Science.gov

Sample records for abundant energy supply

  1. Three energy variables predict ant abundance at a geographical scale.

    PubMed

    Kaspari, M; Alonso, L; O'Donnell, S

    2000-03-01

    Energy theory posits three processes that link local abundance of ectotherms to geographical gradients in temperature. A survey of 49 New World habitats found a two order of magnitude span in the abundance (nests m(-2)) of ground nesting ants (Formicidae). Abundance increased with net primary productivity (r2=0.55), a measure of the baseline supply of harvestable energy. Abundance further increased with mean temperature (r2=0.056), a constraint on foraging activity for this thermophilic taxon. Finally for a given mean temperature, ants were more abundant in seasonal sites with longer, colder winters (r2 = 0.082) that help ectotherm taxa sequester harvested energy in non-productive months. All three variables are currently changing on a global scale. All should be useful in predicting biotic responses to climate change.

  2. Supply Curves of Conserved Energy

    SciTech Connect

    Meier, Alan Kevin

    1982-05-01

    Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes. The conservation supply curve concept can be applied to peak power, water, pollution, and other markets where consumers demand a service rather than a particular good.

  3. Water supply and demand in an energy supply model

    SciTech Connect

    Abbey, D; Loose, V

    1980-12-01

    This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

  4. 76 FR 67721 - PNE Energy Supply, LLC;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission PNE Energy Supply, LLC; Supplemental Notice that Initial Market-Based Rate...-referenced proceeding of PNE Energy Supply, LLC's application for market-based rate authority, with...

  5. Global Energy: Supply, Demand, Consequences, Opportunities

    SciTech Connect

    Majumdar, Arun

    2008-08-14

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  6. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema

    Majumdar, Arun

    2016-07-12

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  7. The role of carrion supply in the abundance of deep-water fish off California.

    PubMed

    Drazen, Jeffrey C; Bailey, David M; Ruhl, Henry A; Smith, Kenneth L

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9-20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics.

  8. The role of carrion supply in the abundance of deep-water fish off California.

    PubMed

    Drazen, Jeffrey C; Bailey, David M; Ruhl, Henry A; Smith, Kenneth L

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9-20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics. PMID:23133679

  9. The Role of Carrion Supply in the Abundance of Deep-Water Fish off California

    PubMed Central

    Drazen, Jeffrey C.; Bailey, David M.; Ruhl, Henry A.; Smith, Kenneth L.

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9–20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics. PMID:23133679

  10. Energy supply and demand in California

    NASA Technical Reports Server (NTRS)

    Griffith, E. D.

    1978-01-01

    The author expresses his views on future energy demand on the west coast of the United States and how that energy demand translates into demand for major fuels. He identifies the major uncertainties in determining what future demands may be. The major supply options that are available to meet projected demands and the policy implications that flow from these options are discussed.

  11. Creating abundance: America's least-cost energy strategy

    SciTech Connect

    Sant, R.W.; Bakker, D.W.; Naill, R.F.

    1984-01-01

    This book is a lengthy essay describing the American accomplishments in taming the energy problem, although still untapped opportunities are noted. Contents: The concept of energy services. Lowering the energy cost in industry. Alternatives to traditional fuels. Two abundant energy futures. Some myths about energy. Index.

  12. Supply of reactants for Redox bulk energy storage systems

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.

    1978-01-01

    World resources, reserves, production, and costs of reactant materials, iron, chromium, titanium and bromine for proposed redox cell bulk energy storage systems are reviewed. Supplying required materials for multimegawatt hour systems appears to be feasible even at current production levels. Iron and chromium ores are the most abundant and lowest cost of four reactants. Chromium is not a domestic reserve, but redox system installations would represent a small fraction of U.S. imports. Vast quantities of bromine are available, but present production is low and therefore cost is high. Titanium is currently available at reasonable cost, with ample reserves available for the next fifty years.

  13. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  14. Sustainable Supply of Energy from Biomass

    NASA Astrophysics Data System (ADS)

    Abolins, J.; Gravitis, J.

    2010-01-01

    The study concerns sustainable supply of primary energy from biomass and considers the interrelation between the amount of energy captured in biomass by photosynthesis and the total land area under perennial species grown for the purpose. The authors analyse available experimental data statistically relevant to natural growths comprising a large number of individual trees of grey alder (Alnus incana), a well-known fast-growing species broadly spread in Latvia and for centuries being used as firewood. By graphical approximation of the growth-rate data available for growths up to 50 years of age the optimum age for harvesting dependent on the age at which the maximum growth-rate of biomass is reached is shown to be 18 years confirming traditional popular knowledge. With account for long-term sustainable supply of energy under condition of 18-year rotation, the average yield of energy from highest quality sites of the total land area permanently occupied by alder is calculated to be ca. 85 GJ/ha and the required land equivalent - slightly less than 12 ha per TJ of primary energy from photosynthesis.

  15. Health costs of a reduced energy supply.

    PubMed

    McCarroll, J R

    1983-10-01

    Health effects associated with electricity production, especially air pollution from fossil fuel combustion, have received much attention in the past 30 years. Virtually no attention has been paid to the health costs of a reduced or overpriced energy supply although these are real and formidable. Stringent regulations mandating control technology on stack emissions and/or burning of low sulfur fuels have been promulgated which cost the American public billions of dollars. These have indeed alleviated some health problems, but pressures to further tighten regulations offer little chance of further health benefits commensurate with their cost and are most likely to produce a new series of problems. PMID:6653529

  16. Gas energy supply outlook through 2010

    SciTech Connect

    Kalisch, R.B.

    1986-03-01

    Late in 1984 the American Gas Association published a study by the Gas Supply Committee titled, ''The Outlook for Gas Energy Through 2010.'' This study was a joint effort by many people of the gas industry including GRI, IGT and AGA. The study observed that come 1646 Tcf of natural gas is judged to be ultimately recoverable in the US. Of this total, 665 Tcf were produced up to year-end 1984. At that time an additional 197 Tcf were categorized as proved reserves, i.e., known to exist with reasonable certainty and producible under current economic and operating conditions. An additional 784 Tcf were classified as potential supply. In short, about 60 % of the nation's ultimately recoverable resource still is available; only 40 % has been produced to data. This is a formidable gas resource for the lower-48; in 1984 the production level was about 17 Tcf; proved reserves were approximately 163 Tcf - more than nine times the 1984 production. 2 references, 2 tables.

  17. The Effect of Natural Gas Supply on US Renewable Energy and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Shearer, C.; Bistline, J.; Inman, M.; Davis, S. J.

    2014-12-01

    Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that more abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall energy use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 2013-2055 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable energy, more abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.

  18. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect

    Majumdar, Arun

    2008-07-29

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  19. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema

    Majumdar, Arun

    2016-07-12

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  20. Hydrogen energy - An inexhaustible abundant clean energy system

    NASA Astrophysics Data System (ADS)

    Nayar, M. G.

    1981-04-01

    A review is presented of various hydrogen production processes from possible primary energy resources. The processes covered are nuclear coal gasification, thermochemical hydrogen production, and hydrogen production by electrolysis, which includes solid polymer electrolyte-based electrolyzers, high-temperature electrolyzers, and photoelectrochemical decomposition of water. Attention is given to hydrogen transport and storage (in metal hydride systems) and to its application as an automotive fuel. Hydrogen as a secondary energy source is also discussed, and its uses as an off-peak power storage medium and as an energy transmission medium are described. Costs, flow diagrams and chemical formulas are analyzed in detail.

  1. The effect of natural gas supply on US renewable energy and CO2 emissions

    NASA Astrophysics Data System (ADS)

    Shearer, Christine; Bistline, John; Inman, Mason; Davis, Steven J.

    2014-09-01

    Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall electricity use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 2013-55 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable electricity, abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.

  2. A large detector for cosmic ray abundance and energy measurements

    NASA Astrophysics Data System (ADS)

    Alsop, C.

    A large aperture, balloon borne cosmic ray detector was designed to measure the energy spectra of individual cosmic ray species with Z greater than 8 in the energy range 0.3GeV/N to 400GeV/N. The energy dependence of the abundance spectrum extending up to such high energies will provide valuable data for determining the nature of the origin and propagation of cosmic rays in the Galaxy. The properties of cosmic ray nuclei and the interpretation of the energy dependence of the abundance spectrum are discussed. The design and response of the BUGS IV cosmic ray detector are described. The measurement techniques used are gas scintillation, gas proportional scintillation and Cerenkov radiation from both gases and solids. The light collection properties of the detector and several experimental investigations of the light collection efficiency of the drift chamber region are described. The expected signals from the gas scintillation and gas Cerenkov emissions are predicted and the choice of a suitable scintillating gas mixture for minimizing the uncertainty in the charge and energy measurements is considered. The theoretical aspects of electron drift and diffusion in gases and several experimental investigations on the electron drift in the BUGS IV drift chamber are given. Also some preliminary results from a uniform field drift chamber are included which demonstrate the sensitivity of the electron drift velocity in inert gas mixtures to water vapor contamination. The expected overall performance of BUGS IV and the results of an experimental simulation of the parachute landing of the detector are given.

  3. Solar Photoelectrochemical Energy Conversion using Earth-Abundant Nanomaterials

    NASA Astrophysics Data System (ADS)

    Lukowski, Mark A.

    Although the vast majority of energy consumed worldwide is derived from fossil fuels, the growing interest in making cleaner alternative energies more economically viable has motivated recent research efforts aimed to improve photovoltaic, wind, and biomass power generation. Clean power generation also requires clean burning fuels, such as H2 and O2, so that energy can still be provided on demand at all times, despite the intermittent nature inherent to solar or wind power. My research has focused on the rational approach to synthesizing earth-abundant nanomaterials with applications in the generation of clean alternative fuels and understanding the structure-property relationships which directly influence their performance. Herein, we describe the development of low-cost, earth-abundant layered metal chalcogenides as high-performance electrocatalysts for hydrogen evolution, and hematite photoanodes for photoelectrochemical oxygen evolution. This work has revealed a particularly interesting concept where catalytic performance can be enhanced by controlling the phase behavior of the material and taking advantage of previously unexploited properties to overcome the challenges traditionally limiting the performance of these layered materials for hydrogen evolution catalysis.

  4. Bacterial abundance and diversity in pond water supplied with different feeds

    PubMed Central

    Qin, Ya; Hou, Jie; Deng, Ming; Liu, Quansheng; Wu, Chongwei; Ji, Yingjie; He, Xugang

    2016-01-01

    The abundance and diversity of bacteria in two types of ponds were investigated by quantitative PCR and Illumina MiSeq sequencing. The results revealed that the abundance of bacterial 16S rRNA genes in D ponds (with grass carp fed sudan grass) was significantly lower than that in E ponds (with grass carp fed commercial feed). The microbial communities were dominated by Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria in both E and D ponds, while the abundance of some genera was significantly different between the two types of ponds. Specifically, some potential pathogens such as Acinetobacter and Aeromonas were found to be significantly decreased, while some probiotics such as Comamonadaceae unclassified and Bacillales unclassified were significantly increased in D ponds. In addition, water quality of D ponds was better than that of E ponds. Temperature, dissolved oxygen and nutrients had significant influence on bacterial communities. The differences in bacterial community compositions between the two types of ponds could be partially explained by the different water conditions. PMID:27759010

  5. Electric Transport Traction Power Supply System With Distributed Energy Sources

    NASA Astrophysics Data System (ADS)

    Abramov, E. Y.; Schurov, N. I.; Rozhkova, M. V.

    2016-04-01

    The paper states the problem of traction substation (TSS) leveling of daily-load curve for urban electric transport. The circuit of traction power supply system (TPSS) with distributed autonomous energy source (AES) based on photovoltaic (PV) and energy storage (ES) units is submitted here. The distribution algorithm of power flow for the daily traction load curve leveling is also introduced in this paper. In addition, it illustrates the implemented experiment model of power supply system.

  6. Market penetration of energy supply technologies

    NASA Astrophysics Data System (ADS)

    Condap, R. J.

    1980-03-01

    Techniques to incorporate the concepts of profit-induced growth and risk aversion into policy-oriented optimization models of the domestic energy sector are examined. After reviewing the pertinent market penetration literature, simple mathematical programs in which the introduction of new energy technologies is constrained primarily by the reinvestment of profits are formulated. The main results involve the convergence behavior of technology production levels under various assumptions about the form of the energy demand function. Next, profitability growth constraints are embedded in a full-scale model of U.S. energy-economy interactions. A rapidly convergent algorithm is developed to utilize optimal shadow prices in the computation of profitability for individual technologies. Allowance is made for additional policy variables such as government funding and taxation. The result is an optimal deployment schedule for current and future energy technologies which is consistent with the sector's ability to finance capacity expansion.

  7. Wind Energy: A Maturing Power Supply Possibility.

    ERIC Educational Resources Information Center

    Petersen, Erik Lundtang; And Others

    1987-01-01

    Suggests that wind energy for electrification will prove to be an appropriate technology with very positive socioeconomic benefits, especially in developing countries. Provides examples of projects conducted by a Danish wind research laboratory. (TW)

  8. Energy Supply and Development: A Major Concern.

    ERIC Educational Resources Information Center

    Avery, J. S.

    1978-01-01

    Reviews (1) problems created by United States dependence on foreign oil, (2) recent progress in oil and natural gas development in the U.S., and (3) alternative sources of energy such as the sun, coal, and uranium. (AV)

  9. Optimizing energy for a 'green' vaccine supply chain.

    PubMed

    Lloyd, John; McCarney, Steve; Ouhichi, Ramzi; Lydon, Patrick; Zaffran, Michel

    2015-02-11

    This paper describes an approach piloted in the Kasserine region of Tunisia to increase the energy efficiency of the distribution of vaccines and temperature sensitive drugs. The objectives of an approach, known as the 'net zero energy' (NZE) supply chain were demonstrated within the first year of operation. The existing distribution system was modified to store vaccines and medicines in the same buildings and to transport them according to pre-scheduled and optimized delivery circuits. Electric utility vehicles, dedicated to the integrated delivery of vaccines and medicines, improved the regularity and reliability of the supply chains. Solar energy, linked to the electricity grid at regional and district stores, supplied over 100% of consumption meeting all energy needs for storage, cooling and transportation. Significant benefits to the quality and costs of distribution were demonstrated. Supply trips were scheduled, integrated and reliable, energy consumption was reduced, the recurrent cost of electricity was eliminated and the release of carbon to the atmosphere was reduced. Although the initial capital cost of scaling up implementation of NZE remain high today, commercial forecasts predict cost reduction for solar energy and electric vehicles that may permit a step-wise implementation over the next 7-10 years. Efficiency in the use of energy and in the deployment of transport is already a critical component of distribution logistics in both private and public sectors of industrialized countries. The NZE approach has an intensified rationale in countries where energy costs threaten the maintenance of public health services in areas of low population density. In these countries where the mobility of health personnel and timely arrival of supplies is at risk, NZE has the potential to reduce energy costs and release recurrent budget to other needs of service delivery while also improving the supply chain. PMID:25444811

  10. Optimizing energy for a 'green' vaccine supply chain.

    PubMed

    Lloyd, John; McCarney, Steve; Ouhichi, Ramzi; Lydon, Patrick; Zaffran, Michel

    2015-02-11

    This paper describes an approach piloted in the Kasserine region of Tunisia to increase the energy efficiency of the distribution of vaccines and temperature sensitive drugs. The objectives of an approach, known as the 'net zero energy' (NZE) supply chain were demonstrated within the first year of operation. The existing distribution system was modified to store vaccines and medicines in the same buildings and to transport them according to pre-scheduled and optimized delivery circuits. Electric utility vehicles, dedicated to the integrated delivery of vaccines and medicines, improved the regularity and reliability of the supply chains. Solar energy, linked to the electricity grid at regional and district stores, supplied over 100% of consumption meeting all energy needs for storage, cooling and transportation. Significant benefits to the quality and costs of distribution were demonstrated. Supply trips were scheduled, integrated and reliable, energy consumption was reduced, the recurrent cost of electricity was eliminated and the release of carbon to the atmosphere was reduced. Although the initial capital cost of scaling up implementation of NZE remain high today, commercial forecasts predict cost reduction for solar energy and electric vehicles that may permit a step-wise implementation over the next 7-10 years. Efficiency in the use of energy and in the deployment of transport is already a critical component of distribution logistics in both private and public sectors of industrialized countries. The NZE approach has an intensified rationale in countries where energy costs threaten the maintenance of public health services in areas of low population density. In these countries where the mobility of health personnel and timely arrival of supplies is at risk, NZE has the potential to reduce energy costs and release recurrent budget to other needs of service delivery while also improving the supply chain.

  11. Optimizing energy for a ‘green’ vaccine supply chain

    PubMed Central

    Lloyd, John; McCarney, Steve; Ouhichi, Ramzi; Lydon, Patrick; Zaffran, Michel

    2015-01-01

    This paper describes an approach piloted in the Kasserine region of Tunisia to increase the energy efficiency of the distribution of vaccines and temperature sensitive drugs. The objectives of an approach, known as the ‘net zero energy’ (NZE) supply chain were demonstrated within the first year of operation. The existing distribution system was modified to store vaccines and medicines in the same buildings and to transport them according to pre-scheduled and optimized delivery circuits. Electric utility vehicles, dedicated to the integrated delivery of vaccines and medicines, improved the regularity and reliability of the supply chains. Solar energy, linked to the electricity grid at regional and district stores, supplied over 100% of consumption meeting all energy needs for storage, cooling and transportation. Significant benefits to the quality and costs of distribution were demonstrated. Supply trips were scheduled, integrated and reliable, energy consumption was reduced, the recurrent cost of electricity was eliminated and the release of carbon to the atmosphere was reduced. Although the initial capital cost of scaling up implementation of NZE remain high today, commercial forecasts predict cost reduction for solar energy and electric vehicles that may permit a step-wise implementation over the next 7–10 years. Efficiency in the use of energy and in the deployment of transport is already a critical component of distribution logistics in both private and public sectors of industrialized countries. The NZE approach has an intensified rationale in countries where energy costs threaten the maintenance of public health services in areas of low population density. In these countries where the mobility of health personnel and timely arrival of supplies is at risk, NZE has the potential to reduce energy costs and release recurrent budget to other needs of service delivery while also improving the supply chain. PMID:25444811

  12. Renewable energy water supply - Mexico program summary

    SciTech Connect

    Foster, R.

    1997-12-01

    This paper describes a program directed by the US Agency for International Development and Sandia National Laboratory which installed sustainable energy sources in the form of photovoltaic modules and wind energy systems in rural Mexico to pump water and provide solar distillation services. The paper describes the guidelines which appeared most responsible for success as: promote an integrated development program; install quality systems that develop confidence; instill local project ownership; train local industry and project developers; develop a local maintenance infrastructure; provide users training and operations guide; develop clear lines of responsibilities for system upkeep. The paper emphasizes the importance of training. It also presents much collected data as to the characteristics and performance of the installed systems.

  13. (Energy and electricity supply and demand)

    SciTech Connect

    Wilbanks, T.J.

    1990-10-09

    At the request of the International Atomic Energy Agency (IAEA), representing eleven international agencies which are sponsoring the 1991 Helsinki Symposium on Electricity and the Environment, I traveled to Brussels to participate in the second meeting of one of four advisory groups established to prepare for the Symposium. At the meeting, I was involved in a review of a draft issue paper being prepared for the Symposium and of the Symposium program.

  14. A reduced energy supply strategy in active vibration control

    NASA Astrophysics Data System (ADS)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  15. Supply of and demand for selected energy related mineral commodities

    USGS Publications Warehouse

    Sibley, Scott F.

    2010-01-01

    In this report, subjects discussed include components of mineral supply, production, and consumption data, and information on selected mineral commodities in which the Energy Critical Elements Study Group has an interest, and U.S. Geological Survey (USGS) recycling studies, with some results of these studies.

  16. Dark Energy and The Dark Matter Relic Abundance

    SciTech Connect

    Rosati, Francesca

    2004-11-17

    Two mechanisms by which the quintessence scalar could enhance the relic abundance of dark matter particles are discussed. These effects can have an impact on supersymmetric candidates for dark matter.

  17. Demand-driven energy supply from stored biowaste for biomethanisation.

    PubMed

    Aichinger, Peter; Kuprian, Martin; Probst, Maraike; Insam, Heribert; Ebner, Christian

    2015-10-01

    Energy supply is a global hot topic. The social and political pressure forces a higher percentage of energy supplied by renewable resources. The production of renewable energy in form of biomethane can be increased by co-substrates such as municipal biowaste. However, a demand-driven energy production or its storage needs optimisation, the option to store the substrate with its inherent energy is investigated in this study. The calorific content of biowaste was found unchanged after 45 d of storage (19.9±0.19 kJ g(-1) total solids), and the methane yield obtained from stored biowaste was comparable to fresh biowaste or even higher (approx. 400 m(3) Mg(-1) volatile solids). Our results show that the storage supports the hydrolysis of the co-substrate via acidification and production of volatile fatty acids. The data indicate that storage of biowaste is an efficient way to produce bioenergy on demand. This could in strengthen the role of biomethane plants for electricity supply the future.

  18. Performance of fuel cell for energy supply of passive house

    NASA Astrophysics Data System (ADS)

    Badea, G.; Felseghi, R. A.; Rǎboacǎ, S. M.; Aşchilean, I.; Mureşan, D.; Naghiu, G.

    2015-12-01

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that provide an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.

  19. Performance of fuel cell for energy supply of passive house

    SciTech Connect

    Badea, G.; Felseghi, R. A. Mureşan, D.; Naghiu, G.; Răboacă, S. M.; Aşchilean, I.

    2015-12-23

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that provide an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.

  20. Future US energy supply: constraints by nonfuel mineral resources

    SciTech Connect

    Goeller, H.E.

    1980-12-01

    A continuing supply of energy for the domestic scene is of vital concern to our nation and is determined to a significant extent by the availability of sufficient nonfuel resources used in the production and utilization of various forms of energy. This report, taking a very comprehensive view, first establishes the current energy-related requirements for the various elements and mineral products. It then assesses domestic and world reserves and resources for each nonrenewable resource and determines a ranking of impending domestic scarcities by using resource-to-demand ratios. Special problems on by-products production are noted, followed by a discussion on import dependency. The roles of recycle and substitution are then assessed, and the possibilities for synthesis of nonelement commodities are reviewed. Detailed requirements for the more widely used materials in a large number of energy supply systems are then provided, followed by newer future requirements for more advanced energy systems anticipated to be in widespread use in the next century. Finally, the various problems associated with 16 elements deemed most likely to become scarce within the next 50 years are resummarized, and the general conclusions of this study are provided.

  1. Possibilities of energy recovery and integrated energy supply for foundries

    NASA Astrophysics Data System (ADS)

    Pautz, J.

    1980-08-01

    The energy utilization of foundries equipped with electric melting and arc furnaces was investigated. Systems were studied which optimize heat economy. Studies of the energy balance of arc furnaces with conventional refractory linings and with water cooled linings clearly demonstrate recovery possibilities as a function of the temperature of the waste heat. Domestic water heating, central heating, scrap drying and steam generator plant applications are proposed for the recovered heat. A considerable overall improvement in efficiency can be achieved.

  2. Energy and air emission effects of water supply.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  3. Energy supplies and future engines for land, sea, and air.

    PubMed

    Wilson, David Gordon

    2012-06-01

    The years 2012 and beyond seem likely to record major changes in energy use and power generation. The Japanese tsunami has resulted in large countries either scaling back or abolishing the future use of nuclear energy. The discovery of what seems like vast amounts of economically deliverable natural gas has many forecasting a rapid switch from coal- to gas-fired generating plants. On the other hand, environmentalists have strong objections to the production of natural gas and of petroleum by hydraulic fracturing from shale, or by extraction of heavy oil. They believe that global warming from the use of fossil fuels is now established beyond question. There has been rapid progress in the development of alternative energy supplies, particularly from on-shore and off-shore wind. Progress toward a viable future energy mix has been slowed by a U.S. energy policy that seems to many to be driven by politics. The author will review the history of power and energy to put all of the above in context and will look at possible future developments. He will propose what he believes to be an idealized energy policy that could result in an optimum system that would be arrived at democratically. PMID:22788100

  4. Energy supplies and future engines for land, sea, and air.

    PubMed

    Wilson, David Gordon

    2012-06-01

    The years 2012 and beyond seem likely to record major changes in energy use and power generation. The Japanese tsunami has resulted in large countries either scaling back or abolishing the future use of nuclear energy. The discovery of what seems like vast amounts of economically deliverable natural gas has many forecasting a rapid switch from coal- to gas-fired generating plants. On the other hand, environmentalists have strong objections to the production of natural gas and of petroleum by hydraulic fracturing from shale, or by extraction of heavy oil. They believe that global warming from the use of fossil fuels is now established beyond question. There has been rapid progress in the development of alternative energy supplies, particularly from on-shore and off-shore wind. Progress toward a viable future energy mix has been slowed by a U.S. energy policy that seems to many to be driven by politics. The author will review the history of power and energy to put all of the above in context and will look at possible future developments. He will propose what he believes to be an idealized energy policy that could result in an optimum system that would be arrived at democratically.

  5. An overview of energy supply and demand in China

    SciTech Connect

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  6. An overview of energy supply and demand in China

    SciTech Connect

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  7. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  8. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  9. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  10. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  11. 10 CFR 205.375 - Guidelines defining inadequate fuel or energy supply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Guidelines defining inadequate fuel or energy supply. 205.375 Section 205.375 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric... Electric Power § 205.375 Guidelines defining inadequate fuel or energy supply. An inadequate utility...

  12. Possibilities of utilizing alternative energy sources for combined heat supply systems in the Baltic

    SciTech Connect

    Shipkovs, P.; Grislis, V.; Zebergs, V. )

    1991-01-01

    The problem of alternative energy sources is an issue of major importance for the Baltic republics because of the limited supply of conventional energy resources. One of the ways to solve this problem could be the introduction of combined heat supply systems (CHSS). The combined heat supply systems are such systems where various energy sources in different regimes are made use of to ensure the optimum temperature on residential and industrial premises. The influence of climatic conditions on the selection of heat supply systems has been studied at large. In the present paper the use of alternative energy sources (AES) in combined heat supply systems (CHSS) is described.

  13. The relative abundances of the elements silicon through nickel in the low energy galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Mason, G. M.; Simpson, J. A.

    1978-01-01

    Measurements of the relative abundances of the elements Si through Ni in galactic cosmic rays in the energy interval 72 to 450 MeV/nucleon are reported based on data collected by a cosmic-ray telescope on the IMP 8 satellite. The measured abundances are compared with propagation calculations using various distributions of path lengths. It is found that the measurements favor an exponential distribution of path lengths truncated at short path lengths. The source abundances of Si, Ca, Fe, and Ni derived by extrapolating the measured abundances back to the source are shown to be comparable to the solar-system abundances. The relevance of the measurements of Sc through Mn to the Mn-54 radioactive decay is examined.

  14. Passive Safety Small Reactor for Distributed Energy Supply

    NASA Astrophysics Data System (ADS)

    Ishida, Toshihisa; Sawada, Ken-Ichi; Odano, Naoteru

    The purpose of this paper is to study the core performance of passive safety small reactor for distributed energy supply by changing the heavy water (D2O) concentration in the mixed coolant together with the fuel pitch. The long core life with conditions of the excessive reactivity of 2 %Δk/k, the reactivity shutdown margin of 1 %Δk/k and the negative coolant temperature reactivity coefficient is attained for the case of D2O concentration of 60% with 10% enrichment gadolinia (Gd2O3) doped fuel rods. This D2O core has a shorter core life 4.14 years than the original light water (H2O) core 4.76 years, while it needs a larger core size. However, changing the D2O concentration on the way during the burn-up shows a possibility of extending more the core life than that of the original H2O core.

  15. Wind Energy's New Role in Supplying the World's Energy: What Role Will Structural Health Monitoring Play?

    SciTech Connect

    Butterfield, S.; Sheng, S.; Oyague, F.

    2009-12-01

    Wind energy installations are leading all other forms of new energy installations in the United States and Europe. In Europe, large wind plants are supplying as much as 25% of Denmark's energy needs and 8% of the electric needs for Germany and Spain, who have more ambitious goals on the horizon. Although wind energy only produces about 2% of the current electricity demand in the United States, the U.S. Department of Energy, in collaboration with wind industry experts, has drafted a plan that would bring the U.S. installed wind capacity up to 20% of the nation's total electrical supply. To meet these expectations, wind energy must be extremely reliable. Structural health monitoring will play a critical role in making this goal successful.

  16. Adoption and supply of a distributed energy technology

    NASA Astrophysics Data System (ADS)

    Strachan, Neil Douglas

    2000-12-01

    Technical and economic developments in distributed generation (DG) represent an opportunity for a radically different energy market paradigm, and potentially significant cuts in global carbon emissions. This thesis investigates DG along two interrelated themes: (1) Early adoption and supply of the DG technology of internal combustion (IC) engine cogeneration. (2) Private and social cost implications of DG for private investors and within an energy system. IC engine cogeneration of both power and heat has been a remarkable success in the Netherlands with over 5,000 installations and 1,500MWe of installed capacity by 1997. However, the technology has struggled in the UK with an installed capacity of 110Mwe, fulfilling only 10% of its large estimated potential. An investment simulation model of DG investments in the UK and Netherlands was used, together with analysis of site level data on all DG adoptions from 1985 through 1997. In the UK over 60% of the early installations were sized too small (<140kWe) to be economically attractive (suppliers made their money with maintenance contracts). In the Netherlands, most facilities were sized well above the economic size threshold of 100kWe (lower due to reduced operating and grid connection costs). Institutional players were key in improved sizing of DG. Aided by energy market and CO2 reduction regulatory policy, Dutch distributions utilities played a proactive role in DG. This involved joint ventures with engine cogen suppliers and users, offering improved electricity buy-back tariffs and lower connection costs. This has allowed flexible operation of distributed generation, especially in electricity sales to the grid. Larger units can be sized for on-site heat requirements with electricity export providing revenue and aiding in management of energy networks. A comparison of internal and external costs of three distributed and three centralized generation technologies over a range of heat to power ratios (HPR) was made

  17. Fuel cells, hydrogen and energy supply in Australia

    NASA Astrophysics Data System (ADS)

    Dicks, A. L.; Diniz da Costa, J. C.; Simpson, A.; McLellan, B.

    Australia is unique in terms of its geography, population distribution, and energy sources. It has an abundance of fossil fuel in the form of coal, natural gas, coal seam methane (CSM), oil, and a variety renewable energy sources that are under development. Unfortunately, most of the natural gas is located so far away from the main centres of population that it is more economic to ship the energy as LNG to neighboring countries. Electricity generation is the largest consumer of energy in Australia and accounts for around 50% of greenhouse gas emissions as 84% of electricity is produced from coal. Unless these emissions are curbed, there is a risk of increasing temperatures throughout the country and associated climatic instability. To address this, research is underway to develop coal gasification and processes for the capture and sequestration of CO 2. Alternative transport fuels such as biodiesel are being introduced to help reduce emissions from vehicles. The future role of hydrogen is being addressed in a national study commissioned this year by the federal government. Work at the University of Queensland is also addressing full-cycle analysis of hydrogen production, transport, storage, and utilization for both stationary and transport applications. There is a modest but growing amount of university research in fuel cells in Australia, and an increasing interest from industry. Ceramic Fuel Cells Ltd. (CFCL) has a leading position in planar solid oxide fuel cells (SOFCs) technology, which is being developed for a variety of applications, and next year Perth in Western Australia is hosting a trial of buses powered by proton-exchange fuel cells.

  18. Interactions between energy supply and transportation-related energy use, volume 1

    NASA Astrophysics Data System (ADS)

    Adler, T. J.; Ison, J. W.; Geinzer, J. C.

    1980-01-01

    The structure of ENTRANS and some of its policy analysis applications are described. ENTRANS is a computer simulator model of the interactions between energy supply and transportation related energy use. It includes a complete representation of the characteristics of transportation supply (public transit, carpooling, highways, and autos) and of households' travel related decisions (car type, travel mode, trip length, and frequency choices). The model is capable of analyzing a wide range of policies designed to change automobile fuel use. The results of several detailed policy analyses are described.

  19. Energy development scenarios and water demands and supplies: an overview

    USGS Publications Warehouse

    Kilpatrick, F.A.

    1977-01-01

    On the basis of average mean annual flows, ample water exists in the upper Missouri River basin for energy development. The lack of storage and diversion works upstream as well as State compacts preclude the ready use of this surplus water. These surplus flows are impounded in mainstream reservoirs on the Missouri downstream from coal mining areas but could be transported back at some expense for use in Wyoming and North Dakota. There are limited water supplies available for the development of coal and oil shale industries in the upper Colorado River Basin. Fortunately oil shale mining, retorting and reclamation do not require as much water as coal conversion; in-situ oil shale retorting would seem to be particularly desirable in the light of reduced water consumption. Existing patterns of energy production, transport, and conversion suggest that more of the coal to be mined out West is apt to be transmitted to existing load centers rather than converted to electricity or gas in the water-short West. Scenarios of development of the West 's fossil fuels may be overestimating the need for water since they have assumed that major conversion industries would develop in the West. Transport of coal to existing users will require all means of coal movement including unit trains, barges, and coal slurry pipelines. The latter is considered more desirable than the development of conversion industries in the West when overall water consumption is considered. (Woodard-USGS)

  20. Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options

    SciTech Connect

    Pless, S.; Torcellini, P.

    2010-06-01

    A net-zero energy building (NZEB) is a residential or commercial building with greatly reduced energy needs. In such a building, efficiency gains have been made such that the balance of energy needs can be supplied with renewable energy technologies. Past work has developed a common NZEB definition system, consisting of four well-documented definitions, to improve the understanding of what net-zero energy means. For this paper, we created a classification system for NZEBs based on the renewable sources a building uses.

  1. The elemental abundances of hydrogen through nickel in the low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Simpson, J. A.

    1980-01-01

    The relative abundances of the elements H through Ni in the galactic cosmic rays have been measured in the energy range 70-280 MeV/nucleon with the University of Chicago cosmic ray telescope on board the satellite IMP-8 from January 1973 to September 1978. Cosmic ray source abundances have been derived by extrapolating the measured composition back to the source. A key factor in the propagation calculation is the use of a pathlength distribution and a solar modulation level shown to be consistent with the secondary to primary ratios and their energy dependence below about 1 GeV/n.

  2. A cost-effective target supply for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Goodin, D. T.; Alexander, N. B.; Brown, L. C.; Frey, D. T.; Gallix, R.; Gibson, C. R.; Maxwell, J. L.; Nobile, A.; Olson, C.; Petzoldt, R. W.; Raffray, R.; Rochau, G.; Schroen, D. G.; Tillack, M.; Rickman, W. S.; Vermillion, B.

    2004-12-01

    A central feature of an inertial fusion energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. This is true whether the driver is a laser system, heavy ion beams or Z-pinch system. The IFE target fabrication, injection and tracking programmes are focusing on methods that will scale to mass production. We are working closely with target designers, and power plant systems specialists, to make specifications and material selections that will satisfy a wide range of required and desirable target characteristics. One-of-a-kind capsules produced for today's inertial confinement fusion experiments are estimated to cost about US2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have suggested a cost goal of about 0.25-0.30 for each injected target (corresponding to ~10% of the 'electricity value' in a target). While a four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the design, specifications, requirements and proposed manufacturing processes for the future for laser fusion, heavy ion fusion and Z-pinch driven targets. These target manufacturing processes have been developed—and are proposed—based on the unique materials science and technology programmes that are ongoing for each of the target concepts. We describe the paradigm shifts in target manufacturing methodologies that will be needed to achieve orders of magnitude reductions in target costs, and summarize the results of 'nth-of-a-kind' plant layouts and cost estimates for future IFE power plant fuelling. These engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for electricity production.

  3. Modeling sustainability in renewable energy supply chain systems

    NASA Astrophysics Data System (ADS)

    Xie, Fei

    This dissertation aims at modeling sustainability of renewable fuel supply chain systems against emerging challenges. In particular, the dissertation focuses on the biofuel supply chain system design, and manages to develop advanced modeling framework and corresponding solution methods in tackling challenges in sustaining biofuel supply chain systems. These challenges include: (1) to integrate "environmental thinking" into the long-term biofuel supply chain planning; (2) to adopt multimodal transportation to mitigate seasonality in biofuel supply chain operations; (3) to provide strategies in hedging against uncertainty from conversion technology; and (4) to develop methodologies in long-term sequential planning of the biofuel supply chain under uncertainties. All models are mixed integer programs, which also involves multi-objective programming method and two-stage/multistage stochastic programming methods. In particular for the long-term sequential planning under uncertainties, to reduce the computational challenges due to the exponential expansion of the scenario tree, I also developed efficient ND-Max method which is more efficient than CPLEX and Nested Decomposition method. Through result analysis of four independent studies, it is found that the proposed modeling frameworks can effectively improve the economic performance, enhance environmental benefits and reduce risks due to systems uncertainties for the biofuel supply chain systems.

  4. Association between shortage of energy supply and nuclear gene mutations leading to carcinomatous transformation

    PubMed Central

    DU, JIANPING

    2016-01-01

    Anaerobic bacteria use glycolysis, an oxygen-independent metabolic pathway, whereas energy metabolism in the evolved eukaryotic cell is performed via oxidative phosphorylation, with all eukaryotic cell activities depending upon high energy consumption. However, in cancer cells evolving from eukaryotic cells, the energy metabolism switches from oxidative phosphorylation to glycolysis. The shortage of energy supply induces cancer cells to acquire specific characteristics. Base pair renewal is the most energy-consuming process in the cell, and shortage of energy supply may lead to errors in this process; the more prominent the shortage in energy supply, the more errors are likely to occur in base pair renewal, resulting in gene mutations and expression of cancer cell characteristics. Thus, shortage of energy supply is associated with carcinomatous transformation. PMID:26835010

  5. Increased energy expenditure by a seabird in response to higher food abundance

    USGS Publications Warehouse

    Jodice, P.G.R.; Roby, D.D.; Suryan, R.M.; Irons, D.B.; Turco, K.R.; Brown, E.D.; Thedinga, J.F.; Visser, G.H.

    2006-01-01

    Variability in forage fish abundance strongly affects seabird behavior and reproductive success, although details of this relationship are unclear. During 1997 and 1998, we measured (1) daily energy expenditure (DEE) of 80 parent black-legged kittiwakes Rissa tridactyla at 2 colonies in Prince William Sound, Alaska (North Icy Bay and Shoup Bay), (2) abundance of surface-schooling forage fishes within the foraging range of each colony, and (3) diet composition, energy delivery rates to nestlings, and reproductive success of kittiwakes at these same colonies. Female DEE was highest at North Icy Bay in 1998, while male DEE did not differ by colony year. Abundances of Pacific herring Clupea pallasi and sand lance Ammodytes hexapterus were highest near North Icy Bay in 1998 and nearly egual in density, although Age 1+ herring comprised the majority of the diet there. Energy delivery rates to nestlings, nestling growth rates, and productivity were also highest at North Icy Bay in 1998. We suggest that female kittiwakes responded to the increased abundance of Age 1+ herring near North Icy Bay in 1998 by increasing their DEE, which in turn positively affected reproductive success. Given that adult kittiwakes have been shown to suffer decreased survival as a response to increased energy expenditure during brood rearing, the positive correlation we observed between increased abundance of a high quality food source, parental effort, and productivity is consistent with maximizing lifetime reproductive success. The lack of a response in male DEE suggests that brood-rearing roles in kittiwakes differ between genders. ?? Inter-Research 2006.

  6. Liquefied Natural Gas: A Potential for an Abundant Energy Supply or a Potential for Danger.

    ERIC Educational Resources Information Center

    Fishman, Joseph

    This unit was designed to develop mathematical applications in relation to a community resource issue. It should both motivate mathematics learning and provide meaningful problems for reinforcing understanding of mathematics content and skills, including ratios and percentages, linear equations, exponential functions, graphing, and the reading and…

  7. Solar Energy Economics Revisited: The Promise and Challenge of Orbiting Reflectors for World Energy Supply

    NASA Technical Reports Server (NTRS)

    Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.

    1978-01-01

    A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.

  8. Opportunities for renewable energy technologies in water supply in developing country villages

    SciTech Connect

    Niewoehner, J.; Larson, R.; Azrag, E.; Hailu, T.; Horner, J.; VanArsdale, P.

    1997-03-01

    This report provides the National Renewable Energy Laboratory (NREL) with information on village water supply programs in developing countries. The information is intended to help NREL develop renewable energy technologies for water supply and treatment that can be implemented, operated, and maintained by villagers. The report is also useful to manufacturers and suppliers in the renewable energy community in that it describes a methodology for introducing technologies to rural villages in developing countries.

  9. A high voltage power supply for the AE-C and D low energy electron experiment

    NASA Technical Reports Server (NTRS)

    Gillis, J. A.

    1974-01-01

    A description is given of the electrical and mechanical design and operation of high voltage power supplies for space flight use. The supply was used to generate the spiraltron high voltage for low energy electron experiment on AE-C and D. Two versions of the supply were designed and built; one design is referred to as the low power version (AE-C) and the other as the high power version (AE-D). Performance is discussed under all operating conditions.

  10. Balancing energy supply and demand: a fifty-year global perspective

    SciTech Connect

    Basile, P.S.

    1981-07-01

    Two global scenarios project the energy futures for seven regions of the world to the year 2030. The economic and energy prospects of these regions vary, with different potentials and constraints. Some energy end-use markets can be more easily supplied than others. Different energy-supply options carry different economic, environmental, political, and institutional implications. Because energy systems are closely linked with our economies and our lives, definitive statements on energy futures must be greeted with skepticism. But by knowing some of the implications of various paths to the future, perhaps enough responsible decisions can be taken.

  11. Policy implications of the GRI baseline projection of US energy supply and demand to 2010, 1993

    NASA Astrophysics Data System (ADS)

    1993-01-01

    The paper summarizes the 1993 edition of the Gas Research Institute (GRI) Baseline Projection of U.S. Energy Supply and Demand and presents the implications of the projections that are important for GRI research and development planning and the gas industry. The survey of supply and demand considerations is followed by a breakdown of energy demand by type of fuel, by consumption sector, and by service application. Gas supply and prices are analyzed in terms of two scenarios: a constrained energy demand scenario, and an optimistic scenario. Tables and charts accompany the summary.

  12. The energy and emissions footprint of water supply for Southern California

    NASA Astrophysics Data System (ADS)

    Fang, A. J.; Newell, Joshua P.; Cousins, Joshua J.

    2015-11-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water-energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

  13. World Energy Supplies: The Present Use and Future Prospects.

    ERIC Educational Resources Information Center

    Harris, John; Osborne, Jonathan

    1978-01-01

    Presents Unit Nine Change and Chance of the Nuffield Advanced Physics, dealing with energy conservation, and a novel statistical approach to diffusion, thermal equilibrium and thermodynamics. Information about energy resources, alternative sources of energy, and energy-cost of materials are also presented. (HM)

  14. Regional growth and energy supply: Is there an energy security issue?

    SciTech Connect

    Roop, J.M.; Freund, K.A.; Godoy-Kain, P.; Gu, A.Y.; Johnson, A.K.; Paananen, O.H.; Woodruff, M.G.

    1996-12-01

    This study examines how the growth of the developing world might affect energy markets in the future. Based on recent growth trends, world energy demand could reasonably be expected to grow from about 350 Exajoules (EJ: 1.0E18=0.95 Quad) to nearly 1025 EJ by the year 2020, nearly 3x current consumption estimates. Introduction of more energy-efficient technologies could reduce this growth by about 17% to 830 EJ. But one cannot rely exclusively on current trends to forecast future energy demand. The growth of the developing world will interact with supply to affect prices, which in turn will mitigate the growth of demand, and growth rates of energy use will be much more modes. Under the Business as Usual scenario, energy demand will grow to 835 EJ by 2020, and this could be reduced a further 15% to 714 EJ through the adoption of more energy efficient technologies. Fuel prices based on model results are analyzed. Energy security implications of rapid growth in the developing world are considered and found to be of likely little significance.

  15. Impacts of the Resource Conservation and Recovery Act on energy supply

    NASA Astrophysics Data System (ADS)

    Carnes, S. A.; Copenhaver, E. D.; Weeter, D. W.; Calzonetti, F. J.; Tevepaugh, C. W.; Parzyck, D. C.

    1980-10-01

    The signficant characteristics of the waste streams of representative technologies of different energy supply alternatives are reported, including coal combustion and conversion, solar, geothermal, oil sands, oil shales, and petroleum refining. The overall relationship of RCRA and energy issues was examined, with special emphasis on how RCRA's hazardous waste provisions impact with these technologies. The issues addressed were: the magnitude of energy related waste; public and private sector responses to RCRA and energy waste problems; the relationship of RCRA to other environmental and public health protection policies; the effect of RCRA on the deployment of energy supply; the role of reuse, recovery, and utilization of energy waste; and possible health and environmental effects associated with solid or hazardous wastes of various energy supply systems.

  16. Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity.

