracellular cues. Abnormal dopamine receptor signaling is implicated in several neuropsychiatric disorders, including schizophrenia and attention deficit hyperactivity disorder, as well as drug abuse. Here, we describe in detail the application of two complementary applications of protein biotinylation and enzyme-linked immunoabsorbent assay (ELISA) for detecting and quantifying levels of dopamine receptors expressed on the cell surface. In the biotinylation method, cell surface receptors are labeled with Sulfo-NHS-biotin. The charge on the sulfonyl facilitates water solubility of the reactive biotin compound and prevents its diffusion across the plasma membrane. In the ELISA method, surface labeling is achieved with antibodies specific to extracellular epitopes on the receptors, and by fixing the cells without detergent such that the plasma membrane remains intact.

  16. Vesicle trafficking and cell surface membrane patchiness.

    PubMed Central

    Tang, Q; Edidin, M

    2001-01-01

    Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited. PMID:11423406

  17. Cell surface engineering with edible protein nanoshells.

    PubMed

    Drachuk, Irina; Shchepelina, Olga; Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Stone, Morley; Tsukruk, Vladimir V

    2013-09-23

    Natural protein (silk fibroin) nanoshells are assembled on the surface of Saccharomyces cerevisiae yeast cells without compromising their viability. The nanoshells facilitate initial protection of the cells and allow them to function in encapsulated state for some time period, afterwards being completely biodegraded and consumed by the cells. In contrast to a traditional methanol treatment, the gentle ionic treatment suggested here stabilizes the shell silk fibroin structure but does not compromise the viability of the cells, as indicated by the fast response of the encapsulated cells, with an immediate activation by the inducer molecules. Extremely high viability rates (up to 97%) and preserved activity of encapsulated cells are facilitated by cytocompatibility of the natural proteins and the formation of highly porous shells in contrast to traditional polyelectrolyte-based materials. Moreover, in a high contrast to traditional synthetic shells, the silk proteins are biodegradable and can be consumed by cells at a later stage of growth, thus releasing the cells from their temporary protective capsules. These on-demand encapsulated cells can be considered a valuable platform for biocompatible and biodegradable cell encapsulation, controlled cell protection in a synthetic environment, transfer to a device environment, and cell implantation followed by biodegradation and consumption of protective protein shells.

  18. Ultrasensitive detection of low-abundance surface-marker protein using isothermal rolling circle amplification in a microfluidic nanoliter platform.

    PubMed

    Konry, Tania; Smolina, Irina; Yarmush, Joel M; Irimia, Daniel; Yarmush, Martin L

    2011-02-07

    With advances in immunology and cancer biology, there is an unmet need for increasingly sensitive systems to monitor the expression of specific cell markers for the development of new diagnostic and therapeutic tools. To address this challenge, a highly sensitive labeling method that translates antigen-antibody recognition processes into DNA detection events that can be greatly amplified via isothermal rolling circle amplification (RCA) is applied. By merging the single-molecule detection power of RCA reactions with microfluidic technology, it is demonstrated that the identification of specific protein markers can be achieved on tumor-cell surfaces in miniaturized nanoliter reaction droplets. Furthermore, this combined approach of signal amplification in a microfluidic format could extend the utility of existing methods by reducing sample and reagent consumption and enhancing the sensitivities and specificities for various applications, including early diagnosis of cancer.

  19. Light differentially regulates cell division and the mRNA abundance of pea nucleolin during de-etiolation

    NASA Technical Reports Server (NTRS)

    Reichler, S. A.; Balk, J.; Brown, M. E.; Woodruff, K.; Clark, G. B.; Roux, S. J.

    2001-01-01

    The abundance of plant nucleolin mRNA is regulated during de-etiolation by phytochrome. A close correlation between the mRNA abundance of nucleolin and mitosis has also been previously reported. These results raised the question of whether the effects of light on nucleolin mRNA expression were a consequence of light effects on mitosis. To test this we compared the kinetics of light-mediated increases in cell proliferation with that of light-mediated changes in the abundance of nucleolin mRNA using plumules of dark-grown pea (Pisum sativum) seedlings. These experiments show that S-phase increases 9 h after a red light pulse, followed by M-phase increases in the plumule leaves at 12 h post-irradiation, a time course consistent with separately measured kinetics of red light-induced increases in the expression of cell cycle-regulated genes. These increases in cell cycle-regulated genes are photoreversible, implying that the light-induced increases in cell proliferation are, like nucleolin mRNA expression, regulated via phytochrome. Red light stimulates increases in the mRNA for nucleolin at 6 h post-irradiation, prior to any cell proliferation changes and concurrent with the reported timing of phytochrome-mediated increases of rRNA abundance. After a green light pulse, nucleolin mRNA levels increase without increasing S-phase or M-phase. Studies in animals and yeast indicate that nucleolin plays a significant role in ribosome biosynthesis. Consistent with this function, pea nucleolin can rescue nucleolin deletion mutants of yeast that are defective in rRNA synthesis. Our data show that during de-etiolation, the increased expression of nucleolin mRNA is more directly regulated by light than by mitosis.

  20. Effect of oocyte quality on the relative abundance of specific gene transcripts in bovine mature oocytes and 16-cell embryos

    PubMed Central

    Bilodeau-Goeseels, Sylvie

    2003-01-01

    Although the developmental potential of oocytes is related to oocyte quality, whether the expression of specific genes is altered in oocytes of different quality and in resulting embryos is not known. Semi-quantitative reverse transcription-polymerase chain reaction was used to compare the relative abundance of 2 transcripts for housekeeping proteins (β-actin and ribosomal protein L30) and 3 transcripts for growth factor ligand or receptors (platelet derived growth factor receptor α (PDGFRα), basic fibroblast growth factor (bFGF)), in mature bovine oocytes of high versus low developmental potential. The transcripts for L30, PDGFRα, and bFGF in 16-cell embryos originating from these oocytes were also examined. No significant effect of oocyte quality was detected for any of the transcripts examined from oocytes or 16-cell embryos. In conclusion, a lower developmental potential of oocytes with advanced signs of atresia, was not associated with a lower level of abundance of the transcripts examined. PMID:12760483

  1. Protein covalent immobilization via its scarce thiol versus abundant amine groups: Effect on orientation, cell binding domain exposure and conformational lability.

    PubMed

    Ba, O M; Hindie, M; Marmey, P; Gallet, O; Anselme, K; Ponche, A; Duncan, A C

    2015-10-01

    Quantity, orientation, conformation and covalent linkage of naturally cell adhesive proteins adsorbed or covalently linked to a surface, are known to influence the preservation of their subsequent long term cell adhesion properties and bioactivity. In the present work, we explore two different strategies for the covalent linking of plasma fibronectin (pFN) - used as a cell adhesive model protein, onto a polystyrene (PS) surface. One is aimed at tethering the protein to the surface in a semi-oriented fashion (via one of the 4 free thiol reactive groups on the protein) with a heterofunctional coupling agent (SSMPB method). The other aims to immobilize the protein in a more random fashion by reaction between the abundant pendant primary amine bearing amino acids of the pFN and activated carboxylic surface functions obtained after glutaric anhydride surface treatment (GA method). The overall goal will be to verify the hypothesis of a correlation between covalent immobilization of a model cell adhesive protein to a PS surface in a semi-oriented configuration (versus randomly oriented) with promotion of enhanced exposure of the protein's cell binding domain. This in turn would lead to enhanced cell adhesion. Ideally the goal is to elaborate substrates exhibiting a long term stable protein monolayer with preserved cell adhesive properties and bioactivity for biomaterial and/or cell adhesion commercial plate applications. However, the initial restrictive objective of this paper is to first quantitatively and qualitatively investigate the reversibly (merely adsorbed) versus covalently irreversibly bound protein to the surface after the immobilization procedure. Although immobilized surface amounts were similar (close to the monolayer range) for all immobilization approaches, covalent grafting showed improved retention and stronger "tethering" of the pFN protein to the surface (roughly 40%) after SDS rinsing compared to that for mere adsorption (0%) suggesting an added value

  2. Living Toroids - Cells on Toroidal Surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Angelini, Thomas; Marquez, Samantha; Kim, Harold; Fernandez-Nieves, Alberto

    2014-03-01

    Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. Substrate mechanics has been recognized as one of the important physical cues that governs cell behavior at single cell level as well as in collective cell motion. Past research has suggested several contact-guided behaviors to be the result of surface curvature. However, studies on the effect of curvature are relatively scarce likely due to the difficulty in generating substrates with well-defined curvature. Here we describe the generation of toroidal droplets, which unlike spherical droplets, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus. Cells are either encapsulated inside toroidal droplets or located on toroidal hydrogel surfaces. Preliminary studies use B. Subtilis to study the organization of bacteria biofilms. When confined in droplets surrounded by yield-stress fluid, bacteria self-organize into heterogeneous biofilm at fluid- substrate interface. It is found that the surface curvature in the sub-millimeter scale has little effect on biofilm architecture.

  3. Helium-abundance and other composition effects on the properties of stellar surface convection in solar-like main-sequence stars

    SciTech Connect

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre

    2013-12-01

    We investigate the effect of helium abundance and α-element enhancement on the properties of convection in envelopes of solar-like main-sequence stars using a grid of three-dimensional radiation hydrodynamic simulations. Helium abundance increases the mean molecular weight of the gas and alters opacity by displacing hydrogen. Since the scale of the effect of helium may depend on the metallicity, the grid consists of simulations with three helium abundances (Y = 0.1, 0.2, 0.3), each with two metallicities (Z = 0.001, 0.020). We find that changing the helium mass fraction generally affects structure and convective dynamics in a way opposite to that of metallicity. Furthermore, the effect is considerably smaller than that of metallicity. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular weight. A simple model for spectral line formation suggests that the bisectors and absolute Doppler shifts of spectral lines depend on the helium abundance. We look at the effect of α-element enhancement and find that it has a considerably smaller effect on the convective dynamics in the superadiabatic layer compared to that of helium abundance.

  4. Specialized cell surface structures in cellulolytic bacteria.

    PubMed

    Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A

    1987-08-01

    The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose.

  5. Specialized cell surface structures in cellulolytic bacteria.

    PubMed Central

    Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A

    1987-01-01

    The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose. Images PMID:3301817

  6. Reversibility of cell surface label rearrangement

    PubMed Central

    1976-01-01

    Cell surface labeling can cause rearrangements of randomly distributed membrane components. Removal of the label bound to the cell surface allows the membrane components to return to their original random distribution, demonstrating that label is necessary to maintain as well as to induce rearrangements. With scanning electron microscopy, the rearrangement of concanavalin A (con A) and ricin binding sites on LA-9 cells has been followed by means of hemocyanin, a visual label. The removal of con A from its binding sites at the cell surface with alpha- methyl mannoside, and the return of these sites to their original distribution are also followed in this manner. There are labeling differences with con A and ricin. Under some conditions, however, the same rearrangements are seen with both lectins. The disappearance of labeled sites from areas of ruffling activity is a major feature of the rearrangements seen. Both this ruffling activity and the rearrangement of label are sensitive to cytochalasin B, and ruffling activity, perhaps along with other cytochalasin-sensitive structure, may play a role in the rearrangements of labeled sites. PMID:1025154

  7. Engineering novel cell surface chemistry for selective tumor cell targeting

    SciTech Connect

    Bertozzi, C.R. |

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  8. Low abundance of mitochondrial DNA changes mitochondrial status and renders cells resistant to serum starvation and sodium nitroprusside insult.

    PubMed

    Lee, Sung Ryul; Heo, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In Sung; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Han, Jin

    2015-07-01

    Mutation or depletion of mitochondrial DNA (mtDNA) can cause severe mitochondrial malfunction, originating from the mitochondrion itself, or from the crosstalk between nuclei and mitochondria. However, the changes that would occur if the amount of mtDNA is diminished are less known. Thus, we generated rat myoblast H9c2 cells containing lower amounts of mtDNA via ethidium bromide and uridine supplementation. After confirming the depletion of mtDNA by quantitative PCR and gel electrophoresis analysis, we investigated the changes in mitochondrial physical parameters by using flow cytometry. We also evaluated the resistance of these cells to serum starvation and sodium nitroprusside. H9c2 cells with diminished mtDNA contents showed decreased mitochondrial membrane potential, mass, free calcium, and zinc ion contents as compared to naïve H9c2 cells. Furthermore, cytosolic and mitochondrial reactive oxygen species levels were significantly higher in mtDNA-lowered H9c2 cells than in the naïve cells. Although the oxygen consumption rate and cell proliferation were decreased, mtDNA-lowered H9c2 cells were more resistant to serum deprivation and nitroprusside insults than the naïve H9c2 cells. Taken together, we conclude that the low abundance of mtDNA cause changes in cellular status, such as changes in reactive oxygen species, calcium, and zinc ion levels inducing resistance to stress.

  9. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    PubMed

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion.

  10. Bacterial cell surface structures in Yersinia enterocolitica.

    PubMed

    Białas, Nataniel; Kasperkiewicz, Katarzyna; Radziejewska-Lebrecht, Joanna; Skurnik, Mikael

    2012-06-01

    Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.

  11. Abundant expression of HIV target cells and C-type lectin receptors in the foreskin tissue of young Kenyan men.

    PubMed

    Hirbod, Taha; Bailey, Robert C; Agot, Kawango; Moses, Stephen; Ndinya-Achola, Jeckoniah; Murugu, Ruth; Andersson, Jan; Nilsson, Jakob; Broliden, Kristina

    2010-06-01

    A biological explanation for the reduction in HIV-1 (HIV) acquisition after male circumcision may be that removal of the foreskin reduces the number of target cells for HIV. The expression of potential HIV target cells and C-type lectin receptors in foreskin tissue of men at risk of HIV infection were thus analyzed. Thirty-three foreskin tissue samples, stratified by Herpes simplex virus type 2 status, were obtained from a randomized, controlled trial conducted in Kenya. The samples were analyzed by confocal in situ imaging microscopy and mRNA quantification by quantitative RT-qPCR. The presence and location of T cells (CD3(+)CD4(+)), Langerhans cells (CD1a(+)Langerin/CD207(+)), macrophages (CD68(+) or CD14(+)), and submucosal dendritic cells (CD123(+)BDCA-2(+) or CD11c(+)DC-SIGN(+)) were defined. C-type lectin receptor expressing cells were detected in both the epithelium and submucosa, and distinct lymphoid aggregates densely populated with CD3(+)CD4(+) T cells were identified in the submucosa. Although the presence of lymphoid aggregates and mRNA expression of selected markers varied between study subjects, Herpes simplex virus type 2 serostatus was not the major determinant for the detected differences. The detection of abundant and superficially present potential HIV target cells and submucosal lymphoid aggregates in foreskin mucosa from a highly relevant HIV risk group demonstrate a possible anatomical explanation that may contribute to the protective effect of male circumcision on HIV transmission.

  12. Cell surface receptors for CCN proteins.

    PubMed

    Lau, Lester F

    2016-06-01

    The CCN family (CYR61; CTGF; NOV; CCN1-6; WISP1-3) of matricellular proteins in mammals is comprised of six homologous members that play important roles in development, inflammation, tissue repair, and a broad range of pathological processes including fibrosis and cancer. Despite considerable effort to search for a high affinity CCN-specific receptor akin to growth factor receptors, no such receptor has been found. Rather, CCNs bind several groups of multi-ligand receptors as characteristic of other matricellular proteins. The most extensively documented among CCN-binding receptors are integrins, including αvβ3, αvβ5, α5β1, α6β1, αIIbβ3, αMβ2, and αDβ2, which mediate diverse CCN functions in various cell types. CCNs also bind cell surface heparan sulfate proteoglycans (HSPGs), low density liproprotein receptor-related proteins (LRPs), and the cation-independent mannose-6-phosphate (M6P) receptor, which are endocytic receptors that may also serve as co-receptors in cooperation with other cell surface receptors. CCNs have also been reported to bind FGFR-2, Notch, RANK, and TrkA, potentially altering the affinities of these receptors for their ligands. The ability of CCNs to bind a multitude of receptors in various cell types may account for the remarkable versatility of their functions, and underscore the diverse signaling pathways that mediate their activities.

  13. Increased Abundance of M Cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility.

    PubMed

    Donaldson, David S; Sehgal, Anuj; Rios, Daniel; Williams, Ifor R; Mabbott, Neil A

    2016-12-01

    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain. To replicate within Peyer's patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer's patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer's patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases.

  14. Increased Abundance of M Cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility

    PubMed Central

    Sehgal, Anuj; Rios, Daniel

    2016-01-01

    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer’s patches is essential for the efficient spread of disease to the brain. To replicate within Peyer’s patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer’s patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer’s patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases

  15. Shape-memory surfaces for cell mechanobiology

    PubMed Central

    Ebara, Mitsuhiro

    2015-01-01

    Shape-memory polymers (SMPs) are a new class of smart materials, which have the capability to change from a temporary shape ‘A’ to a memorized permanent shape ‘B’ upon application of an external stimulus. In recent years, SMPs have attracted much attention from basic and fundamental research to industrial and practical applications due to the cheap and efficient alternative to well-known metallic shape-memory alloys. Since the shape-memory effect in SMPs is not related to a specific material property of single polymers, the control of nanoarchitecture of polymer networks is particularly important for the smart functions of SMPs. Such nanoarchitectonic approaches have enabled us to further create shape-memory surfaces (SMSs) with tunable surface topography at nano scale. The present review aims to bring together the exciting design of SMSs and the ever-expanding range of their uses as tools to control cell functions. The goal for these endeavors is to mimic the surrounding mechanical cues of extracellular environments which have been considered as critical parameters in cell fate determination. The untapped potential of SMSs makes them one of the most exciting interfaces of materials science and cell mechanobiology. PMID:27877747

  16. Shape-memory surfaces for cell mechanobiology

    NASA Astrophysics Data System (ADS)

    Ebara, Mitsuhiro

    2015-02-01

    Shape-memory polymers (SMPs) are a new class of smart materials, which have the capability to change from a temporary shape ‘A’ to a memorized permanent shape ‘B’ upon application of an external stimulus. In recent years, SMPs have attracted much attention from basic and fundamental research to industrial and practical applications due to the cheap and efficient alternative to well-known metallic shape-memory alloys. Since the shape-memory effect in SMPs is not related to a specific material property of single polymers, the control of nanoarchitecture of polymer networks is particularly important for the smart functions of SMPs. Such nanoarchitectonic approaches have enabled us to further create shape-memory surfaces (SMSs) with tunable surface topography at nano scale. The present review aims to bring together the exciting design of SMSs and the ever-expanding range of their uses as tools to control cell functions. The goal for these endeavors is to mimic the surrounding mechanical cues of extracellular environments which have been considered as critical parameters in cell fate determination. The untapped potential of SMSs makes them one of the most exciting interfaces of materials science and cell mechanobiology.

  17. Shape-memory surfaces for cell mechanobiology.

    PubMed

    Ebara, Mitsuhiro

    2015-02-01

    Shape-memory polymers (SMPs) are a new class of smart materials, which have the capability to change from a temporary shape 'A' to a memorized permanent shape 'B' upon application of an external stimulus. In recent years, SMPs have attracted much attention from basic and fundamental research to industrial and practical applications due to the cheap and efficient alternative to well-known metallic shape-memory alloys. Since the shape-memory effect in SMPs is not related to a specific material property of single polymers, the control of nanoarchitecture of polymer networks is particularly important for the smart functions of SMPs. Such nanoarchitectonic approaches have enabled us to further create shape-memory surfaces (SMSs) with tunable surface topography at nano scale. The present review aims to bring together the exciting design of SMSs and the ever-expanding range of their uses as tools to control cell functions. The goal for these endeavors is to mimic the surrounding mechanical cues of extracellular environments which have been considered as critical parameters in cell fate determination. The untapped potential of SMSs makes them one of the most exciting interfaces of materials science and cell mechanobiology.

  18. New method for estimating bacterial cell abundances in natural samples by use of sublimation.

    PubMed

    Glavin, Daniel P; Cleaves, H James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L

    2004-10-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  19. New method for estimating bacterial cell abundances in natural samples by use of sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Cleaves, H. James; Schubert, Michael; Aubrey, Andrew; Bada, Jeffrey L.

    2004-01-01

    We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500 degrees C for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from approximately 10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DAPI (4,6-diamidino-2-phenylindole) staining.

  20. Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line

    PubMed Central

    Lau, Nelson C.; Robine, Nicolas; Martin, Raquel; Chung, Wei-Jen; Niki, Yuzo; Berezikov, Eugene; Lai, Eric C.

    2009-01-01

    Piwi proteins, a subclass of Argonaute-family proteins, carry ∼24–30-nt Piwi-interacting RNAs (piRNAs) that mediate gonadal defense against transposable elements (TEs). We analyzed the Drosophila ovary somatic sheet (OSS) cell line and found that it expresses miRNAs, endogenous small interfering RNAs (endo-siRNAs), and piRNAs in abundance. In contrast to intact gonads, which contain mixtures of germline and somatic cell types that express different Piwi-class proteins, OSS cells are a homogenous somatic cell population that expresses only PIWI and primary piRNAs. Detailed examination of its TE-derived piRNAs and endo-siRNAs revealed aspects of TE defense that do not rely upon ping-pong amplification. In particular, we provide evidence that a subset of piRNA master clusters, including flamenco, are specifically expressed in OSS and ovarian follicle cells. These data indicate that the restriction of certain TEs in somatic gonadal cells is largely mediated by a primary piRNA pathway. PMID:19541914

  1. Collapse of the sea surface stability during the Miocene to Quartenary in the Western Pacific Ocean, indicated by Discoaster abundance and Coccolith size change

    NASA Astrophysics Data System (ADS)

    Sato, T.; Pratiwi, S. D.; Farida, M.

    2013-12-01

    We describe in detail the middle Miocene to Pleistocene paleoceanography of the Western Pacific Ocean based on calcareous nannofossils. Abundantly occurrence of discoasters, which indicates the stable sea surface stratification and the development of thermo- and nutri-cline, are found in the interval from NN2 to NN4 zones of the early Miocene. The relative abundance of discoaster is decreased in the NN4-5 zone and it changed to very rare above NN10 (B in Fig.1). These characteristics are found in both Sites 805 and 782. Focusing to the mean size of Reticulofenestra species, it decreased at NN4-5 zone (A in Fig 2), and lower part of NN11 (B in Fig. 2). The presence of larger size Reticulofenestra species also show the oligotrophic conditions of sea surface with thermocline. On the basis of these results, the collapse of the stability of the sea surface stratification in the Western Pacific Ocean progressed throughout the Miocene to Quaternary. As the results, nutrient conditions of sea surface in these area were changed in steps from oligotrophic to eutrophic conditions at NN4-5 and lower part of NN11 (A and B in Fig. 2). These datum related to collapse of sea surface conditions, is cleary correlated to the timing of the end of Mid-Miocene Climatic Optimum (A) and the intensify of the Asian Monsoon (B; Fig. 2).

  2. Selective labelling of cell-surface proteins using CyDye DIGE Fluor minimal dyes.

    PubMed

    Hagner-McWhirter, Asa; Winkvist, Maria; Bourin, Stephanie; Marouga, Rita

    2008-11-26

    Surface proteins are central to the cell's ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.

  3. CDK-Dependent Hsp70 Phosphorylation Controls G1 Cyclin Abundance and Cell-Cycle Progression

    PubMed Central

    Truman, Andrew W.; Kristjansdottir, Kolbrun; Wolfgeher, Donald; Hasin, Naushaba; Polier, Sigrun; Zhang, Hong; Perrett, Sarah; Prodromou, Chrisostomos; Jones, Gary W.; Kron, Stephen J.

    2012-01-01

    Summary In budding yeast, the essential functions of Hsp70 chaperones Ssa1–4 are regulated through expression level, isoform specificity, and cochaperone activity. Suggesting a novel regulatory paradigm, we find that phosphorylation of Ssa1 T36 within a cyclin-dependent kinase (CDK) consensus site conserved among Hsp70 proteins alters cochaperone and client interactions. T36 phosphorylation triggers displacement of Ydj1, allowing Ssa1 to bind the G1 cyclin Cln3 and promote its degradation. The stress CDK Pho85 phosphorylates T36 upon nitrogen starvation or pheromone stimulation, destabilizing Cln3 to delay onset of S phase. In turn, the mitotic CDK Cdk1 phosphorylates T36 to block Cln3 accumulation in G2/M. Suggesting broad conservation from yeast to human, CDK-dependent phosphorylation of Hsc70 T38 similarly regulates Cyclin D1 binding and stability. These results establish an active role for Hsp70 chaperones as signal transducers mediating growth control of G1 cyclin abundance and activity. PMID:23217712

  4. Direct Correlation between Motile Behavior and Protein Abundance in Single Cells

    PubMed Central

    Gillet, Sébastien; Frankel, Nicholas W.; Weibel, Douglas B.

    2016-01-01

    Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different levels, we quantitatively mapped motile phenotype (tumble bias) to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage. PMID:27599206

  5. Substrate recognition by the cell surface palmitoyl transferase DHHC5.

    PubMed

    Howie, Jacqueline; Reilly, Louise; Fraser, Niall J; Vlachaki Walker, Julia M; Wypijewski, Krzysztof J; Ashford, Michael L J; Calaghan, Sarah C; McClafferty, Heather; Tian, Lijun; Shipston, Michael J; Boguslavskyi, Andrii; Shattock, Michael J; Fuller, William

    2014-12-09

    The cardiac phosphoprotein phospholemman (PLM) regulates the cardiac sodium pump, activating the pump when phosphorylated and inhibiting it when palmitoylated. Protein palmitoylation, the reversible attachment of a 16 carbon fatty acid to a cysteine thiol, is catalyzed by the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases. The cell surface palmitoyl acyltransferase DHHC5 regulates a growing number of cellular processes, but relatively few DHHC5 substrates have been identified to date. We examined the expression of DHHC isoforms in ventricular muscle and report that DHHC5 is among the most abundantly expressed DHHCs in the heart and localizes to caveolin-enriched cell surface microdomains. DHHC5 coimmunoprecipitates with PLM in ventricular myocytes and transiently transfected cells. Overexpression and silencing experiments indicate that DHHC5 palmitoylates PLM at two juxtamembrane cysteines, C40 and C42, although C40 is the principal palmitoylation site. PLM interaction with and palmitoylation by DHHC5 is independent of the DHHC5 PSD-95/Discs-large/ZO-1 homology (PDZ) binding motif, but requires a ∼ 120 amino acid region of the DHHC5 intracellular C-tail immediately after the fourth transmembrane domain. PLM C42A but not PLM C40A inhibits the Na pump, indicating PLM palmitoylation at C40 but not C42 is required for PLM-mediated inhibition of pump activity. In conclusion, we demonstrate an enzyme-substrate relationship for DHHC5 and PLM and describe a means of substrate recruitment not hitherto described for this acyltransferase. We propose that PLM palmitoylation by DHHC5 promotes phospholipid interactions that inhibit the Na pump.

  6. Knowledge discovery of cell-cell and cell-surface interactions

    NASA Astrophysics Data System (ADS)

    Su, Jing

    High-throughput cell culture is an emerging technology that shows promise as a tool for research in tissue engineering, drug discovery, and medical diagnostics. An important, but overlooked, challenge is the integration of experimental methods with information processing suitable for handling large databases of cell-cell and cell-substrate interactions. In this work the traditional global descriptions of cell behaviors and surface characteristics was shown insufficient for investigating short-distance cell-to-cell and cell-to-surface interactions. Traditional summary metrics cannot distinguish information of cell near neighborhood from the average, global features, thus often is not suitable for studying distance-sensitive cell behaviors. The problem of traditional summary metrics was addressed by introducing individual-cell based local metrics that emphasize cell local environment. An individual-cell based local data analysis method was established. Contact inhibition of cell proliferation was used as a benchmark for the effectiveness of the local metrics and the method. Where global, summary metrics were unsuccessful, the local metrics successfully and quantitatively distinguished the contact inhibition effects of MC3T3-E1 cells on PLGA, PCL, and TCPS surfaces. In order to test the new metrics and analysis method in detail, a model of cell contact inhibition was proposed. Monte Carlo simulation was performed for validating the individual-cell based local data analysis method as well as the cell model itself. The simulation results well matched with the experimental observations. The parameters used in the cell model provided new descriptions of both cell behaviors and surface characteristics. Based on the viewpoint of individual cells, the local metrics and local data analysis method were extended to the investigation of cell-surface interactions, and a new high-throughput screening and knowledge discovery method on combinatorial libraries, local cell

  7. Specific and Abundant Secretion of a Novel Hydroxyproline-Rich Glycoprotein from Salt-Adapted Winged Bean Cells 1

    PubMed Central

    Esaka, Muneharu; Hayakawa, Hiromi; Hashimoto, Mami; Matsubara, Naomi

    1992-01-01

    Winged bean callus was adapted to increasing concentrations of NaCl by sequential transfer to medium with 0, 0.5, 1.0, 1.5, and 2.0% (w/v) NaCl. When the culture media, after cell suspension cultures of callus adapted to 0.5 (SA-0.5), 1.0 (SA-1.0), 1.5 (SA-1.5), or 2.0% (w/v) NaCl (SA-2.0), were analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis, six specific or enhanced polypeptide bands (SAP1, -2, -3, -4, -5, and -6) were observed. SAP1, with a molecular weight of 84,000, was abundantly secreted in suspension cultures of SA-1.0 and SA-1.5, and was observed as the most striking polypeptide band. The SAP1 yield was about 4 mg/g cells fresh weight. SAP1 was abundantly secreted after the suspension culture of SA-1.0 in the presence of AlCl3, but little was secreted in the presence of KCl, LiCl, CaCl2, MgCl2, mannitol, sucrose, or abscisic acid. SAP1 was purified from the culture medium after suspension culture of SA-1.0 in the presence of 1.0% (w/v) NaCl. Two steps, ammonium sulfate fractionation and CM-cellulose chromatography, were sufficient for purification to homogeneity. Finally, about 5 mg of SAP1 could be isolated from 7 g of fresh callus cells. Of the amino-terminal 32 amino acid residues of SAP1, 10 and 5 were found to be hydroxyproline and proline, respectively. SAP1 on an acrylamide gel was stained by the periodic acid-Schiff method. It is interesting that SAP1 has pentahydroxyproline blocks (Hyp5) instead of tetrahydroxyproline blocks (Hyp4) common to many hydroxyproline-rich glycoproteins in dicotyledons. Thus, this novel hydroxyproline-rich glycoprotein was shown to be abundantly secreted from NaCl-adapted winged bean cells. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:16653126

  8. Diversity and abundance of n-alkane-degrading bacteria in the near-surface soils of a Chinese onshore oil and gas field

    NASA Astrophysics Data System (ADS)

    Xu, K.; Tang, Y.; Ren, C.; Zhao, K.; Sun, Y.

    2013-03-01

    Alkane-degrading bacteria have long been used as an important biological indicator for oil and gas prospecting, but their ecological characteristics in hydrocarbon microseep habitats are still poorly understood. In this study, the diversity and abundance of n-alkane-degrading bacterial community in the near-surface soils of a Chinese onshore oil and gas field were investigated using molecular techniques. Terminal restriction fragment length polymorphism (T-RFLP) analyses in combination with cloning and sequencing of alkB genes revealed that Gram-negative genotypes (Alcanivorax and Acinetobacter) dominated n-alkane-degrading bacterial communities in the near-surface soils of oil and gas reservoirs, while the dominant microbial communities were Gram-positive bacteria (Mycobacterium and Rhodococcus) in background soil. Real-time quantitative polymerase chain reaction (PCR) results furthermore showed that the abundance of alkB genes increased substantially in the surface soils above oil and gas reservoirs even though only low or undetectable concentrations of hydrocarbons were measured in these soils. The results of this study implicate that trace amounts of volatile hydrocarbons migrate from oil and gas reservoirs, and likely result in the changes of microbial communities in the near-surface soil.

  9. The CoRoT-GES Collaboration: Improving red giants spectroscopic surface gravitity and abundances with asteroseismology

    NASA Astrophysics Data System (ADS)

    Valentini, M.; Chiappini, C.; Miglio, A.; Montalbán, J.; Rodrigues, T.; Mosser, B.; Anders, F.; the CoRoT RG Group; GES Consortium, the

    2016-09-01

    Nowadays large spectroscopic surveys, like the Gaia-ESO Survey (GES), provide unique stellar databases for better investigating the formation and evolution of our Galaxy. Great attention must be paid to the accuracy of the basic stellar properties derived: large uncertainties in stellar parameters lead to large uncertainties in abundances, distances and ages. Asteroseismology has a key role in this context: when seismic information is combined with information derived from spectroscopic analysis, highly precise constraints on distances, masses, extinction and ages of red giants can be obtained. In the light of this promising joint action, we started the CoRoT-GES collaboration. We present a set of 1111 CoRoT stars, observed by GES from December 2011 to July 2014, these stars belong to the CoRoT field LRc01, pointing at the inner Galactic disk. Among these stars, 534 have reliable global seismic parameters. By combining seismic informations and spectroscopy, we derived precise stellar parameters, ages, kinematic and orbital parameters and detailed element abundances for this sample of stars. We also show that, thanks to asteroseismology, we are able to obtain a higher precision than what can be achieved by the standard spectroscopic means. This sample of CoRoT red giants, spanning Galactocentric distances from 5 to 8 kpc and a wide age interval (1-13 Gyr), provides us a representative sample for the inner disk population.

  10. Driving factors behind the distribution of dinocyst composition and abundance in surface sediments in a western Mediterranean coastal lagoon: report from a high resolution mapping study.

    PubMed

    Fertouna-Bellakhal, Mouna; Dhib, Amel; Béjaoui, Béchir; Turki, Souad; Aleya, Lotfi

    2014-07-15

    Species composition and abundance of dinocysts in relation to environmental factors were studied at 123 stations of surface sediment in Bizerte Lagoon. Forty-eight dinocyst types were identified, mainly dominated by Brigantidinium simplex, Votadinum spinosum, Alexandrium pseudogonyaulax, Alexandrium catenella, and Lingulodinum machaerophorum along with many round brown cysts and spiny round brown cysts. Cysts ranged from 1276 to 20126 cysts g(-1)dry weight sediment. Significant differences in cyst distribution pattern were recorded among the zones, with a higher cyst abundance occurring in the lagoon's inner areas. Redundancy analyses showed two distinct associations of dinocysts according to location and environmental variables. Ballast water discharges are potential introducers of non-indigenous species, especially harmful ones such as A. catenella and Polysphaeridium zoharyi, with currents playing a pivotal role in cyst distribution. Findings concerning harmful cyst species indicate potential seedbeds for initiation of future blooms and outbreaks of potentially toxic species in the lagoon.

  11. Glucose Transporters are Abundant in Cells with "Occluding" Junctions at the Blood-Eye Barriers

    NASA Astrophysics Data System (ADS)

    Harik, Sami I.; Kalaria, Rajesh N.; Whitney, Paul M.; Andersson, Lars; Lundahl, Per; Ledbetter, Steven R.; Perry, George

    1990-06-01

    We studied the distribution of the "erythroid/brain" glucose transporter protein in the human and rat eye by immunocytochemistry with monoclonal and polyclonal antibodies to the C terminus of the human erythrocyte glucose transporter. We found intense immunocytochemical staining in the endothelium of microvessels of the retina, optic nerve, and iris but not in microvessels of the choroid, ciliary body, sclera, and other retro-orbital tissues. In addition, we found marked immunocytochemical staining of retinal pigment epithelium, ciliary body epithelium, and posterior epithelium of the iris. The common feature of all those endothelial and epithelial cells that stained intensely for the glucose transporter is the presence of "occluding" intercellular junctions, which constitute the anatomical bases of the blood-eye barriers. We propose that a high density of the glucose transporter is a biochemical concomitant of epithelial and endothelial cells with barrier characteristics, at least in tissues that have a high metabolic requirement for glucose.

  12. Cell-Surface Phenol Soluble Modulins Regulate Staphylococcus aureus Colony Spreading

    PubMed Central

    Kizaki, Hayato; Omae, Yosuke; Tabuchi, Fumiaki; Saito, Yuki; Sekimizu, Kazuhisa

    2016-01-01

    Staphylococcus aureus produces phenol-soluble modulins (PSMs), which are amphipathic small peptides with lytic activity against mammalian cells. We previously reported that PSMα1–4 stimulate S. aureus colony spreading, the phenomenon of S. aureus colony expansion on the surface of soft agar plates, whereas δ-toxin (Hld, PSMγ) inhibits colony-spreading activity. In this study, we revealed the underlying mechanism of the opposing effects of PSMα1–4 and δ-toxin in S. aureus colony spreading. PSMα1–4 and δ-toxin are abundant on the S. aureus cell surface, and account for 18% and 8.5% of the total amount of PSMα1–4 and δ-toxin, respectively, in S. aureus overnight cultures. Knockout of PSMα1–4 did not affect the amount of cell surface δ-toxin. In contrast, knockout of δ-toxin increased the amount of cell surface PSMα1–4, and decreased the amount of culture supernatant PSMα1–4. The δ-toxin inhibited PSMα3 and PSMα2 binding to the S. aureus cell surface in vitro. A double knockout strain of PSMα1–4 and δ-toxin exhibited decreased colony spreading compared with the parent strain. Expression of cell surface PSMα1–4, but not culture supernatant PSMα1–4, restored the colony-spreading activity of the PSMα1-4/δ-toxin double knockout strain. Expression of δ-toxin on the cell surface or in the culture supernatant did not restore the colony-spreading activity of the PSMα1-4/δ-toxin double knockout strain. These findings suggest that cell surface PSMα1–4 promote S. aureus colony spreading, whereas δ-toxin suppresses colony-spreading activity by inhibiting PSMα1–4 binding to the S. aureus cell surface. PMID:27723838

  13. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera.

    PubMed

    Kiely, Patrick D; Call, Douglas F; Yates, Matthew D; Regan, John M; Logan, Bruce E

    2010-09-01

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (approximately 30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m(2), whereas the original mixed culture produced up to 10 mW/m(2). Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m(2)) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates.

  14. Controlling cell-cell interactions using surface acoustic waves.

    PubMed

    Guo, Feng; Li, Peng; French, Jarrod B; Mao, Zhangming; Zhao, Hong; Li, Sixing; Nama, Nitesh; Fick, James R; Benkovic, Stephen J; Huang, Tony Jun

    2015-01-06

    The interactions between pairs of cells and within multicellular assemblies are critical to many biological processes such as intercellular communication, tissue and organ formation, immunological reactions, and cancer metastasis. The ability to precisely control the position of cells relative to one another and within larger cellular assemblies will enable the investigation and characterization of phenomena not currently accessible by conventional in vitro methods. We present a versatile surface acoustic wave technique that is capable of controlling the intercellular distance and spatial arrangement of cells with micrometer level resolution. This technique is, to our knowledge, among the first of its kind to marry high precision and high throughput into a single extremely versatile and wholly biocompatible technology. We demonstrated the capabilities of the system to precisely control intercellular distance, assemble cells with defined geometries, maintain cellular assemblies in suspension, and translate these suspended assemblies to adherent states, all in a contactless, biocompatible manner. As an example of the power of this system, this technology was used to quantitatively investigate the gap junctional intercellular communication in several homotypic and heterotypic populations by visualizing the transfer of fluorescent dye between cells.

  15. Distribution of cell surface saccharides on pancreatic cells

    PubMed Central

    Maylie-Pfenninger, M; Jamieson, JD

    1979-01-01

    We describe here a simple, general procedure for the purification of a variety of lectins, and for the preparation of lectin-ferritin conjugates of defined molar composition and binding properties to be used as probes for cell surface saccharides. The technique uses a “universal” affinity column for lectins and their conjugates, which consists of hog sulfated gastric mucin glycopeptides covalently coupled to agarose. The procedure involes: (a) purification of lectins by chromatography of aqueous extracts of seeds or other lectin-containing fluids over the affinity column, followed by desorption of the desired lectin with its hapten suge; (b) iodination of the lectin to serve as a marker during subsequent steps; (c) conjugation of lectin to ferritin with glutaraldehyde; (d) collection of active lectin-ferritin conjugates by affinity chromatography; and (e) separation of monomeric lectin-ferritin conjugates from larger aggregates and unconjugated lectin by gel chromatography. Based on radioactivity and absorbancy at 310 nm for lectin and ferritin, respectively, the conjugates consist of one to two molecules of lectin per ferrritin molecule. Binding studies of native lectins and their ferritin conjugates to dispersed pancreatic acinar cells showed that the conjugation procedure does not significantly alter either the affinity constant of the lectin for its receptor on the cell surface or the number of sites detected. PMID:422653

  16. Characterization of the abundant ≤0.2 μm cell-like particles inhabiting Lake Vida brine, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Kuhn, E.; Ichimura, A.; Peng, V.; Fritsen, C. H.; Murray, A. E.