    PubMed

    Lobo, Ana Karla Moreira; de Oliveira Martins, Marcio; Lima Neto, Milton Costa; Machado, Eduardo Caruso; Ribeiro, Rafael Vasconcelos; Silveira, Joaquim Albenisio Gomes

    2015-05-01

    Photosynthetic modulation by sugars has been known for many years, but the biochemical and molecular comprehension of this process is lacking. We studied how the exogenous sucrose supplied to leaves could affect sugar metabolism in leaf, sheath and stalk and inhibit photosynthesis in four-month old sugarcane plants. Exogenous sucrose 50mM sprayed on attached leaves strongly impaired the net CO2 assimilation (PN) and decreased the instantaneous carboxylation efficiency (PN/Ci), suggesting that the impairment in photosynthesis was caused by biochemical restrictions. The photosystem II activity was also affected by excess sucrose as indicated by the reduction in the apparent electron transport rate, effective quantum yield and increase in non-photochemical quenching. In leaf segments, sucrose accumulation was related to increases in the activities of soluble acid and neutral invertases, sucrose synthase and sucrose phosphate synthase, whereas the contents of fructose increased and glucose slightly decreased. Changes in the activities of sucrose hydrolyzing and synthesizing enzymes in leaf, sheath and stalk and sugar profile in intact plants were not enough to identify which sugar(s) or enzyme(s) were directly involved in photosynthesis modulation. However, exogenous sucrose was able to trigger down-regulation in the Rubisco abundance, activation state and enzymatic activity. Despite the fact that PN/Ci had been notably decreased by sucrose, in vitro activity and abundance of PEPCase did not change, suggesting an in vivo modulation of this enzyme. The data reveal that sucrose and/or other derivative sugars in leaves inhibited sugarcane photosynthesis by down-regulation of Rubisco synthesis and activity. Our data also suggest that sugar modulation was not exerted by a feedback mechanism induced by the accumulation of sugars in immature sugarcane stalk. PMID:25863283

  17. Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity.

    PubMed

    Lobo, Ana Karla Moreira; de Oliveira Martins, Marcio; Lima Neto, Milton Costa; Machado, Eduardo Caruso; Ribeiro, Rafael Vasconcelos; Silveira, Joaquim Albenisio Gomes

    2015-05-01

    Photosynthetic modulation by sugars has been known for many years, but the biochemical and molecular comprehension of this process is lacking. We studied how the exogenous sucrose supplied to leaves could affect sugar metabolism in leaf, sheath and stalk and inhibit photosynthesis in four-month old sugarcane plants. Exogenous sucrose 50mM sprayed on attached leaves strongly impaired the net CO2 assimilation (PN) and decreased the instantaneous carboxylation efficiency (PN/Ci), suggesting that the impairment in photosynthesis was caused by biochemical restrictions. The photosystem II activity was also affected by excess sucrose as indicated by the reduction in the apparent electron transport rate, effective quantum yield and increase in non-photochemical quenching. In leaf segments, sucrose accumulation was related to increases in the activities of soluble acid and neutral invertases, sucrose synthase and sucrose phosphate synthase, whereas the contents of fructose increased and glucose slightly decreased. Changes in the activities of sucrose hydrolyzing and synthesizing enzymes in leaf, sheath and stalk and sugar profile in intact plants were not enough to identify which sugar(s) or enzyme(s) were directly involved in photosynthesis modulation. However, exogenous sucrose was able to trigger down-regulation in the Rubisco abundance, activation state and enzymatic activity. Despite the fact that PN/Ci had been notably decreased by sucrose, in vitro activity and abundance of PEPCase did not change, suggesting an in vivo modulation of this enzyme. The data reveal that sucrose and/or other derivative sugars in leaves inhibited sugarcane photosynthesis by down-regulation of Rubisco synthesis and activity. Our data also suggest that sugar modulation was not exerted by a feedback mechanism induced by the accumulation of sugars in immature sugarcane stalk.

  18. Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study

    SciTech Connect

    Masanet, Eric; Kramer, Klaas Jan; Homan, Gregory; Brown, Richard; Worrell, Ernst

    2009-01-01

    This paper summarizes a modeling framework that characterizes the key underlying technologies and processes that contribute to the supply chain energy use and greenhouse gas (GHG) emissions of a variety of goods and services purchased by U.S. consumers. The framework couples an input-output supply chain modeling approach with"bottom-up" fuel end use models for individual IO sectors. This fuel end use modeling detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the supply chain energy and GHG"footprints" of goods and services. To illustrate the policy-relevance of thisapproach, a case study was conducted to estimate achievable household GHG footprint reductions associated with the adoption of best practice energy-efficient supply chain technologies.

  19. Factors Influencing Renewable Energy Production & Supply - A Global Analysis

    NASA Astrophysics Data System (ADS)

    Ali, Anika; Saqlawi, Juman Al

    2016-04-01

    Renewable energy is one of the key technologies through which the energy needs of the future can be met in a sustainable and carbon-neutral manner. Increasing the share of renewable energy in the total energy mix of each country is therefore a critical need. While different countries have approached this in different ways, there are some common aspects which influence the pace and effectiveness of renewable energy incorporation. This presentation looks at data and information from 34 selected countries, analyses the patterns, compares the different parameters and identifies the common factors which positively influence renewable energy incorporation. The most successful countries are analysed for their renewable energy performance against their GDP, policy/regulatory initiatives in the field of renewables, landmass, climatic conditions and population to identify the most influencing factors to bring about positive change in renewable energy share.

  20. Energy supplies and future engines for land, sea, and air.

    PubMed

    Hidy, George M; Chow, Judith C; England, Glen C; Legge, Alan H; Lloyd, Alan C; Watson, John G

    2012-11-01

    The 2012 Critical Review Discussion complements Wilson, (2012), provides pointers to more detailed treatments of different topics and adds additional dimensions to the area of "energy". These include broader aspects of technologies driven by fuel resources and environmental issues, the concept of energy technology innovation, evolution in transportation resources, and complexities of energy policies addressing carbon taxes or carbon trading. National and global energy data bases are identified and evaluated and conversion factors are given to allow their comparability.

  1. Prospective energy sources and their comparison with current supplies

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, B. V.

    1980-10-01

    The comparative physical-technical and economic characteristics of renewable energy sources are analyzed. The significant advantages of wind energy for future use over oil, gas, and coal are demonstrated. Costs of wind electrical energy are compared in the U.S., Denmark, and the U.S.S.R.

  2. Fusion energy science: Clean, safe, and abundant energy through innovative science and technology

    SciTech Connect

    2001-01-01

    Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.

  3. The Relative Abundance of Isolated Clusters as a Probe of Dark Energy

    NASA Astrophysics Data System (ADS)

    Lee, Jounghun

    2012-06-01

    Those galaxy clusters that do not belong to superclusters are referred to as isolated clusters. Their relative abundance at a given epoch may be a powerful constraint of the dark energy equation of state since it depends strongly on how fast the structures grow on the largest scale in the universe. We note that the mass function of isolated clusters can be separately evaluated through modification of the recently developed Corasaniti-Achitouv (CA) theory according to which the stochastic collapse barrier is quantified by two coefficients: the drifting average coefficient (β) and the diffusion coefficient (DB ). Regarding β in the CA formalism as an adjustable parameter and assuming that the formation of isolated clusters corresponds to the case of DB = 0, we determine the mass function of isolated clusters by fitting the numerical results from the MICE simulations to the modified CA formula. It is found that the best-fit value of β changes with redshift and that the CA mass function with DB = 0 agrees very well with the numerical results at various redshifts. Defining the relative abundance of isolated clusters, ξ I , as the ratio of the cumulative mass function of isolated clusters to that of non-isolated clusters at a given epoch, we finally show how sensitively ξ I changes with the dark energy equation of state. It is also discussed how ξ I can help break the degeneracy between the dark energy equation of state and the other key cosmological parameters.

  4. Abundances and charge states in quiet-time low-energy ion fluxes at 1 AU

    NASA Astrophysics Data System (ADS)

    Kecskemety, Karoly; Zeldovich, Mariya; Klecker, Berndt; Logachev, Yurii

    Abundances of C and Fe ions with energies 0.04-1.28 MeV/nuc in the 23rd solar activity cycle are examined in the quiet-time fluxes using ACE, SOHO and STEREO data. They are com-bined with charge state measurement data from SEPICA (ACE, 0.18-0.43 MeV/nuc). Quiet periods of solar activity were selected using the criteria a) Jp < 2x10-4 protons/(cm2 s sr MeV) for 4-8 MeV protons (from EPHIN/SOHO) and b) the ratio H/He < 10 at these energies. The values of C/O and Fe/O were determined over the solar cycle and the following was found. In about 50% of the time intervals during high activity they both were near the average values observed in the solar corona, whereas at solar minimum in more than 90% of the periods the ratios were around the solar wind values. Most of the quiet time periods around maximum, which have sufficient statistics show high average Fe charge states (>15), consistent with im-pulsive solar event origin. During the SC minima the abundances in almost all cases correspond to solar wind values. The results obtained suggest that the active structures on the Sun arising at low solar activity are mostly responsible for background particle fluxes at these energies. There may be microflares, disappearing of ribbons, soft X-ray bright points etc.

  5. 78 FR 12750 - FirstEnergy Solutions Corp., Allegheny Energy Supply Company, LLC v. PJM Interconnection, L.L.C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... Interconnection, L.L.C.; Notice of Complaint Take notice that on February 15, 2013, pursuant to section 206 of the... Allegheny Energy Supply Company, LLC (Complainants) filed a formal complaint against PJM Interconnection,...

  6. Local Energy Supply and Resiliency Act of 2013

    THOMAS, 113th Congress

    Sen. Franken, Al [D-MN

    2013-06-20

    06/25/2013 Committee on Energy and Natural Resources Subcommittee on Energy. Hearings held. With printed Hearing: S.Hrg. 113-70. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  7. Atmospheric Emissions from Forest Biomass Residues to Energy Supply Chain: A Case Study in Portugal

    PubMed Central

    Rafael, Sandra; Tarelho, Luis; Monteiro, Alexandra; Monteiro, Tânia; Gonçalves, Catarina; Freitas, Sylvio; Lopes, Myriam

    2015-01-01

    Abstract During the past decades, pressures on global environment and energy security have led to an increasing demand on renewable energy sources and diversification of the world's energy supply. The Portuguese energy strategy considers the use of Forest Biomass Residues (FBR) to energy as being essential to accomplish the goals established in the National Energy Strategy for 2020. However, despite the advantages pointing to FBR to the energy supply chain, few studies have evaluated the potential impacts on air quality. In this context, a case study was selected to estimate the atmospheric emissions of the FBR to the energy supply chain in Portugal. Results revealed that production, harvesting, and energy conversion processes are the main culprits for the biomass energy supply chain emissions (with a contribution higher than 90%), while the transport processes have a minor importance for all the pollutants. Compared with the coal-fired plants, the FBR combustion produces lower greenhouses emissions, on a mass basis of fuel consumed; the same is true for NOX and SO2 emissions. PMID:26064039

  8. Energy harvesting circuit for sensor system power supply

    NASA Astrophysics Data System (ADS)

    Fiala, P.; Drexler, P.

    2011-06-01

    The paper presents two example approaches to energy harvesting. Mechanical energy harvesting system is based on vibrational minigenerator. Basic relations of its analytical model are given in order to obtain an idea about the operating conditions. Electromagnetic harvesting system is based on tuned resonant nano-structure. Its concepts allows impedance matching in order to operate in given frequency range. The matching properties are verified by means of numerical finite element analysis. For power management of vibration energy harvesting system several circuit design concepts are presented together with simulation results and basic properties comparison.

  9. Will greater shrub abundance greatly impact tundra surface-atmosphere exchanges of energy and carbon?

    NASA Astrophysics Data System (ADS)

    Humphreys, E.; Lafleur, P.

    2015-12-01

    Increasing deciduous shrub abundance, productivity, and range in the Arctic comes with the potential for both negative and positive feedbacks to the climate system. This study presents six seasons of eddy covariance measurements of carbon dioxide (CO2) and latent and sensible heat fluxes along a shrub gradient in Canada's Low Arctic. Three flux tower sites with 17, 45, and 64% dwarf birch cover were established within a few kilometers of each other to investigate differences in microclimate, energy and carbon exchanges. As expected, there was greater winter snow depth but less summer soil thaw with greater shrub cover. However, snowmelt timing and speed were usually similar among sites. Despite a reduction in albedo in spring and greater leaf area through summer, latent heat fluxes were consistently lower with greater shrub cover. Offset by small differences in sensible heat fluxes, total seasonal atmospheric heating (combined sensible and latent heat fluxes) was similar among sites. We anticipated greater net uptake of CO2 through the growing season with greater shrub cover. However, that was only the case in some years. There was much more week-to-week and year-to-year variability in CO2 fluxes at the shrubbiest site suggesting photosynthesis and respiration processes were more sensitive to weather variations. Shrub abundance does impact tundra surface-atmosphere exchanges of energy and carbon but these observations also highlight the complexity involved in predicting the net climate feedback effect of current and future Arctic vegetation change.

  10. Critique of the mid-range energy forecasting, system oil and gas supply models

    SciTech Connect

    Patton, W.P.

    1980-10-01

    The Mid-Range Energy Forecasting System (MEFS) is a model used by the Department of Energy to forecast domestic production, consumption and price for conventional energy sources on a regional basis over a period of 5 to 15 years. Among the energy sources included in the model are oil, gas and other petroleum fuels, coal, uranium, and electricity. Final consumption of alternative energy sources is broken into end-use categories, such as residential, commercial and industrial uses. Regional prices for all energy sources are calculated by iteratively equating domestic supply and demand. The purpose of this paper is to assess the ability of the Oil and Gas Supply Submodels of MEFS to reliably and accurately project oil and gas supply curves, which are used in the integrating model, along with fuel demand curves to estimate market price. The reliability and accuracy of the oil and gas model cannot be judged by comparing its predictions against actual observations because those observations have not yet occurred. The reliability and reasonableness of the oil and gas supply model can be judged, however, by analyzing how well its assumptions and predictions correspond to accepted economic principles. This is the approach taken in this critique. The remainder of this paper describes the general structure of the oil and gas supply model and how it functions to project the quantity of oil and gas forthcoming at given prices in a particular year, then discusses the economic soundness of the model, and finally suggests model changes to improve its performance.

  11. Potential supply and cost of biomass from energy crops in the TVA region

    SciTech Connect

    Graham, R.L.; Downing, M.E.

    1995-04-01

    The economic and supply structures of energy crop markets have not been established. Establishing the likely price and supply of energy crop biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas, and coal. In this study, the cost and supply of short-rotation woody crop (SRWC) and switchgrass biomass for the Tennessee Valley Authority (TVA) region-a 276-county area that includes portions of 11 states in the southeastern United States - are projected. Projected prices and quantities of biomass are assumed to be a function of the amount and quality of crop and pasture land available in a region, expected energy crop yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curves of SRWC and switchgrass biomass that are projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of energy crop production. Finally, the results of sensitivity analysis on the projected cost and supply of energy crop biomass are shown. In particular, the separate impacts of varying energy crop production costs and yields, and interest rates are examined.

  12. Increased food energy supply as a major driver of the obesity epidemic: a global analysis

    PubMed Central

    Chow, Carson C; Hall, Kevin D; Umali, Elaine; Swinburn, Boyd A

    2015-01-01

    Abstract Objective We investigated associations between changes in national food energy supply and in average population body weight. Methods We collected data from 24 high-, 27 middle- and 18 low-income countries on the average measured body weight from global databases, national health and nutrition survey reports and peer-reviewed papers. Changes in average body weight were derived from study pairs that were at least four years apart (various years, 1971–2010). Selected study pairs were considered to be representative of an adolescent or adult population, at national or subnational scale. Food energy supply data were retrieved from the Food and Agriculture Organization of the United Nations food balance sheets. We estimated the population energy requirements at survey time points using Institute of Medicine equations. Finally, we estimated the change in energy intake that could theoretically account for the observed change in average body weight using an experimentally-validated model. Findings In 56 countries, an increase in food energy supply was associated with an increase in average body weight. In 45 countries, the increase in food energy supply was higher than the model-predicted increase in energy intake. The association between change in food energy supply and change in body weight was statistically significant overall and for high-income countries (P < 0.001). Conclusion The findings suggest that increases in food energy supply are sufficient to explain increases in average population body weight, especially in high-income countries. Policy efforts are needed to improve the healthiness of food systems and environments to reduce global obesity. PMID:26170502

  13. Glutamine transport. From energy supply to sensing and beyond.

    PubMed

    Scalise, Mariafrancesca; Pochini, Lorena; Galluccio, Michele; Indiveri, Cesare

    2016-08-01

    Glutamine is the most abundant amino acid in plasma and is actively involved in many biosynthetic and regulatory processes. It can be synthesized endogenously but becomes "conditionally essential" in physiological or pathological conditions of high proliferation rate. To accomplish its functions glutamine has to be absorbed and distributed in the whole body. This job is efficiently carried out by a network of membrane transporters that differ in transport mechanisms and energetics, belonging to families SLC1, 6, 7, 38, and possibly, 25. Some of the transporters are involved in glutamine traffic across different membranes for metabolic purposes; others are involved in specific signaling functions through mTOR. Structure/function relationships and regulatory aspects of glutamine transporters are still at infancy. In the while, insights in involvement of these transporters in cell redox control, cancer metabolism and drug interactions are arising, stimulating basic research to uncover molecular mechanisms of transport and regulation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26951943

  14. Dynamics of anaerobic and aerobic energy supplies during sustained high intensity exercise on cycle ergometer.

    PubMed

    Yamamoto, M; Kanehisa, H

    1995-01-01

    Eight male subjects were examined for the transition from anaerobic to aerobic energy supplies during supramaximal pedalling for 120 s on a cycle ergometer. The O2 debt and O2 deficit were measured for anaerobic supply, while O2 intake during exercise was measured for aerobic supply. The lactic acid system was also observed through postexercise peak blood lactate concentration [la-]b,peak. Since a continuous observation of O2 debt and [la-]b,peak during a single period of pedalling is not possible, pedalling of seven varying durations (5, 15, 30, 45, 60, 90 and 120 s) were repeated. Mechanical power output reached its peak immediately after the beginning of exercise, then rapidly declined, becoming gradual after 60 s. The O2 debt and O2 deficit were highest immediately after the beginning of exercise, then rapidly decreased to nil in 60 s. The O2 intake was small at the beginning, then rapidly increased to attain a steady state in 30 s at 80%-90% of the maximal O2 intake of the subject. Energy supply from the lactic acid system indicated by the increment in [la-]b,peak reached its highest value during the period between 5 and 15 s, then rapidly decreased to nil in 60 s. The results would suggest that anaerobic supply was the principal contributor during the initial stage of exercise, but that aerobic supply gradually took over. In 60 s anaerobic supply ceased, and aerobic supply became the principal contributor. The cessation of anaerobic energy supply took place much sooner than the 2 min that is conventionally suggested.

  15. Nonregenerative natural resources in a sustainable system of energy supply.

    PubMed

    Bradshaw, Alex M; Hamacher, Thomas

    2012-03-12

    Following the lead of the European Union in introducing binding measures to promote the use of regenerative energy forms, it is not unreasonable to assume that the global demand for combustible raw materials for energy generation will be reduced considerably in the second half of this century. This will not only have a favourable effect on the CO(2) concentration in the atmosphere, but will also help preserve fossil fuels-important as raw materials in the chemical industry-for future generations. Nevertheless, associated with the concomitant massive shift to regenerative energy forms, there will be a strong demand for other exhaustible raw materials, in particular metals, some of which are already regarded as scarce. After reviewing the debate on mineral depletion between "cornucopians" and "pessimists", we discuss the meaning of mineral "scarcity", particularly in the geochemical sense, and mineral "exhaustion". The expected drastic increase in demand for mineral resources caused by demographic and societal pressures, that is, due to the increase in in-use stock, is emphasised. Whilst not discussing the issue of "strong" versus "weak" sustainability in detail, we conclude that regenerative energy systems-like nearly all resource-consuming systems in our society-do not necessarily satisfy generally accepted sustainability criteria. In this regard, we discuss some current examples, namely, lithium and cobalt for batteries, rare earth-based permanent magnets for wind turbines, cadmium and tellurium for solar cells and copper for electrical power distribution.

  16. Energy Crisis: Environmental Issue Exacerbates Power Supply Problem

    ERIC Educational Resources Information Center

    Boffey, Philip M.

    1970-01-01

    Analyzes problems of providing sufficient electrical power in terms of inefficiency of industry and of the conflict between need for power and need for environmental quality. Suggests ways of slowing the growth in demand, and indicates needed research into energy production. (EB)

  17. Meta-analysis: abundance, behavior, and hydraulic energy shape biotic effects on sediment transport in streams.

    PubMed

    Albertson, L K; Allen, D C

    2015-05-01

    An increasing number of studies have emphasized the need to bridge the disciplines of ecology and geomorphology. A large number of case studies show that organisms can affect erosion, but a comprehensive understanding of biological impacts on sediment transport conditions is still lacking. We use meta-analysis to synthesize published data to quantify the effects of the abundance, body size, and behavior of organisms on erosion in streams. We also explore the influence of current velocity, discharge, and sediment grain size on the strength of biotic effects on erosion. We found that species that both increase erosion (destabilizers) and decrease erosion (stabilizers) can alter incipient sediment motion, sediment suspension, and sediment deposition above control conditions in which the organisms were not present. When abundance was directly manipulated, these biotic effects were consistently stronger in the higher abundance treatment, increasing effect sizes by 66%. Per capita effect size and per capita biomass were also consistently positively correlated. Fish and crustaceans were the most studied organisms, but aquatic insects increased the effect size by 550 x compared to other types of organisms after accounting for biomass. In streams with lower discharge and smaller grain sizes, we consistently found stronger biotic effects. Taken collectively, these findings provide synthetic evidence that biology can affect physical processes in streams, and these effects can be mediated by hydraulic energy. We suggest that future studies focus on understudied organisms, such as biofilms, conducting experiments under realistic field conditions, and developing hypotheses for the effect of biology on erosion and velocity currents in the context of restoration to better understand the forces that mediate physical disturbances in stream ecosystems. PMID:26236846

  18. Meta-analysis: abundance, behavior, and hydraulic energy shape biotic effects on sediment transport in streams.

    PubMed

    Albertson, L K; Allen, D C

    2015-05-01

    An increasing number of studies have emphasized the need to bridge the disciplines of ecology and geomorphology. A large number of case studies show that organisms can affect erosion, but a comprehensive understanding of biological impacts on sediment transport conditions is still lacking. We use meta-analysis to synthesize published data to quantify the effects of the abundance, body size, and behavior of organisms on erosion in streams. We also explore the influence of current velocity, discharge, and sediment grain size on the strength of biotic effects on erosion. We found that species that both increase erosion (destabilizers) and decrease erosion (stabilizers) can alter incipient sediment motion, sediment suspension, and sediment deposition above control conditions in which the organisms were not present. When abundance was directly manipulated, these biotic effects were consistently stronger in the higher abundance treatment, increasing effect sizes by 66%. Per capita effect size and per capita biomass were also consistently positively correlated. Fish and crustaceans were the most studied organisms, but aquatic insects increased the effect size by 550 x compared to other types of organisms after accounting for biomass. In streams with lower discharge and smaller grain sizes, we consistently found stronger biotic effects. Taken collectively, these findings provide synthetic evidence that biology can affect physical processes in streams, and these effects can be mediated by hydraulic energy. We suggest that future studies focus on understudied organisms, such as biofilms, conducting experiments under realistic field conditions, and developing hypotheses for the effect of biology on erosion and velocity currents in the context of restoration to better understand the forces that mediate physical disturbances in stream ecosystems.

  19. Resource limits and conversion efficiency with implications for climate change and California's energy supply

    NASA Astrophysics Data System (ADS)

    Croft, Gregory Donald

    There are two commonly-used approaches to modeling the future supply of mineral resources. One is to estimate reserves and compare the result to extraction rates, and the other is to project from historical time series of extraction rates. Perceptions of abundant oil supplies in the Middle East and abundant coal supplies in the United States are based on the former approach. In both of these cases, an approach based on historical production series results in a much smaller resource estimate than aggregate reserve numbers. This difference is not systematic; natural gas production in the United States shows a strong increasing trend even though modest reserve estimates have resulted in three decades of worry about the gas supply. The implication of a future decline in Middle East oil production is that the market for transportation fuels is facing major changes, and that alternative fuels should be analyzed in this light. Because the U.S. holds very large coal reserves, synthesizing liquid hydrocarbons from coal has been suggested as an alternative fuel supply. To assess the potential of this process, one has to look at both the resource base and the net efficiency. The three states with the largest coal production declines in the 1996 to 2006 period are among the top 5 coal reserve holders, suggesting that gross coal reserves are a poor indicator of future production. Of the three categories of coal reserves reported by the U.S. Energy Information Administration, reserves at existing mines is the narrowest category and is approximately the equivalent of proved developed oil reserves. By this measure, Wyoming has the largest coal reserves in the U.S., and it accounted for all of U.S. coal production growth over the 1996 to 2006 time period. In Chapter 2, multi-cycle Hubbert curve analysis of historical data of coal production from 1850 to 2007 demonstrates that U.S. anthracite and bituminous coal are past their production peak. This result contradicts estimates based

  20. Resource limits and conversion efficiency with implications for climate change and California's energy supply

    NASA Astrophysics Data System (ADS)

    Croft, Gregory Donald

    There are two commonly-used approaches to modeling the future supply of mineral resources. One is to estimate reserves and compare the result to extraction rates, and the other is to project from historical time series of extraction rates. Perceptions of abundant oil supplies in the Middle East and abundant coal supplies in the United States are based on the former approach. In both of these cases, an approach based on historical production series results in a much smaller resource estimate than aggregate reserve numbers. This difference is not systematic; natural gas production in the United States shows a strong increasing trend even though modest reserve estimates have resulted in three decades of worry about the gas supply. The implication of a future decline in Middle East oil production is that the market for transportation fuels is facing major changes, and that alternative fuels should be analyzed in this light. Because the U.S. holds very large coal reserves, synthesizing liquid hydrocarbons from coal has been suggested as an alternative fuel supply. To assess the potential of this process, one has to look at both the resource base and the net efficiency. The three states with the largest coal production declines in the 1996 to 2006 period are among the top 5 coal reserve holders, suggesting that gross coal reserves are a poor indicator of future production. Of the three categories of coal reserves reported by the U.S. Energy Information Administration, reserves at existing mines is the narrowest category and is approximately the equivalent of proved developed oil reserves. By this measure, Wyoming has the largest coal reserves in the U.S., and it accounted for all of U.S. coal production growth over the 1996 to 2006 time period. In Chapter 2, multi-cycle Hubbert curve analysis of historical data of coal production from 1850 to 2007 demonstrates that U.S. anthracite and bituminous coal are past their production peak. This result contradicts estimates based

  1. 76 FR 69266 - PPL Energy Supply, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission PPL Energy Supply, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of PPL Energy Supply, LLC's application for market-based rate authority, with...

  2. Research on Load Energy Efficiency of DC Power Supply

    NASA Astrophysics Data System (ADS)

    Yue, Qing; Sun, Yiwei; Li, Ke; Li, Mengyu

    Traditional distribution network based on AC current has severely suffered from low efficiency in actual application, especially when an increasing numbers of home appliances are technically rely on DC current. In this paper, the energy efficiency of DC distribution system was analysed by means of comparison with traditional AC system. Firstly four types of typical appliances were discussed in terms of energy efficiency, which are the server, air conditioner, laptop computer and lighting. And then Models were further built up to perform the case study of three familiar situations in modern life, namely a typical living apartment, an office building and a data center. Finally, the power efficiencies of the three buildings were sorted up for comparison and analysis.

  3. Electric energy supply systems: description of available technologies

    SciTech Connect

    Eisenhauer, J.L.; Rogers, E.A.; King, J.C.; Stegen, G.E.; Dowis, W.J.

    1985-02-01

    When comparing coal transportation with electric transmission as a means of delivering electric power, it is desirable to compare entire energy systems rather than just the transportation/transmission components because the requirements of each option may affect the requirements of other energy system components. PNL's assessment consists of two parts. The first part, which is the subject of this document, is a detailed description of the technical, cost, resource and environmental characteristics of each system component and technologies available for these components. The second part is a computer-based model that PNL has developed to simulate construction and operation of alternative system configurations and to compare the performance of these systems under a variety of economic and technical conditions. This document consists of six chapters and two appendices. A more thorough description of coal-based electric energy systems is presented in the Introduction and Chapter 1. Each of the subsequent chapters describes technologies for five system components: Western coal resources (Chapter 2), coal transportation (Chapter 3), coal gasification and gas transmission (Chapter 4), and electric power transmission (Chapter 6).

  4. Spatial scale, abundance and the species-energy relationship in British birds.

    PubMed

    Evans, Karl L; Newson, Stuart E; Storch, David; Greenwood, Jeremy J D; Gaston, Kevin J

    2008-03-01

    richness in a single year, is lower in high-energy regions. These negative relationships between turnover and energy appear to be causal as both total and mean occupancy per species increases with energy. 5. While total density in 1 km x 1 km plots correlates positively with energy availability, such relationships are very weak for mean density per species. This suggests that the observed association between total abundance and species richness may not be mediated by population extinction rates, as predicted by the more individuals hypothesis. 6. The sampling mechanism suggests that species-energy relationships arise as high-energy areas support a greater number of individuals, and that random allocation of these individuals to local areas from a regional assemblage will generate species-energy relationships. While randomized local species-energy relationships are linear and positive, predicted richness is consistently greater than that observed. The mismatch between the observed and randomized species-energy relationships probably arises as a consequence of the aggregated nature of species distributions. The sampling mechanism, together with species spatial aggregation driven by limited habitat availability, may thus explain the species-energy relationship observed at this spatial scale.

  5. [Structure problem analysis and trend prediction of energy supply and demand in Guangzhou City].

    PubMed

    Zhong, Xiao-qing; Ji, Xiu-jiang; Zhu, Hai-yan; Yi, Xia-jun; Ren, Fang

    2006-04-01

    This paper aims at the tense situation of energy demand and supply and analysis the current situation and problems of energy supply and demand in Guangzhou. We predict total demand of energy which will be 4534.7 x 10(4) of standard coal in 2010 by using the department analysis method and sequence method, and the balance between supply and demand of energy will be 45,000 thousand tons of standard coal. From the primary conclusions of our empirical analysis and together with the overall environment of energy in Guangdong and China, we think the development strategies of energy in Guangzhou in the future should involve several main points as following: (1) Energy of Guangzhou should base on the overall energy development programming of China and that is, it should depend on the "transmission of electricity from the western to the eastern region", power incorporation of Sanxia, power generated of water energy, nuclear power and new resource. (2) Stop setting up or expending the natural monopoly and resource oriented Huangpu thermal power plant located in the windward direction of summer of Guangzhou which has serious pollution and consumes large quantities of energy. (3) It should not absolutely depend on the coal of the poor mountainous region of Guangdong and small power station and can make full use of the resource potential. PMID:16767975

  6. [Structure problem analysis and trend prediction of energy supply and demand in Guangzhou City].

    PubMed

    Zhong, Xiao-qing; Ji, Xiu-jiang; Zhu, Hai-yan; Yi, Xia-jun; Ren, Fang

    2006-04-01

    This paper aims at the tense situation of energy demand and supply and analysis the current situation and problems of energy supply and demand in Guangzhou. We predict total demand of energy which will be 4534.7 x 10(4) of standard coal in 2010 by using the department analysis method and sequence method, and the balance between supply and demand of energy will be 45,000 thousand tons of standard coal. From the primary conclusions of our empirical analysis and together with the overall environment of energy in Guangdong and China, we think the development strategies of energy in Guangzhou in the future should involve several main points as following: (1) Energy of Guangzhou should base on the overall energy development programming of China and that is, it should depend on the "transmission of electricity from the western to the eastern region", power incorporation of Sanxia, power generated of water energy, nuclear power and new resource. (2) Stop setting up or expending the natural monopoly and resource oriented Huangpu thermal power plant located in the windward direction of summer of Guangzhou which has serious pollution and consumes large quantities of energy. (3) It should not absolutely depend on the coal of the poor mountainous region of Guangdong and small power station and can make full use of the resource potential.

  7. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  8. A decision model for cost effective design of biomass based green energy supply chains.

    PubMed

    Yılmaz Balaman, Şebnem; Selim, Hasan

    2015-09-01

    The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures.

  9. A decision model for cost effective design of biomass based green energy supply chains.

    PubMed

    Yılmaz Balaman, Şebnem; Selim, Hasan

    2015-09-01

    The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures. PMID:25983228

  10. Mimicking bipolar sextupole power supplies for low-energy operations at RHIC

    SciTech Connect

    Montag, C.; Bruno, D.; Jain, A.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.

    2011-03-28

    RHIC operated at energies below the nominal ion injection energy of E=9.8 GeV/u in 2010. Earlier test runs and magnet measurements indicated that all defocusing sextupole unipolar power supplies should be reversed to provide the proper sign of chromaticity. However, vertical chromaticity at E=3.85 GeV/u with this power supply configuration was still not optimal. This uncertainty inspired a new machine configuration where only half of the defocusing sextupole power supplies were reversed, taking advantage of the flexibility of the RHIC nonlinear chromaticity correction system to mimic bipolar sextupoles. This configuration resulted in a 30 percent luminosity gain and eliminated the need for further polarity changes for later 2010 low energy physics operations. Here we describe the background to this problem, operational experience, and RHIC online model changes to implement this solution.

  11. Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting.

    PubMed

    Yang, Haoran; Jauregui, Luis A; Zhang, Genqiang; Chen, Yong P; Wu, Yue

    2012-02-01

    Improving energy/fuel efficiency by converting waste heat into electricity using thermoelectric materials is of great interest due to its simplicity and reliability. However, many thermoelectric materials are composed of either toxic or scarce elements. Here, we report the experimental realization of using nontoxic and abundant copper zinc tin sulfide (CZTS) nanocrystals for potential thermoelectric applications. The CZTS nanocrystals can be synthesized in large quantities from solution phase reaction and compressed into robust bulk pellets through spark plasma sintering and hot press while still maintaining nanoscale grain size inside. Electrical and thermal measurements have been performed from 300 to 700 K to understand the electron and phonon transports. Extra copper doping during the nanocrystal synthesis introduces a significant improvement in the performance.

  12. Public utilities supply solar energy to eager customers

    SciTech Connect

    1995-01-01

    This articles examines how photovoltaic power is an alternative source of energy that can help utilities earn goodwill from their customers for being innovative, saving money, and reducing harmful emissions. Planners at municipal utilities are discovering the advantages that photovoltaic (PV) power offers. In addition to the thousands of private, federal, state, and commercial PV systems installed during the last 20 years, more than 65 cities in 24 states also have installed such systems. PV power is cost effective in selected utility applications today, and those applications are expanding every year. PV can be useful in applications ranging from low-power uses to decentralized applications to large, central stations. Public utilities in Austin and Sacramento are among those successfully using PV power for all three types of applications.

  13. An optimal operational advisory system for a brewery's energy supply plant

    SciTech Connect

    Ito, K.; Shiba, T.; Yokoyama, R. . Dept. of Energy Systems Engineering); Sakashita, S. . Mayekawa Energy Management Research Center)

    1994-03-01

    An optimal operational advisory system is proposed to operate rationally a brewery's energy supply plant from the economical viewpoint. A mixed-integer linear programming problem is formulated so as to minimize the daily operational cost subject to constraints such as equipment performance characteristics, energy supply-demand relations, and some practical operational restrictions. This problem includes lots of unknown variables and a hierarchical approach is adopted to derive numerical solutions. The optimal solution obtained by this methods is indicated to the plant operators so as to support their decision making. Through the numerical study for a real brewery plant, the possibility of saving operational cost is ascertained.

  14. Understanding the influence of climate change on the embodied energy of water supply.

    PubMed

    Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M

    2016-05-15

    The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems.

  15. Miscellaneous: Uruguay energy supply options study assessing the market for natural gas - executive summary.

    SciTech Connect

    Conzelmann, G.; Veselka, T.; Decision and Information Sciences

    2008-03-04

    Uruguay is in the midst of making critical decisions affecting the design of its future energy supply system. Momentum for change is expected to come from several directions, including recent and foreseeable upgrades and modifications to energy conversion facilities, the importation of natural gas from Argentina, the possibility for a stronger interconnection of regional electricity systems, the country's membership in MERCOSUR, and the potential for energy sector reforms by the Government of Uruguay. The objective of this study is to analyze the effects of several fuel diversification strategies on Uruguay's energy supply system. The analysis pays special attention to fuel substitution trends due to potential imports of natural gas via a gas pipeline from Argentina and increasing electricity ties with neighboring countries. The Government of Uruguay has contracted with Argonne National Laboratory (ANL) to study several energy development scenarios with the support of several Uruguayan institutions. Specifically, ANL was asked to conduct a detailed energy supply and demand analysis, develop energy demand projections based on an analysis of past energy demand patterns with support from local institutions, evaluate the effects of potential natural gas imports and electricity exchanges, and determine the market penetration of natural gas under various scenarios.

  16. Opportunities of energy supply of farm holdings on the basis of small-scale renewable energy sources

    NASA Astrophysics Data System (ADS)

    Efendiev, A. M.; Nikolaev, Yu. E.; Evstaf'ev, D. P.

    2016-02-01

    One of the major national economic problems of Russia is raising of agricultural production, which will provide strategic security and sustainable supply of the population with provisions. Creation of subsidiary small holdings, farm holdings, and peasant farm holdings will require addressing issues of energy supply. At considerable distance of small farms from centralized energy systems (by fuel, electricity and thermal energy) it is proposed to create a system of local energy networks on the basis of low-powered power plants using renewable energy sources (RES). There is economic unreasonableness of use of imported components of small power plants. Creation of new combined small power plants on renewable energy sources produced by domestic manufacturers is recommended. Schemes of arrangements of small power plants based on renewable energy sources are proposed, variants and characteristics of a basic source are provided—biogas plants developed by the authors. Calculations revealed that heat and power supply of self-contained farms distant from small power plants based on renewable energy sources is 2.5-2.6 times cheaper than from centralized networks. Production of biogas through anaerobic fermentation of organic waste of cattle complexes is considered as the basis. The analysis of biowaste output in various cattle farms is carried out, and the volume of biogas is determined to meet the requirements of these farms in electrical and thermal energy. The objective of the present article is to study the possibility of creating small combined power plants in Russia based on renewable sources of energy for independent consumers.

  17. Energy density and variability in abundance of pigeon guillemot prey: Support for the quality-variability trade-off hypothesis

    USGS Publications Warehouse

    Litzow, M.A.; Piatt, J.F.; Abookire, A.A.; Robards, M.D.

    2004-01-01

    1. The quality-variability trade-off hypothesis predicts that (i) energy density (kJ g-1) and spatial-temporal variability in abundance are positively correlated in nearshore marine fishes; and (ii) prey selection by a nearshore piscivore, the pigeon guillemot (Cepphus columba Pallas), is negatively affected by variability in abundance. 2. We tested these predictions with data from a 4-year study that measured fish abundance with beach seines and pigeon guillemot prey utilization with visual identification of chick meals. 3. The first prediction was supported. Pearson's correlation showed that fishes with higher energy density were more variable on seasonal (r = 0.71) and annual (r = 0.66) time scales. Higher energy density fishes were also more abundant overall (r = 0.85) and more patchy at a scale of 10s of km (r = 0.77). 4. Prey utilization by pigeon guillemots was strongly non-random. Relative preference, defined as the difference between log-ratio transformed proportions of individual prey taxa in chick diets and beach seine catches, was significantly different from zero for seven of the eight main prey categories. 5. The second prediction was also supported. We used principal component analysis (PCA) to summarize variability in correlated prey characteristics (energy density, availability and variability in abundance). Two PCA scores explained 32% of observed variability in pigeon guillemot prey utilization. Seasonal variability in abundance was negatively weighted by these PCA scores, providing evidence of risk-averse selection. Prey availability, energy density and km-scale variability in abundance were positively weighted. 6. Trophic interactions are known to create variability in resource distribution in other systems. We propose that links between resource quality and the strength of trophic interactions may produce resource quality-variability trade-offs.

  18. Description of the global petroleum supply and demand outlook. Updated for the 1993 edition of the GRI Baseline Projection of US energy supply and demand

    SciTech Connect

    Dreyfus, D.A.; Koklauner, A.B.

    1992-12-01

    Strategic planning of the research and development program carried out by Gas Research Institute (GRI) is supported by an annual GRI baseline projection of US energy supply and demand. Because petroleum products compete in a wide variety of energy uses, oil prices serve as a market clearing force for the entire energy system. A significant portion of the US petroleum supply is imported, and the price of crude oil to US refiners is determined by the international oil trade. Any projection of a US energy situation, therefore, requires the evaluation of the global oil market and the impact of oil price changes on the supply/demand balances of market participants. The 1992 edition of the projection, which was completed in August 1991, assumed that, in the aftermath of the war in the Middle East, the fundamentals of the oil trade would reassert their influence. This did indeed occur and with astonishing rapidity.

  19. Short-Term Energy Outlook Model Documentation: Petroleum Products Supply Module

    EIA Publications

    2013-01-01

    The Petroleum Products Supply Module of the Short-Term Energy Outlook (STEO) model provides forecasts of petroleum refinery inputs (crude oil, unfinished oils, pentanes plus, liquefied petroleum gas, motor gasoline blending components, and aviation gasoline blending components) and refinery outputs (motor gasoline, jet fuel, distillate fuel, residual fuel, liquefied petroleum gas, and other petroleum products).

  20. A novel current and voltage regulated energy discharge power supply 200 A, 600 V

    SciTech Connect

    Visser, A.

    1991-05-01

    The fast spill beam extracted from the 1000 GeV particle accelerator Fermi National Accelerator Laboratory requires two pulsed magnet and power supply systems to steer the beam to the designated experimental area. This beam steering requires a magnetic field integral of 4kGm per magnet for a duration of 4 msec at a rate of one shot per 5 seconds, and limited to 6 shots per 63 seconds. Each shot cannot last any longer than about 100 msec from start to finish. The magnetic field must be constant to within 1% during each 4 msec spill period. This paper describes an energy discharge type power supply and magnet that meet these requirements. This unique power supply has two regulators. One regulator preregulates the storage voltage and the other regulates the required peak current. The magnet and power supply design are interwoven to allow the use of easily available commercial parts for the power supply. Power supply and magnet design should always go hand in hand.

  1. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  2. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed. PMID:25725838

  3. Modeling the influence of various water stressors on regional water supply infrastructures and their embodied energy

    NASA Astrophysics Data System (ADS)

    Mo, Weiwei; Zhang, Qiong

    2016-06-01

    Water supply consumes a substantial amount of energy directly and indirectly. This study aims to provide an enhanced understanding of the influence of water stressors on the embodied energy of water supply (EEWS). To achieve this goal, the EEWS in 75 North Carolina counties was estimated through an economic input-output based hybrid life cycle assessment. Ten water stressor indicators related to population, economic development, climate, water source, and land use were obtained for the 75 counties. A multivariate analysis was performed to understand the correlations between water stressor indicators and the EEWS. A regression analysis was then conducted to identify the statistically significant indicators in describing the EEWS. It was found that the total amount of water supply energy varies significantly among selected counties. Water delivery presents the highest energy use and water storage presents the least. The total embodied energy was found to be highly correlated with total population. The regression analysis shows that the total embodied energy can be best described by total population and temperature indicators with a relatively high R square value of 0.69.

  4. Advanced Building Efficiency Testbed Initiative/Intelligent Workplace Energy Supply System; ABETI/IWESS

    SciTech Connect

    David Archer; Frederik Betz; Yun Gu; Rong Li; Flore Marion; Sophie Masson; Ming Qu; Viraj Srivastava; Hongxi Yin; Chaoqin Zhai; Rui Zhang; Elisabeth Aslanian; Berangere Lartigue

    2008-05-31

    ABETI/IWESS is a project carried out by Carnegie Mellon's Center for Building Performance and Diagnostics, the CBPD, supported by the U.S. Department of Energy/EERE, to design, procure, install, operate, and evaluate an energy supply system, an ESS, that will provide power, cooling, heating and ventilation for CBPD's Intelligent Workplace, the IW. The energy sources for this system, the IWESS, are solar radiation and bioDiesel fuel. The components of this overall system are: (1) a solar driven cooling and heating system for the IW comprising solar receivers, an absorption chiller, heat recovery exchanger, and circulation pump; (2) a bioDiesel fueled engine generator with heat recovery exchangers, one on the exhaust to provide steam and the other on the engine coolant to provide heated water; (3) a ventilation system including an enthalpy recovery wheel, an air based heat pump, an active desiccant wheel, and an air circulation fan; and (4) various convective and radiant cooling/heating units and ventilation air diffusers distributed throughout the IW. The goal of the ABETI/IWESS project is to demonstrate an energy supply system for a building space that will provide a healthy, comfortable environment for the occupants and that will reduce the quantity of energy consumed in the operation of a building space by a factor of 2 less than that of a conventional energy supply for power, cooling, heating, and ventilation based on utility power and natural gas fuel for heating.