    2011-12-01

    Most lakes in the McMurdo Dry Valleys are perennially covered with 3 to 6 m of ice, but Lake Vida is frozen from the surface through the lake bed, with ice permeated by brine channels. Brine collected from within the ice of Lake Vida is six times saltier than seawater, anoxic, with temperature of -13.4 C, pH of 6.2, high concentrations of ferrous iron (>300 μM), NH4+ (3.6 mM), and N2O (>58 μM), making it a unique environment. The first analysis of Vida brine microbial community (sampled in 2005) detected a cell rich environment (107 cells/mL), with cells falling into two size classes: ≥0.5 μm (105 cells/mL) and ~0.2 μm (107 cells/mL). Microorganisms in the domain Bacteria were detected, but Eukarya and Archaea were not. The clone library from 2005 identified Bacteria related to the phyla Proteobacteria (γ, δ, and ɛ), Lentisphaera, Firmicutes, Spirochaeta, Bacterioidetes, Actinobacteria, Verrucomicrobia, and candidate Division TM7. Brine samples were collected again in the austral summer of 2010 in which one of the focus areas is interrogating the ~0.2 μm cell size class. Molecular, imaging, and elemental analyses were employed to characterize the population of nano-sized particles (NP) that pass through 0.2 μm filters. The aim of testing was to determine whether or not these particles are cells with a morphology resulting from environmental stresses. These results are being compared to the same analyses applied in the whole brine microbial community. A 0.2 μm filtrate of brine incubated for 25 days at -13 C was collected on a 0.1 μm filter. Analysis of the 16S rRNA gene DGGE profile showed differences in the banding pattern and relative intensity when comparing the 0.2 μm filtrate to the whole brine community. A 16S rRNA clone library from the 0.2 μm filtrate indicated the presence of genera previously described in the 2005 whole brine community clone library like Pscychrobacter, Marinobacter, and members related to candidate Division TM7. Also, the

  17. Packed Red Blood Cells Are an Abundant and Proximate Potential Source of Nitric Oxide Synthase Inhibition

    PubMed Central

    Zwemer, Charles F.; Davenport, Robertson D.; Gomez-Espina, Juan; Blanco-Gonzalez, Elisa; Whitesall, Steven E.; D'Alecy, Louis G.

    2015-01-01

    Objective We determined, for packed red blood cells (PRBC) and fresh frozen plasma, the maximum content, and ability to release the endogenous nitric oxide synthase (NOS) inhibitors asymmetric dimethylarginine (ADMA) and monomethylarginine (LNMMA). Background ADMA and LNMMA are near equipotent NOS inhibitors forming blood’s total NOS inhibitory content. The balance between removal from, and addition to plasma determines their free concentrations. Removal from plasma is by well-characterized specific hydrolases while formation is restricted to posttranslational protein methylation. When released into plasma they can readily enter endothelial cells and inhibit NOS. Fresh rat and human whole blood contain substantial protein incorporated ADMA however; the maximum content of ADMA and LNMMA in PRBC and fresh frozen plasma has not been determined. Methods We measured total (free and protein incorporated) ADMA and LNMMA content in PRBCs and fresh frozen plasma, as well as their incubation induced release, using HPLC with fluorescence detection. We tested the hypothesis that PRBC and fresh frozen plasma contain substantial inhibitory methylarginines that can be released chemically by complete in vitro acid hydrolysis or physiologically at 37°C by enzymatic blood proteolysis. Results In vitro strong-acid-hydrolysis revealed a large PRBC reservoir of ADMA (54.5 ± 9.7 µM) and LNMMA (58.9 ± 28.9 μM) that persisted over 42-d at 6° or -80°C. In vitro 5h incubation at 37°C nearly doubled free ADMA and LNMMNA concentration from PRBCs while no change was detected in fresh frozen plasma. Conclusion The compelling physiological ramifications are that regardless of storage age, 1) PRBCs can rapidly release pathologically relevant quantities of ADMA and LNMMA when incubated and 2) PRBCs have a protein-incorporated inhibitory methylarginines reservoir 100 times that of normal free inhibitory methylarginines in blood and thus could represent a clinically relevant and proximate

  18. Seed banks in a degraded desert shrubland: Influence of soil surface condition and harvester ant activity on seed abundance

    USGS Publications Warehouse

    DeFalco, L.A.; Esque, T.C.; Kane, J.M.; Nicklas, M.B.

    2009-01-01

    We compared seed banks between two contrasting anthropogenic surface disturbances (compacted, trenched) and adjacent undisturbed controls to determine whether site condition influences viable seed densities of perennial and annual Mojave Desert species. Viable seeds of perennials were rare in undisturbed areas (3-4 seeds/m2) and declined to <1 seed/m2 within disturbed sites. Annual seed densities were an order of magnitude greater than those of perennials, were one-third the undisturbed seed densities on compacted sites, but doubled on trenched sites relative to controls. On trenched sites, greater litter cover comprising the infructescences of the dominant spring annuals, and low gravel content, enhanced seed densities of both annuals and perennials. Litter cover and surface ruggedness were the best explanations for viable perennial seed densities on compacted sites, but litter cover and the presence of a common harvester ant explained annual seed densities better than any other surface characteristics that were examined. Surface disturbances can have a varied impact on the condition of the soil surface in arid lands. Nevertheless, the consistently positive relationship between ground cover of litter and viable seed density emphasizes the importance of litter as an indicator of site degradation and recovery potential in arid lands.

  19. Cell type-specific abundance of 4EBP1 primes prostate cancer sensitivity or resistance to PI3K pathway inhibitors

    PubMed Central

    Hsieh, Andrew C.; Nguyen, Hao G.; Wen, Lexiaochuan; Edlind, Merritt P.; Carroll, Peter R.; Kim, Won; Ruggero, Davide

    2016-01-01

    Pharmacological inhibitors against the PI3K-AKT-mTOR pathway, a frequently deregulated signaling pathway in cancer, are clinically promising, but the development of drug resistance is a major limitation. We found that 4EBP1, the central inhibitor of cap-dependent translation, was a critical regulator of both prostate cancer initiation and maintenance downstream of mTOR signaling in a genetic mouse model. 4EBP1 abundance was distinctly different between the epithelial cell types of the normal prostate. Of tumor-prone prostate epithelial cell types, luminal epithelial cells exhibited the highest transcript and protein abundance of 4EBP1 and the lowest protein synthesis rates, which mediated resistance to the PI3K-AKT-mTOR pathway inhibitor MLN0128. Decreasing total 4EBP1 abundance reversed resistance in drug-sensitive cells. Increased 4EBP1 abundance was a common feature in prostate cancer patients that had been treated with the PI3K pathway inhibitor BKM120; thus 4EBP1 may be associated with drug resistance in human tumors. Our findings reveal a molecular program controlling cell type-specific 4EBP1 abundance coupled to the regulation of global protein synthesis rates that renders each epithelial cell type of the prostate uniquely sensitive or resistant to inhibitors of the PI3K-AKT-mTOR signaling pathway. PMID:26577921

  20. Sensitive detection using microfluidics technology of single cell PCR products from high and low abundance IgH VDJ templates in multiple myeloma.

    PubMed

    Pilarski, Linda M; Lauzon, Jana; Strachan, Erin; Adamia, Sophia; Atrazhev, Alexey; Belch, Andrew R; Backhouse, Christopher J

    2005-10-20

    Human cancer is inherently heterogeneous, so the ability to monitor individual cancer cells at every clinic visit would be a valuable tool. This work describes the first step towards developing handheld and automated devices for molecular and phenotypic analysis of cancer cells. Here, we show that use of capillary electrophoresis to detect PCR product amplified from either transcripts (high abundance template) or genomic DNA (low abundance template) encoding clonotypic immunoglobulin heavy chain VDJ of plasma cells from patients with multiple myeloma. High abundance IgH VDJ transcripts amplified in conventional systems or by capillary electrophoresis through channels on microfluidic chips or, alternatively, PCR product amplified from individual myeloma plasma cells in a single stage RT-PCR reaction was readily detectable on microfluidic chips. For low abundance templates, a nested PCR strategy was needed to detect PCR product by any method. Using microfluidic chips, PCR products amplified from genomic IgH VDJ DNA were detected in six out of eight plasma cells. Comparison of the ABI3100 and the microfluidic chip indicates that approximately 20 times more sample is injected into the ABI 3100 capillary than for the microfluidics chip. Overall, for high and low abundance template in individual cells, the microfluidic separation/detection system is at least as sensitive as the ABI 3100. In the future, integrated microfluidic platforms that incorporate both PCR cycling and product detection on the same chip are likely to exceed conventional systems in sensitivity and speed of genetic analysis by RT-PCR or PCR.

  1. Functions of red cell surface proteins.

    PubMed

    Daniels, G

    2007-11-01

    The external membrane of the red cell contains numerous proteins that either cross the lipid bilayer one or more times or are anchored to it through a lipid tail. Many of these proteins express blood group activity. The functions of some of these proteins are known; in others their function can only be surmised from the protein structure or from limited experimental evidence. They are loosely divided into four categories based on their functions: membrane transporters; adhesion molecules and receptors; enzymes; and structural proteins that link the membrane with the membrane skeleton. Some of the proteins carry out more than one of these functions. Some proteins may complete their major functions during erythropoiesis or may only be important under adverse physiological conditions. Furthermore, some might be evolutionary relics and may no longer have significant functions. Polymorphisms or rare changes in red cell surface proteins are often responsible for blood groups. The biological significance of these polymorphisms or the selective pressures responsible for their stability within populations are mostly not known, although exploitation of the proteins by pathogenic micro-organisms has probably played a major role.

  2. Cell surface fluctuations studied with defocusing microscopy

    NASA Astrophysics Data System (ADS)

    Agero, U.; Monken, C. H.; Ropert, C.; Gazzinelli, R. T.; Mesquita, O. N.

    2003-05-01

    Phase objects can become visible by slightly defocusing an optical microscope, a technique seldom used as a useful tool. We revisited the theory of defocusing and apply it to our optical microscope with optics corrected at infinity. In our approximation, we obtain that the image contrast is proportional to the two-dimensional (2D) Laplacian of the phase difference introduced by the phase object. If the index of refraction of the phase object is uniform the image obtained from defocusing microscopy is the image of curvature (Laplacian of the local thickness) of the phase object, while standard phase-contrast microscopy gives information about the thickness of the object. We made artificial phase objects and measured image contrasts with defocusing microscopy. Measured contrasts are in excellent agreement with our theoretical model. We use defocusing microscopy to study curvature fluctuations (ruffles) on the surface of macrophages (cell of the innate immune system), and try to correlate mechanical properties of macrophage surface and phagocytosis. We observe large coherent propagating structures: Their shape, speed, density are measured and curvature energy estimated. Inhomogeneities of cytoskeleton refractive index, curvature modulations due to thermal fluctuations and/or periodic changes in cytoskeleton-membrane interactions cause random fluctuations in image contrast. From the temporal and spatial contrast correlation functions, we obtain the decay time and correlation length of such fluctuations that are related to their size and the viscoelastic properties of the cytoskeleton. In order to associate the dynamics of cytoskeleton with the process of phagocytosis, we use an optical tweezers to grab a zymosan particle and put it into contact with the macrophage. We then measure the time for a single phagocytosis event. We add the drug cytochalasin D that depolymerizes the cytoskeleton F-actin network: It inhibits the large propagating coherent fluctuations on the

  3. Synthesis of Earth-abundant Cu2SnS3 for Solar Cells

    NASA Astrophysics Data System (ADS)

    Tiwari, D.; Chaudhuri, T. K.

    2011-07-01

    Cu2SnS3 (CTS) is an emerging semiconducting absorber layer material for solar cells having energy band gap of around 1 eV. In this work CTS powders has been synthesized from metal salts using different sulphur sources. It is found that thiourea yielded pure CTS. The composition of the prepared material has been confirmed by X-ray diffraction (XRD), which shows the CTS powder to be nanocrystalline with triclinic phase. Also the time of the completion of reaction has been optimized by studying the XRD pattern of the product at different time interval of reaction. The diffuse reflectance spectrum of CTS depicts the energy band gap for the sample to be 1.1 eV. The electrical measurement of the pellet of the CTS powders proves the material to have p-type conduction with thermoelectric coefficient of 95μV/K as determined from hot-probe method. The electrical conductivity of the pellet is 10-32 mho/cm.

  4. Dictyostelium cells migrate similarly on surfaces of varying chemical composition.

    PubMed

    McCann, Colin P; Rericha, Erin C; Wang, Chenlu; Losert, Wolfgang; Parent, Carole A

    2014-01-01

    During cell migration, cell-substrate binding is required for pseudopod anchoring to move the cell forward, yet the interactions with the substrate must be sufficiently weak to allow parts of the cell to de-adhere in a controlled manner during typical protrusion/retraction cycles. Mammalian cells actively control cell-substrate binding and respond to extracellular conditions with localized integrin-containing focal adhesions mediating mechanotransduction. We asked whether mechanotransduction also occurs during non-integrin mediated migration by examining the motion of the social amoeba Dictyostelium discoideum, which is thought to bind non-specifically to surfaces. We discovered that Dictyostelium cells are able to regulate forces generated by the actomyosin cortex to maintain optimal cell-surface contact area and adhesion on surfaces of various chemical composition and that individual cells migrate with similar speed and contact area on the different surfaces. In contrast, during collective migration, as observed in wound healing and metastasis, the balance between surface forces and protrusive forces is altered. We found that Dictyostelium collective migration dynamics are strongly affected when cells are plated on different surfaces. These results suggest that the presence of cell-cell contacts, which appear as Dictyostelium cells enter development, alter the mechanism cells use to migrate on surfaces of varying composition.

  5. Cell surface localization and release of the candidate tumor suppressor Ecrg4 from polymorphonuclear cells and monocytes activate macrophages

    PubMed Central

    Baird, Andrew; Coimbra, Raul; Dang, Xitong; Lopez, Nicole; Lee, Jisook; Krzyzaniak, Michael; Winfield, Robert; Potenza, Bruce; Eliceiri, Brian P.

    2012-01-01

    We identified fresh human leukocytes as an abundant source of the candidate epithelial tumor suppressor gene, Ecrg4, an epigenetically regulated gene, which unlike other tumor suppressor genes, encodes an orphan-secreted, ligand-like protein. In human cell lines, Ecrg4 gene expression was low, Ecrg4 protein undetectable, and Ecrg4 promoter hypermethylation high (45–90%) and reversible by the methylation inhibitor 5-AzaC. In contrast, Ecrg4 gene expression in fresh, normal human PBMCs and PMNs was 600–800 times higher than in cultured cell lines, methylation of the Ecrg4 promoter was low (<3%), and protein levels were readily detectable in lysates and on the cell surface. Flow cytometry, immunofluorescent staining, and cell surface biotinylation established that full-length, 14-kDa Ecrg4 was localized on PMN and monocyte cell surfaces, establishing that Ecrg4 is a membrane-anchored protein. LPS treatment induced processing and release of Ecrg4, as detected by flow and immunoblotting, whereas an effect of fMLF treatment on Ecrg4 on the PMN cell surface was detected on the polarized R2 subpopulation of cells. This loss of cell surface Ecrg4 was associated with the detection of intact and processed Ecrg4 in the conditioned media of fresh leukocytes and was shown to be associated with the inflammatory response that follows severe, cutaneous burn injury. Furthermore, incubation of macrophages with a soluble Ecrg4-derived peptide increased the P-p65, suggesting that processing of an intact sentinel Ecrg4 on quiescent circulating leukocytes leads to processing from the cell surface following injury and macrophage activation. PMID:22396620

  6. Polo-like kinase 2 acting as a promoter in human tumor cells with an abundance of TAp73

    PubMed Central

    Hu, ZhengBo; Xu, ZunYing; Liao, XiaoHong; Yang, Xiao; Dong, Cao; Luk, KuaDi; Jin, AnMin; Lu, Hai

    2015-01-01

    Background TAp73, a member of the p53 tumor suppressor family, is frequently overexpressed in malignant tumors in humans. TAp73 abundance and phosphorylation modification result in variations in transcriptional activity. In a previous study, we found that the antitumor function of TAp73 was reactivated by dephosphorylation in head and neck squamous cell carcinomas. Polo-like kinase 2 (PLK2) displayed a close relationship with the p53 family in affecting the fate of cells. Herein, we investigate the hypothesis that PLK2 phosphorylates TAp73 and inhibits TAp73 function. Materials and methods Head and neck squamous cell carcinoma cell lines and osteosarcoma cell lines were used as natural models of the different expression levels of TAp73. Phosphorylation predictor software Scansite 3.0 and the predictor GPS-polo 1.0 were used to analyze the phosphorylation sites. Coimmunoprecipitation, phosphor-tag Western blot, metabolic labeling, and indirect immunofluorescence assays were used to determine the interactions between PLK2 and TAp73. TAp73 activity was assessed by Western blot and reverse transcription polymerase chain reaction, which we used to detect P21 and PUMA, both downstream genes of TAp73. The physiological effects of PLK2 cross talk with TAp73 on cell cycle progress and apoptosis were observed by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assays. Results PLK2 binds to and phosphorylates TAp73. PLK2 phosphorylates TAp73 at residue Ser48 and prohibits TAp73 translocation to the nucleus. Additionally, PLK2 inhibition combined with a DNA-damaging drug upregulated p21 and PUMA mRNA expression to a greater extent than DNA-damaging drug treatment alone. Inhibiting PLK2 in TAp73-enriched cells strengthened the effects of the DNA-damaging drug on both G1 phase arrest and apoptosis. Pretreatment with TAp73-siRNA weakened these effects. Conclusion These findings reveal a novel PLK2 function (catalyzed phosphorylation of TAp73) which

  7. Diversity and abundance of n-alkane degrading bacteria in the near surface soils of a Chinese onshore oil and gas field

    NASA Astrophysics Data System (ADS)

    Xu, K.; Tang, Y.; Ren, C.; Zhao, K.; Sun, Y.

    2012-10-01

    Alkane degrading bacteria have long been used as an important biological indicator for oil and gas prospecting, but their ecological characteristics in hydrocarbon microseep habitats are still poorly understood. In this study, the diversity and abundance of n-alkane degrading bacterial community in the near surface soils of a Chinese onshore oil and gas field were investigated using molecular techniques. Terminal restriction fragment length polymorphism (T-RFLP) analyses in combination with cloning and sequencing of alkB genes revealed that trace amount of volatile hydrocarbons migrated from oil and gas reservoirs caused a shift of the n-alkane degrading bacterial community from Gram-positive bacteria (Mycobacterium and Rhodococcus) to Gram-negative genotypes (Alcanivorax and Acinetobacter). Real-time PCR results furthermore showed that the abundance of alkB genes increased substantially in the surface soils underlying oil and gas reservoirs even though only low or undetectable concentrations of hydrocarbons were measured in these soils due to efficient microbial degradation. Our findings broadened the knowledge on the ecological characteristics of alkane degrading community in hydrocarbon microseeps and may provide a new approach for microbial prospecting for oil and gas (MPOG).

  8. Differences in Abundances of Cell-Signalling Proteins in Blood Reveal Novel Biomarkers for Early Detection Of Clinical Alzheimer's Disease

    PubMed Central

    Rocha de Paula, Mateus; Gómez Ravetti, Martín; Berretta, Regina; Moscato, Pablo

    2011-01-01

    Background In November 2007 a study published in Nature Medicine proposed a simple test based on the abundance of 18 proteins in blood to predict the onset of clinical symptoms of Alzheimer's Disease (AD) two to six years before these symptoms manifest. Later, another study, published in PLoS ONE, showed that only five proteins (IL-1, IL-3, EGF, TNF- and G-CSF) have overall better prediction accuracy. These classifiers are based on the abundance of 120 proteins. Such values were standardised by a Z-score transformation, which means that their values are relative to the average of all others. Methodology The original datasets from the Nature Medicine paper are further studied using methods from combinatorial optimisation and Information Theory. We expand the original dataset by also including all pair-wise differences of z-score values of the original dataset (“metafeatures”). Using an exact algorithm to solve the resulting Feature Set problem, used to tackle the feature selection problem, we found signatures that contain either only features, metafeatures or both, and evaluated their predictive performance on the independent test set. Conclusions It was possible to show that a specific pattern of cell signalling imbalance in blood plasma has valuable information to distinguish between NDC and AD samples. The obtained signatures were able to predict AD in patients that already had a Mild Cognitive Impairment (MCI) with up to 84% of sensitivity, while maintaining also a strong prediction accuracy of 90% on a independent dataset with Non Demented Controls (NDC) and AD samples. The novel biomarkers uncovered with this method now confirms ANG-2, IL-11, PDGF-BB, CCL15/MIP-1; and supports the joint measurement of other signalling proteins not previously discussed: GM-CSF, NT-3, IGFBP-2 and VEGF-B. PMID:21479255

  9. Mast Cells Are Abundant in Primary Cutaneous T-Cell Lymphomas: Results from a Computer-Aided Quantitative Immunohistological Study

    PubMed Central

    Eder, Johanna; Rogojanu, Radu; Jerney, Waltraud; Erhart, Friedrich; Dohnal, Alexander; Kitzwögerer, Melitta; Steiner, Georg; Moser, Julia; Trautinger, Franz

    2016-01-01

    Background Mast cells (MC) are bone marrow derived haematopoetic cells playing a crucial role not only in immune response but also in the tumor microenvironment with protumorigenic and antitumorigenic functions. The role of MC in primary cutaneous T-cell lymphomas (CTCL), a heterogeneous group of non-Hodgkin lymphomas with initial presentation in the skin, is largely unknown. Objective To gain more accurate information about presence, number, distribution and state of activation (degranulated vs. non-degranulated) of MC in CTCL variants and clinical stages. Materials and Methods We established a novel computer-aided tissue analysis method on digitized skin sections. Immunohistochemistry with an anti-MC tryptase antibody was performed on 34 biopsies of different CTCL subtypes and on control skin samples. An algorithm for the automatic detection of the epidermis and of cell density based CTCL areas was developed. Cells were stratified as being within the CTCL infiltrate, in P1 (a surrounding area 0–30 μm away from CTCL), or in P2 (30–60 μm away from CTCL) area. Results We found high MC counts within CTCL infiltrates and P1 and a decreased MC number in the surrounding dermis P2. Higher MC numbers were found in MF compared to all other CTCL subgroups. Regarding different stages of MF, we found significantly higher mast cell counts in stages IA and IB than in stages IIA and IIB. Regarding MC densities, we found a higher density of MC in MF compared to all other CTCL subgroups. More MC were non-degranulated than degranulated. Conclusion Here for the first time an automated method for MC analysis on tissue sections and its use in CTCL is described. Eliminating error from investigator bias, the method allows for precise cell identification and counting. Our results provide new insights on MC distribution in CTCL reappraising their role in the pathophysiology of CTCL. PMID:27893746

  10. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs

    PubMed Central

    Zheng, Qiupeng; Bao, Chunyang; Guo, Weijie; Li, Shuyi; Chen, Jie; Chen, Bing; Luo, Yanting; Lyu, Dongbin; Li, Yan; Shi, Guohai; Liang, Linhui; Gu, Jianren; He, Xianghuo; Huang, Shenglin

    2016-01-01

    Circular RNAs (circRNAs) represent a class of widespread and diverse endogenous RNAs that may regulate gene expression in eukaryotes. However, the regulation and function of human circRNAs remain largely unknown. Here we generate ribosomal-depleted RNA sequencing data from six normal tissues and seven cancers, and detect at least 27,000 circRNA candidates. Many of these circRNAs are differently expressed between the normal and cancerous tissues. We further characterize one abundant circRNA derived from Exon2 of the HIPK3 gene, termed circHIPK3. The silencing of circHIPK3 but not HIPK3 mRNA significantly inhibits human cell growth. Via a luciferase screening assay, circHIPK3 is observed to sponge to 9 miRNAs with 18 potential binding sites. Specifically, we show that circHIPK3 directly binds to miR-124 and inhibits miR-124 activity. Our results provide evidence that circular RNA produced from precursor mRNA may have a regulatory role in human cells. PMID:27050392

  11. Toward Cell Selective Surfaces: Cell Adhesion and Proliferation on Breath Figures with Antifouling Surface Chemistry.

    PubMed

    Martínez-Campos, Enrique; Elzein, Tamara; Bejjani, Alice; García-Granda, Maria Jesús; Santos-Coquillat, Ana; Ramos, Viviana; Muñoz-Bonilla, Alexandra; Rodríguez-Hernández, Juan

    2016-03-01

    We report the preparation of microporous functional polymer surfaces that have been proven to be selective surfaces toward eukaryotic cells while maintaining antifouling properties against bacteria. The fabrication of functional porous films has been carried out by the breath figures approach that allowed us to create porous interfaces with either poly(ethylene glycol) methyl ether methacrylate (PEGMA) or 2,3,4,5,6-pentafluorostyrene (5FS). For this purpose, blends of block copolymers in a polystyrene homopolymer matrix have been employed. In contrast to the case of single functional polymer, using blends enables us to vary the chemical distribution of the functional groups inside and outside the formed pores. In particular, fluorinated groups were positioned at the edges while the hydrophilic PEGMA groups were selectively located inside the pores, as demonstrated by TOF-SIMS. More interestingly, studies of cell adhesion, growth, and proliferation on these surfaces confirmed that PEGMA functionalized interfaces are excellent candidates to selectively allow cell growth and proliferation while maintaining antifouling properties.

  12. Cell Surface Markers in Colorectal Cancer Prognosis

    PubMed Central

    Belov, Larissa; Zhou, Jerry; Christopherson, Richard I.

    2011-01-01

    The classification of colorectal cancers (CRC) is currently based largely on histologically determined tumour characteristics, such as differentiation status and tumour stage, i.e., depth of tumour invasion, involvement of regional lymph nodes and the occurrence of metastatic spread to other organs. These are the conventional prognostic factors for patient survival and often determine the requirement for adjuvant therapy after surgical resection of the primary tumour. However, patients with the same CRC stage can have very different disease-related outcomes. For some, surgical removal of early-stage tumours leads to full recovery, while for others, disease recurrence and metastasis may occur regardless of adjuvant therapy. It is therefore important to understand the molecular processes that lead to disease progression and metastasis and to find more reliable prognostic markers and novel targets for therapy. This review focuses on cell surface proteins that correlate with tumour progression, metastasis and patient outcome, and discusses some of the challenges in finding prognostic protein markers in CRC. PMID:21339979

  13. Calreticulin: Roles in Cell-Surface Protein Expression

    PubMed Central

    Jiang, Yue; Dey, Sandeepa; Matsunami, Hiroaki

    2014-01-01

    In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins. PMID:25230046

  14. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells

    PubMed Central

    Kalia, Priya; Brooks, Roger A.; Kinrade, Stephen D.; Morgan, David J.; Brown, Andrew P.; Rushton, Neil; Jugdaohsingh, Ravin

    2016-01-01

    Silicon (Si) is suggested to be an important/essential nutrient for bone and connective tissue health. Silicon-substituted hydroxyapatite (Si-HA) has silicate ions incorporated into its lattice structure and was developed to improve attachment to bone and increase new bone formation. Here we investigated the direct adsorption of silicate species onto an HA coated surface as a cost effective method of incorporating silicon on to HA surfaces for improved implant osseointegration, and determined changes in surface characteristics and osteoblast cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dispersions of different concentrations (0–42 mM Si), at neutral pH for 12 h. Adsorbed Si was confirmed by XPS analysis and quantified by ICP-OES analysis following release from the HA surface. Changes in surface characteristics were determined by AFM and measurement of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining. Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica dispersion and decreased progressively with higher silica concentrations, while no adsorption was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis, revealed an abundance of small amorphous nanosilica species (NSP) of ~1.5 nm in diameter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions. 29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a HA-coated disc surface increased the surface’s water contact angle by 53°, whereas that adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating increased and decreased

  15. A Mass Spectrometric-Derived Cell Surface Protein Atlas

    PubMed Central

    Bausch-Fluck, Damaris; Hofmann, Andreas; Bock, Thomas; Frei, Andreas P.; Cerciello, Ferdinando; Jacobs, Andrea; Moest, Hansjoerg; Omasits, Ulrich; Gundry, Rebekah L.; Yoon, Charles; Schiess, Ralph; Schmidt, Alexander; Mirkowska, Paulina; Härtlová, Anetta; Van Eyk, Jennifer E.; Bourquin, Jean-Pierre; Aebersold, Ruedi; Boheler, Kenneth R.; Zandstra, Peter; Wollscheid, Bernd

    2015-01-01

    Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments. PMID:25894527

  16. Theory of back-surface-field solar cells

    NASA Technical Reports Server (NTRS)

    Vonroos, O.

    1979-01-01

    Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.

  17. Abundance, stock origin, and length of marked and unmarked juvenile Chinook salmon in the surface waters of greater Puget Sound

    USGS Publications Warehouse

    Rice, C.A.; Greene, C.M.; Moran, P.; Teel, D.J.; Kuligowski, D.R.; Reisenbichler, R.R.; Beamer, E.M.; Karr, J.R.; Fresh, K.L.

    2011-01-01

    This study focuses on the use by juvenile Chinook salmon Oncorhynchus tshawytscha of the rarely studied neritic environment (surface waters overlaying the sublittoral zone) in greater Puget Sound. Juvenile Chinook salmon inhabit the sound from their late estuarine residence and early marine transition to their first year at sea. We measured the density, origin, and size of marked (known hatchery) and unmarked (majority naturally spawned) juveniles by means of monthly surface trawls at six river mouth estuaries in Puget Sound and the areas in between. Juvenile Chinook salmon were present in all months sampled (April-November). Unmarked fish in the northern portion of the study area showed broader seasonal distributions of density than did either marked fish in all areas or unmarked fish in the central and southern portions of the sound. Despite these temporal differences, the densities of marked fish appeared to drive most of the total density estimates across space and time. Genetic analysis and coded wire tag data provided us with documented individuals from at least 16 source populations and indicated that movement patterns and apparent residence time were, in part, a function of natal location and time passed since the release of these fish from hatcheries. Unmarked fish tended to be smaller than marked fish and had broader length frequency distributions. The lengths of unmarked fish were negatively related to the density of both marked and unmarked Chinook salmon, but those of marked fish were not. These results indicate more extensive use of estuarine environments by wild than by hatchery juvenile Chinook salmon as well as differential use (e.g., rearing and migration) of various geographic regions of greater Puget Sound by juvenile Chinook salmon in general. In addition, the results for hatchery-generated timing, density, and length differences have implications for the biological interactions between hatchery and wild fish throughout Puget Sound. ?? American

  18. Targeting Prostate Cancer Stemlike Cells Through Cell Surface-Expressed GRP78

    DTIC Science & Technology

    2015-10-01

    the cell surface GRP78-expressing subpopulation of cells supports nuclear Akt/GSK-3/ Snail -1 signaling. These findings are important because they are...original tasks outlined in the approved statement of work. 15. SUBJECT TERMS prostate cancer, cell surface GRP78, cancer stem cell, Snail -1 16. SECURITY...associated with cell surface GRP78 (Akt/GSK-3/ Snail -1) were upregulated in GRP78(+) relative to GRP78(-) prostate cancer cells. Our results in this

  19. Systemic alteration of cell-surface and secreted glycoprotein expression in malignant breast cancer cell lines.

    PubMed

    Timpe, Leslie C; Yen, Roger; Haste, Nicole V; Litsakos-Cheung, Christina; Yen, Ten-Yang; Macher, Bruce A

    2013-11-01

    Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with those expressed by a nonmalignant set. The average number of spectral counts (proportional to relative protein abundance) and the total number of glycopeptides in the malignant samples were reduced to about two-thirds of the level in the nonmalignant samples. Most glycoproteins were expressed at a different level in the malignant samples, with nearly as many increasing as decreasing. The glycoproteins with reduced expression accounted for a larger change in spectral counts, and hence for the net loss of spectral counts in the malignant lines. Similar results were found when the glycoproteins were studied via identified glycosylation sites only, or through identified sites together with non-glycopeptides. The overall reduction is largely due to the loss of integrins, laminins and other proteins that form or interact with the basement membrane.

  20. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis

    SciTech Connect

    Mahal, L.K.; Yareme, K.J.; Bertozzi, C.R.

    1997-05-16

    Cell surface oligosaccharide can be engineered to display unusual functional groups for the selective chemical remodeling of cell surfaces. An unnatural derivative of N-acetyl-mannosamine, which has a ketone group, was converted to the corresponding sialic acid and incorporated into cell surface oligosaccharide metabolically, resulting in the cell surface display of ketone groups. The ketone group on the cell surface can then be covalently ligated under physiological conditions with molecules carrying a complementary reactive functional group such as the hydrazide. Cell surface reactions of this kind should prove useful in the introduction of new recognition epitopes, such as peptides, oligosaccharide, or small organic molecules, onto cell surfaces and in the subsequent modulation of cell-cell or cell-small molecule binding events. The versatility of this technology was demonstrated by an example of selective drug delivery. Cells were decorated with biotin through selective conjugation to ketone groups, and selectively killed in the presence of a ricin A chain-avidin conjugate. 30 refs., 4 figs.

  1. Differential protein expression on the cell surface of colorectal cancer cells associated to tumor metastasis.

    PubMed

    Luque-García, Jose Luis; Martínez-Torrecuadrada, Jorge Luis; Epifano, Carolina; Cañamero, Marta; Babel, Ingrid; Casal, J Ignacio

    2010-03-01

    Progression to metastasis is the critical point in colorectal cancer (CRC) survival. However, the proteome associated to CRC metastasis is very poorly understood at the moment. In this study, we used stable isotope labeling by amino acids in cell culture to compare two CRC cell lines: KM12C and KM12SM, representing poorly versus highly metastatic potential, to find and quantify the differences in protein expression, mostly at the cell surface level. After biotinylation followed by affinity purification, membrane proteins were separated by SDS-PAGE and analyzed using nanoflow LC-ESI-LTQ. A total of 291 membrane and membrane-associated proteins were identified with a p value<0.01, from which 60 proteins were found to be differentially expressed by more than 1.5-fold. We identified a number of cell signaling, CDs, integrins and other cell adhesion molecules (cadherin 17, junction plakoglobin (JUP)) among the most deregulated proteins. They were validated by Western blot, confocal microscopy and flow cytometry analysis. Immunohistochemical analysis of paired tumoral samples confirmed that these differentially expressed proteins were also altered in human tumoral tissues. A good correlation with a major abundance in late tumor stages was observed for JUP and 17-beta-hydroxysteroid dehydrogenase type 8 (HSD17B8). Moreover, the combined increase in JUP, occludin and F11 receptor expression together with cadherin 17 expression could suggest a reversion to a more epithelial phenotype in highly metastatic cells. Relevant changes were observed also at the metabolic level in the pentose phosphate pathway and several amino acid transporters. In summary, the identified proteins provide us with a better understanding of the events involved in liver colonization and CRC metastasis.

  2. Single cell profiling of surface carbohydrates on Bacillus cereus

    PubMed Central

    Wang, Congzhou; Ehrhardt, Christopher J.; Yadavalli, Vamsi K.

    2015-01-01

    Cell surface carbohydrates are important to various bacterial activities and functions. It is well known that different types of Bacillus display heterogeneity of surface carbohydrate compositions, but detection of their presence, quantitation and estimation of variation at the single cell level have not been previously solved. Here, using atomic force microscopy (AFM)-based recognition force mapping coupled with lectin probes, the specific carbohydrate distributions of N-acetylglucosamine and mannose/glucose were detected, mapped and quantified on single B. cereus surfaces at the nanoscale across the entire cell. Further, the changes of the surface carbohydrate compositions from the vegetative cell to spore were shown. These results demonstrate AFM-based ‘recognition force mapping’ as a versatile platform to quantitatively detect and spatially map key bacterial surface biomarkers (such as carbohydrate compositions), and monitor in situ changes in surface biochemical properties during intracellular activities at the single cell level. PMID:25505137

  3. Increased abundance of translation machinery in stem cell-derived neural progenitor cells from four schizophrenia patients.

    PubMed

    Topol, A; English, J A; Flaherty, E; Rajarajan, P; Hartley, B J; Gupta, S; Desland, F; Zhu, S; Goff, T; Friedman, L; Rapoport, J; Felsenfeld, D; Cagney, G; Mackay-Sim, A; Savas, J N; Aronow, B; Fang, G; Zhang, B; Cotter, D; Brennand, K J

    2015-10-20

    The genetic and epigenetic factors contributing to risk for schizophrenia (SZ) remain unresolved. Here we demonstrate, for the first time, perturbed global protein translation in human-induced pluripotent stem cell (hiPSC)-derived forebrain neural progenitor cells (NPCs) from four SZ patients relative to six unaffected controls. We report increased total protein levels and protein synthesis, together with two independent sets of quantitative mass spectrometry evidence indicating markedly increased levels of ribosomal and translation initiation and elongation factor proteins, in SZ hiPSC NPCs. We posit that perturbed levels of global protein synthesis in SZ hiPSC NPCs represent a novel post-transcriptional mechanism that might contribute to disease progression.

  4. Resolving low-expression cell surface antigens by time-gated orthogonal scanning automated microscopy.

    PubMed

    Lu, Jie; Martin, Jody; Lu, Yiqing; Zhao, Jiangbo; Yuan, Jingli; Ostrowski, Martin; Paulsen, Ian; Piper, James A; Jin, Dayong

    2012-11-20

    We report a highly sensitive method for rapid identification and quantification of rare-event cells carrying low-abundance surface biomarkers. The method applies lanthanide bioprobes and time-gated detection to effectively eliminate both nontarget organisms and background noise and utilizes the europium containing nanoparticles to further amplify the signal strength by a factor of ∼20. Of interest is that these nanoparticles did not correspondingly enhance the intensity of nonspecific binding. Thus, the dramatically improved signal-to-background ratio enables the low-expression surface antigens on single cells to be quantified. Furthermore, we applied an orthogonal scanning automated microscopy (OSAM) technique to rapidly process a large population of target-only cells on microscopy slides, leading to quantitative statistical data with high certainty. Thus, the techniques together resolved nearly all false-negative events from the interfering crowd including many false-positive events.

  5. In-cell thermodynamics and a new role for protein surfaces.

    PubMed

    Smith, Austin E; Zhou, Larry Z; Gorensek, Annelise H; Senske, Michael; Pielak, Gary J

    2016-02-16

    There is abundant, physiologically relevant knowledge about protein cores; they are hydrophobic, exquisitely well packed, and nearly all hydrogen bonds are satisfied. An equivalent understanding of protein surfaces has remained elusive because proteins are almost exclusively studied in vitro in simple aqueous solutions. Here, we establish the essential physiological roles played by protein surfaces by measuring the equilibrium thermodynamics and kinetics of protein folding in the complex environment of living Escherichia coli cells, and under physiologically relevant in vitro conditions. Fluorine NMR data on the 7-kDa globular N-terminal SH3 domain of Drosophila signal transduction protein drk (SH3) show that charge-charge interactions are fundamental to protein stability and folding kinetics in cells. Our results contradict predictions from accepted theories of macromolecular crowding and show that cosolutes commonly used to mimic the cellular interior do not yield physiologically relevant information. As such, we provide the foundation for a complete picture of protein chemistry in cells.

  6. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes

    PubMed Central

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J.; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C.; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  7. Cell Surface Measurements in Hydrocarbon and Carbohydrate Fermentations

    PubMed Central

    Neufeld, R. J.; Zajic, J. E.; Gerson, D. F.

    1980-01-01

    Acinetobacter calcoaceticus was grown in 11-liter batch fermentations with hexadecane or sodium citrate as the sole source of carbon. Surface and interfacial tension measurements of the microbial broth indicated that surface-active compounds were being produced only during growth on the hydrocarbon substrate. Contact angle measurements of an aqueous drop on a smooth lawn of cells in a hexadecane bath indicated a highly hydrophobic surface of the cells in the initial stages of the hydrocarbon fermentation (120° contact angle). At this stage, the entire cell population was bound to the hydrocarbon-aqueous interface. The contact angle dropped rapidly to approximately 45° after 14 h into the fermentation. This coincided with a shift of the cell population to the aqueous phase. Thus, the cells demonstrated more hydrophilic characteristics in the later stages of the fermentation. Contact angles on cells grown on sodium citrate ranged from 18 to 24° throughout the fermentation. The cells appear to be highly hydrophilic during growth on a soluble substrate. From the contact angle and aqueous-hydrocarbon interfacial tension, the surface free energy of the cells was calculated along with the cell-aqueous and cell-hydrocarbon interfacial tension. The results of these measurements were useful in quantitatively evaluating the hydrophobic nature of the cell surface during growth on hydrocarbons and comparing it with the hydrophilic nature of the cell surface during growth on a soluble substrate. PMID:16345526

  8. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes.