  5. Forecasting jobs in the supply chain for investments in residential energy efficiency retrofits in Florida

    NASA Astrophysics Data System (ADS)

    Fobair, Richard C., II

    This research presents a model for forecasting the numbers of jobs created in the energy efficiency retrofit (EER) supply chain resulting from an investment in upgrading residential buildings in Florida. This investigation examined material supply chains stretching from mining to project installation for three product types: insulation, windows/doors, and heating, ventilating, and air conditioning (HVAC) systems. Outputs from the model are provided for the project, sales, manufacturing, and mining level. The model utilizes reverse-estimation to forecast the numbers of jobs that result from an investment. Reverse-estimation is a process that deconstructs a total investment into its constituent parts. In this research, an investment is deconstructed into profit, overhead, and hard costs for each level of the supply chain and over multiple iterations of inter-industry exchanges. The model processes an investment amount, the type of work and method of contracting into a prediction of the number of jobs created. The deconstruction process utilizes data from the U.S. Economic Census. At each supply chain level, the cost of labor is reconfigured into full-time equivalent (FTE) jobs (i.e. equivalent to 40 hours per week for 52 weeks) utilizing loaded labor rates and a typical employee mix. The model is sensitive to adjustable variables, such as percentage of work performed per type of product, allocation of worker time per skill level, annual hours for FTE calculations, wage rate, and benefits. This research provides several new insights into job creation. First, it provides definitions that can be used for future research on jobs in supply chains related to energy efficiency. Second, it provides a methodology for future investigators to calculate jobs in a supply chain resulting from an investment in energy efficiency upgrades to a building. The methodology used in this research is unique because it examines gross employment at the sub-industry level for specific

  6. Evaluating the sustainability of an energy supply system using renewable energy sources: An energy demand assessment of South Carolina

    NASA Astrophysics Data System (ADS)

    Green, Cedric Fitzgerald

    Sustainable energy is defined as a dynamic harmony between the equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations. Sustainable energy development continues to be a major focus within the government and regulatory governing bodies in the electric utility industry. This is as a result of continued demand for electricity and the impact of greenhouse gas emissions from electricity generating plants on the environment by way of the greenhouse effect. A culmination of increasing concerns about climate change, the nuclear incident in Fukushima four years ago, and discussions on energy security in a world with growing energy demand have led to a movement for increasing the share of power generation from renewable energy sources. This work studies demand for electricity from primarily residential, commercial, agricultural, and industrial customers in South Carolina (SC) and its effect on the environment from coal-fired electricity generating plants. Moreover, this work studies sustainable renewable energy source-options based on the renewable resources available in the state of SC, as viable options to supplement generation from coal-fired electricity generating plants. In addition, greenhouse gas emissions and other pollutants from primarily coal-fired plants will be defined and quantified. Fundamental renewable energy source options will be defined and quantified based on availability and sustainability of SC's natural resources. This work studies the environmental, economic, and technical aspects of each renewable energy source as a sustainable energy option to replace power generation from coal-fired plants. Additionally, social aspect implications will be incorporated into each of the three aspects listed above, as these aspects are explored during the research and analysis. Electricity demand data and alternative energy source-supply data in SC are carried out and are used to develop and

  7. MEASUREMENTS OF THE RELATIVE ABUNDANCES OF HIGH-ENERGY COSMIC-RAY NUCLEI IN THE TeV/NUCLEON REGION

    SciTech Connect

    Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Malinin, A.; Allison, P. S.; Beatty, J. J.; Brandt, T. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Barbier, L.; Childers, J. T.; DuVernois, M. A.; Conklin, N. B.; Coutu, S.; Jeon, J. A.; Lee, J.

    2010-06-01

    We present measurements of the relative abundances of cosmic-ray nuclei in the energy range of 500-3980 GeV/nucleon from the second flight of the Cosmic Ray Energetics And Mass balloon-borne experiment. Particle energy was determined using a sampling tungsten/scintillating-fiber calorimeter, while particle charge was identified precisely with a dual-layer silicon charge detector installed for this flight. The resulting element ratios C/O, N/O, Ne/O, Mg/O, Si/O, and Fe/O at the top of atmosphere are 0.919 {+-} 0.123{sup stat} {+-} 0.030{sup syst}, 0.076 {+-} 0.019{sup stat} {+-} 0.013{sup syst}, 0.115 {+-} 0.031{sup stat} {+-} 0.004{sup syst}, 0.153 {+-} 0.039{sup stat} {+-} 0.005{sup syst}, 0.180 {+-} 0.045{sup stat} {+-} 0.006{sup syst}, and 0.139 {+-} 0.043{sup stat} {+-} 0.005{sup syst}, respectively, which agree with measurements at lower energies. The source abundance of N/O is found to be 0.054 {+-} 0.013{sup stat} {+-} 0.009{sup syst+0.010esc} {sub -0.017}. The cosmic-ray source abundances are compared to local Galactic (LG) abundances as a function of first ionization potential and as a function of condensation temperature. At high energies the trend that the cosmic-ray source abundances at large ionization potential or low condensation temperature are suppressed compared to their LG abundances continues. Therefore, the injection mechanism must be the same at TeV/nucleon energies as at the lower energies measured by HEAO-3, CRN, and TRACER. Furthermore, the cosmic-ray source abundances are compared to a mixture of 80% solar system abundances and 20% massive stellar outflow (MSO) as a function of atomic mass. The good agreement with TIGER measurements at lower energies confirms the existence of a substantial fraction of MSO material required in the {approx}TeV per nucleon region.

  8. Observation and implications of sub-iron and iron abundance ratios in low energy galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Durgaprasad, N.; Vahia, M. N.; Biswas, S.; Ramadurai, S.; Singh, R. K.; Yadav, J. S.; Dutta, A.; Goswami, J. N.

    1995-01-01

    The Spacelab-3 cosmic ray experiment Anuradha was used to measure the sub-iron (Sc-Cr) to iron abundance ratios in the low energy galactic cosmic rays. Measurements made in four different depth of the detector yielded the (Sc-Cr)/Fe ratios of 0.8 to 1.2 in 30 to 300 MeV/N. These are in agreement with results from Skylab and Soyuz-6 experiments and establishes that this abundance ratio is about 1.0 inside the magnetosphere. It is seen that this abundance ratio is about a factor of two higher than values of about 0.5 measured in space crafts in interplanetary space. It is shown that the enhancement of the ratio is probably due to geomagnetic transmission effect and the degree of ionization of the low energy Sc to Cr and Fe ions in galactic cosmic rays. Further studies are needed to fully understand the phenomena and their implications.

  9. Forecasting optimal solar energy supply in Jiangsu Province (China): a systematic approach using hybrid of weather and energy forecast models.

    PubMed

    Zhao, Xiuli; Asante Antwi, Henry; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, "least-cost," and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  10. Forecasting Optimal Solar Energy Supply in Jiangsu Province (China): A Systematic Approach Using Hybrid of Weather and Energy Forecast Models

    PubMed Central

    Zhao, Xiuli; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor. PMID:24511292

  11. Waste biomass-to-energy supply chain management: a critical synthesis.

    PubMed

    Iakovou, E; Karagiannidis, A; Vlachos, D; Toka, A; Malamakis, A

    2010-10-01

    The development of renewable energy sources has clearly emerged as a promising policy towards enhancing the fragile global energy system with its limited fossil fuel resources, as well as for reducing the related environmental problems. In this context, waste biomass utilization has emerged as a viable alternative for energy production, encompassing a wide range of potential thermochemical, physicochemical and bio-chemical processes. Two significant bottlenecks that hinder the increased biomass utilization for energy production are the cost and complexity of its logistics operations. In this manuscript, we present a critical synthesis of the relative state-of-the-art literature as this applies to all stakeholders involved in the design and management of waste biomass supply chains (WBSCs). We begin by presenting the generic system components and then the unique characteristics of WBSCs that differentiate them from traditional supply chains. We proceed by discussing state-of-the-art energy conversion technologies along with the resulting classification of all relevant literature. We then recognize the natural hierarchy of the decision-making process for the design and planning of WBSCs and provide a taxonomy of all research efforts as these are mapped on the relevant strategic, tactical and operational levels of the hierarchy. Our critical synthesis demonstrates that biomass-to-energy production is a rapidly evolving research field focusing mainly on biomass-to-energy production technologies. However, very few studies address the critical supply chain management issues, and the ones that do that, focus mainly on (i) the assessment of the potential biomass and (ii) the allocation of biomass collection sites and energy production facilities. Our analysis further allows for the identification of gaps and overlaps in the existing literature, as well as of critical future research areas. PMID:20231084

  12. Waste biomass-to-energy supply chain management: a critical synthesis.

    PubMed

    Iakovou, E; Karagiannidis, A; Vlachos, D; Toka, A; Malamakis, A

    2010-10-01

    The development of renewable energy sources has clearly emerged as a promising policy towards enhancing the fragile global energy system with its limited fossil fuel resources, as well as for reducing the related environmental problems. In this context, waste biomass utilization has emerged as a viable alternative for energy production, encompassing a wide range of potential thermochemical, physicochemical and bio-chemical processes. Two significant bottlenecks that hinder the increased biomass utilization for energy production are the cost and complexity of its logistics operations. In this manuscript, we present a critical synthesis of the relative state-of-the-art literature as this applies to all stakeholders involved in the design and management of waste biomass supply chains (WBSCs). We begin by presenting the generic system components and then the unique characteristics of WBSCs that differentiate them from traditional supply chains. We proceed by discussing state-of-the-art energy conversion technologies along with the resulting classification of all relevant literature. We then recognize the natural hierarchy of the decision-making process for the design and planning of WBSCs and provide a taxonomy of all research efforts as these are mapped on the relevant strategic, tactical and operational levels of the hierarchy. Our critical synthesis demonstrates that biomass-to-energy production is a rapidly evolving research field focusing mainly on biomass-to-energy production technologies. However, very few studies address the critical supply chain management issues, and the ones that do that, focus mainly on (i) the assessment of the potential biomass and (ii) the allocation of biomass collection sites and energy production facilities. Our analysis further allows for the identification of gaps and overlaps in the existing literature, as well as of critical future research areas.

  13. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    PubMed Central

    Lee, Dasheng

    2008-01-01

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  14. The long-term trends in US gas supply and prices: 1991 edition of the GRI baseline projection of US energy supply and demand to 2010

    SciTech Connect

    Woods, T.J.

    1991-04-01

    This report summarizes the gas supply outlook in the 1991 Edition of the Gas Research Institute (GRI) Baseline Projection of US Energy Supply and Demand, which has been adopted as a major input to the planning cycle leading to the development of the Gas Research Institute (GRI) 1992 research and development program. The 1991 projection presents the GRI planning outlook for the economic and the energy supply and demand situation to the year 2010. It was prepared independently by GRI using publicly available data and a framework of commercially available models that GRI has developed over several years. It is not derived from the views of GRI member companies. 28 refs., 4 figs., 28 tabs.

  15. The G-HAT Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies

    NASA Astrophysics Data System (ADS)

    Wright, Jason Thomas; Povich, Matthew; Griffith, Roger; Maldonado, Jessica; Sigurdsson, Steinn; Star Cartier, Kimberly

    2015-08-01

    The WISE and Spitzer large-area surveys of the mid-infrared sky bring a new opportunity to search for evidence of the energy supplies of very large extraterrestrial civilizations. If these energy supplies rival the output of a civilization's parent star (Kardashev Type II), or if a galaxy-spanning supercivilization's use rivals that of the total galactic luminosity (Type III), they would be detectable as anomolously mid-infrared-bright stars and galaxies, respectively. We have already performed the first search for this emission from Type III civilizations using the WISE all-sky survey, and put the first upper limits on them in the local universe, and discuss ways to improve on these limits. We also discuss some detectable forms of and limits on Type II civilizations in the Mliky Way.

  16. Impact of enhanced geothermal systems on US energy supply in the twenty-first century.

    PubMed

    Tester, Jefferson W; Anderson, Brian J; Batchelor, Anthony S; Blackwell, David D; DiPippo, Ronald; Drake, Elisabeth M; Garnish, John; Livesay, Bill; Moore, Michal C; Nichols, Kenneth; Petty, Susan; Toksoz, M Nafi; Veatch, Ralph W; Baria, Roy; Augustine, Chad; Murphy, Enda; Negraru, Petru; Richards, Maria

    2007-04-15

    Recent national focus on the value of increasing US supplies of indigenous renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well distributed nationally. A panel was assembled in September 2005 to evaluate the technical and economic feasibility of geothermal becoming a major supplier of primary energy for US base-load generation capacity by 2050. Primary energy produced from both conventional hydrothermal and enhanced (or engineered) geothermal systems (EGS) was considered on a national scale. This paper summarizes the work of the panel which appears in complete form in a 2006 MIT report, 'The future of geothermal energy' parts 1 and 2. In the analysis, a comprehensive national assessment of US geothermal resources, evaluation of drilling and reservoir technologies and economic modelling was carried out. The methodologies employed to estimate geologic heat flow for a range of geothermal resources were utilized to provide detailed quantitative projections of the EGS resource base for the USA. Thirty years of field testing worldwide was evaluated to identify the remaining technology needs with respect to drilling and completing wells, stimulating EGS reservoirs and converting geothermal heat to electricity in surface power and energy recovery systems. Economic modelling was used to develop long-term projections of EGS in the USA for supplying electricity and thermal energy. Sensitivities to capital costs for drilling, stimulation and power plant construction, and financial factors, learning curve estimates, and uncertainties and risks were considered.

  17. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    NASA Astrophysics Data System (ADS)

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    Continuity of service of a high quality water supply is vital in sustaining economic and social development. However, water supply and wastewater treatment are highly energy intensive processes and the overall cost of water provision is rising rapidly due to increased energy costs, higher capital investment requirements, and more stringent regulatory compliance in terms of both national and EU legislation. Under the EU Directive 2009/28/EC, both Ireland and the UK are required to have 16% and 15% respectively of their electricity generated by renewable sources by 2020. The projected impacts of climate change, population growth and urbanisation will place additional pressures on resources, further increasing future water demand which in turn will lead to higher energy consumption. Therefore, there is a need to achieve greater efficiencies across the water industry. The implementation of micro-hydropower turbines within the water supply network has shown considerable viability for energy recovery. This is achieved by harnessing energy at points of high flow or pressure along the network which can then be utilised on site or alternatively sold to the national grid. Micro-hydropower can provide greater energy security for utilities together with a reduction in greenhouse gas emissions. However, potential climate change impacts on water resources in the medium-to-long term currently act as a key barrier to industry confidence as changes in flow and pressure within the network can significantly alter the available energy for recovery. The present study aims to address these uncertainties and quantify the regional and local impacts of climate change on the viability of energy recovery across water infrastructure in Ireland and the UK. Specifically, the research focuses on assessing the potential future effects of climate change on flow rates at multiple pressure reducing valve sites along the water supply network and also in terms of flow at a number of wastewater

  18. The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. I. Background and Justification

    NASA Astrophysics Data System (ADS)

    Wright, J. T.; Mullan, B.; Sigurdsson, S.; Povich, M. S.

    2014-09-01

    We motivate the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. We discuss some philosophical difficulties of the search for extraterrestrial intelligence (SETI), and how communication SETI circumvents them. We review "Dysonian SETI," the search for artifacts of alien civilizations, and find that it is highly complementary to traditional communication SETI; the two together might succeed where either one alone has not. We discuss the argument of Hart that spacefaring life in the Milky Way should be either galaxy-spanning or non-existent, and examine a portion of his argument that we call the "monocultural fallacy." We discuss some rebuttals to Hart that invoke sustainability and predict long Galaxy colonization timescales. We find that the maximum Galaxy colonization timescale is actually much shorter than previous work has found (<109 yr), and that many "sustainability" counter-arguments to Hart's thesis suffer from the monocultural fallacy. We extend Hart's argument to alien energy supplies and argue that detectably large energy supplies can plausibly be expected to exist because life has the potential for exponential growth until checked by resources or other limitations, and intelligence implies the ability to overcome such limitations. As such, if Hart's thesis is correct, then searches for large alien civilizations in other galaxies may be fruitful; if it is incorrect, then searches for civilizations within the Milky Way are more likely to succeed than Hart argued. We review some past Dysonian SETI efforts and discuss the promise of new mid-infrared surveys, such as that of WISE.

  19. 77 FR 22472 - Energy Conservation Program: Energy Conservation Standards for Certain External Power Supplies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    .... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J... April 9, 2012. Kathleen B. Hogan, Deputy Assistant Secretary for Energy Efficiency, Energy Efficiency... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10...

  20. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community

    PubMed Central

    Labra, Fabio A; Hernández-Miranda, Eduardo; Quiñones, Renato A

    2015-01-01

    We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species-averaged values with individual-based estimates which allow species to potentially occupy multiple size classes. For individual-based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species-based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual-based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species-based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic

  1. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community.

    PubMed

    Labra, Fabio A; Hernández-Miranda, Eduardo; Quiñones, Renato A

    2015-01-01

    We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species-averaged values with individual-based estimates which allow species to potentially occupy multiple size classes. For individual-based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species-based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual-based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species-based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic

  2. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community.

    PubMed

    Labra, Fabio A; Hernández-Miranda, Eduardo; Quiñones, Renato A

    2015-01-01

    We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species-averaged values with individual-based estimates which allow species to potentially occupy multiple size classes. For individual-based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species-based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual-based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species-based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic

  3. End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes

    SciTech Connect

    L.E. Demick

    2010-09-01

    This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

  4. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas.

    PubMed

    Metzger, Jürgen O; Hüttermann, Aloys

    2009-02-01

    An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO(2) content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

  5. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas

    NASA Astrophysics Data System (ADS)

    Metzger, Jürgen O.; Hüttermann, Aloys

    2009-02-01

    An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO2 content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

  6. U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis

    SciTech Connect

    Fullenkamp, Patrick H; Holody, Diane S

    2014-06-15

    The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a

  7. Geothermal Program Review XV: proceedings. Role of Research in the Changing World of Energy Supply

    SciTech Connect

    1997-01-01

    The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XV in Berkeley, March 24-26, 1997. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focussed on {open_quotes}The Role of Research in the Changing World of Energy Supply.{close_quotes} This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Separate abstracts have been indexed to the database for contributions to this conference.

  8. Long-term supply curves for geothermal energy: the impacts of technology

    SciTech Connect

    Fassbender, L.L.; Bloomster, C.H.

    1980-01-01

    Near-term and long-term supply curves are presented for electric applications of geothermal energy. The GEOCOST model was used to determine the present and future energy production costs for the high-temperature and intermediate-temperature hydrothermal resources identified by the USGS The long-term supply curves illustrate the potential shifts in the near-term supply curve which would result from certain technology improvements currently being pursued. Programs with the most significant potential impacts are those which result in large reductions in drilling cost, those which lead to development of commercial high capacity downhole pumps, and those which lead to large increases in the plant capacity factor. Curves were drawn to show the impacts of individual technology improvements and also to show the cumulative impacts of combinations of technological advances expected to be achieved by 1982 and 1985. Successful completion of all the programs evaluated would result in a cumulative cost reduction of $90 billion (not discounted) in electrical generating costs from the identified hydrothermal resources.

  9. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    NASA Astrophysics Data System (ADS)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  10. Energy Costs of Urban Water Supply Systems: Evidence from India (Invited)

    NASA Astrophysics Data System (ADS)

    Malghan, D.; Mehta, V. K.; Goswami, R.

    2013-12-01

    For the first time in human history more people around the globe now live in urban centres rather than in rural settings. Although India's urban population proportion at 31% is still below the global average, it has been urbanizing rapidly. The population growth rate in urban India is more than two-and-half times that of rural India. The current Indian urban population, of over 370 million people, exceeds that of the total population of every other country on the planet with the exception of China. Supplying water to India's burgeoning urban agglomerations poses a challenge in terms of social equity, biophysical sustainability, and economic efficiency. A typical Indian city relies on both surface and ground water sources. Several Indian cities import surface water from distances that now exceed a hundred kilometres and across gradients of up to three thousand metres. While the depleting groundwater levels as a result of rapidly growing demand from urban India is at least anecdotally understood even when reliable estimates are not available, the energy costs of supplying water to urban India has thus far not received academic or policy attention it deserves. We develop a simple framework to integrate distributed groundwater models with water consumption data to estimate the energy and emissions associated with supplying water to urban centres. We assemble a unique data set from seventy five of the largest urban agglomerations in India and derive estimated values of energy consumption and carbon emissions associated with water provision in urban India. Our analysis shows that in every major city, the energy cost associated with long distance import of surface water significantly exceeds groundwater extraction. However, with rapidly depleting groundwater levels, we estimate inflection points for select cities when energy costs of groundwater extraction will exceed energy required to import surface water into the city. In addition to the national snapshot, we also

  11. A simple metabolic model of glacial-interglacial energy supply to the upper ocean

    NASA Astrophysics Data System (ADS)

    Pelegrí, J. L.; Olivella, R.; García-Olivares, A.

    2011-03-01

    We use a simple two-state two-box ocean to simulate the CO2 signal during the last four glacial-interglacial transitions in the earth system. The model is inspired by the similarity in spatial organization and temporal transition patterns between the earth and other complex systems, such as mammals. The comparison identifies the earth's metabolic rate with net autotrophic primary production in the upper ocean, sustained through new inorganic carbon and nutrients advected from the deep ocean and organic matter remineralized within the upper ocean. We view the glacial-interglacial transition as a switch of the upper ocean from a basal to an enhanced metabolic state, with energy supply initially relying on the remineralization of the local organic sources and the eventual steady state resulting from the increased advective supply of inorganic deep sources. During the interglacial-glacial transition the opposite occurs, with an initial excess of advective supply and primary production that allows the replenishment of the upper-ocean organic storages. We set the relative change in energy supply from the CO2 signal and use genetic algorithms to explore the sensitivity of the model output to both the basal recirculation rate and the intensity-timing of the maximum recirculation rate. The model is capable of reproducing quite well the long-term oscillations, as shown by correlations with observations typically about 0.8. The dominant time scale for each cycle ranges between about 40 and 45 kyr, close to the 41 kyr average obliquity astronomical period, and the deep-ocean recirculation rate increases between one and two orders of magnitude from glacial to interglacial periods.

  12. Current demographics suggest future energy supplies will be inadequate to slow human population growth.

    PubMed

    DeLong, John P; Burger, Oskar; Hamilton, Marcus J

    2010-10-05

    Influential demographic projections suggest that the global human population will stabilize at about 9-10 billion people by mid-century. These projections rest on two fundamental assumptions. The first is that the energy needed to fuel development and the associated decline in fertility will keep pace with energy demand far into the future. The second is that the demographic transition is irreversible such that once countries start down the path to lower fertility they cannot reverse to higher fertility. Both of these assumptions are problematic and may have an effect on population projections. Here we examine these assumptions explicitly. Specifically, given the theoretical and empirical relation between energy-use and population growth rates, we ask how the availability of energy is likely to affect population growth through 2050. Using a cross-country data set, we show that human population growth rates are negatively related to per-capita energy consumption, with zero growth occurring at ∼13 kW, suggesting that the global human population will stop growing only if individuals have access to this amount of power. Further, we find that current projected future energy supply rates are far below the supply needed to fuel a global demographic transition to zero growth, suggesting that the predicted leveling-off of the global population by mid-century is unlikely to occur, in the absence of a transition to an alternative energy source. Direct consideration of the energetic constraints underlying the demographic transition results in a qualitatively different population projection than produced when the energetic constraints are ignored. We suggest that energetic constraints be incorporated into future population projections.

  13. Modulation of energy and protein supplies in sequential feeding in laying hens.

    PubMed

    Traineau, M; Bouvarel, I; Mulsant, C; Roffidal, L; Launay, C; Lescoat, P

    2015-01-01

    Sequential feeding (SF) consists of splitting energy (E) and protein/calcium (P) fractions temporally, improving the feed conversion ratio (FCR) of hens compared with a continuous distribution during the day. In a previous study, the E fraction (with a low level of protein) was provided in the morning, whereas the P fraction (with low level of energy) was given in the afternoon. However, there is no clear evidence that a requirement in energy or proteins is connected to these distribution sequences, whereas the requirement for calcium is known to be required in the afternoon. To evaluate the effects on performances of the modulation of energy and protein supplies in SF, five different sequential treatments were offered: E0P0/E0P0; E+P+/E-P-; E+P-/E-P+; E0P+/E0P- and E+P0/E-P0 where E+ represents a high energy level, E0 a moderate one and E- a low one (with the same meaning for P regarding protein supply). Afternoon fractions were provided with particulate calcium. A total of 168 Hendrix hens were housed in individual cages from 20 to 39 weeks of age in two environmentally contrasted rooms. Feed intake in the morning and afternoon fractions, egg production, egg weight, BW and weight of digestive organs were recorded. No diet effect was observed concerning feed intake, egg production and BW. These results suggested that hens are not able to fit their feed intake on energy or protein level of fractions within half-day duration, whereas at the day scale same protein and energy intakes were observed. Moreover, the time of nutrient distribution in feeding did not seem to have an impact on birds' performances. These studies have also demonstrated that, despite strong environmental pressure, the hens with SF had attenuated performance but continue to produce eggs. PMID:25192221

  14. Explosive magnetic reconnection - puzzle to be solved as the energy supply process for magnetospheric substorms

    SciTech Connect

    Akasofu, S.I.

    1985-01-01

    It is pointed out that magnetospheric substorms are perhaps the most basic type of disturbances which occur throughout the magnetosphere. There is little doubt that the energy for magnetospheric substorms is delivered from the sun to the magnetosphere by the solar wind, and theoretical and observational studies have been conducted to uncover the processes associated with the energy transfer from the solar wind to the magnetosphere, and the subsequent processes leading to various magnetospheric substorm phenomena. It has been widely accepted that explosive magnetic reconnection supplies the energy for magnetospheric substorm processes. It is indicated that the auroral phenomena must be various manifestations of a large-scale electrical discharge process which is powered by the solar wind-magnetosphere dynamo. Certain problems regarding explosive magnetic reconnection are discussed. 23 references.

  15. Explosive magnetic reconnection - Puzzle to be solved as the energy supply process for magnetospheric substorms?

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1985-01-01

    It is pointed out that magnetospheric substorms are perhaps the most basic type of disturbances which occur throughout the magnetosphere. There is little doubt that the energy for magnetospheric substorms is delivered from the sun to the magnetosphere by the solar wind, and theoretical and observational studies have been conducted to uncover the processes associated with the energy transfer from the solar wind to the magnetosphere, and the subsequent processes leading to various magnetospheric substorm phenomena. It has been widely accepted that explosive magnetic reconnection supplies the energy for magnetospheric substorm processes. It is indicated that the auroral phenomena must be various manifestations of a large-scale electrical discharge process which is powered by the solar wind-magnetosphere dynamo. Certain problems regarding explosive magnetic reconnection are discussed.

  16. Distribution and Abundance of Archaeal and Bacterial Ammonia Oxidizers in the Sediments of the Dongjiang River, a Drinking Water Supply for Hong Kong

    PubMed Central

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

    2013-01-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrification. However, limited information about the characteristics of AOA and AOB in the river ecosystem is available. The distribution and abundance of AOA and AOB in the sediments of the Dongjiang River, a drinking water source for Hong Kong, were investigated by clone library analysis and quantitative real-time PCR. Phylogenetic analysis showed that Group 1.1b-and Group 1.1b-associated sequences of AOA predominated in sediments with comparatively high carbon and nitrogen contents (e.g. total carbon (TC) >13 g kg−1 sediment, NH4+-N >144 mg kg−1 sediment), while Group 1.1a- and Group 1.1a-associated sequences were dominant in sediments with opposite conditions (e.g. TC <4 g kg−1 sediment, NH4+-N <93 mg kg−1 sediment). Although Nitrosomonas- and Nitrosospira-related sequences of AOB were detected in the sediments, nearly 70% of the sequences fell into the Nitrosomonas-like B cluster, suggesting similar sediment AOB communities along the river. Higher abundance of AOB than AOA was observed in almost all of the sediments in the Dongjiang River, while significant correlations were only detected between the distribution of AOA and the sediment pH and TC, which suggested that AOA responded more sensitively than AOB to variations of environmental factors. These results extend our knowledge about the environmental responses of ammonia oxidizers in the river ecosystem. PMID:24256973

  17. Distribution and abundance of archaeal and bacterial ammonia oxidizers in the sediments of the Dongjiang River, a drinking water supply for Hong Kong.

    PubMed

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

    2013-01-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrification. However, limited information about the characteristics of AOA and AOB in the river ecosystem is available. The distribution and abundance of AOA and AOB in the sediments of the Dongjiang River, a drinking water source for Hong Kong, were investigated by clone library analysis and quantitative real-time PCR. Phylogenetic analysis showed that Group 1.1b- and Group 1.1b-associated sequences of AOA predominated in sediments with comparatively high carbon and nitrogen contents (e.g. total carbon (TC) >13 g kg(-1) sediment, NH4(+)-N >144 mg kg(-1) sediment), while Group 1.1a- and Group 1.1a-associated sequences were dominant in sediments with opposite conditions (e.g. TC <4 g kg(-1) sediment, NH4(+)-N <93 mg kg(-1) sediment). Although Nitrosomonas- and Nitrosospira-related sequences of AOB were detected in the sediments, nearly 70% of the sequences fell into the Nitrosomonas-like B cluster, suggesting similar sediment AOB communities along the river. Higher abundance of AOB than AOA was observed in almost all of the sediments in the Dongjiang River, while significant correlations were only detected between the distribution of AOA and the sediment pH and TC, which suggested that AOA responded more sensitively than AOB to variations of environmental factors. These results extend our knowledge about the environmental responses of ammonia oxidizers in the river ecosystem.

  18. The Ĝ infrared search for extraterrestrial civilizations with large energy supplies. I. Background and justification

    SciTech Connect

    Wright, J. T.; Mullan, B.; Sigurdsson, S.; Povich, M. S.

    2014-09-01

    We motivate the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. We discuss some philosophical difficulties of the search for extraterrestrial intelligence (SETI), and how communication SETI circumvents them. We review 'Dysonian SETI', the search for artifacts of alien civilizations, and find that it is highly complementary to traditional communication SETI; the two together might succeed where either one alone has not. We discuss the argument of Hart that spacefaring life in the Milky Way should be either galaxy-spanning or non-existent, and examine a portion of his argument that we call the 'monocultural fallacy'. We discuss some rebuttals to Hart that invoke sustainability and predict long Galaxy colonization timescales. We find that the maximum Galaxy colonization timescale is actually much shorter than previous work has found (<10{sup 9} yr), and that many 'sustainability' counter-arguments to Hart's thesis suffer from the monocultural fallacy. We extend Hart's argument to alien energy supplies and argue that detectably large energy supplies can plausibly be expected to exist because life has the potential for exponential growth until checked by resources or other limitations, and intelligence implies the ability to overcome such limitations. As such, if Hart's thesis is correct, then searches for large alien civilizations in other galaxies may be fruitful; if it is incorrect, then searches for civilizations within the Milky Way are more likely to succeed than Hart argued. We review some past Dysonian SETI efforts and discuss the promise of new mid-infrared surveys, such as that of WISE.

  19. On maximizing the lifetime of Wireless Sensor Networks by optimally assigning energy supplies.

    PubMed

    Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; González-Castano, Francisco Javier

    2013-08-09

    The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively.

  20. On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies

    PubMed Central

    Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; Gonzalez-Castaño, Francisco Javier

    2013-01-01

    The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively. PMID:23939582

  1. Energy supply and environmental issues: The Los Alamos National Laboratory experience in regional and international programs

    SciTech Connect

    Goff, S.J.

    1995-12-31

    The Los Alamos National Laboratory, operated by the University of California, encompasses more than forty-three square miles of mesas and canyons in northern New Mexico. A Department of Energy national laboratory, Los Alamos is one of the largest multidisciplinary, multiprogram laboratories in the world. Our mission, to apply science and engineering capabilities to problems of national security, has expanded to include a broad array of programs. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, computational science, environmental protection and cleanup, materials science, and other basic sciences. The Energy Technology Programs Office is responsible for overseeing and developing programs in three strategic areas: energy systems and the environment, transportation and infrastructure, and integrated chemicals and materials processing. Our programs focus on developing reliable, economic and environmentally sound technologies that can help ensure an adequate supply of energy for the nation. To meet these needs, we are involved in programs that range from new and enhanced oil recovery technologies and tapping renewable energy sources, through efforts in industrial processes, electric power systems, clean coal technologies, civilian radioactive waste, high temperature superconductivity, to studying the environmental effects of energy use.

  2. Weathering the cold of `94. A review of the January 1994 energy supply disruptions in the Eastern United States

    SciTech Connect

    1995-05-01

    This report examines the causes of and responses to the very low temperatures over a wide region of the Eastern US causing unprecedented sustained demand for energy during the week of January 16--22, 1994. The topics of the report include the vagaries of the weather, the North American power supply structure, a chronology of major events of January, natural gas industry operations during peak demand periods, and recommendations for fuel supply, load forecasting, and energy emergency response exercises.

  3. Integrating renewable energy technologies in the electric supply industry: A risk management approach

    SciTech Connect

    Hoff, T.E.

    1997-07-01

    Regulatory and technical forces are causing electric utilities to move from a natural monopoly to a more competitive environment. Associated with this movement is an increasing concern about how to manage the risks associated with the electric supply business. One approach to managing risks is to purchase financial instruments such as options and futures contracts. Another approach is to own physical assets that have low risk attributes or characteristics. This research evaluates how investments in renewable energy technologies can mitigate risks in the electric supply industry. It identifies risks that are known to be of concern to utilities and other power producers. These risks include uncertainty in fuel prices, demand, environmental regulations, capital cost, supply, and market structure. The research then determines how investments in renewables can mitigate these risks. Methods are developed to calculate the value of renewables in terms of their attributes of fuel costs, environmental costs, lead-time, modularity, availability, initial capital costs, and investment reversibility. Examples illustrate how to apply the methods.

  4. Decentralized control of units in smart grids for the support of renewable energy supply

    SciTech Connect

    Sonnenschein, Michael; Lünsdorf, Ontje; Bremer, Jörg; Tröschel, Martin

    2015-04-15

    Due to the significant environmental impact of power production from fossil fuels and nuclear fission, future energy systems will increasingly rely on distributed and renewable energy sources (RES). The electrical feed-in from photovoltaic (PV) systems and wind energy converters (WEC) varies greatly both over short and long time periods (from minutes to seasons), and (not only) by this effect the supply of electrical power from RES and the demand for electrical power are not per se matching. In addition, with a growing share of generation capacity especially in distribution grids, the top-down paradigm of electricity distribution is gradually replaced by a bottom-up power supply. This altogether leads to new problems regarding the safe and reliable operation of power grids. In order to address these challenges, the notion of Smart Grids has been introduced. The inherent flexibilities, i.e. the set of feasible power schedules, of distributed power units have to be controlled in order to support demand–supply matching as well as stable grid operation. Controllable power units are e.g. combined heat and power plants, power storage systems such as batteries, and flexible power consumers such as heat pumps. By controlling the flexibilities of these units we are particularly able to optimize the local utilization of RES feed-in in a given power grid by integrating both supply and demand management measures with special respect to the electrical infrastructure. In this context, decentralized systems, autonomous agents and the concept of self-organizing systems will become key elements of the ICT based control of power units. In this contribution, we first show how a decentralized load management system for battery charging/discharging of electrical vehicles (EVs) can increase the locally used share of supply from PV systems in a low voltage grid. For a reliable demand side management of large sets of appliances, dynamic clustering of these appliances into uniformly

  5. Families, Houses, and the demand for energy. Housing assistance supply experiment

    SciTech Connect

    Neels, K.

    1981-02-01

    Whereas previous studies of residential energy consumption have either focused on single - fuel use or relied on aggregated consumption data, this study analyzes determinants of total residential energy use at the level of the individual residential property. Study data were collected as part of the Housing Assistance Supply Experiment, a large - scale social experiment conducted in Brown County, Wis., and St. Joseph County, Ind. Data contained estimates of expenditures by tenants, landlords, and homeowners for four forms of residential energy: electricity, natural gas, fuel oil, and coal. Findings reveal that household characteristics such as size, income, and behavior have measurably less effect on energy use than do physical housing characteristics such as insulation, the amount of space to be heated, and whether the dwelling is a single - family unit or a multiple - family unit. Thus, from a policy viewpoint, the most immediately effective means of reducing residential energy consumption would be to change household behavior with respect to thermostat settings and shutting doors and windows. However, it would be much more effective in the long run to make energy - efficient alterations in existing housing and in the design of new residential construction.

  6. Preliminary Results of Detailed Chemical Abundance Analysis of Milky Way Satellite Galaxy Reticulum II Discovered in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Nagasawa, Daniel; Marshall, Jennifer L.; Li, Ting; Dark Energy Survey Milky Way Science Group

    2016-01-01

    We present preliminary results from abundance analysis of stars in Milky Way satellite galaxies found in the Dark Energy Survey (DES). DES has discovered 16 candidate satellite galaxies of the Milky Way in its first two years of operation. Since January 2015, three candidates have subsequently been revealed to be dark matter-dominated by spectroscopic follow-up studies of their kinematics, confirming their status as satellite galaxies. Spectroscopic follow-up of the remaining 13 candidates is underway. We have analyzed high resolution VLT/GIRAFFE spectra of member stars in one of these satellite galaxies, Reticulum II. Using equivalent width measurement and spectral synthesis methods, we measure the abundances of Iron and other species in order to begin to understand the chemical content of these Milky Way satellites.

  7. Emergency and backup power supplies at Department of Energy facilities: Augmented Evaluation Team -- Final report

    SciTech Connect

    Not Available

    1993-11-01

    This report documents the results of the Defense Programs (DP) Augmented Evaluation Team (AET) review of emergency and backup power supplies (i.e., generator, uninterruptible power supply, and battery systems) at DP facilities. The review was conducted in response to concerns expressed by former Secretary of Energy James D. Watkins over the number of incidents where backup power sources failed to provide electrical power during tests or actual demands. The AET conducted a series of on-site reviews for the purpose of understanding the design, operation, maintenance, and safety significance of emergency and backup power (E&BP) supplies. The AET found that the quality of programs related to maintenance of backup power systems varies greatly among the sites visited, and often among facilities at the same site. No major safety issues were identified. However, there are areas where the AET believes the reliability of emergency and backup power systems can and should be improved. Recommendations for improving the performance of E&BP systems are provided in this report. The report also discusses progress made by Management and Operating (M&O) contractors to improve the reliability of backup sources used in safety significant applications. One area that requires further attention is the analysis and understanding of the safety implications of backup power equipment. This understanding is needed for proper graded-approach implementation of Department of Energy (DOE) Orders, and to help ensure that equipment important to the safety of DOE workers, the public, and the environment is identified, classified, recognized, and treated as such by designers, users, and maintainers. Another area considered important for improving E&BP system performance is the assignment of overall ownership responsibility and authority for ensuring that E&BP equipment performs adequately and that reliability and availability are maintained at acceptable levels.

  8. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as 'liquid pumping and internal compression'. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  9. Energy supply processes for magnetospheric substorms and solar flares - Tippy bucket model or pitcher model?

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.

    1985-01-01

    In the past, both magnetospheric substorms and solar flares have almost exclusively been discussed in terms of explosive magnetic reconnection. Such a model may conceptually be illustrated by the so-called 'tippy-bucket model', which causes sudden unloading processes, namely a sudden (catastrophic, stochastic, and unpredictable) conversion of stored magnetic energy. However, recent observations indicate that magnetospheric substorms can be understood as a result of a directly driven process which can conceptually be illustrated by the 'pitcher model' in which the output rate varies in harmony with the input rate. It is also possible that solar flare phenomena are directly driven by a photospheric dynamo. Thus, explosive magnetic reconnection may simply be an unworkable hypothesis and may not be a puzzle to be solved as the primary energy supply process for magnetospheric substorms and solar flares.

  10. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as liquid pumping and internal compression. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  11. Autonomous sensor-transponder RFID with supply energy conditioning for object navigation systems

    NASA Astrophysics Data System (ADS)

    Skoczylas, M.; Kamuda, K.; Jankowski-Mihułowicz, P.; Kalita, W.; Weglarski, Mariusz

    2014-08-01

    The properties of energy conditioning electrical circuits that are developed for powering additional functional blocks of autonomous RFID transponders working in the HF band have been analyzed and presented in the paper. The concept of autonomy is realized by implementing extra functions in the typical transponder. First of all, the autonomous system should harvest energy, e.g. from the electromagnetic field of read/write devices but also the possibility of gathering information about environment should be available, e.g. by measuring different kind of physical quantities. In such an electrical device, the crucial problem consists in energy conditioning because the output voltage-current characteristic of an front-end (antenna with matching and harvesting circuit) as well as the total and instantaneous power load generated by internal circuits are strongly dependent on a realized function but also on energy and communication conditions in the RFID interface. The properly designed solution should improve harvesting efficiency, current leakage of supply storage, matching between antenna and input circuits, in order to save energy and increase operating time in such a battery-free system. The authors present methods how to increase the autonomous operation time even at advanced measuring algorithms. The measuring system with wide spectrum of sensors dedicated for different quantities (physical, chemical, etc.) has also been presented. The results of model calculations and experimental verifications have been also discussed on the basis of investigations conducted in the unique laboratory stand of object navigation systems.

  12. Electric vehicle (EV) storage supply chain risk and the energy market: A micro and macroeconomic risk management approach

    NASA Astrophysics Data System (ADS)

    Aguilar, Susanna D.

    As a cost effective storage technology for renewable energy sources, Electric Vehicles can be integrated into energy grids. Integration must be optimized to ascertain that renewable energy is available through storage when demand exists so that cost of electricity is minimized. Optimization models can address economic risks associated with the EV supply chain- particularly the volatility in availability and cost of critical materials used in the manufacturing of EV motors and batteries. Supply chain risk can reflect itself in a shortage of storage, which can increase the price of electricity. We propose a micro-and macroeconomic framework for managing supply chain risk through utilization of a cost optimization model in combination with risk management strategies at the microeconomic and macroeconomic level. The study demonstrates how risk from the EVs vehicle critical material supply chain affects manufacturers, smart grid performance, and energy markets qualitatively and quantitatively. Our results illustrate how risk in the EV supply chain affects EV availability and the cost of ancillary services, and how EV critical material supply chain risk can be mitigated through managerial strategies and policy.

  13. Geothermal energy and the utility market -- the opportunities and challenges for expanding geothermal energy in a competitive supply market: Proceedings

    SciTech Connect

    Not Available

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year's conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,'' focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  14. The sustainable water-energy nexus: Life-cycle impacts and feasibility of regional energy and water supply scenarios

    NASA Astrophysics Data System (ADS)

    Dale, Alexander T.

    Water and energy are critical, interdependent, and regional resources, and effective planning and policies around which sources to use requires combining information on environmental impacts, cost, and availability. Questions around shifting energy and water sources towards more renewable options, as well as the potential role of natural gas from shale formations are under intense discussion. Decisions on these issues will be made in the shadow of climate change, which will both impact and be impacted by energy and water supplies. This work developed a model for calculating the life-cycle environmental impacts of regional energy and water supply scenarios (REWSS). The model was used to discuss future energy pathways in Pennsylvania, future electricity impacts in Brazil, and future water pathways in Arizona. To examine energy in Pennsylvania, this work also developed the first process-based life-cycle assessment (LCA) of shale gas, focusing on greenhouse gas (GHG) emissions, energy consumption, and water consumption. This LCA confirmed results that shale gas is similar to conventional gas in GHG emissions, though potentially has a lower net energy due to a wide range of production rates for wells. Brazil's electricity-related impacts will rise as development continues. GHG emissions are shown to double by 2020 due to expanded natural gas (NG) and coal usage, with a rise of 390% by 2040 posssible with tropical hydropower reservoirs. While uncertainty around reservoir impacts is large, Brazil's low GHG emissions intensity and future carbon emissions targets are threatened by likely electricity scenarios. Pennsylvania's energy-related impacts are likely to hinge on whether NG is used as a replacement for coal, allowing GHG emissions to drop and then plateau at 93% of 2010 values; or as a transition fuel to expanded renewable energy sources, showing a steady decrease to 86% in 2035. Increased use of biofuels will dominate land occupation and may dominate water

  15. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    plants can be economically substituted by low carbon based technologies. Furthermore, the integrated annual load management notably contributes to innovative process integration becoming economic in an energy system affected by low efficiency and flexibility. Further limiting flexibility, the geographic location of this innovative low carbon energy production technology strictly depends on geological boundary conditions, namely the presence of exploitable coal resources, and availability of energy transport networks to supply potential end users with the product. Hereby, feeding upgraded synthesis gas directly into the Bulgarian gas pipeline network avoiding its conversion into electricity is an alternative approach with relevant economic potentials. For that purpose, the proximity and availability of these transport networks as well as the demand of end users are validated by the integrated energy system model. Coupling our techno-economic process model to an energy system-modelling framework allows the determination of the future economical potentials and the limitations for the implementation of a low carbon energy production technology into the Bulgarian energy system. The obtained results show that the Bulgarian energy system can significantly benefit from the integration of underground coal gasification considering carbon dioxide mitigation technologies potentially initiating a continuous substitution of imported fuels by domestic coal resources.

  16. Ion Energy Distributions and their Relative Abundance in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Study of kinetics of ions and neutrals produced in high density inductively coupled plasma (ICP) discharges is of great importance for achieving a high degree of plasma assisted deposition and etching. In this paper, we present the ion energy distributions (IEDs) of various ions arriving at the grounded lower electrode. The ions were energy as well as mass analyzed by a combination of electrostatic analyzer-quadrupole mass spectrometer for pure Ar and CF4/Ar mixtures. The measurements have been made at gas pressures ranging from 30 to 100 mTorr. In addition, the IEDs were measured when the wafer-supporting electrode was also rf-powered and the effect of the self-bias was observed in the energy distributions of ions. The shapes of the IEDs are discussed an related to the sheath properties and measured electrical waveforms, as a function of pressure and applied power. Relative ion intensities were obtained by integration of each ion kinetic energy distribution function over its energy range.

  17. Meeting today's challenges to supply tomorrow's energy. Clean fossil energy technical and policy seminar

    SciTech Connect

    2005-07-01

    Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.