    PubMed

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions.

  9. Cell surface engineering of yeast for applications in white biotechnology.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.

  10. Molecularly engineered surfaces for cell biology: from static to dynamic surfaces.

    PubMed

    Gooding, J Justin; Parker, Stephen G; Lu, Yong; Gaus, Katharina

    2014-04-01

    Surfaces with a well-defined presentation of ligands for receptors on the cell membrane can serve as models of the extracellular matrix for studying cell adhesion or as model cell surfaces for exploring cell-cell contacts. Because such surfaces can provide exquisite control over, for example, the density of these ligands or when the ligands are presented to the cell, they provide a very precise strategy for understanding the mechanisms by which cells respond to external adhesive cues. In the present feature article, we present an overview of the basic biology of cell adhesion before discussing surfaces that have a static presentation of immobile ligands. We outline the biological information that such surfaces have given us, before progressing to recently developed switchable surfaces and surfaces that mimic the lipid bilayer, having adhesive ligands that can move around the membrane and be remodeled by the cell. Finally, the feature article closes with some of the biological information that these new types of surfaces could provide.

  11. Oxygen availability and distance to surface environments determine community composition and abundance of ammonia-oxidizing prokaroytes in two superimposed pristine limestone aquifers in the Hainich region, Germany.

    PubMed

    Opitz, Sebastian; Küsel, Kirsten; Spott, Oliver; Totsche, Kai Uwe; Herrmann, Martina

    2014-10-01

    We followed the abundance and compared the diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the groundwater of two superimposed pristine limestone aquifers located in the Hainich region (Thuringia, Germany) over 22 months. Groundwater obtained from the upper aquifer (12 m depth) was characterized by low oxygen saturation (0-20%) and low nitrate concentrations (0-20 μM), contrasting with 50-80% oxygen saturation and 40-200 μM nitrate in the lower aquifer (48 m and 88 m depth). Quantitative PCR targeting bacterial and archaeal amoA and 16S rRNA genes suggested a much higher ammonia oxidizer fraction in the lower aquifer (0.4-7.8%) compared with the upper aquifer (0.01-0.29%). In both aquifers, AOB communities were dominated by one phylotype related to Nitrosomonas ureae, while AOA communities were more diverse. Multivariate analysis of amoA DGGE profiles revealed a stronger temporal variation of AOA and AOB community composition in the upper aquifer, pointing to a stronger influence of surface environments. Parallel fluctuations of AOA, AOB, and total microbial abundance suggested that hydrological factors (heavy rain falls, snow melt) rather than specific physicochemical parameters were responsible for the observed community dynamics.

  12. The relative abundance and seasonal distribution correspond with the sources of polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River, Pakistan.

    PubMed

    Hussain, Imran; Syed, Jabir Hussain; Kamal, Atif; Iqbal, Mehreen; Eqani, Syed-Ali-Mustjab-Akbar-Shah; Bong, Chui Wei; Taqi, Malik Mumtaz; Reichenauer, Thomas G; Zhang, Gan; Malik, Riffat Naseem

    2016-06-01

    Chenab River is one of the most important rivers of Punjab Province (Pakistan) that receives huge input of industrial effluents and municipal sewage from major cities in the Central Punjab, Pakistan. The current study was designed to evaluate the concentration levels and associated ecological risks of USEPA priority polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River. Sampling was performed from eight (n = 24) sampling stations of Chenab River and its tributaries. We observed a relatively high abundance of ∑16PAHs during the summer season (i.e. 554 ng g(-1)) versus that in the winter season (i.e. 361 ng g(-1)), with an overall abundance of two-, five- and six-ring PAH congeners. Results also revealed that the nitrate and phosphate contents in the sediments were closely associated with low molecular weight (LMW) and high molecular weight (HMW) PAHs, respectively. Source apportionment results showed that the combustion of fossil fuels appears to be the key source of PAHs in the study area. The risk quotient (RQ) values indicated that seven PAH congeners (i.e. phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene, chrysene and benzo(a)anthracene) could pose serious threats to the aquatic life of the riverine ecosystem in Pakistan.

  13. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.

    PubMed

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections).

  14. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control

    PubMed Central

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections). PMID:25983678

  15. Cell surface expression of biologically active influenza C virus HEF glycoprotein expressed from cDNA.

    PubMed

    Pekosz, A; Lamb, R A

    1999-10-01

    The hemagglutinin, esterase, and fusion (HEF) glycoprotein of influenza C virus possesses receptor binding, receptor destroying, and membrane fusion activities. The HEF cDNAs from influenza C/Ann Arbor/1/50 (HEF-AA) and influenza C/Taylor/1223/47 (HEF-Tay) viruses were cloned and expressed, and transport of HEF to the cell surface was monitored by susceptibility to cleavage by exogenous trypsin, indirect immunofluorescence microscopy, and flow cytometry. Previously it has been found in studies with the C/Johannesburg/1/66 strain of influenza C virus (HEF-JHB) that transport of HEF to the cell surface is severely inhibited, and it is thought that the short cytoplasmic tail, Arg-Thr-Lys, is involved in blocking HEF cell surface expression (F. Oeffner, H.-D. Klenk, and G. Herrler, J. Gen. Virol. 80:363-369, 1999). As the cytoplasmic tail amino acid sequences of HEF-AA and HEF-Tay are identical to that of HEF-JHB, the data indicate that cell surface expression of HEF-AA and HEF-Tay is not inhibited by this amino acid sequence. Furthermore, the abundant cell surface transport of HEF-AA and HEF-Tay indicates that their cell surface expression does not require coexpression of another viral protein. The HEF-AA and HEF-Tay HEF glycoproteins bound human erythrocytes, promoted membrane fusion in a low-pH and trypsin-dependent manner, and displayed esterase activity, indicating that the HEF glycoprotein alone mediates all three known functions at the cell surface.

  16. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons.

    PubMed

    Mohanty, Sagarika; Mukherji, Suparna

    2012-04-01

    Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50-52°) was in the same range for both strains while zeta potential at neutral pH was -38 and -31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75° and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.

  17. The effect of decrease in salinity on the dynamics of abundance and the cell size of Corethron Hystrix (Bacillariophyta) in laboratory culture

    NASA Astrophysics Data System (ADS)

    Aizdaicher, Nina A.; Markina, Zhanna V.

    2010-03-01

    Effect of salinity on abundance dynamics and cell size of microalga Corethron hystrix Hensen (Bacillariophyta) were studied. C. hystrix can normally grow within a rather narrow salinity range between 32 and 28‰. The viable cells of this microalga change their morphological characters at a salinity of 24‰. This salinity level probably marks the beginning of cell division restriction, because the general number of cells by the end of the experiment was lower than in the control. The decrease of salinity to 16‰ caused pronounced irreversible morphological changes: cell height increased, chloroplasts compressed, protoplasm became granular, cytoplasm retracted, and spines shortened.

  18. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    NASA Astrophysics Data System (ADS)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  19. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    PubMed Central

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-01-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level. PMID:28290531

  20. Advances in cell surface glycoengineering reveal biological function.

    PubMed

    Nischan, Nicole; Kohler, Jennifer J

    2016-08-01

    Cell surface glycans are critical mediators of cell-cell, cell-ligand, and cell-pathogen interactions. By controlling the set of glycans displayed on the surface of a cell, it is possible to gain insight into the biological functions of glycans. Moreover, control of glycan expression can be used to direct cellular behavior. While genetic approaches to manipulate glycosyltransferase gene expression are available, their utility in glycan engineering has limitations due to the combinatorial nature of glycan biosynthesis and the functional redundancy of glycosyltransferase genes. Biochemical and chemical strategies offer valuable complements to these genetic approaches, notably by enabling introduction of unnatural functionalities, such as fluorophores, into cell surface glycans. Here, we describe some of the most recent developments in glycoengineering of cell surfaces, with an emphasis on strategies that employ novel chemical reagents. We highlight key examples of how these advances in cell surface glycan engineering enable study of cell surface glycans and their function. Exciting new technologies include synthetic lipid-glycans, new chemical reporters for metabolic oligosaccharide engineering to allow tandem and in vivo labeling of glycans, improved chemical and enzymatic methods for glycoproteomics, and metabolic glycosyltransferase inhibitors. Many chemical and biochemical reagents for glycan engineering are commercially available, facilitating their adoption by the biological community.

  1. Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces.

    PubMed

    Mata, Alvaro; Boehm, Cynthia; Fleischman, Aaron J; Muschler, George; Roy, Shuvo

    2002-12-15

    Growth of human connective tissue progenitor cells (CTPs) was characterized on smooth and microtextured polydimethylsiloxane (PDMS) surfaces. Human bone-marrow-derived cells were cultured for 9 days under conditions promoting osteoblastic differentiation on smooth PDMS surfaces and on PDMS post microtextures that were 6 microm high and 5, 10, 20, and 40 microm in diameter, respectively. Glass tissue-culture dishes were used as controls. The number of viable cells was determined, and an alkaline phosphatase stain was used as a marker for osteoblastic phenotype. CTPs attached, proliferated, and differentiated on all surfaces. Cells on the smooth PDMS and control surfaces spread and proliferated as colonies in proximity to other cells and migrated in random directions, with cell process lengths of up to 80 microm. In contrast, cells on the PDMS post microtextures grew as sparsely distributed networks of cells, with processes, occasionally up to 300 microm, that appeared to interact with the posts. Cell counts revealed that there were fewer (50%) CTPs on the smooth PDMS surface than were on the glass control surfaces. However, there were consistently more (>144%) CTPs on the PDMS post textures than on the controls. In particular, the 10-microm-in-diameter posts (268%) exhibited a significantly (p < 0.05) greater cell number than did the smooth PDMS.

  2. Surface plasmon-based infrared spectroscopy for cell biosensing

    NASA Astrophysics Data System (ADS)

    Yashunsky, Victor; Lirtsman, Vladislav; Zilbershtein, Alexander; Bein, Amir; Schwartz, Betty; Aroeti, Benjamin; Golosovsky, Michael; Davidov, Dan

    2012-08-01

    Cell morphology is often used as a valuable indicator of the physical condition and general status of living cells. We demonstrate a noninvasive method for morphological characterization of adherent cells. We measure infrared reflectivity spectrum at oblique angle from living cells cultured on thin Au film, and utilize the unique properties of the confined infrared waves (i.e., surface plasmon and guided modes) traveling inside the cell layer. The propagation of these waves strongly depends on cell morphology and connectivity. By tracking the resonant wavelength and attenuation of the surface plasmon and guided modes we measure the kinetics of various cellular processes such as (i) cell attachment and spreading on different substrata, (ii) modulation of the outer cell membrane with chlorpromazine, and (iii) formation of intercellular junctions associated with progressive cell polarization. Our method enables monitoring of submicron variations in cell layer morphology in real-time, and in the label-free manner.

  3. Attachment of human primary osteoblast cells to modified polyethylene surfaces.

    PubMed

    Poulsson, Alexandra H C; Mitchell, Stephen A; Davidson, Marcus R; Johnstone, Alan J; Emmison, Neil; Bradley, Robert H

    2009-04-09

    Ultra-high-molecular-weight polyethylene (UHMWPE) has a long history of use in medical devices, primarily for articulating surfaces due to its inherent low surface energy which limits tissue integration. To widen the applications of UHMWPE, the surface energy can be increased. The increase in surface energy would improve the adsorption of proteins and attachment of cells to allow tissue integration, thereby allowing UHMWPE to potentially be used for a wider range of implants. The attachment and function of human primary osteoblast-like (HOB) cells to surfaces of UHMWPE with various levels of incorporated surface oxygen have been investigated. The surface modification of the UHMWPE was produced by exposure to a UV/ozone treatment. The resulting surface chemistry was studied using X-ray photoelectron spectroscopy (XPS), and the topography and surface structure were probed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), which showed an increase in surface oxygen from 11 to 26 atom % with no significant change to the surface topography. The absolute root mean square roughness of both untreated and UV/ozone-treated surfaces was within 350-450 nm, and the water contact angles decreased with increasing oxygen incorporation, i.e., showing an increase in surface hydrophilicity. Cell attachment and functionality were assessed over a 21 day period for each cell-surface combination studied; these were performed using SEM and the alamarBlue assay to study cell attachment and proliferation and energy-dispersive X-ray (EDX) analysis to confirm extracellular mineral deposits, and total protein assay to examine the intra- and extracellular protein expressed by the cells. HOB cells cultured for 21 days on the modified UHMWPE surfaces with 19 and 26 atom % oxygen incorporated showed significantly higher cell densities compared to cells cultured on tissue culture polystyrene (TCPS) from day 3 onward. This indicated that the cells attached and proliferated more

  4. The Assessment of Fuel Cell Power Plants for Surface Combatants.

    DTIC Science & Technology

    1994-09-30

    fuel cell technology on the design and effectiveness of future naval surface combatants. The study involved the collection of data to characterize four different fuel cell technologies; proton exchange membrane, molten carbonate, phosphoric acid, and solid oxide fuel cells. This information was used to expand current computer models to develop specific fuel cell plants that met the power requirements for several applications on a nominal 5000 Lton destroyer and a nominal 200 Lton corvette. Each of the fuel cell

  5. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    PubMed

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-03-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices.

  6. Fuel cell technology for lunar surface operations

    NASA Technical Reports Server (NTRS)

    Deronck, Henry J.

    1992-01-01

    Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.

  7. Fuel cell technology for lunar surface operations

    NASA Astrophysics Data System (ADS)

    Deronck, Henry J.

    1992-02-01

    Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.

  8. Immunomagnetic separation of tumor initiating cells by screening two surface markers

    PubMed Central

    Sun, Chen; Hsieh, Yuan-Pang; Ma, Sai; Geng, Shuo; Cao, Zhenning; Li, Liwu; Lu, Chang

    2017-01-01

    Isolating tumor initiating cells (TICs) often requires screening of multiple surface markers, sometimes with opposite preferences. This creates a challenge for using bead-based immunomagnetic separation (IMS) that typically enriches cells based on one abundant marker. Here, we propose a new strategy that allows isolation of CD44+/CD24− TICs by IMS involving both magnetic beads coated by anti-CD44 antibody and nonmagnetic beads coated by anti-CD24 antibody (referred to as two-bead IMS). Cells enriched with our approach showed significant enhancement in TIC marker expression (examined by flow cytometry) and improved tumorsphere formation efficiency. Our method will extend the application of IMS to cell subsets characterized by multiple markers. PMID:28074882

  9. Titanium surface topography affects collagen biosynthesis of adherent cells.

    PubMed

    Mendonça, Daniela B S; Miguez, Patrícia A; Mendonça, Gustavo; Yamauchi, Mitsuo; Aragão, Francisco J L; Cooper, Lyndon F

    2011-09-01

    Collagen-dependent microstructure and physicochemical properties of newly formed bone around implant surfaces represent key determinants of implant biomechanics. This study investigated the effects of implant surface topography on collagen biosynthesis of adherent human mesenchymal stem cells (hMSCs). hMSCs were grown for 0 to 42 days on titanium disks (20.0 × 1.0 mm) with smooth or rough surfaces. Cell attachment and spreading were evaluated by incubating cells with Texas-Red-conjugated phalloidin antibody. Quantitative real-time PCR was used to measure the mRNA levels of Col1α1 and collagen modifying genes including prolyl hydroxylases (PHs), lysyl oxidases (LOXs) and lysyl hydroxylases (LHs). Osteogenesis was assessed at the level of osteoblast specific gene expression and alizarin red staining for mineralization. Cell layer-associated matrix and collagen content were determined by amino acid analysis. At 4h, 100% cells were flattened on both surfaces, however the cells on smooth surface had a fibroblast-like shape, while cells on rough surface lacked any defined long axis. PH, LH, and most LOX mRNA levels were greater in hMSCs grown on rough surfaces for 3 days. The mineralized area was greater for rough surface at 28 and 42 days. The collagen content (percent total protein) was also greater at rough surface compared to smooth surface at 28 (36% versus 26%) and 42 days (46% versus 29%), respectively (p<.05). In a cell culture model, rough surface topography positively modulates collagen biosynthesis and accumulation and the expression of genes associated with collagen cross-linking in adherent hMSC. The altered biosynthesis of the collagen-rich ECM adjacent to endosseous implants may influence the biomechanical properties of osseointegrated endosseous implants.

  10. Cells under siege: Viral glycoprotein interactions at the cell surface

    PubMed Central

    Bowden, Thomas A.; Jones, E. Yvonne; Stuart, David I.

    2011-01-01

    As obligate parasites, viruses are required to enter and replicate within their host, a process which employs many of their proteins to hijack natural cellular processes. High resolution X-ray crystallographic analysis has proven to be an ideal method to visualize the mechanisms by which such virus-host interactions occur and has revealed the innovative capacity of viruses to adapt efficiently to their hosts. In this review, we draw upon recently elucidated paramyxovirus-, arenavirus-, and poxvirus-host protein complex crystal structures to reveal both the capacity of viruses to appropriate one component of a physiological protein–protein binding event (often modifying it to out-compete the host-protein), and the ability to utilize novel binding sites on host cell surface receptors. The structures discussed shed light on a number of biological processes ranging from viral entry to virulence and host antagonism. Drawn together they reveal the common strategies which viruses have evolved to interact with their natural host. The structures also support molecular level rationales for how viruses can be transmitted to unrelated organisms and thus pose severe health risks. PMID:21440638

  11. Endothelial cell behavior on vascular prosthetic grafts: effect of polymer chemistry, surface structure, and surface treatment.

    PubMed

    Marois, Y; Sigot-Luizard, M F; Guidoin, R

    1999-01-01

    When implanting any vascular prosthetic grafts, one important goal to ensure long-term patency is achieving complete endothelialization of the luminal surface, a process that has rarely been observed clinically in humans. Seeding vascular grafts with endothelial cells has been seen as an attractive approach but has not been clinically convincing. A determining factor may be the type of polymer and surface structure. Using organotypic culture assays, the present investigation studied the effect of different polymers, surface structures, and surface treatments on endothelial cell behavior. The materials tested were polyester (PET), polytetrafluoroethylene (PTFE), polyesterurethane (PESU), and polyetherurethane (PETU) grafts with different surface structures. The surface treatments on the PET grafts included impregnation with cross-linked albumin, collagen, and gelatin, and treatments with fluoropolymer and electrically conducting polypyrrole polymer. Low density polyethylene (LDPE) and polydimethylsiloxane (PDMS) sheets (smooth surface, plain wall) were used as controls. After incubation for 7 days at 37 degrees C, cell adhesion and migration on the different polymers and structures were as follows: woven and knitted PET (high porosity) > PTFE, PESU, PETU hydrophobic (low porosity) > PETU hydrophilic, LDPE, PDMS (no porosity). Cell density results showed no difference between polymers and porous structures and a higher cell density on smooth nonporous surfaces. Compared with the nonimpregnated PET structures, knitted PET treated with albumin, collagen, or gelatin showed slight decreases of cell adhesion. No differences in cell migration and density were reported between any of the PET grafts, except for one polyester graft with a different chemistry than Dacron, which exhibited greater cell migration and lower cell density. Polyester grafts with a fluoropolymer treatment showed lower cell adhesion and migration and higher cell density than the nontreated PET. Finally

  12. Surface-modified gold nanorods for specific cell targeting

    NASA Astrophysics Data System (ADS)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  13. Effect of Stratification on Surface Properties of Corneal Epithelial Cells

    PubMed Central

    Yáñez-Soto, Bernardo; Leonard, Brian C.; Raghunathan, Vijay Krishna; Abbott, Nicholas L.; Murphy, Christopher J.

    2015-01-01

    Purpose The purpose of this study was to determine the influence of mucin expression in an immortalized human corneal epithelial cell line (hTCEpi) on the surface properties of cells, such as wettability, contact angle, and surface heterogeneity. Methods hTCEpi cells were cultured to confluence in serum-free medium. The medium was then replaced by stratification medium to induce mucin biosynthesis. The mucin expression profile was analyzed using quantitative PCR and Western blotting. Contact angles were measured using a two-immiscible liquid method, and contact angle hysteresis was evaluated by tilting the apparatus and recording advancing and receding contact angles. The spatial distribution of mucins was evaluated with fluorescently labeled lectin. Results hTCEpi cells expressed the three main ocular mucins (MUC1, MUC4, and MUC16) with a maximum between days 1 and 3 of the stratification process. Upon stratification, cells caused a very significant increase in contact angle hysteresis, suggesting the development of spatially discrete and heterogeneously distributed surface features, defined by topography and/or chemical functionality. Although atomic force microscopy measurements showed no formation of appreciable topographic features on the surface of the cells, we observed a significant increase in surface chemical heterogeneity. Conclusions The surface chemical heterogeneity of the corneal epithelium may influence the dynamic behavior of tear film by “pinning” the contact line between the cellular surface and aqueous tear film. Engineering the surface properties of corneal epithelium could potentially lead to novel treatments in dry eye disease. PMID:26747762

  14. Spectral modeling of water ice-rich areas on Ceres' surface from Dawn-VIR data analysis: abundance and grain size retrieval

    NASA Astrophysics Data System (ADS)

    Raponi, Andrea; De Sanctis, Maria Cristina; Ciarniello, Mauro; Tosi, Federico; Combe, Jean-Philippe; Frigeri, Alessandro; Zambon, Francesca; Ammannito, Eleonora; Giacomo Carrozzo, Filippo; Magni, Gianfranco; Capria, Maria Teresa; Formisano, Michelangelo; Longobardo, Andrea; Palomba, Ernesto; Pieters, Carle; Russell, Christopher T.; Raymond, Carol; Dawn/VIR Team

    2016-10-01

    Dawn spacecraft orbits around Ceres since early 2015 acquiring a huge amount of data at different spatial resolutions during the several phases of the mission. VIR, the visible and InfraRed spectrometer onboard Dawn [1] allowed to detect the principal mineralogical phases present on Ceres: a large abundance of dark component, NH4-phillosilicates and carbonates.Water has been detected in small areas on Ceres' surface by the Dawn-VIR instrument. The most obvious finding is located in Oxo crater [2]. Further detections of water have been made during the Survey observation phase (1.1 km/pixel) and High-Altitude Mapping Orbit (400 m/px) [3]. During the LAMO phase (Low Altitude Mapping Orbit), the data with increased spatial resolution (100 m/px) coming from both regions have improved the detection of water, highlighting clear diagnostic water ice absorption features. In this study, we focused on spectral modeling of VIR spectra of Oxo and another crater (lon = 227°, lat 57°), near Messor crater.The Hapke radiative transfer model [4] has been applied in order to retrieve the water ice properties. We consider two types of mixtures: areal and intimate mixing. In areal mixing, the surface is modelled as patches of pure water ice, with each photon scattered within one patch. In intimate mixing, the particles of water ice are in contact with particles of the dark terrain, and both are involved in the scattering of a single photon. The best fit with the measured spectra has been derived with the areal mixture. The water ice abundance obtained is up to 15-20% within the field of view, and the grain size retrieved is of the order of 100-200 μm. Phyllosilicates and carbonates, which are ubiquitous on Ceres surface [5], have been also detected and modeled in correspondence with the icy regions. The water ice is typically located near and within the shadows projected by the crater rims. Further analysis is required to study the thermal state of the ice and its origin

  15. Yeast surface display of dehydrogenases in microbial fuel-cells.

    PubMed

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  16. Multijunction Solar Cell Technology for Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  17. Adipogenic differentiation of mesenchymal stem cells on micropatterned polyelectrolyte surfaces.

    PubMed

    Kawazoe, Naoki; Guo, Likun; Wozniak, Michal J; Imaizumi, Yumie; Tateishi, Tetsuya; Zhang, Xingdong; Chen, Guoping

    2009-01-01

    Three kinds of photoreactive polyelectrolytes of polyallylamine (PAAm), poly(acrylic acid) (PAAc), and poly(vinyl alcohol) (PVA) were synthesized by the introduction of azidophenyl groups in the respective polymers. The photoreactive PAAm, PAAc, and PVA were micropatterned on polystyrene surfaces by photolithography. Observation with optical microscopy and scanning probe microscopy demonstrated the formation of a striped pattern of polyelectrolytes with a width of 200 microm. The micropatterned polyelectrolytes swelled in water. The micropatterned surfaces were used for cell culture of mesenchymal stem cells (MSCs) and their effects on adipogenic differentiation were investigated. The MSCs adhered to and proliferated evenly on the PAAm- and PAAc-patterned surfaces while they formed a cell pattern on the PVA-patterned surface. The PAAm-, PAAc-grafted, and polystyrene surfaces supported cell adhesion while the PVA-grafted surface did not. When cultured in adipogenic differentiation medium, the adipogenic differentiation of MSCs on the polyelectrolyte-patterned surfaces was demonstrated by the formation of lipid vacuoles and gene expression analysis. Oil Red-O-positive cells showed an even distribution on the PAAm- and PAAc-patterned surfaces, while they showed a pattern on the PVA-patterned surface. The fraction of Oil RedO-positive cells increased with culture time. The MSCs cultured on the PAAm-, PAAc-grafted, and polystyrene surfaces in adipogenic differentiation medium expressed the adipogenesis marker genes of peroxisome proliferator-activated receptor gamma2 (PPARgamma2), lipoprotein lipase (LPL), and fatty acid binding protein 4 (FABP4). These results indicate that the PAAm-, and PAAc-grafted, and polystyrene surfaces supported the adipogenesis of MSCs while a PVA-grafted surface did not.

  18. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability.

    PubMed

    Dong, C; Lei, X X

    2000-01-01

    The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.

  19. A 12-year record of intertidal barnacle recruitment in Atlantic Canada (2005-2016): relationships with sea surface temperature and phytoplankton abundance.

    PubMed

    Scrosati, Ricardo A; Ellrich, Julius A

    2016-01-01

    On the Gulf of St. Lawrence coast of Nova Scotia (Canada), recruitment of the barnacle Semibalanus balanoides occurs in May and June. Every year in June between 2005 and 2016, we recorded recruit density for this barnacle at the same wave-exposed rocky intertidal location on this coast. During these 12 years, mean recruit density was lowest in 2015 (198 recruits dm(-2)) and highest in 2007 (969 recruits dm(-2)). The highest recruit density observed in a single quadrat was 1,457 recruits dm(-2) (in 2011) and the lowest was 34 recruits dm(-2) (in 2015). Most barnacle recruits appear during May, which suggests that most pelagic larvae (which develop over 5-6 weeks before benthic settlement) are in the water column in April. An AICc-based model selection approach identified sea surface temperature (SST) in April and the abundance of phytoplankton (food for barnacle larvae, measured as chlorophyll-a concentration -Chl-a-) in April as good explanatory variables. Together, April SST and April Chl-a explained 51% of the observed interannual variation in recruit density, with an overall positive influence. April SST was positively related to March-April air temperature (AT). April Chl-a was negatively related to the April ratio between the number of days with onshore winds (which blow from phytoplankton-limited offshore waters) and the number of days with alongshore winds (phytoplankton is more abundant on coastal waters). Therefore, this study suggests that climatic processes affecting April SST and April Chl-a indirectly influence intertidal barnacle recruitment by influencing larval performance.

  20. A 12-year record of intertidal barnacle recruitment in Atlantic Canada (2005–2016): relationships with sea surface temperature and phytoplankton abundance

    PubMed Central

    2016-01-01

    On the Gulf of St. Lawrence coast of Nova Scotia (Canada), recruitment of the barnacle Semibalanus balanoides occurs in May and June. Every year in June between 2005 and 2016, we recorded recruit density for this barnacle at the same wave-exposed rocky intertidal location on this coast. During these 12 years, mean recruit density was lowest in 2015 (198 recruits dm−2) and highest in 2007 (969 recruits dm−2). The highest recruit density observed in a single quadrat was 1,457 recruits dm−2 (in 2011) and the lowest was 34 recruits dm−2 (in 2015). Most barnacle recruits appear during May, which suggests that most pelagic larvae (which develop over 5–6 weeks before benthic settlement) are in the water column in April. An AICc-based model selection approach identified sea surface temperature (SST) in April and the abundance of phytoplankton (food for barnacle larvae, measured as chlorophyll-a concentration –Chl-a–) in April as good explanatory variables. Together, April SST and April Chl-a explained 51% of the observed interannual variation in recruit density, with an overall positive influence. April SST was positively related to March–April air temperature (AT). April Chl-a was negatively related to the April ratio between the number of days with onshore winds (which blow from phytoplankton-limited offshore waters) and the number of days with alongshore winds (phytoplankton is more abundant on coastal waters). Therefore, this study suggests that climatic processes affecting April SST and April Chl-a indirectly influence intertidal barnacle recruitment by influencing larval performance. PMID:27812421

  1. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  2. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  3. Modelling cell motility and chemotaxis with evolving surface finite elements.

    PubMed

    Elliott, Charles M; Stinner, Björn; Venkataraman, Chandrasekhar

    2012-11-07

    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction-diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html.

  4. Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation

    PubMed Central

    Boyan, B.D.; Cheng, A.; Olivares-Navarrete, R.; Schwartz, Z.

    2016-01-01

    Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration. PMID:26927483

  5. Regulation of tissue factor coagulant activity on cell surfaces

    PubMed Central

    RAO, L.V.M.; PENDURTHI, U.R.

    2012-01-01

    Summary Tissue factor (TF) is a transmembrane glycoprotein and an essential component of factor VIIa-TF enzymatic complex that triggers activation of the coagulation cascade. Formation of TF-FVIIa complexes on cell surfaces not only trigger the coagulation cascade but also transduce cell signaling via activation of protease-activated receptors. Tissue factor is expressed constitutively on cell surfaces of a variety of extravascular cell types, including fibroblasts and pericytes in and surrounding blood vessel walls and epithelial cells but generally absent on cells that come in contact with blood directly. However, TF expression could be induced in some blood cells, such as monocytes and endothelial cells, following an injury or pathological stimuli. Tissue factor is essential for hemostasis, but aberrant expression of TF leads to thrombosis. Therefore, a proper regulation of TF activity is critical for the maintenance of hemostatic balance and health in general. TF-FVIIa coagulant activity at the cell surface is influenced not only by TF protein expression levels but also independently by a variety of mechanisms, including alterations in membrane phospholipid composition and cholesterol content, thiol-dependent modifications of TF allosteric disulfide bond, and other post-translational modifications of TF. In this article, we critically review key literature on mechanisms by which TF coagulant activity is regulated at the cell surface in the absence of changes in TF protein levels with specific emphasis on recently published data and provide the authors’ perspective on the subject. PMID:23006890

  6. Skin stem cells: rising to the surface.

    PubMed

    Fuchs, Elaine

    2008-01-28

    The skin epidermis and its appendages provide a protective barrier that is impermeable to harmful microbes and also prevents dehydration. To perform their functions while being confronted with the physicochemical traumas of the environment, these tissues undergo continual rejuvenation through homeostasis, and, in addition, they must be primed to undergo wound repair in response to injury. The skin's elixir for maintaining tissue homeostasis, regenerating hair, and repairing the epidermis after injury is its stem cells, which reside in the adult hair follicle, sebaceous gland, and epidermis. Stem cells have the remarkable capacity to both self-perpetuate and also give rise to the differentiating cells that constitute one or more tissues. In recent years, scientists have begun to uncover the properties of skin stem cells and unravel the mysteries underlying their remarkable capacity to perform these feats. In this paper, I outline the basic lineages of the skin epithelia and review some of the major findings about mammalian skin epithelial stem cells that have emerged in the past five years.

  7. The cell surface environment for pathogen recognition and entry

    PubMed Central

    Stow, Jennifer L; Condon, Nicholas D

    2016-01-01

    The surface of mammalian cells offers an interface between the cell interior and its surrounding milieu. As part of the innate immune system, macrophages have cell surface features optimised for probing and sampling as they patrol our tissues for pathogens, debris or dead cells. Their highly dynamic and constantly moving cell surface has extensions such as lamellipodia, filopodia and dorsal ruffles that help detect pathogens. Dorsal ruffles give rise to macropinosomes for rapid, high volume non-selective fluid sampling, receptor internalisation and plasma membrane turnover. Ruffles can also generate phagocytic cups for the receptor-mediated uptake of pathogens or particles. The membrane lipids, actin cytoskeleton, receptors and signalling proteins that constitute these cell surface domains are discussed. Although the cell surface is designed to counteract pathogens, many bacteria, viruses and other pathogens have evolved to circumvent or hijack these cell structures and their underlying machinery for entry and survival. Nevertheless, these features offer important potential for developing vaccines, drugs and preventative measures to help fight infection. PMID:27195114

  8. Elastomers bonded to metal surfaces seal electrochemical cells

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1964-01-01

    A leakproof seal secondary cell containing alkaline electrolytes was developed by bonding an alkali-resistant elastomer, such as neoprene, to metal contact surfaces. Test results of several different elastomers strongly indicate the feasibility of this sealing method.

  9. Contact inhibition of phagocytosis in epithelial sheets: alterations of cell surface properties induced by cell-cell contacts.

    PubMed

    Vasiliev, J M; Gelfand, I M; Domnina, L V; Zacharova, O S; Ljubimov, A V

    1975-02-01

    Contact inhibition of phagocytosis was found to be characteristic for epithelial sheets formed in cultures by several cell types: normal and transformed mouse kidney cells, and differentiated mouse hepatoma cells. In these sheets most central cells surrounded by other cells had very low phagocytic activity. In contrast, marginal cells having a free edge were able to perform an active phagocytosis. Contact inhibition of phagocytosis was absent in dense cultures of mouse embryo fibroblasts and in cultures of anaplastic mouse hepatoma 22a. The upper surface of epithelial sheets was nonadhesive for prelabeled epithelial cells and fibroblasts. In contrast, the upper surface of dense cultures of mouse fibroblasts was adhesive for these cells. These and other data strengthen the suggestion that contact inhibition of phagocytosis is a result of different adhesiveness of the upper cell surface and of the surfaces near the free edge. Agents inhibiting cell surface movements at the free edges of marginal epithelial cells (cytochalasin, azide, sorbitol, low temperature) prevented adhesion of particles to these edges. Possibly, the surface of actively moving cytoplasmic processes is the only cell part that has adhesive properties necessary for the formation of attachments with other cellular and noncellular surfaces. In epithelial sheets, in contrast to fibroblast cultures, Colcemid did not activate movements of immobile contacting cell edges. These results indicate that mechanisms of contact immobilization of cell surface may be different in epithelium and fibroblasts. Firm contacts formed between epithelial cells are sufficient for stable immobilization of the surface; additional stabilization of the surface by microtubules is not essential. Fibroblasts do not form firm contacts and the Colcemid-sensitive stabilization process is essential for maintenance of the immobile state of their surfaces. Differences in the stability of cell surface immobilization produced by cell-cell

  10. Theoretical analysis of cell separation based on cell surface marker density.

    PubMed

    Chalmers, J J; Zborowski, M; Moore, L; Mandal, S; Fang, B B; Sun, L

    1998-07-05

    A theoretical analysis was performed to determine the number of fractions a multidisperse, immunomagnetically labeled cell population can be separated into based on the surface marker (antigen) density. A number of assumptions were made in this analysis: that there is a proportionality between the number of surface markers on the cell surface and the number of immunomagnetic labels bound; that this surface marker density is independent of the cell diameter; and that there is only the presence of magnetic and drag forces acting on the cell. Due to the normal distribution of cell diameters, a "randomizing" effect enters into the analysis, and an analogy between the "theoretical plate" analysis of distillation, adsorption, and chromatography can be made. Using the experimentally determined, normal distribution of cell diameters for human lymphocytes and a breast cancer cell line, and fluorescent activated cell screening data of specific surface marker distributions, examples of theoretical plate calculations were made and discussed.

  11. Cell culture on hydrophilicity-controlled silicon nitride surfaces.

    PubMed

    Masuda, Yuriko; Inami, Wataru; Miyakawa, Atsuo; Kawata, Yoshimasa

    2015-12-01

    Cell culture on silicon nitride membranes is required for atmospheric scanning electron microscopy, electron beam excitation assisted optical microscopy, and various biological sensors. Cell adhesion to silicon nitride membranes is typically weak, and cell proliferation is limited. We increased the adhesion force and proliferation of cultured HeLa cells by controlling the surface hydrophilicity of silicon nitride membranes. We covalently coupled carboxyl groups on silicon nitride membranes, and measured the contact angles of water droplets on the surfaces to evaluate the hydrophilicity. We cultured HeLa cells on the coated membranes and evaluated stretch of the cell. Cell migration and confluence were observed on the coated silicon nitride films. We also demonstrated preliminary observation result with direct electron beam excitation-assisted optical microscope.

  12. Standing surface acoustic wave (SSAW)-based cell washing

    PubMed Central

    Li, Sixing; Ding, Xiaoyun; Mao, Zhangming; Chen, Yuchao; Nama, Nitesh; Guo, Feng; Li, Peng; Wang, Lin; Cameron, Craig E.; Huang, Tony Jun

    2014-01-01

    Cell/bead washing is an indispensable sample preparation procedure used in various cell studies and analytical processes. In this article, we report a standing surface acoustic wave (SSAW)-based microfluidic device for cell and bead washing in a continuous flow. In our approach, the acoustic radiation force generated in a SSAW field is utilized to actively extract cells or beads from their original medium. A unique configuration of tilted-angle standing surface acoustic wave (taSSAW) is employed in our device, enabling us to wash beads with >98% recovery rate and >97% washing efficiency. We also demonstrate the functionality of our device by preparing high-purity (>97%) white blood cells from lysed blood samples through cell washing. Our SSAW-based cell/bead washing device has the advantages of label-free manipulation, simplicity, high biocompatibility, high recovery rate, and high washing efficiency. It can be useful for many lab-on-a-chip applications. PMID:25372273

  13. Surface plasmonic effects on organic solar cells.

    PubMed

    Uddin, Ashraf; Yang, Xiaohan

    2014-02-01

    Most high-performance organic photovoltaic (OPV) devices reported in the literature have been fabricated using the bulk heterojunction (BHJ) concept. Typically, the optimum thickness of the active layer for an OPV device is around 100 nm, or possibly less; such a thin layer can lead to low absorption of light. A thicker layer, however, inevitably increases the device resistance, due to the low carrier mobilities and short exciton diffusion lengths in organic materials. This situation imposes a trade-off between light absorption and charge transport efficiencies in OPV devices, motivating the development of a variety of light-trapping techniques. Metallic nanoparticles (NPs) such as Ag, Au, etc. and other metallic nanostructures are potential candidates for improving the light absorption due to the localized surface plasmon resonance (LSPR). LSPR contributes to the significant enhancement of local electromagnetic fields and improves the optical properties of the nanostructure devices. The excitation of LSPR is achieved when the frequency of the incident light matches its resonance peak, resulting in unique optical properties; selective light extinction as well as local enhancement of electromagnetic fields near the surface of metallic NPs. The resonance peak of LSPR depends strongly on the size, shape, and the dielectric environment of the metallic NPs. In this review article, progress on plasmonic enhanced OPV device performance is examined. The concepts of surface plasmonics for OPV devices, suitable plasmonic materials, location, optimum size and concentration of NP materials within the device are explored.

  14. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  15. Microfabricated surface designs for cell culture and diagnosis.

    PubMed

    Matsuda, T; Chung, D J

    1994-01-01

    Grooved and holed surfaces with a well fabricated design may serve as microsubstrates for cell culture and microreactors for diagnosis. In this study, the authors prepared chemically treated, micrometer scale grooved and holed glass surfaces by combined surface modification and ultraviolet (UV) excimer laser ablation techniques, as follows. 1) Microcell-culture substrate: Amino group attached glass surfaces, prepared by the treatment with an aminopropylsilane, were condensed with a carboxylated radical initiator. Subsequently, polyacrylamide was grafted by surface initiated radical polymerization to create a very hydrophilic surface layer. Ultraviolet excimer laser beams (KrF: 248 nm) were irradiated through a microscope onto surfaces to create grooves or holes that were 10 and 50 microns in width or diameter, respectively. The depth, depending on the irradiation light strength, ranged from a few to several tenths of a micrometer. On endothelial cell (EC) seeding, ECs adhered and grew on the bottoms of the grooved or holed surface where glass was exposed on ablation. Little cell adhesion was observed on non ablated, grafted surfaces. Endothelial cells aligned along the groove, resulting in very narrow tube like tissue formation, whereas ECs tended to form a multilayered spherical aggregate in a hole. A single cell resided in a 10 microns square hole. 2) Microreactor for diagnosis: The glass surface, treated with a fluorinated silane, was ablated to create round holes. On addition of a few microliters of water, water could be quantitatively transferred into a hole because of the water repellent characteristics of non ablated, fluorinated glass. As a model of a microreactor, enzyme reactions to affect different levels of glucose were carried out in tiny holed surfaces.