  18. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.

    PubMed

    Klaysom, Chalida; Cath, Tazhi Y; Depuydt, Tom; Vankelecom, Ivo F J

    2013-08-21

    Osmotically driven membrane processes (ODMP) have gained renewed interest in recent years and they might become a potential solution for the world's most challenging problems of water and energy scarcity. Though the concept of utilizing osmotic pressure difference between high and low salinity streams across semipermeable membranes has been explored for several decades, lack of optimal membranes and draw solutions hindered competition between forward osmosis (FO) and pressure retarded osmosis (PRO) with existing water purification and power generation technologies, respectively. Driven by growing global water scarcity and by energy cost and negative environmental impacts, novel membranes and draw solutions are being developed for ODMPs, mass and heat transfer in osmotic process are becoming better understood, and new applications of ODMPs are emerging. Therefore, OMDPs might become promising green technologies to provide clean water and clean energy from abundantly available renewable resources. This review focuses primarily on new insights into osmotic membrane transport mechanisms and on novel membranes and draw solutions that are currently being developed. Furthermore, the effects of operating conditions on the overall performance of osmotic membranes will be highlighted and future perspectives will be presented.

  19. Preparation and evaluation of easy energy supply property of medium-chain fatty acids liposomes.

    PubMed

    Liu, Weilin; Liu, Wei; Liu, Chengmei; Liu, Jianhua; Zheng, Huijuan; Yang, Shuibing; Su, Jiahong

    2011-01-01

    To develop an easy-energy-supply agent, medium-chain fatty acids (MCFAs) liposomes were prepared by thin-layer dispersion, freeze-thawing and dynamic high pressure microfluidization (DHPM)-freeze-thawing methods. Results showed that MCFAs nanoliposomes obtained by the novel method (DHPM-freeze-thawing) exhibited a smaller size (72.6 ± 4.9 nm), narrower size distribution (PDI = 0.175 ± 0.005), higher zeta potential (-41.27 ± 1.16 mV) and entrapment efficiency (45.9 ± 6.0%) compared to the other two methods. In the weight-loaded swimming test of the mice, the high-dose group of MCFAs nanoliposomes indicated a significantly longer swimming time (105 ± 31 min, p < 0.05), a lower serum urea nitrogen (839.5 ± 111.9 mg/L, p < 0.05) and blood lactic acid (5.7 ± 1.0 mmol/L, p ≤ 0.001), and a higher hepatic glycogen (15.0 ± 3.6 mg/g, p ≤ 0.001) than those of the control group (53 ± 13 min, 1153.6 ± 102.5 mg/L, 12.5 ± 1.9 mmol/L and 8.8 ± 3.3 mg/g, respectively). However, no significant difference was found between the high-dose group and MCFAs group. The results suggested that MCFAs nanoliposomes could be used as a potential easy-energy-supply agent. PMID:21970656

  20. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism.

    PubMed

    Moreno-Sánchez, Rafael; Marín-Hernández, Alvaro; Saavedra, Emma; Pardo, Juan P; Ralph, Stephen J; Rodríguez-Enríquez, Sara

    2014-05-01

    Applying basic biochemical principles, this review analyzes data that contrasts with the Warburg hypothesis that glycolysis is the exclusive ATP provider in cancer cells. Although disregarded for many years, there is increasing experimental evidence demonstrating that oxidative phosphorylation (OxPhos) makes a significant contribution to ATP supply in many cancer cell types and under a variety of conditions. Substrates oxidized by normal mitochondria such as amino acids and fatty acids are also avidly consumed by cancer cells. In this regard, the proposal that cancer cells metabolize glutamine for anabolic purposes without the need for a functional respiratory chain and OxPhos is analyzed considering thermodynamic and kinetic aspects for the reductive carboxylation of 2-oxoglutarate catalyzed by isocitrate dehydrogenase. In addition, metabolic control analysis (MCA) studies applied to energy metabolism of cancer cells are reevaluated. Regardless of the experimental/environmental conditions and the rate of lactate production, the flux-control of cancer glycolysis is robust in the sense that it involves the same steps: glucose transport, hexokinase, hexosephosphate isomerase and glycogen degradation, all at the beginning of the pathway; these steps together with phosphofructokinase 1 also control glycolysis in normal cells. The respiratory chain complexes exert significantly higher flux-control on OxPhos in cancer cells than in normal cells. Thus, determination of the contribution of each pathway to ATP supply and/or the flux-control distribution of both pathways in cancer cells is necessary in order to identify differences from normal cells which may lead to the design of rational alternative therapies that selectively target cancer energy metabolism.

  1. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism.

    PubMed

    Moreno-Sánchez, Rafael; Marín-Hernández, Alvaro; Saavedra, Emma; Pardo, Juan P; Ralph, Stephen J; Rodríguez-Enríquez, Sara

    2014-05-01

    Applying basic biochemical principles, this review analyzes data that contrasts with the Warburg hypothesis that glycolysis is the exclusive ATP provider in cancer cells. Although disregarded for many years, there is increasing experimental evidence demonstrating that oxidative phosphorylation (OxPhos) makes a significant contribution to ATP supply in many cancer cell types and under a variety of conditions. Substrates oxidized by normal mitochondria such as amino acids and fatty acids are also avidly consumed by cancer cells. In this regard, the proposal that cancer cells metabolize glutamine for anabolic purposes without the need for a functional respiratory chain and OxPhos is analyzed considering thermodynamic and kinetic aspects for the reductive carboxylation of 2-oxoglutarate catalyzed by isocitrate dehydrogenase. In addition, metabolic control analysis (MCA) studies applied to energy metabolism of cancer cells are reevaluated. Regardless of the experimental/environmental conditions and the rate of lactate production, the flux-control of cancer glycolysis is robust in the sense that it involves the same steps: glucose transport, hexokinase, hexosephosphate isomerase and glycogen degradation, all at the beginning of the pathway; these steps together with phosphofructokinase 1 also control glycolysis in normal cells. The respiratory chain complexes exert significantly higher flux-control on OxPhos in cancer cells than in normal cells. Thus, determination of the contribution of each pathway to ATP supply and/or the flux-control distribution of both pathways in cancer cells is necessary in order to identify differences from normal cells which may lead to the design of rational alternative therapies that selectively target cancer energy metabolism. PMID:24513530

  2. Impact of innovations on future energy supply - chemical enhanced oil recovery (CEOR).

    PubMed

    Bittner, Christian

    2013-01-01

    The International Energy Agency (IEA) expects an increase of global energy demand by one-third during next 20 years together with a change in the global energy mix. A key-influencing factor is a strong expected increase in oil and gas production in the United States driven by 'new' technologies such as hydraulic fracturing. Chemical enhanced oil recovery (CEOR) is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. In the case of polymer flooding with poly acrylamide, the number of full field implementations has increased in recent years. In the meantime new polymers have been developed to cover previously unmet needs - such polymers can be applied in fields of high salinity and high temperature. Use of surfactants is in an earlier stage, but pilot tests show promising results.

  3. Effect of the energy supply on filamentous growth and development in Physcomitrella patens.

    PubMed

    Thelander, Mattias; Olsson, Tina; Ronne, Hans

    2005-02-01

    The filamentous gametophyte of the moss Physcomitrella patens consists of two filament types called chloronemata and caulonemata. Chloronemal cells are photosynthetically active with numerous chloroplasts, while caulonemata help to spread the colony by radial growth. The balance between the two filament types is affected by external factors such as light and plant hormones. In the present study, caulonema formation and chloronemal branching have been monitored during high and low light conditions and in the presence of glucose, auxin, or cytokinin. These experiments were performed both in a wild-type strain and in a hxk1 knockout mutant which lacks the major hexokinase of Physcomitrella. It was found that caulonema formation is induced by high energy conditions such as high light and external glucose, while chloronemal branching is stimulated by low energy conditions such as reduced light, and in the hxk1 mutant. The hxk1 mutation also causes buds to appear on chloronemal filaments, which is rarely seen in the wild type, and shows increased sensitivity to cytokinin and abscisic acid. Based on these findings a model is proposed in which the energy supply of the moss colony regulates the balance between chloronemal and caulonemal growth.

  4. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements.

    PubMed

    Orikasa, Yuki; Masese, Titus; Koyama, Yukinori; Mori, Takuya; Hattori, Masashi; Yamamoto, Kentaro; Okado, Tetsuya; Huang, Zhen-Dong; Minato, Taketoshi; Tassel, Cédric; Kim, Jungeun; Kobayashi, Yoji; Abe, Takeshi; Kageyama, Hiroshi; Uchimoto, Yoshiharu

    2014-07-11

    Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeable magnesium battery system. Ion-exchanged MgFeSiO4 demonstrates a high reversible capacity exceeding 300 Ah · g(-1) at a voltage of approximately 2.4 V vs. Mg. Further, the electronic and crystal structure of ion-exchanged MgFeSiO4 changes during the charging and discharging processes, which demonstrates the (de)insertion of magnesium in the host structure. The combination of ion-exchanged MgFeSiO4 with a magnesium bis(trifluoromethylsulfonyl)imide-triglyme electrolyte system proposed in this work provides a low-cost and practical rechargeable magnesium battery with high energy density, free from corrosion and safety problems.

  5. Measuring the embodied energy in drinking water supply systems: a case study in the Great Lakes region.

    PubMed

    Mo, Weiwei; Nasiri, Fuzhan; Eckelman, Matthew J; Zhang, Qiong; Zimmerman, Julie B

    2010-12-15

    A sustainable supply of both energy and water is critical to long-term national security, effective climate policy, natural resource sustainability, and social wellbeing. These two critical resources are inextricably and reciprocally linked; the production of energy requires large volumes of water, while the treatment and distribution of water is also significantly dependent upon energy. In this paper, a hybrid analysis approach is proposed to estimate embodied energy and to perform a structural path analysis of drinking water supply systems. The applicability of this approach is then tested through a case study of a large municipal water utility (city of Kalamazoo) in the Great Lakes region to provide insights on the issues of water-energy pricing and carbon footprints. Kalamazoo drinking water requires approximately 9.2 MJ/m(3) of energy to produce, 30% of which is associated with indirect inputs such as system construction and treatment chemicals.

  6. Evidence of Energy Supply by Active-Region Spicules to the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Zeighami, S.; Ahangarzadeh Maralani, A. R.; Tavabi, E.; Ajabshirizadeh, A.

    2016-03-01

    We investigate the role of active-region spicules in the mass balance of the solar wind and energy supply in heating the solar atmosphere. We use high-cadence observations from the Solar Optical Telescope (SOT) onboard the Hinode satellite in the Ca ii H-line filter obtained on 26 January 2007. The observational technique provides the high spatio-temporal resolution required to detect fine structures such as spicules. We apply a Fourier power spectrum and wavelet analysis to Hinode/SOT time series of an active-region data set to explore the existence of coherent intensity oscillations. Coherent waves could be evidence of energy transport that serves to heat the solar atmosphere. Using time series, we measure the phase difference between two intensity profiles obtained at two different heights, which gives information about the phase difference between oscillations at those heights as a function of frequency. The results of a fast Fourier transform (FFT) show peaks in the power spectrum at frequencies in the range from 2 to 8 mHz at four different heights (above the limb), while the wavelet analysis indicates dominant frequencies similar to those of the Fourier power spectrum results. A coherency study indicates coherent oscillations at about 5.5 mHz (3 min). We measure mean phase speeds in the range 250-425 km s^{-1} increasing with height. The energy flux of these waves is estimated to be F = 1.8 × 106-11.2 × 106 erg cm^{-2} s^{-1} or 1.8-11.2 kW m^{-2}, which indicates that they are sufficiently energetic to accelerate the solar wind and heat the corona to temperatures of several million degrees. We compute the the mass flux carried by spicules of 3 × 10^{-10}-2 × 10^{-9} g cm^{-2} s^{-1}, which is 10-60 times higher than the mass that is carried away from the corona because of the solar wind (about 3 × 10^{-11} g cm^{-2} s^{-1}). Therefore, our results indicate that about 0.02-0.1 of the spicule mass is ejected from the corona, while the remainder reverts

  7. Changes in body size, abundance, and energy allocation in rockfish assemblages of the northeast Pacific.

    PubMed

    Harvey, Chris J; Tolimieri, Nick; Levin, Phillip S

    2006-08-01

    Fish body size, a key driver of many aspects of fish population biology and ecology, is affected by fisheries that deplete the largest individuals. Rockfish (genus Sebastes) are a diverse group that has been heavily fished on the U.S. West Coast in recent decades. We examined trawl survey data from 1980 to 2001 to determine spatial and temporal trends in body size and density of 16 shelf rockfish species, including six that are considered overfished. Mean individual mass and maximum observed mass declined in the majority of species in one or more zoogeographic regions between central California and Washington. Density changes were far more variable in time and space, but in all regions, density declines were most often associated with large-bodied rockfish. We next estimated the impact of size and density changes on energy consumption and fecundity in a five-species rockfish assemblage that includes bocaccio (S. paucispinis), a large-bodied, overfished species. Indexes of both consumption and fecundity by the assemblage increased in the southern portion of the study area between 1980 and 2001 but decreased in the northern portion. Allocation of energy and reproductive potential within the assemblage shifted dramatically: relative to bocaccio, total energy consumption and fecundity indexes for the other four species increased by orders of magnitude from 1980 to 2001. These changes in community structure may affect the ability of bocaccio and other large rockfish species to recover from overfishing, especially in light of long-term declines in zooplankton production that may also be affecting rockfish size and production. Addressing these issues may require a regional, multispecies management approach.

  8. Coalmines as Underground Pumped Storage Power Plants (UPP) - A Contribution to a Sustainable Energy Supply?

    NASA Astrophysics Data System (ADS)

    Luick, H.; Niemann, A.; Perau, E.; Schreiber, U.

    2012-04-01

    In Europe, electrical power generation from renewable energy sources rose by about 50% in the last 20 years. In Germany, renewable electricity is mainly provided by wind power and photovoltaic. Energy output depends on weather conditions like wind speed or solar radiation and may therefore vary considerably. Rapid fluctuations in power generation already require regulation of conventional power plants by the distribution network operators to stabilize and ensure grid frequency and overall system stability. In order to avoid future blackouts caused by intermittent energy sources, it is necessary to increase the storage capacity for electric power. Theoretically, there are many technologies for storing energy, like accumulators, hydrogen storage systems, biomethane facilities (hydrocarbon synthesis) or compressed air storage. Only a few technologies combine sufficient capacity, fast response, high efficiency, low storage loss and long-term application experience. A pumped storage power plant (PSPP) is a state of the art technology which combines all of these aspects. Energy is stored in form of potential energy by pumping water to an upper reservoir in times of energy surplus or low energy costs. In times of insufficient power supply or high energy costs, the water is released through turbines to produce electric energy. The efficiency of state-of-the-art systems is about 70-80%. The total head (geodetic height between upper and lower reservoirs) and the storage capacity of the reservoirs as given in a mountainous terrain, determine the energy storage capacity of a PSPP. An alternative is the use of man-made geodetic height differences as given in ore, coal or open cast lignite mines. In these cases, the lower reservoir of the plant is located in the drifts or at the bottom of the mine. Energieforschungszentrum Niedersachsen (EFZN) has already explored the installation of a PSPP in abandoned ore mines in the Harz-region/Germany (Beck 2011). In 2011/2012 a basic

  9. Relative Abundances and Energy Spectra of C, N, and 0 as Measured by the Advanced Thin Ionization Calorimeter Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Fazely, A. R.; Gunasingha, R. M.; Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.

    2003-01-01

    We present results on the spectra and the relative abundances of C, N, and 0 nuclei in the cosmic radiation as measured from the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) . The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate calorimeter. It is equipped with a large area mosaic of silicon detector pixels capable of charge identification from H to Fe. As a redundancy check for the charge identification and a particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the middle and below a 0.75 nuclear interaction length graphite target.

  10. The Influence on Population Weight Gain and Obesity of the Macronutrient Composition and Energy Density of the Food Supply.

    PubMed

    Crino, Michelle; Sacks, Gary; Vandevijvere, Stefanie; Swinburn, Boyd; Neal, Bruce

    2015-03-01

    Rates of overweight and obesity have increased dramatically in all regions of the world over the last few decades. Almost all of the world's population now has ubiquitous access to low-cost, but highly-processed, energy-dense, nutrient-poor food products. These changes in the food supply, rather than decreases in physical activity, are most likely the primary driver of population weight gain and obesity. To-date, the majority of prevention efforts focus on personalised approaches targeting individuals. Population-wide food supply interventions addressing sodium and trans fat reduction have proven highly effective and comparable efforts are now required to target obesity. The evidence suggests that strategies focusing upon reducing the energy density and portion size of foods will be more effective than those targeting specific macronutrients. Government leadership, clearly specified targets, accountability and transparency will be the key to achieving the food supply changes required to address the global obesity epidemic.

  11. Presence and abundance of non-native plant species associated with recent energy development in the Williston Basin

    USGS Publications Warehouse

    Preston, Todd M.

    2015-01-01

    The Williston Basin, located in the Northern Great Plains, is experiencing rapid energy development with North Dakota and Montana being the epicenter of current and projected development in the USA. The average single-bore well pad is 5 acres with an estimated 58,485 wells in North Dakota alone. This landscape-level disturbance may provide a pathway for the establishment of non-native plants. To evaluate potential influences of energy development on the presence and abundance of non-native species, vegetation surveys were conducted at 30 oil well sites (14 ten-year-old and 16 five-year-old wells) and 14 control sites in native prairie environments across the Williston Basin. Non-native species richness and cover were recorded in four quadrats, located at equal distances, along four transects for a total of 16 quadrats per site. Non-natives were recorded at all 44 sites and ranged from 5 to 13 species, 7 to 15 species, and 2 to 8 species at the 10-year, 5-year, and control sites, respectively. Respective non-native cover ranged from 1 to 69, 16 to 76, and 2 to 82 %. Total, forb, and graminoid non-native species richness and non-native forb cover were significantly greater at oil well sites compared to control sites. At oil well sites, non-native species richness and forb cover were significantly greater adjacent to the well pads and decreased with distance to values similar to control sites. Finally, non-native species whose presence and/or abundance were significantly greater at oil well sites relative to control sites were identified to aid management efforts.

  12. Presence and abundance of non-native plant species associated with recent energy development in the Williston Basin.

    PubMed

    Preston, Todd M

    2015-04-01

    The Williston Basin, located in the Northern Great Plains, is experiencing rapid energy development with North Dakota and Montana being the epicenter of current and projected development in the USA. The average single-bore well pad is 5 acres with an estimated 58,485 wells in North Dakota alone. This landscape-level disturbance may provide a pathway for the establishment of non-native plants. To evaluate potential influences of energy development on the presence and abundance of non-native species, vegetation surveys were conducted at 30 oil well sites (14 ten-year-old and 16 five-year-old wells) and 14 control sites in native prairie environments across the Williston Basin. Non-native species richness and cover were recorded in four quadrats, located at equal distances, along four transects for a total of 16 quadrats per site. Non-natives were recorded at all 44 sites and ranged from 5 to 13 species, 7 to 15 species, and 2 to 8 species at the 10-year, 5-year, and control sites, respectively. Respective non-native cover ranged from 1 to 69, 16 to 76, and 2 to 82%. Total, forb, and graminoid non-native species richness and non-native forb cover were significantly greater at oil well sites compared to control sites. At oil well sites, non-native species richness and forb cover were significantly greater adjacent to the well pads and decreased with distance to values similar to control sites. Finally, non-native species whose presence and/or abundance were significantly greater at oil well sites relative to control sites were identified to aid management efforts. PMID:25797884

  13. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    NASA Astrophysics Data System (ADS)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2, NO3-, Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, biocorrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions.

  14. A bottom-up assessment method of limitations to and vulnerability of energy supply in developing countries

    NASA Astrophysics Data System (ADS)

    Lissner, Tabea; Olonscheck, Mady; Walther, Carsten; Kropp, Jürgen P.; Reusser, Dominik

    2015-04-01

    Sufficient energy access is essential for development and adequate livelihood conditions, as the majority of societal activities depend on reliable and sufficient energy. Especially in developing and threshold countries, energy access remains limited and intermittent. Moreover, compared to developed countries, often the expenditures for energy constitute a huge part of the available money. The vulnerability of energy systems to the impacts of climate change differs depending on the utilized source of energy. A special characteristic of developing and threshold countries is the fact that the spatial heterogeneity of the energy supply structure, especially between urban and rural regions, is generally larger than in developed countries, while the adaptive capacity of people is often much lower. A sound consideration of these complex conditions is a necessary basis for determining in how far climate change impacts can further diminish energy access in regions, where energy access is already limited. The topic of energy vulnerability has often been addressed for developed countries, but assessments for less developed countries remain scarce. On the one hand, data needed for energy vulnerability assessments, as they exist for the developed world, is usually not available. On the other hand, existing assessment methods for the developed world are often not transferable because they focus on specific supply infrastructure or energy carriers. Transferability is also hindered by the large differences in energy access and energy use patterns. We propose a novel approach to assess domestic energy supply vulnerability, by reversing the usual chain of assessment. On the basis of a basket of household energy needs for different purposes, we first assess which sources are used in order to fulfil specific energy needs. By focussing on the regionally specific energy carriers, we are able to significantly reduce data needs and assess directly, how energy vulnerability may play out

  15. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon

  16. Colostrum production in ewes: a review of regulation mechanisms and of energy supply.

    PubMed

    Banchero, G E; Milton, J T B; Lindsay, D R; Martin, G B; Quintans, G

    2015-05-01

    In sheep production systems based on extensive grazing, neonatal mortality often reaches 15% to 20% of lambs born, and the mortality rate can be doubled in the case of multiple births. An important contributing factor is the nutrition of the mother because it affects the amount of colostrum available at birth. Ewes carrying multiple lambs have higher energy requirements than ewes carrying a single lamb and this problem is compounded by limitations to voluntary feed intake as the gravid uterus compresses the rumen. This combination of factors means that the nutritional requirements of the ewe carrying multiple lambs can rarely be met by the supply of pasture alone. This problem can overcome by supplementation with energy during the last week of pregnancy, a treatment that increases colostrum production and also reduces colostrum viscosity, making it easier for the neonatal lamb to suck. In addition, litter size and nutrition both accelerate the decline in concentration of circulating progesterone that, in turn, triggers the onsets of both birth and lactogenesis, and thus ensures the synchrony of these two events. Furthermore, the presence of colostrum in the gut of the lamb increases its ability to recognize its mother, and thus improves mother-young bonding. Most cereal grains that are rich in energy in the form of starch, when used as supplements in late pregnancy will increase colostrum production by 90% to 185% above control (unsupplemented) values. Variation among types of cereal grain in the response they induce may be due to differences in the amount of starch digested post-ruminally. As a percentage of grain dry matter intake, the amount of starch entering the lower digestive tract is 14% for maize, 8.5% for barley and 2% for oats. Supplements of high quality protein from legumes and oleiferous seeds can also increase colostrum production but they are less effective than cereal grains. In conclusion, short-term supplementation before parturition

  17. Limiting factors in photosynthesis. V. Photochemical energy supply colimits photosynthesis at low values of intercellular CO/sub 2/ concentration

    SciTech Connect

    Taylor, S.E.; Terry, N.

    1984-05-01

    Although there is now some agreement with the view that the supply of photochemical energy may influence photosynthetic rate (P) at high CO/sub 2/ pressures, it is less clear whether this limitation extends to P at low CO/sub 2/. This was investigated by measuring P per area as a function of the intercellular CO/sub 2/ concentration (C/sub i/) at different levels of photochemical energy supply. Changes in the latter were obtained experimentally by varying the level of irradiance to normal (Fe-sufficient) leaves of Beta vulgaris L. cv F58-554H1, and by varying photosynthetic electron transport capacity using leaves from Fe-deficient and Fe-sufficient plants. P and C/sub i/ were determined for attached sugar beet leaves using open flow gas exchange. The results suggest the P/area was colimited by the supply of photochemical energy at very low as well as high values of C/sub i/. Using the procedure developed by Perchorowicz et al., we investigated the effect or irradiance on ribulose bisphosphate carboxylase (RuBPCase) activation. The ratio of initial extractable activity to total inducible RuBPCase activity increased from 0.25 to 0.90 as leaf irradiance increased from 100 to 1500 microeinsteins photosynthetically active radiation per square meter per second. These data suggest that colimitation by photochemical energy supply at low C/sub i/ may be mediated via effects on RuBPCase activation.

  18. Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition

    NASA Astrophysics Data System (ADS)

    Bo, Zheng; Wu, Erka; Yan, Jianhua; Chi, Yong; Cen, Kefa

    2013-01-01

    This note reports on a novel power supply design for gliding arc discharge with applying controlled phase-chopping on the input voltage waveform, aiming at simultaneously satisfying the decomposition efficacy and energy efficiency for volatile organic compound decomposition. With a proper control on the phase-chopping fraction, the energy efficiency can be obviously enhanced, while the decomposition efficacy is almost maintained, possibly due to the compensation from long-life radical induced decomposition during discharge intervals.

  19. Toward Resolution of Imbalance between Microbiological Energy Demand and Supply to Cariaco's Redoxcline: Horizontal Productivity Gradients

    NASA Astrophysics Data System (ADS)

    Taylor, G. T.; Luerssen, R.; Muller-Karger, F.; Varela, R.; Scranton, M. I.

    2004-12-01

    The Cariaco Basin's redoxcline or transition zone between oxic and anoxic waters typically resides between 250 and 450 m and hosts anomalously high microbiological production. At Station CARIACO, chemoautotrophic bacterial production in the redoxcline on average represents 70% (median) of local primary production in surface waters (upper 100 m). Presumably chemoautotrophs are fueled by inorganic end products (reduced S species, NH4{ +}, CH4, H2) supplied by remineralization of residual surface production in the Basin's interior. However, less than 10% of local surface production (in C units) sinks to the redoxcline. Simple 1-D mass balance calculations based on measurements from our time-series station demonstrate that <10% of chemoautotrophs' demands for reductant (energy) can be met by local vertical flux of biogenic debris. Both temporal and spatial variability in chemical and biological processes are likely to be important in creating this perceived imbalance. We hypothesize that enriched, non-local sources of reductant are advected in bottom waters to support higher-than-expected chemoautotrophic production at Station CARIACO. Four years of SeaWiFS ocean color satellite imagery clearly demonstrate that mean annual primary production is significantly higher east of Station Cariaco and that seasonal blooms propagate westward. Using SeaWiFS images and published algorithms, we will estimate local and basin-wide production and organic sedimentation based on bathymetry and flux models. From accepted diagenetic models and biological stoichiometries, we will estimate potential reductant production and requisite transit velocities required to balance observed biological demand.

  20. Creatine Kinase ATP and Phosphocreatine Energy Supply in a Single Kindred of Patients with Hypertrophic Cardiomyopathy

    PubMed Central

    Abraham, M. Roselle; Bottomley, Paul A.; Dimaano, Veronica Lea; Pinheiro, Aurelio; Steinberg, Angela; Traill, Thomas A.; Abraham, Theodore P.; Weiss, Robert G

    2013-01-01

    A lethal and extensively characterized familial form of hypertrophic cardiomyopathy (HC) is due to a point mutation (Arg403Gln) in the cardiac β-myosin heavy-chain (MHC) gene. Although this is associated with abnormal energy metabolism and progression to heart failure in an animal model, in vivo cardiac energetic shave not been characterized in patients with this mutation. Noninvasive phosphorus saturation transfer magnetic resonance spectroscopy was used to measure the adenosine triphosphate (ATP)supplied by the creatine kinase (CK) reaction and phosphocreatine (PCr), the heart’s primary energy reserve, in 9 of 10 patients from a single kindred with HC caused by Arg403GIn mutation, and 17 age-matched healthy controls. Systolic and diastolic function was assessed by echocardiography in all 10 HC patients. HC patients had impairment of diastolic function as well as mild systolic dysfunction, when assessed using global systolic longitudinal strain. Myocardial [PCr] was significantly decreased by 24% in patients (7.1±2.3μmol/g) compared to controls (9.4±1.2μmol/g; p=0.003). The pseudo-first-order CK rate-constant was 26% lower (0.28±0.15 vs. 0.38±0.07s−1, p=0.035) and the forward CK flux was 44% lower (2.0±1.4 vs3.6±0.9 μmol/g/s, p=0.001) than controls. The contractile abnormalities did not correlate with metabolic indices. In conclusion, myocardial PCr and CK ATP delivery are significantly reduced in patients with HC due to Arg403Gln mutation, akin to prior results from mice with the same mutation. Lack of a relation between energetic and contractile abnormalities suggests the former are due to the sarcomeric mutation and not a late consequence of mechanical dysfunction. PMID:23751935

  1. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon

  2. Designing Energy Supply Chains with the P-graph Framework under Cost Constraints and Sustainability Considerations

    EPA Science Inventory

    A computer-aided methodology for designing sustainable supply chains is presented using the P-graph framework to develop supply chain structures which are analyzed using cost, the cost of producing electricity, and two sustainability metrics: ecological footprint and emergy. They...

  3. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  4. Coal and the Present Energy Situation: Abundant coal reserves can be used to alleviate the oil and gas shortage.

    PubMed

    Osborn, E F

    1974-02-01

    To summarize, we must make greater use of coal, an energy resource that the nation has in great abundance, if we are to approach our former position of self-sufficiency in energy production. The first step is to move immediately to replace the oil and gas used in electric generating plants with coal and to require that coal be used in fossil fuel electric plants planned or under construction in the next few years. The technology to remove sulfur and particulates from the stack gases is at hand, and therefore environmental regulations can be met. Producing and transporting the required increased tonnages of coal are problems that can be met with appropriate incentives to the coal and transportation industries. Improved mining technology would be helpful but is not a requiremlent. Oil and gas from coal should be in significant commercial production in about a decade. Underground, or in situ, gasification of coal, now in field tests, looks promising as a practical process for recovering the energy from coal, especially in deep or thick beds that cannot be mined efficiently. Recoverable methane occurs in coal beds in the United States in an amount approximately equal to the total reserves of natural gas-about 260 trillion cubic feet. This large reserve of natural gas should be exploited as quickly as possible. Only minor investments in exploration and modest advances in technology are required. Finally, as coal production is expanded. adequate planning and the most modern technology should be used to ensure that coal is extracted with maximum recovery and with minimum damage to the environment.

  5. Impacts of chronic anthropogenic noise from energy-sector activity on abundance of songbirds in the boreal forest.

    PubMed

    Bayne, Erin M; Habib, Lucas; Boutin, Stan

    2008-10-01

    The effects of human activities in forests are often examined in the context of habitat conversion. Changes in habitat structure and composition are also associated with increases in the activity of people with vehicles and equipment, which results in increases in anthropogenic noise. Anthropogenic noise may reduce habitat quality for many species, particularly those that rely on acoustic signals for communication. We compared the density and occupancy rate of forest passerines close to versus far from noise-generating compressor stations and noiseless well pads in the boreal forest of Alberta, Canada. Using distance-based sampling, we found that areas near noiseless energy facilities had a total passerine density 1.5 times higher than areas near noise-producing energy sites. The White-throated Sparrow (Zonotrichia albicollis), Yellow-rumped Warbler (Dendroica coronata), and Red-eyed Vireo (Vireo olivaceus) were less dense in noisy areas. We used repeat sampling to estimate occupancy rate for 23 additional species. Seven had lower conditional or unconditional occupancy rates near noise-generating facilities. One-third of the species examined showed patterns that supported the hypothesis that abundance is influenced by anthropogenic noise. An additional 4 species responded negatively to edge effects. To mitigate existing noise impacts on birds would require approximately $175 million. The merits of such an effort relative to other reclamation actions are discussed. Nevertheless, given the $100 billion energy-sector investment planned for the boreal forest in the next 10 years, including noise suppression technology at the outset of construction, makes noise mitigation a cost-effective best-management practice that might help conserve high-quality habitat for boreal birds. PMID:18616740

  6. Structuring energy supply and demand networks in a general equilibrium model to simulate global warming control strategies

    SciTech Connect

    Hamilton, S.; Veselka, T.D.; Cirillo, R.R.

    1991-01-01

    Global warming control strategies which mandate stringent caps on emissions of greenhouse forcing gases can substantially alter a country's demand, production, and imports of energy products. Although there is a large degree of uncertainty when attempting to estimate the potential impact of these strategies, insights into the problem can be acquired through computer model simulations. This paper presents one method of structuring a general equilibrium model, the ENergy and Power Evaluation Program/Global Climate Change (ENPEP/GCC), to simulate changes in a country's energy supply and demand balance in response to global warming control strategies. The equilibrium model presented in this study is based on the principle of decomposition, whereby a large complex problem is divided into a number of smaller submodules. Submodules simulate energy activities and conversion processes such as electricity production. These submodules are linked together to form an energy supply and demand network. Linkages identify energy and fuel flows among various activities. Since global warming control strategies can have wide reaching effects, a complex network was constructed. The network represents all energy production, conversion, transportation, distribution, and utilization activities. The structure of the network depicts interdependencies within and across economic sectors and was constructed such that energy prices and demand responses can be simulated. Global warming control alternatives represented in the network include: (1) conservation measures through increased efficiency; and (2) substitution of fuels that have high greenhouse gas emission rates with fuels that have lower emission rates. 6 refs., 4 figs., 4 tabs.

  7. A proposed national wind power R and D program. [offshore wind power system for electric energy supplies

    NASA Technical Reports Server (NTRS)

    Heronemus, W.

    1973-01-01

    An offshore wind power system is described that consists of wind driven electrical dc generators mounted on floating towers in offshore waters. The output from the generators supplies underwater electrolyzer stations in which water is converted into hydrogen and oxygen. The hydrogen is piped to shore for conversion to electricity in fuel cell stations. It is estimated that this system can produce 159 x 10 to the ninth power kilowatt-hours per year. It is concluded that solar energy - and that includes wind energy - is the only way out of the US energy dilemma in the not too distant future.

  8. Regionalized LCA-based optimization of building energy supply: method and case study for a Swiss municipality.

    PubMed

    Saner, Dominik; Vadenbo, Carl; Steubing, Bernhard; Hellweg, Stefanie

    2014-07-01

    This paper presents a regionalized LCA-based multiobjective optimization model of building energy demand and supply for the case of a Swiss municipality for the minimization of greenhouse gas emissions and particulate matter formation. The results show that the environmental improvement potential is very large: in the optimal case, greenhouse gas emissions from energy supply could be reduced by more than 75% and particulate emissions by over 50% in the municipality. This scenario supposes a drastic shift of heat supply systems from a fossil fuel dominated portfolio to a portfolio consisting of mainly heat pump and woodchip incineration systems. In addition to a change in heat supply technologies, roofs, windows and walls would need to be refurbished in more than 65% of the municipality's buildings. The full potential of the environmental impact reductions will hardly be achieved in reality, particularly in the short term, for example, because of financial constraints and social acceptance, which were not taken into account in this study. Nevertheless, the results of the optimization model can help policy makers to identify the most effective measures for improvement at the decision making level, for example, at the building level for refurbishment and selection of heating systems or at the municipal level for designing district heating networks. Therefore, this work represents a starting point for designing effective incentives to reduce the environmental impact of buildings. While the results of the optimization model are specific to the municipality studied, the model could readily be adapted to other regions.

  9. Regionalized LCA-based optimization of building energy supply: method and case study for a Swiss municipality.

    PubMed

    Saner, Dominik; Vadenbo, Carl; Steubing, Bernhard; Hellweg, Stefanie

    2014-07-01

    This paper presents a regionalized LCA-based multiobjective optimization model of building energy demand and supply for the case of a Swiss municipality for the minimization of greenhouse gas emissions and particulate matter formation. The results show that the environmental improvement potential is very large: in the optimal case, greenhouse gas emissions from energy supply could be reduced by more than 75% and particulate emissions by over 50% in the municipality. This scenario supposes a drastic shift of heat supply systems from a fossil fuel dominated portfolio to a portfolio consisting of mainly heat pump and woodchip incineration systems. In addition to a change in heat supply technologies, roofs, windows and walls would need to be refurbished in more than 65% of the municipality's buildings. The full potential of the environmental impact reductions will hardly be achieved in reality, particularly in the short term, for example, because of financial constraints and social acceptance, which were not taken into account in this study. Nevertheless, the results of the optimization model can help policy makers to identify the most effective measures for improvement at the decision making level, for example, at the building level for refurbishment and selection of heating systems or at the municipal level for designing district heating networks. Therefore, this work represents a starting point for designing effective incentives to reduce the environmental impact of buildings. While the results of the optimization model are specific to the municipality studied, the model could readily be adapted to other regions. PMID:24865977

  10. Power supply

    DOEpatents

    Hart, Edward J.; Leeman, James E.; MacDougall, Hugh R.; Marron, John J.; Smith, Calvin C.

    1976-01-01

    An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

  11. Palmitate-induced changes in energy demand cause reallocation of ATP supply in rat and human skeletal muscle cells.

    PubMed

    Nisr, Raid B; Affourtit, Charles

    2016-09-01

    Mitochondrial dysfunction has been associated with obesity-related muscle insulin resistance, but the causality of this association is controversial. The notion that mitochondrial oxidative capacity may be insufficient to deal appropriately with excessive nutrient loads is for example disputed. Effective mitochondrial capacity is indirectly, but largely determined by ATP-consuming processes because skeletal muscle energy metabolism is mostly controlled by ATP demand. Probing the bioenergetics of rat and human myoblasts in real time we show here that the saturated fatty acid palmitate lowers the rate and coupling efficiency of oxidative phosphorylation under conditions it causes insulin resistance. Stearate affects the bioenergetic parameters similarly, whereas oleate and linoleate tend to decrease the rate but not the efficiency of ATP synthesis. Importantly, we reveal that palmitate influences how oxidative ATP supply is used to fuel ATP-consuming processes. Direct measurement of newly made protein demonstrates that palmitate lowers the rate of de novo protein synthesis by more than 30%. The anticipated decrease of energy demand linked to protein synthesis is confirmed by attenuated cycloheximide-sensitivity of mitochondrial respiratory activity used to make ATP. This indirect measure of ATP turnover indicates that palmitate lowers ATP supply reserved for protein synthesis by at least 40%. This decrease is also provoked by stearate, oleate and linoleate, albeit to a lesser extent. Moreover, palmitate lowers ATP supply for sodium pump activity by 60-70% and, in human cells, decreases ATP supply for DNA/RNA synthesis by almost three-quarters. These novel fatty acid effects on energy expenditure inform the 'mitochondrial insufficiency' debate. PMID:27154056

  12. Palmitate-induced changes in energy demand cause reallocation of ATP supply in rat and human skeletal muscle cells.

    PubMed

    Nisr, Raid B; Affourtit, Charles

    2016-09-01

    Mitochondrial dysfunction has been associated with obesity-related muscle insulin resistance, but the causality of this association is controversial. The notion that mitochondrial oxidative capacity may be insufficient to deal appropriately with excessive nutrient loads is for example disputed. Effective mitochondrial capacity is indirectly, but largely determined by ATP-consuming processes because skeletal muscle energy metabolism is mostly controlled by ATP demand. Probing the bioenergetics of rat and human myoblasts in real time we show here that the saturated fatty acid palmitate lowers the rate and coupling efficiency of oxidative phosphorylation under conditions it causes insulin resistance. Stearate affects the bioenergetic parameters similarly, whereas oleate and linoleate tend to decrease the rate but not the efficiency of ATP synthesis. Importantly, we reveal that palmitate influences how oxidative ATP supply is used to fuel ATP-consuming processes. Direct measurement of newly made protein demonstrates that palmitate lowers the rate of de novo protein synthesis by more than 30%. The anticipated decrease of energy demand linked to protein synthesis is confirmed by attenuated cycloheximide-sensitivity of mitochondrial respiratory activity used to make ATP. This indirect measure of ATP turnover indicates that palmitate lowers ATP supply reserved for protein synthesis by at least 40%. This decrease is also provoked by stearate, oleate and linoleate, albeit to a lesser extent. Moreover, palmitate lowers ATP supply for sodium pump activity by 60-70% and, in human cells, decreases ATP supply for DNA/RNA synthesis by almost three-quarters. These novel fatty acid effects on energy expenditure inform the 'mitochondrial insufficiency' debate.

  13. Technical Study of a Standalone Photovoltaic–Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia

    PubMed Central

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  14. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    PubMed

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  15. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    PubMed

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions. PMID:26121032

  16. Energy II: Use, Conservation and Supply. No. 6 in a Series of Special "Science" Compendia.

    ERIC Educational Resources Information Center

    Abelson, Philip H., Ed.; Hammond, Allen L., Ed.

    Presented are 26 articles originally published in "Science" during 1975-78. The document is divided into three parts. The first part contains articles on changes in energy use. Included are articles on industrial energy use, energy options and strategies for Western Europe, energy use in Brazil, and solar energy for village development, as well as…

  17. Synthesis of Sustainable Energy Supply Chain by the P-Graph Framework

    EPA Science Inventory

    The present work proposes a computer-aided methodology for designing sustainable supply chains in terms of sustainability metrics by utilizing the P-graph framework. The methodology is an outcome of the collaboration between the Office of Research and Development (ORD) of the U.S...

  18. 75 FR 16957 - Energy Conservation Program: Test Procedures for Battery Chargers and External Power Supplies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... FR 69681 (Dec. 30, 1993), if DOE determines that a test procedure amendment is warranted, it must.... 6295(u)(1)(A)) DOE complied with this requirement by publishing a test procedure final rule, 71 FR... Framework Document for Battery Chargers and External Power Supplies on June 4, 2009. 74 FR 26816. DOE...

  19. Influence of energy and nutrient supply pre and post partum on performance of multiparous Simmental, Brown Swiss and Holstein cows in early lactation.

    PubMed

    Gruber, L; Urdl, M; Obritzhauser, W; Schauer, A; Häusler, J; Steiner, B

    2014-01-01

    A study was conducted to evaluate the effects of pre partum (PRE) and post partum (POST) dietary energy and nutrient supply (E) and their interactions on feed intake, performance and energy status in dairy cows of three breeds. In this experiment, the effects of three energy and nutrient supply levels (low (L), medium (M), high (H)), both pre-calving and post-calving, were investigated, using a 3×3 factorial arrangement of treatments. In both phases (84 days pre- and 105 days post-calving) E levels applied to a total of 81 multiparous cows of breeds Simmental (SI), Brown Swiss (BS) and Holstein-Friesian (HF; n=27 for each breed), were 75%, 100% and 125% of recommendations of the German Society of Nutrition Physiology (GfE). Dry matter intake (DMI) was restricted, if energy intake exceeded target values. Pre partum DMI and energy intake were different as designed, liveweight and body condition score (BCS) of SI cows were higher, but EB was lower, compared to BS and HF cows. Milk yield and composition were influenced by all three main experimental factors (EPRE, EPOST, breed). Energy-corrected milk yield was 25.6, 28.6 and 30.1 kg/day for LPRE, MPRE and HPRE as well as 21.5, 30.1 and 32.6 kg/day for LPOST, MPOST and HPOST, respectively. Numerically, only for milk protein content the interactions EPRE×EPOST and EPRE×breed reached significance. Impact of energy supply pre-calving was more pronounced when cows had lower energy supply post-calving and vice versa. On the other hand, milk yield response of cows to energy supply above requirements was greater for cows that were fed on a low energy level pre partum. Impact of energy level pre partum was higher for HF cows, showing that their milk production relies to a greater extent on mobilization of body reserves. Increasing energy supply pre partum led to a more negative energy balance post partum, mainly by increasing milk yield and content, whereas feed intake was slightly reduced. Increasing energy supply post

  20. Biodiesel Supply and Consumption in the Short-Term Energy Outlook

    EIA Publications

    2009-01-01

    The historical biodiesel consumption data published in the Energy Information Administration's Monthly Energy Review March 2009 edition were revised to account for imports and exports. Table 10.4 of the Monthly Energy Review was expanded to display biodiesel imports, exports, stocks, stock change, and consumption. Similar revisions were made in the April 2009 edition of the Short-Term Energy Outlook (STEO).

  1. P.L. 95-619, "National Energy Supply Policy Act" (NECPA) (1978)

    SciTech Connect

    2011-12-13

    The purposes of this Act are to provide for the regulation of interstate commerce, to reduce the growth in demand for energy, and to conserve non-renewable energy resources without inhibiting beneficial economic growth.

  2. the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. II. Framework, strategy, and first result

    SciTech Connect

    Wright, J. T.; Griffith, R. L.; Sigurdsson, S.; Povich, M. S.; Mullan, B.

    2014-09-01

    We describe the framework and strategy of the Ĝ infrared search for extraterrestrial civilizations with large energy supplies, which will use the wide-field infrared surveys of WISE and Spitzer to search for these civilizations' waste heat. We develop a formalism for translating mid-infrared photometry into quantitative upper limits on extraterrestrial energy supplies. We discuss the likely sources of false positives, how dust can and will contaminate our search, and prospects for distinguishing dust from alien waste heat. We argue that galaxy-spanning civilizations may be easier to distinguish from natural sources than circumstellar civilizations (i.e., Dyson spheres), although GAIA will significantly improve our capability to identify the latter. We present a zeroth order null result of our search based on the WISE all-sky catalog: we show, for the first time, that Kardashev Type III civilizations (as Kardashev originally defined them) are very rare in the local universe. More sophisticated searches can extend our methodology to smaller waste heat luminosities, and potentially entirely rule out (or detect) both Kardashev Type III civilizations and new physics that allows for unlimited 'free' energy generation.