  16. Endothelial cell migration on surfaces modified with immobilized adhesive peptides.

    PubMed

    Kouvroukoglou, S; Dee, K C; Bizios, R; McIntire, L V; Zygourakis, K

    2000-09-01

    Endothelial cell (EC) migration has been studied on aminophase surfaces with covalently bound RGDS and YIGSRG cell adhesion peptides. The fluorescent marker dansyl chloride was used to quantify the spatial distribution of the peptides on the modified surfaces. Peptides appeared to be distributed in uniformly dispersed large clusters separated by areas of lower peptide concentrations. We employed digital time-lapse video microscopy and image analysis to monitor EC migration on the modified surfaces and to reconstruct the cell trajectories. The persistent random walk model was then applied to analyze the cell displacement data and compute the mean root square speed, the persistence time, and the random motility coefficient of EC. We also calculated the time-averaged speed of cell locomotion. No differences in the speed of cell locomotion on the various substrates were noted. Immobilization of the cell adhesion peptides (RGDS and YIGSRG), however, significantly increased the persistence of cell movement and, thus, the random motility coefficient. These results suggest that immobilization of cell adhesion peptides on the surface of implantable biomaterials may lead to enhanced endothelization rates.

  17. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    NASA Astrophysics Data System (ADS)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  18. Enhancement of Biological Reactions on Cell Surfaces via Macromolecular Crowding

    PubMed Central

    Chapanian, Rafi; Kwan, David H.; Constantinescu, Iren; Shaikh, Fathima A.; Rossi, Nicholas A.A.; Withers, Stephen G.; Kizhakkedathu, Jayachandran N.

    2016-01-01

    The reaction of macromolecules such as enzymes and antibodies with cell surfaces is often an inefficient process, requiring large amounts of expensive reagent. Here we report a general method based on macromolecular crowding with a range of neutral polymers to enhance such reactions, using red blood cells (RBCs) as a model system. Rates of conversion of Type A and B red blood cells to universal O type by removal of antigenic carbohydrates with selective glycosidases are increased up to 400-fold in the presence of crowders. Similar enhancements are seen for antibody binding. We further explore the factors underlying these enhancements using confocal microscopy and fluorescent recovery after bleaching (FRAP) techniques with various fluorescent protein fusion partners. Increased cell-surface concentration due to volume exclusion, along with two-dimensionally confined diffusion of enzymes close to the cell surface, appear to be the major contributing factors. PMID:25140641

  19. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.

    PubMed

    Hasunuma, Tomohisa; Kondo, Akihiko

    2012-01-01

    To build an energy and material secure future, a next generation of renewable fuels produced from lignocellulosic biomass is required. Although lignocellulosic biomass, which represents an abundant, inexpensive and renewable source for bioethanol production, is of great interest as a feedstock, the complicated ethanol production processes involved make the cost of producing bioethanol from it higher compared to corn starch and cane juice. Therefore, consolidated bioprocessing (CBP), which combines enzyme production, saccharification and fermentation in a single step, has gained increased recognition as a potential bioethanol production system. CBP requires a highly engineered microorganism developed for several different process-specific characteristics. The dominant strategy for engineering a CBP biocatalyst is to express multiple components of a cellulolytic system from either fungi or bacteria in the yeast Saccharomyces cerevisiae. The development of recombinant yeast strains displaying cellulases and hemicellulases on the cell surface represents significant progress toward realization of CBP. Regardless of the process used for biomass hydrolysis, CBP-enabling microorganisms encounter a variety of toxic compounds produced during biomass pretreatment that inhibit microbial growth and ethanol yield. Systems biology approaches including disruptome screening, transcriptomics, and metabolomics have been recently exploited to gain insight into the molecular and genetic traits involved in tolerance and adaptation to the fermentation inhibitors. In this review, we focus on recent advances in development of yeast strains with both the ability to directly convert lignocellulosic material to ethanol and tolerance in the harsh environments containing toxic compounds in the presence of ethanol.

  20. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  1. Shape of red blood cells in contact with artificial surfaces.

    PubMed

    Grzhibovskis, Richards; Krämer, Elisabeth; Bernhardt, Ingolf; Kemper, Björn; Zanden, Carl; Repin, Nikolay V; Tkachuk, Bogdan V; Voinova, Marina V

    2017-03-01

    The phenomenon of physical contact between red blood cells and artificial surfaces is considered. A fully three-dimensional mathematical model of a bilayer membrane in contact with an artificial surface is presented. Numerical results for the different geometries and adhesion intensities are found to be in agreement with experimentally observed geometries obtained by means of digital holographic microscopy.

  2. Synthetically functionalized retroviruses produced from the bioorthogonally engineered cell surface.

    PubMed

    Wong, Shirley; Kwon, Young Jik

    2011-02-16

    Conjugation of desired molecules onto retroviral surfaces through the ease of the bioorthogonal functionalization method was demonstrated. Oxidation of surface sialic acids using periodate and further p-anisidine-catalyzed conjugation with aminooxy-bearing molecules were used to directly label retroviral envelope with a fluorescent dye. The retroviral particles that were produced from a bioorthogonally functionalized virus producing cell surface and further tethered with magnetic nanoparticles were efficiently purified by simple magnetic column separation and capable of magnet-directed transduction.

  3. Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens.

    PubMed

    Smith, Jessica A; Lovley, Derek R; Tremblay, Pier-Luc

    2013-02-01

    Geobacter species are important Fe(III) reducers in a diversity of soils and sediments. Mechanisms for Fe(III) oxide reduction have been studied in detail in Geobacter sulfurreducens, but a number of the most thoroughly studied outer surface components of G. sulfurreducens, particularly c-type cytochromes, are not well conserved among Geobacter species. In order to identify cellular components potentially important for Fe(III) oxide reduction in Geobacter metallireducens, gene transcript abundance was compared in cells grown on Fe(III) oxide or soluble Fe(III) citrate with whole-genome microarrays. Outer-surface cytochromes were also identified. Deletion of genes for c-type cytochromes that had higher transcript abundance during growth on Fe(III) oxides and/or were detected in the outer-surface protein fraction identified six c-type cytochrome genes, that when deleted removed the capacity for Fe(III) oxide reduction. Several of the c-type cytochromes which were essential for Fe(III) oxide reduction in G. metallireducens have homologs in G. sulfurreducens that are not important for Fe(III) oxide reduction. Other genes essential for Fe(III) oxide reduction included a gene predicted to encode an NHL (Ncl-1-HT2A-Lin-41) repeat-containing protein and a gene potentially involved in pili glycosylation. Genes associated with flagellum-based motility, chemotaxis, and pili had higher transcript abundance during growth on Fe(III) oxide, consistent with the previously proposed importance of these components in Fe(III) oxide reduction. These results demonstrate that there are similarities in extracellular electron transfer between G. metallireducens and G. sulfurreducens but the outer-surface c-type cytochromes involved in Fe(III) oxide reduction are different.

  4. Cell-surface marker analysis of rat thymic dendritic cells.

    PubMed Central

    Bañuls, M P; Alvarez, A; Ferrero, I; Zapata, A; Ardavin, C

    1993-01-01

    Rat thymic dendritic cells have been isolated by collagenase digestion, separation of the low-density cell fraction by centrifugation on metrizamide, and differential adherence. The resulting dendritic cell preparation had a purity of > 90%, and has been analysed by flow cytometry (FCM) using a large panel of monoclonal antibodies (mAb). Dendritic cells expressed major histocompatibility (MHC) class I and class II molecules, the leucocyte common antigen CD45, the rat leucocyte antigen OX44, the rat macrophage marker ED1, and the adhesion molecules Mac-1, LFA-1 and ICAM-1. They were negative for the T- and B-cell-specific forms of CD45, CD45R and B220, and the B-cell marker OX12. Concerning T-cell marker expression, they were negative for T-cell receptor (TcR) and OX40, but they expressed CD2, CD4 and CD8, and interestingly, 50% of DC were CD5+, 50% expressed the alpha-chain of interleukin-2 receptor (IL-2R), and 80% were positive for the T-cell activation antigen recognized by the mAb OX48. Moreover, 60% of DC expressed high levels of Thy-1, whereas 40% displayed intermediate levels of this T-cell marker. PMID:8102122

  5. Expanding the diversity of unnatural cell surface sialic acids

    SciTech Connect

    Luchansky, Sarah J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2003-10-30

    Novel chemical reactivity can be introduced onto cell surfaces through metabolic oligosaccharide engineering. This technique exploits the substrate promiscuity of cellular biosynthetic enzymes to deliver unnatural monosaccharides bearing bioorthogonal functional groups into cellular glycans. For example, derivatives of N-acetylmannosamine (ManNAc) are converted by the cellular biosynthetic machinery into the corresponding sialic acids and subsequently delivered to the cell surface in the form of sialoglycoconjugates. Analogs of N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) are also metabolized and incorporated into cell surface glycans, likely through the sialic acid and GalNAc salvage pathways, respectively. Furthermore, GlcNAc analogs can be incorporated into nucleocytoplasmic proteins in place of {beta}-O-GlcNAc residues. These pathways have been exploited to integrate unique electrophiles such as ketones and azides into the target glycoconjugate class. These functional groups can be further elaborated in a chemoselective fashion by condensation with hydrazides and by Staudinger ligation, respectively, thereby introducing detectable probes onto the cell. In conclusion, sialic acid derivatives are efficient vehicles for delivery of bulky functional groups to cell surfaces and masking of their hydroxyl groups improves their cellular uptake and utilization. Furthermore, the successful introduction of photoactivatable aryl azides into cell surface glycans opens up new avenues for studying sialic acid-binding proteins and elucidating the role of sialic acid in essential processes such as signaling and cell adhesion.

  6. Cell surface differentiation of Mycoplasma mobile visualized by surface protein localization.

    PubMed

    Kusumoto, Akiko; Seto, Shintaro; Jaffe, Jacob D; Miyata, Makoto

    2004-12-01

    Mycoplasma mobile has a flask-shaped cell morphology and glides toward its tapered end at a rate of 3-7 cell lengths per s (2.0-4.5 microm s(-1)) by an unknown mechanism. Gliding requires that the surface of the cell is in contact with a solid substrate, such as glass or plastic. In order to characterize the nature of the outer surface of M. mobile, monoclonal antibodies were raised against intact cells and screened for their ability to recognize surface proteins. Four antibodies were identified and their protein targets were determined. One antibody recognized the Gli349 protein, which is known to be involved in glass binding and gliding. This antibody was also able to displace attached M. mobile cells from glass, suggesting that Gli349 is the major adhesion protein in M. mobile. The other three antibodies recognized members of the Mvsp family of proteins, which are presumably the major surface antigens of M. mobile. Immunofluorescence studies were performed to localize these proteins on the surface of M. mobile cells. Gli349 localized to the proximal region of the tapered part of the cell (the 'neck'), while the various Mvsp family members showed several distinct patterns of subcellular localization. MvspN and MvspO localized to the distal end of the tapered part of the cell (the 'head'), MvspK localized to the main part of the cell (the 'body'), and MvspI localized to both the head and body but not the neck. This analysis shows that M. mobile surprisingly expresses multiple versions of its major surface antigen at once but differentiates its surface by differential localization of the various paralogues.

  7. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    SciTech Connect

    Agrawal, Rakesh

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical

  8. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  9. Surface strategies for control of neuronal cell adhesion: A review

    NASA Astrophysics Data System (ADS)

    Roach, P.; Parker, T.; Gadegaard, N.; Alexander, M. R.

    2010-06-01

    Material engineering methods have been used for many years to develop biomedical devices for use within the body to augment, repair or replace damaged tissues ranging from contact lenses to heart valves. Here we review the findings gathered from the wide and varied surface analytical approaches applied to study the interaction between biology and man-made materials. The key material characteristics identified to be important for biological recognition are surface chemistry, topography and compliance. Model surfaces with controlled chemistry and topography have provided insight into biological response to various types of topographical features over a wide range of length scales from nano to micrometres, along with 3D matrices that have been used as scaffolds to support cells for tissue formation. The cellular response to surfaces with localised areas of patterned chemistry and to those presenting gradually changing chemistry are discussed. Where previous reviews have been structured around specific classes of surface modification, e.g. self-assembly, or have broadly examined the response of various cells to numerous surfaces, we aim in this article to focus in particular on the tissues involved in the nervous system whilst providing a broad overview of key issues from the field of cell and protein surface interactions with surfaces. The goal of repair and treatment of diseases related to the central and peripheral nervous systems rely on understanding the local interfacial environment and controlling responses at the cellular level. The role of the protein layer deposited from serum containing media onto man-made surfaces is discussed. We highlight the particular problems associated with the repair of the nervous system, and review how neuronal attachment and axon guidance can be accomplished using various surface cues when cultured with single and multiple cell types. We include a brief glossary of techniques discussed in the body of this article aimed at the

  10. CD44 is the principal cell surface receptor for hyaluronate.

    PubMed

    Aruffo, A; Stamenkovic, I; Melnick, M; Underhill, C B; Seed, B

    1990-06-29

    CD44 is a broadly distributed cell surface protein thought to mediate cell attachment to extracelular matrix components or specific cell surface ligands. We have created soluble CD44-immunoglobulin fusion proteins and characterized their reactivity with tissue sections and lymph node high endothelial cells in primary culture. The CD44 target on high endothelial cells is sensitive to enzymes that degrade hyaluronate, and binding of soluble CD44 is blocked by low concentrations of hyaluronate or high concentrations of chondroitin 4- and 6-sulfates. A mouse anti-hamster hyaluonate receptor antibody reacts with COS cells expressing hamster CD44 cDNA. In sections of all tissues examined, including lymph nodes and Peyer's patches, predigestion with hyaluronidase eliminated CD44 binding.

  11. Dominant negative mutation in cell surface beta 1,4- galactosyltransferase inhibits cell-cell and cell-matrix interactions

    PubMed Central

    1993-01-01

    In addition to its traditional location within the Golgi complex, beta 1,4-galactosyltransferase (GalTase) is also present on the cell surface, where it is thought to function as a cell adhesion molecule by binding to extracellular oligosaccharide ligands. Recent studies suggest that cells contain two forms of GalTase with distinct cytoplasmic domains. The longer form of GalTase contains a 13-amino acid cytoplasmic extension and is preferentially targeted to the plasma membrane, relative to the shorter GalTase protein that is confined primarily to the Golgi compartment. In this study, we created a dominant negative mutation that interferes with the function of cell surface GalTase by transfecting into cells cDNAs encoding truncated versions of the long form of GalTase containing the complete cytoplasmic and transmembrane domains, but devoid of the catalytic domain. In both F9 embryonal carcinoma cells and Swiss 3T3 fibroblasts, overexpressing the truncated long GalTase (TLGT) protein displaced the endogenous cell surface GalTase from its association with the cytoskeleton, resulting in a loss of intercellular adhesion and cell spreading specifically on matrices that use GalTase as a cell surface receptor. In contrast, overexpressing the analogous truncated short GalTase (TSGT) protein did not affect cell morphology or GalTase activity. In control assays, inducing the TLGT protein had no effect on cell interactions with fibronectin (which is independent of GalTase), or on the cytoskeleton attachment of another matrix receptor (beta 1 integrin), or on overall glycoprotein synthesis, thus eliminating nonspecific effects of the TLGT protein on cellular adhesion and metabolism. These results represent the first molecular manipulation of cell surface GalTase expression and confirm its function as a cell adhesion molecule. These studies further suggest that the cytoskeleton contains a defined, saturable number of binding sites for GalTase, which enables it to function as

  12. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  13. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein.

    PubMed

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M O; Rajan, Binoy; Tinsley, John W; Bickerdike, Ralph; Martin, Samuel A M; Bowman, Alan S

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts.

  14. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein

    PubMed Central

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M. O.; Rajan, Binoy; Tinsley, John W.; Bickerdike, Ralph

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts. PMID:28046109

  15. Antifouling property of highly oleophobic substrates for solar cell surfaces

    NASA Astrophysics Data System (ADS)

    Fukada, Kenta; Nishizawa, Shingo; Shiratori, Seimei

    2014-03-01

    Reduction of solar cell conversion efficiency by bird spoor or oil smoke is a common issue. Maintaining the surface of solar cells clean to retain the incident light is of utmost importance. In this respect, there has been growing interest in the area of superhydrophobicity for developing water repelling and self-cleaning surfaces. This effect is inspired by lotus leaves that have micro papillae covered with hydrophobic wax nanostructures. Superhydrophobic surfaces on transparent substrates have been developed for removing contaminants from solar cell surfaces. However, oil cannot be removed by superhydrophobic effect. In contrast, to prevent bird spoor, a highly oleophobic surface is required. In a previous study, we reported transparent-type fabrics comprising nanoparticles with a nano/micro hierarchical structure that ensured both oleophobicity and transparency. In the current study, we developed new highly oleophobic stripes that were constructed into semi-transparent oleophobic surfaces for solar cells. Solar cell performance was successfully maintained; the total transmittance was a key factor for determining conversion efficiency.

  16. The role of nitric oxide in ocular surface cells.

    PubMed Central

    Kim, Jae Chan; Park, Gun Sic; Kim, Jin Kook; Kim, Young Myeong

    2002-01-01

    The role of nitric oxide (NO) in the ocular surface remains unknown. We investigated the conditions leading to an increase of NO generation in tear and the main sources of NO in ocular surface tissue. We evaluated the dual action (cell survival or cell death) of NO depending on its amount. We measured the concentration of nitrite plus nitrate in the tears of ocular surface diseases and examined the main source of nitric oxide synthase (NOS). When cultured human corneal fibroblast were treated with NO producing donor with or without serum, the viabilities of cells was studied. We found that the main sources of NO in ocular surface tissue were corneal epithelium, fibroblast, endothelium, and inflammatory cells. Three forms of NOS (eNOS, bNOS, and iNOS) were expressed in experimentally induced inflammation. In the fibroblast culture system, the NO donor (SNAP, S-nitroso-N-acetyl-D, L-penicillamine) prevented the death of corneal fibroblast cells caused by serum deprivation in a dose dependent manner up to 500 micrometer SNAP, but a higher dose decreased cell viability. This study suggested that NO might act as a double-edged sword in ocular surface diseases depending on the degree of inflammation related with NO concentration. PMID:12068145

  17. A membrane reservoir at the cell surface: unfolding the plasma membrane to fuel cell shape change.

    PubMed

    Figard, Lauren; Sokac, Anna Marie

    2014-01-01

    Cell surface expansion is a necessary part of cell shape change. One long-standing hypothesis proposes that membrane for this expansion comes from the flattening out of cell surface projections such as microvilli and membrane folds. Correlative EM data of cells undergoing phagocytosis, cytokinesis, and morphogenesis has hinted at the existence of such an unfolding mechanism for decades; but unfolding has only recently been confirmed using live-cell imaging and biophysical approaches. Considering the wide range of cells in which plasma membrane unfolding has now been reported, it likely represents a fundamental mechanism of cell shape change.

  18. Effect of hydroxyapatite surface morphology on cell adhesion.

    PubMed

    Iwamoto, Takashi; Hieda, Yohki; Kogai, Yasumichi

    2016-12-01

    We obtained hydroxyapatite (HAp) materials as a block by mixing HAp nanoparticles and polymer, and then calcining the mixtures. The surface morphology of the HAp materials was tuned by varying heat treatment conditions. After calcining the mixtures at 1200 or 800°C for 4h, the surface morphology of the HAp materials was flat or convexo-concave, respectively. The flat surface morphology, which showed micrometer-ordered grain boundaries, was formed by the aggregation of HAp nanoparticles. On the other hand, the convexo-concave surface morphology resulted from the agglomeration of HAp nanoparticles after heat treatment at 800°C for 4h with nanometer-ordered particle size. We tested cell adhesion to HAp materials with flat or convexo-concave surface morphology and found that cells adhered well to the flat HAp materials but not to the convexo-concave HAp materials. This technique for selectively preparing HAp materials with flat or convexo-concave surface morphology was very easy because we merely mixed commercial HAp nanoparticles with polymer and then calcined the mixtures. As a result, the heat treatment temperature affected the surface morphology of our HAp materials, and their surface morphologies contributed to cell adhesion independently of other material properties.

  19. Surface modification of closed plastic bags for adherent cell cultivation

    NASA Astrophysics Data System (ADS)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  20. Engineered microtopographies and surface chemistries direct cell attachment and function

    NASA Astrophysics Data System (ADS)

    Magin, Chelsea Marie

    Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a

  1. Roles for E-cadherin cell surface regulation in cancer

    PubMed Central

    Petrova, Yuliya I.; Schecterson, Leslayann; Gumbiner, Barry M.

    2016-01-01

    The loss of E-cadherin expression in association with the epithelial–mesenchymal transition (EMT) occurs frequently during tumor metastasis. However, metastases often retain E-cadherin expression, an EMT is not required for metastasis, and metastases can arise from clusters of tumor cells. We demonstrate that the regulation of the adhesive activity of E-cadherin present at the cell surface by an inside-out signaling mechanism is important in cancer. First, we find that the metastasis of an E-cadherin–expressing mammary cell line from the mammary gland to the lung depends on reduced E-cadherin adhesive function. An activating monoclonal antibody to E-cadherin that induces a high adhesive state significantly reduced the number of cells metastasized to the lung without affecting the growth in size of the primary tumor in the mammary gland. Second, we find that many cancer-associated germline missense mutations in the E-cadherin gene in patients with hereditary diffuse gastric cancer selectively affect the mechanism of inside-out cell surface regulation without inhibiting basic E-cadherin adhesion function. This suggests that genetic deficits in E-cadherin cell surface regulation contribute to cancer progression. Analysis of these mutations also provides insights into the molecular mechanisms underlying cadherin regulation at the cell surface. PMID:27582386

  2. Development of exosome surface display technology in living human cells.

    PubMed

    Stickney, Zachary; Losacco, Joseph; McDevitt, Sophie; Zhang, Zhiwen; Lu, Biao

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell-cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.

  3. Targeting Prostate Cancer Stemlike Cells through Cell Surface-Expressed GRP78

    DTIC Science & Technology

    2014-10-01

    inhibit sphere growth of GRP78-sorted prostate cancer cells. 15. SUBJECT TERMS prostate cancer, cell surface GRP78, cancer stem cell, Snail -1 16...domains of cell surface GRP78 on Akt/GSK-3/ Snail -1 signaling. RESULTS/DISCUSSION: We are delayed in performing the experiments because of our delay in...addressing Task 6 (originally scheduled for year 1, moved to year 2; see above). Task 7: OBJECTIVE: Using Snail -1 shRNAs, assess the

  4. Regulation of collagen fibrillogenesis by cell-surface expression of kinase dead DDR2.

    PubMed

    Blissett, Angela R; Garbellini, Derek; Calomeni, Edward P; Mihai, Cosmin; Elton, Terry S; Agarwal, Gunjan

    2009-01-23

    The assembly of collagen fibers, the major component of the extracellular matrix (ECM), governs a variety of physiological processes. Collagen fibrillogenesis is a tightly controlled process in which several factors, including collagen binding proteins, have a crucial role. Discoidin domain receptors (DDR1 and DDR2) are receptor tyrosine kinases that bind to and are phosphorylated upon collagen binding. The phosphorylation of DDRs is known to activate matrix metalloproteases, which in turn cleave the ECM. In our earlier studies, we established a novel mechanism of collagen regulation by DDRs; that is, the extracellular domain (ECD) of DDR2, when used as a purified, soluble protein, inhibits collagen fibrillogenesis in-vitro. To extend this novel observation, the current study investigates how the DDR2-ECD, when expressed as a membrane-anchored, cell-surface protein, affects collagen fibrillogenesis by cells. We generated a mouse osteoblast cell line that stably expresses a kinase-deficient form of DDR2, termed DDR2/-KD, on its cell surface. Transmission electron microscopy, fluorescence microscopy, and hydroxyproline assays demonstrated that the expression of DDR2/-KD reduced the rate and abundance of collagen deposition and induced significant morphological changes in the resulting fibers. Taken together, our observations extend the functional roles that DDR2 and possibly other membrane-anchored, collagen-binding proteins can play in the regulation of cell adhesion, migration, proliferation and in the remodeling of the extracellular matrix.

  5. Cell surface differences of Naegleria fowleri and Naegleria lovaniensis exposed with surface markers.

    PubMed

    González-Robles, Arturo; Castañón, Guadalupe; Cristóbal-Ramos, Ana Ruth; Hernández-Ramírez, Verónica Ivonne; Omaña-Molina, Maritza; Martínez-Palomo, Adolfo

    2007-12-01

    Differences in the distribution of diverse cell surface coat markers were found between Naegleria fowleri and Naegleria lovaniensis. The presence of carbohydrate-containing components in the cell coat of the two species was detected by selective staining with ruthenium red and alcian blue. Using both markers, N. fowleri presented a thicker deposit than N. lovaniensis. The existence of exposed mannose or glucose residues was revealed by discriminatory agglutination with the plant lectin Concanavalin A. These sugar residues were also visualized at the cell surface of these parasites either by transmission electron microscopy or by fluorescein-tagged Concanavalin A. Using this lectin cap formation was induced only in N. fowleri. The anionic sites on the cell surface detected by means of cationized ferritin were more apparent in N. fowleri. Biotinylation assays confirmed that even though the two amoebae species have some analogous plasma membrane proteins, there is a clear difference in their composition.

  6. New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.

    PubMed

    O'Brien, Carmel M; Chy, Hun S; Zhou, Qi; Blumenfeld, Shiri; Lambshead, Jack W; Liu, Xiaodong; Kie, Joshua; Capaldo, Bianca D; Chung, Tung-Liang; Adams, Timothy E; Phan, Tram; Bentley, John D; McKinstry, William J; Oliva, Karen; McMurrick, Paul J; Wang, Yu-Chieh; Rossello, Fernando J; Lindeman, Geoffrey J; Chen, Di; Jarde, Thierry; Clark, Amander T; Abud, Helen E; Visvader, Jane E; Nefzger, Christian M; Polo, Jose M; Loring, Jeanne F; Laslett, Andrew L

    2017-03-01

    The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640.

  7. Hydrodynamics of Sperm Cells near Surfaces

    PubMed Central

    Elgeti, Jens; Kaupp, U. Benjamin; Gompper, Gerhard

    2010-01-01

    Sperm are propelled by an actively beating tail, and display a wide variety of swimming patterns. When confined between two parallel walls, sperm swim either in circles or on curvilinear trajectories close to the walls. We employ mesoscale hydrodynamics simulations in combination with a mechanical sperm model to study the swimming behavior near walls. The simulations show that sperm become captured at the wall due to the hydrodynamic flow fields which are generated by the flagellar beat. The circular trajectories are determined by the chiral asymmetry of the sperm shape. For strong (weak) chirality, sperm swim in tight (wide) circles, with the beating plane of the flagellum oriented perpendicular (parallel) to the wall. For comparison, we also perform simulations based on a local anisotropic friction of the flagellum. In this resistive force approximation, surface adhesion and circular swimming patterns are obtained as well. However, the adhesion mechanism is now due to steric repulsion, and the orientation of the beating plane is different. Our model provides a theoretical framework that explains several distinct swimming behaviors of sperm near and far from a wall. Moreover, the model suggests a mechanism by which sperm navigate in a chemical gradient via a change of their shape. PMID:20712984

  8. Adhesion of platelets to artificial surfaces: effect of red cells.

    PubMed

    Brash, J L; Brophy, J M; Feuerstein, I A

    1976-05-01

    Adhesion of platelets to several polymer- and protein-coated glass surfaces has been studied in vitro. The apparatus consists of a cylindrical probe rotating in a test tube containing the platelet medium and allows close control of fluid shear and mass transport. Suspensions of washed pig platelets constitute the basic platelet medium, and can be modified by adding back red cells and plasma proteins. Adhesion is measured via 51Cr-labeling of platelets. In the absence of red cells, identical low levels of adhesion were seen on all surfaces and saturation was reached within 2 min. In the presence of red cells, adhesion was greater. Saturation on all surfaces except fibrinogen and collagen again occurred within 2 min. The adhesion levels on polymer surfaces and glass were indistinguishable, while those on albumin were lower and those on fibrinogen were higher. Collagen was the most reactive surface. It did not equilibrate within 15 min., and kinetic data indicated a platelet diffusivity strongly dependent on hematocrit. These effects were attributed to rotational and translational motion of the red cells causing increased diffusion and surface-platelet collision energy.

  9. Cell patterning on polylactic acid through surface-tethered oligonucleotides.

    PubMed

    Matsui, Toshiki; Arima, Yusuke; Takemoto, Naohiro; Iwata, Hiroo

    2015-02-01

    Polylactic acid (PLA) is a candidate material to prepare scaffolds for 3-D tissue regeneration. However, cells do not adhere or proliferate well on the surface of PLA because it is hydrophobic. We report a simple and rapid method for inducing cell adhesion to PLA through DNA hybridization. Single-stranded DNA (ssDNA) conjugated to poly(ethylene glycol) (PEG) and to a terminal phospholipid (ssDNA-PEG-lipid) was used for cell surface modification. Through DNA hybridization, modified cells were able to attach to PLA surfaces modified with complementary sequence (ssDNA'). Different cell types can be attached to PLA fibers and films in a spatially controlled manner by using ssDNAs with different sequences. In addition, they proliferate well in a culture medium supplemented with fetal bovine serum. The coexisting modes of cell adhesion through DNA hybridization and natural cytoskeletal adhesion machinery revealed no serious effects on cell growth. The combination of a 3-D scaffold made of PLA and cell immobilization on the PLA scaffold through DNA hybridization will be useful for the preparation of 3-D tissue and organs.

  10. Quantum Efficiency Loss after PID Stress: Wavelength Dependence on Cell Surface and Cell Edge

    SciTech Connect

    Oh, Jaewon; Bowden, Stuart; TamizhMani, GovindaSamy; Hacke, Peter

    2015-06-14

    It is known that the potential induced degradation (PID) stress of conventional p-base solar cells affects power, shunt resistance, junction recombination, and quantum efficiency (QE). One of the primary solutions to address the PID issue is a modification of chemical and physical properties of antireflection coating (ARC) on the cell surface. Depending on the edge isolation method used during cell processing, the ARC layer near the edges may be uniformly or non-uniformly damaged. Therefore, the pathway for sodium migration from glass to the cell junction could be either through all of the ARC surface if surface and edge ARC have low quality or through the cell edge if surface ARC has high quality but edge ARC is defective due to certain edge isolation process. In this study, two PID susceptible cells from two different manufacturers have been investigated. The QE measurements of these cells before and after PID stress were performed at both surface and edge. We observed the wavelength dependent QE loss only in the first manufacturer's cell but not in the second manufacturer's cell. The first manufacturer's cell appeared to have low quality ARC whereas the second manufacturer's cell appeared to have high quality ARC with defective edge. To rapidly screen a large number of cells for PID stress testing, a new but simple test setup that does not require laminated cell coupon has been developed and is used in this investigation.

  11. Effects of surface viscoelasticity on cellular responses of endothelial cells

    PubMed Central

    Hosseini, Motahare-Sadat; Katbab, Ali Asghar

    2014-01-01

    Background: One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR) and various concentrations of organomodified nanoclay (OC). Methods: The nanoclay/SR ratio was tailored to enhance cell behavior via changes in sample substrate surface roughness and viscoelasticity. Results: Surface roughness of the cured SR filled with negatively-charged nanosilicate layers had a greater effect than elasticity on cell growth. The surface roughness of SR nanocomposite samples increased with increasing the OC content, leading to enhanced cell growth and extracellular matrix (ECM) remodeling. This was consistent with the decrease in SR segmental motions and damping factor as the primary viscoelastic parameters by the nanosilicate layers with increasing clay concentrations. Conclusions: The inclusion of clay nanolayers affected the growth and behavior of endothelial cells on microtextured SR. PMID:26989733

  12. Biological surface engineering: a simple system for cell pattern formation.

    PubMed

    Zhang, S; Yan, L; Altman, M; Lässle, M; Nugent, H; Frankel, F; Lauffenburger, D A; Whitesides, G M; Rich, A

    1999-07-01

    Biological surface engineering using synthetic biological materials has a great potential for advances in our understanding of complex biological phenomena. We developed a simple system to engineer biologically relevant surfaces using a combination of self-assembling oligopeptide monolayers and microcontact printing (muCP). We designed and synthesized two oligopeptides containing a cell adhesion motif (RADS)n (n = 2 and 3) at the N-terminus, followed by an oligo(alanine) linker and a cysteine residue at the C-terminus. The thiol group of cysteine allows the oligopeptides to attach covalently onto a gold-coated surface to form monolayers. We then microfabricated a variety of surface patterns using the cell adhesion peptides in combination with hexa-ethylene glycol thiolate which resist non-specific adsorption of proteins and cells. The resulting patterns consist of areas either supporting or inhibiting cell adhesion, thus they are capable of aligning cells in a well-defined manner, leading to specific cell array and pattern formations.

  13. Origin of subdiffusion of water molecules on cell membrane surfaces

    PubMed Central

    Yamamoto, Eiji; Akimoto, Takuma; Yasui, Masato; Yasuoka, Kenji

    2014-01-01

    Water molecules play an important role in providing unique environments for biological reactions on cell membranes. It is widely believed that water molecules form bridges that connect lipid molecules and stabilize cell membranes. Using all-atom molecular dynamics simulations, we show that translational and rotational diffusion of water molecules on lipid membrane surfaces exhibit subdiffusion and aging. Moreover, we provide evidence that both divergent mean trapping time (continuous-time random walk) and long-correlated noise (fractional Brownian motion) contribute to this subdiffusion. These results suggest that subdiffusion on cell membranes causes the water retardation, an enhancement of cell membrane stability, and a higher reaction efficiency. PMID:24739933

  14. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation

    PubMed Central

    Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand

    2016-01-01

    ABSTRACT Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. IMPORTANCE The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous

  15. Avian and Human Seasonal Influenza Hemagglutinin Proteins Elicit CD4 T Cell Responses That Are Comparable in Epitope Abundance and Diversity.

    PubMed

    DiPiazza, Anthony; Richards, Katherine; Poulton, Nicholas; Sant, Andrea J

    2017-03-01

    Avian influenza viruses remain a significant concern due to their pandemic potential. Vaccine trials have suggested that humans respond poorly to avian influenza vaccines relative to seasonal vaccines. It is important to understand, first, if there is a general deficiency in the ability of avian hemagglutinin (HA) proteins to generate immune responses and, if so, what underlies this defect. This question is of particular interest because it has been suggested that in humans, the poor immunogenicity of H7 vaccines may be due to a paucity of CD4 T cell epitopes. Because of the generally high levels of cross-reactive CD4 T cells in humans, it is not possible to compare the inherent immunogenicities of avian and seasonal HA proteins in an unbiased manner. Here, we empirically examine the epitope diversity and abundance of CD4 T cells elicited by seasonal and avian HA proteins. HLA-DR1 and HLA-DR4 transgenic mice were vaccinated with purified HA proteins, and CD4 T cells to specific epitopes were identified and quantified. These studies revealed that the diversity and abundance of CD4 T cells specific for HA do not segregate on the basis of whether the HA was derived from human seasonal or avian influenza viruses. Therefore, we conclude that failure in responses to avian vaccines in humans is likely due to a lack of cross-reactive CD4 T cell memory perhaps coupled with competition with or suppression of naive, HA-specific CD4 T cells by memory CD4 T cells specific for more highly conserved proteins.

  16. Regulation of Cell Surface CB2 Receptor during Human B Cell Activation and Differentiation.

    PubMed

    Castaneda, Julie T; Harui, Airi; Roth, Michael D

    2017-03-31

    Cannabinoid receptor type 2 (CB2) is the primary receptor pathway mediating the immunologic consequences of cannabinoids. We recently reported that human peripheral blood B cells express CB2 on both the extracellular membrane and at intracellular sites, where-as monocytes and T cells only express intracellular CB2. To better understand the pattern of CB2 expression by human B cells, we examined CD20(+) B cells from three tissue sources. Both surface and intracellular expression were present and uniform in cord blood B cells, where all cells exhibited a naïve mature phenotype (IgD(+)/CD38(Dim)). While naïve mature and quiescent memory B cells (IgD(-)/CD38(-)) from tonsils and peripheral blood exhibited a similar pattern, tonsillar activated B cells (IgD(-)/CD38(+)) expressed little to no surface CB2. We hypothesized that regulation of the surface CB2 receptor may occur during B cell activation. Consistent with this, a B cell lymphoma cell line known to exhibit an activated phenotype (SUDHL-4) was found to lack cell surface CB2 but express intracellular CB2. Furthermore, in vitro activation of human cord blood resulted in a down-regulation of surface CB2 on those B cells acquiring the activated phenotype but not on those retaining IgD expression. Using a CB2 expressing cell line (293 T/CB2-GFP), confocal microscopy confirmed the presence of both cell surface expression and multifocal intracellular expression, the latter of which co-localized with endoplasmic reticulum but not with mitochondria, lysosomes, or nucleus. Our findings suggest a dynamic multi-compartment expression pattern for CB2 in B cells that is specifically modulated during the course of B cell activation.

  17. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    PubMed

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  18. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  19. Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells

    PubMed Central

    Xiong, Jimin; Menicanin, Danijela; Marino, Victor

    2016-01-01

    The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043

  20. Surface free energy activated high-throughput cell sorting.

    PubMed

    Zhang, Xinru; Zhang, Qian; Yan, Tao; Jiang, Zeyi; Zhang, Xinxin; Zuo, Yi Y

    2014-09-16

    Cell sorting is an important screening process in microbiology, biotechnology, and clinical research. Existing methods are mainly based on single-cell analysis as in flow cytometric and microfluidic cell sorters. Here we report a label-free bulk method for sorting cells by differentiating their characteristic surface free energies (SFEs). We demonstrated the feasibility of this method by sorting model binary cell mixtures of various bacterial species, including Pseudomonas putida KT2440, Enterococcus faecalis ATCC 29212, Salmonella Typhimurium ATCC 14028, and Escherichia coli DH5α. This method can effectively separate 10(10) bacterial cells within 30 min. Individual bacterial species can be sorted with up to 96% efficiency, and the cell viability ratio can be as high as 99%. In addition to its capacity of sorting evenly mixed bacterial cells, we demonstrated the feasibility of this method in selecting and enriching cells of minor populations in the mixture (presenting at only 1% in quantity) to a purity as high as 99%. This SFE-activated method may be used as a stand-alone method for quickly sorting a large quantity of bacterial cells or as a prescreening tool for microbial discrimination. Given its advantages of label-free, high-throughput, low cost, and simplicity, this SFE-activated cell sorting method has potential in various applications of sorting cells and abiotic particles.

  1. Leukocyte cell surface proteinases: regulation of expression, functions, and mechanisms of surface localization.

    PubMed

    Owen, Caroline A

    2008-01-01

    A number of proteinases are expressed on the surface of leukocytes including members of the serine, metallo-, and cysteine proteinase superfamilies. Some proteinases are anchored to the plasma membrane of leukocytes by a transmembrane domain or a glycosyl phosphatidyl inositol (GPI) anchor. Other proteinases bind with high affinity to classical receptors, or with lower affinity to integrins, proteoglycans, or other leukocyte surface molecules. Leukocyte surface levels of proteinases are regulated by: (1) cytokines, chemokines, bacterial products, and growth factors which stimulate synthesis and/or release of proteinases by cells; (2) the availability of surface binding sites for proteinases; and/or (3) internalization or shedding of surface-bound proteinases. The binding of proteinases to leukocyte surfaces serves many functions including: (1) concentrating the activity of proteinases to the immediate pericellular environment; (2) facilitating pro-enzyme activation; (3) increasing proteinase stability and retention in the extracellular space; (4) regulating leukocyte function by proteinases signaling through cell surface binding sites or other surface proteins; and (5) protecting proteinases from inhibition by extracellular proteinase inhibitors. There is strong evidence that membrane-associated proteinases on leukocytes play critical roles in wound healing, inflammation, extracellular matrix remodeling, fibrinolysis, and coagulation. This review will outline the biology of membrane-associated proteinases expressed by leukocytes and their roles in physiologic and pathologic processes.