  3. The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. II. Framework, Strategy, and First Result

    NASA Astrophysics Data System (ADS)

    Wright, J. T.; Griffith, R. L.; Sigurdsson, S.; Povich, M. S.; Mullan, B.

    2014-09-01

    We describe the framework and strategy of the Ĝ infrared search for extraterrestrial civilizations with large energy supplies, which will use the wide-field infrared surveys of WISE and Spitzer to search for these civilizations' waste heat. We develop a formalism for translating mid-infrared photometry into quantitative upper limits on extraterrestrial energy supplies. We discuss the likely sources of false positives, how dust can and will contaminate our search, and prospects for distinguishing dust from alien waste heat. We argue that galaxy-spanning civilizations may be easier to distinguish from natural sources than circumstellar civilizations (i.e., Dyson spheres), although GAIA will significantly improve our capability to identify the latter. We present a zeroth order null result of our search based on the WISE all-sky catalog: we show, for the first time, that Kardashev Type III civilizations (as Kardashev originally defined them) are very rare in the local universe. More sophisticated searches can extend our methodology to smaller waste heat luminosities, and potentially entirely rule out (or detect) both Kardashev Type III civilizations and new physics that allows for unlimited "free" energy generation.

  4. Neutralization of space charge on high-current low-energy ion beam by low-energy electrons supplied from silicon based field emitter arrays

    SciTech Connect

    Gotoh, Yasuhito; Tsuji, Hiroshi; Taguchi, Shuhei; Ikeda, Keita; Kitagawa, Takayuki; Ishikawa, Junzo; Sakai, Shigeki

    2012-11-06

    Neutralization of space charge on a high-current and low-energy ion beam was attempted to reduce the divergence with an aid of low-energy electrons supplied from silicon based field emitter arrays (Si-FEAs). An argon ion beam with the energy of 500 eV and the current of 0.25 mA was produced by a microwave ion source. The initial beam divergence and the emittance were measured at the entrance of the analysis chamber in order to estimate the intrinsic factors for beam divergence. The current density distribution of the beam after transport of 730 mm was measured by a movable Faraday cup, with and without electron supply from Si-FEAs. A similar experiment was performed with tungsten filaments as an electron source. The results indicated that the electron supply from FEA had almost the same effect as the thermionic filament, and it was confirmed that both electron sources can neutralize the ion beam.

  5. An overview of US energy options: Supply- and demand-side history and prospects

    NASA Technical Reports Server (NTRS)

    Hirshberg, A. S.

    1977-01-01

    An overview was provided of nonsolar energy policy options available to the United States until solar energy conversion and utilization devices can produce power at a cost competitive with that obtained from fossil fuels. The economics of the development of new fossil fuel sources and of mandatory conservation measures in energy usage were clarified in the context of the historic annual rate of increase in U.S. energy demand. An attempt was made to compare the costs and relative efficiencies of energy obtainable from various sources by correlating the many confusing measurement units in current use.

  6. A Preliminary Analysis of the Economics of Using Distributed Energy as a Source of Reactive Power Supply

    SciTech Connect

    Li, Fangxing; Kueck, John D; Rizy, D Tom; King, Thomas F

    2006-04-01

    A major blackout affecting 50 million people in the Northeast United States, where insufficient reactive power supply was an issue, and an increased number of filings made to the Federal Energy Regulatory Commission by generators for reactive power has led to a closer look at reactive power supply and compensation. The Northeastern Massachusetts region is one such area where there is an insufficiency in reactive power compensation. Distributed energy due to its close proximity to loads seems to be a viable option for solving any present or future reactive power shortage problems. Industry experts believe that supplying reactive power from synchronized distributed energy sources can be 2 to 3 times more effective than providing reactive support in bulk from longer distances at the transmission or generation level. Several technology options are available to supply reactive power from distributed energy sources such as small generators, synchronous condensers, fuel cells or microturbines. In addition, simple payback analysis indicates that investments in DG to provide reactive power can be recouped in less than 5 years when capacity payments for providing reactive power are larger than $5,000/kVAR and the DG capital and installation costs are lower than $30/kVAR. However, the current institutional arrangements for reactive power compensation present a significant barrier to wider adoption of distributed energy as a source of reactive power. Furthermore, there is a significant difference between how generators and transmission owners/providers are compensated for reactive power supplied. The situation for distributed energy sources is even more difficult, as there are no arrangements to compensate independent DE owners interested in supplying reactive power to the grid other than those for very large IPPs. There are comparable functionality barriers as well, as these smaller devices do not have the control and communications requirements necessary for automatic

  7. New Strong-line Abundance Diagnostics for H II Regions: Effects of κ-distributed Electron Energies and New Atomic Data

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Sutherland, Ralph S.; Nicholls, David C.; Kewley, Lisa J.; Vogt, Frédéric P. A.

    2013-09-01

    Recently, Nicholls et al., inspired by in situ observations of solar system astrophysical plasmas, suggested that the electrons in H II regions are characterized by a κ-distribution of energies rather than a simple Maxwell-Boltzmann distribution. Here, we have collected together new atomic data within a modified photoionization code to explore the effects of both the new atomic data and the κ-distribution on the strong-line techniques used to determine chemical abundances in H II regions. By comparing the recombination temperatures (T rec) with the forbidden line temperatures (T FL), we conclude that κ ~ 20. While representing only a mild deviation from equilibrium, this result is sufficient to strongly influence abundances determined using methods that depend on measurements of the electron temperature from forbidden lines. We present a number of new emission line ratio diagnostics that cleanly separate the two parameters determining the optical spectrum of H II regions—the ionization parameter q or \\cal {U} and the chemical abundance, 12+log(O/H). An automated code to extract these parameters is presented. Using the homogeneous data set from van Zee et al., we find self-consistent results between all of these different diagnostics. The systematic errors between different line ratio diagnostics are much smaller than those found in the earlier strong-line work. Overall, the effect of the κ-distribution on the strong-line abundances derived solely on the basis of theoretical models is rather small.

  8. Optimal planning and design of a renewable energy based supply system for microgrids

    DOE PAGES

    Hafez, Omar; Bhattacharya, Kankar

    2012-03-03

    This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are alsomore » presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.« less

  9. Optimal planning and design of a renewable energy based supply system for microgrids

    SciTech Connect

    Hafez, Omar; Bhattacharya, Kankar

    2012-03-03

    This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are also presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.

  10. Impact of energy prices and cellulosic biomass supply on agriculture, energy, and the environment: An integrated modeling approach

    EPA Science Inventory

    The accelerated growth in biofuels markets has both created and reinforced linkages between agricultural and energy markets. This study investigates the dynamics in agricultural and biofuel markets under alternative price scenarios for both crude oil and natural gas. Two energy ...

  11. Short-Term Energy Outlook Model Documentation: Hydrocarbon Gas Liquids Supply and Demand

    EIA Publications

    2015-01-01

    The hydrocarbon gas liquids (ethane, propane, butanes, and natural gasoline) module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, refinery inputs, net imports, and inventories.

  12. A roadmap for simultaneously developing the supply and demand for energy-efficient beverage vending machines

    SciTech Connect

    Horowitz, N.D.; Dolin, J.; Suozzo, M.; LaFrance, M.

    1998-07-01

    Refrigerated beverage vending machines (vending machines) present a previously untapped opportunity for significant energy savings. In the US there are about 2.5 million vending machines in the field and new machine sales exceed 250,000/year. Existing vending machines consume approximately 7.5 billion kWh/year and cost $600 million/year to power. Initial estimates suggest that approximately 3.5 kWh/day can be saved per machine through refrigeration and lighting energy efficiency improvements alone, most of which have already proven successful in other applications. Over the ten year machine life, the approximate per machine savings are 13,000 kWh, electric bill savings of $910, and carbon dioxide savings of almost 10 tons. Additional energy savings are achievable through energy management features that enable the lights to be turned off during off-peak times and the refrigeration system to cycle down when the machine is idle for extended periods. A coalition of interested parties formed to research this market and to develop a plan that would lead to the manufacture and sale of more energy efficient vending machines. A strategy to overcome market barriers and work with the four major stakeholders has been developed. This includes working with vending machine manufacturers to develop a performance based energy consumption specification compatible with the EPA/DOE Energy Star labeling efforts, and stimulating and demonstrating end-user demand by obtaining letters of support from high visibility institutions with a large number of vendors. This paper reports on progress to date.

  13. Analysis of Time-of-Day Energy Demand and Supply in University and Hospital

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi

    The aim of this study was to estimate the time-of-day energy demand in University of Yamanashi. Our University consisted of Kofu campus (Faculty of Education & Human Sciences and Faculty of Engineering) and Faculty of Medicine campus (Faculty of Medicine and University Hospital). The energy data of 4 facilities were classified into hot water, heating, cooling and electric power demands based on electric power consumptions, city gas and heavy oil from 1996 to 2005. For 10 years, primary energy increased 1.2 times in the whole of the university. The amount of electric power consumption was 63% in the fuel classification. The amount of electric power consumption of faculty reacted to the change in temperature greatly. In 2005, it was found that thermoelectric-ratios for 4 facilities, i.e. Education, Engineering, Medicine and Hospital were 2.3, 1.5, 2.0 and 2.7 respectively. These data are very useful for the energy saving and energy management of university.

  14. Facing Water Scarcity in Jordan: Reuse, Demand Reduction, Energy and Transboundary Approaches to Assure Future Water Supplies

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; El-Naser, H.; Hagan, R. E.; Hijazi, A.

    2001-05-01

    Jordan is extremely water-scarce with just 170 cubic meters per capita per year to meet domestic, industrial, agricultural, tourism, and environmental demands for water. Given the natural climatological conditions, demographic pressure, and transboundary nature of water resources, all renewable water resources of suitable quality are being exploited and some non-renewable aquifers are being depleted. The heavy exploitation of water resources has contributed to declines in the level of the Dead Sea. Rapid growth in demand, particularly for higher quality water for domestic, industrial and tourism uses, is significantly increasing pressure on agricultural and environmental uses of water, both of which must continue to adapt to reduced volumes and lower quality water. The agricultural sector has begun to respond by improving irrigation efficiency and increasing the use of recycled water. Total demand for water still exceeds renewable supplies while inadequate treatment of sewage used for irrigation creates potential environmental and health risks and presents agricultural marketing challenges that undermine the competitiveness of exports. The adaptive capability of the natural environment may already be past sustainable limits with groundwater discharge oasis wetlands that have been seriously affected. Development of new water resources is extremely expensive in Jordan with an average investment cost of US\\$ 4-5 per cubic meter. Integrated water resources management (IWRM) that incorporates factors external to the 'water sector' as conventionally defined will help to assure sustainable future water supplies in Jordan. This paper examines four IWRM approaches of relevance to Jordan: water reuse, demand management, energy-water linkages, and transboundary water management. While progress in Jordan has been made, the Ministry of Water and Irrigation continues to be concerned about the acute water scarcity the country faces as well as the need to continue working with

  15. Impact of forest biomass residues to the energy supply chain on regional air quality.

    PubMed

    Rafael, S; Tarelho, L; Monteiro, A; Sá, E; Miranda, A I; Borrego, C; Lopes, M

    2015-02-01

    The increase of the share of renewable energy in Portugal can be met from different sources, of which forest biomass residues (FBR) can play a main role. Taking into account the demand for information about the strategy of FBR to energy, and its implications on the Portuguese climate policy, the impact of energy conversion of FBR on air quality is evaluated. Three emission scenarios were defined and a numerical air quality model was selected to perform this evaluation. The results reveal that the biomass thermal plants contribute to an increment of the pollutant concentrations in the atmosphere, however restricted to the surrounding areas of the thermal plants, and most significant for NO₂ and O₃.

  16. Impact of forest biomass residues to the energy supply chain on regional air quality.

    PubMed

    Rafael, S; Tarelho, L; Monteiro, A; Sá, E; Miranda, A I; Borrego, C; Lopes, M

    2015-02-01

    The increase of the share of renewable energy in Portugal can be met from different sources, of which forest biomass residues (FBR) can play a main role. Taking into account the demand for information about the strategy of FBR to energy, and its implications on the Portuguese climate policy, the impact of energy conversion of FBR on air quality is evaluated. Three emission scenarios were defined and a numerical air quality model was selected to perform this evaluation. The results reveal that the biomass thermal plants contribute to an increment of the pollutant concentrations in the atmosphere, however restricted to the surrounding areas of the thermal plants, and most significant for NO₂ and O₃. PMID:25461067

  17. Fuel Supply and Selection. CEFP Special Report No. 9. Energy Conservation: A New Challenge for Education

    ERIC Educational Resources Information Center

    Dell'Isola, A. J.

    1973-01-01

    Illustrates how fuel selection in large school systems can be based on life cycle costs for fuel and buildings as a total energy/cost package. Cites an example of how such cost data can be used to institute changes in school district fuel use. (Author/DN)

  18. 75 FR 56021 - Energy Conservation Standards for Battery Chargers and External Power Supplies: Public Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... Impact Analysis The NIA estimates the national energy savings (NES) and the net present value (NPV) of... reflects the real consumer cost of capital and puts the LCC in present-value terms. The PBP is the number... publishing a final rule that prescribed test procedures for a variety of products. 71 FR 71340,...

  19. P.L. 100-357, "National Appliance Energy Supply Amendments" (1988)

    SciTech Connect

    2011-12-13

    Amends the Energy Policy and Conservation Act to include fluorescent lamp ballasts within the list of products covered by the Act. Amends the definition of "consumer product" to include fluorescent lamp ballasts distributed in commerce for personal or commercial use or consumption.

  20. U.S. Wind Energy Manufacturing & Supply Chain: A Competitive Analysis

    SciTech Connect

    Fullenkamp, Patrick

    2014-06-15

    The Global Wind Network (GLWN) assessed the key factors that determine wind energy component manufacturing costs and pricing on a global basis in order to provide a better understanding of the factors that will help enhance the competitiveness of U.S. manufacturers, and reduce installed system costs.

  1. Water supply for the Nuclear Rocket Development Station at the U.S. Atomic Energy Commission's Nevada Test Site

    USGS Publications Warehouse

    Young, Richard Arden

    1972-01-01

    The Nuclear Rocket Development Station, in Jackass Flats, occupies about 123 square miles in the southwestern part of the U.S. Atomic Energy Commission's Nevada Test Site. Jackass Flats, an intermontane valley bordered by highlands on all sides except for a drainage outlet in the southwestern corner, has an average annual rainfall of 4 inches. Jackass Flats is underlain by alluvium, colluvium, and volcanic rocks of Cenozoic age and, at greater depth, by sedimentary rocks of Paleozoic age. The alluvium and the colluvium lie above the saturated zone throughout nearly all of Jackass Flats. The Paleozoic sedimentary rocks contain limestone and dolomite units that are excellent water producers elsewhere ; however, these units are too deep in Jackass Flats to be economic sources of water. The only important water-producing unit known in the vicinity of the Nuclear Rocket Development Station is a welded-tuff aquifer, the Topopah Spring Member of the Paintbrush Tuff, which receives no significant recharge. This member contains about 500 feet of highly fractured rock underlying an area 11 miles long and 3 miles wide in western Jackass Flats. Permeability of the aquifer is derived mostly from joints and fractures; however, some permeability may be derived from gas bubbles in the upper part of the unit. Transmissivity, obtained from pumping tests, ranges from 68,000 to 488,000 gallons per day per foot. Volume of the saturated part of the aquifer is about 3.5 cubic miles, and the average specific yield probably ranges from 1 to 5 percent. The volume of ground water in storage is probably within the range of 37-187 billion gallons. This large amount of water should be sufficient to supply the needs of the Nuclear Rocket Development Station for many years. Water at the Nuclear Rocket Development Station is used for public supply, construction, test-cell coolant, exhaust cooling, and thermal shielding during nuclear reactor and engine testing, and washdown. Present (1967) average

  2. Wind for Schools: Fostering the Human Talent Supply Chain for a 20% Wind Energy Future (Poster)

    SciTech Connect

    Baring-Gould, I.

    2011-03-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community "host" schools. 3) Implementing teacher training with interactive curricula at each host school.

  3. A presently available energy supply for high temperature environment (550-1000 deg F)

    NASA Technical Reports Server (NTRS)

    Jacquelin, J.; Vic, R. L.

    1981-01-01

    Sodium-sulfur cells attractive electric energy storage device for long service, are discussed. The state of art is given. More than 200 Wh/kg cells were tested. The known range of working temperature is 550 to 750 F. Self-discharge is quite nonexistent for months in operation. The technical basis for expecting an operating range up to 1,000 F under a high pressure atmosphere is given. Possibilities to adapt size and characteristics to particular interplanetary missions are discussed.

  4. P.L. 100-12, "National Appliance Energy Supply Act" (1987)

    SciTech Connect

    2011-12-13

    Amends the Energy Policy and Conservation Act to add to the list of products covered under the Act: (1) freezers which can be operated by alternating current electricity (with specified exceptions); (2) central air conditioning heat pumps; (3) direct heating equipment; and (4) pool heaters. Deletes from specific coverage: (1) humidifiers; and (2) dehumidifiers. Excludes from such coverage consumer products designed solely for use in recreational vehicles and other mobile equipment.

  5. 78 FR 58533 - FirstEnergy Generation, LLC, Allegheny Energy Supply Company, LLC, and Green Valley Hydro, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Company, LLC, and Green Valley Hydro, LLC, Seneca Generation, LLC, Lake Lynn Generation, LLC, All Dams... Locations P-2280-017 FirstEnergy Seneca Generation, Kinzua Pumped Allegheny River, Generation, LLC....

  6. 10 CFR 600.324 - Supplies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Supplies. 600.324 Section 600.324 Energy DEPARTMENT OF... Supplies. (a) Title vests in the recipient upon acquisition of supplies acquired with Federal funds under... unused supplies. If the inventory of unused supplies exceeds $5,000 in total aggregate value and...

  7. On the Integration of Wind and Solar Energy to Provide a Total Energy Supply in the U.S

    NASA Astrophysics Data System (ADS)

    Liebig, E. C.; Rhoades, A.; Sloggy, M.; Mills, D.; Archer, C. L.

    2009-12-01

    This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary sources of energy in the U.S., under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the US national load on a monthly basis. Other studies have shown that solar or wind alone can power the present US grid on average. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from a particular year will be used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hydro and geothermal generation can provide additional controllable output, when needed, to fulfill the hourly electricity and/or energy needs. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental US using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra’s model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat

  8. Generating Resources Supply Curves.

    SciTech Connect

    United States. Bonneville Power Administration. Division of Power Resources Planning.

    1985-07-01

    This report documents Pacific Northwest supply curve information for both renewable and other generating resources. Resources are characterized as ''Renewable'' and ''Other'' as defined in section 3 or the Pacific Northwest Electric Power Planning and Conservation Act. The following resources are described: renewable: (cogeneration; geothermal; hydroelectric (new); hydroelectric (efficiency improvement); solar; and wind); other (nonrenewable generation resources: coal; combustion turbines; and nuclear. Each resource has the following information documented in tabular format: (1) Technical Characteristics; (2) Costs (capital and O and M); (3) Energy Distribution by Month; and (4) Supply Forecast (energy). Combustion turbine (CT) energy supply is not forecasted because of CT's typical peaking application. Their supply is therefore unconstrained in order to facilitate analysis of their operation in the regional electrical supply system. The generic nuclear resource is considered unavailable to the region over the planning horizon.

  9. Geothermal Program Review X: proceedings. Geothermal Energy and the Utility Market -- the Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market

    SciTech Connect

    Not Available

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R&D program. The conference serves several purposes: a status report on current R&D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year`s conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, ``Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,`` focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R&D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  10. In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism

    PubMed Central

    2011-01-01

    Background Shigella dysenteriae serotype 1 (SD1) causes the most severe form of epidemic bacillary dysentery. Quantitative proteome profiling of Shigella dysenteriae serotype 1 (SD1) in vitro (derived from LB cell cultures) and in vivo (derived from gnotobiotic piglets) was performed by 2D-LC-MS/MS and APEX, a label-free computationally modified spectral counting methodology. Results Overall, 1761 proteins were quantitated at a 5% FDR (false discovery rate), including 1480 and 1505 from in vitro and in vivo samples, respectively. Identification of 350 cytoplasmic membrane and outer membrane (OM) proteins (38% of in silico predicted SD1 membrane proteome) contributed to the most extensive survey of the Shigella membrane proteome reported so far. Differential protein abundance analysis using statistical tests revealed that SD1 cells switched to an anaerobic energy metabolism under in vivo conditions, resulting in an increase in fermentative, propanoate, butanoate and nitrate metabolism. Abundance increases of transcription activators FNR and Nar supported the notion of a switch from aerobic to anaerobic respiration in the host gut environment. High in vivo abundances of proteins involved in acid resistance (GadB, AdiA) and mixed acid fermentation (PflA/PflB) indicated bacterial survival responses to acid stress, while increased abundance of oxidative stress proteins (YfiD/YfiF/SodB) implied that defense mechanisms against oxygen radicals were mobilized. Proteins involved in peptidoglycan turnover (MurB) were increased, while β-barrel OM proteins (OmpA), OM lipoproteins (NlpD), chaperones involved in OM protein folding pathways (YraP, NlpB) and lipopolysaccharide biosynthesis (Imp) were decreased, suggesting unexpected modulations of the outer membrane/peptidoglycan layers in vivo. Several virulence proteins of the Mxi-Spa type III secretion system and invasion plasmid antigens (Ipa proteins) required for invasion of colonic epithelial cells, and release of bacteria

  11. Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of Vermont's Energy Needs

    SciTech Connect

    Sawyer, Scott; Kahler, Ellen

    2009-05-31

    The Vermont Biofuels initiative (VBI) is the Vermont Sustainable Jobs Fund's (VSJF) biomass-to-biofuels market development program. Vermont is a small state with a large petroleum dependency for transportation (18th in per capita petroleum consumption) and home heating (55% of all households use petroleum for heating). The VBI marks the first strategic effort to reduce Vermont's dependency on petroleum through the development of homegrown alternatives. As such, it supports the four key priorities of the U.S. Department of Energy's Multi-year Biomass Plan: 1.) Dramatically reduce dependence on foreign oil; 2.) Promote the use of diverse, domestic and sustainable energy resources; 3.) Reduce carbon emissions from energy production and consumption; 4.) Establish a domestic bioindustry. In 2005 VSJF was awarded with a $496,000 Congressionally directed award from U.S. Senator Patrick Leahy. This award was administered through the U.S. Department of Energy (DE-FG36- 05GO85017, hereafter referred to as DOE FY05) with $396,000 to be used by VSJF for biodiesel development and $100,000 to be used by the Vermont Department of Public Service for methane biodigester projects. The intent and strategic focus of the VBI is similar to another DOE funded organization-the Biofuels Center of North Carolina-in that it is a nonprofit driven, statewide biofuels market development effort. DOE FY05 funds were expensed from 2006 through 2008 for seven projects: 1) a feedstock production, logistics, and biomass conversion research project conducted by the University of Vermont Extension; 2) technical assistance in the form of a safety review and engineering study of State Line Biofuels existing biodiesel production facility; 3) technical assistance in the form of a safety review and engineering study of Borderview Farm's proposed biodiesel production facility; 4) technology and infrastructure purchases for capacity expansion at Green Technologies, LLC, a waste vegetable biodiesel producer; 5

  12. Edition of the GRI baseline projection of US energy supply and demand to 2010: An occasional publication of Gas Research Institute on topics of current interest, June 1993

    SciTech Connect

    Holtberg, P.D.; Woods, T.J.; Koklauner, A.B.; Lihn, M.L.

    1993-06-01

    The report summarizes the 1993 Edition of the GRI Baseline Projection of U.S. Energy Supply and Demand, which is a major element in the internal planning cycle leading to the development of the Gas Research Institute (GRI) research and development program. The baseline projection represents the GRI planning outlook for the economic and energy supply and demand situation to the year 2010. The report presents a series of summary tables, sectoral breakdowns of energy demand, and the natural gas supply and price trends. The appendices include a discussion of the methodology and assumptions used to prepare the 1993 edition of the projection, a description of industrial and commercial cogeneration, a description of the IPP and SPP projections, a comparison of the 1993 edition of the projection with previous GRI projections, and a discussion of additional data used in developing the projection.

  13. 10 CFR Appendix Z to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of External Power Supplies

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... power supply that is designed to convert line voltage AC input into more than one simultaneous lower-voltage output. j. Nameplate input frequency means the AC input frequency of the power supply as specified on the manufacturer's label on the power supply housing. k. Nameplate input voltage means the...

  14. 10 CFR Appendix Z to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of External Power Supplies

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., of the total real output power produced by a power supply to the real input power required to produce...-voltage output. j. Nameplate input frequency means the AC input frequency of the power supply as specified... supply that is designed to convert line voltage AC input into lower voltage AC output and is able...

  15. Use of a turboexpander in steam power units for heat energy recovery in heat supply systems

    NASA Astrophysics Data System (ADS)

    Sadykov, R. A.; Daminov, A. Z.; Solomin, I. N.; Futin, V. A.

    2016-05-01

    A method for raising the efficiency of a boiler plant by installing a unit operating by the organic Rankine cycle is presented. Such units allow one to generate electricity to cover the auxiliaries of a heat source at a heat-transfer fluid temperature of no more than 130°C. The results of commissioning tests of boilers revealed that their efficiency is maximized under a load that is close or corresponds to the nominal one. If this load is maintained constantly, excess heat energy is produced. This excess may be used to generate electric energy in a steam power unit with a turboexpander. A way to insert this unit into the flow diagram of a boiler plant is proposed. The results of analysis of turbine types (turboexpanders included) with various capacities are presented, and the optimum type for the proposed flow diagram is chosen. The methodology for the design of turboexpanders and compressors used in the oil and gas industry and their operational data were applied in the analysis of a turboexpander. The results of the thermogasdynamic analysis of a turboexpander and the engineered shape of an axial-radial impeller are presented. Halocarbon R245fa is chosen as the working medium based on its calorimetric properties.

  16. Technological development of high energy density capacitors. [for spacecraft power supplies

    NASA Technical Reports Server (NTRS)

    Parker, R. D.

    1976-01-01

    A study was conducted to develop cylindrical wound metallized film capacitors rated 2 micron F 500 VDC that had energy densities greater than 0.1J/g. Polysulfone (PS) and polyvinylidene (PVF2) were selected as dielectrics. Single film PS capacitors of 0.2J/g (uncased) were made of 3.75 micron material. Single film PVF2 capacitors of 0.19J/g (uncased) were made of 6.0 micron material. Corona measurements were made at room temperature, and capacitance and dissipation factor measurements were made over the ranges 25 C to 125 C and 120 Hz to 100 kHz. Nineteen of twenty PVF2 components survived a 2500 hour dc plus ac life test. Failure analyses revealed most failures occurred at wrinkles, but some edge failures were also seen. A 0.989g case was designed. When the case was combined with the PVF2 component, a finished energy density of 0.11J/g was achieved.

  17. The economic value of transportation energy contingency planning: An objective model for analyzing the economics of domestic renewable energy for supply augmentation

    NASA Astrophysics Data System (ADS)

    Shaten, Richard Jay

    1998-12-01

    Petroleum provides 90% of transportation energy needs. Domestic production is decreasing and global demand is increasing. Risk of escalating prices and supply interruptions are compounded by environmental and military externalities and lost opportunities from the failure to develop alternative domestic resources. Within the context of "energy contingency planning" municipalities should evaluate crisis mitigation strategies. Supply augmentation using domestic renewable fuels is proposed to avert future financial liabilities. A method for calculating the economic value of this strategy is demonstrated. An objective function and associated constraints represent the cost of preparing for each of three possible scenarios: status quo, inflationary and crisis. Constraints ensure that municipal fuel needs are met. Environmental costs may be included. Optimal solutions determine the fuel supply mix for each scenario. A 3 x 3 matrix presents the range of actual costs resulting from preparing for each scenario and subsequent three possible outcomes. The distribution of probabilities of the outcomes is applied to the cost matrix and an "expected value" of preparing for each scenario is calculated. An unanticipated crisis outcome results in. The expected value of the cost of preparing for a crisis is cast as an insurance premium against potential economic liability. Policy makers accept the crisis preparation fuel mix if: (a) they agree with the calculated penalty cost, or (b) they accept the burden of the insurance premium. Green Bay Wisconsin was chosen as a sample municipality. Results show that a perceived 10% chance of crisis requires an annual tax of 4.00 per household to avert economic impacts of 50 million. At a perceived 50% chance of crisis preparing for the crisis would begin to save the municipality money.

  18. On the integration of wind and solar energy to provide a total energy supply in the USA

    NASA Astrophysics Data System (ADS)

    Archer, Cristina; Mills, David; Cheng, Weili; Sloggy, Matthew; Liebig, Edwin; Rhoades, Alan

    2010-05-01

    This study examines the feasibility of using renewable energy - mostly wind and solar radiation - as the primary source of energy in the USA, under the assumption that a nationwide electric transmission grid is in place. Previous studies have shown that solar or wind alone can power the present U.S. grid on average. Other studies have shown that solar output from California and Texas using energy storage is well correlated with the state energy load on an hour by hour basis throughout the year and with the U.S. national load on a monthly basis. This study explores scenarios for use of wind and solar energy together at the national scale on an hour by hour basis to determine if such a combination is a better match to national seasonal load scenarios than either of the two alone on an hour-by-hour basis. Actual hour by hour national load data from the year 2006 are used as a basis, with some scenarios incorporating vehicle sector electrification and building heating and cooling using electric heat pumps. Hourly wind speed data were calculated at the hub height of 80 m above the ground for the year 2006 at over 150 windy locations in the continental U.S. using an extrapolation technique based on 10-m wind speed measurements and vertical sounding profiles. Using a 1.5 MW wind turbine as benchmark, the hourly wind power production nationwide was determined at all suitable locations. Similarly, the hourly output from solar plants, with and without thermal storage, was calculated based on Ausra's model assuming that the solar production would occur in the Southwest, the area with the greatest solar radiation density in the U.S. Hourly electricity demand for the year 2006 was obtained nationwide from a variety of sources, including the Federal Energy Regulation Commission. Hourly residential heating and cooking, industrial heat processing, and future electrified transportation loads were calculated from monthly and yearly energy consumption data from the Energy Information

  19. Linear magnetic motor/generator. [to generate electric energy using magnetic flux for spacecraft power supply

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1982-01-01

    A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.

  20. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply; Executive Summary (Revised)

    SciTech Connect

    Not Available

    2008-12-01

    This document is a 21-page summary of the 200+ page analysis that explores one clearly defined scenario for providing 20% of our nation's electricity demand with wind energy by 2030 and contrasts it to a scenario of no new U.S. wind power capacity.

  1. Repetitive resonant railgun power supply

    DOEpatents

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  2. Repetitive resonant railgun power supply

    DOEpatents

    Honig, Emanuel M.; Nunnally, William C.

    1988-01-01

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  3. Biofuels in the long-run global energy supply mix for transportation.

    PubMed

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels. PMID:24298077

  4. Biofuels in the long-run global energy supply mix for transportation.

    PubMed

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels.

  5. Development of the 320 kA pulsed magnetic horn power supply with a novel energy recovery system for the T2K experiment

    NASA Astrophysics Data System (ADS)

    Koseki, Kunio

    2014-01-01

    The 320 kA pulsed magnetic horn power supply with a novel magnetic energy recovery system for the T2K experiment has been developed. The magnetic energy once stored in the horn system during an excitation period by a pulsed current of 320 kA is recovered by a full-bridge circuit to the energy storage capacitors. Four switching arms by high-power thyristors in the full-bridge circuit are actively controlled for an efficient energy recovery process. Operational principle of the energy recovery system was proved by both the simulation study and the high-voltage test operation. Successful operations of the newly developed pulsed magnetic horn power supply were also confirmed by high-voltage test operations.

  6. 10 CFR 215.3 - Supply reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Supply reports. 215.3 Section 215.3 Energy DEPARTMENT OF ENERGY OIL COLLECTION OF FOREIGN OIL SUPPLY AGREEMENT INFORMATION § 215.3 Supply reports. (a) Any person... oil for the period specified in the agreement, pursuant to supply arrangements with the...

  7. 10 CFR 218.11 - Supply orders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Supply orders. 218.11 Section 218.11 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION Supply Orders § 218.11 Supply orders. (a) A supply order shall require that the firm to which it is issued take actions specified therein relating...

  8. Energy-effective method for low-temperature deaeration of make-up water on the heating supply system of heat power plants

    NASA Astrophysics Data System (ADS)

    Sharapov, V. I.; Pazushkina, O. V.; Kudryavtseva, E. V.

    2016-01-01

    The technology for low-temperature deaeration of make-up water of heating supply systems is developed that makes it possible to substantially enhance the energy efficiency of heat power plants (HPPs). As a desorbing agent for deaeration of make-up water of heating supply systems, it is proposed to use not steam or superheated water but a gas supplied to boiler burners. Natural gas supplied to steam boilers of HPPs has very low or often negative temperature after reducing devices. At the same time, it is virtually corrosive gas-free (oxygen and carbon dioxide) and, therefore, can be successfully used as the desorbing agent for water deaeration. These factors make it possible to perform deaeration of make-up water of heating supply systems at relatively low temperatures (10-30°C). Mixing of the cold deaerated make-up water with the return delivery water results in a significant decrease in the temperature the return delivery water before a lower delivery heater of a dual-purpose turbine plant, increase in the power output with the heat consumption, and, consequently, enhancement in the operation efficiency of the HPP. The article presents the calculation of the consumption of gas theoretically required for deaeration and reveals the evaluation of the energy efficiency of the technology for a typical energy unit of thermal power station. The mass transfer efficiency of the deaeration of the make-up water of heating supply systems is estimated for the case of using natural gas as the desorbing agent for which the specific gas consumption required theoretically for deaeration is calculated. It is shown that the consumption of natural gas used as fuel in boilers of HPPs is sufficient for the deaeration of any volumes of the make-up water of heating supply systems. The energy efficiency of the developed technology is evaluated for a typical heat power-generating unit of the HPP with a T-100-12.8 turbine. The calculation showed that the application of the new technology

  9. Energy efficiency by use of automated energy-saving windows with heat-reflective screens and solar battery for power supply systems of European and Russian buildings

    NASA Astrophysics Data System (ADS)

    Zakharov, V. M.; Smirnov, N. N.; Tyutikov, V. V.; Flament, B.

    2015-10-01

    The new energy saving windows with heat-reflecting shields have been developed, and for their practical use they need to be integrated into the automated system for controlling heat supply in buildings and the efficiency of their use together with the existing energy-saving measures must be determined. The study was based on the results of field tests of windows with heat-reflective shields in a certified climate chamber. The method to determine the minimum indoor air temperature under standby heating using heat-reflective shields in the windows and multifunctional energy-efficient shutter with solar battery have been developed. Annual energy saving for the conditions of different regions of Russia and France was determined. Using windows with heat-reflecting screens and a solar battery results in a triple power effect: reduced heat losses during the heating season due to increased window resistance; lower cost of heating buildings due to lowering of indoor ambient temperature; also electric power generation.

  10. Metagenomic Analyses Reveal That Energy Transfer Gene Abundances Can Predict the Syntrophic Potential of Environmental Microbial Communities.

    PubMed

    Oberding, Lisa; Gieg, Lisa M

    2016-01-01

    Hydrocarbon compounds can be biodegraded by anaerobic microorganisms to form methane through an energetically interdependent metabolic process known as syntrophy. The microorganisms that perform this process as well as the energy transfer mechanisms involved are difficult to study and thus are still poorly understood, especially on an environmental scale. Here, metagenomic data was analyzed for specific clusters of orthologous groups (COGs) related to key energy transfer genes thus far identified in syntrophic bacteria, and principal component analysis was used in order to determine whether potentially syntrophic environments could be distinguished using these syntroph related COGs as opposed to universally present COGs. We found that COGs related to hydrogenase and formate dehydrogenase genes were able to distinguish known syntrophic consortia and environments with the potential for syntrophy from non-syntrophic environments, indicating that these COGs could be used as a tool to identify syntrophic hydrocarbon biodegrading environments using metagenomic data. PMID:27681901

  11. Metagenomic Analyses Reveal That Energy Transfer Gene Abundances Can Predict the Syntrophic Potential of Environmental Microbial Communities

    PubMed Central

    Oberding, Lisa; Gieg, Lisa M.

    2016-01-01

    Hydrocarbon compounds can be biodegraded by anaerobic microorganisms to form methane through an energetically interdependent metabolic process known as syntrophy. The microorganisms that perform this process as well as the energy transfer mechanisms involved are difficult to study and thus are still poorly understood, especially on an environmental scale. Here, metagenomic data was analyzed for specific clusters of orthologous groups (COGs) related to key energy transfer genes thus far identified in syntrophic bacteria, and principal component analysis was used in order to determine whether potentially syntrophic environments could be distinguished using these syntroph related COGs as opposed to universally present COGs. We found that COGs related to hydrogenase and formate dehydrogenase genes were able to distinguish known syntrophic consortia and environments with the potential for syntrophy from non-syntrophic environments, indicating that these COGs could be used as a tool to identify syntrophic hydrocarbon biodegrading environments using metagenomic data.

  12. Metagenomic Analyses Reveal That Energy Transfer Gene Abundances Can Predict the Syntrophic Potential of Environmental Microbial Communities

    PubMed Central

    Oberding, Lisa; Gieg, Lisa M.

    2016-01-01

    Hydrocarbon compounds can be biodegraded by anaerobic microorganisms to form methane through an energetically interdependent metabolic process known as syntrophy. The microorganisms that perform this process as well as the energy transfer mechanisms involved are difficult to study and thus are still poorly understood, especially on an environmental scale. Here, metagenomic data was analyzed for specific clusters of orthologous groups (COGs) related to key energy transfer genes thus far identified in syntrophic bacteria, and principal component analysis was used in order to determine whether potentially syntrophic environments could be distinguished using these syntroph related COGs as opposed to universally present COGs. We found that COGs related to hydrogenase and formate dehydrogenase genes were able to distinguish known syntrophic consortia and environments with the potential for syntrophy from non-syntrophic environments, indicating that these COGs could be used as a tool to identify syntrophic hydrocarbon biodegrading environments using metagenomic data. PMID:27681901

  13. Relative abundances of sub-iron to iron nuclei in low energy (50-250 MeV/N) cosmic rays as observed in the Skylab experiment

    NASA Technical Reports Server (NTRS)

    Durgaprasad, N.; Yadav, J. S.; Biswas, S.

    1985-01-01

    A Lexan polycarbonate detector exposed on the exterior of Skylab-3 for 73 days during a solar quiet period was used to study the relative abundances of calcium to nickel ions in low energy cosmic rays of 50 to 250 MeV/N. The method of charge identification is based on the measurement of conelength (L) and residual range (R) of these particles in various Lexan sheets. Since more than one cone (sometimes as many as five) is observed and is measured, the charge accuracy becomes precise and accurate. The ratio of (calcium to manganese) to (iron and cobalt) obtained at three energy intervals of 50 to 80, 80 to 150, 150 to 250 and 50 to 250 MeV/N are 7.6 plus or minus 3.8, 2.7 plus or minus 0.8, 1.4 plus or minus 0.6 and 3.3 plus or minus 0.7 respectively. These data thus indicate a large increase of this ratio with decreasing energy. The origin of this strong energy dependence is not understood at present.

  14. Ionic and electronic behaviors of earth-abundant semiconductor materials and their applications toward solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Mayer, Matthew T.

    Semiconductor devices offer promise for efficient conversion of sunlight into other useful forms of energy, in either photovoltaic or photoelectrochemical cell configurations to produce electrical power or chemical energy, respectively. This dissertation examines ionic and electronic phenomena in some candidate semiconductors and seeks to understand their implications toward solar energy conversion applications. First, copper sulfide (Cu2S) was examined as a candidate photovoltaic material. It was discovered that its unique property of cation diffusion allows the room-temperature synthesis of vertically-aligned nanowire arrays, a morphology which facilitates study of the diffusion processes. This diffusivity was found to induce hysteresis in the electronic behavior, leading to the phenomena of resistive switching and negative differential resistance. The Cu2S were then demonstrated as morphological templates for solid-state conversion into different types of heterostructures, including segmented and rod-in-tube morphologies. Near-complete conversion to ZnS, enabled by the out-diffusion of Cu back into the substrate, was also achieved. While the ion diffusion property likely hinders the reliability of Cu 2S in photovoltaic applications, it was shown to enable useful electronic and ionic behaviors. Secondly, iron oxide (Fe2O3, hematite) was examined as a photoanode for photoelectrochemical water splitting. Its energetic limitations toward the water electrolysis reactions were addressed using two approaches aimed at achieving greater photovoltages and thereby improved water splitting efficiencies. In the first, a built-in n-p junction produced an internal field to drive charge separation and generate photovoltage. In the second, Fe 2O3 was deposited onto a smaller band gap material, silicon, to form a device capable of producing enhanced total photovoltage by a dual-absorber Z-scheme mechanism. Both approaches resulted in a cathodic shift of the photocurrent onset

  15. Influence of pregnancy in mid-to-late gestation on circulating metabolites, visceral organ mass, and abundance of proteins relating to energy metabolism in mature beef cows.

    PubMed

    Wood, K M; Awda, B J; Fitzsimmons, C; Miller, S P; McBride, B W; Swanson, K C

    2013-12-01

    In mid-to-late gestation, nutrient demand increases to meet the growth requirements of the conceptus and cows may alter metabolism in response to energy demands of pregnancy. By better understanding the metabolic role of pregnancy, there may be opportunities to better understand maintenance energy costs and improve overall feed efficiency. Eighteen mature Simmental/Angus crossbred cows, pregnant (PREG; n = 9) and nonpregnant (OPEN; n = 9), were used to investigate the effect of pregnancy on BW change, carcass traits, visceral organ mass, and circulating serum metabolites. Cows were blocked by day of expected parturition such that each block was slaughtered 4 to 5 wk before parturition. Cows were individually fed for ad libitum intake using Calan gates for 89 to 105 d. Cows were weighed, ultrasounded for rib (over the 12th and 13th rib) and rump fat, and a serum sample obtained at d 1, 56, and 3 to 5 d before slaughter. At slaughter, organs were removed, trimmed of fat, and weighed. Serum was analyzed for β-hydroxybutyrate (BHBA), NEFA, glucose, urea, total cholesterol, and triiodothyronine (T3). Tissue samples from liver, kidney, sternomandibularis muscle, ruminal papillae, pancreas, and small intestinal mucosa were collected at slaughter and snap frozen in liquid N. Western blots were conducted to quantify abundance of: proliferating cell nuclear antigen (PCNA), ATP synthase, ubiquitin, and Na(+)/K+ ATPase for all tissues; PPARγ, PPARγ coactivator 1α (PGC1-α), 5'-adenosine monophosphate-activated protein kinase (AMPK) and phosphorylated-AMPK (pAMPK) for liver, muscle, and rumen; phosphoenolpyruvate carboxykinase (PEPCK) for liver and kidney; and uncoupling protein 2 (UCP2) for liver. Data were analyzed using PROC MIXED in SAS as a replicated randomized complete block. Liver weights (actual, relative to BW, relative to HCW) were heavier (P ≤ 0.02) in OPEN. Rumen mass and kidney fat weight, both relative to BW, were also greater (P ≤ 0.04) in OPEN. On d 56

  16. Feasibility of an environmentally-clean, energy-saving ground-water siphon for supplying heat pumps

    SciTech Connect

    Clabaugh, B.D. ); Leap, D.I. . Dept. of Earth and Atmospheric Sciences)

    1992-01-01

    Ground-water gradients as high as 120 ft/mile exist at the edge of a buried glacial sluiceway in northwestern Indiana. A theoretical feasibility study showed that if an upgradient extraction well were connected by siphon pipelines of different diameters to a reinjection well one mile downgradient, with a 10,000 square-foot commercial building using a ground-water heat-pump system between them, then the following could be expected: (1) for a siphon diameters of four and six inches, the siphon/heat pump system would posses the lowest present worth of total life-cycle costs of all other conventional heating and cooling systems and would be the least expensive system to operate each year; (2) the increased capital expenditure of installing a siphon-heat pump system vs. gas, oil, or electric systems would be recovered during the 20-year life-cycle of the system for both siphon diameters. Aquifer systems with high hydraulic gradients in many parts of the world could be utilized thusly to provide cheap and environmentally-clean supplementary energy sources, and therefore, reduce dependence on fossil-fuel supplies.

  17. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards & Labeling Programs for Copy Machines, External Power Supplies, LED Displays, Residential Gas Cooktops and Televisions

    SciTech Connect

    Zheng, Nina; Zhou, Nan; Fridley, David

    2012-03-01

    This report presents a technical review of international minimum energy performance standards (MEPS), voluntary and mandatory energy efficiency labels and test procedures for five products being considered for new or revised MEPS in China: copy machines, external power supply, LED displays, residential gas cooktops and flat-screen televisions. For each product, an overview of the scope of existing international standards and labeling programs, energy values and energy performance metrics and description and detailed summary table of criteria and procedures in major test standards are presented.

  18. A simple model for the energy supply of a stand-alone house using a hybrid wind-solar power system

    NASA Astrophysics Data System (ADS)

    Beke, Tamas

    2016-01-01

    A research project for secondary school students involving both physical measurements and modelling is presented. The problem to be solved is whether and how a typical house can be supplied with energy off-grid, based entirely on renewable energy sources, more specifically, on solar and wind energy, while using relatively simple devices, namely, photovoltaic modules, wind turbines and accumulators. To this end our students carried out a long term measurement series in order to assess the typical energy consumption of houses. Further, the number of solar modules and wind turbines, and the necessary accumulator capacity, was estimated.

  19. Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes.

    PubMed

    Tocchetti, Carlo G; Stanley, Brian A; Sivakumaran, Vidhya; Bedja, Djahida; O'Rourke, Brian; Paolocci, Nazareno; Cortassa, Sonia; Aon, Miguel A

    2015-10-01

    In Type I diabetic (T1DM) patients, both peaks of hyperglycaemia and increased sympathetic tone probably contribute to impair systolic and diastolic function. However, how these stressors eventually alter cardiac function during T1DM is not fully understood. In the present study, we hypothesized that impaired mitochondrial energy supply and excess reactive oxygen species (ROS) emission is centrally involved in T1DM cardiac dysfunction due to metabolic/redox stress and aimed to determine the mitochondrial sites implicated in these alterations. To this end, we used isolated myocytes and mitochondria from Sham and streptozotocin (STZ)-induced T1DM guinea pigs (GPs), untreated or treated with insulin. Relative to controls, T1DM myocytes exhibited higher oxidative stress when challenged with high glucose (HG) combined with β-adrenergic stimulation [via isoprenaline (isoproterenol) (ISO)], leading to contraction/relaxation deficits. T1DM mitochondria had decreased respiration with complex II and IV substrates and markedly lower ADP phosphorylation rates and higher H2O2 emission when challenged with oxidants to mimic the more oxidized redox milieu present in HG + ISO-treated cardiomyocytes. Since in T1DM hearts insulin-sensitivity is preserved and a glucose-to-fatty acid (FA) shift occurs, we next tested whether insulin therapy or acute palmitate (Palm) infusion prevents HG + ISO-induced cardiac dysfunction. We found that insulin rescued proper cardiac redox balance, but not mitochondrial respiration or contractile performance. Conversely, Palm restored redox balance and preserved myocyte function. Thus, stressors such as peaks of HG and adrenergic hyperactivity impair mitochondrial respiration, hampering energy supply while exacerbating ROS emission. Our study suggests that an ideal therapeutic measure to treat metabolically/redox-challenged T1DM hearts should concomitantly correct energetic and redox abnormalities to fully maintain cardiac function. PMID:26186741

  20. Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes.

    PubMed

    Tocchetti, Carlo G; Stanley, Brian A; Sivakumaran, Vidhya; Bedja, Djahida; O'Rourke, Brian; Paolocci, Nazareno; Cortassa, Sonia; Aon, Miguel A

    2015-10-01

    In Type I diabetic (T1DM) patients, both peaks of hyperglycaemia and increased sympathetic tone probably contribute to impair systolic and diastolic function. However, how these stressors eventually alter cardiac function during T1DM is not fully understood. In the present study, we hypothesized that impaired mitochondrial energy supply and excess reactive oxygen species (ROS) emission is centrally involved in T1DM cardiac dysfunction due to metabolic/redox stress and aimed to determine the mitochondrial sites implicated in these alterations. To this end, we used isolated myocytes and mitochondria from Sham and streptozotocin (STZ)-induced T1DM guinea pigs (GPs), untreated or treated with insulin. Relative to controls, T1DM myocytes exhibited higher oxidative stress when challenged with high glucose (HG) combined with β-adrenergic stimulation [via isoprenaline (isoproterenol) (ISO)], leading to contraction/relaxation deficits. T1DM mitochondria had decreased respiration with complex II and IV substrates and markedly lower ADP phosphorylation rates and higher H2O2 emission when challenged with oxidants to mimic the more oxidized redox milieu present in HG + ISO-treated cardiomyocytes. Since in T1DM hearts insulin-sensitivity is preserved and a glucose-to-fatty acid (FA) shift occurs, we next tested whether insulin therapy or acute palmitate (Palm) infusion prevents HG + ISO-induced cardiac dysfunction. We found that insulin rescued proper cardiac redox balance, but not mitochondrial respiration or contractile performance. Conversely, Palm restored redox balance and preserved myocyte function. Thus, stressors such as peaks of HG and adrenergic hyperactivity impair mitochondrial respiration, hampering energy supply while exacerbating ROS emission. Our study suggests that an ideal therapeutic measure to treat metabolically/redox-challenged T1DM hearts should concomitantly correct energetic and redox abnormalities to fully maintain cardiac function.

  1. Designing Energy Supply Chains with the P-Graph Framework under Cost Constraints andSustainability Considerations

    EPA Science Inventory

    A computer-aided methodology for designing sustainable supply chains is presented using the P-graph framework to develop supply chain structures which are analyzed using cost, the cost of producing electricity, and two sustainability metrics: ecological footprint and emergy. They...

  2. Effects of prepartal body condition score and peripartal energy supply of dairy cows on postpartal lipolysis, energy balance and ketogenesis: an animal model to investigate subclinical ketosis.

    PubMed

    Schulz, Kirsten; Frahm, Jana; Meyer, Ulrich; Kersten, Susanne; Reiche, Dania; Rehage, Jürgen; Dänicke, Sven

    2014-08-01

    Subclinical ketosis is a metabolic disorder which often goes undiagnosed and leads to constricted performance and an impairment of general condition. In the current study subclinical ketosis was characterised by a β-hydroxybutyrate (BHB) concentration of >1·2 mmol/l in blood serum. To generate this metabolic situation, an animal model was created. The model, based on group-specific interaction of dietary energy supply and body condition, is appropriate for testing the medical effectiveness of treating this kind of ketosis and its concomitants. During the trial, 18 dairy cows (primiparous and pluriparous) were assigned, according to their body condition score (BCS) 6 weeks before expected parturition, to a normal [6.78 MJ net energy for lactation (NEL)/kg dry matter; 20% concentrate] or to a high-energy feeding group (7·71 MJ NEL/kg dry matter; 60% concentrate). Therefore cows with the highest BCS were allocated to the high-energy group to enhance the contrast with the control group. Statistical analysis was done using the MIXED procedure of SAS. Effects were declared significant when P-values were ⩽0.05. Owing to the higher energy concentration and dry matter intake, the energy intake and balance was significantly higher in the high-energy feeding group, with strong effects on lipid metabolism and health in blood and liver post partum. Within the first 2 weeks after calving, 8 out of 9 cows (89%) of the high-energy group had BHB values indicative of subclinical ketosis. These cows also had significantly higher values of non-esterified fatty acids (NEFA), aspartate transaminase (AST) and glutamate dehydrogenase (GLDH) post partum, as well as a raised total lipid content of the liver. RQUICKI, a calculated parameter which is based on serum concentrations of glucose, insulin and NEFA to assess the insulin sensitivity, was not affected by treatment. Therefore, RQUICKI does not seem to be the right parameter for diagnosing decreased insulin sensitivity in cows

  3. Effects of prepartal body condition score and peripartal energy supply of dairy cows on postpartal lipolysis, energy balance and ketogenesis: an animal model to investigate subclinical ketosis.

    PubMed

    Schulz, Kirsten; Frahm, Jana; Meyer, Ulrich; Kersten, Susanne; Reiche, Dania; Rehage, Jürgen; Dänicke, Sven

    2014-08-01

    Subclinical ketosis is a metabolic disorder which often goes undiagnosed and leads to constricted performance and an impairment of general condition. In the current study subclinical ketosis was characterised by a β-hydroxybutyrate (BHB) concentration of >1·2 mmol/l in blood serum. To generate this metabolic situation, an animal model was created. The model, based on group-specific interaction of dietary energy supply and body condition, is appropriate for testing the medical effectiveness of treating this kind of ketosis and its concomitants. During the trial, 18 dairy cows (primiparous and pluriparous) were assigned, according to their body condition score (BCS) 6 weeks before expected parturition, to a normal [6.78 MJ net energy for lactation (NEL)/kg dry matter; 20% concentrate] or to a high-energy feeding group (7·71 MJ NEL/kg dry matter; 60% concentrate). Therefore cows with the highest BCS were allocated to the high-energy group to enhance the contrast with the control group. Statistical analysis was done using the MIXED procedure of SAS. Effects were declared significant when P-values were ⩽0.05. Owing to the higher energy concentration and dry matter intake, the energy intake and balance was significantly higher in the high-energy feeding group, with strong effects on lipid metabolism and health in blood and liver post partum. Within the first 2 weeks after calving, 8 out of 9 cows (89%) of the high-energy group had BHB values indicative of subclinical ketosis. These cows also had significantly higher values of non-esterified fatty acids (NEFA), aspartate transaminase (AST) and glutamate dehydrogenase (GLDH) post partum, as well as a raised total lipid content of the liver. RQUICKI, a calculated parameter which is based on serum concentrations of glucose, insulin and NEFA to assess the insulin sensitivity, was not affected by treatment. Therefore, RQUICKI does not seem to be the right parameter for diagnosing decreased insulin sensitivity in cows

  4. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  5. Energy-water nexus analysis of enhanced water supply scenarios: a regional comparison of Tampa Bay, Florida, and San Diego, California.

    PubMed

    Mo, Weiwei; Wang, Ranran; Zimmerman, Julie B

    2014-05-20

    Increased water demand and scarce freshwater resources have forced communities to seek nontraditional water sources. These challenges are exacerbated in coastal communities, where population growth rates and densities in the United States are the highest. To understand the current management dilemma between constrained surface and groundwater sources and potential new water sources, Tampa Bay, Florida (TB), and San Diego, California (SD), were studied through 2030 accounting for changes in population, water demand, and electricity grid mix. These locations were chosen on the basis of their similar populations, land areas, economies, and water consumption characters as well as their coastal locations and rising contradictions between water demand and supply. Three scenarios were evaluated for each study area: (1) maximization of traditional supplies; (2) maximization of seawater desalination; and (3) maximization of nonpotable water reclamation. Three types of impacts were assessed: embodied energy, greenhouse gas (GHG) emission, and energy cost. SD was found to have higher embodied energy and energy cost but lower GHG emission than TB in most of its water infrastructure systems because of the differences between the electricity grid mixes and water resources of the two regions. Maximizing water reclamation was found to be better than increasing either traditional supplies or seawater desalination in both regions in terms of the three impact categories. The results further imply the importance of assessing the energy-water nexus when pursuing demand-side control targets or goals as well to ensure that the potentially most economical options are considered.

  6. Energy-water nexus analysis of enhanced water supply scenarios: a regional comparison of Tampa Bay, Florida, and San Diego, California.

    PubMed

    Mo, Weiwei; Wang, Ranran; Zimmerman, Julie B

    2014-05-20

    Increased water demand and scarce freshwater resources have forced communities to seek nontraditional water sources. These challenges are exacerbated in coastal communities, where population growth rates and densities in the United States are the highest. To understand the current management dilemma between constrained surface and groundwater sources and potential new water sources, Tampa Bay, Florida (TB), and San Diego, California (SD), were studied through 2030 accounting for changes in population, water demand, and electricity grid mix. These locations were chosen on the basis of their similar populations, land areas, economies, and water consumption characters as well as their coastal locations and rising contradictions between water demand and supply. Three scenarios were evaluated for each study area: (1) maximization of traditional supplies; (2) maximization of seawater desalination; and (3) maximization of nonpotable water reclamation. Three types of impacts were assessed: embodied energy, greenhouse gas (GHG) emission, and energy cost. SD was found to have higher embodied energy and energy cost but lower GHG emission than TB in most of its water infrastructure systems because of the differences between the electricity grid mixes and water resources of the two regions. Maximizing water reclamation was found to be better than increasing either traditional supplies or seawater desalination in both regions in terms of the three impact categories. The results further imply the importance of assessing the energy-water nexus when pursuing demand-side control targets or goals as well to ensure that the potentially most economical options are considered. PMID:24730467

  7. 10 CFR 600.233 - Supplies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Supplies. 600.233 Section 600.233 Energy DEPARTMENT OF... Supplies. (a) Title. Title to supplies acquired under a grant or subgrant will vest, upon acquisition, in... supplies exceeding $5,000 in total aggregate fair market value upon termination or completion of the...

  8. Tuning magnet power supply

    SciTech Connect

    Han, B.M.; Karady, G.G.; Thiessen, H.A.

    1989-01-01

    The particles in a Rapid Cycling Accelerator are accelerated by rf cavities, which are tuned by dc biased ferrite cores. The tuning is achieved by the regulation of bias current, which is produced by a power supply. The tuning magnet power supply utilizes a bridge circuit, supplied by a three phase rectifier. During the rise of the current, when the particles are accelerated, the current is controlled with precision by the bridge which operates a power amplifier. During the fall of the current, the bridge operates in a switching mode and recovers the energy stored in the ferrites. The recovered energy is stored in a capacitor bank. The bridge circuit is built with 150 power transistors. The drive, protection and control circuit were designed and built from commercial component. The system will be used for a rf cavity experiment in Los Alamos and will serve as a prototype tuning power supply for future accelerators. 1 ref., 7 figs.

  9. Multiple resonant railgun power supply

    DOEpatents

    Honig, E.M.; Nunnally, W.C.

    1985-06-19

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  10. Multiple resonant railgun power supply

    DOEpatents

    Honig, Emanuel M.; Nunnally, William C.

    1988-01-01

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  11. Thorium: Crustal abundance, joint production, and economic availability

    DOE PAGES

    Jordan, Brett W.; Eggert, Roderick G.; Dixon, Brent W.; Carlsen, Brett W.

    2015-03-02

    Recently, interest in thorium's potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear energy technology beyond the economic limits of uranium resources. This paper provides an economic assessment of thorium availability by creating cumulative-availability and potential mining-industry cost curves, based on known thorium resources. These tools provide two perspectives on the economic availability of thorium. In the long term, physical quantities of thorium likely will not be a constraint on the development of a thorium fuelmore » cycle. In the medium term, however, thorium supply may be limited by constraints associated with its production as a by-product of rare earth elements and heavy mineral sands. As a result, environmental concerns, social issues, regulation, and technology also present issues for the medium and long term supply of thorium.« less

  12. Thorium: Crustal abundance, joint production, and economic availability

    SciTech Connect

    Jordan, Brett W.; Eggert, Roderick G.; Dixon, Brent W.; Carlsen, Brett W.

    2015-03-02

    Recently, interest in thorium's potential use in a nuclear fuel cycle has been renewed. Thorium is more abundant, at least on average, than uranium in the earth's crust and, therefore, could theoretically extend the use of nuclear energy technology beyond the economic limits of uranium resources. This paper provides an economic assessment of thorium availability by creating cumulative-availability and potential mining-industry cost curves, based on known thorium resources. These tools provide two perspectives on the economic availability of thorium. In the long term, physical quantities of thorium likely will not be a constraint on the development of a thorium fuel cycle. In the medium term, however, thorium supply may be limited by constraints associated with its production as a by-product of rare earth elements and heavy mineral sands. As a result, environmental concerns, social issues, regulation, and technology also present issues for the medium and long term supply of thorium.

  13. Analysis of Diurnal Variations in Energy Footprint and Its Associated Carbon Emission for Water Supply and Reuse in Arid and Semi-Arid Areas

    NASA Astrophysics Data System (ADS)

    Sobhani, Reza

    Arid and semi-arid regions throughout the world face water scarcity. Conventional water supply portfolio of these regions encompassed limited surface water, groundwater, and imported water. Current technological innovations technically and economically supplemented new water sources i.e., reclaimed water, desalted water and the groundwater sources that were not potable. The need for more efficient and alternative sources of drinking water supply necessitates studying the impediments e.g., intensive energy required, and emerging concern of the carbon emission. This dissertation discusses the challenges of energy footprint and its carbon emission among the processes involved in water supplies in the aforementioned regions. The conducted studies present time-dependent energy footprint analyses of different water reclamation and reuse processes. This study discusses the energy consumption in four main energy intensive processes inclusive of: activated sludge, microfiltration, reverse osmosis, and advanced oxidation with UV/ H2O2. The results indicate how the diurnal variations of different environmental parameters (e.g. flow and pollutant concentration) amplify the energy footprint variation among these processes. Meanwhile, the results show, due to the different power sources diurnally employed to provide electrical energy, the energy-associated carbon emission has more drastic variation in diurnal period compared to the energy footprint variation. In addition, this study presents the energy footprint of a modular process for treating local brackish groundwater by employing a combination of pellet reactor for radium and hardness minimization, reverse osmosis with intermediate precipitation, and concentrated brine crystallization to achieve high recovery with zero liquid discharge. Also it compares the energy footprint of the aforementioned process with the alternative option (i.e. desalted seawater conveyance with substantial lift). Finally, in coastal regions

  14. Abundance of low-energy gamma rays in the decay of 238U, 234U, 230Th, 227Ac, 226Ra and 214Pb

    NASA Astrophysics Data System (ADS)

    Komura, K.; Yamamoto, M.; Ueno, K.

    1990-11-01

    Abundance of low-energy gamma rays emitted from 238U (49.5 keV), 227Ac (50.0 keV), 234U (53.2 keV), 214Pb (53.2 keV), 230Th (67.7 and 143.9 keV) and 226Ra (186 keV) was determined using a high-purity Ge low energy photon spectrometer. The results are: 49.5 keV (238U): 0.059±0.002%, 50.0 keV (227Ac): 8.18±0.17%, 53.2 keV (234U): 0.156±0.006%, 53.2 keV (214Pb): 0.927±0.025%, 67.7 keV (230Th): 0.463±0.012%, 143.9 keV (230Th): 0.078±0.007%, 186.0 keV (226Ra): 3.688±0.099%.

  15. Nursing Supplies

    MedlinePlus

    ... Stages Listen Español Text Size Email Print Share Nursing Supplies Page Content Article Body Throughout most of ... budget. (Nursing equipment also makes wonderful baby gifts.) Nursing Bras A well-made nursing bra that comfortably ...

  16. Power Supply

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Maxwell Laboratories capacitor charging power supply is the first commercial spinoff from the NASA CCDS program - a consortia of industries and government establishments to accelerate development of ground and space based commercial applications of NASA technology. The power supply transforms and conditions large voltages to charge capacitors used in x-ray sources, medical accelerators, etc. It is lighter, more reliable, more compact and efficient. Originally developed for space lasers, its commercial potential was soon recognized.

  17. The Putative SLC Transporters Mfsd5 and Mfsd11 Are Abundantly Expressed in the Mouse Brain and Have a Potential Role in Energy Homeostasis

    PubMed Central

    Perland, Emelie; Lekholm, Emilia; Eriksson, Mikaela M.; Bagchi, Sonchita; Arapi, Vasiliki; Fredriksson, Robert

    2016-01-01

    Background Solute carriers (SLCs) are membrane bound transporters responsible for the movement of soluble molecules such as amino acids, ions, nucleotides, neurotransmitters and oligopeptides over cellular membranes. At present, there are 395 SLCs identified in humans, where about 40% are still uncharacterized with unknown expression and/or function(s). Here we have studied two uncharacterized atypical SLCs that belong to the Major Facilitator Superfamily Pfam clan, Major facilitator superfamily domain 5 (MFSD5) and Major facilitator superfamily domain 11 (MFSD11). We provide fundamental information about the histology in mice as well as data supporting their disposition to regulate expression levels to keep the energy homeostasis. Results In mice subjected to starvation or high-fat diet, the mRNA expression of Mfsd5 was significantly down-regulated (P<0.001) in food regulatory brain areas whereas Mfsd11 was significantly up-regulated in mice subjected to either starvation (P<0.01) or high-fat diet (P<0.001). qRT-PCR analysis on wild type tissues demonstrated that both Mfsd5 and Mfsd11 have a wide central and peripheral mRNA distribution, and immunohistochemistry was utilized to display the abundant protein expression in the mouse embryo and the adult mouse brain. Both proteins are expressed in excitatory and inhibitory neurons, but not in astrocytes. Conclusions Mfsd5 and Mfsd11 are both affected by altered energy homeostasis, suggesting plausible involvement in the energy regulation. Moreover, the first histological mapping of MFSD5 and MFSD11 shows ubiquitous expression in the periphery and the central nervous system of mice, where the proteins are expressed in excitatory and inhibitory mouse brain neurons. PMID:27272503

  18. 10 CFR 603.1330 - Supplies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Supplies. 603.1330 Section 603.1330 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in this Part § 603.1330 Supplies. Tangible property other than real property and equipment. Supplies...

  19. Overview of the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market - The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market

    SciTech Connect

    Mock, John E.; Budraja, Vikram; Jaros, Richard; Yamaguchi, Tsutomu; Hinrichs, Thomas C.

    1992-01-01

    This overview at the Geothermal Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Technology Advancements to Support Growth in Geothermal Power Sales in a Dynamic Utility Market'' by John E. Mock; ''Geothermal Energy Market in Southern California: Past, Present and Future'' by Vikram Budraja; ''Taking the High Ground: Geothermal's Place in the Revolving Energy Market'' by Richard Jaros; ''Recent Developments in Japan's Hot Dry Rock Program'' by Tsutomu Yamaguchi; and ''Options in the Eleventh Year for Interim Standard Offer Number Four Contracts'' by Thomas C. Hinrichs.

  20. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  1. A novel flattop current regulated energy discharge type pulsed power supply and magnet yielding 4. 4 kGauss-meter for 6 milliseconds

    SciTech Connect

    Visser, A.T.

    1989-07-01

    Most energy discharge power supplies obtain their bursts of power from the energy stored in charged capacitors when it is suddenly released into a load. This note describes the design of a similar small 800 Joules energy discharge type power supply and magnet. The magnet gap is 2 in.{times}2 in.{times}25-1/2 in. long and produces about 4.4 kGauss-meters at a rate of 12 pulses per minute. Each pulse is current regulated at the top for a duration of 6 msec. and varies less than 0.6% of set value. Current regulation at flattop is obtained by switching a resistor in and out of the discharge circuit with an IGBT at a rate of about 5 kHz. Most energy discharge systems produce half sine wave pulses, and current regulation is obtained by controlling the charge voltage at the energy storage capacitor, resulting only in a controlled peak current value of the half sine wave pulse. The current value at the top changes substantially during 6 msec. depending on the operating frequency.

  2. Observations of sub-iron (Sc-Cr) to iron (Fe) abundance ratios in the low energy (30-300 MeV/N) galactic cosmic rays in Spacelab-3 experiment and their implications

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Durgaprasad, N.; Singh, R. K.; Vahia, M. N.; Yadav, J. S.; Dutta, A.; Goswami, J. N.

    1993-09-01

    The Spacelab-3 cosmic ray experiment Anuradha was used to measure the sub-iron (Sc-Cr) to iron abundance ratios in the low energy galactic cosmic rays. Measurments made at four different depths of the detector yielded the (Sc-Cr)/Fe ratios of 0.8 to 1.2 in 30 to 300 MeV/N. These are in agreement with results from Skylab and Soyuz-6 experiments and establishes that this abundance ratio is about 1.0 inside the magnetosphere. It is seen that this abundance ratio is about a factor of two higher than values of about 0.5 measured in space crafts in interplanetary space. It is shown that the enhancement of the ratio is probably due to the geomagnetic transmission effects and the degree of ionization of the low energy Sc to Cr and Fe ions in galactic cosmic rays. Further studies are needed to fully understand the phenomena and their implications.

  3. Power supply

    SciTech Connect

    Yakymyshyn, Christopher Paul; Hamilton, Pamela Jane; Brubaker, Michael Allen

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  4. Decomposition and control of complex systems - Application to the analysis and control of industrial and economic systems /energy production/ with limited supplies

    NASA Astrophysics Data System (ADS)

    de Coligny, M.

    Optimized control strategies are developed for industrial installations where many variables of energy supply and storage are involved, with a particular focus on characteristics of a solar central tower power plant. It is shown that optimal regulation resides in controlling all disturbances which occur in a limited domain of the entire system, using robust control schemes. Choosing a command is then dependent on defining precise operational limits as constraints on the machines' performances. Attention is given to the development of variational principles used for the elements of the command logic. Particular consideration is given to a limited supply in storage in spatial and temporal terms. Commands for alterations in functions are then available on-line, and discontinuities are not a feature of the control system. The strategy is applied to the case of a field of heliostats and a central tower themal receiver showing that management is possible on the basis of a sliding horizon.

  5. Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds: exogenously supplied energy and carbon sources adjust the level of biodegradation.

    PubMed

    Papazi, Aikaterini; Kotzabasis, Kiriakos

    2007-05-10

    The biodegradation of phenolic compounds by microalgae seems to be not a simple feature of a particular organism, but mostly a bioenergetic process depending on the growth conditions, especially on the exogenously supplied energy (carbon and light) sources. By using chlorophyll fluorescence induction measurements to estimate the molecular structure and function of the photosynthetic apparatus and therefore the tolerance/sensitivity of microalgae incubated with phenols, it can be assumed that, at least in low concentrations, phenol have no toxic effects on the cultures and can be used as alternative carbon source in them. Halophenols (chlorophenols, bromophenols and iodophenols) are quite toxic for the microalgal cultures. In halophenols the first step of the biodegradation is the split of the halogen substituent (dehalogenation). This is strongly determined by the bond dissociation energy of the corresponding substituent and therefore the energetic requirement for the biodegradation of halophenols increases following the sequence: iodophenolenergy than the ortho- and the para-one. These are possible explanations of the fact that the biodegradation of halophenols needs additional energy sources that can be exogenously supplied as organic carbon (glucose) or inorganic carbon (CO(2)).

  6. Solar abundance of osmium

    PubMed Central

    Jacoby, George; Aller, Lawrence H.

    1976-01-01

    The abundance parameter, log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance (by numbers of atoms with respect to hydrogen), has been derived for three lines of osmium by a method of spectrum synthesis. An apparent discordance of the derived abundance with that found from the carbonaceous chondrites is probably to be attributed primarily to errors in the f-values, and blending with unknown contributors. PMID:16592314

  7. Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation

    SciTech Connect

    Shabani, Bahman; Andrews, John; Watkins, Simon

    2010-01-15

    A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

  8. Energy/economic model analysis. Macroeconomic impacts of research and development in gas supply and end use technologies

    NASA Astrophysics Data System (ADS)

    Goettle, R. J., IV; Hudson, E. A.

    1980-06-01

    The Gas Research Institute (GRI) needs to consider the economic impact of the various technologies whose research and development is supported by GRI funding. Three energy-economic models are useful for such a technology assessment. These models are: Energy Economic Modeling System, Energy Policy Model, and Time Stepped Energy System Optimization/Long Term Inter-Industry Transaction Model. These three models were used to help in the economic impact evaluation of various GRI research and development programs.

  9. Increasing homogeneity in global food supplies and the implications for food security

    PubMed Central

    Khoury, Colin K.; Bjorkman, Anne D.; Dempewolf, Hannes; Ramirez-Villegas, Julian; Guarino, Luigi; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2014-01-01

    The narrowing of diversity in crop species contributing to the world’s food supplies has been considered a potential threat to food security. However, changes in this diversity have not been quantified globally. We assess trends over the past 50 y in the richness, abundance, and composition of crop species in national food supplies worldwide. Over this period, national per capita food supplies expanded in total quantities of food calories, protein, fat, and weight, with increased proportions of those quantities sourcing from energy-dense foods. At the same time the number of measured crop commodities contributing to national food supplies increased, the relative contribution of these commodities within these supplies became more even, and the dominance of the most significant commodities decreased. As a consequence, national food supplies worldwide became more similar in composition, correlated particularly with an increased supply of a number of globally important cereal and oil crops, and a decline of other cereal, oil, and starchy root species. The increase in homogeneity worldwide portends the establishment of a global standard food supply, which is relatively species-rich in regard to measured crops at the national level, but species-poor globally. These changes in food supplies heighten interdependence among countries in regard to availability and access to these food sources and the genetic resources supporting their production, and give further urgency to nutrition development priorities aimed at bolstering food security. PMID:24591623

  10. Increasing homogeneity in global food supplies and the implications for food security.

    PubMed

    Khoury, Colin K; Bjorkman, Anne D; Dempewolf, Hannes; Ramirez-Villegas, Julian; Guarino, Luigi; Jarvis, Andy; Rieseberg, Loren H; Struik, Paul C

    2014-03-18

    The narrowing of diversity in crop species contributing to the world's food supplies has been considered a potential threat to food security. However, changes in this diversity have not been quantified globally. We assess trends over the past 50 y in the richness, abundance, and composition of crop species in national food supplies worldwide. Over this period, national per capita food supplies expanded in total quantities of food calories, protein, fat, and weight, with increased proportions of those quantities sourcing from energy-dense foods. At the same time the number of measured crop commodities contributing to national food supplies increased, the relative contribution of these commodities within these supplies became more even, and the dominance of the most significant commodities decreased. As a consequence, national food supplies worldwide became more similar in composition, correlated particularly with an increased supply of a number of globally important cereal and oil crops, and a decline of other cereal, oil, and starchy root species. The increase in homogeneity worldwide portends the establishment of a global standard food supply, which is relatively species-rich in regard to measured crops at the national level, but species-poor globally. These changes in food supplies heighten interdependence among countries in regard to availability and access to these food sources and the genetic resources supporting their production, and give further urgency to nutrition development priorities aimed at bolstering food security.

  11. Sustainable Energy Solutions Task 5.1:Expand the Number of Faculty Working in Wind Energy: Wind Energy Supply Chain and Logistics

    SciTech Connect

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARRY Wind as a source of energy has gained a significant amount of attention because it is free and green. Construction of a wind farm involves considerable investment, which includes the cost of turbines, nacelles, and towers as well as logistical costs such as transportation of oversized parts and installation costs such as crane-rental costs. The terrain effects at the project site exert considerable influence on the turbine assembly rate and the project duration, which increases the overall installation cost. For higher capacity wind turbines (>3MW), the rental cost of the cranes is significant. In this study, the impact of interest rate, sales price of electricity, terrain effects and availability of cranes on the duration of installation and payback period for the project is analyzed. Optimization of the logistic activities involved during the construction phase of a wind farm contributes to the reduction of the project duration and also increases electricity generation during the construction phase.

  12. Healthfulness of the U.S. Food Supply

    PubMed Central

    Krebs-Smith, Susan M.; Reedy, Jill; Bosire, Claire

    2010-01-01

    Background Every 5 years for the past several decades, the USDHHS and the U.S. Department of Agriculture have issued and updated the Dietary Guidelines for Americans which form the basis of Federal nutrition policy and have shown remarkable consistency across various editions among the major themes. Purpose This paper examines whether the U.S. food supply is sufficiently balanced to provide the recommended proportions of various foods and nutrients per the amount of energy, whether this balance has shifted over time, and which areas of the food supply may have changed more than others. Methods The Healthy Eating Index-2005 (HEI-2005) was used to measure the dietary quality of the U.S. food supply, from 1970 to 2007. Sources of data were the USDA's Food Availability Data, Loss-Adjusted Food Availability Data, and Nutrient Availability Data, and the U.S. Salt Institute's data on salt sold for human consumption. Results Total HEI-2005 scores improved by about 10 points between 1970 and 2007, but they never achieved even 60 points on a scale from 0 to 100. Although meats and total grains were supplied generally in recommended proportions, total vegetables, total fruit, whole fruit, and milk were supplied in sub-optimal proportions that changed very little over time. Saturated fat, sodium, and calories from solid fat, alcoholic beverages and added sugars were supplied in varying degrees of unhealthy abundance over the years. Supplies of dark-green/orange vegetables and legumes and whole grains were entirely insufficient relative to recommendations, with virtually no change over time. Conclusions Deliberate efforts on the part of policymakers, agriculture and the food industry are necessary to provide a supply of foods consistent with nutrition recommendations and make healthy choices available to all. PMID:20153133

  13. Petroleum supply monthly

    SciTech Connect

    1995-10-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blends, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

  14. Petroleum Supply Monthly

    SciTech Connect

    1996-02-01

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major U.S. geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  15. Incorporating the productivity benefits into the assessment of cost effective energy savings potential using conservation supply curves

    SciTech Connect

    Laitner, John A.; Ruth, Michael; Worrell, Ernst

    2001-07-24

    We review the relationship between energy efficiency improvement measures and productivity in industry. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The paper explores the implications of how this change in perspective might affect the evaluation of energy-efficient technologies for a study of the iron and steel industry in the U.S. It is found that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research for this important area.

  16. Estrogen deprivation and excess energy supply accelerate 7,12-dimethylbenz(a)anthracene-induced mammary tumor growth in C3H/HeN mice

    PubMed Central

    Kim, Jin; Lee, Yoon Hee; Park, Jung Han Yoon

    2015-01-01

    BACKGROUND/OBJECTIVES Obesity is a risk factor of breast cancer in postmenopausal women. Estrogen deprivation has been suggested to cause alteration of lipid metabolism thereby creating a cellular microenvironment favoring tumor growth. The aim of this study is to investigate the effects of estrogen depletion in combination with excess energy supply on breast tumor development. MATERIALS/METHODS Ovariectomized (OVX) or sham-operated C3H/HeN mice at 4 wks were provided with either a normal diet or a high-fat diet (HD) for 16 weeks. Breast tumors were induced by administration of 7,12-dimethylbenz(a)anthracene once a week for six consecutive weeks. RESULTS Study results showed higher serum concentrations of free fatty acids and insulin in the OVX+HD group compared to other groups. The average tumor volume was significantly larger in OVX+HD animals than in other groups. Expressions of mammary tumor insulin receptor and mammalian target of rapamycin proteins as well as the ratio of pAKT/AKT were significantly increased, while pAMPK/AMPK was decreased in OVX+HD animals compared to the sham-operated groups. Higher relative expression of liver fatty acid synthase mRNA was observed in OVX+HD mice compared with other groups. CONCLUSIONS These results suggest that excess energy supply affects the accelerated mammary tumor growth in estrogen deprived mice. PMID:26634052

  17. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.

    PubMed

    van Rossum, Harmen M; Kozak, Barbara U; Pronk, Jack T; van Maris, Antonius J A

    2016-07-01

    Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are generally expressed in its cytosol. The native S. cerevisiae pathway for production of cytosolic acetyl-CoA consumes 2 ATP equivalents in the acetyl-CoA synthetase reaction. Catabolism of additional sugar substrate, which may be required to generate this ATP, negatively affects product yields. Here, we review alternative pathways that can be engineered into yeast to optimize supply of cytosolic acetyl-CoA as a precursor for product formation. Particular attention is paid to reaction stoichiometry, free-energy conservation and redox-cofactor balancing of alternative pathways for acetyl-CoA synthesis from glucose. A theoretical analysis of maximally attainable yields on glucose of four compounds (n-butanol, citric acid, palmitic acid and farnesene) showed a strong product dependency of the optimal pathway configuration for acetyl-CoA synthesis. Moreover, this analysis showed that combination of different acetyl-CoA production pathways may be required to achieve optimal product yields. This review underlines that an integral analysis of energy coupling and redox-cofactor balancing in precursor-supply and product-formation pathways is crucial for the design of efficient cell factories. PMID:27016336

  18. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.

    PubMed

    van Rossum, Harmen M; Kozak, Barbara U; Pronk, Jack T; van Maris, Antonius J A

    2016-07-01

    Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are generally expressed in its cytosol. The native S. cerevisiae pathway for production of cytosolic acetyl-CoA consumes 2 ATP equivalents in the acetyl-CoA synthetase reaction. Catabolism of additional sugar substrate, which may be required to generate this ATP, negatively affects product yields. Here, we review alternative pathways that can be engineered into yeast to optimize supply of cytosolic acetyl-CoA as a precursor for product formation. Particular attention is paid to reaction stoichiometry, free-energy conservation and redox-cofactor balancing of alternative pathways for acetyl-CoA synthesis from glucose. A theoretical analysis of maximally attainable yields on glucose of four compounds (n-butanol, citric acid, palmitic acid and farnesene) showed a strong product dependency of the optimal pathway configuration for acetyl-CoA synthesis. Moreover, this analysis showed that combination of different acetyl-CoA production pathways may be required to achieve optimal product yields. This review underlines that an integral analysis of energy coupling and redox-cofactor balancing in precursor-supply and product-formation pathways is crucial for the design of efficient cell factories.

  19. Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Report and Executive Summary

    SciTech Connect

    Hurlbut, D. J.; McLaren, J.; Gelman, R.

    2013-08-01

    This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technological breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.

  20. Electrochemical treatment of tannery effluent using a battery integrated DC-DC converter and solar PV power supply--an approach towards environment and energy management.

    PubMed

    Iyappan, K; Basha, C Ahmed; Saravanathamizhan, R; Vedaraman, N; Tahiyah Nou Shene, C A; Begum, S Nathira

    2014-01-01

    Electrochemical oxidation of tannery effluent was carried out in batch, batch recirculation and continuous reactor configurations under different conditions using a battery-integrated DC-DC converter and solar PV power supply. The effect of current density, electrolysis time and fluid flow rate on chemical oxygen demand (COD) removal and energy consumption has been evaluated. The results of batch reactor show that a COD reduction of 80.85% to 96.67% could be obtained. The results showed that after 7 h of operation at a current density of 2.5 A dm(-2) and flow rate of 100 L h(-1) in batch recirculation reactor, the removal of COD is 82.14% and the specific energy consumption was found to be 5.871 kWh (kg COD)(-1) for tannery effluent. In addition, the performance of single pass flow reactors (single and multiple reactors) system of various configurations are analyzed.

  1. Disaggregating regional energy supply/demand and flow data to 173 BEAs in support of export coal analysis. Final report

    SciTech Connect

    Not Available

    1981-06-01

    This report documents the procedures and results of a study sponsored jointly by the US Department of Transportation and the US Department of Energy. The study was conducted to provide, Bureau of Economic Analysis (BEA)-level production/consumption data for energy materials for 1985 and 1990 in support of an analysis of transportation requirements for export coal. Base data for energy forecasts at the regional level were obtained from the Department of Energy, Energy Information Administration. The forecasts selected for this study are described in DOE/EIA's 1980 Annual Report to Congress, and are: 1985 Series, B, medium oil import price ($37.00/barrel); and 1990 Series B, medium oil import price ($41.00/barrel). Each forecast period is extensively described by approximately forty-three statistical tables prepared by EIA and made available to TERA for this study. This report provides sufficient information to enable the transportation analyst to appreciate the procedures employed by TERA to produce the BEA-level energy production/consumption data. The report presents the results of the procedures, abstracts of data tabulations, and various assumptions used for the preparation of the BEA-level data. The end-product of this effort was the BEA to BEA energy commodity flow data by more which serve as direct input to DOT's transportation network model being used for a detailed analysis of export coal transportation.

  2. Future US energy demands based upon traditional consumption patterns lead to requirements which significantly exceed domestic supply

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Energy consumption in the United States has risen in response to both increasing population and to increasing levels of affluence. Depletion of domestic energy reserves requires consumption modulation, production of fossil fuels, more efficient conversion techniques, and large scale transitions to non-fossile fuel energy sources. Widening disparity between the wealthy and poor nations of the world contributes to trends that increase the likelihood of group action by the lesser developed countries to achieve political and economic goals. The formation of anticartel cartels is envisioned.

  3. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V. E-mail: serkor@skyline.od.ua E-mail: scan@deneb1.odessa.ua

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  4. Interstellar Abundance Standards Revisited

    NASA Astrophysics Data System (ADS)

    Sofia, Ulysses J.; Meyer, David M.

    2001-06-01

    We evaluate the stellar abundances often used to represent the total (gas plus dust) composition of the interstellar medium. Published abundances for B stars, young later type (F and G) stars, and the Sun are compared to the modeled dust-phase and measured gas-phase compositions of the interstellar medium. This study uses abundances for the five most populous elements in dust grains-C, O, Mg, Si, and Fe-and the cosmically abundant element, N. We find that B stars have metal abundances that are too low to be considered valid representations of the interstellar medium. The commonly invoked interstellar standard that is two-thirds of the solar composition is also rejected by recent observations. Young (<=2 Gyr) F and G disk stars and the Sun, however, cannot be ruled out as reliable proxies for the total interstellar composition. If their abundances are valid representations of the interstellar medium, then the apparent underabundance of carbon with respect to that required by dust models, i.e., the carbon crisis, is substantially eased.

  5. Development of Electrolysis System Powered by Solar-Cell Array to Supply Hydrogen Gas for Fuel-Cell Energy Resource Systems

    NASA Astrophysics Data System (ADS)

    Priambodo, Purnomo Sidi; Yusivar, Feri; Subiantoro, Aries; Gunawan, Ridwan

    2009-09-01

    The huge demand of energy worldwide and the depletion of fossil based energy, is a strong reason to rapidly develop any kind of renewable energy resources, which has economical advantages and zero pollution effect. One of the renewable energy technologies aimed in this paper is the generation of electric-energy based on fuel-cell technology, where the input hydrogen (H2) gas is supplied by electrolysis system powered by renewable energy system based on solar cell. In this paper, the authors explain the development of electrolysis system which is powered by solar cell array to supply hydrogen for fuel-cell system. The authors explain in detail how to design an efficient electrolysis system to obtain high ratio conversion of electric energy to hydrogen gas volume. It includes the explanation of the usage of multiple anodes with a single cathode for many solar cell inputs in a single electrolysis system. Hereinafter this is referred as multiple anode electrolysis system. This multiple anode electrolysis system makes the management of hydrogen gas becomes more efficient and effective by using only a single hydrogen gas storage system. This paper also explain the careful design of the resistance value of the electrolysis system to protect or avoid the solar cell panel to deliver excessive current to the electrolysis system which can cause damage on the solar cell panel. Moreover, the electrolyte volume detector is applied on the system as a tool to measure the electrolyte concentration to assure the system resistance is still in the allowed range. Further, the hydrogen gas produced by electrolysis system is stored into the gas storage which consists of silica-gel purifier, first stage low pressure gas bottle, vacuum pump, and second stage high pressure gas bottle. In the first step, the pump will vacuum the first bottle. The first bottle will collect the hydrogen from the electrolysis system through the silica gel to get rid of water vapor. When the first bottle

  6. The conversion of biomass to ethanol using geothermal energy derived from hot dry rock to supply both the thermal and electrical power requirements

    SciTech Connect

    Brown, D.W.

    1997-10-01

    The potential synergism between a hot dry rock (HDR) geothermal energy source and the power requirements for the conversion of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources to produce transportation fuel has very positive environmental implications. One of the distinct advantages of wedding an HDR geothermal power source to a biomass conversion process is flexibility, both in plant location and in operating process is flexibility, both in plant location and in operating conditions. The latter obtains since an HDR system is an injection conditions of flow rate, pressure, temperature, and water chemistry are under the control of the operator. The former obtains since, unlike a naturally occurring geothermal resource, the HDR resource is very widespread, particularly in the western US, and can be developed near transportation and plentiful supplies of biomass. Conceptually, the pressurized geofluid from the HDR reservoir would be produced at a temperature in the range of 200{degrees} to 220{degrees}c. The higher enthalpy portion of the geofluid thermal energy would be used to produce a lower-temperature steam supply in a countercurrent feedwater-heater/boiler. The steam, following a superheating stage fueled by the noncellulosic waste fraction of the biomass, would be expanded through a turbine to produce electrical power. Depending on the lignin fraction of the biomass, there would probably be excess electrical power generated over and above plant requirements (for slurry pumping, stirring, solids separation, etc.) which would be available for sale to the local power grid. In fact, if the hybrid HDR/biomass system were creatively configured, the power plant could be designed to produce daytime peaking power as well as a lower level of baseload power during off-peak hours.

  7. Design of an implantable power supply for an intraocular sensor, using POWER (power optimization for wireless energy requirements)

    NASA Astrophysics Data System (ADS)

    Albano, F.; Chung, M. D.; Blaauw, D.; Sylvester, D. M.; Wise, K. D.; Sastry, A. M.

    The reduction in size and power usage of MEMS (microelectromechanical systems) devices has enabled development of fully implantable medical devices [K.D. Wise, IEEE Eng. Med. Biol. Magaz. 24(5) (2005) 22-29], though major obstacles remain in developing devices of very small scale (<1 mm) [T. Simunic, L. Benini, G. De Micheli, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 9 (2001) 15-28]. One of the most challenging applications; an intraocular sensor (IOS) developed by the Wireless Integrated Micro-Systems-Engineering Research Center (WIMS-ERC) at The University of Michigan; is the subject of the present study. Our specific objectives are fourfold: (1) to model the power usage of an intraocular sensor (IOS); (2) to develop a methodology for optimization of Hybrid Implantable Power Systems (HIPS); (3) to apply the selection tool to identify candidate power systems; and (4) to establish a methodology to fabricate and test the performance of an optimized power supply. In the present study we fabricated and tested three different cells. For one of these, 10 complete discharge and recharge cycles were successfully obtained. The experimental capacity was 7.70 mAh (15% of theoretical) for a discharge rate of C/5. As part of future work, a microbattery will be built for the WIMS-ERC IOS and tested in a fully integrated testbed.

  8. Coordinated regulation of nitrogen supply mode and initial cell density for energy storage compounds production with economized nitrogen utilization in a marine microalga Isochrysis zhangjiangensis.

    PubMed

    Chi, Lei; Yao, Changhong; Cao, Xupeng; Xue, Song

    2016-01-01

    Lipids and carbohydrates are main energy storage compounds (ESC) of microalgae under stressed conditions and they are potential feedstock for biofuel production. Yet, the sustainable and commercially successful production of ESC in microalgae needs to consider nitrogen utilization efficiency. Here the impact of different initial cell densities (ICDs) on ESC accumulation in Isochrysis zhangjiangensis under two nitrogen supply modes (an initially equal concentration of nitrogen per-cell in the medium (N1) and an equal total concentration of nitrogen in the culture system (N2)) were investigated. The results demonstrated that the highest ESC yield (1.36gL(-1)) at N1, which included a maximal nitrogen supply in the cultivation system, and the highest ESC content (66.5%) and ESC productivity per mass of nitrogen (3.28gg(-1) (N) day(-1)) at N2, were all obtained under a high ICD of 8.0×10(6)cellsmL(-1). Therefore I. zhangjiangensis qualifies for ESC-enriched biomass production with economized nitrogen utilization.