  2. 3D Surface Topology Guides Stem Cell Adhesion and Differentiation

    PubMed Central

    Viswanathan, Priyalakshmi; Ondeck, Matthew G.; Chirasatitsin, Somyot; Nghamkham, Kamolchanok; Reilly, Gwendolen C.; Engler, Adam J.; Battaglia, Giuseppe

    2015-01-01

    Polymerized high internal phase emulsion (polyHIPE) foams are extremely versatile materials for investigating cell-substrate interactions in vitro. Foam morphologies can be controlled by polymerization conditions to result in either open or closed pore structures with different levels of connectivity, consequently enabling the comparison between 2D and 3D matrices using the same substrate with identical surface chemistry conditions. Additionally, here we achieve the control of pore surface topology (i.e. how different ligands are clustered together) using amphiphilic block copolymers as emulsion stabilisers. We demonstrate that adhesion of human mesenchymal progenitor (hES-MP) cells cultured on polyHIPE foams is dependent on foam surface topology and chemistry but is independent of porosity and interconnectivity. We also demonstrate that the interconnectivity, architecture and surface topology of the foams has an effect on the osteogenic differentiation potential of hES-MP cells. Together these data demonstrate that the adhesive heterogeneity of a 3D scaffold could regulate not only mesenchymal stem cell attachment but also cell behavior in the absence of soluble growth factors. PMID:25818420

  3. An update on cell surface proteins containing extensin-motifs.

    PubMed

    Borassi, Cecilia; Sede, Ana R; Mecchia, Martin A; Salgado Salter, Juan D; Marzol, Eliana; Muschietti, Jorge P; Estevez, Jose M

    2016-01-01

    In recent years it has become clear that there are several molecular links that interconnect the plant cell surface continuum, which is highly important in many biological processes such as plant growth, development, and interaction with the environment. The plant cell surface continuum can be defined as the space that contains and interlinks the cell wall, plasma membrane and cytoskeleton compartments. In this review, we provide an updated view of cell surface proteins that include modular domains with an extensin (EXT)-motif followed by a cytoplasmic kinase-like domain, known as PERKs (for proline-rich extensin-like receptor kinases); with an EXT-motif and an actin binding domain, known as formins; and with extracellular hybrid-EXTs. We focus our attention on the EXT-motifs with the short sequence Ser-Pro(3-5), which is found in several different protein contexts within the same extracellular space, highlighting a putative conserved structural and functional role. A closer understanding of the dynamic regulation of plant cell surface continuum and its relationship with the downstream signalling cascade is a crucial forthcoming challenge.

  4. Dynamic and reversible surface topography influences cell morphology.

    PubMed

    Kiang, Jennifer D; Wen, Jessica H; del Álamo, Juan C; Engler, Adam J

    2013-08-01

    Microscale and nanoscale surface topography changes can influence cell functions, including morphology. Although in vitro responses to static topography are novel, cells in vivo constantly remodel topography. To better understand how cells respond to changes in topography over time, we developed a soft polyacrylamide hydrogel with magnetic nickel microwires randomly oriented in the surface of the material. Varying the magnetic field around the microwires reversibly induced their alignment with the direction of the field, causing the smooth hydrogel surface to develop small wrinkles; changes in surface roughness, ΔRRMS , ranged from 0.05 to 0.70 μm and could be oscillated without hydrogel creep. Vascular smooth muscle cell morphology was assessed when exposed to acute and dynamic topography changes. Area and shape changes occurred when an acute topographical change was imposed for substrates exceeding roughness of 0.2 μm, but longer-term oscillating topography did not produce significant changes in morphology irrespective of wire stiffness. These data imply that cells may be able to use topography changes to transmit signals as they respond immediately to changes in roughness.

  5. Fabrication of cell container arrays with overlaid surface topographies.

    PubMed

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios

    2012-02-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.

  6. Cell surface markers of cancer stem cells: diagnostic macromolecules and targets for drug delivery.

    PubMed

    Andrews, Timothy E; Wang, Dan; Harki, Daniel A

    2013-04-01

    The recognition that the persistence of cancer stem cells (CSCs) in patients following chemotherapy can result in disease relapse underscores the necessity to develop therapeutics against those cells. CSCs display a unique repertoire of cell surface macromolecules, which have proven essential for their characterization and isolation. Additionally, CSC-specific cell surface macromolecules or markers provide targets for the development of specific agents to destroy them. In this review, we compiled those cell surface molecules that have been validated as CSC markers for many common blood and solid tumors. We describe the unique chemical and structural features of the most common cell surface markers, as well as recent efforts to deliver chemotherapeutic agents into CSCs by targeting those macromolecules.

  7. Autonomous Molecular Cascades for Evaluation of Cell Surfaces

    PubMed Central

    Rudchenko, Maria; Taylor, Steven; Pallavi, Payal; Dechkovskaia, Alesia; Khan, Safana; Butler, Vincent P.; Rudchenko, Sergei; Stojanovic, Milan N.

    2013-01-01

    Molecular automata are mixtures of molecules that undergo precisely defined structural changes in response to sequential interactions with inputs1–4. Previously studied nucleic acid-based-automata include game-playing molecular devices (MAYA automata3,5) and finite-state automata for analysis of nucleic acids6 with the latter inspiring circuits for the analysis of RNA species inside cells7,8. Here, we describe automata based on strand-displacement9,10 cascades directed by antibodies that can analyze cells by using their surface markers as inputs. The final output of a molecular automaton that successfully completes its analysis is the presence of a unique molecular tag on the cell surface of a specific subpopulation of lymphocytes within human blood cells. PMID:23892986

  8. Human NK cells: From surface receptors to clinical applications.

    PubMed

    Moretta, Lorenzo; Pietra, Gabriella; Vacca, Paola; Pende, Daniela; Moretta, Francesca; Bertaina, Alice; Mingari, Maria Cristina; Locatelli, Franco; Moretta, Alessandro

    2016-10-01

    Natural killer (NK) cells play a major role in innate defenses against pathogens, primarily viruses, and are also thought to be part of the immunosurveillance against tumors. They express an array of surface receptors that mediate NK cell function. The human leukocytes antigen (HLA) class I-specific inhibitory receptors allow NK cells to detect and kill cells that have lost or under-express HLA class I antigens, a typical feature of tumor or virally infected cells. However, NK cell activation and induction of cytolytic activity and cytokine production depends on another important checkpoint, namely the expression on target cells of ligands recognized by activating NK receptors. Despite their potent cytolytic activity, NK cells frequently fail to eliminate tumors. This is due to mechanisms of tumor escape, determined by the tumor cells themselves or by tumor-associated cells (i.e. the tumor microenvironment) via the release of soluble suppressive factors or the induction of inhibitory loops involving induction of regulatory T cells, M2-polarized macrophages and myeloid-derived suppressor cells. The most important clinical application involving NK cells is the cure of high-risk leukemias in the haplo-identical hematopoietic stem cell transplant (HSCT) setting. NK cells originated from hematopoietic stem cells (HSC) of HLA-haploidentical donors may express Killer Immunoglobulin-like receptors (KIRs) that are mismatched with the HLA class I alleles of the recipient. This allows NK cells to kill leukemia blasts residual after the conditioning regimen, while sparing normal cells (that do not express ligands for activating NK receptors). More recent approaches based on the specific removal of TCR α/β(+) T cells and of CD19(+) B cells, allow the infusion, together with CD34(+) HSC, of mature KIR(+) NK cells and of TCR γ/δ(+) T cells, both characterized by a potent anti-leukemia activity. This greatly reduces the time interval necessary to obtain alloreactive, KIR(+) NK

  9. Acid base properties of cyanobacterial surfaces. II: Silica as a chemical stressor influencing cell surface reactivity

    NASA Astrophysics Data System (ADS)

    Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.

    2008-03-01

    Bacteria grow in complex solutions where the adsorption of aqueous species and nucleation of mineral phases on the cell surface may interfere with membrane-dependent homeostatic functions. While previous investigations have provided evidence that bacteria may alter their surface chemical properties in response to environmental stimuli, to our knowledge no effort has been made to evaluate surface compositional changes resulting from non-nutritional chemical stresses within a quantitative framework applicable to surface complexation modeling. We consider here the influence of exposure to silica on cyanobacterial surface chemistry, particularly in light of the propensity for cyanobacteria to become silicified in geothermal environments. Using data modeled from over 50 potentiometric titrations of the unsheathed cyanobacterium Anabaena sp. strain PCC 7120, we find that both abiotic geochemical and biotic biochemical-assimilatory factors have important and different effects on cell surface chemistry. Changes in functional group distribution that resulted from growth by different nitrogen assimilation pathways were greatest in the absence of dissolved silica and less important in its presence. Furthermore, out of the three nitrogen assimilation pathways investigated, in terms of surface functional group distribution, nitrate-reducing cultures were least sensitive, and ammonium-assimilating cultures were most sensitive, to changes in media silica concentration. When functional group distributions were plotted as a function of silica concentration, it appears that, with higher silica concentrations, basic groups (p Ka > 7) increase in concentration relative to acidic groups (p Ka < 7), and the total ligand densities (on a per-weight basis) decreased. The results imply a decrease in both the magnitude and density of surface charge as the net result of growth at high silica concentrations. Thus, Anabaena sp. appears to actively respond to growth in silicifying solutions by

  10. Only scratching the cell surface: extracellular signals in cerebrum development.

    PubMed

    Hébert, Jean M

    2013-08-01

    Numerous roles have been identified for extracellular signals such as Fibroblast Growth Factors (FGFs), Transforming Growth Factor-βs (TGFβs), Wingless-Int proteins (WNTs), and Sonic Hedgehog (SHH) in assigning fates to cells during development of the cerebrum. However, several fundamental questions remain largely unexplored. First, how does the same extracellular signal instruct precursor cells in different locations or at different stages to adopt distinct fates? And second, how does a precursor cell integrate multiple signals to adopt a specific fate? Answers to these questions require knowing the mechanisms that underlie each cell type's competence to respond to certain extracellular signals. This brief review provides illustrative examples of potential mechanisms that begin to bridge the gap between cell surface and cell fate during cerebrum development.

  11. Role of vimA in cell surface biogenesis in Porphyromonas gingivalis

    PubMed Central

    Osbourne, Devon O.; Aruni, Wilson; Roy, Francis; Perry, Christopher; Sandberg, Lawrence; Muthiah, Arun; Fletcher, Hansel M.

    2010-01-01

    The Porphyromonas gingivalis vimA gene has been previously shown to play a significant role in the biogenesis of gingipains. Further, in P. gingivalis FLL92, a vimA-defective mutant, there was increased auto-aggregation, suggesting alteration in membrane surface proteins. In order to determine the role of the VimA protein in cell surface biogenesis, the surface morphology of P. gingivalis FLL92 was further characterized. Transmission electron microscopy demonstrated abundant fimbrial appendages and a less well defined and irregular capsule in FLL92 compared with the wild-type. In addition, atomic force microscopy showed that the wild-type had a smoother surface compared with FLL92. Western blot analysis using anti-FimA antibodies showed a 41 kDa immunoreactive protein band in P. gingivalis FLL92 which was missing in the wild-type P. gingivalis W83 strain. There was increased sensitivity to globomycin and vancomycin in FLL92 compared with the wild-type. Outer membrane fractions from FLL92 had a modified lectin-binding profile. Furthermore, in contrast with the wild-type strain, nine proteins were missing from the outer membrane fraction of FLL92, while 20 proteins present in that fraction from FLL92 were missing in the wild-type strain. Taken together, these results suggest that the VimA protein affects capsular synthesis and fimbrial phenotypic expression, and plays a role in the glycosylation and anchorage of several surface proteins. PMID:20378652

  12. Heterogeneous distribution of Candida albicans cell-surface antigens demonstrated with an Als1-specific monoclonal antibody

    PubMed Central

    Coleman, David A.; Oh, Soon-Hwan; Zhao, Xiaomin; Hoyer, Lois L.

    2010-01-01

    Despite an abundance of data describing expression of genes in the Candida albicans ALS (agglutinin-like sequence) gene family, little is known about the production of Als proteins on individual cells, their spatial localization or stability. Als proteins are most commonly discussed with respect to function in adhesion of C. albicans to host and abiotic surfaces. Development of a mAb specific for Als1, one of the eight large glycoproteins encoded by the ALS family, provided the opportunity to detect Als1 during growth of yeast and hyphae, both in vitro and in vivo, and to demonstrate the utility of the mAb in blocking C. albicans adhesion to host cells. Although most C. albicans yeast cells in a saturated culture are Als1-negative by indirect immunofluorescence, Als1 is detected on the surface of nearly all cells shortly after transfer into fresh growth medium. Als1 covers the yeast cell surface, with the exception of bud scars. Daughters of the inoculum cells, and sometimes granddaughters, also have detectable Als1, but Als1 is not detectable on cells from subsequent generations. On germ tubes and hyphae, most Als1 is localized proximal to the mother yeast. Once deposited on yeasts or hyphae, Als1 persists long after the culture has reached saturation. Growth stage-dependent production of Als1, coupled with its persistence on the cell surface, results in a heterogeneous population of cells within a C. albicans culture. Anti-Als1 immunolabelling patterns vary depending on the source of the C. albicans cells, with obvious differences between cells recovered from culture and those from a murine model of disseminated candidiasis. Results from this work highlight the temporal parallels for ALS1 expression and Als1 production in yeasts and germ tubes, the specialized spatial localization and persistence of Als1 on the C. albicans cell surface, and the differences in Als1 localization that occur in vitro and in vivo. PMID:20705663

  13. Expression of cell surface antigens on mast cells: mast cell phenotyping.

    PubMed

    Hauswirth, Alexander W; Florian, Stefan; Schernthaner, Gerit-Holger; Krauth, Maria-Theresa; Sonneck, Karoline; Sperr, Wolfgang R; Valent, Peter

    2006-01-01

    During the past few decades, a number of functionally important cell surface antigens have been detected on human mast cells (MCs). These antigens include the stem cell factor receptor (SCFR/CD117), the high-affinity immunoglobulin E receptor, adhesion molecules, and activation-linked membrane determinants. Several of these antigens (CD2, CD25, CD35, CD88, CD203c) appear to be upregulated on MCs in patients with systemic mastocytosis and therefore are used as diagnostic markers. Quantitative measurement of these markers on MCs is thus of diagnostic value and is usually performed by multicolor-based flow cytometry techniques utilizing a PE- or APC-labeled antibody against CD117 for MCs detection. This chapter gives an overview about the methods of staining of MC in various tissues with special reference to novel diagnostic markers applied in patients with suspected systemic mastocytosis.

  14. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H., Jr.

    1972-01-01

    An investigation of the characteristics and behavior of 10 ohm-cm silicon cells having abnormally high open-circuit voltages was made. The cells studied were made by a new, highly simplified, contact fabrication process which creates both a contact and a thin electric field region at the cell back surface without the need for phosphorus layer removal. These cells had open-circuit voltages of about 0.58 V and their performance as a function of thickness, temperature, and 1 MeV electron irradiation is detailed. The study showed that 10 ohm-cm back-surface-field cells can have the high initial efficiencies and desirable temperature behavior of low resistivity cells. Thin back-surface-field cells were made and showed, in addition, much greater radiation damage resistance. A mechanism is proposed to explain the results.

  15. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells.

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H., Jr.

    1972-01-01

    An investigation of the characteristics and behavior of 10 ohm-cm silicon cells having abnormally high open-circuit voltages was made. The cells studied were made by a new, highly simplified, contact fabrication process which creates both a contact and a thin electric field region at the cell back surface without the need for phosphorus layer removal. These cells had open-circuit voltages of about 0.58 V and their performance as a function of thickness, temperature, and 1 MeV electron irradiation is detailed. The study showed that 10 ohm-cm back-surface-field cells can have the high initial efficiencies and desirable temperature behavior of low resistivity cells. Thin back-surface-field cells were made and showed, in addition, much greater radiation damage resistance. A mechanism is proposed to explain the results.

  16. Surface plasmon resonance imaging of cells and surface-associated fibronectin

    PubMed Central

    Peterson, Alexander W; Halter, Michael; Tona, Alessandro; Bhadriraju, Kiran; Plant, Anne L

    2009-01-01

    Background A critical challenge in cell biology is quantifying the interactions of cells with their extracellular matrix (ECM) environment and the active remodeling by cells of their ECM. Fluorescence microscopy is a commonly employed technique for examining cell-matrix interactions. A label-free imaging method would provide an alternative that would eliminate the requirement of transfected cells and modified biological molecules, and if collected nondestructively, would allow long term observation and analysis of live cells. Results Using surface plasmon resonance imaging (SPRI), the deposition of protein by vascular smooth muscle cells (vSMC) cultured on fibronectin was quantified as a function of cell density and distance from the cell periphery. We observed that as much as 120 ng/cm2 of protein was deposited by cells in 24 h. Conclusion SPRI is a real-time, low-light-level, label-free imaging technique that allows the simultaneous observation and quantification of protein layers and cellular features. This technique is compatible with live cells such that it is possible to monitor cellular modifications to the extracellular matrix in real-time. PMID:19245706

  17. Cell surface energy, contact angles and phase partition. II. Bacterial cells in biphasic aqueous mixtures.

    PubMed

    Gerson, D F; Akit, J

    1980-11-04

    Partition coefficients in biphasic mixtures of poly(ethylene glycol) and Dextran are compared to cell surface energies obtained from contact angles of each liquid phase on cell layers. Linear relationships are observed between these two independent measurements for a variety of bacterial cells. The results demonstrate the importance of interfacial phenomena and contact angles in the phase-partition process.

  18. Breakdown of Chlorophyll in Higher Plants—Phyllobilins as Abundant, Yet Hardly Visible Signs of Ripening, Senescence, and Cell Death

    PubMed Central

    2016-01-01

    Abstract Fall colors have always been fascinating and are still a remarkably puzzling phenomenon associated with the breakdown of chlorophyll (Chl) in leaves. As discovered in recent years, nongreen bilin‐type Chl catabolites are generated, which are known as the phyllobilins. Collaborative chemical‐biological efforts have led to the elucidation of the key Chl‐breakdown processes in senescent leaves and in ripening fruit. Colorless and largely photoinactive phyllobilins are rapidly produced from Chl, apparently primarily as part of a detoxification program. However, fluorescent Chl catabolites accumulate in some senescent leaves and in peels of ripe bananas and induce a striking blue glow. The structural features, chemical properties, and abundance of the phyllobilins in the biosphere suggest biological roles, which still remain to be elucidated. PMID:26919572

  19. Structure of a bacterial cell surface decaheme electron conduit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...

  20. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  1. Diffusion-limited reactions on the cell surface

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Manoj; Tauber, Uwe; Forsten-Williams, Kimberly

    2003-03-01

    Fibroblast growth factors (FGF) stimulates proliferation of many cell types, and are crucial in such processes as eg. wound healing. Cells have specific receptor (R) protein molecules on their surface which bind FGF for this purpose. FGF is also bound by Heparan Sulfate Proteoglycan (HSPG) molecules which are present on the cell surface. In isolation, both these complexes are unstable, with half-life of the order of 10-20 minutes, wheras in intact cells, the half-life of FGF-R complex is nearly 5 hours! To account for this increased stability, it has been proposed that R-FGF complex combines with HSPG via surface diffusion and forms the triad R-FGF-HSPG. We examine the feasibility of this reaction using the well-known Smoluchowski theory and Monte Carlo simulations. Our results support the triad formation theory, and are in qualitative agreement with experimental results. We also discuss the effects of slowing down of surface diffusion of these molecules by such factors as eg. the cytosekeletal network and anchored proteins.

  2. Cell Surface Vimentin Is an Attachment Receptor for Enterovirus 71

    PubMed Central

    Du, Ning; Cong, Haolong; Tian, Hongchao; Zhang, Hua; Zhang, Wenliang; Song, Lei

    2014-01-01

    ABSTRACT Enterovirus 71 (EV71) is a highly transmissible pathogenic agent that causes severe central nervous system diseases in infected infants and young children. Here, we reported that EV71 VP1 protein could bind to vimentin intermediate filaments expressed on the host cell surface. Soluble vimentin or an antibody against vimentin could inhibit the binding of EV71 to host cells. Accompanied with the reduction of vimentin expression on the cell surface, the binding of EV71 to cells was remarkably decreased. Further evidence showed that the N terminus of vimentin is responsible for the interaction between EV71 and vimentin. These results indicated that vimentin on the host cell surface may serve as an attachment site that mediated the initial binding and subsequently increased the infectivity of EV71. IMPORTANCE This study delivers important findings on the roles of vimentin filaments in relation to EV71 infection and provides information that not only improves our understanding of EV71 pathogenesis but also presents us with potentially new strategies for the treatment of diseases caused by EV71 infections. PMID:24623428

  3. Diverse specificity of cellulosome attachment to the bacterial cell surface

    PubMed Central

    Brás, Joana L. A.; Pinheiro, Benedita A.; Cameron, Kate; Cuskin, Fiona; Viegas, Aldino; Najmudin, Shabir; Bule, Pedro; Pires, Virginia M. R.; Romão, Maria João; Bayer, Edward A.; Spencer, Holly L.; Smith, Steven; Gilbert, Harry J.; Alves, Victor D.; Carvalho, Ana Luísa; Fontes, Carlos M. G. A.

    2016-01-01

    During the course of evolution, the cellulosome, one of Nature’s most intricate multi-enzyme complexes, has been continuously fine-tuned to efficiently deconstruct recalcitrant carbohydrates. To facilitate the uptake of released sugars, anaerobic bacteria use highly ordered protein-protein interactions to recruit these nanomachines to the cell surface. Dockerin modules located within a non-catalytic macromolecular scaffold, whose primary role is to assemble cellulosomal enzymatic subunits, bind cohesin modules of cell envelope proteins, thereby anchoring the cellulosome onto the bacterial cell. Here we have elucidated the unique molecular mechanisms used by anaerobic bacteria for cellulosome cellular attachment. The structure and biochemical analysis of five cohesin-dockerin complexes revealed that cell surface dockerins contain two cohesin-binding interfaces, which can present different or identical specificities. In contrast to the current static model, we propose that dockerins utilize multivalent modes of cohesin recognition to recruit cellulosomes to the cell surface, a mechanism that maximises substrate access while facilitating complex assembly. PMID:27924829

  4. Fludarabine and cladribine induce changes in surface proteins on human B-lymphoid cell lines involved with apoptosis, cell survival, and antitumor immunity.

    PubMed

    Kohnke, Philippa L; Mactier, Swetlana; Almazi, Juhura G; Crossett, Ben; Christopherson, Richard I

    2012-09-07

    Fludarabine and cladribine are purine analogues used to treat hematological malignancies. Alone or in combination with therapeutic antibodies, they are effective in treating patients with chronic lymphocytic leukemia and non-Hodgkin's lymphoma. However, the mechanisms of action of these drugs are not well understood. Plasma membrane proteins perform a variety of essential functions that can be affected by malignancy and perturbed by chemotherapy. Analysis of surface proteins may contribute to an understanding of the mechanisms of action of purine analogues and identify biomarkers for targeted therapy. The surface of human cells is rich in N-linked glycoproteins, enabling use of a hydrazide-coupling technique to enrich for glycoproteins, with iTRAQ labeling for quantitative comparison. A number of plasma membrane proteins on human leukemia and lymphoma cells were affected by treatment with a purine analogue, including decreases in CD22 (an adhesion and signaling molecule) and increases in CD205 (a "damaged cell marker") and CD80 and CD50 (T-cell interaction molecules). Purine analogues may affect B-cell receptor (BCR) signaling and costimulatory molecules, leading to multiple signals for apoptosis and cell clearance. Fludarabine and cladribine induce differential effects, with some cell survival proteins (ECE-1 and CD100) more abundant after fludarabine treatment. Cell surface proteins induced by fludarabine and cladribine may be targets for therapeutic antibodies.

  5. Cell Surface Nucleolin Facilitates Enterovirus 71 Binding and Infection

    PubMed Central

    Su, Pei-Yi; Wang, Ya-Fang; Huang, Sheng-Wen; Lo, Yu-Chih; Wang, Ya-Hui; Wu, Shang-Rung; Shieh, Dar-Bin; Wang, Jen-Ren; Lai, Ming-Der

    2015-01-01

    ABSTRACT Because the pathogenesis of enterovirus 71 (EV71) remains mostly ambiguous, identifying the factors that mediate viral binding and entry to host cells is indispensable to ultimately uncover the mechanisms that underlie virus infection and pathogenesis. Despite the identification of several receptors/attachment molecules for EV71, the binding, entry, and infection mechanisms of EV71 remain unclear. Herein, we employed glycoproteomic approaches to identify human nucleolin as a novel binding receptor for EV71. Glycoproteins purified by lectin chromatography from the membrane extraction of human cells were treated with sialidase, followed by immunoprecipitation with EV71 particles. Among the 16 proteins identified by tandem mass spectrometry analysis, cell surface nucleolin attracted our attention. We found that EV71 interacted directly with nucleolin via the VP1 capsid protein and that an antinucleolin antibody reduced the binding of EV71 to human cells. In addition, the knockdown of cell surface nucleolin decreased EV71 binding, infection, and production in human cells. Furthermore, the expression of human nucleolin on the cell surface of a mouse cell line increased EV71 binding and conferred EV71 infection and production in the cells. These results strongly indicate that human nucleolin can mediate EV71 binding to and infection of cells. Our findings also demonstrate that the use of glycoproteomic approaches is a reliable methodology to discover novel receptors for pathogens. IMPORTANCE Outbreaks of EV71 have been reported in Asia-Pacific countries and have caused thousands of deaths in young children during the last 2 decades. The discovery of new EV71-interacting molecules to understand the infection mechanism has become an emergent issue. Hence, this study uses glycoproteomic approaches to comprehensively investigate the EV71-interacting glycoproteins. Several EV71-interacting glycoproteins are identified, and the role of cell surface nucleolin in

  6. Cell-surface markers for colon adenoma and adenocarcinoma.

    PubMed

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S; Wojtkowiak, Jonathan W; Stark, Valerie E; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L

    2016-04-05

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.

  7. Microbial cell surface characteristics: Elucidating attachment/detachment using hydrophobicity and electrokinetic measurements

    EPA Science Inventory

    The surface properties of microorganisms play an important role in their behavior within the environment. Electrophoretic mobility and cell surface hydrophobicity of bacterial cells influence their initial interaction with surfaces and mediate their stability within an aqueous su...

  8. Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall–plasma membrane peri-space in the shoot-tip tissue of banana

    PubMed Central

    Thomas, Pious; Reddy, Krishna M.

    2013-01-01

    This study was aimed at generating microscopic evidence of intra-tissue colonization in banana in support of the previous findings on widespread association of endophytic bacteria with the shoot tips of field-grown plants and micropropagated cultures, and to understand the extent of tissue colonization. Leaf-sheath tissue sections (∼50–100 µm) from aseptically gathered shoot tips of cv. Grand Naine were treated with Live/Dead bacterial viability kit components SYTO 9 (S9) and propidium iodide (PI) followed by epifluorescence or confocal laser scanning microscopy (CLSM). The S9, which targets live bacteria, showed abundant green-fluorescing particles along the host cell periphery in CLSM, apparently in between the plasma membrane and the cell wall. These included non-motile and occasional actively motile single bacterial cells seen in different x–y planes and z-stacks over several cell layers, with the fluorescence signal similar to that of pure cultures of banana endophytes. Propidium iodide, which stains dead bacteria, did not detect any, but post-ethanol treatment, both PI and 4′,6-diamidino-2-phenylindole detected abundant bacteria. Propidium iodide showed clear nuclear staining, as did S9 to some extent, and the fluorophores appeared to detect bacteria at the exclusion of DNA-containing plant organelles as gathered from bright-field and phase-contrast microscopy. The S9–PI staining did not work satisfactorily with formalin- or paraformaldehyde-fixed tissue. The extensive bacterial colonization in fresh tissue was further confirmed with the suckers of different cultivars, and was supported by transmission electron microscopy. This study thus provides clear microscopic evidence of the extensive endophytic bacterial inhabitation in the confined cell wall–plasma membrane peri-space in shoot tissue of banana with the organisms sharing an integral association with the host. The abundant tissue colonization suggests a possible involvement of endophytes in

  9. HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency

    PubMed Central

    2012-01-01

    Background Certain post-translational modifications to histones, including H3K4me3, as well as binding sites for the transcription factor STAT1, predict the site of integration of exogenous gamma-retroviruses with great accuracy and cell-type specificity. Statistical methods that were used to identify chromatin features that predict exogenous gamma-retrovirus integration site selection were exploited here to determine whether cell type-specific chromatin markers are enriched in the vicinity of endogenous retroviruses (ERVs). Results Among retro-elements in the human genome, the gamma-retrovirus HERV-H was highly associated with H3K4me3, though this association was only observed in embryonic stem (ES) cells (p < 10-300) and, to a lesser extent, in induced pluripotent stem (iPS) cells. No significant association was observed in nearly 40 differentiated cell types, nor was any association observed with other retro-elements. Similar strong association was observed between HERV-H and the binding sites within ES cells for the pluripotency transcription factors NANOG, OCT4, and SOX2. NANOG binding sites were located within the HERV-H 5′LTR itself. OCT4 and SOX2 binding sites were within 1 kB and 2 kB of the 5′LTR, respectively. In keeping with these observations, HERV-H RNA constituted 2% of all poly A RNA in ES cells. As ES cells progressed down a differentiation pathway, the levels of HERV-H RNA decreased progressively. RNA-Seq datasets showed HERV-H transcripts to be over 5 kB in length and to have the structure 5′LTR-gag-pro-3′LTR, with no evidence of splicing and no intact open reading frames. Conclusion The developmental regulation of HERV-H expression, the association of HERV-H with binding sites for pluripotency transcription factors, and the extremely high levels of HERV-H RNA in human ES cells suggest that HERV-H contributes to pluripotency in human cells. Proximity of HERV-H to binding sites for pluripotency transcription factors within ES cells

  10. Science and Art of Cell-Based Ocular Surface Regeneration.

    PubMed

    Singh, Vivek; Shukla, Sachin; Ramachandran, Charanya; Mishra, Dilip Kumar; Katikireddy, Kishore R; Lal, Ikeda; Chauhan, Sunil K; Sangwan, Virender S

    2015-01-01

    The potential cause of blindness worldwide includes diseases of the cornea, ocular surface (limbal stem cell deficiency, allergic conjunctivitis, dry eye diseases), and retinal diseases. The presence of stem cells (limbal stem cells) in the basal region of the limbus makes it an important tool for the ocular regeneration and also in maintaining the transparency of eye by replacing the corneal epithelium continuously. Various surgical modalities have been developed like cultured limbal epithelial transplantation, cultured oral mucosal epithelial transplantation, simple limbal epithelial transplantation, etc., utilizing the cell-based regenerative properties to treat limbal disorder. Cell-based therapies for ocular repair and regeneration comprise a major hope by therapies involving the mesenchymal stem cells, embryonic stem cells, and limbal stem cells for the restoration of vision in individuals whose ocular tissue has been irreversibly damaged by disease or trauma. This review explores critical needs in human disease mainly the ocular problem where cell-based therapeutics is exceptionally well suited and also the use of animal models, various artificial scaffolds, as well as advancement in clinical technique to challenge the current demand to overcome corneal blindness.

  11. Proteomics and glycoproteomics of pluripotent stem-cell surface proteins.

    PubMed

    Sun, Bingyun

    2015-03-01

    Pluripotent stem cells are a unique cell type with promising potential in regenerative and personalized medicine. Yet the difficulty to understand and coax their seemingly stochastic differentiation and spontaneous self-renewal have largely limited their clinical applications. A call has been made by numerous researchers for a better characterization of surface proteins on these cells, in search of biomarkers that can dictate developmental stages and lineage specifications, and can help formulate mechanistic insight of stem-cell fate choices. In the past two decades, proteomics has gained significant recognition in profiling surface proteins at high throughput. This review will summarize the impact of these studies on stem-cell biology, and discuss the used proteomic techniques. A systematic comparison of all the techniques and their results is also attempted here to help reveal pros, cons, and the complementarity of the existing methods. This awareness should assist in selecting suitable strategies for stem-cell related research, and shed light on technical improvements that can be explored in the future.

  12. Sorption of heavy metals by prepared bacterial cell surfaces

    SciTech Connect

    Churchill, S.A.; Walters, J.V.; Churchill, P.F.

    1995-10-01

    Prepared biomass from two Gram-negative and one Gram-positive bacterial strains was examined for single, binary, and quaternary mixtures of polyvalent metal cation binding to cell surfaces. The biosorption of {sub 24}Cr{sup 3+}, {sub 27}Co{sup 2+}, {sub 28}Ni{sup 2+}, and {sub 29}Cu{sup 2+} for each bacterial cell type was evaluated using a batch equilibrium method. The binding of each metal by all three bacterial cells could be described by the Freundlich sorption model. The isotherm binding constants suggest that E. coli cells are the most efficient at binding copper, chromium, and nickel; and M. luteus adsorbs cobalt most efficiently. The K-values for copper bound to P. aeruginosa and E. coli are > 2-fold and > 8-fold greater, respectively, than previous reported for intact cells. The general metal-affinity series observed was Cr{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+}. There was a marked lower affinity of all biosorbents for Co{sup 2+} and Ni{sup 2+}. M. luteus and E. coli had a strong preference for Co{sup 2+} over Ni{sup 2+}. Metal-binding enhancement could be ascribed to increased cell barrier surface porosity to metal-bearing solutions.

  13. Development of a novel mammalian cell surface antibody display platform.

    PubMed

    Zhou, Chen; Jacobsen, Frederick W; Cai, Ling; Chen, Qing; Shen, Weyen David

    2010-01-01

    Antibody display systems have been successfully applied to screen, select and characterize antibody fragments. These systems typically use prokaryotic organisms such as phage and bacteria or lower eukaryotic organisms, such as yeast. These organisms possess either no or different post-translational modification functions from mammalian cells and prefer to display small antibody fragments instead of full-length IgGs. We report here a novel mammalian cell-based antibody display platform that displays full-length functional antibodies on the surface of mammalian cells. Through recombinase-mediated DNA integration, each host cell contains one copy of the gene of interest in the genome. Utilizing a hot-spot integration site, the expression levels of the gene of interest are high and comparable between clones, ensuring a high signal to noise ratio. Coupled with fluorescence-activated cell sorting (FACS) technology, our platform is high throughput and can distinguish antibodies with very high antigen binding affinities directly on the cell surface. Single-round FACS can enrich high affinity antibodies by more than 500 fold. Antibodies with significantly improved neutralizing activity have been identified from a randomly mutagenized library, demonstrating the power of this platform in screening and selecting antibody therapeutics.

  14. Two distinct antigen systems in human B lymphocytes: identification of cell surface and intracellular antigens using monoclonal antibodies.

    PubMed Central

    Ishii, Y; Takami, T; Yuasa, H; Takei, T; Kikuchi, K

    1984-01-01

    Two distinct antigen systems (L26 and L27) specifically expressed in human B lymphocytes were identified using TB2-2B3 (2B3) and T3-5B3 (5B3) monoclonal antibodies, respectively. Whereas L26 antigen defined by 2B3 were rarely expressed on the surface of B cells but abundant in the cytoplasm, 127 antigens detected by 5B3 was clearly expressed on the cell surface. These two antigens appeared to be restricted in their expression to B cells, as they were found in most B cells but not other cell types including thymocytes, T cells, monocytes and granulocytes. Functional studies demonstrated that L27 was more easily lost from B cells after activation with pokeweed mitogen than was L26. Likewise, plasma cell myeloma, as well as normal plasma cells, was devoid of both L26 and L27, whereas immunoblastic sarcoma of B cell type expressed L26 but not L27. These two antigens co-existed in the same B cell lines including Epstein-Barr virus transformed B cell lines, B cell type acute lymphatic leukaemia (B-ALL) cell line, Burkitt's lymphoma cell lines and myeloma cell lines, but pre-B and common ALL cell lines were entirely negative for both L26 and L27. Immunoprecipitation studies showed that L26 consisted of at least two polypeptide chains with molecular weights of 30K and 33K daltons, which were clearly distinct from HLA-DR antigens. The antigen L27 is presently under study. Images Fig. 2 Fig. 3 PMID:6332692

  15. Fixation and stabilization of Escherichia coli cells displaying genetically engineered cell surface proteins.

    PubMed

    Freeman, A; Abramov, S; Georgiou, G

    1996-12-05

    A large biotechnological potential is inherent in the display of proteins (e.g., enzymes, single-chain antibodies, on the surface of bacterial cells) (Georgiou et al., 1993). Applications such as immobilized whole-cell biocatalysts or cellular adsorbents require cell fixation to prevent disintegration, stabilization of the anchored protein from leakage, denaturation or proteolysis, and total loss of cell viability, preventing medium and potential product contamination with cells. In this article we describe the adaptation of a simple two-stage chemical crosslinking procedure based on "bi-layer encagement" (Tor et al., 1989) for stabilizing Escherichia coli cells expressing an Lpp-OmpA (46-159)-beta-lactamase fusion that displays beta-lactamase on the cell surface. Bilayer crosslinking and coating the bacteria with a polymeric matrix is accomplished by treating the cells first with either glutaraldehyde or polyglutaraldehyde, followed by secondary crosslinking with polyacrylamide hydrazide. These treatments resulted in a 5- to 25-fold reduction of the thermal inactivation rate constant at 55 degrees C of surface anchored beta-lactamase and completely prevented the deterioration of the cells for at least a week of storage at 4 degrees C. The stabilization procedure developed paves the way to scalable biotechnological applications of E. coli displaying surface anchored proteins as whole-cell biocatalysts and adsorbents.

  16. Mass Spectrometric Analysis of the Cell Surface N-Glycoproteome by Combining Metabolic Labeling and Click Chemistry

    NASA Astrophysics Data System (ADS)

    Smeekens, Johanna M.; Chen, Weixuan; Wu, Ronghu

    2015-04-01

    Cell surface N-glycoproteins play extraordinarily important roles in cell-cell communication, cell-matrix interactions, and cellular response to environmental cues. Global analysis is exceptionally challenging because many N-glycoproteins are present at low abundances and effective separation is difficult to achieve. Here, we have developed a novel strategy integrating metabolic labeling, copper-free click chemistry, and mass spectrometry (MS)-based proteomics methods to analyze cell surface N-glycoproteins comprehensively and site-specifically. A sugar analog containing an azido group, N-azidoacetylgalactosamine, was fed to cells to label glycoproteins. Glycoproteins with the functional group on the cell surface were then bound to dibenzocyclooctyne-sulfo-biotin via copper-free click chemistry under physiological conditions. After protein extraction and digestion, glycopeptides with the biotin tag were enriched by NeutrAvidin conjugated beads. Enriched glycopeptides were deglycosylated with peptide- N-glycosidase F in heavy-oxygen water, and in the process of glycan removal, asparagine was converted to aspartic acid and tagged with 18O for MS analysis. With this strategy, 144 unique N-glycopeptides containing 152 N-glycosylation sites were identified in 110 proteins in HEK293T cells. As expected, 95% of identified glycoproteins were membrane proteins, which were highly enriched. Many sites were located on important receptors, transporters, and cluster of differentiation proteins. The experimental results demonstrated that the current method is very effective for the comprehensive and site-specific identification of the cell surface N-glycoproteome and can be extensively applied to other cell surface protein studies.

  17. Mass spectrometric analysis of the cell surface N-glycoproteome by combining metabolic labeling and click chemistry.

    PubMed

    Smeekens, Johanna M; Chen, Weixuan; Wu, Ronghu

    2015-04-01

    Cell surface N-glycoproteins play extraordinarily important roles in cell-cell communication, cell-matrix interactions, and cellular response to environmental cues. Global analysis is exceptionally challenging because many N-glycoproteins are present at low abundances and effective separation is difficult to achieve. Here, we have developed a novel strategy integrating metabolic labeling, copper-free click chemistry, and mass spectrometry (MS)-based proteomics methods to analyze cell surface N-glycoproteins comprehensively and site-specifically. A sugar analog containing an azido group, N-azidoacetylgalactosamine, was fed to cells to label glycoproteins. Glycoproteins with the functional group on the cell surface were then bound to dibenzocyclooctyne-sulfo-biotin via copper-free click chemistry under physiological conditions. After protein extraction and digestion, glycopeptides with the biotin tag were enriched by NeutrAvidin conjugated beads. Enriched glycopeptides were deglycosylated with peptide-N-glycosidase F in heavy-oxygen water, and in the process of glycan removal, asparagine was converted to aspartic acid and tagged with 18O for MS analysis. With this strategy, 144 unique N-glycopeptides containing 152 N-glycosylation sites were identified in 110 proteins in HEK293T cells. As expected, 95% of identified glycoproteins were membrane proteins, which were highly enriched. Many sites were located on important receptors, transporters, and cluster of differentiation proteins. The experimental results demonstrated that the current method is very effective for the comprehensive and site-specific identification of the cell surface N-glycoproteome and can be extensively applied to other cell surface protein studies.

  18. Surface code—biophysical signals for apoptotic cell clearance

    NASA Astrophysics Data System (ADS)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M.; Chaurio, Ricardo; Janko, Christina; Herrmann, Martin; Muñoz, Luis E.

    2013-12-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.

  19. Surface science studies of model fuel cell electrocatalysts

    NASA Astrophysics Data System (ADS)

    Marković, N. M.; Ross, P. N.

    2002-04-01

    The purpose of this review is to discuss progress in the understanding of electrocatalytic reactions through the study of model systems with surface spectroscopies. Pure metal single crystals and well-characterized bulk alloys have been used quite successfully as models for real (commercial) electrocatalysts. Given the sheer volume of all work in electrocatalysis that is on fuel cell reactions, we will focus on electrocatalysts for fuel cells. Since Pt is the model fuel cell electrocatalyst, we will focus entirely on studies of pure Pt and Pt bimetallic alloys. The electrode reactions discussed include hydrogen oxidation/evolution, oxygen reduction, and the electrooxidation of carbon monoxide, formic acid, and methanol. Surface spectroscopies emphasized are FTIR, STM/AFM and surface X-ray scattering (SXS). The discussion focuses on the relation between the energetics of adsorption of intermediates and the reaction pathway and kinetics, and how the energetics and kinetics relate to the extrinsic properties of the model system, e.g. surface structure and/or composition. Finally, we conclude by discussing the limitations that are reached by using pure metal single crystals and well-characterized bulk alloys as models for real catalysts, and suggest some directions for developing more realistic systems.

  20. Analysis of cell surface alterations in Legionella pneumophila cells treated with human apolipoprotein E.

    PubMed

    Palusinska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Wdowiak-Wróbel, Sylwia; Chmiel, Elżbieta; Gruszecki, Wiesław I

    2015-03-01

    Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection.

  1. Theoretical Evaluation of Cu-Sn-S and Cu-Sb-S Based Solar Absorbers for Earth-Abundant Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Zawadzki, Pawel; Peng, Haowei; Zakutayev, Andriy; Lany, Stephan

    2013-03-01

    Current thin-film solar absorbers such as Cu(In/Ga)Se2 or CdTe, although remarkably efficient, incorporate limited-supply elements like indium or tellurium. Meeting the cost competiveness criterion necessary for a large-scale deployment of thin-film PV technologies requires development of new earth-abundant solar absorbers. In an effort to accelerate such development we combine first principles theory and high throughput experiments to explore In-free ternary copper chalcogenides. As part of the theoretical evaluation, we study the Cu2SnS3, Cu4SnS4, CuSbS2 and Cu3SbS3 based compounds formed by isovalent alloying on Sn, Sb, and S sites. For this set of materials we predict band-structures and optical absorption coefficients and demonstrate the feasibility of achieving the optimal band gap of 1.3 eV for a single junction cell and a high optical absorption of ~104 cm-1 at Eg+0.2 eV. We additionally perform defect studies to elucidate the doping trends within this class of materials. The project ``Rapid Development of Earth-abundant Thin Film Solar Cells'' is supported as a part of the SunShot initiative by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 to NREL.

  2. Cu2ZnSnS4 (CZTS) nanoparticle based nontoxic and earth-abundant hybrid pn-junction solar cells.

    PubMed

    Saha, Sudip K; Guchhait, Asim; Pal, Amlan J

    2012-06-14

    A heterojunction between a layer of CZTS nanoparticles and a layer of fullerene derivatives forms a pn-junction. We have used such an inorganic-organic hybrid pn-junction device for solar cell applications. As routes to optimize device performance, interdot separation has been reduced by replacing long-chain ligands of the quantum dots with short-chain ligands and thickness of the CZTS layer has been varied. We have shown that the CZTS-fullerene interface could dissociate photogenerated excitons due to the depletion region formed at the pn-junction. From capacitance-voltage characteristics, we have determined the width of the depletion region, and compared it with the parameters of devices based on the components of the heterojunction. The results demonstrate solar cell applications based on nontoxic and earth-abundant materials.

  3. Establishment of cell surface engineering and its development.

    PubMed

    Ueda, Mitsuyoshi

    2016-07-01

    Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique.

  4. Ligand engagement on material surfaces is discriminated by cell mechanosensoring.

    PubMed

    Battista, Edmondo; Causa, Filippo; Lettera, Vincenzo; Panzetta, Valeria; Guarnieri, Daniela; Fusco, Sabato; Gentile, Francesco; Netti, Paolo A

    2015-03-01

    Peptide or protein ligands can be used for molecular decoration to enhance the functionality of synthetic materials. However, some skepticism has arisen about the efficacy of such strategy in practical contexts since serum proteins largely adsorb. To address this issue, it is crucial to ascertain whether a chemically conjugated integrin-binding peptide is fully recognized by a cell even if partially covered by a physisorbed layer of serum protein; in more general terms, if competitive protein fragments physisorbed onto the surface are distinguishable from those chemically anchored to it. Here, we engraft an RGD peptide on poly-ε-caprolactone (PCL) surfaces and follow the dynamics of focal adhesion (FA) and cytoskeleton assembly at different times and culture conditions using a variety of analytical tools. Although the presence of serum protein covers the bioconjugated RGD significantly, after the first adhesion phase cells dig into the physisorbed layer and reach the submerged signal to establish a more stable adhesion structure (mature FAs). Although the spreading area index is not substantially affected by the presence of the RGD peptide, cells attached to chemically bound signals develop a stronger adhesive interaction with the materials and assemble a mechanically stable cytoskeleton. This demonstrates that cells are able to discriminate, via mechanosensoring, between adhesive motives belonging to physisorbed proteins and those firmly anchored on the material surface.

  5. Quantum-radiative cooling for solar cells with textured surface

    NASA Astrophysics Data System (ADS)

    Gilman, Boris; Ivanov, Igor

    2004-11-01

    Efficient technique of Quantum Radiative Cooling (QRC) of textured Solar Cells and Modules is described that is capable of Solar Module (SM) temperature reduction by 5-20C, resulting in 3-10% efficiency increase. Novel methods are based on the quantum assisted IR emission from the surface covered by either multi-layer coatings made of Si-nitride, SiO or Si oxy-nitride films or specifically designed insulating sun-transparent chamber (QRC zone) that contains Selective Emissive (SE) gas or gas mix. QRC zone is mounted on the top of Solar Module replacing existing lamination coatings. To enhance the efficiency of QRC some specific methods and fabrication procedures are proposed to form an electricly charged textured surface that provide a high Electric Field at the surface thus enhancing IR emissivity from the surface. Such procedure can be also used to form the field Induced Surface Barriers in the Si-based Solar Cells that can substitute the existing diffused Emitters resulting in significant reduction of the Cycle Time as well as prospective Fabrication Cost.

  6. Surface modified alginate microcapsules for 3D cell culture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  7. Anomalous cell surface structure of sickle cell anemia erythrocytes as demonstrated by cell surface labeling and endo-beta-galactosidase treatment

    SciTech Connect

    Fukuda, M.; Fukuda, M.N.; Hakomori, S.; Papayannopoulou, T.

    1981-01-01

    Erythrocyte surface glycoproteins from patients with various types of sickle cell anemia have been analyzed and compared with those from normal individuals. By hemagglutination with various anti-carbohydrate antibodies, sickle cells showed profound increase of i antigens and moderate increase of GlcNAc beta 1 leads to 3Gal beta 1 leads to 3 Glc structure, whereas antigenicity toward globosidic structure was unchanged. In parallel to these findings, erythrocytes of sickle cell patients have additional sialylated lactosaminoglycan in Band 3. Thus, it can be concluded that erythrocytes of sickle cell patients are characterized by an altered cell surface structure which does not appear to be due to topographical changes of cell surface membrane. It is possible that the anemia or the ''stress'' hematopoiesis in these patients is responsible for these changes.

  8. Oral administration of banana lectin modulates cytokine profile and abundance of T-cell populations in mice.

    PubMed

    Sansone, Ana Claudia Miranda Brito; Sansone, Marcelo; Dos Santos Dias, Carlos Tadeu; Oliveira do Nascimento, João Roberto

    2016-08-01

    Banana lectin (BanLec) is a dimeric protein occurring in fruit pulp that modulates immune cell functioning in vitro. In order to assess the immune response in vivo, BanLec from ripe banana (Musa acuminata) fruit was purified and orally given to mice for seven days. The analysis of cytokines in the mice peripheral blood revealed increased IL-10, IL-17 and TNFα, and a reduction of IFNγ and IL-6. In the thymus, an increase of CD4+ and a decrease of CD8+ T-cells were observed after oral administration of BanLec. The modulation of pro- and anti-inflammatory cytokines and T-cells in the peripheral blood and thymus of mice demonstrated the immunomodulatory properties of natural BanLec in vivo. This research brings new data on a protein from a fresh fruit consumed worldwide that may act as an immunomodulator, potentially affecting the host response to infections, immune diseases and cancer.

  9. Stable isotope labeling of oligosaccharide cell surface antigens

    SciTech Connect

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A.

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  10. Glucocorticoids and the cell surface of human glioma cells: relationship to cytostasis.

    PubMed

    Mackie, A E; Freshney, R I; Akturk, F; Hunt, G

    1988-12-01

    The glucocorticoid hormones methyl prednisolone and dexamethasone were shown to be cytostatic, but not cytotoxic, at high cell densities for early passage and continuous cell lines from human glioma at 0.25 microM and above, in the presence or absence of serum. In the absence of serum both steroids at 2.5 nM increased the saturation density close to the level reached in serum. Examination of the iodinated glycoproteins of the cell surface by gel electrophoresis did not reveal any consistent change. However, gel exclusion chromatography of protease digests of the cell surface and of material released into the medium showed an increase in incorporation of 3H-glucosamine in pronase digests after treatment with methyl prednisolone. Ion exchange chromatography showed that sulphated glycosaminoglycans, particularly heparan sulphate, increased and hyaluronic acid decreased in response to steroids, and there was increased retention of GAGs on the cell surface relative to the released fraction. It was concluded that glucocorticoid hormones modify the cell surface of human glioma cells and that this may contribute to enhanced cell intraction and lead to increased density limitation of cell proliferation.

  11. Glucocorticoids and the cell surface of human glioma cells: relationship to cytostasis.

    PubMed Central

    Mackie, A. E.; Freshney, R. I.; Akturk, F.; Hunt, G.

    1988-01-01

    The glucocorticoid hormones methyl prednisolone and dexamethasone were shown to be cytostatic, but not cytotoxic, at high cell densities for early passage and continuous cell lines from human glioma at 0.25 microM and above, in the presence or absence of serum. In the absence of serum both steroids at 2.5 nM increased the saturation density close to the level reached in serum. Examination of the iodinated glycoproteins of the cell surface by gel electrophoresis did not reveal any consistent change. However, gel exclusion chromatography of protease digests of the cell surface and of material released into the medium showed an increase in incorporation of 3H-glucosamine in pronase digests after treatment with methyl prednisolone. Ion exchange chromatography showed that sulphated glycosaminoglycans, particularly heparan sulphate, increased and hyaluronic acid decreased in response to steroids, and there was increased retention of GAGs on the cell surface relative to the released fraction. It was concluded that glucocorticoid hormones modify the cell surface of human glioma cells and that this may contribute to enhanced cell intraction and lead to increased density limitation of cell proliferation. PMID:3254724

  12. Adherence of Candida albicans and Candida parapsilosis to epithelial cells correlates with fungal cell surface carbohydrates.

    PubMed

    Lima-Neto, Reginaldo G; Beltrão, Eduardo I C; Oliveira, Patrícia C; Neves, Rejane P

    2011-01-01

    Many studies have described the adherence of Candida albicans to epithelial cells but little is known about Candida parapsilosis adhesion and its role in host cell surface recognition. This study was designed to evaluate the correlation between the adherence of 20 C. albicans and 12 C. parapsilosis strains to human buccal epithelial cells and the expression of fungal cell surface carbohydrates using lectin histochemistry. Adherence assays were carried out by incubating epithelial cells in yeast suspensions (10(7) cells ml(-1) ) and peroxidase conjugated lectins (Con A, WGA, UEA I and PNA at 25 μg ml(-1) ) were used for lectin histochemistry. The results showed that adherence was overall greater for C. albicans than for C. parapsilosis (P < 0.01) and that the individual strain differences correlated with a high content of cell surface α-l-fucose residues as indicated by the UEA I staining pattern. Based on the saccharide specificity of the lectins used, these results suggest that l-fucose residues on cell surface glycoconjugates may represent recognition molecules for interactions between the yeast strain studied and the host (r = 0.6985, P = 0.0045). In addition, our results indicated the presence of α-d-glucose/α-d-mannose, N-acetyl-D-glucosamine/N-acetylneuraminic acid and D-galactose/N-acetyl-D-galactosamine in fungal cell wall.

  13. Interfacing biomembrane mimetic polymer surfaces with living cells Surface modification for reliable bioartificial liver

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yasuhiko; Takami, Utae; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2008-11-01

    The surface design used for reducing nonspecific biofouling is one of the most important issues for the fabrication of medical devices. We present here a newly synthesized a carbohydrate-immobilized phosphorylcholine polymer for surface modification of medical devices to control the interface with living cells. A random copolymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate (BMA), and 2-lactobionamidoethyl methacrylate (LAMA) was synthesized by conventional radical polymerization. The monomer feeding ratio in the copolymer was adjusted to 24/75/1 (MPC/BMA/LAMA). The copolymer (PMBL1.0) could be coated by solvent evaporation from an ethanol solution. Cells of the human hepatocellular liver carcinoma cell line (HepG2) having asialoglycoprotein receptors (ASGPRs) were seeded on PMBL1.0 or poly(BMA) (PBMA)-coated PET plates. On PBMA, many adherent cells were observed and were well spread with monolayer adhesion. HepG2 adhesion was observed on PMBL1.0 because the cell has ASGPRs. Furthermore, some of the cells adhering to PMBL1.0 had a spheroid formation and similarly shaped spheroids were scattered on the surface. According to confocal laser microscopic observation after 96 h cultivation, it was found that albumin production preferentially occurred in the center of the spheroid. The albumin production of the cells that adhered to PBMA was sparse. The amount of albumin production per unit cell that adhered to PMBL1.0 was determined by ELISA and was significantly higher than that which adhered to PBMA. Long-term cultivation of HepG2 was also performed using hollow fiber mini-modules coated with PMBL1.0. The concentration of albumin produced from HepG2 increased continuously for one month. In the mini-module, the function of HepG2 was effectively preserved for that period. On the hollow fiber membrane, spheroid formation of HepG2 cells was also observed. In conclusion, PMBL1.0 can provide a suitable surface for the cultivation of

  14. Probing and mapping electrode surfaces in solid oxide fuel cells.

    PubMed

    Blinn, Kevin S; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A; Liu, Meilin

    2012-09-20

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen (1-7). The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion(2). Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation(8-12). It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition(8, 10, 13, 14) ("coking") and sulfur poisoning(11, 15) and the manner in which surface modifications stave off this degradation(16). The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM

  15. Analysis of Cell Surface Proteome Changes via Label-free, Quantitative Mass Spectrometry*S⃞

    PubMed Central

    Schiess, Ralph; Mueller, Lukas N.; Schmidt, Alexander; Mueller, Markus; Wollscheid, Bernd; Aebersold, Ruedi

    2009-01-01

    We present a mass spectrometry-based strategy for the specific detection and quantification of cell surface proteome changes. The method is based on the label-free quantification of peptide patterns acquired by high mass accuracy mass spectrometry using new software tools and the cell surface capturing technology that selectively enriches glycopeptides exposed to the cell exterior. The method was applied to monitor dynamic protein changes in the cell surface glycoproteome of Drosophila melanogaster cells. The results led to the construction of a cell surface glycoprotein atlas consisting of 202 cell surface glycoproteins of D. melanogaster Kc167 cells and indicated relative quantitative changes of cell surface glycoproteins in four different cellular states. Furthermore we specifically investigated cell surface proteome changes upon prolonged insulin stimulation. The data revealed insulin-dependent cell surface glycoprotein dynamics, including insulin receptor internalization, and linked these changes to intracellular signaling networks. PMID:19036722

  16. Basic surface properties of Aedes albopictus cells: effect of Mayaro virus infection on electrostatic charge and surface tension.

    PubMed

    Mezêncio, J M; Costa e Silva Filho, F; Rebello, M A

    1997-01-01

    Aedes albopictus cells possess a negative cell surface charge of -12.7 mV with an isoelectrophoretic point (IEP) located between pH 3.0 and 4.0. Infection with Mayaro virus rendered the surface of A. albopictus cells less negative reaching a zeta-potential value of -9.7 mV after 100 h of infection. Concomitantly, the IEP of the infected cells were also altered from 3.0-4.0 to 4.0-5.0. Furthermore, the contact angle measurements clearly showed qualitative alterations in the cell surface of infected cells.

  17. The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells

    SciTech Connect

    Losfeld, Marie-Estelle; Khoury, Diala El; Mariot, Pascal; Carpentier, Mathieu; Krust, Bernard; Briand, Jean-Paul; Mazurier, Joel; Hovanessian, Ara G.; Legrand, Dominique

    2009-01-15

    Nucleolin is an ubiquitous nucleolar phosphoprotein involved in fundamental aspects of transcription regulation, cell proliferation and growth. It has also been described as a shuttling molecule between nucleus, cytosol and the cell surface. Several studies have demonstrated that surface nucleolin serves as a receptor for various extracellular ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. Previously, we reported that nucleolin in the extranuclear cell compartment is a glycoprotein containing N- and O-glycans. In the present study, we show that glycosylation is an essential requirement for surface nucleolin expression, since it is prevented when cells are cultured in the presence of tunicamycin, an inhibitor of N-glycosylation. Accordingly, surface but not nuclear nucleolin is radioactively labeled upon metabolic labeling of cells with [{sup 3}H]glucosamine. Besides its well-demonstrated role in the internalization of specific ligands, here we show that ligand binding to surface nucleolin could also induce Ca{sup 2+} entry into cells. Indeed, by flow cytometry, microscopy and patch-clamp experiments, we show that the HB-19 pseudopeptide, which binds specifically surface nucleolin, triggers rapid and intense membrane Ca{sup 2+} fluxes in various types of cells. The use of several drugs then indicated that Store-Operated Ca{sup 2+} Entry (SOCE)-like channels are involved in the generation of these fluxes. Taken together, our findings suggest that binding of an extracellular ligand to surface nucleolin could be involved in the activation of signaling pathways by promoting Ca{sup 2+} entry into cells.

  18. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    NASA Technical Reports Server (NTRS)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  19. Pharmacological induction of cell surface GRP78 contributes to apoptosis in triple negative breast cancer cells

    PubMed Central

    Hardy, Britta

    2014-01-01

    Breast cancer tumor with triple-negative receptors (estrogen, progesterone and Her 2, receptors) is the most aggressive and deadly subtype, with high rates of disease recurrence and poor survival. Here, we show that induction in cell surface GRP78 by doxorubicin and tunicamycin was associated with CHOP/GADD153 upregulation and increase in apoptosis in triple negative breast cancer tumor cells. GRP78 is a major regulator of the stress induced unfolded protein response pathway and CHOP/GADD153 is a pro-apoptotic transcription factor associated exclusively with stress induced apoptosis. The blocking of cell surface GRP78 by anti-GRP78 antibody prevented apoptosis, suggesting that induction of cell surface GRP78 by doxorubicin and tunicamycin is required for apoptosis. A better understanding of stress induction of apoptotic signaling in triple negative breast cancer cells may help to define new therapeutic strategies. PMID:25360516

  20. Polar/apolar compounds induce leukemia cell differentiation by modulating cell-surface potential.

    PubMed Central

    Arcangeli, A; Carlà, M; Del Bene, M R; Becchetti, A; Wanke, E; Olivotto, M

    1993-01-01

    The mechanism of action of polar/apolar inducers of cell differentiation, such as dimethyl sulfoxide and hexamethylene-bisacetamide, is still obscure. In this paper evidence is provided that their effects on murine erythroleukemia cells are modulated by various extracellular cations as a precise function of the cation effects on membrane surface potential. The interfacial effects of the inducers were directly measured on the charged electrode, showing that both dimethyl sulfoxide and hexamethylene-bisacetamide, at the effective concentrations for cell differentiation and within the physiological range of charge density, adsorb at the charged surface and produce a potential shift. A linear correlation was found between this shift and the inducer effects on cell differentiation. Besides offering a different interpretation of the mechanism of action of the inducers, these findings indicate that surface potential has a signaling function. They may also be relevant to cancer treatments based on tumor-cell commitment to terminal differentiation. Images Fig. 1 PMID:8516337

  1. Bacterial Cell Surface Adsorption of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  2. Effects of heat stress on proliferation, protein turnover, and abundance of heat shock protein messenger ribonucleic acid in cultured porcine muscle satellite cells.

    PubMed

    Kamanga-Sollo, E; Pampusch, M S; White, M E; Hathaway, M R; Dayton, W R

    2011-11-01

    It is well established that heat stress (HS) negatively affects growth rate in swine. Although reduced feed intake undoubtedly plays a significant role in this reduction, studies in laboratory animals and other nonswine species indicate muscle growth also is affected by HS-related alterations in muscle physiology. Evidence is now emerging that heat shock proteins (Hsp), produced in response to HS and other types of cellular stress, may play an important role in regulating the rate and efficiency of muscle growth. Because muscle satellite cells play a crucial role in postnatal muscle growth, the effects of HS on rates of satellite cell proliferation, protein synthesis, and protein degradation play an important role in determining the rate and extent of muscle growth. Consequently, in the current study we have examined the effects of mild HS (40.5°C for 48 h) on the rates of proliferation, protein synthesis, and protein degradation and on quantities of Hsp90, Hsp70, and Hsp25/27 mRNA and protein in cultured porcine muscle satellite cells (PSC). Mild HS of PSC cultures resulted in 2.5-, 1.4-, and 6.5-fold increases (P < 0.05) in the abundance of Hsp90, Hsp70, and Hsp25/27 mRNA, respectively, relative to control cultures. Abundance of Hsp 90, 70, and 25/27 proteins was also increased in HS PSC cultures compared with those in control cultures. Proliferation rates in HS PSC cultures were 35% less (P < 0.05) than those in control cultures. Protein synthesis rates in HS-fused PSC cultures were 85% greater (P < 0.05) than those in control cultures, and protein degradation rates in HS-fused PSC were 23% less (P < 0.05) than those in control cultures. In light of the crucial role satellite cells play in postnatal muscle growth, the HS-induced changes we have observed in rates of proliferation, protein turnover, and abundance of Hsp mRNA and Hsp protein in PSC cultures indicate that mild HS affects the physiology of PSC in ways that could affect muscle growth in swine.

  3. Seasonal abundance of soil-surface arthropods in relation to some meteorological and edaphic variables of the grassland and tree-planted areas in a tropical semi-arid savanna

    NASA Astrophysics Data System (ADS)

    Vikram Reddy, M.; Venkataiah, B.

    1990-03-01

    Seasonality of relative population abundance in different groups of soil-surface arthropods was investigated monthly by pit-fall traps during a 2-year period in the grassland and tree-planted areas of a tropical semi-arid savanna at Warangal (south India). Densities of most groups were lowest during summer and highest during the rainy season. They were less abundant during winter. Arthropods were recorded in higher numbers in tree-planted compared to grassland areas. Certain arthropods that were found only during part of the year were recorded for a longer period in the tree-planted area. Formicidae, Monomorium indicum Forel, Crematogaster sp. and Pachycondyla? tesserinoda (Emery), and Coleoptera, Pachycera sp. reached maximum densities in the rainy season and minimum numbers during winter and summer in the grassland area. However, these species had lower densities during the rainy season and reached maximum densities during winter and summer in the tree-planted area. The seasonal abundance of arthropods showed significant linear correlations with different abiotic environmental variables such as rainfall, soil moisture, organic matter, soil and air temperatures, soil pH, relative humidity at the soil surface, and potassium and phosphorus of surface soil. Soil moisture and rainfall were generally the strongest correlates with densities, particularly in the grassland area.

  4. Nematic twist cell: Strong chirality induced at the surfaces

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Chieh; Nemitz, Ian R.; Pendery, Joel S.; Schubert, Christopher P. J.; Lemieux, Robert P.; Rosenblatt, Charles

    2013-04-01

    A nematic twist cell having a thickness gradient was filled with a mixture containing a configurationally achiral liquid crystal (LC) and chiral dopant. A chiral-based linear electrooptic effect was observed on application of an ac electric field. This "electroclinic effect" varied monotonically with d, changing sign at d =d0 where the chiral dopant exactly compensated the imposed twist. The results indicate that a significant chiral electrooptic effect always exists near the surfaces of a twist cell containing molecules that can be conformationally deracemized. Additionally, this approach can be used to measure the helical twisting power (HTP) of a chiral dopant in a liquid crystal.

  5. Mysterious hexagonal pyramids on the surface of Pyrobaculum cells.

    PubMed

    Rensen, Elena; Krupovic, Mart; Prangishvili, David

    2015-11-01

    In attempts to induce putative temperate viruses, we UV-irradiated cells of the hyperthermophilic archaeon Pyrobaculum oguniense. Virus replication could not be detected; however, we observed the development of pyramidal structures with 6-fold symmetry on the cell surface. The hexagonal basis of the pyramids was continuous with the cellular cytoplasmic membrane and apparently grew via the gradual expansion of the 6 triangular lateral faces, ultimately protruding through the S-layer. When the base of these isosceles triangles reached approximately 200 nm in length, the pyramids opened like flower petals. The origin and function of these mysterious nanostructures remain unknown.

  6. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    NASA Astrophysics Data System (ADS)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-05-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N2/H2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of Csbnd N, Cdbnd N, and Ctbnd N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  7. Exogenous cathepsin G upregulates cell surface MHC class I molecules on immune and glioblastoma cells

    PubMed Central

    Giese, Madleen; Turiello, Nadine; Molenda, Nicole; Palesch, David; Meid, Annika; Schroeder, Roman; Basilico, Paola; Benarafa, Charaf; Halatsch, Marc-Eric; Zimecki, Michal; Westhoff, Mike-Andrew; Wirtz, Christian Rainer; Burster, Timo

    2016-01-01

    Major histocompatibility complex (MHC) class I molecules present antigenic peptides to cytotoxic T cells. During an adaptive immune response, MHC molecules are regulated by several mechanisms including lipopolysaccharide (LPS) and interferon gamma (IFN-g). However, it is unclear whether the serine protease cathepsin G (CatG), which is generally secreted by neutrophils at the site of inflammation, might regulate MHC I molecules. We identified CatG, and to a higher extend CatG and lactoferrin (LF), as an exogenous regulator of cell surface MHC I expression of immune cells and glioblastoma stem cells. In addition, levels of MHC I molecules are reduced on dendritic cells from CatG deficient mice compared to their wild type counterparts. Furthermore, cell surface CatG on immune cells, including T cells, B cells, and NK cells triggers MHC I on THP-1 monocytes suggesting a novel mechanism for CatG to facilitate intercellular communication between infiltrating cells and the respective target cell. Subsequently, our findings highlight the pivotal role of CatG as a checkpoint protease which might force target cells to display their intracellular MHC I:antigen repertoire. PMID:27806341

  8. Surface enhanced Raman spectroscopy in breast cancer cells

    PubMed Central

    González-Solís, JL; Luévano-Colmenero, GH; Vargas-Mancilla, J

    2013-01-01

    Background and aims: Raman spectroscopy is a vibrational technique which provides information about the chemical structure. Nevertheless, since many chemicals are present in a cell at very low concentration, the Raman signal observed from a single cell is extremely weak. In surface enhanced Raman scattering (SERS), Raman signals can be enhanced by many orders of magnitude when nanoparticles are incorporated into the cell. Materials (subjects) and methods: The tumor biopsies were obtained from 5 patients who were clinically diagnosed with breast cancer. Breast cancer cells isolated from the biopsy were washed, centrifuged and seeded out. Cultivation took place in DMEM at 37°C in a humidified of 5% CO2 in air with addition of colloidal silver nanoparticles of 40 nm into the cell by sonication. Immediately, the washed cells were analyzed in phosphate buffered saline (PBS) at pH 7. Raman analysis was carried out on the Jobin-Yvon LabRAM HR800 microscope system, with a NIR 830 nm laser excitation source. Results: The strongly enhanced Raman signals allow Raman measurements of a single cell in the 200–1800 cm−1 range in relatively short collection times (5 second) using 17 mW near-infrared excitation. Observed spectral features differed across the cell, but chemical constituents in the cell nucleus and cytoplasm, such as DNA, RNA, and amino acids tyrosine and phenylalanine can be identified. Conclusions: Particularly strong field enhancement can be observed when nanoparticles form colloidal clusters. The results suggest that SERS could be a new technique for the identification of breast cancer cell. PMID:24155548

  9. Fibrin glue inhibits migration of ocular surface epithelial cells.

    PubMed

    Yeung, A M; Faraj, L A; McIntosh, O D; Dhillon, V K; Dua, H S

    2016-10-01

    PurposeFibrin glue has been used successfully in numerous ophthalmic surgical procedures. Recently, fibrin glue has been used in limbal stem cell transplantation to reduce both operative time and to negate the need for sutures. The aim of this study was to determine the effects of fibrin glue on epithelial cell migration in vitro.MethodsCorneoscleral rims were split to retain the epithelial layer, Bowman's layer, and anterior stroma. Rims were cut into eight equal-sized pieces and were placed directly on culture plates or affixed with fibrin glue. Rims were maintained in culture for 25 days and epithelial cell growth was monitored. Cells were photographed to measure area or growth and immunofluorescence staining of explants for fibrin was performed.ResultsExplants that were glued demonstrated significantly delayed epithelial cell growth and migration as compared with explants without glue. By day 16, all fibrin glue had dissolved and coincided with onset of cell growth from glued explants. Cell growth commenced between days 3 and 4 for control explants without glue and around days 14-16 for explants with fibrin glue.ConclusionsFibrin glue delays epithelial cell migration by acting as a physical barrier and can potentially interfere with explant-derived limbal epithelial cell migration on to the corneal surface. We propose that glue should be used to attach the conjunctival frill of the limbal explant but care should be taken to ensure that the glue does not wrap around the explant if used to secure the explant as well. Strategic use of glue, to attach the recessed conjunctiva, can be advantageous in delaying conjunctival cell migration and reducing the need for sequential sector conjunctival epitheliectomy.

  10. Cell-surface prion protein interacts with glycosaminoglycans.

    PubMed

    Pan, Tao; Wong, Boon-Seng; Liu, Tong; Li, Ruliang; Petersen, Robert B; Sy, Man-Sun

    2002-11-15

    We used ELISA and flow cytometry to study the binding of prion protein PrP to glycosaminoglycans (GAGs). We found that recombinant human PrP (rPrP) binds GAGs including chondroitin sulphate A, chondroitin sulphate B, hyaluronic acid, and heparin. rPrP binding to GAGs occurs via the N-terminus, a region known to bind divalent cations. Additionally, rPrP binding to GAGs is enhanced in the presence of Cu2+ and Zn2+, but not Ca2+ and Mn2+. rPrP binds heparin strongest, and the binding is inhibited by certain heparin analogues, including heparin disaccharide and sulphate-containing monosaccharides, but not by acetylated heparin. Full-length normal cellular prion protein (PrPC), but not N-terminally truncated PrPC species, from human brain bind GAGs in a similar Cu2+/Zn2+-enhanced fashion. We found that GAGs specifically bind to a synthetic peptide corresponding to amino acid residues 23-35 in the N-terminus of rPrP. We further demonstrated that while both wild-type PrPC and an octapeptide-repeat-deleted mutant PrP produced by transfected cells bound heparin at the cell surface, the PrP N-terminal deletion mutant and non-transfectant control failed to bind heparin. Binding of heparin to wild-type PrPC on the cell surface results in a reduction of the level of cell-surface PrPC. These results provide strong evidence that PrPC is a surface receptor for GAGs.

  11. Surface Chemistry Regulates Valvular Interstitial Cell Differentiation In Vitro

    PubMed Central

    Rush, Matthew N.; Coombs, Kent E.; Hedberg-Dirk, Elizabeth L.

    2015-01-01

    The primary driver for valvular calcification is the differentiation of valvular interstitial cells (VICs) into a diseased phenotype. However, the factors leading to the onset of osteoblastic-like VICs (obVICs) and resulting calcification are not fully understood. This study isolates the effect of substrate surface chemistry on in vitro VIC differentiation and calcified tissue formation. Using ω-functionalized alkanethiol self-assembled monolayers (SAMs) on gold [CH3 (hydrophobic), OH (hydrophilic), COOH (COO−, negative at physiological pH), and NH2 (NH3+, positive at physiological pH)], we have demonstrated that surface chemistry modulates VIC phenotype and calcified tissue deposition independent of osteoblastic-inducing media additives. Over seven days VICs exhibited surface-dependent differences in cell proliferation (COO− = NH3+> OH > CH3), morphology, and osteoblastic potential. Both NH3+and CH3-terminated SAMs promoted calcified tissue formation while COO−-terminated SAMs showed no calcification. VICs on NH3+-SAMs exhibited the most osteoblastic phenotypic markers through robust nodule formation, up-regulated osteocalcin and α-smooth muscle actin expression, and adoption of a round/rhomboid morphology indicative of osteoblastic differentiation. With the slowest proliferation, VICs on CH3-SAMs promoted calcified aggregate formation through cell detachment and increased cell death indicative of dystrophic calcification. Furthermore, induction of calcified tissue deposition on NH3+ and CH3-SAMs was distinctly different than that of media induced osteoblastic VICs. These results demonstrate that substrate surface chemistry alters VIC behavior and plays an important role in calcified tissue formation. In addition, we have identified two novel methods of calcified VIC induction in vitro. Further study of these environments may yield new models for in vitro testing of therapeutics for calcified valve stenosis, although additional studies need to be conducted

  12. Increased abundance of translation machinery in stem cell–derived neural progenitor cells from four schizophrenia patients

    PubMed Central

    Topol, A; English, J A; Flaherty, E; Rajarajan, P; Hartley, B J; Gupta, S; Desland, F; Zhu, S; Goff, T; Friedman, L; Rapoport, J; Felsenfeld, D; Cagney, G; Mackay-Sim, A; Savas, J N; Aronow, B; Fang, G; Zhang, B; Cotter, D; Brennand, K J

    2015-01-01

    The genetic and epigenetic factors contributing to risk for schizophrenia (SZ) remain unresolved. Here we demonstrate, for the first time, perturbed global protein translation in human-induced pluripotent stem cell (hiPSC)-derived forebrain neural progenitor cells (NPCs) from four SZ patients relative to six unaffected controls. We report increased total protein levels and protein synthesis, together with two independent sets of quantitative mass spectrometry evidence indicating markedly increased levels of ribosomal and translation initiation and elongation factor proteins, in SZ hiPSC NPCs. We posit that perturbed levels of global protein synthesis in SZ hiPSC NPCs represent a novel post-transcriptional mechanism that might contribute to disease progression. PMID:26485546

  13. Surface Trafficking of APP and BACE in Live Cells.

    PubMed

    Bauereiss, Anna; Welzel, Oliver; Jung, Jasmin; Grosse-Holz, Simon; Lelental, Natalia; Lewczuk, Piotr; Wenzel, Eva M; Kornhuber, Johannes; Groemer, Teja W

    2015-06-01

    Amyloid-β (Aβ)-peptide, the major constituent of the plaques that develop during Alzheimer's disease, is generated via the cleavage of Aβ precursor protein (APP) by β-site APP-cleaving enzyme (BACE). Using live-cell imaging of APP and BACE labeled with pH-sensitive proteins, we could detect the release events of APP and BACE and their distinct kinetics. We provide kinetic evidence for the cleavage of APP by α-secretase on the cellular surface after exocytosis. Furthermore, simultaneous dual-color evanescent field illumination revealed that the two proteins are trafficked to the surface in separate compartments. Perturbing the membrane lipid composition resulted in a reduced frequency of exocytosis and affected BACE more strongly than APP. We propose that surface fusion frequency is a key factor regulating the aggregation of APP and BACE in the same membrane compartment and that this process can be modulated via pharmacological intervention.

  14. Enterococcus faecalis Produces Abundant Extracellular Structures Containing DNA in the Absence of Cell Lysis during Early Biofilm Formation

    PubMed Central

    Barnes, Aaron M. T.; Ballering, Katie S.; Leibman, Rachel S.; Wells, Carol L.; Dunny, Gary M.

    2012-01-01

    ABSTRACT Enterococcus faecalis is a common Gram-positive commensal bacterium of the metazoan gastrointestinal tract capable of biofilm formation and an opportunistic pathogen of increasing clinical concern. Dogma has held that biofilms are slow-growing structures, often taking days to form mature microcolonies. Here we report that extracellular DNA (eDNA) is an integral structural component of early E. faecalis biofilms (≤4 h postinoculation). Combining cationic dye-based biofilm matrix stabilization techniques with correlative immuno-scanning electron microscopy (SEM) and fluorescent techniques, we demonstrate that—in early E. faecalis biofilms—eDNA localizes to previously undescribed intercellular filamentous structures, as well as to thick mats of extruded extracellular matrix material. Both of these results are consistent with previous reports that early biofilms are exquisitely sensitive to exogenous DNase treatment. High-resolution SEM demonstrates a punctate labeling pattern in both structures, suggesting the presence of an additional, non-DNA constituent. Notably, the previously described fratricidal or lytic mechanism reported as the source of eDNA in older (≥24 h) E. faecalis biofilms does not appear to be at work under these conditions; extensive visual examination by SEM revealed a striking lack of lysed cells, and bulk biochemical assays also support an absence of significant lysis at these early time points. In addition, some cells demonstrated eDNA labeling localized at the septum, suggesting the possibility of DNA secretion from metabolically active cells. Overall, these data are consistent with a model in which a subpopulation of viable E. faecalis cells secrete or extrude DNA into the extracellular matrix. PMID:22829679

  15. The Mesenchymal Precursor Cell Marker Antibody STRO-1 Binds to Cell Surface Heat Shock Cognate 70.

    PubMed

    Fitter, Stephen; Gronthos, Stan; Ooi, Soo Siang; Zannettino, Andrew C W

    2016-12-27

    Since its discovery more than 25 years ago, the STRO-1 antibody has played a fundamental role in defining the hierarchical nature of mesenchymal precursor cells (MPC) and their progeny. STRO-1 antibody binding remains a hallmark of immature pluripotent MPC. Despite the significance of STRO-1 in the MPC field, the identity of the antigen has remained elusive. Using a combination of two-dimensional gel electrophoresis, coupled with Western blotting and Tandem mass spectroscopy, we have identified the STRO-1 antigen as heat shock cognate 70 (HSC70;HSPA8). STRO-1 binds to immune-precipitated HSC70 and siRNA-mediated knock down of HSPA8 reduced STRO-1 binding. STRO-1 surface binding does not correlate with HSC70 expression and sequestration of cholesterol reduces STRO-1 surface binding, suggesting that the plasma membrane lipid composition may be an important determinant in the presentation of HSC70 on the cell surface. HSC70 is present on the surface of STRO-1(+) but not STRO-1(-) cell lines as assessed by cell surface biotinylation and recombinant HSC70 blocks STRO-1 binding to the cell surface. The STRO-1 epitope on HSC70 was mapped to the ATPase domain using a series of deletion mutants in combination with peptide arrays. Deletion of the first four amino acids of the consensus epitope negated STRO-1 binding. Notably, in addition to HSC70, STRO-1 cross-reacts with heat shock protein 70 (HSP70), however all the clonogenic cell activity is restricted to the STRO-1(BRIGHT) /HSP70(-) fraction. These results provide important insight into the properties that define multipotent MPC and provide the impetus to explore the role of cell surface HSC70 in MPC biology. Stem Cells 2016.

  16. SPARC regulates collagen interaction with cardiac fibroblast cell surfaces.

    PubMed

    Harris, Brett S; Zhang, Yuhua; Card, Lauren; Rivera, Lee B; Brekken, Rolf A; Bradshaw, Amy D

    2011-09-01

    Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associated with interstitial fibroblastic cells. Primary cardiac fibroblasts isolated from SPARC-null and WT mice were assayed for collagen I synthesis by [(3)H]proline incorporation into procollagen and by immunoblot analysis of procollagen processing. Bacterial collagenase was used to discern intracellular from extracellular forms of collagen I. Increased amounts of collagen I were found associated with SPARC-null versus WT cells, and the proportion of total collagen I detected on SPARC-null fibroblasts without propeptides [collagen-α(1)(I)] was higher than in WT cells. In addition, the amount of total collagen sensitive to collagenase digestion (extracellular) was greater in SPARC-null cells than in WT cells, indicating an increase in cell surface-associated collagen in the absence of SPARC. Furthermore, higher levels of collagen type V, a fibrillar collagen implicated in collagen fibril initiation, were found in SPARC-null fibroblasts. The absence of SPARC did not result in significant differences in proliferation or in decreased production of procollagen I by cardiac fibroblasts. We conclude that SPARC regulates collagen in the heart by modulating procollagen processing and interactions with fibroblast cell surfaces. These results are consistent with decreased levels of interstitial collagen in the hearts of SPARC-null mice being due primarily to inefficient collagen deposition into the extracellular matrix rather than to differences in collagen production.