  9. Longer-term domestic supply problems for nonrenewable materials with special emphasis on energy-related applications

    SciTech Connect

    Goeller, H E

    1980-01-01

    An examination is made on how materials are used in present and future energy production and use. Problem areas which are discussed include by-products production, import limitations, substitution and recycle, accelerated use, synthesis, and the adequacy of the data bases availability. (FS)

  10. Solar abundance of platinum

    PubMed Central

    Burger, Harry; Aller, Lawrence H.

    1975-01-01

    Three lines of neutral platinum, located at λ 2997.98 Å, λ 3064.71 Å, and λ 3301.86 Å have been used to determine the solar platinum abundance by the method of spectral synthesis. On the scale, log A(H) = 12.00, the thus-derived solar platinum abundance is 1.75 ± 0.10, in fair accord with Cameron's value of log A(Pt) = 1.69 derived by Mason from carbonaceous chondrites and calculated on the assumption that log A(Si) = 7.55 in the sun. PMID:16592278

  11. Enzyme activity in energy supply of spermatozoon motility in two taxonomically distant fish species (sterlet Acipenser ruthenus, Acipenseriformes and common carp Cyprinus carpio, Cypriniformes).

    PubMed

    Dzyuba, Viktoriya; Dzyuba, Borys; Cosson, Jacky; Rodina, Marek

    2016-03-01

    As spermatozoon motility duration differs significantly among fish species, the mechanism of ATP generation-regeneration and its distribution along the flagellum may be species-dependent. The present study compared the role of creatine kinase (CK) with that of adenylate kinase (AK) in ATP regeneration during motility of demembranated spermatozoa of taxonomically distant fish species, sterlet, and common carp, allowing investigation for the presence of the creatine-phosphocreatine (PCr) shuttle in sterlet spermatozoa. The flagellar beat frequency of demembranated spermatozoa was measured in reactivating media in the presence or absence of ATP, ADP, PCr, and CK and AK inhibitors. After demembranation, AK, CK, and total ATPase activity was measured in spermatozoon extracts. Beat frequency of demembranated spermatozoa was found to be positively correlated with ATP levels in reactivating medium and to reach a plateau at 0.8 mM and 0.6 mM ATP for carp and sterlet, respectively. It was shown for the first time that sterlet axonemal dynein ATPases have a higher affinity for ATP than do those of carp. Supplementation of reactivating medium with ADP and PCr without ATP resulted in beat frequencies comparable to that measured with 0.3 to 0.5-mM ATP for both studied species. The presence of the PCr-CK phosphagen system and its essential role in ATP regeneration were first confirmed for sturgeon spermatozoa. The inhibition of CK exerted a high impact on spermatozoon energy supply in both species, whereas the inhibition of AK was more pronounced in sterlet than in carp. This was confirmed by the quantification of enzyme activity in spermatozoon extracts. We concluded that spermatozoa of these taxonomically distant species use similar systems to supply energy for flagella motility, but with different efficacy.

  12. Petroleum supply monthly, August 1993

    SciTech Connect

    Not Available

    1993-09-01

    This publication the Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report, (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. Data presented are divided into Summary Statistics and Detailed Statistics.

  13. Role of small lead-cooled fast reactors for international deployment in worldwide sustainable nuclear energy supply.

    SciTech Connect

    Sienicki, J. J.; Wade, D. C.; Moisseytsev, A.; Nuclear Engineering Division

    2008-01-01

    Most recently, the global nuclear energy partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium-sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the small secure transportable autonomous reactor (SSTAR) has been under ongoing development as part of the US advanced nuclear energy systems programs. Meeting future worldwide projected energy demands during this century (e.g., 1000 to 2000 GWe by 2050) in a sustainable manner while maintaining CO2 emissions at or below today's level will require massive deployments of nuclear reactors in non-fuel cycle states as well as fuel cycle states. The projected energy demands of non-fuel cycle states will not be met solely through the deployment of Light Water Reactors (LWRs) in those states without using up the world's resources of fissile material (e.g., known plus speculative virgin uranium resources = 15 million tonnes). The present U.S. policy is focused upon domestic deployment of large-scale LWRs and sodium-cooled fast spectrum Advanced Burner Reactors (ABRs) working in a symbiotic relationship that burns existing fissile material while destroying the actinides which are generated. Other major nuclear nations are carrying out the development and deployment of SFR breeders as witness the planning for SFR breeder deployments in France, Japan, China, India, and Russia. Small (less that 300 MWe) and medium (300 to 700 MWe) size reactors are better suited to the growing economies and infrastructures of many non-fuel cycle states and developing nations. For those deployments, fast reactor converters which are fissile self-sufficient by creating as much fissile material as they consume are preferred to breeders that create more fissile material than they consume. Thus

  14. Abundances of light elements.

    PubMed Central

    Pagel, B E

    1993-01-01

    Recent developments in the study of abundances of light elements and their relevance to cosmological nucleosynthesis are briefly reviewed. The simplest model, based on standard cosmology and particle physics and assuming homogeneous baryon density at the relevant times, continues to stand up well. PMID:11607388

  15. International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2009 for the United States

    SciTech Connect

    J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

    2009-06-01

    This report outlines the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

  16. International Energy Agency (IEA) Task 40 — Sustainable International Energy Trade: Securing Supply and Demand -- Country Report 2010 for the United States

    SciTech Connect

    J. Richard Hess; Jacob J. Jacobson; Richard Nelson; Carl Wolf

    2011-12-01

    This report updates the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.

  17. HOME ENERGY SUPPLY-DEMAND ANALYSIS FOR COMBINED SYSTEM OF SOLAR HEAT COLLECTOR AND HEAT PUMP WATER HEATER

    NASA Astrophysics Data System (ADS)

    Ikegami, Takashi; Kataoka, Kazuto; Iwafune, Yumiko; Ogimoto, Kazuhiko

    In order to evaluate effectiveness of a combined system of solar heat collecctor (SHC) and heat pump water heater (HPWH), optimum operation scheduling moldel of domestic electric appliances using the mixed integer linear programming was enhanced. Applying this model with one house data in Tokyo, it was found that the combined system of the SHC and the HPWH has the enough energy-saving and CO2 emission reduction potential under the existing electricity late and the operation method of the HPWH. Furthermore, the calculation results under the future system show that the combined system of the SHC and the HPWH has also the reduction effect of reverse power flow from residential photovoltaic system.

  18. The Water - Energy Nexus Of Hydropower. Are The Trade-Offs Between Electricity Generation And Water Supply Negligible?

    NASA Astrophysics Data System (ADS)

    Scherer, L.; Pfister, S.

    2015-12-01

    Hydropower ranks first among renewable sources of power production and provides globally about 16% of electricity. While it is praised for its low greenhouse gas emissions, it is accused of its large water consumption which surpasses that of all conventional and most renewable energy sources (except for bioenergy) by far. Previous studies mostly applied a gross evaporation approach where all the current evaporation from the plant's reservoir is allocated to hydropower. In contrast, we only considered net evaporation as the difference between current evaporation and actual evapotranspiration before the construction of the reservoir. In addition, we take into account local water stress, its monthly fluctuations and storage effects of the reservoir in order to assess the impacts on water availability for other users. We apply the method to a large dataset of almost 1500 globally distributed hydropower plants (HPPs), covering ~43% of global annual electricity generation, by combining reservoir information from the Global Reservoir and Dam (GRanD) database with information on electricity generation from the CARMA database. While we can confirm that the gross water consumption of hydropower is generally large (production-weighted average of 97 m3/GJ), other users are not necessarily deprived of water. In contrast, they also benefit in many cases from the reservoir because water is rather stored in the wet season and released in the dry season, thereby alleviating water stress. The production-weighted water scarcity footprint of the analyzed HPPs amounts to -41 m3 H2Oe/GJ. It has to be noted that the impacts among individual plants vary a lot. Larger HPPs generally consume less water per unit of electricity generated, but also the benefits related to alleviating water scarcity are lower. Overall, reservoirs promote both, energy and water security. Other environmental impacts such as flow alterations and social impacts should, however, also be considered, as they can be

  19. Predicting the Dynamics of Protein Abundance

    PubMed Central

    Mehdi, Ahmed M.; Patrick, Ralph; Bailey, Timothy L.; Bodén, Mikael

    2014-01-01

    Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA–protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation

  20. Carbon-Neutral Energy Supply and Energy Demand-Reduction Technology Needed for Continued Economic Growth Without Dangerous Interference in the Climate System

    NASA Astrophysics Data System (ADS)

    Hoffert, M. I.; Caldeira, K.

    2007-12-01

    Stabilization of atmospheric CO2 at levels likely to avoid unacceptable climate risk will require a major transformation in the ways we produce and use energy. Most of our energy will need to come from sources that do not emit carbon dioxide to the atmosphere and that energy will need to be used efficiently. The required reduction of carbon dioxide emissions as global energy consumption and GDP grow imposes quantitative requirements on some combination of carbon-neutral primary power and energy demand reduction. (Emission reductions are expressed relative to an implicit or explicit baseline; explicit being better for policy-making. Energy demand reduction involves both efficiency improvements and lifestyle changes.) These requirements can be expressed as CO2 emission reductions needed, or as carbon-neutral primary power production needed combined with power not used by virtue of increased energy end use efficiency or lifestyle changes ("negawatts"), always subject to some reasonably well-characterized uncertainty limits. Climatic changes thus far have been closer to the more extreme zone of the climatic uncertainty envelope of global warming indicating the potential for disastrous impacts by mid-century and beyond for business-as-usual. Emission reductions needed to avoid "dangerous interference in the climate system" imply a revolutionary change in the global energy system beginning now; particularly ominous are massive conventional coal-fired electric power energy infrastructures under construction by the US, China & India. Strong arguments, based on physical science considerations, exist for prompt measures such as (1) an immediate moratorium on coal-fired plants that don't sequester CO2, (2) a gradually increasing price on carbon emissions and (3) regulatory standards, for example, that would encourage utilities and car manufacturers to improve efficiency, and (4) Apollo-scale R & D projects beginning now to develop sustainable carbon-neutral power that can be

  1. Solar abundance of iridium

    PubMed Central

    Drake, Stephen; Aller, Lawrence H.

    1976-01-01

    By a method of spectrum synthesis, which yields log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance, an attempt is made to deduce the solar iridium abundance from one relatively unblended, but fairly weak IrI line, λ 3220.78 Å. If the Corliss-Bozman f-value for this line is adopted, we find log A(Ir) = 0.82 on the scale log A(H) = 12.00. The discordance with the value found from carbonaceous chondrites may arise from faulty f-values or from difficulties arising from line blending in this far ultraviolet domain of the solar spectrum. PMID:16578735

  2. Energy and Resources: A plan is outlined according to which solar and wind energy would supply Denmark's needs by the year 2050.

    PubMed

    Sørensen, B

    1975-07-25

    Two possible futures for the industrial world may be distinguished: (i) Large amounts of low-cost energy become available and the more energy-intensive methods for extracting resources from lowergrade deposits continue to sustain industrial expansion until either the environmental impact becomes unacceptable or ultimate limits, such as climate disruptions, put an end to such growth. (ii) The cost of nonrenewable energy resources continue to rise, but a fixed amount of energy from continuous sources may be utilized at constant cost. In this case a lower production level may be set by the amount of energy that is available from renewable sources, and society may thus have to be reshaped with energy economization in focus. If it is possible to choose between these two alternatives, the choice should be based on a discussion of the pros and cons of each one, and in particular on the desirability of having to process an increasing fraction of the earth's crust in search of raw materials in order to maintain growth as long as possible. However, the availability, of the first option is far from certain and it thus seems reasonable to plan for the second alternative. I have tried to propose such a plan for a small, homogeneous geographical region, namely Denmark. The ceiling on the consumption of energy from continuous sources is chosen in accordance with the criterion of not having to convert a major part of the land area to energy-collecting systems. The proposed annual average energy consumption of 19 gigawatts by the year 2050 corresponds to solar energy collecting panels (in use only 50 percent of the time) with an area of roughly 180 square kilometers and a windmill swept area of about 150 square kilometers. These (vertical) areas constitute less than 1 percent of the total land area. The selection of solar or wind energy for different applications has been based on known technology and may be subject to adjustments. The project has been shown to be economically

  3. Energy and Resources: A plan is outlined according to which solar and wind energy would supply Denmark's needs by the year 2050.

    PubMed

    Sørensen, B

    1975-07-25

    Two possible futures for the industrial world may be distinguished: (i) Large amounts of low-cost energy become available and the more energy-intensive methods for extracting resources from lowergrade deposits continue to sustain industrial expansion until either the environmental impact becomes unacceptable or ultimate limits, such as climate disruptions, put an end to such growth. (ii) The cost of nonrenewable energy resources continue to rise, but a fixed amount of energy from continuous sources may be utilized at constant cost. In this case a lower production level may be set by the amount of energy that is available from renewable sources, and society may thus have to be reshaped with energy economization in focus. If it is possible to choose between these two alternatives, the choice should be based on a discussion of the pros and cons of each one, and in particular on the desirability of having to process an increasing fraction of the earth's crust in search of raw materials in order to maintain growth as long as possible. However, the availability, of the first option is far from certain and it thus seems reasonable to plan for the second alternative. I have tried to propose such a plan for a small, homogeneous geographical region, namely Denmark. The ceiling on the consumption of energy from continuous sources is chosen in accordance with the criterion of not having to convert a major part of the land area to energy-collecting systems. The proposed annual average energy consumption of 19 gigawatts by the year 2050 corresponds to solar energy collecting panels (in use only 50 percent of the time) with an area of roughly 180 square kilometers and a windmill swept area of about 150 square kilometers. These (vertical) areas constitute less than 1 percent of the total land area. The selection of solar or wind energy for different applications has been based on known technology and may be subject to adjustments. The project has been shown to be economically

  4. Food and water supply

    NASA Technical Reports Server (NTRS)

    Popov, I. G.

    1975-01-01

    Supplying astronauts with adequate food and water on short and long-term space flights is discussed based on experiences gained in space flight. Food consumption, energy requirements, and suitability of the foodstuffs for space flight are among the factors considered. Physicochemical and biological methods of food production and regeneration of water from astronaut metabolic wastes, as well as wastes produced in a closed ecological system, or as a result of technical processes taking place in various spacecraft systems are suggested for long-term space flights.

  5. [State of the energy-supply system of the liver mitochondria under the conditions of alimentary deficiency of protein].

    PubMed

    voloshchuk, O N; Kopyl'chuk, G P; Kadaĭskaia, T G

    2014-01-01

    The NADH-dehydrogenase and succinate dehydrogenase activity of the rats' liver mitochondria under the conditions of alimentary deprivation of protein has been studied. Research was carried out on 65 white non-linear rats divided according to the diet protein content into three groups: 1--rats fed a hypoprotein diet (7% of protein, 10% of fat u 83% of carbohydrates; n = 26); 2--rats fed a protein-free diet (n = 26); 3--rats fed a complete semi-synthetic ration (14% of protein, 10% of fat u 76% of carbohydrates; n = 13). The NADH-dehydrogenase activity was estimated by spectrophotometric method, succinate dehydrogenase activity--by the intensity of reduction of the potassium ferricyanide. It has been estimated that the decrease of NADH-dehydrogenase activity of mitochondria occurred on the 14th day of feeding rats with protein-free diet, and four-week feeding of rats under these conditions lead to the decrease of enzyme activity by 5,5 fold compared with the control group (0.506 +/- 0.040 nmol NADH/min/mg of protein) and by 3,0 fold compared with the previous stage of the experiment. At the same time a hypoprotein diet caused 2-fold decrease of NADH-dehydrogenase activity of liver mitochondria only on the 28th day. It has been shown that the succinate dehydrogenase activity didn't change significantly after two-week maintenance of rats on a protein-free diet as compared with control, while the four-week maintenance on both hypoprotein and protein-free diet lead to the decrease of the succinate dehydrogenase activity. Specifically, under the conditions of the hypoprotein diet succinate dehydrogenase activity of liver mitochondria decreased twofold and under the conditions of the protein free diet-- threefold. Probably, the disorders at the level of Complex I of respiratory chain underlie the realization of the changes in the system of energy biotransformation in mitochondria under the conditions of alimentary protein deficiency. PMID:25300104

  6. Energy status and its control on embryogenesis of legumes. Embryo photosynthesis contributes to oxygen supply and is coupled to biosynthetic fluxes.

    PubMed

    Rolletschek, Hardy; Weber, Hans; Borisjuk, Ljudmilla

    2003-07-01

    Legume seeds are heterotrophic and dependent on mitochondrial respiration. Due to the limited diffusional gas exchange, embryos grow in an environment of low oxygen. O(2) levels within embryo tissues were measured using microsensors and are lowest in early stages and during night, up to 0.4% of atmospheric O(2) concentration (1.1 micro M). Embryo respiration was more strongly inhibited by low O(2) during earlier than later stages. ATP content and adenylate energy charge were lowest in young embryos, whereas ethanol emission and alcohol dehydrogenase activity were high, indicating restricted ATP synthesis and fermentative metabolism. In vitro and in vivo experiments further revealed that embryo metabolism is O(2) limited. During maturation, ATP levels increased and fermentative metabolism disappeared. This indicates that embryos become adapted to the low O(2) and can adjust its energy state on a higher level. Embryos become green and photosynthetically active during differentiation. Photosynthetic O(2) production elevated the internal level up to approximately 50% of atmospheric O(2) concentration (135 micro M). Upon light conditions, embryos partitioned approximately 3-fold more [(14)C]sucrose into starch. The light-dependent increase of starch synthesis was developmentally regulated. However, steady-state levels of nucleotides, free amino acids, sugars, and glycolytic intermediates did not change upon light or dark conditions. Maturing embryos responded to low O(2) supply by adjusting metabolic fluxes rather than the steady-state levels of metabolites. We conclude that embryogenic photosynthesis increases biosynthetic fluxes probably by providing O(2) and energy that is readily used for biosynthesis and respiration.

  7. Abundance of field galaxies

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Karachentsev, Igor; Makarov, Dmitry; Nasonova, Olga

    2015-12-01

    We present new measurements of the abundance of galaxies with a given circular velocity in the Local Volume: a region centred on the Milky Way Galaxy and extending to distance ˜10 Mpc. The sample of ˜750 mostly dwarf galaxies provides a unique opportunity to study the abundance and properties of galaxies down to absolute magnitudes MB ≈ -10 and virial masses M_vir= 109{ M_{⊙}}. We find that the standard Λ cold dark matter (ΛCDM) model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities V ≳ 70 kms-1 and corresponding virial masses M_vir≳ 5× 10^{10}{ M_{⊙}}, but it badly fails by overpredicting ˜5 times the abundance of large dwarfs with velocities V = 30-40 kms-1. The warm dark matter (WDM) models cannot explain the data either, regardless of mass of WDM particle. Just as in previous observational studies, we find a shallow asymptotic slope dN/dlog V ∝ Vα, α ≈ -1 of the velocity function, which is inconsistent with the standard ΛCDM model that predicts the slope α = -3. Though reminiscent to the known overabundance of satellite problem, the overabundance of field galaxies is a much more difficult problem. For the standard ΛCDM model to survive, in the 10 Mpc radius of the Milky Way there should be 1000 not yet detected galaxies with virial mass M_vir≈ 10^{10}{ M_{⊙}}, extremely low surface brightness and no detectable H I gas. So far none of this type of galaxies have been discovered.

  8. Late embryogenesis abundant proteins

    PubMed Central

    Olvera-Carrillo, Yadira; Reyes, José Luis

    2011-01-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families, each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility. PMID:21447997

  9. Oil supply: the outlook

    SciTech Connect

    Velocci, T.

    1982-07-01

    The post oil-glut world will leave OPEC still in control of world production levels and prices. Some estimates show US imports rising as much as 35% to 4.3 million barrels a day as the recession ends, but others think the direct coupling of energy demand and economic growth has ended. The potential for a substantial comeback in energy-intensive industries and a replacement of business inventories could lead to a surge in demand. The current increase in gasoline demand is seasonal, and reflects an effort to replenish oil inventories. Industry spokesmen credit high prices for the moderating effect on demand. US investment in oil exploration will rise only 14% to $95.3 billion after a 39% increase in 1980 because of stable oil prices. Offshore and Alaskan exploration have a high, but expensive, potential for reducing future imports. US dependence has dropped from 48% to 30% of total supply since 1977 because of exploration efforts and the Strategic Petroleum Reserve. Any future supply crisis will depend on Middle East politics, a break in the price and production swings, and OPEC manipulation of the market. (DCK)

  10. Sustainable Biomass Supply Systems

    SciTech Connect

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  11. Highly efficient welding power supply

    NASA Astrophysics Data System (ADS)

    Thommes, J. M.

    1980-09-01

    The results and findings of an energy efficient welding power development project are presented. The power source developed is to be used for electric arc welding processes in which 3.5 trillion Btu of energy can be saved annually. The power source developed incorporates the use of switch mode power supply techniques in order to convert industrial supply mains to appropriate welding voltages and currents. A series capacitor switch mode power circuit was the circuit technique chosen in order to optimize energy efficiency, costs, reliability, size/weight, and welding performance. Test results demonstrated an effective efficiency (taking into account idle power consumption) of 80 to 91 percent for the energy efficient power source while the conventional types of power sources tested ranged from 41 to 74 percent efficiency. Line power factor was also improved for the energy efficient power source. Field tests indicated additional refinements of weld process performance and power source audible noise emission reduction could be beneficial.

  12. Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs.

    PubMed

    Yang, Shu-lin; Xia, Ji-han; Zhang, Yuan-yuan; Fan, Jian-gao; Wang, Hua; Yuan, Jing; Zhao, Zhan-zhao; Pan, Qin; Mu, Yu-lian; Xin, Lei-lei; Chen, Yao-xing; Li, Kui

    2015-01-01

    The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage, and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by de novo synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies, and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage. PMID:26358367

  13. Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs

    PubMed Central

    Yang, Shu-lin; Xia, Ji-han; Zhang, Yuan-yuan; Fan, Jian-gao; Wang, Hua; Yuan, Jing; Zhao, Zhan-zhao; Pan, Qin; Mu, Yu-lian; Xin, Lei-lei; Chen, Yao-xing; Li, Kui

    2015-01-01

    The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage, and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by de novo synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies, and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage. PMID:26358367

  14. Photoelectrocatalytic degradation of acid dye using Ni-TiO2 with the energy supplied by solar cell: mechanism and economical studies.

    PubMed

    Olya, Mohammad Ebrahim; Pirkarami, Azam; Soleimani, Majid; Bahmaei, Manochehr

    2013-05-30

    This paper reports an investigation into the effect of a number of operating factors on the removal of Acid Red 88 from an aqueous solution through photoelectrocatalysis: photocatalyst dose, dye concentration, pH, bias potential, and electrolyte concentration. The photocatalyst was Ni-TiO2 applied in suspension to the solution to achieve a larger catalyst surface area. The optimum values for photocatalyst dose, dye concentration, and electrolyte concentration turned out to be 0.6 mg L(-1), 50 mg L(-1), and 5 mg L(-1), respectively. Also, the best pH was found to be 7, and bias potential proved to be best at 1.6 V. The aqueous solution was characterized for its COD and TOC. Photocatalyst efficiency was evaluated using SEM and XRD techniques. The characterization of the post-treatment product using FT-IR, HPLC, and GC-MS studies revealed intermediate compounds. A pathway was proposed for the degradation of the dye. The energy required by the experiment was supplied by solar cells, meaning the money that would have otherwise been spent on electricity was saved. Cost analysis was also done for the treatment process. PMID:23562912

  15. Photoelectrocatalytic degradation of acid dye using Ni-TiO2 with the energy supplied by solar cell: mechanism and economical studies.

    PubMed

    Olya, Mohammad Ebrahim; Pirkarami, Azam; Soleimani, Majid; Bahmaei, Manochehr

    2013-05-30

    This paper reports an investigation into the effect of a number of operating factors on the removal of Acid Red 88 from an aqueous solution through photoelectrocatalysis: photocatalyst dose, dye concentration, pH, bias potential, and electrolyte concentration. The photocatalyst was Ni-TiO2 applied in suspension to the solution to achieve a larger catalyst surface area. The optimum values for photocatalyst dose, dye concentration, and electrolyte concentration turned out to be 0.6 mg L(-1), 50 mg L(-1), and 5 mg L(-1), respectively. Also, the best pH was found to be 7, and bias potential proved to be best at 1.6 V. The aqueous solution was characterized for its COD and TOC. Photocatalyst efficiency was evaluated using SEM and XRD techniques. The characterization of the post-treatment product using FT-IR, HPLC, and GC-MS studies revealed intermediate compounds. A pathway was proposed for the degradation of the dye. The energy required by the experiment was supplied by solar cells, meaning the money that would have otherwise been spent on electricity was saved. Cost analysis was also done for the treatment process.

  16. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas

    2014-05-01

    injected in the scope of the scheduled EGR operation. Our techno-economic modeling results considering EGR reservoir simulations demonstrate that an economic and carbon neutral operation of UCG combined with fertilizer production and CCS is feasible. The suggested approach may provide a bridging technology to tackle fertilizer and power supply shortages in Bangladesh, and in addition support further production from depleting natural gas deposits. References Kempka, T., Plötz, M.L., Hamann, J., Deowan, S.A., Azzam, R. (2010) Carbon dioxide utilisation for carbamide production by application of the coupled UCG-urea process. Energy Procedia 4: 2200-2205. Nakaten, N., Schlüter, R., Azzam, R., Kempka, T. (2014) Development of a techno-economic model for dynamic calculation of COE, energy demand and CO2 emissions of an integrated UCG-CCS process. Energy (in print). Doi 10.1016/j.energy.2014.01.014

  17. Models for evaluation of energy technology and policy options to maximize low carbon source penetration in the United States energy supply.

    SciTech Connect

    Pickard, Paul S.; Kataoka, Dawn; Reno, Marissa Devan; Malczynski, Leonard A.; Peplinski, William J.; Roach, Jesse D.; Brainard, James Robert; West, Todd H.; Schoenwald, David Alan

    2009-12-01

    An initial version of a Systems Dynamics (SD) modeling framework was developed for the analysis of a broad range of energy technology and policy questions. The specific question selected to demonstrate this process was 'what would be the carbon and import implications of expanding nuclear electric capacity to provide power for plug in hybrid vehicles?' Fifteen SNL SD energy models were reviewed and the US Energy and Greenhouse gas model (USEGM) and the Global Nuclear Futures model (GEFM) were identified as the basis for an initial modeling framework. A basic U.S. Transportation model was created to model U.S. fleet changes. The results of the rapid adoption scenario result in almost 40% of light duty vehicles being PHEV by 2040 which requires about 37 GWy/y of additional electricity demand, equivalent to about 25 new 1.4 GWe nuclear plants. The adoption rate of PHEVs would likely be the controlling factor in achieving the associated reduction in carbon emissions and imports.

  18. Chemical abundance of comets

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan; Wehinger, Peter

    1988-01-01

    Observations of NH2, (OI) and molecular ion spectra in comets represent virtually all of the volatile fraction of a comet nucleus. Their study leads to the N2, NH3, H2O, CO2, CO content of the nucleus, and thus to important constraints on models of comet formation and chemical processing in the primitive solar nebula. The observations of Comet Halley provide the opportunity for the first comprehensive determination of the abundances in a comet nucleus. The carbon isotope abundance ratio 12 C/13 C = 65 plus or minus 8 has been determined for Comet Halley from resolved rotational line structure in the CN B-X (0,0) band. The ratio is approximately 30 pct lower than the solar system value, 89, indicating either an enhancement of 13CN or a depletion of 12CN in the comet. Scenarios consistent with the observed carbon isotope ratio are: (1) formation of the comet at the periphery of the solar nebula in a fractionation-enriched 13CN region, or hidden from 12CN enrichment sources, and (2) capture of an interestellar comet. Long-slit charge coupled device (CCD) spectra obtained at the time of the spacecraft encounter of Comet Halley have also been analyzed. Scale lengths, production rates and column densities of CH, CN, C2 and NH2 were determined.

  19. Competing Uses of Underground Systems Related to Energy Supply: Applying Single- and Multiphase Simulations for Site Characterization and Risk-Analysis

    NASA Astrophysics Data System (ADS)

    Kissinger, A.; Walter, L.; Darcis, M.; Flemisch, B.; Class, H.

    2012-04-01

    Global climate change, shortage of resources and the resulting turn towards renewable sources of energy lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, "renewable" methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas, and coal. Besides competing among themselves, these technologies may also create conflicts with essential public interests like water supply. For example, the injection of CO2 into the underground causes an increase in pressure reaching far beyond the actual radius of influence of the CO2 plume, potentially leading to large amounts of displaced salt water. Finding suitable sites is a demanding task for several reasons. Natural systems as opposed to technical systems are always characterized by heterogeneity. Therefore, parameter uncertainty impedes reliable predictions towards capacity and safety of a site. State of the art numerical simulations combined with stochastic approaches need to be used to obtain a more reliable assessment of the involved risks and the radii of influence of the different processes. These simulations may include the modeling of single- and multiphase non-isothermal flow, geo-chemical and geo-mechanical processes in order to describe all relevant physical processes adequately. Stochastic approaches have the aim to estimate a bandwidth of the key output parameters based on uncertain input parameters. Risks for these different underground uses can then be made comparable with each other. Along with the importance and the urgency of the competing processes this may lead to a more profound basis for a decision. Communicating risks to stake holders and a concerned public is crucial for the success of finding a suitable site for CCS (or other subsurface utilization). We present and discuss first steps towards an approach for addressing the issue of competitive

  20. TEA: A Code Calculating Thermochemical Equilibrium Abundances

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  1. TEA: A Code Calculating Thermochemical Equilibrium Abundances

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  2. Factors Affecting Growth of Tengmalm's Owl (Aegolius funereus) Nestlings: Prey Abundance, Sex and Hatching Order.

    PubMed

    Zárybnická, Markéta; Riegert, Jan; Brejšková, Lucie; Šindelář, Jiří; Kouba, Marek; Hanel, Jan; Popelková, Alena; Menclová, Petra; Tomášek, Václav; Šťastný, Karel

    2015-01-01

    In altricial birds, energy supply during growth is a major predictor of the physical condition and survival prospects of fledglings. A number of experimental studies have shown that nestling body mass and wing length can vary with particular extrinsic factors, but between-year observational data on this topic are scarce. Based on a seven-year observational study in a central European Tengmalm's owl population we examine the effect of year, brood size, hatching order, and sex on nestling body mass and wing length, as well as the effect of prey abundance on parameters of growth curve. We found that nestling body mass varied among years, and parameters of growth curve, i.e. growth rate and inflection point in particular, increased with increasing abundance of the owl's main prey (Apodemus mice, Microtus voles), and pooled prey abundance (Apodemus mice, Microtus voles, and Sorex shrews). Furthermore, nestling body mass varied with hatching order and between sexes being larger for females and for the first-hatched brood mates. Brood size had no effect on nestling body mass. Simultaneously, we found no effect of year, brood size, hatching order, or sex on the wing length of nestlings. Our findings suggest that in this temperate owl population, nestling body mass is more sensitive to prey abundance than is wing length. The latter is probably more limited by the physiology of the species.

  3. Factors Affecting Growth of Tengmalm's Owl (Aegolius funereus) Nestlings: Prey Abundance, Sex and Hatching Order.

    PubMed

    Zárybnická, Markéta; Riegert, Jan; Brejšková, Lucie; Šindelář, Jiří; Kouba, Marek; Hanel, Jan; Popelková, Alena; Menclová, Petra; Tomášek, Václav; Šťastný, Karel

    2015-01-01

    In altricial birds, energy supply during growth is a major predictor of the physical condition and survival prospects of fledglings. A number of experimental studies have shown that nestling body mass and wing length can vary with particular extrinsic factors, but between-year observational data on this topic are scarce. Based on a seven-year observational study in a central European Tengmalm's owl population we examine the effect of year, brood size, hatching order, and sex on nestling body mass and wing length, as well as the effect of prey abundance on parameters of growth curve. We found that nestling body mass varied among years, and parameters of growth curve, i.e. growth rate and inflection point in particular, increased with increasing abundance of the owl's main prey (Apodemus mice, Microtus voles), and pooled prey abundance (Apodemus mice, Microtus voles, and Sorex shrews). Furthermore, nestling body mass varied with hatching order and between sexes being larger for females and for the first-hatched brood mates. Brood size had no effect on nestling body mass. Simultaneously, we found no effect of year, brood size, hatching order, or sex on the wing length of nestlings. Our findings suggest that in this temperate owl population, nestling body mass is more sensitive to prey abundance than is wing length. The latter is probably more limited by the physiology of the species. PMID:26444564

  4. Abundances in Sagittarius Stars

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Zaggia, S.; Sbordone, L.; Santin, P.; Monaco, L.; Monai, S.; Molaro, P.; Marconi, G.; Girardi, L.; Ferraro, F.; di Marcantonio, P.; Caffau, E.; Bellazzini, M.

    The Sagittarius dwarf spheroidal is a very complex galaxy, which has undergone prolonged star formation. From the very first high resolution chemical analysis of Sgr stars, conducted using spectra obtained during the commissioning of UVES at VLT, it was clear that the star had undergone a high level of chemical processing, at variance with most of the other Local Group dwarf spheroidals. Thanks to FLAMES at VLT we now have accurate metallicities and abundances of alpha-chain elements for about 150 stars, which provide the first reliable metallicity distribution for this galaxy. Besides the already known high metallicity tail the existence of a metal-poor population has also been highlighted, although an assessment of the fraction of Sgr stars which belong to this population requires a larger sample. From our data it is also obvious that Sagittarius is a nucleated galaxy and that the centre of the nucleus coincides with M54, as already shown by Monaco et al.

  5. Petroleum supply monthly, April 1990

    SciTech Connect

    1990-06-26

    The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the Petroleum Supply Monthly describe (PSM) the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply.'' Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: (1) the Summary Statistics and (2) the Detailed Statistics.

  6. Decision-Makers' Forum on a Unified Strategy for Nuclear Energy

    SciTech Connect

    2004-11-01

    An abundant and secure energy supply is critical to our country’s prosperity, and energy supply is now a central issue in global stability and security. Unfortunately, the Unites States continues to steadily increase the fraction of energy it imports from foreign sources. In May 2001, the National Energy Policy noted that this imbalance, "if allowed to continue, will inevitably undermine our economy, our standard of living, and our national security." In addition to these serious impacts, growing concern about air pollution and atmospheric carbon levels hold the potential for global climate change. According to the National Academy of Sciences, the Earth’s surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. The current energy supply situation clearly demands coordinated action. Nuclear energy is preeminent in its ability to deliver affordable energy today and meet the growing imperatives for clean air and energy supplies in the future.

  7. Thermal relics: Do we know their abundances

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Turner, Michael S.

    1990-01-01

    The relic abundance of a particle species that was once in thermal equilibrium in the expanding Universe depends upon a competition between the annihilation rate of the species and the expansion rate of the Universe. Assuming that the Universe is radiation dominated at early times the relic abundance is easy to compute and well known. At times earlier than about 1 sec after the bang there is little or no evidence that the Universe had to be radiation dominated, although that is the simplest and standard assumption. Because early-Universe relics are of such importance both to particle physics and to cosmology, three nonstandard possibilities are considered in detail for the Universe at the time a species' abundance froze in: energy density dominated by shear (i.e., anisotropic expansion), energy density dominated by some other nonrelativistic species, and energy density dominated by the kinetic energy of the scalar field that sets the gravitational constant in a Brans-Dicke-Jordan cosmological mode. In the second case the relic abundance is less than the standard value, while in the other two cases it can be enhanced by a significant factor. Two other more exotic possibilities for enhancing the relic abundance of a species are also mentioned--a larger value of Newton's constant at early times (e.g., as might occur in superstring or Kaluza-Klein theories) or a component of the energy density at early times with a very stiff equation of state (p greater than rho/3), e.g., a scalar field phi with potential V(phi) = Beta /phi/ (exp n) with n greater than 4. Results have implications for dark matter searches and searches for particle relics in general.

  8. Future natural gas supplies

    NASA Astrophysics Data System (ADS)

    Despite recent optimism about the outlook for the future supply of domestic conventional natural gas, the Congressional Office of Technology Assessment (OTA) finds insufficient evidence to clearly justify either an optimistic or a pessimistic view. In a technical memorandum entitled “U.S. Natural Gas Availability: Conventional Gas Supply Through the Year 2000,” released recently by Rep. Philip R. Sharp (D-Ind,), chairman of the Subcommittee on Fossil and Synthetic Fuels of the Committee on Energy and Commerce, OTA concluded that substantial technical uncertainties prevented a reliable estimation of the likely natural gas production rates for later in this century. Even ignoring the potential for significant changes in gas prices and technology, OTA estimated that conventional gas production by the lower 48 states in the year 2000 could range from 9 to 19 trillion cubic feet (TCF) (0.25 to 0.53 trillion cubic meters), compared to 1982 production of 17.5 TCF. Similarly, production in the year 1990 could range from 13 to 20 TCF.

  9. A Pluridisciplinary Study of the Impact of Future Ice Sheets Instability on Sea Level Rise, Climate Changes, Migrations and Energy Supply

    NASA Astrophysics Data System (ADS)

    Ramstein, G.; Defrance, D.; Dumas, C.; Charbit, S.; Gemenne, F.; Vanderlinden, J. P.; Bouneau, S.; David, S.

    2014-12-01

    From paleoclimate data and GCM models simulations, we learnt that, when ice sheets are unstable, they produce large surges of icebergs that cover North Atlantic and produce global climate instability through atmosphere and ocean dynamics. Indeed, these instabilities are associated with a cold (glacial) context. In a warming world, it appears that the two remaining ice sheets (Antarctica and Greenland) are becoming unstable. The probability of abrupt ice sheet changes is therefore to be investigated. In comparison with predicted AR5 sea level rise (SLR) (28 to 82 cm), such a fast melting could add a contribution of 2 to 5 meters, which corresponds to the sea level rise estimate of glacial instability (Heinrich events). The aim of this presentation is to describe consistent sea level and climate simulations. We define 3 scenarios, the sea level rise is produced by the melting of about third of the Greenland, or the disappearance of West Antarctica, or finally a mixture of both ice sheets melting. We first analyze, using IPSL OAGCM, the climatic impact. Indeed, superimposed to direct sea level rise, climate changes has drastic consequences in North Atlantic (Europe and east of North America) due to the thermohaline circulation breakdown. Moreover, when freshwater is injected into North Atlantic, far field effects on the location and amplitude of Asian Monsoon have been shown with its drastic decrease. The second step of this multidisciplinary study is to quantify the impact of the sea level rise and the climatic changes on populations migration, with a focus on Southern Asia with a prospective migration of several hundreds of people. In a third step, we intend to simulate the reorganization of power supply to adapt to the expected new distribution of population, using a quantitative energy model (COSIME). Here, we show the climate response to the 3 investigated climate scenarios and the response in terms of migration, which is huge due to the very large part of the

  10. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  11. Will Abundant Natural Gas Solve Climate Change?

    NASA Astrophysics Data System (ADS)

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  12. Switching power supply

    DOEpatents

    Mihalka, A.M.

    1984-06-05

    The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.

  13. World petroleum supplies

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    A number of conclusions by political conservatives about the fate of world petroleum supplies have been emerging lately. Among the most recent of them arose from discussions, held at the 1983 spring meeting of the American Association for the Advancement of Science (AAAS), which focused on the environment and resource study entitled “The Global 2000 Report” (New Scientist, June 9, 1983). Fred Singer, representing the Heritage Foundation of Washington, D.C., criticized the report, which predicted shortages in the near future, saying that the current world-wide oil glut will continue beyond the year 2000. Alternatives to the use of petroleum are a part of the cause. Singer argued that conservation, nuclear energy, and other petroleum substitutes will continue to suppress the demand for petroleum. In addition, according to other evaluations, exploration for petroleum and natural gas has not really begun.

  14. Earth-Abundant Nanomaterials for Oxygen Reduction.

    PubMed

    Xia, Wei; Mahmood, Asif; Liang, Zibin; Zou, Ruqiang; Guo, Shaojun

    2016-02-18

    Replacing the rare and precious platinum (Pt) electrocatalysts with earth-abundant materials for promoting the oxygen reduction reaction (ORR) at the cathode of fuel cells is of great interest in developing high-performance sustainable energy devices. However, the challenging issues associated with non-Pt materials are still their low intrinsic catalytic activity, limited active sites, and the poor mass transport properties. Recent advances in material sciences and nanotechnology enable rational design of new earth-abundant materials with optimized composition and fine nanostructure, providing new opportunities for enhancing ORR performance at the molecular level. This Review highlights recent breakthroughs in engineering nanocatalysts based on the earth-abundant materials for boosting ORR.

  15. Feedstock Supply System Logistics

    SciTech Connect

    2006-06-01

    Feedstock supply is a significant cost component in the production of biobased fuels, products, and power. The uncertainty of the biomass feedstock supply chain and associated risks are major barriers to procuring capital funding for start-up biorefineries.

  16. The future of oil supply

    PubMed Central

    Miller, Richard G.; Sorrell, Steven R.

    2014-01-01

    Abundant supplies of oil form the foundation of modern industrial economies, but the capacity to maintain and grow global supply is attracting increasing concern. Some commentators forecast a peak in the near future and a subsequent terminal decline in global oil production, while others highlight the recent growth in ‘tight oil’ production and the scope for developing unconventional resources. There are disagreements over the size, cost and recoverability of different resources, the technical and economic potential of different technologies, the contribution of different factors to market trends and the economic implications of reduced supply. Few debates are more important, more contentious, more wide-ranging or more confused. This paper summarizes the main concepts, terms, issues and evidence that are necessary to understand the ‘peak oil’ debate. These include: the origin, nature and classification of oil resources; the trends in oil production and discoveries; the typical production profiles of oil fields, basins and producing regions; the mechanisms underlying those profiles; the extent of depletion of conventional oil; the risk of an approaching peak in global production; and the potential of various mitigation options. The aim is to introduce the subject to non-specialist readers and provide a basis for the subsequent papers in this Theme Issue. PMID:24298085

  17. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  18. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  19. Petroleum supply monthly, October 1993

    SciTech Connect

    Not Available

    1993-10-26

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  20. Petroleum supply monthly, May 1994

    SciTech Connect

    Not Available

    1994-05-27

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum supply annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  1. Petroleum supply monthly, July 1994

    SciTech Connect

    Not Available

    1994-07-26

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  2. Petroleum supply monthly, June 1994

    SciTech Connect

    Not Available

    1994-06-28

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  3. Petroleum supply monthly, January 1996

    SciTech Connect

    1996-02-15

    The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

  4. Petroleum supply monthly, September 1991

    SciTech Connect

    Not Available

    1991-09-30

    The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administrations for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 states and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics. 65 tabs.

  5. Petroleum Supply Monthly, August 1990

    SciTech Connect

    Not Available

    1990-10-30

    The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) district movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics.

  6. Abundance coefficients, a new method for measuring microorganism relative abundance

    USGS Publications Warehouse

    Forester, R.M.

    1977-01-01

    A new method of measuring the relative abundance of microorganisms by using a set of interrelated coefficients, termed 'abundance coefficients' or 'AC', is proposed. These coefficients provide a means of recording abundance for geometric density categories, and each density measurement represents an approximation of the Poisson parameter ??t. The AC is the natural logarithm of a 'characteristic value,' which is a particular number for each geometric density category. The 'characteristic values' are based upon a probabilistic error statement derived from the Poisson formula, and they present evidence for separation of the geometric category boundaries by e = 2.71828. The proposed AC provide a means for recording species abundance in a manner suitable for arithmetic manipulation, for population structure studies, and for the determination of practical limits for defining the presence or absence of a species. Further, these coefficients provide for both intrasample and intersample abundance comparisons. ?? 1977 Plenum Publishing Corporation.

  7. The Future of Fossil Fuels: A Century of Abundance or a Century of Decline?

    NASA Astrophysics Data System (ADS)

    Nelder, C.

    2012-12-01

    Horizontal drilling, hydraulic fracturing, and other advanced technologies have spawned a host of new euphoric forecasts of hydrocarbon abundance. Yet although the world's remaining oil and gas resources are enormous, most of them are destined to stay in the ground due to real-world constraints on price, flow rates, investor appetite, supply chain security, resource quality, and global economic conditions. While laboring under the mistaken belief that it sits atop a 100-year supply of natural gas, the U.S. is contemplating exporting nearly all of its shale gas production even as that production is already flattening due to poor economics. Instead of bringing "energy independence" to the U.S. and making it the top oil exporter, unrestricted drilling for tight oil and in the federal outer continental shelf would cut the lifespan of U.S. oil production in half and make it the world's most desperate oil importer by mid-century. And current forecasts for Canadian tar sands production are as unrealistic as their failed predecessors. Over the past century, world energy production has moved progressively from high quality resources with high production rates and low costs to lower quality resources with lower production rates and higher costs, and that progression is accelerating. Soon we will discover the limits of practical extraction, as production costs exceed consumer price tolerance. Oil and gas from tight formations, shale, bitumen, kerogen, coalbeds, deepwater, and the Arctic are not the stuff of new abundance, but the oil junkie's last dirty fix. This session will highlight the gap between the story the industry tells about our energy future, and the story the data tells about resource size, production rates, costs, and consumer price tolerance. It will show why it's time to put aside unrealistic visions of continued dependence on fossil fuels, face up to a century of decline, and commit ourselves to energy and transportation transition.