  17. Structure of a Bacterial Cell Surface Decaheme Electron Conduit

    SciTech Connect

    Clarke, Thomas A.; Edwards, Marcus; Gates, Andrew J.; Hall, Andrea; White, Gaye; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alex S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

    2011-05-23

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves deca-heme cytochromes that are located on the bacterial cell surface at the termini of trans-outermembrane (OM) electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular inter-cytochrome electron exchange along ‘nanowire’ appendages. We present a 3.2 Å crystal structure of one of these deca-heme cytochromes, MtrF, that allows the spatial organization of the ten hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65 Å octa-heme chain transects the length of the protein and is bisected by a planar 45 Å tetra-heme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g. minerals), soluble substrates (e.g. flavins) and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  18. Structure of a bacterial cell surface decaheme electron conduit.

    PubMed

    Clarke, Thomas A; Edwards, Marcus J; Gates, Andrew J; Hall, Andrea; White, Gaye F; Bradley, Justin; Reardon, Catherine L; Shi, Liang; Beliaev, Alexander S; Marshall, Matthew J; Wang, Zheming; Watmough, Nicholas J; Fredrickson, James K; Zachara, John M; Butt, Julea N; Richardson, David J

    2011-06-07

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  19. Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells.

    PubMed

    Lin, Shaoqiang; Kemmner, Wolfgang; Grigull, Sabine; Schlag, Peter M

    2002-05-15

    Tumor-associated alterations of cell surface glycosylation play a crucial role in the adhesion and metastasis of carcinoma cells. The aim of this study was to examine the effect of alpha 2,6-sialylation on the adhesion properties of breast carcinoma cells. To this end mammary carcinoma cells, MDA-MB-435, were sense-transfected with sialyltransferase ST6Gal-I cDNA or antisense-transfected with a part of the ST6Gal-I sequence. Sense transfectants showed an enhanced ST6Gal-I mRNA expression and enzyme activity and an increased binding of the lectin Sambucus nigra agglutinin (SNA), specific for alpha 2,6-linked sialic acid. Transfection with ST6Gal-I in the antisense direction resulted in less enzyme activity and SNA reactivity. A sense-transfected clone carrying increased amounts of alpha 2,6-linked sialic acid adhered preferentially to collagen IV and showed reduced cell-cell adhesion and enhanced invasion capacity. In contrast, antisense transfection led to less collagen IV adhesion but enhanced homotypic cell-cell adhesion. In another approach, inhibition of ST6Gal-I enzyme activity by application of soluble antisense-oligodeoxynucleotides was studied. Antisense treatment resulted in reduced ST6 mRNA expression and cell surface 2,6-sialylation and significantly decreased collagen IV adhesion. Our results suggest that cell surface alpha 2,6-sialylation contributes to cell-cell and cell-extracellular matrix adhesion of tumor cells. Inhibition of sialytransferase ST6Gal-I by antisense-oligodeoxynucleotides might be a way to reduce the metastatic capacity of carcinoma cells.

  20. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers.

    PubMed

    Chen, Shiyou; Walsh, Aron; Gong, Xin-Gao; Wei, Su-Huai

    2013-03-20

    The kesterite-structured semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing considerable attention recently as the active layers in earth-abundant low-cost thin-film solar cells. The additional number of elements in these quaternary compounds, relative to binary and ternary semiconductors, results in increased flexibility in the material properties. Conversely, a large variety of intrinsic lattice defects can also be formed, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. Experimental identification of these defects is currently limited due to poor sample quality. Here recent theoretical research on defect formation and ionization in kesterite materials is reviewed based on new systematic calculations, and compared with the better studied chalcopyrite materials CuGaSe2 and CuInSe2 . Four features are revealed and highlighted: (i) the strong phase-competition between the kesterites and the coexisting secondary compounds; (ii) the intrinsic p-type conductivity determined by the high population of acceptor CuZn antisites and Cu vacancies, and their dependence on the Cu/(Zn+Sn) and Zn/Sn ratio; (iii) the role of charge-compensated defect clusters such as [2CuZn +SnZn ], [VCu +ZnCu ] and [ZnSn +2ZnCu ] and their contribution to non-stoichiometry; (iv) the electron-trapping effect of the abundant [2CuZn +SnZn ] clusters, especially in Cu2ZnSnS4. The calculated properties explain the experimental observation that Cu poor and Zn rich conditions (Cu/(Zn+Sn) ≈ 0.8 and Zn/Sn ≈ 1.2) result in the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells when the S composition is high.

  1. Effects of molecular weight and surface functionalization on surface composition and cell adhesion to Hyaluronan coated titanium.

    PubMed

    Morra, M; Cassinelli, C; Carpi, A; Giardino, R; Fini, M

    2006-09-01

    This paper describes the effect of surface functionalization on surface composition and cell adhesion to titanium samples by high and low molecular weight Hyaluronan (HA). HA was covalently linked to aminated Ti surfaces obtained by two different surface functionalization techniques, that is polyethyleneimine (PEI) adsorption and deposition from allylamine plasma. The two approaches yield very different surface densities of available amino groups, affecting this way the number and frequency of surface-HA bonds and the configurational freedom of the latter. Results of cell adhesion test are dependent on the surface functionalization approach adopted, low molecular weight HA coupled to PEI functionalized Ti does not yield the same degree of resistance to cell adhesion found on other samples. These results indicate that the details of the surface functionalization step are crucial for surface engineering of implant devices by biological molecules.

  2. Microdissected double-minute DNA detects variable patterns of chromosomal localizations and multiple abundantly expressed transcripts in normal and leukemic cells

    SciTech Connect

    Sen, S.; Zhou, Hongyi; Stass, S.A.; Sen, P. ); Mulac-Jericevic, B.; Pirrotta, V. )

    1994-02-01

    Double-minute (dm) chromosomes are cytogenetically resolvable DNA amplification-mediating acentric extrachromosomal structures that are commonly seen in primary tumors, tumor cell lines, and drug-resistant cells grown in vitro. Selective isolation of dm DNAs with standard molecular biological techniques is difficult, and thus, detailed studies to elucidate their structure, site of chromosomal origin, and chromosomal reintegration patterns have been limited. In those instances in which a gene has been localized on dms, characterization of the remainder of the DNA, which far exceeds the size of the gene identified, has remained inconclusive. dms seen in the acute myeloid leukemia cell line HL-60 have been shown to harbor the c-myc protooncogene. In this paper, the authors report the successful isolation of the dm-specific DNAs from these cells by the microdissection/polymerase chain reaction technique and demonstrate that the dm DNAs derived from a single discrete normal chromosome segment 8q24.1-q24.2 reintegrate at various specific locations in the leukemic cells. The microdissected dm DNA detects multiple abundantly expressed transcripts distinct from c-myc mRNA on Northern blots. By devising a [open quotes]transcript selection[close quotes] strategy, they cloned the partial genomic sequence of a gene from the microdissected DNA that encodes two of these RNAs. This strategy will be generally applicable for rapid cloning of unknown amplified genes harbored on dms. With DNA from 20 microdissected dms, they constructed a genomic library of about 20,000 recombinant microclones with an average insert size of about 450 bp. The microclones should help in isolating corresponding yeast artificial chromosome clones for high-resolution physical mapping of dms in HL-60 cells. Furthermore, application of the microdissection technique appears to be an extremely feasible approach to characterization of dms in other cell types. 42 refs., 6 figs., 1 tab.

  3. Salmonella Typhimurium Enzymatically Landscapes the Host Intestinal Epithelial Cell (IEC) Surface Glycome to Increase Invasion.

    PubMed

    Park, Dayoung; Arabyan, Narine; Williams, Cynthia C; Song, Ting; Mitra, Anupam; Weimer, Bart C; Maverakis, Emanual; Lebrilla, Carlito B

    2016-12-01

    Although gut host-pathogen interactions are glycan-mediated processes, few details are known about the participating structures. Here we employ high-resolution mass spectrometric profiling to comprehensively identify and quantitatively measure the exact modifications of native intestinal epithelial cell surface N-glycans induced by S. typhimurium infection. Sixty minutes postinfection, select sialylated structures showed decreases in terms of total number and abundances. To assess the effect of cell surface mannosylation, we selectively rerouted glycan expression on the host using the alpha-mannosidase inhibitor, kifunensine, toward overexpression of high mannose. Under these conditions, internalization of S. typhimurium significantly increased, demonstrating that bacteria show preference for particular structures. Finally, we developed a novel assay to measure membrane glycoprotein turnover rates, which revealed that glycan modifications occur by bacterial enzyme activity rather than by host-derived restructuring strategies. This study is the first to provide precise structural information on how host N-glycans are altered to support S. typhimurium invasion.

  4. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry

    PubMed Central

    Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.

    2015-01-01

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702

  5. Formation of nanofilms on cell surfaces to improve the insertion efficiency of a nanoneedle into cells

    SciTech Connect

    Amemiya, Yosuke; Kawano, Keiko; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Noriyuki; Nakamura, Chikashi

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer We examined the insertion efficiency of nanoneedles into fibroblast and neural cells. Black-Right-Pointing-Pointer Nanofilms formed on cell surfaces improved the insertion efficiency of nanoneedles. Black-Right-Pointing-Pointer Nanofilms improved the insertion efficiency even in Y27632-treated cells. -- Abstract: A nanoneedle, an atomic force microscope (AFM) tip etched to 200 nm in diameter and 10 {mu}m in length, can be inserted into cells with the aid of an AFM and has been used to introduce functional molecules into cells and to analyze intracellular information with minimal cell damage. However, some cell lines have shown low insertion efficiency of the nanoneedle. Improvement in the insertion efficiency of a nanoneedle into such cells is a significant issue for nanoneedle-based cell manipulation and analysis. Here, we have formed nanofilms composed of extracellular matrix molecules on cell surfaces and found that the formation of the nanofilms improved insertion efficiency of a nanoneedle into fibroblast and neural cells. The nanofilms were shown to improve insertion efficiency even in cells in which the formation of actin stress fibers was inhibited by the ROCK inhibitor Y27632, suggesting that the nanofilms with the mesh structure directly contributed to the improved insertion efficiency of a nanoneedle.

  6. Interaction of human tumor viruses with host cell surface receptors and cell entry.

    PubMed

    Schäfer, Georgia; Blumenthal, Melissa J; Katz, Arieh A

    2015-05-22

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection.

  7. A possible model for cell-cell recognition via surface macromolecules.

    PubMed

    Burger, M M; Turner, R S; Kuhns, W J; Weinbaum, G

    1975-07-17

    Alternative possibilities for the establishment of the proper cell distribution during embryogenesis are summarized at the beginning, followed by an assessment of the examples known so far where cell-cell recognition is known to be mediated via cell surface components. In the second part the species-specific recognition process which occurs during the sorting-out of dissociated sponge cells is analysed since it may serve as a possible model for cell-cell recognition in higher animals. Three possible mechanisms for the establishment of proper cell distribution are considered. These include, first, chemotaxis: secondly, guidance of cell or cell sheet movement by extracellular matrix or by surrounding cells and thirdly, random movement followed by recognition at the final point of destination. Recognition is necessary for both of the two latter processes, i.e. for cell guidance as well as for locking the cells into their final position after random movement. Two basically different recognition mechanisms should be distinguished from each other. On the one hand cells may recognize each other with the help of macromolecules situated in or just outside of the plasmamembrane which fit to each other like enzymes and substrates or antibodies and antigens. On the other hand, cells may exchange information by exchanging cytoplasmatic components via vesicles or gap junctions. The species-specific aggregation of dissociated sponge cells is considered to be a possible model for cell-cell recognition in higher animals. A proteoglycan-like intercellular macromolecule called aggregation factor seems to mediate recognition of a given species of cells in the reaggregation process of dissociated cells. The data available at the present time suggest that a monovalent surface macromolecule (baseplate) may mediate the recognition process probably by recognizing the carbohydrate side chains of the multivalent proteoglycan aggregation factor. A cell-free system was devised to mimic this

  8. Advances in the theory and application of BSF cells. [Back Surface Field solar cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H.

    1975-01-01

    A study to determine the influence of fabrication processes and bulk material properties on the behavior of back surface field (BSF) cells is reported. It is concluded that a photovoltage is generated at the p(+), p back junction of the cell. The concept of majority carrier collection is proposed as a possible mechanism for this generation. Advantages accruing to the advent of BSF cells are outlined.

  9. Targeting Prostate Cancer Stem-Like Cells Through Cell Surface-Expressed GRP78

    DTIC Science & Technology

    2013-10-01

    hypothesis that cell surface GRP78 drives cancer stem-like behavior by activating an Akt/GSK-3/ Snail -1 signaling axis in prostate cancer stem-like...investigate the hypothesis that cell surface GRP78 drives cancer stem-like behavior by activating an Akt/GSK-3/ Snail -1 signaling axis in prostate cancer stem...investigate these signaling pathways in year 2. Task 4: Investigate the relative expression of Snail -1, a GSK-3 target, in adherent prostate cancer cells

  10. Microbial food web components, bulk metabolism, and single-cell physiology of piconeuston in surface microlayers of high-altitude lakes

    PubMed Central

    Sarmento, Hugo; Casamayor, Emilio O.; Auguet, Jean-Christophe; Vila-Costa, Maria; Felip, Marisol; Camarero, Lluís; Gasol, Josep M.

    2015-01-01

    Sharp boundaries in the physical environment are usually associated with abrupt shifts in organism abundance, activity, and diversity. Aquatic surface microlayers (SML) form a steep gradient between two contrasted environments, the atmosphere and surface waters, where they regulate the gas exchange between both environments. They usually harbor an abundant and active microbial life: the neuston. Few ecosystems are subjected to such a high UVR regime as high altitude lakes during summer. Here, we measured bulk estimates of heterotrophic activity, community structure and single-cell physiological properties by flow cytometry in 19 high-altitude remote Pyrenean lakes and compared the biological processes in the SML with those in the underlying surface waters. Phototrophic picoplankton (PPP) populations, were generally present in high abundances and in those lakes containing PPP populations with phycoerythrin (PE), total PPP abundance was higher at the SML. Heterotrophic nanoflagellates (HNF) were also more abundant in the SML. Bacteria in the SML had lower leucine incorporation rates, lower percentages of “live” cells, and higher numbers of highly-respiring cells, likely resulting in a lower growth efficiency. No simple and direct linear relationships could be found between microbial abundances or activities and environmental variables, but factor analysis revealed that, despite their physical proximity, microbial life in SML and underlying waters was governed by different and independent processes. Overall, we demonstrate that piconeuston in high altitude lakes has specific features different from those of the picoplankton, and that they are highly affected by potential stressful environmental factors, such as high UVR radiation. PMID:25999921

  11. Cell Surface Protein Detection to Assess Receptor Internalization

    PubMed Central

    Czarnecka, Magdalena; Kitlinska, Joanna

    2017-01-01

    The migration of membrane receptors upon exposure to different stimulants/inhibitors is of great importance. Among others, the internalization of membrane receptors affects their accessibility to ligands and cell responsiveness to environmental cues. Experimentally, receptor internalization can be used as a measure of their activation. In our studies, we employed this approach to explore cross-talk between a seven transmembrane domain receptor for neuropeptide Y (NPY), Y5R, and a tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF), TrkB. To this end, we measured the internalization of Y5R upon stimulation with the TrkB ligand, BDNF. Upon treatment with BDNF, the cells were exposed to a membrane impermeable, biotinylation reagent that selectively labels surface proteins. Subsequently, the biotinylated membrane proteins were affinity-purified on columns with avidin resins and analyzed by Western blot. Differences in the fraction of receptors present on the cell surface of control and ligand-treated cells served as a measure of their internalization and response to particular stimuli.

  12. Characteristic Changes in Cell Surface Glycosylation Accompany Intestinal Epithelial Cell (IEC) Differentiation: High Mannose Structures Dominate the Cell Surface Glycome of Undifferentiated Enterocytes.

    PubMed

    Park, Dayoung; Brune, Kristin A; Mitra, Anupam; Marusina, Alina I; Maverakis, Emanual; Lebrilla, Carlito B

    2015-11-01

    Changes in cell surface glycosylation occur during the development and differentiation of cells and have been widely correlated with the progression of several diseases. Because of their structural diversity and sensitivity to intra- and extracellular conditions, glycans are an indispensable tool for analyzing cellular transformations. Glycans present on the surface of intestinal epithelial cells (IEC) mediate interactions with billions of native microorganisms, which continuously populate the mammalian gut. A distinct feature of IECs is that they differentiate as they migrate upwards from the crypt base to the villus tip. In this study, nano-LC/ESI QTOF MS profiling was used to characterize the changes in glycosylation that correspond to Caco-2 cell differentiation. As Caco-2 cells differentiate to form a brush border membrane, a decrease in high mannose type glycans and a concurrent increase in fucosylated and sialylated complex/hybrid type glycans were observed. At day 21, when cells appear to be completely differentiated, remodeling of the cell surface glycome ceases. Differential expression of glycans during IEC maturation appears to play a key functional role in regulating the membrane-associated hydrolases and contributes to the mucosal surface innate defense mechanisms. Developing methodologies to rapidly identify changes in IEC surface glycans may lead to a rapid screening approach for a variety of disease states affecting the GI tract.

  13. Improved Efficiency of Silicon Nanoholes/Gold Nanoparticles/Organic Hybrid Solar Cells via Localized Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Lu, Ronghua; Xu, Ling; Ge, Zhaoyun; Li, Rui; Xu, Jun; Yu, Linwei; Chen, Kunji

    2016-03-01

    Silicon is the most widely used material for solar cells due to its abundance, non-toxicity, reliability, and mature fabrication process. In this paper, we fabricated silicon nanoholes (SiNHS)/gold nanoparticles (AuNPS)/organic hybrid solar cells and investigated their spectral and opto-electron conversion properties. SiNHS nanocomposite films were fabricated by metal-assisted electroless etching (EE) method. Then, we modified the surface of the nanocomposite films by exposing the samples in the air. After that, polymer poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) blended with AuNPS were spin-coated on the surface of the SiNHS nanocomposite films as a hole-transporting layer. The external quantum efficiency (EQE) values of the solar cells with AuNPS are higher than that of the samples without AuNPS in the spectral region of 600-1000 nm, which were essential to achieve high performance photovoltaic cells. The power conversion efficiency (PCE) of the solar cells incorporating AuNPS exhibited an enhancement of 27 %, compared with that of the solar cells without AuNPS. We thought that the improved efficiency were attributed to localized surface plasmon resonance (LSPR) triggered by gold nanoparticles in SiNHS nanocomposite films.

  14. Atomic Force Microscopy in Microbiology: New Structural and Functional Insights into the Microbial Cell Surface

    PubMed Central

    2014-01-01

    ABSTRACT Microbial cells sense and respond to their environment using their surface constituents. Therefore, understanding the assembly and biophysical properties of cell surface molecules is an important research topic. With its ability to observe living microbial cells at nanometer resolution and to manipulate single-cell surface molecules, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Here, we survey major breakthroughs made in cell surface microbiology using AFM techniques, emphasizing the most recent structural and functional insights. PMID:25053785

  15. RPE cell surface proteins in normal and dystrophic rats

    SciTech Connect

    Clark, V.M.; Hall, M.O.

    1986-02-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE.

  16. Absent and abundant MET immunoreactivity is associated with poor prognosis of patients with oral and oropharyngeal squamous cell carcinoma

    PubMed Central

    De Herdt, Maria J.; Willems, Stefan M.; van der Steen, Berdine; Noorlag, Rob; Verhoef, Esther I.; van Leenders, Geert J.L.H.; van Es, Robert J.J.; Koljenović, Senada; de Jong, Robert J. Baatenburg; Looijenga, Leendert H.J.

    2016-01-01

    Although the receptor tyrosine kinase (RTK) MET is widely expressed in head and neck squamous cell carcinoma (HNSCC), its prognostic value remains unclear. This might be due to the use of a variety of antibodies and scoring systems. Here, the reliability of five commercial C-terminal MET antibodies (D1C2, CVD13, SP44, C-12 and C-28) was evaluated before examining the prognostic value of MET immunoreactivity in HNSCC. Using cancer cell lines, it was shown that D1C2 and CVD13 specifically detect MET under reducing, native and formalin-fixed paraffin-embedded (FFPE) conditions. Immunohistochemical staining of routinely FFPE oral SCC with D1C2 and CVD13 demonstrated that D1C2 is most sensitive in the detection of membranous MET. Examination of membranous D1C2 immunoreactivity with 179 FFPE oral and oropharyngeal SCC – represented in a tissue microarray – illustrated that staining is either uniform (negative or positive) across tumors or differs between a tumor's center and periphery. Ultimately, statistical analysis revealed that D1C2 uniform staining is significantly associated with poor 5-year overall and disease free survival of patients lacking vasoinvasive growth (HR = 3.019, p < 0.001; HR = 2.559, p < 0.001). These findings might contribute to reliable stratification of patients eligible for treatment with biologicals directed against MET. PMID:26909606

  17. A hybrid biocathode: surface display of O2-reducing enzymes for microbial fuel cell applications.

    PubMed

    Szczupak, Alon; Kol-Kalman, Dan; Alfonta, Lital

    2012-01-04

    Laccase and bilirubin oxidase were successfully displayed on the surface of yeast cells. Subsequently, these modified yeast cells were used in the cathode compartment of a microbial fuel cell. The performance of the fuel cells is compared.

  18. Ovarian carcinoma cells synthesize both chondroitin sulfate and heparan sulfate cell surface proteoglycans that mediate cell adhesion to interstitial matrix.

    PubMed

    Kokenyesi, R

    Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.

  19. Umbilical Cord Wharton’s Jelly Repeated Culture System: A New Device and Method for Obtaining Abundant Mesenchymal Stem Cells for Bone Tissue Engineering

    PubMed Central

    Xing, Junchao; Wu, Xuehui; Jin, Huiyong; Li, Zhiqiang; Deng, Moyuan; Xie, Zhao; Xu, Jianzhong

    2014-01-01

    To date, various types of cells for seeding regenerative scaffolds have been used for bone tissue engineering. Among seed cells, the mesenchymal stem cells derived from human umbilical cord Wharton’s jelly (hUCMSCs) represent a promising candidate and hold potential for bone tissue engineering due to the the lack of ethical controversies, accessibility, sourced by non-invasive procedures for donors, a reduced risk of contamination, osteogenic differentiation capacities, and higher immunomodulatory capacity. However, the current culture methods are somewhat complicated and inefficient and often fail to make the best use of the umbilical cord (UC) tissues. Moreover, these culture processes cannot be performed on a large scale and under strict quality control. As a result, only a small quantity of cells can be harvested using the current culture methods. To solve these problems, we designed and evaluated an UC Wharton’s jelly repeated culture device. Using this device, hUCMSCs were obtained from the repeated cultures and their quantities and biological characteristics were compared. We found that using our culture device, which retained all tissue blocks on the bottom of the dish, the total number of obtained cells increased 15–20 times, and the time required for the primary passage was reduced. Moreover, cells harvested from the repeated cultures exhibited no significant difference in their immunophenotype, potential for multilineage differentiation, or proliferative, osteoinductive capacities, and final osteogenesis. The application of the repeated culture frame (RCF) not only made full use of the Wharton’s jelly but also simplified and specified the culture process, and thus, the culture efficiency was significantly improved. In summary, abundant hUCMSCs of dependable quality can be acquired using the RCF. PMID:25329501

  20. Umbilical cord Wharton's jelly repeated culture system: a new device and method for obtaining abundant mesenchymal stem cells for bone tissue engineering.

    PubMed

    Chang, Zhengqi; Hou, Tianyong; Xing, Junchao; Wu, Xuehui; Jin, Huiyong; Li, Zhiqiang; Deng, Moyuan; Xie, Zhao; Xu, Jianzhong

    2014-01-01

    To date, various types of cells for seeding regenerative scaffolds have been used for bone tissue engineering. Among seed cells, the mesenchymal stem cells derived from human umbilical cord Wharton's jelly (hUCMSCs) represent a promising candidate and hold potential for bone tissue engineering due to the the lack of ethical controversies, accessibility, sourced by non-invasive procedures for donors, a reduced risk of contamination, osteogenic differentiation capacities, and higher immunomodulatory capacity. However, the current culture methods are somewhat complicated and inefficient and often fail to make the best use of the umbilical cord (UC) tissues. Moreover, these culture processes cannot be performed on a large scale and under strict quality control. As a result, only a small quantity of cells can be harvested using the current culture methods. To solve these problems, we designed and evaluated an UC Wharton's jelly repeated culture device. Using this device, hUCMSCs were obtained from the repeated cultures and their quantities and biological characteristics were compared. We found that using our culture device, which retained all tissue blocks on the bottom of the dish, the total number of obtained cells increased 15-20 times, and the time required for the primary passage was reduced. Moreover, cells harvested from the repeated cultures exhibited no significant difference in their immunophenotype, potential for multilineage differentiation, or proliferative, osteoinductive capacities, and final osteogenesis. The application of the repeated culture frame (RCF) not only made full use of the Wharton's jelly but also simplified and specified the culture process, and thus, the culture efficiency was significantly improved. In summary, abundant hUCMSCs of dependable quality can be acquired using the RCF.

  1. Surface modification for interaction study with bacteria and preosteoblast cells

    NASA Astrophysics Data System (ADS)

    Song, Qing

    Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted

  2. The VLT-FLAMES survey of massive stars: evolution of surface N abundances and effective temperature scales in the Galaxy and Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Trundle, C.; Dufton, P. L.; Hunter, I.; Evans, C. J.; Lennon, D. J.; Smartt, S. J.; Ryans, R. S. I.

    2007-08-01

    We present an analysis of high resolution VLT-FLAMES spectra of 61 B-type stars with relatively narrow-lined spectra located in 4 fields centered on the Milky Way clusters; NGC 3293 and NGC 4755 and the Large and Small Magellanic cloud clusters; NGC 2004 and NGC 330. For each object a quantitative analysis was carried out using the non-LTE model atmosphere code TLUSTY; resulting in the determination of their atmospheric parameters and photospheric abundances of the dominant metal species (C, N, O, Mg, Si, Fe). The results are discussed in relation to our earlier work on 3 younger clusters in these galaxies; NGC 6611, N11 and NGC 346 paying particular attention to the nitrogen abundances which are an important probe of the role of rotation in the evolution of stars. This work along with that of the younger clusters provides a consistent dataset of abundances and atmospheric parameters for over 100 B-type stars in the three galaxies. We provide effective temperature scales for B-type dwarfs in all three galaxies and for giants and supergiants in the SMC and LMC. In each galaxy a dependence on luminosity is found between the three classes with the unevolved dwarf objects having significantly higher effective temperatures. A metallicity dependence is present between the SMC and Galactic dwarf objects, and whilst the LMC stars are only slightly cooler than the SMC stars, they are significantly hotter than their Galactic counterparts. Based on observations at the European Southern Observatory Very Large Telescope in programmes 68.D-0369 and 171.D-0237. Tables [see full text]- [see full text] are only available in electronic form at http://www.aanda.org

  3. Ecological implications and determination of bacterial cell surface charge in a natural bacterial community in the coastal North Sea

    NASA Astrophysics Data System (ADS)

    Stoderegger, K. E.; Herndl, G. J.

    2003-04-01

    Bacterioplankton represent the largest living surface in the world's ocean and via their surface bacteria interact with the environment. Surface properties may play a crucial role in the uptake of nutrients and in regulating the grazing pressure of potential predators. Therefore, we investigated the dynamics of hydrophilic and hydrophobic properties of the cell surface of bacterioplankton during the wax and wane of a phytoplankton bloom. A hydrophobic and a polar as well as a nucleic acid stain were applied concurrently to living samples and their intensity measured on a single cell basis using a confocal laser-scanning microscope and advanced image analysis. In an earlier study using selected bacterial strains we could distinguish 2 distinctly different groups of bacteria: A rather "active" bacterial group, showing higher overall hydrophobicity, high bacterial growth rates and at the same time increasing hydrophobicity and hydrophilicity. The other group was less hydrophobic, slowly growing, and surface charge properties did not increase steadily in batch cultures but showed two distinct peaks at the beginning and the late stationary phase. In the natural community of the coastal North Sea, hydrophobic moieties remained rather constant, while the polarity of the cell surface fluctuated. Generally, phytoplankton blooms were accompanied by an increase in bacterial abundance and a corresponding increase in hydrophilicity. Basically, the natural bacterial assemblages showed similar cell surface characteristics as the less hydrophobic group of bacterial strains. In a coastal environment with changing nutrient conditions, one would expect the more hydrophobic and fast growing species adapting fast to ambient conditions. In nutrient-rich environments increased hydrophobicity could also be advantageous for the cell, either to enhance particle attachment while under nutrient-depleted conditions increased polarity might facilitate nutrient uptake.

  4. Age-related changes in transcriptional abundance and circulating levels of anti-Mullerian hormone and Sertoli cell count in crossbred and Zebu bovine males.

    PubMed

    Rajak, S K; Kumaresan, A; Attupuram, N M; Chhillar, S; Baithalu, R K; Nayak, S; Sreela, L; Singh, Raushan K; Tripathi, U K; Mohanty, T K; Yadav, Savita

    2017-02-01

    Age-related changes in peripheral anti-Mullerian hormone (AMH) concentrations and transcriptional abundance of AMH gene in testicular tissue were studied in crossbred (Holstein Friesian × Tharparkar) and Zebu (Tharparkar) males. In both the breeds, basal AMH concentrations were estimated using ELISA method in blood plasma obtained from six males each at 1, 6, 12, 18, and 24 months age. After blood collection at respective ages, all the males were castrated and expression and immunolocalization of AMH was performed in the testicular tissue. The concentration of AMH in blood plasma was found to be highest at 1 month of age in both crossbred and Zebu males, which subsequently decreased with advancing age. Significantly (P < 0.05) lower concentration of AMH was observed in crossbred as compared with Zebu males at 24 months of age. In line with peripheral AMH concentrations, the expression of AMH gene was also higher (P < 0.05) at 1 month of age, which thereafter declined significantly with advancement of age in crossbred males. Furthermore, the expression of AMH gene differed significantly between Zebu and crossbred males at all the age groups studied. Immunolocalization of AMH in testicular tissue also revealed a stronger expression at 1 month age, which gradually decreased till 24 months of age. The true Sertoli cell count was significantly higher in Zebu compared with crossbred males at all age groups studied except at 6 months age. The relationship between Sertoli cell count and circulating AMH concentrations was negative and significant (r = -0.81; P = 0.004). In conclusion, expression of AMH gene in testicular tissue and peripheral blood concentrations of AMH were higher in young compared with adults in both crossbred and Zebu males; however, the transcriptional abundance and circulating levels of AMH were higher in Zebu compared with crossbred males.

  5. Osteogenic differentiation of cultured marrow stromal stem cells on surface of microporous hydroxyapatite based mica composite and macroporous synthetic hydroxyapatite.

    PubMed

    Nordström, E; Ohgushi, H; Yoshikawa, T; Yokobori, A T; Yokobori, T

    1999-01-01

    In order to investigate the significance of hydroxyapatite based microporous composite (HA/mica composite) surfaces and a macroporous synthetic hydroxyapatite, rat marrow cell culture, which shows osteogenic differentiation, was carried out on six different culture substrata (two control culture dishes, two identical HA/mica composites, and two identical macroporous synthetic hydroxyapatites). A culture period of two weeks in the presence of beta-glycerophosphate (BGP), ascorbic acid, and dexamethasone resulted in abundant mineralized nodule formations that were positive for alkaline phosphatase (ALP) stain. The stain on the macroporous synthetic hydroxyapatite and the HA/mica composites were intense, the enzyme activity being about double that of control culture dishes. These data indicate that the synthetic macroporous hydroxyapatite surface and the HA/mica composite surface promotes osteoblastic differentiation.

  6. Functional mapping of cell surface proteins with localized stimulation of single cells

    NASA Astrophysics Data System (ADS)

    Sun, Bingyun; Chiu, Daniel T.

    2003-11-01

    This paper describes the development of using individual micro and nano meter-sized vesicles as delivery vessels to functionally map the distribution of cell surface proteins at the level of single cells. The formation of different sizes of vesicles from tens of nanometers to a few micrometers in diameter that contain the desired molecules is addressed. An optical trap is used to manipulate the loaded vesicle to specific cell morphology of interest, and a pulsed UV laser is used to photo-release the stimuli onto the cell membrane. Carbachol activated cellular calcium flux, upon binding to muscarinic acetylcholine receptors, is studied by this method, and the potential of using this method for the functional mapping of localized proteins on the cell surface membrane is discussed.

  7. Protein Kinase Cβ Modulates Ligand-induced Cell Surface Death Receptor Accumulation

    PubMed Central

    Meng, Xue Wei; Heldebrant, Michael P.; Flatten, Karen S.; Loegering, David A.; Dai, Haiming; Schneider, Paula A.; Gomez, Timothy S.; Peterson, Kevin L.; Trushin, Sergey A.; Hess, Allan D.; Smith, B. Douglas; Karp, Judith E.; Billadeau, Daniel D.; Kaufmann, Scott H.

    2010-01-01

    Although treatment with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) is known to protect a subset of cells from induction of apoptosis by death ligands such as Fas ligand and tumor necrosis factor-α-related apoptosis-inducing ligand, the mechanism of this protection is unknown. This study demonstrated that protection in short term apoptosis assays and long term proliferation assays was maximal when Jurkat or HL-60 human leukemia cells were treated with 2–5 nm PMA. Immunoblotting demonstrated that multiple PKC isoforms, including PKCα, PKCβ, PKCϵ, and PKCθ, translocated from the cytosol to a membrane-bound fraction at these PMA concentrations. When the ability of short hairpin RNA (shRNA) constructs that specifically down-regulated each of these isoforms was examined, PKCβ shRNA uniquely reversed PMA-induced protection against cell death. The PKCβ-selective small molecule inhibitor enzastaurin had a similar effect. Although mass spectrometry suggested that Fas is phosphorylated on a number of serines and threonines, mutation of these sites individually or collectively had no effect on Fas-mediated death signaling or PMA protection. Further experiments demonstrated that PMA diminished ligand-induced cell surface accumulation of Fas and DR5, and PKCβ shRNA or enzastaurin reversed this effect. Moreover, enzastaurin sensitized a variety of human tumor cell lines and clinical acute myelogenous leukemia isolates, which express abundant PKCβ, to tumor necrosis factor-α related apoptosis-inducing ligand-induced death in the absence of PMA. Collectively, these results identify a specific PKC isoform that modulates death receptor-mediated cytotoxicity as well as a small molecule inhibitor that mitigates the inhibitory effects of PKC activation on ligand-induced death receptor trafficking and cell death. PMID:19887445

  8. Surface-labelling studies on skeletal-muscle cells in vitro. Heterogeneity of iodinated cell-surface proteins.

    PubMed Central

    Cates, G A; Holland, P C

    1980-01-01

    1. Two distinct classes of protein were detected at the surface of chick-embryo skeletal-muscle cells after iodination of the cells in monolayer culture. 2. The two classes of iodinated proteins differed in their ability to co-purify with a vesicular plasma-membrane fraction prepared from surface-labelled cells. 3. One class consisted of predominantly high-molecular-weight glycoproteins that co-purified with the plasma-membrane fraction, but showed no significant qualitative or quantitative alterations in labelling with 125I and lactoperoxidase during myogenesis. 4. A second class of predominantly lower-molecular-weight proteins showed reproducible quantitative alterations in 125I-labelling during myogenesis but failed to co-purify with the plasma-membrane fraction. 5. This second class of proteins may represent matrix proteins involved in intercellular adhesion or adhesion of cells to the substratum. They are unlikely to be directly required for the process of plasma-membrane fusion during myogenesis, since they do not copurify with a vesicular plasma-membrane fraction known to be capable of Ca2+-dependent fusion in vitro. PMID:7370009

  9. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions.

    PubMed

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A; Brown, Elizabeth E; Sanderson, Ralph D

    2016-01-22

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.

  10. A general water-based precursor solution approach to deposit earth abundant Cu2ZnSn(S,Se)4 thin film solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Yanchun; Kang, Xiaojiao; Huang, Lijian; Wei, Song; Pan, Daocheng

    2016-05-01

    Earth abundant Cu2ZnSn(S,Se)4 (CZTSSe) has been considered as one of the most promising thin film solar cell absorber candidates. Here, we develop a facile water-based precursor solution approach for depositing high-efficiency Cu2ZnSn(S,Se)4 thin film solar cells. In this environmentally friendly approach, inexpensive elemental Cu, Zn, Sn and S powders are used as the starting materials and are dissolved in the aqueous solution of thioglycolic acid and methylamine, forming a homogeneous precursor solution for depositing Cu2ZnSnS4 nanocrystal thin film. As-deposited CZTS nanocrystal thin films are selenized to form the large-grain CZTSSe absorber layers. It was found that Na doping plays an important role in the formation of the extremely dense and flat CZTSSe absorber layer, and fill factor can be significantly improved for Na-doped CZTSSe solar cells, which lead to a photoelectric conversion efficiency of 6.96% with an open-circuit voltage of 378 mV, a short current density of 28.17 mA cm-2, and a fill factor of 65.4%.

  11. Selection of Antibodies Interfering with Cell Surface Receptor Signaling Using Embryonic Stem Cell Differentiation.

    PubMed

    Melidoni, Anna N; Dyson, Michael R; McCafferty, John

    2016-01-01

    Antibodies able to bind and modify the function of cell surface signaling components in vivo are increasingly being used as therapeutic drugs. The identification of such "functional" antibodies from within large antibody pools is, therefore, the subject of intense research. Here we describe a novel cell-based expression and reporting system for the identification of functional antibodies from antigen-binding populations preselected with phage display. The system involves inducible expression of the antibody gene population from the Rosa-26 locus of embryonic stem (ES) cells, followed by secretion of the antibodies during ES cell differentiation. Target antigens are cell-surface signaling components (receptors or ligands) with a known effect on the direction of cell differentiation (FGFR1 mediating ES cell exit from self renewal in this particular protocol). Therefore, inhibition or activation of these components by functional antibodies in a few elite clones causes a shift in the differentiation outcomes of these clones, leading to their phenotypic selection. Functional antibody genes are then recovered from positive clones and used to produce the purified antibodies, which can be tested for their ability to affect cell fates exogenously. Identified functional antibody genes can be further introduced in different stem cell types. Inducible expression of functional antibodies has a temporally controlled protein-knockdown capability, which can be used to study the unknown role of the signaling pathway in different developmental contexts. Moreover, it provides a means for control of stem cell differentiation with potential in vivo applications.

  12. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells.

    PubMed

    Lv, Lei; Zhang, Tianwei; Yi, Qiyi; Huang, Yun; Wang, Zheng; Hou, Heli; Zhang, Huan; Zheng, Wei; Hao, Qiaomei; Guo, Zongyou; Cooke, Howard J; Shi, Qinghua

    2012-08-01

    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells.

  13. Endothelial cell labeling with indium-111-oxine as a marker of cell attachment to bioprosthetic surfaces

    SciTech Connect

    Sharefkin, J.B.; Lather, C.; Smith, M.; Rich, N.M.

    1983-03-01

    Canine vascular endothelium labeled with indium-111-oxine was used as a marker of cell attachment to vascular prosthetic surfaces with complex textures. Primarily cultured and freshly harvested endothelial cells both took up the label rapidly. An average of 72% of a 32 micro Ci labeling dose was taken up by 1.5 X 10(6) cells in 10 min in serum-free medium. Over 95% of freshly labeled cells were viable by trypan blue tests and only 5% of the label was released after 1 h incubations at 37 degrees C. Labeled and unlabeled cells had similar rates of attachment to plastic dishes. Scanning electron microscopic studies showed that labeled cells retained their ability to spread on tissue culture dishes even at low (1%) serum levels. Labeled endothelial cells seeded onto Dacron or expanded polytetrafluoroethylene vascular prostheses by methods used in current surgical models could be identified by autoradiography of microscopic sections of the prostheses, and the efficiency of cell attachment to the prosthesis could be measured by gamma counting. Indium-111 labeling affords a simple and rapid way to measure initial cell attachment to, and distribution on, vascular prosthetic materials. The method could also allow measurement of early cell loss from a flow surface in vivo by using external gamma imaging.

  14. Estrogen inhibits cell cycle progression and retinoblastoma phosphorylation in rhesus ovarian surface epithelial cell culture

    SciTech Connect

    Wright, Jay W.; Stouffer, Richard L.; Rodland, Karin D.

    2003-10-31

    Estrogen promotes the growth of some ovarian cancer cells at nanomolar concentrations, but has been shown to inhibit growth of normal ovarian surface epithelial (OSE) cells at micromolar concentrations (1μg/ml). OSE cells express the estrogen receptor (ER)-α, and are the source of 90% of various cancers. The potential sensitivity of OSE cells to estrogen stresses the importance of understanding the estrogen-dependent mechanisms at play in OSE proliferation and transformation, as well as in anticancer treatment. We investigated the effects of estradiol on cell proliferation in vitro, and demonstrate an intracellular locus of action of estradiol in cultured rhesus ovarian surface epithelial (RhOSE) cells. We show that ovarian and breast cells are growth-inhibited by micromolar concentration of estradiol and that this inhibition correlates with estrogen receptor expression. We further show that normal rhesus OSE cells do not activate ERK or Akt in response to estradiol nor does estradiol block the ability of serum to stimulate ERK or induce cyclin D expression. Contrarily, estradiol inhibits serum-dependent retinoblastoma protein (Rb) phosphorylation and blocks DNA synthesis. This inhibition does not formally arrest cells and is reversible within hours of estrogen withdrawal. Our data are consistent with growth inhibition by activation of Rb and indicate that sensitivity to hormone therapy in anticancer treatment can be modulated by cell cycle regulators downstream of the estrogen receptor.

  15. Regulation of adeno-associated virus gene expression in 293 cells: control of mRNA abundance and translation

    SciTech Connect

    Trempe, J.P.; Carter, B.J.

    1988-01-01

    The authors studied the effects of the adeno-associated virus (AAV) rep gene on the control of gene expression from the AAV p/sub 40/ promoter in 293 cells in the absence of an adenovirus coinfection. AAV vectors containing the chloramphenicol acetyltransferase (cat) gene were used to measure the levels of cat expression and steady-state mRNA from p/sub 40/. When the rep gene was present in cis or in trans, cat expression from p/sub 40/ was decreased 3- to 10-fold, but there was a 2- to 10-fold increase in the level of p/sub 40/ mRNA. Conversely, cat expression increased and the p/sub 40/ mRNA level decreased in the absence of the rep gene. Both wild-type and carboxyl-terminal truncated Rep proteins were capable of eliciting both effects. These data suggest two roles for the pleiotropic AAV rep gene: as a translational inhibitor and as a positive regulator of p/sub 40/ mRNA levels. They also provide additional evidence for a cis-acting negative regulatory region which decreases RNA from the AAV p/sub 5/ promoter in a fashion independent of rep.

  16. Yeast cell surface display for lipase whole cell catalyst and its applications

    SciTech Connect

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  17. A lectin-based cell microarray approach to analyze the mammalian granulosa cell surface glycosylation profile.

    PubMed

    Accogli, Gianluca; Desantis, Salvatore; Martino, Nicola Antonio; Dell'Aquila, Maria Elena; Gemeiner, Peter; Katrlík, Jaroslav

    2016-10-01

    The high complexity of glycome, the repertoire of glycans expressed in a cell or in an organism, is difficult to analyze and the use of new technologies has accelerated the progress of glycomics analysis. In the last decade, the microarray approaches, and in particular glycan and lectin microarrays, have provided new insights into evaluation of cell glycosylation status. Here we present a cell microarray method based on cell printing on microarray slides for the analysis of the glycosylation pattern of the cell glycocalyx. In order to demonstrate the reliability of the developed method, the glycome profiles of equine native uncultured mural granulosa cells (uGCs) and in vitro cultured mural granulosa cells (cGCs) were determined and compared. The method consists in the isolation of GCs, cell printing into arrays on microarray slide, incubation with a panel of biotinylated lectins, reaction with fluorescent streptavidin and signal intensity detection by a microarray scanner. Cell microarray technology revealed that glycocalyx of both uGCs and cGCs contains N-glycans, sialic acid terminating glycans, N-acetylglucosamine and O-glycans. The comparison of uGCs and cGCs glycan signals indicated an increase in the expression of sialic acids, N-acetylglucosamine, and N-glycans in cGCs. Glycan profiles determined by cell microarray agreed with those revealed by lectin histochemistry. The described cell microarray method represents a simple and sensitive procedure to analyze cell surface glycome in mammalian cells.

  18. Mapping cellular hierarchy by single cell analysis of the cell surface repertoire

    PubMed Central

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A.; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2013-01-01

    SUMMARY Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method we analyzed over 1500 single cells throughout the mouse hematopoietic system, and illustrate its utility for revealing important biological insights. The comprehensive single cell dataset permits mapping of the mouse hematopoietic stem cell (HSC) differentiation hierarchy by computational lineage progression analysis. Further profiling of 180 intracellular regulators enabled construction of a genetic network to assign the earliest differentiation event during hematopoietic lineage specification. Analysis of acute myeloid leukemia elicited by MLL-AF9 uncovered a distinct cellular hierarchy containing two independent self-renewing lineages with different clonal activities. The strategy has broad applicability in other cellular systems. PMID:24035353

  19. Integrated proteomic and N-glycoproteomic analyses of doxorubicin sensitive and resistant ovarian cancer cells reveal glycoprotein alteration in protein abundance and glycosylation.

    PubMed

    Ji, Yanlong; Wei, Shasha; Hou, Junjie; Zhang, Chengqian; Xue, Peng; Wang, Jifeng; Chen, Xiulan; Guo, Xiaojing; Yang, Fuquan

    2017-01-06

    Ovarian cancer is one of the most common cancer among women in the world, and chemotherapy remains the principal treatment for patients. However, drug resistance is a major obstacle to the effective treatment of ovarian cancers and the underlying mechanism is not clear. An increased understanding of the mechanisms that underline the pathogenesis of drug resistance is therefore needed to develop novel therapeutics and diagnostic. Herein, we report the comparative analysis of the doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI/ADR-RES cells using integrated global proteomics and N-glycoproteomics. A total of 1525 unique N-glycosite-containing peptides from 740 N-glycoproteins were identified and quantified, of which 253 N-glycosite-containing peptides showed significant change in the NCI/ADR-RES cells. Meanwhile, stable isotope labeling by amino acids in cell culture (SILAC) based comparative proteomic analysis of the two ovarian cancer cells led to the quantification of 5509 proteins. As about 50% of the identified N-glycoproteins are low-abundance membrane proteins, only 44% of quantified unique N-glycosite-containing peptides had corresponding protein expression ratios. The comparison and calibration of the N-glycoproteome versus the proteome classified 14 change patterns of N-glycosite-containing peptides, including 8 up-regulated N-glycosite-containing peptides with the increased glycosylation sites occupancy, 35 up-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy, 2 down-regulated N-glycosite-containing peptides with the decreased glycosylation sites occupancy, 46 down-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy. Integrated proteomic and N-glycoproteomic analyses provide new insights, which can help to unravel the relationship of N-glycosylation and multidrug resistance (MDR), understand the mechanism of MDR, and discover the new diagnostic and

  20. Abundance of phosphorylated Apis mellifera CREB in the honeybee's mushroom body inner compact cells varies with age.

    PubMed

    Gehring, Katrin B; Heufelder, Karin; Kersting, Isabella; Eisenhardt, Dorothea

    2016-04-15

    Hymenopteran eusociality has been proposed to be associated with the activity of the transcription factor CREB (cAMP-response element binding protein). The honeybee (Apis mellifera) is a eusocial insect displaying a pronounced age-dependent division of labor. In honeybee brains, CREB-dependent genes are regulated in an age-dependent manner, indicating that there might be a role for neuronal honeybee CREB (Apis mellifera CREB, or AmCREB) in the bee's division of labor. In this study, we further explore this hypothesis by asking where in the honeybee brain AmCREB-dependent processes might take place and whether they vary with age in these brain regions. CREB is activated following phosphorylation at a conserved serine residue. An increase of phosphorylated CREB is therefore regarded as an indicator of CREB-dependent transcriptional activation. Thus, we here examine the localization of phosphorylated AmCREB (pAmCREB) in the brain and its age-dependent variability. We report prominent pAmCREB staining in a subpopulation of intrinsic neurons of the mushroom bodies. In these neurons, the inner compact cells (IC), pAmCREB is located in the nuclei, axons, and dendrites. In the central bee brain, the IC somata and their dendritic region, we observed an age-dependent increase of pAmCREB. Our results demonstrate the IC to be candidate neurons involved in age-dependent division of labor. We hypothesize that the IC display a high level of CREB-dependent transcription that might be related to neuronal and behavioral plasticity underlying a bee's foraging behavior.

  1. Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation

    NASA Astrophysics Data System (ADS)

    Chu, Che-Kuan; Tu, Yi-Chou; Chang, Yu-Wei; Chu, Chih-Ken; Chen, Shih-Yang; Chi, Ting-Ta; Kiang, Yean-Woei; Yang, Chih-Chung

    2015-02-01

    Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs.

  2. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    Measuring small-signal admittance versus frequency and forward bias voltage together with a new transient measurement apparently provides the most reliable and flexible method available for determining back surface recombination velocity and low-injection lifetime of the quasineutral base region of silicon solar cells. The new transient measurement reported here is called short-circuit-current decay (SCCD). In this method, forward voltage equal to about the open-circuit or the maximum power voltage establishes excess holes and electrons in the junction transition region and in the quasineutral regions. The sudden application of a short circuit causes an exiting of the excess holes and electrons in the transition region within about ten picoseconds. From observing the slope and intercept of the subsequent current decay, the base lifetime and surface recombination velocity can be determined. The admittance measurement previously mentioned then enters to increase accuracy particularly for devices for which the diffusion length exceeds the base thickness.

  3. Surface modification of carbon fuels for direct carbon fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhu, Zhonghua; Chen, Jiuling; De Marco, Roland; Dicks, Andrew; Bradley, John; Lu, Gaoqing

    The direct carbon fuel cell (DCFC) is a promising power-generation device that has much higher efficiency (80%) and less emissions than conventional coal-fired power plants. Two commercial carbons (activated carbon and carbon black) pre-treated with HNO 3, HCl or air plasma are tested in a DCFC. The correlation between the surface properties and electrochemical performance of the carbon fuels is explored. The HNO 3-treated carbon fuels have the highest electrochemical reactivity in the DCFC due to the largest degree of surface oxygen functional groups. The overall effect on changing the electrochemical reactivity of carbon fuels is in the order HNO 3 > air plasma ≈ HCl. Product gas analysis indicates that complete oxidation of carbon to CO 2 can be achieved at 600-700 °C.

  4. Islet Cell Surface Antibodies from Insulin-dependent Diabetics Bind Specifically to Pancreatic B Cells

    PubMed Central

    Van De Winkel, M.; Smets, G.; Gepts, W.; Pipeleers, D.

    1982-01-01

    Viable rat islet cells were used to detect islet cell surface antibodies (ICSA) in the sera of diabetic and control patients. ICSA were present in almost all recent-onset insulin-dependent diabetics younger than 30 yr (15/16); their incidence in other diabetics (6/22) was also higher than in normal controls (1/18) or in patients with autoimmune thyroiditis (1/12). The varying specificity of the ICSA for the different islet cell types led to the recognition of class I sera, whose ICSA bind exclusively to B cells, class II sera, binding only to A and pancreatic polypeptide (PP) cells and class III sera, reacting with the three islet cell types but not with D cells. Most recent-onset insulin-dependent diabetics younger than 30 contained class I-ICSA, which is consistent with an autoimmune basis of their disease and with an involvement of surface antibodies in the B cell destruction. The presence of class II ICSA in three older diabetics and in one normal control raises the question whether autoimmune reactions against A and PP cells exist and are associated with a distinct entity in islet disease. It is concluded that the autoimmune form of diabetes mellitus represents a heterogeneous group, in which ICSA-positive patients can be distinguished on the basis of their ICSA-binding to one or more islet cell types. Three techniques can be used for the further identification of circulating ICSA, namely binding experiments with purified A or B cells, electron microscopical analysis of ICSA-binding islet cells purified by fluorescence-activated cell sorting, and the immunocytochemical characterization of ICSA-positive cells. Images PMID:6123526

  5. Proteomic Plasma Membrane Profiling Reveals an Essential Role for gp96 in the Cell Surface Expression of LDLR Family Members, Including the LDL Receptor and LRP6

    PubMed Central

    2012-01-01

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96. PMID:22292497

  6. Chlorine Abundances in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D.D.; Garrison, D.H.; Park, J.

    2009-01-01

    Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.

  7. SPE (tm) regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications

    NASA Technical Reports Server (NTRS)

    Mcelroy, J. F.

    1990-01-01

    Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.

  8. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  9. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    PubMed

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  10. Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells

    PubMed Central

    2012-01-01

    Background Enterovirus 71 (EV71) is a major causative agent of hand-foot-and-mouth disease (HFMD), and infection of EV71 to central nerve system (CNS) may result in a high mortality in children less than 2 years old. Although there are two highly glycosylated membrane proteins, SCARB2 and PSGL-1, which have been identified as the cellular and functional receptors of EV71, the role of glycosylation in EV71 infection is still unclear. Results We demonstrated that the attachment of EV71 to RD and SK-N-SH cells was diminished after the removal of cell surface sialic acids by neuraminidase. Sialic acid specific lectins, Maackia amurensis (MAA) and Sambucus Nigra (SNA), could compete with EV71 and restrained the binding of EV71 significantly. Preincubation of RD cells with fetuin also reduced the binding of EV71. In addition, we found that SCARB2 was a sialylated glycoprotein and interaction between SCARB2 and EV71 was retarded after desialylation. Conclusions In this study, we demonstrated that cell surface sialic acids assist in the attachment of EV71 to host cells. Cell surface sialylation should be a key regulator that facilitates the binding and infection of EV71 to RD and SK-N-SH cells. PMID:22853823

  11. Fibronectin biosynthesis and cell-surface expression by cardiac and non-cardiac endothelial cells.

    PubMed Central

    Johnson, C. M.; Helgeson, S. C.

    1993-01-01

    We examined the biosynthesis and surface expression of fibronectin, an adhesive glycoprotein, in several types of cultured porcine endothelial cells: pulmonary artery, thoracic aorta, coronary artery, aortic valve, and mitral valve. We used immunocytochemical staining to compare the levels of fibronectin present in these same tissues in vivo. Using endogenous radiolabeling, we found that all cell types except aortic valve endothelial cells synthesized and released into the culture media substantial quantities of fibronectin. Using radioiodination of intact cells, we found that, whereas both thoracic aorta and pulmonary artery cells had measurable fibronectin on the surface, aortic valve, mitral valve, and coronary artery cells had little cell-surface fibronectin present. Immunocytochemical staining showed that all endothelial regions except aortic valve had substantial quantities of immunoreactive fibronectin in vivo. These data suggest that the aortic valve endothelium may be distinct from other endothelia. Such differences could be important for the pathogenesis of valvular disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8494044

  12. Identification of a cell-surface antigen selectively expressed on the natural killer cell

    PubMed Central

    1977-01-01

    We have studied the cell-surface phenotype of natural killer (NK) cells of NZB and B6 mice which react to an MuLV+ lymphoid tumor. (a) NK cells do not express Thy1, Ly2, or Ig surface markers. (b) NK cells express an antigen recognized by C3H anti-CE antiserum ('anti-Ly1.2 antiserum'). Inasmuch as NK activity of spleen cells from B6 and B6/Ly1.1 congenic strains were both equally sensitive to C3H anti-CE antiserum, the NK antigen is distinct from Ly1.2. This point was confirmed by the observation that alphaNK activity was removed by absorption of C3H anti-CE antiserum with spleen cells from either B6 or B6/Ly1.1 congenic strains. Absorption of C3H alphaCE serum with BALB/c thymocytes and spleen cells (which are Ly1.2+NK-) removed anti-Ly1.2 activity and left anti-NK activity intact. This absorption step could be circumvented by inserting the BALB/c genotype into the recipient immunized to CE cells (i.e., (C3H X BALB/c)F1 alphaCE spleen cells). This antiserum, provisionally termed 'anti-NK', defines a new subclass of lymphocytes which may play a central role in the immunosurveillance against tumors. PMID:187714

  13. Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines.

    PubMed

    Arndt, Nadia X; Tiralongo, Joe; Madge, Paul D; von Itzstein, Mark; Day, Christopher J

    2011-09-01

    Currently there is only a modest level knowledge of the glycosylation status of immortalised cell lines that are commonly used in cancer biology as well as their binding affinities to different glycan structures. Through use of glycan and lectin microarray technology, this study has endeavoured to define the different bindings of cell surface carbohydrate structures to glycan-binding lectins. The screening of breast cancer MDA-MB435 cells, cervical cancer HeLa cells and colon cancer Caco-2, HCT116 and HCT116-FM6 cells was conducted to determine their differential bindings to a variety of glycan and lectin structures printed on the array slides. An inverse relationship between the number of glycan structures recognised and the variety of cell surface glycosylation was observed. Of the cell lines tested, it was found that four bound to sialylated structures in initial screening. Secondary screening in the presence of a neuraminidase inhibitor (4-deoxy-4-guanidino-Neu5Ac2en) significantly reduced sialic acid binding. The array technology has proven to be useful in determining the glycosylation signatures of various cell-lines as well as their glycan binding preferences. The findings of this study provide the groundwork for further investigation into the numerous glycan-lectin interactions that are exhibited by immortalised cell lines.

  14. Surface and allied studies in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1984-01-01

    Significant improvements were made in the short-circuit current-decay method of measuring the recombination lifetime tau and the back surface recombination velocity S of the quasineutral base of silicon solar cells. The improvements include a circuit implementation that increases the speed of switching from the forward-voltage to the short-circuit conditions. They also include a supplementation of this method by some newly developed techniques employing small-signal admittance as a function of frequency omega. This supplementation is highly effective for determining tau for cases in which the diffusion length L greatly exceeds the base thickness W. Representative results on different solar cells are reported. Some advances made in the understanding of passivation provided by the polysilicon/silicon heterojunction are outlined. Recent measurements demonstrate that S 10,000 cm/s derive from this method of passivation.

  15. Mechanotransduction across the cell surface and through the cytoskeleton

    NASA Technical Reports Server (NTRS)

    Wang, N.; Butler, J. P.; Ingber, D. E.

    1993-01-01

    Mechanical stresses were applied directly to cell surface receptors with a magnetic twisting device. The extracellular matrix receptor, integrin beta 1, induced focal adhesion formation and supported a force-dependent stiffening response, whereas nonadhesion receptors did not. The cytoskeletal stiffness (ratio of stress to strain) increased in direct proportion to the applied stress and required intact microtubules and intermediate filaments as well as microfilaments. Tensegrity models that incorporate mechanically interdependent struts and strings that reorient globally in response to a localized stress mimicked this response. These results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton. Mechanotransduction, in turn, may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytoskeleton.

  16. Cell/surface interactions and adhesion on bioactive glass 45S5.

    PubMed

    Levy, S; Van Dalen, M; Agonafer, S; Soboyejo, W O

    2007-01-01

    This paper examines the effects of surface texture (smooth versus rough) on cell/surface interactions on the bioactive glass, 45S5. The cell surface interactions associated with cell spreading are studied using cell culture experiments. Subsequent energy dispersive x-ray spectroscopy is also used to reveal the distributions of calcium, phosphorous, sodium and oxygen on the surfaces of the bioactive glasses. The implications of the results are then discussed for the applications of textured bioactive glasses in medicine.

  17. Measurement of diffusion length and surface recombination velocity in Interdigitated Back Contact (IBC) and Front Surface Field (FSF) solar cells

    NASA Astrophysics Data System (ADS)

    Verlinden, Pierre; Van de Wiele, Fernand

    1985-03-01

    A method is proposed for measuring the diffusion length and surface recombination velocity of Interdigitated Back Contact (IBC) solar cells by means of a simple linear regression on experimental quantum efficiency values versus the inverse of the absorption coefficient. This method is extended to the case of Front Surface Field (FSF) solar cells. Under certain conditions, the real or the effective surface recombination velocity may be measured.

  18. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    PubMed Central

    Barrantes, Francisco J.

    2014-01-01

    Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain. PMID

  19. Control of cell behavior on PTFE surface using ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Kitamura, Akane; Kobayashi, Tomohiro; Meguro, Takashi; Suzuki, Akihiro; Terai, Takayuki

    2009-05-01

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 × 1016 ions/cm2, cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 × 1017 ions/cm2, the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  20. Revisiting human natural killer cell subset function revealed cytolytic CD56dimCD16+ NK cells as rapid producers of abundant IFN-γ on activation

    PubMed Central

    De Maria, Andrea; Bozzano, Federica; Cantoni, Claudia; Moretta, Lorenzo

    2011-01-01

    The two major functions of human natural killer (NK) cells are conventionally associated with distinct cell subsets. Thus, cytolytic activity is mostly confined to the CD56dimCD16+ subset, whereas cytokine production is generally assigned to CD56brightCD16+/− cells. In this study, we reevaluated the functional capabilities of these NK subsets with regard to the production of IFN-γ at different time points after cell triggering via NKp46 and NKp30 activating receptors. Different from previous studies, cytokine production was also assessed at early intervals. We show that CD56dim NK cells produce IFN-γ already at 2 to 4 h, whereas no cytokine production is detected beyond 16 h. In contrast, CD56bright cells release IFN-γ only at late time intervals (>16 h after stimulation). The rapid IFN-γ production by CD56dim NK cells is in line with the presence of IFN-γ mRNA in freshly isolated cells. Rapid IFN-γ production was also induced by combinations of IL-2, IL-12, and IL-15. Our data indicate that not only cytolytic activity but also early IFN-γ production is a functional property of CD56dim NK cells. Thus, this subset can assure a rapid and comprehensive NK cell intervention during the early phases of innate responses. PMID:21187373

  1. Monocyte cell surface glycosaminoglycans positively modulate IL-4-induced differentiation toward dendritic cells.

    PubMed

    den Dekker, Els; Grefte, Sander; Huijs, Tonnie; ten Dam, Gerdy B; Versteeg, Elly M M; van den Berk, Lieke C J; Bladergroen, Bellinda A; van Kuppevelt, Toin H; Figdor, Carl G; Torensma, Ruurd

    2008-03-15

    IL-4 induces the differentiation of monocytes toward dendritic cells (DCs). The activity of many cytokines is modulated by glycosaminoglycans (GAGs). In this study, we explored the effect of GAGs on the IL-4-induced differentiation of monocytes toward DCs. IL-4 dose-dependently up-regulated the expression of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), CD80, CD206, and CD1a. Monocytes stained positive with Abs against heparan sulfate (HS) and chondroitin sulfate (CS) B (CSB; dermatan sulfate), but not with Abs that recognize CSA, CSC, and CSE. Inhibition of sulfation of monocyte/DC cell surface GAGs by sodium chlorate reduced the reactivity of sulfate-recognizing single-chain Abs. This correlated with hampered IL-4-induced DC differentiation as evidenced by lower expression of DC-SIGN and CD1a and a decreased DC-induced PBL proliferation, suggesting that sulfated monocyte cell surface GAGs support IL-4 activity. Furthermore, removal of cell surface chondroitin sulfates by chondroitinase ABC strongly impaired IL-4-induced STAT6 phosphorylation, whereas removal of HS by heparinase III had only a weak inhibitory effect. IL-4 bound to heparin and CSB, but not to HS, CSA, CSC, CSD, and CSE. Binding of IL-4 required iduronic acid, an N-sulfate group (heparin) and specific O sulfates (CSB and heparin). Together, these data demonstrate that monocyte cell surface chondroitin sulfates play an important role in the IL-4-driven differentiation of monocytes into DCs.

  2. Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early

    DTIC Science & Technology

    2012-07-01

    10-1-0422 TITLE: Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early PRINCIPAL...molecular imaging 7 cdrescher@fhcrc.org Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early Page 3...Targeting Cell Surface Proteins in Molecular Photoacoustic Imaging to Detect Ovarian Cancer Early Charles W Drescher, MD, Principle Investigator

  3. CSF-1 receptor signalling is governed by pre-requisite EHD1 mediated receptor display on the macrophage cell surface.

    PubMed

    Cypher, Luke R; Bielecki, Timothy Alan; Huang, Lu; An, Wei; Iseka, Fany; Tom, Eric; Storck, Matthew D; Hoppe, Adam D; Band, Vimla; Band, Hamid

    2016-09-01

    Colony stimulating factor-1 receptor (CSF-1R), a receptor tyrosine kinase (RTK), is the master regulator of macrophage biology. CSF-1 can bind CSF-1R resulting in receptor activation and signalling essential for macrophage functions such as proliferation, differentiation, survival, polarization, phagocytosis, cytokine secretion, and motility. CSF-1R activation can only occur after the receptor is presented on the macrophage cell surface. This process is reliant upon the underlying macrophage receptor trafficking machinery. However, the mechanistic details governing this process are incompletely understood. C-terminal Eps15 Homology Domain-containing (EHD) proteins have recently emerged as key regulators of receptor trafficking but have not yet been studied in the context of macrophage CSF-1R signalling. In this manuscript, we utilize primary bone-marrow derived macrophages (BMDMs) to reveal a novel function of EHD1 as a regulator of CSF-1R abundance on the cell surface. We report that EHD1-knockout (EHD1-KO) macrophages cell surface and total CSF-1R levels are significantly decreased. The decline in CSF-1R levels corresponds with reduced downstream macrophage functions such as cell proliferation, migration, and spreading. In EHD1-KO macrophages, transport of newly synthesized CSF-1R to the macrophage cell surface was reduced and was associated with the shunting of the receptor to the lysosome, which resulted in receptor degradation. These findings reveal a novel and functionally important role for EHD1 in governing CSF-1R signalling via regulation of anterograde transport of CSF-1R to the macrophage cell surface.

  4. Hematite Abundance Map at Echo

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the hematite abundance map for a portion of the Meridiani Planum rock outcrop near where the Mars Exploration Rover Opportunity landed. It was acquired by the rover's miniature thermal emission spectrometer instrument from a spot called 'Echo.' Portions of the inner crater wall in this region appear rich in hematite (red). The sharp boundary from hematite-rich to hematite-poor (yellow and green) surfaces corresponds to a change in the surface texture and color. The hematite-rich surfaces have ripple-like forms suggesting wind transported hematite to these surfaces. The bounce marks produced during landing at the base of the slope on the left are low in hematite (blue). The hematite grains that originally covered the surface were pushed below the surface by the lander, exposing a soil that has less hematite.

  5. Staphylococcus aureus Protein A Mediates Interspecies Interactions at the Cell Surface of Pseudomonas aeruginosa

    PubMed Central

    Armbruster, Catherine R.; Wolter, Daniel J.; Mishra, Meenu; Hayden, Hillary S.; Radey, Matthew C.; Merrihew, Gennifer; MacCoss, Michael J.; Burns, Jane; Wozniak, Daniel J.

    2016-01-01

    ABSTRACT While considerable research has focused on the properties of individual bacteria, relatively little is known about how microbial interspecies interactions alter bacterial behaviors and pathogenesis. Staphylococcus aureus frequently coinfects with other pathogens in a range of different infectious diseases. For example, coinfection by S. aureus with Pseudomonas aeruginosa occurs commonly in people with cystic fibrosis and is associated with higher lung disease morbidity and mortality. S. aureus secretes numerous exoproducts that are known to interact with host tissues, influencing inflammatory responses. The abundantly secreted S. aureus staphylococcal protein A (SpA) binds a range of human glycoproteins, immunoglobulins, and other molecules, with diverse effects on the host, including inhibition of phagocytosis of S. aureus cells. However, the potential effects of SpA and other S. aureus exoproducts on coinfecting bacteria have not been explored. Here, we show that S. aureus-secreted products, including SpA, significantly alter two behaviors associated with persistent infection. We found that SpA inhibited biofilm formation by specific P. aeruginosa clinical isolates, and it also inhibited phagocytosis by neutrophils of all isolates tested. Our results indicate that these effects were mediated by binding to at least two P. aeruginosa cell surface structures—type IV pili and the exopolysaccharide Psl—that confer attachment to surfaces and to other bacterial cells. Thus, we found that the role of a well-studied S. aureus exoproduct, SpA, extends well beyond interactions with the host immune system. Secreted SpA alters multiple persistence-associated behaviors of another common microbial community member, likely influencing cocolonization and coinfection with other microbes. PMID:27222468

  6. Proteomic Analyses Reveal Common Promiscuous Patterns of Cell Surface Proteins on Human Embryonic Stem Cells and Sperms

    PubMed Central

    Gu, Bin; Zhang, Jiarong; Wu, Ying; Zhang, Xinzong; Tan, Zhou; Lin, Yuanji; Huang, Xiao; Chen, Liangbiao; Yao, Kangshou; Zhang, Ming

    2011-01-01

    Background It has long been proposed that early embryos and reproductive organs exhibit similar gene expression profiles. However, whether this similarity is propagated to the protein level remains largely unknown. We have previously characterised the promiscuous expression pattern of cell surface proteins on mouse embryonic stem (mES) cells. As cell surface proteins also play critical functions in human embryonic stem (hES) cells and germ cells, it is important to reveal whether a promiscuous pattern of cell surface proteins also exists for these cells. Methods and Principal Findings Surface proteins of hES cells and human mature sperms (hSperms) were purified by biotin labelling and subjected to proteomic analyses. More than 1000 transmembrane or secreted cell surface proteins were identified on the two cell types, respectively. Proteins from both cell types covered a large variety of functional categories including signal transduction, adhesion and transporting. Moreover, both cell types promiscuously expressed a wide variety of tissue specific surface proteins, and some surface proteins were heterogeneously expressed. Conclusions/Significance Our findings indicate that the promiscuous expression of functional and tissue specific cell surface proteins may be a common pattern in embryonic stem cells and germ cells. The conservation of gene expression patterns between early embryonic cells and reproductive cells is propagated to the protein level. These results have deep implications for the cell surface signature characterisation of pluripotent stem cells and germ cells and may lead the way to a new area of study, i.e., the functional significance of promiscuous gene expression in pluripotent and germ cells. PMID:21559292

  7. Responses of endothelial cells, smooth muscle cells, and platelets dependent on the surface topography of polytetrafluoroethylene.

    PubMed

    Lamichhane, Sujan; Anderson, Jordan A; Remund, Tyler; Sun, Hongli; Larson, Mark K; Kelly, Patrick; Mani, Gopinath

    2016-09-01

    In this study, the effect of different structures (flat, expanded, and electrospun) of polytetrafluoroethylene (PTFE) on the interactions of endothelial cells (ECs), smooth muscle cells (SMCs), and platelets was investigated. In addition, the mechanisms that govern the interactions between ECs, SMCs, and platelets with different structures of PTFE were discussed. The surface characterizations showed that the different structures of PTFE have the same surface chemistry, similar surface wettability and zeta potential, but uniquely different surface topography. The viability, proliferation, morphology, and phenotype of ECs and SMCs interacted with different structures of PTFE were investigated. Expanded PTFE (ePTFE) provided a relatively better surface for the growth of ECs. In case of SMC interactions, although all the different structures of PTFE inhibited SMC growth, a maximum inhibitory effect was observed for ePTFE. In case of platelet interactions, the electrospun PTFE provided a better surface for preventing the adhesion and activation of platelets. Thus, this study demonstrated that the responses of ECs, SMCs, and platelets strongly dependent on the surface topography of the PTFE. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2291-2304, 2016.

  8. Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig.

    PubMed

    Vaughan, Andrew T; Brackenbury, Louise S; Massari, Paola; Davenport, Victoria; Gorringe, Andrew; Heyderman, Robert S; Williams, Neil A

    2010-09-15

    Neisseria lactamica is a commensal bacteria that colonizes the human upper respiratory tract mucosa during early childhood. In contrast to the closely related opportunistic pathogen Neisseria meningitidis, there is an absence of adaptive cell-mediated immunity to N. lactamica during the peak age of carriage. Instead, outer membrane vesicles derived from N. lactamica mediate a B cell-dependent proliferative response in mucosal mononuclear cells that is associated with the production of polyclonal IgM. We demonstrate in this study that this is a mitogenic human B cell response that occurs independently of T cell help and any other accessory cell population. The ability to drive B cell proliferation is a highly conserved property and is present in N. lactamica strains derived from diverse clonal complexes. CFSE staining of purified human tonsillar B cells demonstrated that naive IgD(+) and CD27(-) B cells are selectively induced to proliferate by outer membrane vesicles, including the innate CD5(+) subset. Neither purified lipooligosaccharide nor PorB from N. lactamica is likely to be responsible for this activity. Prior treatment of B cells with pronase to remove cell-surface Ig or treatment with BCR-specific Abs abrogated the proliferative response to N. lactamica outer membrane vesicles, suggesting that this mitogenic response is dependent upon the BCR.

  9. Engineered antifouling microtopographies: surface pattern effects on cell distribution.

    PubMed

    Decker, Joseph T; Sheats, Julian T; Brennan, Anthony B

    2014-12-23

    Microtopography has been observed to lead to altered attachment behavior for marine fouling organisms; however, quantification of this phenomenon is lacking in the scientific literature. Here, we present quantitative measurement of the disruption of normal attachment behavior of the fouling algae Ulva linza by antifouling microtopographies. The distribution of the diatom Navicula incerta was shown to be unaffected by the presence of topography. The radial distribution function was calculated for both individual zoospores and cells as well as aggregates of zoospores from attachment data for a variety topographic configurations and at a number of different attachment densities. Additionally, the screening distance and maximum values were mapped according to the location of zoospore aggregates within a single unit cell. We found that engineered topographies decreased the distance between spore aggregates compared to that for a smooth control surface; however, the distributions for individual spores were unchanged. We also found that the local attachment site geometry affected the screening distance for aggregates of zoospores, with certain geometries decreasing screening distance and others having no measurable effect. The distribution mapping techniques developed and explored in this article have yielded important insight into the design parameters for antifouling microtopographies that can be implemented in the next generation of antifouling surfaces.

  10. Neutrophil cell surface receptors and their intracellular signal transduction pathways☆

    PubMed Central

    Futosi, Krisztina; Fodor, Szabina; Mócsai, Attila

    2013-01-01

    Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. PMID:23994464

  11. Cell surface glycoproteins of CHO cells. I. Internalization and rapid recycling

    SciTech Connect

    Raub, T.J.; Denny, J.B.; Roberts, R.M.

    1986-01-01

    The major cell surface proteins of Chinese hamster ovary (CHO) cells have been investigated after reacting cells at 4/sup 0/C with the membrane-impermeant reagent, trinitrobenzenesulfonate (TNBS). Immunoprecipitation and subsequent two-dimensional, sodiumdodecyl sulfate, polyacrylamide gel electrophoresis (SDS-PAGE) of proteins from derivatized cells that had been labelled previously with (/sup 3/H)D-glucosamine or (/sup 3/H)L-leucine showed that TNBS reacted with most of the high molecular weight (HMW) acidic glycoproteins that became labelled with iodine by the lactoperoxidase technique and that bind the lectin, wheat germ agglutinin (WGA). After warming the cells to allow endocytosis to proceed, molecule haptenized with trinitrophenol (TNP) groups were followed radio-chemically by means of (/sup 125/I)anti-DNP antibodies. Within 15 min at 37/sup 0/C, a steady-state between surface and cytoplasmic label was reached, with about 65% of the hapten located internally. Recycling of internalized TNP groups back to the cell surface also occurred rapidly (t/sub 1/2/ approx. 5 min). Our results are consistent with the view that the majority of plasma membrane glycoproteins are continuously being internalized and recycled at a high rate.

  12. Heat-transfer-method-based cell culture quality assay through cell detection by surface imprinted polymers.

    PubMed

    Eersels, Kasper; van Grinsven, Bart; Khorshid, Mehran; Somers, Veerle; Püttmann, Christiane; Stein, Christoph; Barth, Stefan; Diliën, Hanne; Bos, Gerard M J; Germeraad, Wilfred T V; Cleij, Thomas J; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick

    2015-02-17

    Previous work has indicated that surface imprinted polymers (SIPs) allow for highly specific cell detection through macromolecular cell imprints. The combination of SIPs with a heat-transfer-based read-out technique has led to the development of a selective, label-free, low-cost, and user-friendly cell detection assay. In this study, the breast cancer cell line ZR-75-1 is used to assess the potential of the platform for monitoring the quality of a cell culture in time. For this purpose, we show that the proposed methodology is able to discriminate between the original cell line (adherent growth, ZR-75-1a) and a descendant cell line (suspension growth, ZR-75-1s). Moreover, ZR-75-1a cells were cultured for a prolonged period of time and analyzed using the heat-transfer method (HTM) at regular time intervals. The results of these experiments demonstrate that the thermal resistance (Rth) signal decays after a certain number of cell culture passages. This can likely be attributed to a compromised quality of the cell culture due to cross-contamination with the ZR-75-1s cell line, a finding that was confirmed by classical STR DNA profiling. The cells do not express the same functional groups on their membrane, resulting in a weaker bond between cell and imprint, enabling cell removal by mechanical friction, provided by flushing the measuring chamber with buffer solution. These findings were further confirmed by HTM and illustrate that the biomimetic sensor platform can be used as an assay for monitoring the quality of cell cultures in time.

  13. Staphylococcus aureus surface proteins involved in adaptation to oxacillin identified using a novel cell shaving approach.

    PubMed

    Solis, Nestor; Parker, Benjamin L; Kwong, Stephen M; Robinson, Gareth; Firth, Neville; Cordwell, Stuart J

    2014-06-06

    Staphylococcus aureus is a Gram-positive pathogen responsible for a variety of infections, and some strains are resistant to virtually all classes of antibiotics. Cell shaving proteomics using a novel probability scoring algorithm to compare the surfaceomes of the methicillin-resistant, laboratory-adapted S. aureus COL strain with a COL strain in vitro adapted to high levels of oxacillin (APT). APT displayed altered cell morphology compared with COL and increased aggregation in biofilm assays. Increased resistance to β-lactam antibiotics was observed, but adaptation to oxacillin did not confer multidrug resistance. Analysis of the S. aureus COL and APT surfaceomes identified 150 proteins at a threshold determined by the scoring algorithm. Proteins unique to APT included the LytR-CpsA-Psr (LCP) domain-containing MsrR and SACOL2302. Quantitative RT-PCR showed increased expression of sacol2302 in APT grown with oxacillin (>6-fold compared with COL). Overexpression of sacol2302 in COL to levels consistent with APT (+ oxacillin) did not influence biofilm formation or β-lactam resistance. Proteomics using iTRAQ and LC-MS/MS identified 1323 proteins (∼50% of the theoretical S. aureus proteome), and cluster analysis demonstrated elevated APT abundances of LCP proteins, capsule and peptidoglycan biosynthesis proteins, and proteins involved in wall remodelling. Adaptation to oxacillin also induced urease proteins, which maintained culture pH compared to COL. These results show that S. aureus modifies surface architecture in response to antibiotic adaptation.

  14. Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy.

    PubMed

    Iafisco, Michele; Delgado-Lopez, Josè Manuel; Varoni, Elena Maria; Tampieri, Anna; Rimondini, Lia; Gomez-Morales, Jaime; Prat, Maria

    2013-11-25

    Nanosized drug carriers functionalized with moieties specifically targeting tumor cells are promising tools in cancer therapy, due to their ability to circulate in the bloodstream for longer periods and their selectivity for tumor cells, enabling the sparing of healthy tissues. Because of its biocompatibility, high bioresorbability, and responsiveness to pH changes, synthetic biomimetic nanocrystalline apatites are used as nanocarriers to produce multifunctional nanoparticles, by coupling them with the chemotherapeutic drug doxorubicin (DOXO) and the DO-24 monoclonal antibody (mAb) directed against the Met/Hepatocyte Growth Factor receptor (Met/HGFR), which is over-expressed on different types of carcinomas and thus represents a useful tumor target. The chemical-physical features of the nanoparticles are fully investigated and their interaction with cells expressing (GTL-16 gastric carcinoma line) or not expressing (NIH-3T3 fibroblasts) the Met/HGFR is analyzed. Functionalized nanoparticles specifically bind to and are internalized in cells expressing the receptor (GTL-16) but not in the ones that do not express it (NIH-3T3). Moreover they discharge DOXO in the targeted GTL-16 cells that reach the nucleus and display cytotoxicity as assessed in an MTT assay. Two different types of ternary nanoparticles are prepared, differing for the sequence of the functionalization steps (adsorption of DOXO first and then mAb or vice versa), and it is found that the ones in which mAb is adsorbed first are more efficient under all the exa