  8. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    SciTech Connect

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01

    accomplished in a sustainable manner • Feedstock Infrastructure – An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets • System Profitability – Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply process—production, harvesting and collection, storage, preprocessing, system integration, and transportation—this roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.

  9. 10 CFR 603.1330 - Supplies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Supplies. 603.1330 Section 603.1330 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in... a useful life of less than one year or an acquisition cost of less than $5,000 per unit....

  10. 10 CFR 603.1330 - Supplies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Supplies. 603.1330 Section 603.1330 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in... a useful life of less than one year or an acquisition cost of less than $5,000 per unit....

  11. 10 CFR 603.1330 - Supplies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Supplies. 603.1330 Section 603.1330 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in... a useful life of less than one year or an acquisition cost of less than $5,000 per unit....

  12. 10 CFR 603.1330 - Supplies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Supplies. 603.1330 Section 603.1330 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Definitions of Terms Used in... a useful life of less than one year or an acquisition cost of less than $5,000 per unit....

  13. Erratum: Interstellar Abundance Standards Revisited

    NASA Astrophysics Data System (ADS)

    Sofia, U. J.; Meyer, D. M.

    2001-09-01

    In the Letter ``Interstellar Abundance Standards Revisited'' by U. J. Sofia and D. M. Meyer (ApJ, 554, L221 [2001]), Table 2 and its footnotes contain several typographical errors. The corrected table is shown below. We note that the solar reference standard now implies a positive abundance of nitrogen in halo dust.

  14. Speakers Discuss Science Policy Challenges in the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Hankin, Erik

    2013-08-01

    Water and energy are linked in the ever-increasing demand for these resources in the United States. Most energy production requires an abundant, reliable, and predictable source of water, a resource that is, unfortunately, already in short supply throughout large portions of the United States. In addition, developing water supplies can require large amounts of energy for their extraction, transportation, treatment, and distribution. As such, the ­water-­energy nexus presents a significant challenge for America's water resource and energy developers and distributers as well as for policy makers.

  15. 77 FR 60972 - National Fuel Gas Supply Corporation; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Energy Regulatory Commission National Fuel Gas Supply Corporation; Notice of Application Take notice that on September 18, 2012, National Fuel Gas Supply Corporation (National Fuel), 6363 Main Street.... Reitz, Deputy General Counsel, National Fuel Gas Supply Corporation, 6363 Main Street,...

  16. Penumatic-power supply

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Portable compressed air supply has two or more outputs at pressures from 20 to 100 psi. Applications include operating production equipment, spraying paint and lubricants, and pressurizing refrigeration systems. Supply filters air from standard high-pressure line, reduces it to working pressure, and adds lubricant when required. Regulator supplies low-pressure air to output channels. On channel lines, vernier-control valves select output pressures.

  17. Mineral Abundance Near Aristarchus Crater

    NASA Astrophysics Data System (ADS)

    Bradford, Alison; Storrs, A.

    2007-12-01

    Mineral Abundance Near Aristarchus Crater Alison Bradford and Alex Storrs Towson University We analyze Hubble Space Telescope (HST) images to determine the abundance of minerals near Aristarchus crater. Following the calibration of Robinson et al. (2007) we present ratio maps of images obtained in August of 2005 showing the abundance of TiO2 and other minerals in this interesting area in the middle of Oceanus Procellarum. A prominent cleft (Schroter's Valley, presumably a collapsed lava tube) makes this region of special interest for analyzing the formation of mare basalts. Reference: Robinson, M.S., et al. (2007): "High resolution mapping of TiO2 abundances on the Moon using the Hubble Space Telescope", GRL 34, L13203

  18. The boron abundance of Procyon

    NASA Technical Reports Server (NTRS)

    Lemke, Michael; Lambert, David L.; Edvardsson, Bengt

    1993-01-01

    The B I 2496.8 A resonance line and HST/GHRS echelle spectra are used with model atmospheres and synthetic spectra to derive the B abundance of the F dwarfs Procyon (Alpha Canis Minoris), Theta Ursae Majoris, and Iota Pegasi. The B abundance of Theta UMa and Iota Peg is similar to that derived by Boesgaard and Heacox (1978) from the B II resonance line in spectra of A- and B-type stars. These two dwarfs show normal abundances of Li, Be, and B. Procyon, which is highly depleted in Li and Be, is depleted in B by a factor of at least 3. Comparison of the spectra of Procyon and the halo dwarf HD 140283 shows that the B abundance assigned by Duncan et al. (1992) to three halo dwarfs is not greatly overestimated as a result of contamination of the B I line by an unidentified line.

  19. Competing for supply.

    PubMed

    Stolle, B

    2001-02-01

    The Internet was supposed to make it possible for anybody anywhere to get anything anytime. Instead, it's magnified suppliers' miscalculations into global shortages. But if the Net caused these supply chain woes, it's also the solution, says the CEO of a supply-chain software manufacturer. PMID:11213695

  20. How ants drop out: ant abundance on tropical mountains.

    PubMed

    Longino, John T; Branstetter, Michael G; Colwell, Robert K

    2014-01-01

    In tropical wet forests, ants are a large proportion of the animal biomass, but the factors determining abundance are not well understood. We characterized ant abundance in the litter layer of 41 mature wet forest sites spread throughout Central America (Chiapas, Guatemala, Honduras, Nicaragua, and Costa Rica) and examined the impact of elevation (as a proxy for temperature) and community species richness. Sites were intentionally chosen to minimize variation in precipitation and seasonality. From sea level to 1500 m ant abundance very gradually declined, community richness declined more rapidly than abundance, and the local frequency of the locally most common species increased. These results suggest that within this elevational zone, density compensation is acting, maintaining high ant abundance as richness declines. In contrast, in sites above 1500 m, ant abundance dropped abruptly to much lower levels. Among these high montane sites, community richness explained much more of the variation in abundance than elevation, and there was no evidence of density compensation. The relative stability of abundance below 1500 m may be caused by opposing effects of temperature on productivity and metabolism. Lower temperatures may decrease productivity and thus the amount of food available for consumers, but slower metabolisms of consumers may allow maintenance of higher biomass at lower resource supply rates. Ant communities at these lower elevations may be highly interactive, the result of continuous habitat presence over geological time. High montane sites may be ephemeral in geological time, resulting in non-interactive communities dominated by historical and stochastic processes. Abundance in these sites may be determined by the number of species that manage to colonize and/or avoid extinction on mountaintops. PMID:25098722

  1. How Ants Drop Out: Ant Abundance on Tropical Mountains

    PubMed Central

    Longino, John T.; Branstetter, Michael G.; Colwell, Robert K.

    2014-01-01

    In tropical wet forests, ants are a large proportion of the animal biomass, but the factors determining abundance are not well understood. We characterized ant abundance in the litter layer of 41 mature wet forest sites spread throughout Central America (Chiapas, Guatemala, Honduras, Nicaragua, and Costa Rica) and examined the impact of elevation (as a proxy for temperature) and community species richness. Sites were intentionally chosen to minimize variation in precipitation and seasonality. From sea level to 1500 m ant abundance very gradually declined, community richness declined more rapidly than abundance, and the local frequency of the locally most common species increased. These results suggest that within this elevational zone, density compensation is acting, maintaining high ant abundance as richness declines. In contrast, in sites above 1500 m, ant abundance dropped abruptly to much lower levels. Among these high montane sites, community richness explained much more of the variation in abundance than elevation, and there was no evidence of density compensation. The relative stability of abundance below 1500 m may be caused by opposing effects of temperature on productivity and metabolism. Lower temperatures may decrease productivity and thus the amount of food available for consumers, but slower metabolisms of consumers may allow maintenance of higher biomass at lower resource supply rates. Ant communities at these lower elevations may be highly interactive, the result of continuous habitat presence over geological time. High montane sites may be ephemeral in geological time, resulting in non-interactive communities dominated by historical and stochastic processes. Abundance in these sites may be determined by the number of species that manage to colonize and/or avoid extinction on mountaintops. PMID:25098722

  2. Power supply conditioning circuit

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Loveland, R.

    1987-01-01

    A power supply conditioning circuit that can reduce Periodic and Random Deviations (PARD) on the output voltages of dc power supplies to -150 dBV from dc to several KHz with no measurable periodic deviations is described. The PARD for a typical commercial low noise power supply is -74 dBV for frequencies above 20 Hz and is often much worse at frequencies below 20 Hz. The power supply conditioning circuit described here relies on the large differences in the dynamic impedances of a constant current diode and a zener diode to establish a dc voltage with low PARD. Power supplies with low PARD are especially important in circuitry involving ultrastable frequencies for the Deep Space Network.

  3. Spatial Data Supply Chains

    NASA Astrophysics Data System (ADS)

    Varadharajulu, P.; Azeem Saqiq, M.; Yu, F.; McMeekin, D. A.; West, G.; Arnold, L.; Moncrieff, S.

    2015-06-01

    This paper describes current research into the supply of spatial data to the end user in as close to real time as possible via the World Wide Web. The Spatial Data Infrastructure paradigm has been discussed since the early 1990s. The concept has evolved significantly since then but has almost always examined data from the perspective of the supplier. It has been a supplier driven focus rather than a user driven focus. The current research being conducted is making a paradigm shift and looking at the supply of spatial data as a supply chain, similar to a manufacturing supply chain in which users play a significant part. A comprehensive consultation process took place within Australia and New Zealand incorporating a large number of stakeholders. Three research projects that have arisen from this consultation process are examining Spatial Data Supply Chains within Australia and New Zealand and are discussed within this paper.

  4. Analyzing nonrenewable resource supply

    SciTech Connect

    Bohi, D.R.; Toman, M.A.

    1984-01-01

    Starting with their vision of a useful model of supply behavior as dynamic and market oriented, the authors examine the literature to see what it offers, to fill in some of the missing elements, and to direct attention to the research that is required. Following an introduction, separate chapters deal with the basic theory of supply behavior; joint products, externalities, and technical change; uncertainty, expectations, and supply behavior; aggregate supply and market behavior; and empirical methods and problems. The authors argue that practical understanding of nonrenewable resource supply is hampered by gaps among theory, methodology, and data, and offer a standard designed to achieve consistency among theory, data, and estimation methods. Their recommendations for additional research focus on general specification issues, uncertainty and expectations, market-level analysis, and strategic behavioral issues. 151 references, 9 figures.

  5. Solar energy and job creation benefits of photovoltaics in times of high unemployment

    SciTech Connect

    Hohmeyer, O.H.

    1994-12-31

    Solar energy is normally discussed under the aspects of its medium to long term contribution to the global energy supply and its present cost. The situation is characterized by the benefits of an abundant renewable energy supply option o the one side and comparatively high internal energy production costs of solar energy on the other. Besides the environmental and health benefits of renewables not taken into account in cost comparisons, solar energy has a significantly higher job creation potential as conventional energy supply options. The paper gives an introduction into the basic methodological aspects of comparing job creation effects of different energy technologies and reports on the latest results of ongoing research on the specific effects of photovoltaics as compared to conventional electricity generation.

  6. Factors Affecting Growth of Tengmalm’s Owl (Aegolius funereus) Nestlings: Prey Abundance, Sex and Hatching Order

    PubMed Central

    Zárybnická, Markéta; Riegert, Jan; Brejšková, Lucie; Šindelář, Jiří; Kouba, Marek; Hanel, Jan; Popelková, Alena; Menclová, Petra; Tomášek, Václav; Šťastný, Karel

    2015-01-01

    In altricial birds, energy supply during growth is a major predictor of the physical condition and survival prospects of fledglings. A number of experimental studies have shown that nestling body mass and wing length can vary with particular extrinsic factors, but between-year observational data on this topic are scarce. Based on a seven-year observational study in a central European Tengmalm’s owl population we examine the effect of year, brood size, hatching order, and sex on nestling body mass and wing length, as well as the effect of prey abundance on parameters of growth curve. We found that nestling body mass varied among years, and parameters of growth curve, i.e. growth rate and inflection point in particular, increased with increasing abundance of the owl’s main prey (Apodemus mice, Microtus voles), and pooled prey abundance (Apodemus mice, Microtus voles, and Sorex shrews). Furthermore, nestling body mass varied with hatching order and between sexes being larger for females and for the first-hatched brood mates. Brood size had no effect on nestling body mass. Simultaneously, we found no effect of year, brood size, hatching order, or sex on the wing length of nestlings. Our findings suggest that in this temperate owl population, nestling body mass is more sensitive to prey abundance than is wing length. The latter is probably more limited by the physiology of the species. PMID:26444564

  7. Development of Earth-Abundant and Non-Toxic Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Park, Helen Hejin

    Although solar energy is the most abundant energy resource available, photovoltaic solar cells must consist of sufficiently abundant and environmentally friendly elements, for scalable low-cost production to provide a major amount of the world's energy supply. However, scalability is limited in current thin-film solar cell technologies based on Cu(In,Ga)(S,Se)2 and CdTe due to scarce, expensive, and toxic elements. Thin-film solar cells consisting of earth-abundant and non-toxic materials were made from pulsed chemical vapor deposition (pulsed-CVD) of SnS as the p-type absorber layer and atomic layer deposition (ALD) of Zn(O,S) as the n-type buffer layer. Solar cells with a structure of Mo/SnS/Zn(O,S)/ZnO/ITO were studied by varying the synthesis conditions of the SnS and Zn(O,S) layers. Annealing SnS in hydrogen sulfide increased the mobility by more than one order of magnitude, and improved the power conversion efficiency of the solar cell devices. Solar cell performance can be further optimized by adjusting the stoichiometry of Zn(O,S), and by tuning the electrical properties of Zn(O,S) through various in situ or post-annealing treatments. Zn(O,S) can be post-annealed in oxygen atmosphere or doped with nitrogen, by ammonium hydroxide or ammonia gas, during the ALD growth to reduce the carrier concentration, which can be critical for reducing interface recombination at the p-n junction. High carrier concentration buffer layers can be critical for reducing contact resistance with the ITO layer. Zn(O,S) can also be incorporated with aluminum by trimethylaluminum (TMA) doses to either increase or decrease the carrier concentration based on the stoichiometry of Zn(O,S).

  8. Deuterium Abundance in Consciousness and Current Cosmology

    NASA Astrophysics Data System (ADS)

    Rauscher, Elizabeth A.

    We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in

  9. 1992 Conversion Resources Supply Document

    SciTech Connect

    Not Available

    1992-03-01

    In recent years conservation of electric power has become an integral part of utility planning. The 1980 Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act) requires that the region consider conservation potential in planning acquisitions of resources to meet load growth. The Bonneville Power Administration (BPA) developed its first estimates of conservation potential in 1982. Since that time BPA has updated its conservation supply analyses as a part of its Resource Program and other planning efforts. Major updates were published in 1985 and in January 1990. This 1992 document presents updated supply curves, which are estimates of the savings potential over time (cumulative savings) at different cost levels of energy conservation measures (ECMs). ECMs are devices, pieces of equipment, or actions that increase the efficiency of electricity use and reduce the amount of electricity used by end-use equipment.

  10. Control units for APS power supplies

    SciTech Connect

    Despe, O.D.; Saunders, C.; McGhee, D.G.

    1993-07-01

    The Advanced Photon Source (APS) accelerator facility is made up of five major subsystems in addition to the linac: the positron accumulator ring (PAR), low energy transport (LET), booster synchrotron (SYNCH), high energy transport (HET), the storage ring (SR). Each subsystem has multiple magnet power supply combinations, some requiring multiple of operation. These magnet and power supply combinations computer controlled and monitored. The power supply control unit (PSCU) is the first layer of hardware and software above the power supply itself and is described in this paper. The description includes the basic philosophy for each of operation and how it influences the topology and of implementing control. The design of the analog reference blocks (ARBs) influenced the design of other custom functions well as the feedback controls for vibration and other dynamic corrections. The command set supported by the PSCU is discussed.

  11. CONCEPTUAL DESIGN STUDY OF HORN POWER SUPPLY.

    SciTech Connect

    ZHANG,W.; SANDBERG,J.; WENG,W.T.

    2003-06-16

    A 250 kA pulsed power supply is required for the focusing horn of the proposed Brookhaven AGS Super Neutrino Beam Facility for long baseline neutrino oscillation experiment. It is expected to pulse at 2.5 Hz repetition rate. A preliminary study is being conducted to explore the key issues associated with the power supply system design. Advanced technologies used in similar systems as well as new ideas are being examined, simulated and evaluated. This power supply will be a very high stored energy, high average power, and high peak power system.

  12. Lifting BLS Power Supplies

    SciTech Connect

    Sarychev, Michael

    2007-08-01

    This note describes BLS power supplies lifting techniques and provides stress calculations for lifting plate and handles bolts. BLS power supply weight is about 120 Lbs, with the center of gravity shifted toward the right front side. A lifting plate is used to attach a power supply to a crane or a hoist. Stress calculations show that safety factors for lifting plate are 12.9 (vs. 5 required) for ultimate stress and 5.7 (vs. 3 required) for yield stress. Safety factor for shackle bolt thread shear load is 37, and safety factor for bolts that attach handles is 12.8.

  13. Nitrogen abundance in Comet Halley

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan; Tegler, Stephen C.; Engel, Lisa

    1991-01-01

    Data on the nitrogen-containing compounds that observed spectroscopically in the coma of Comet Halley are summarized, and the elemental abundance of nitrogen in the Comet Halley nucleus is derived. It is found that 90 percent of elemental nitrogen is in the dust fraction of the coma, while in the gas fraction, most of the nitrogen is contained in NH3 and CN. The elemental nitrogen abundance in the ice component of the nucleus was found to be deficient by a factor of about 75, relative to the solar photosphere, indicating that the chemical partitioning of N2 into NH3 and other nitrogen compounds during the evolution of the solar nebula cannot account completely for the low abundance ratio N2/NH3 = 0.1, observed in the comet. It is suggested that the low N2/NH3 ratio in Comet Halley may be explained simply by physical fractionation and/or thermal diffusion.

  14. Solar and stellar photospheric abundances

    NASA Astrophysics Data System (ADS)

    Allende Prieto, Carlos

    2016-07-01

    The determination of photospheric abundances in late-type stars from spectroscopic observations is a well-established field, built on solid theoretical foundations. Improving those foundations to refine the accuracy of the inferred abundances has proven challenging, but progress has been made. In parallel, developments on instrumentation, chiefly regarding multi-object spectroscopy, have been spectacular, and a number of projects are collecting large numbers of observations for stars across the Milky Way and nearby galaxies, promising important advances in our understanding of galaxy formation and evolution. After providing a brief description of the basic physics and input data involved in the analysis of stellar spectra, a review is made of the analysis steps, and the available tools to cope with large observational efforts. The paper closes with a quick overview of relevant ongoing and planned spectroscopic surveys, and highlights of recent research on photospheric abundances.

  15. Robust Abundance Estimation in Animal Abundance Surveys with Imperfect Detection

    EPA Science Inventory

    Surveys of animal abundance are central to the conservation and management of living natural resources. However, detection uncertainty complicates the sampling process of many species. One sampling method employed to deal with this problem is depletion (or removal) surveys in whi...

  16. Supply and Demand

    MedlinePlus

    ... a good breastfeeding rhythm with your baby. In reality, the efficient supply-and-demand rhythm of normal ... is one reason it’s a good idea to alternate which breast you use to begin nursing. A ...

  17. Coronal Abundances and Their Variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1996-01-01

    This contract supported the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution soft X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study were a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This is the Final Report, summarizing the data analysis and reporting activities which occurred during the period of performance, June 1993 - December 1996.

  18. Chemical Abundances of Symbiotic Giants

    NASA Astrophysics Data System (ADS)

    Gałan, C.; Mikołajewska, J.; Hinkle, K. H.; Joyce, R. R.

    2015-12-01

    High resolution (R ˜ 50000), near-IR spectra were used to measure photospheric abundances of CNO and elements around the iron peak for 24 symbiotic giants. Spectrum synthesis was employed using local thermal equilibrium and hydrostatic model atmospheres. The metallicities are distributed in a wide range with maximum around [Fe/H] ˜-0.4 - - 0.3 dex. Enrichment in 14N indicates that all the sample giants have experienced the first dredge-up. The relative abundance of [Ti/Fe] is generally large in red symbiotic systems.

  19. Coronal abundances and their variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1994-01-01

    This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution soft x-ray spectra from the Flat Crystal Spectrometer (FCS) on the Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred during the first ten months of the contract, 15 Jun. 1993 to 15 Apr. 1994.

  20. The solar abundance of beryllium

    NASA Technical Reports Server (NTRS)

    Ross, J. E.; Aller, L. H.

    1974-01-01

    The solar abundance of beryllium is deduced from high-resolution Kitt Peak observations of the 3130.43- and 3131.08-A lines of Be II interpreted by the method of spectrum synthesis. The results are in good agreement with those previously obtained by Grevesse (1968) and by Hauge and Engvold (1968) and indicate that in the photospheric layers, beryllium is depleted below the chondritic value by a factor of about two. It is found that the beryllium abundance is equal to logN(Be)/N(H) + 12 = 1.08 plus or minus 0.05.

  1. SOLAR MODELS WITH REVISED ABUNDANCE

    SciTech Connect

    Bi, S. L.; Li, T. D.; Yang, W. M.; Li, L. H.

    2011-04-20

    We present new solar models in which we use the latest low abundances and further include the effects of rotation, magnetic fields, and extra-mixing processes. We assume that the extra-element mixing can be treated as a diffusion process, with the diffusion coefficient depending mainly on the solar internal configuration of rotation and magnetic fields. We find that such models can well reproduce the observed solar rotation profile in the radiative region. Furthermore, the proposed models can match the seismic constraints better than the standard solar models, also when these include the latest abundances, but neglect the effects of rotation and magnetic fields.

  2. THE SOLAR FLARE IRON ABUNDANCE

    SciTech Connect

    Phillips, K. J. H.; Dennis, B. R. E-mail: Brian.R.Dennis@nasa.gov

    2012-03-20

    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

  3. Control Electronics for Solar/Flywheel Power Supply

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1986-01-01

    Control circuit automatically directs flow of electrical energy to and from motor with flywheel that constitutes storage element of solar-power system. When insolation is sufficient for charging, power is supplied by solar-cell array to load and motor. During periods of darkness, motor made to act as generator, drawing kinetic energy from flywheel and supplying it to load.

  4. Abundance estimation and conservation biology

    USGS Publications Warehouse

    Nichols, J.D.; MacKenzie, D.I.

    2004-01-01

    Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001). The initial capture–recapture models developed for partially (Darroch, 1959) and completely (Jolly, 1965; Seber, 1965) open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992), and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993). However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001). The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004) is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004) emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004) also suggest that our attention

  5. Actinide abundances in ordinary chondrites

    USGS Publications Warehouse

    Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.

    1990-01-01

    Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.

  6. Determination of lunar ilmenite abundances from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Larson, Stephen M.; Johnson, Jeffrey R.; Singer, Robert B.

    1991-01-01

    The mineral ilmenite (FeTiO3) was found in abundance in lunar mare soils returned during the Apollo project. Lunar ilmenite often contains greater than 50 weight-percent titanium dioxide (TiO2), and is a primary potential resource for oxygen and other raw materials to supply future lunar bases. Chemical and spectroscopic analysis of the returned lunar soils produced an empirical function that relates the spectral reflectance ratio at 400 and 560 nm to the weight percent abundance of TiO2. This allowed mapping of the lunar TiO2 distribution using telescopic vidicon multispectral imaging from the ground; however, the time variant photometric response of the vidicon detectors produced abundance uncertainties of at least 2 to 5 percent. Since that time, solid-state charge-coupled device (CCD) detector technology capable of much improved photometric response has become available. An investigation of the lunar TiO2 distribution was carried out utilizing groundbased telescopic CCD multispectral imagery and spectroscopy. The work was approached in phases to develop optimum technique based upon initial results. The goal is to achieve the best possible TiO2 abundance maps from the ground as a precursor to lunar orbiter and robotic sample return missions, and to produce a better idea of the peak abundances of TiO2 for benefaction studies. These phases and the results are summarized.

  7. Updated U.S. Geothermal Supply Characterization

    SciTech Connect

    Petty, S.; Porro, G.

    2007-03-01

    This paper documents the approach taken to characterize and represent an updated assessment of U.S. geothermal supply for use in forecasting the penetration of geothermal electrical generation in the National Energy Modeling System (NEMS). This work is motivated by several factors: The supply characterization used as the basis of several recent U.S. Department of Energy (DOE) forecasts of geothermal capacity is outdated; additional geothermal resource assessments have been published; and a new costing tool that incorporates current technology, engineering practices, and associated costs has been released.

  8. Investigating energy consumption of coastal vacation rental homes

    NASA Astrophysics Data System (ADS)

    Myers, Sam

    In 2007, vacation rental properties in the United States accounted for more than 22% of the domestic lodging market. These properties are a unique segment of the lodging industry due to their residential design and commercial use. Coastal vacation rental properties represent the largest supply, demand and value of the nation's vacation rental supply. In the case of North Carolina's Outer Banks, tourism is the area's largest source of income, with vacation real estate agencies being the largest accommodation provider. This study uses a multiple regression analysis to investigate the energy consumption of 30 vacation rental homes on Hatteras Island. Hatteras Island's abundant supply of vacation rental homes provided a diverse sample to study energy consumption with a wide range of houses regarding size, age, and location. Since very little research has been conducted on the energy consumption of vacation rental homes, this study aims to contribute detailed information regarding the energy consumption of unique accommodation sector.

  9. Technological Implementation of Renewable Energy in Rural-Isolated Areas and Small-Medium Islands in Indonesia: Problem Mapping And Preliminary Surveys of Total People Participation in a Local Wind Pump Water Supply

    NASA Astrophysics Data System (ADS)

    Taufik, Ahmad

    2007-10-01

    This article discusses a formulation of problem mapping and preliminary surveys of total people participation in a local wind pump (LWP) water supply in term of technological implementation of renewable energy (RE) in rural-isolated areas and small-medium islands in Indonesia. The formulation was constructed in order to enhance and to promote the local product of RE across Indonesia. It was also addressed to accommodate local potencies, barriers and opportunities into a priority map. Moreover, it was designed into five aspects such as (1) local technology of the RE: a case of pilot project of the LWP; (2) environmental-cultural aspects related to global issues of energy-renewable energy; (3) potencies and barriers corresponding to local, national, regional and international contents; (4) education and training and (5) gender participation. To focus the formulation, serial preliminary surveys were conducted in five major areas, namely: (1) survey on support and barrier factors of the aspects; (2) strategic planning model, a concept A-B-G which stands for Academician-Business people-Government; (3) survey on background based knowledge on energy conservation; (4) survey on gender participation in energy conservation and (5) survey on local stakeholder involvement. Throughout the surveys, it has been notified that the concept needs to be developed to any level of its component since its elements were identified in tolerance values such as high potency value of the LWP development (95%); a strong potency of rural area application (88%); a medium background of energy, energy conservation (EC) identified in a range of 56%-72%, sufficient support from local stakeholders and gender participation.

  10. Petroleum supply monthly, with data from June 1996

    SciTech Connect

    1996-08-01

    The Petroleum Supply Division (PSD) of the Energy Information Administration (EIA) collects and published information on petroleum supply and disposition in the United States. The information is collected through a series of surveys that make up the Petroleum Supply Reporting System (PSRS). The PSRS data are published in the Weekly Petroleum Status Report (WPSR), Petroleum Supply Monthly (PSM), and Petroleum Supply Annual (PSA). This report presents information on crude oil production, crude oil imports and exports, refinery operations, natural gas processing, transportation, and oxygenate data.

  11. Perioperative supply chain management.

    PubMed

    Feistritzer, N R; Keck, B R

    2000-09-01

    Faced with declining revenues and increasing operating expenses, hospitals are evaluating numerous mechanisms designed to reduce costs while simultaneously maintaining quality care. Many facilities have targeted initial cost reduction efforts in the reduction of labor expenses. Once labor expenses have been "right sized," facilities have continued to focus on service delivery improvements by the optimization of the "supply chain" process. This report presents a case study of the efforts of Vanderbilt University Medical Center in the redesign of its supply chain management process in the department of Perioperative Services. Utilizing a multidisciplinary project management structure, 3 work teams were established to complete the redesign process. To date, the project has reduced costs by $2.3 million and enhanced quality patient care by enhancing the delivery of appropriate clinical supplies during the perioperative experience.

  12. International applications of renewable energy resources. Hearings before the Subcommittee on Energy Conservation and Supply of the Committee on Energy and Natural Resources, United States Senate, Ninety-Sixth Congress, Second Session, August 19 and September 5, 1980

    SciTech Connect

    Not Available

    1980-01-01

    Witnesses at the August 19 and September 5, 1980 hearings focused on the potential impact of solar applications in developing countries and on government involvement in the process. The international market represents an area for commercialization to take place until domestic markets develop. It also presents an opportunity to introduce alternative energy sources to countries not already dependent on fossil fuels and to countries that are overharvesting indigenous resources. The statements of nine witnesses include testimony from the solar industry and government agencies involved in export and international development. (DCK)

  13. Coal supply for California

    NASA Technical Reports Server (NTRS)

    Yancik, J. J.

    1978-01-01

    The potential sources and qualities of coals available for major utility and industrial consumers in California are examined and analyzed with respect to those factors that would affect the reliability of supplies. Other considerations, such as the requirements and assurances needed by the coal producers to enter into long-term contracts and dedicate large reserves of coal to these contracts are also discussed. Present and potential future mining contraints on coal mine operators are identified and analyzed with respect to their effect on availability of supply.

  14. Coronal abundances and their variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1994-01-01

    This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution software X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred since the last report, submitted two months early, in April 1994, to facilitate evaluation of the first year's progress for contract renewal. Hence this report covers the period 15 April 1994 - 15 December 1994. A list of publications resulting from this research is included.

  15. The solar abundance of thulium

    NASA Technical Reports Server (NTRS)

    Ross, J. E.; Aller, L. H.

    1974-01-01

    Consideration of one relatively unblended line of the solar spectrum, namely, the 3131.258-A line of Tm II, which yields a thulium abundance of 0.80 plus or minus 0.10 with the Corliss and Bozman (1962) f-value. The uncertainty of this figure is discussed in conjunction with the contradictory findings of some other investigators. The need for further detailed study of the lanthanides by the method of spectrum synthesis is pointed out.

  16. Chlorine Abundances in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Bogard, D.D.; Garrison, D.H.; Park, J.

    2009-01-01

    Chlorine measurements made in martian surface rocks by robotic spacecraft typically give Chlorine (Cl) abundances of approximately 0.1-0.8%. In contrast, Cl abundances in martian meteorites appear lower, although data is limited, and martian nakhlites were also subjected to Cl contamination by Mars surface brines. Chlorine abundances reported by one lab for whole rock (WR) samples of Shergotty, ALH77005, and EET79001 range 108-14 ppm, whereas Cl in nakhlites range 73-1900 ppm. Measurements of Cl in various martian weathering phases of nakhlites varied 0.04-4.7% and reveal significant concentration of Cl by martian brines Martian meteorites contain much lower Chlorine than those measured in martian surface rocks and give further confirmation that Cl in these surface rocks was introduced by brines and weathering. It has been argued that Cl is twice as effective as water in lowering the melting point and promoting melting at shallower martian depths, and that significant Cl in the shergottite source region would negate any need for significant water. However, this conclusion was based on experiments that utilized Cl concentrations more analogous to martian surface rocks than to shergottite meteorites, and may not be applicable to shergottites.

  17. The Bliss of Motor Abundance

    PubMed Central

    Latash, Mark L.

    2012-01-01

    Motor control is an area of natural science exploring how the nervous system interacts with other body parts and the environment to produce purposeful, coordinated actions. A central problem of motor control – the problem of motor redundancy – was formulated by Nikolai Bernstein as the problem of elimination of redundant degrees-of-freedom. Traditionally, this problem has been addressed using optimization methods based on a variety of cost functions. This review draws attention to a body of recent findings suggesting that the problem has been formulated incorrectly. An alternative view has been suggested as the principle of abundance, which considers the apparently redundant degrees-of-freedom as useful and even vital for many aspects of motor behavior. Over the past ten years, dozens of publications have provided support for this view based on the ideas of synergic control, computational apparatus of the uncontrolled manifold hypothesis, and the equilibrium-point (referent configuration) hypothesis. In particular, large amounts of “good variance” – variance in the space of elements that has no effect on the overall performance – have been documented across a variety of natural actions. “Good variance” helps an abundant system to deal with secondary tasks and unexpected perturbations; its amount shows adaptive modulation across a variety of conditions. These data support the view that there is no problem of motor redundancy; there is bliss of motor abundance. PMID:22246105

  18. Response analysis of the Iberian pig growing from birth to 150 kg body weight to changes in protein and energy supply.

    PubMed

    Nieto, R; Lara, L; Barea, R; García-Valverde, R; Aguinaga, M A; Conde-Aguilera, J A; Aguilera, J F

    2012-11-01

    A total of 251 growing-finishing Iberian (IB) pigs, 32 of which were suckling piglets, were used in 5 separate sets of trials. The comparative slaughter procedure was used to determine nutrient and energy retention at several stages of growth from birth to 150 kg BW. A factorial arrangement was used within each set of trials, involving several concentrations of ideal protein in the diets as 1 factor and 2 or 3 levels of feed intake as the other. The main objective of these studies was to derive the optimal protein-to-energy ratio in the diet to allow for the expression of maximum protein deposition rates. The effect of feed restriction on growth performance, protein deposition, and fat deposition was also assessed. According to allometric equations, empty BW (EBW) was related to whole body components or total chemical constituents of empty body mass (P < 0.001). For pigs receiving solid feed, highly statistically significant multiple regression equations were constructed, which derived nutrient (g/kg) or energy (MJ/kg) composition as a function of EBW, dietary protein-to-energy ratio, and level of feeding (P < 0.001). In pigs offered adequate protein-to-energy diets, ADG at each stage of production was predicted as a function of the average BW and feeding level (P < 0.001). It was observed that the estimates of ME required for maintenance and net efficiency of utilization of ME for growth change were within rather narrow ranges throughout the growth stages studied. Preferred values (413 kJ/kg BW(0.75) × d(-1) and 0.593 for ME(m) and k(g), respectively) were obtained by regressing total energy retention (kJ/kg BW(0.75) × d(-1)) against ME intake (kJ/kg BW(0.75) × d(-1)). A multiple-regression approach revealed that in the IB pig, ME costs for protein deposition and fat deposition reach 60 and 62 kJ/g, which is considerably greater than in conventional or lean pig genotypes. In the IB pig, the maximum daily rate of protein deposition (PD(max), g) seemed to follow

  19. Supply-Chain Optimization Template

    NASA Technical Reports Server (NTRS)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  20. Relative nuclei abundance inside the International Space Station

    NASA Astrophysics Data System (ADS)

    Larsson, Oscar

    2012-07-01

    The Sileye3/Alteino experiment was first operational on-board the International Space Station, ISS, 27 April 2002. From 2006 through 2009 it was activated for long duration measurements of relative particle abundance as part of the ESA ALTCRISS project. Measuring the relative abundance of different nuclei species inside the ISS gives important clues as to how the known cosmic ray spectrum outside the space station changes when traversing the hull, i.e. giving indications as to how the hadronic interactions in the hull gives rise to changes in the expected radiation environment for the astronauts, which is of great interest for risk assessments for future long duration deep space missions. In our work the relative abundance for nuclei species with energies above ≃ 60 MeV/n and 5 ≤ Z ≤ 26 are presented for different places and detector orientations inside the ISS, also with and without shielding of the detector. What can be seen when comparing with the relative abundance of nuclei in the cosmic rays, is a significant difference in abundance for odd Z nuclei, whereas even numbered are in better agreement. Odd Z nuclei are much more abundant inside the ISS. This is an update from our previous report with increased statistics and with relative abundance on more nuclei.

  1. Power Supplies for Precooler Ring

    SciTech Connect

    Fuja, Raymond; Praeg, Walter

    1980-12-12

    Eight power supplies will energize the antiproton Precooler ring. there will be two series connected supplies per quadrant. These supplies will power 32 dipole and 19 quadrupole magnets. The resistance and inductance per quadrant is R = 1.4045 Ohms and L = 0.466. Each powr supply will have 12-phase series bridge rectifiers and will be energized from the 480 V 3-phase grid. The total of eight power supplies are numbered IA, IIA, IIIA, IVA, and IB, IIB, IIIB, and IVB. Each quadrant will contain one A and one B supply. A block diagram of the Precooler ring with its power supplies is shown in Figure 1.

  2. Supply chain quality.

    PubMed

    Feary, Simon

    2009-01-01

    As the development of complex manufacturing models and virtual companies become more prevalent in today's growing global markets, it is increasingly important to support the relationships between manufacturer and supplier. Utilising these relationships will ensure that supply chains operate more effectively and reduce costs, risks and time-to-market time frames, whilst maintaining product quality. PMID:20058652

  3. APS power supply controls

    SciTech Connect

    Saunders, C.W.; Despe, O.D.

    1994-03-31

    The purpose of this document is to provide comprehensive coverage of the APS power supply control design. This includes application software, embedded controller software, networks, and hardware. The basic components will be introduced first, followed by the requirements driving the overall design. Subsequent sections will address each component of the design one by one. Latter sections will address specific applications.

  4. Supply chain management.

    PubMed

    Palevich, R F

    1999-02-01

    This article describes how Do It Best Corp. has used technology to improve its supply chain management. Among other topics it discusses the company's use of electronic data interchange, the Internet, electronic forecasting, and warehouse management systems to gain substantial savings and increase its competitiveness. PMID:10345634

  5. Teleconnected food supply shocks

    NASA Astrophysics Data System (ADS)

    Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix

    2016-03-01

    The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.

  6. Lightweight Regulated Power Supply

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1985-01-01

    Power-supply circuit regulates output voltage by adjusting frequency of chopper circuit according to variations. Currently installed in battery charger for electric wheelchair, circuit is well suited to other uses in which light weight is important - for example, in portable computers, radios, and test instruments.

  7. Maintenance and supply options

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The object of the Maintenance and Supply Option was to develop a high level operational philosophy related to maintenance and supply operations and incorporate these concepts into the Lunar Base Study. Specific products to be generated during this task were three trade studies and a conceptual design of the Logistic Supply Module. The crew size study was performed to evaluate crew sizes from the baseline size of four to a crew size of eight and determine the preferred crew size. The second trade study was to determine the impact of extending surface stay times and recommend a preferred duration of stay time as a function of crew, consumables, and equipment support capabilities. The third trade study was an evaluation of packaging and storage methods to determine the preferred logistics approach to support the lunar base. A modified scenario was developed and served as the basis of the individual trade studies. Assumptions and guidelines were also developed from experience with Apollo programs, Space Shuttle operations, and Space Station studies. With this information, the trade studies were performed and a conceptual design for the Logistic Supply Module was developed.

  8. Teleconnected food supply shocks

    NASA Astrophysics Data System (ADS)

    Bren d’Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix

    2016-03-01

    The 2008–2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.

  9. Exploration Supply Chain Simulation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Exploration Supply Chain Simulation project was chartered by the NASA Exploration Systems Mission Directorate to develop a software tool, with proper data, to quantitatively analyze supply chains for future program planning. This tool is a discrete-event simulation that uses the basic supply chain concepts of planning, sourcing, making, delivering, and returning. This supply chain perspective is combined with other discrete or continuous simulation factors. Discrete resource events (such as launch or delivery reviews) are represented as organizational functional units. Continuous resources (such as civil service or contractor program functions) are defined as enabling functional units. Concepts of fixed and variable costs are included in the model to allow the discrete events to interact with cost calculations. The definition file is intrinsic to the model, but a blank start can be initiated at any time. The current definition file is an Orion Ares I crew launch vehicle. Parameters stretch from Kennedy Space Center across and into other program entities (Michaud Assembly Facility, Aliant Techsystems, Stennis Space Center, Johnson Space Center, etc.) though these will only gain detail as the file continues to evolve. The Orion Ares I file definition in the tool continues to evolve, and analysis from this tool is expected in 2008. This is the first application of such business-driven modeling to a NASA/government-- aerospace contractor endeavor.

  10. The Abundance of Interstellar Fluorine

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar absorption lines of F I at 951 and 954 Angstroms to derive the abundance of fluorine toward the star HD 164816. The nucleosynthetic source(s) of fluorine are still a matter of debate - the present day abundance of fluorine can potentially constrain models for pulsationally driven dredge-up in asymptotic giant branch stars. An accurate measure for the depletion behavior of fluorine will determine whether it may be detectable in QSO absorption line systems - an unambiguous detection of fluorine at suitably high redshifts would provide the best evidence to date for the neutrino process in massive stars. Furthermore, due to its extreme reactivity, measurement of the gas-phase interstellar fluorine abundance is important for models of grain chemistry. Despite the importance of measuring the interstellar fluorine abundance, at the time of our proposal only one previous detection has been made due to the low relative abundance of fluorine, the lack of lines outside the far-UV, and the blending of the available F I transitions with lines of Hz. The star HD 164816 is associated with the Lagoon nebula (M8), and at a distance of approximately 1.5 kpc probes both distant and local gas. Beginning April 8th, 2004 FUSE FP-Split observations of the star HD 164816 were obtained for this program. This data became available in the FUSE data archive May 21, 2004, and these observations were then downloaded and we began our analysis. Our analysis procedure has involved (1) fitting stellar models to the FUSE spectra, (2) using the multiple lines of Hz and N I at other wavelengths in the FUSE bandpass to derive column densities for the lines of H2 and N I which are blended with the F I features at 951 and 954 angstroms (3) the measurement of the column densities of F I and the species O I and C1 I which are important species for the dis-entangling of dust and nucleosynthetic effects. As discussed in

  11. Minimum daily core body temperature in western grey kangaroos decreases as summer advances: a seasonal pattern, or a direct response to water, heat or energy supply?

    PubMed

    Maloney, Shane K; Fuller, Andrea; Meyer, Leith C R; Kamerman, Peter R; Mitchell, Graham; Mitchell, Duncan

    2011-06-01

    Using implanted temperature loggers, we measured core body temperature in nine western grey kangaroos every 5 min for 24 to 98 days in spring and summer. Body temperature was highest at night and decreased rapidly early in the morning, reaching a nadir at 10:00 h, after ambient temperature and solar radiation had begun to increase. On hotter days, the minimum morning body temperature was lower than on cooler days, decreasing from a mean of 36.2°C in the spring to 34.0°C in the summer. This effect correlated better with the time of the year than with proximate thermal stressors, suggesting that either season itself or some factor correlated with season, such as food availability, caused the change. Water saving has been proposed as a selective advantage of heterothermy in other large mammals, but in kangaroos the water savings would have been small and not required in a reserve with permanent standing water. We calculate that the lower core temperature could provide energy savings of nearly 7%. It is likely that the heterothermy that we observed on hot days results either from decreased energy intake during the dry season or from a seasonal pattern entrained in the kangaroos that presumably has been selected for because of decreased energy availability during the dry season.

  12. Proton driver power supply system

    SciTech Connect

    C. Jach and D. Wolff

    2002-06-03

    This paper describes magnet power supply system for a proposed Proton Driver at Fermilab. The magnet power supply system consists of resonant dipole/quadrupole power supply system, quadrupole tracking, dipole correction (horizontal and vertical) and sextupole power supply systems. This paper also describes preliminary design of the power distribution system supplying 13.8 kV power to all proton Driver electrical systems.

  13. Peat as an energy alternative

    SciTech Connect

    Punwani, D.V.

    1980-07-01

    The importance of developing alternative energy sources to augment supplies of fossil fuels is growing all over the world. Coal, oil shale, tar sands, biomass, solar, geothermal, nuclear, and hydroelectric power have received considerable attention as alternative energy sources. One large energy resource, however, has received little attention until recently. That resource is peat. Although peat is used as an energy source in some countries such as Russia, Ireland, and Finland, it is virtually unexploited in many countries including the United States. This paper provides an understanding of peat: its varieties, abundance, and distribution; its value as an energy alternative; its current and future role as an energy alternative; and the environmental and socioeconomic impacts of large-scale peat utilization.

  14. Deep Reductions in Greenhouse Gas Emissions from the California Transportation Sector: Dynamics in Vehicle Fleet and Energy Supply Transitions to Achieve 80% Reduction in Emissions from 1990 Levels by 2050

    NASA Astrophysics Data System (ADS)

    Leighty, Wayne Waterman

    California's "80in50" target for reducing greenhouse gas emissions to 80 percent below 1990 levels by the year 2050 is based on climate science rather than technical feasibility of mitigation. As such, it raises four fundamental questions: is this magnitude of reduction in greenhouse gas emissions possible, what energy system transitions over the next 40 years are necessary, can intermediate policy goals be met on the pathway toward 2050, and does the path of transition matter for the objective of climate change mitigation? Scenarios for meeting the 80in50 goal in the transportation sector are modelled. Specifically, earlier work defining low carbon transport scenarios for the year 2050 is refined by incorporating new information about biofuel supply. Then transition paths for meeting 80in50 scenarios are modelled for the light-duty vehicle sub-sector, with important implications for the timing of action, rate of change, and cumulative greenhouse gas emissions. One aspect of these transitions -- development in the California wind industry to supply low-carbon electricity for plug-in electric vehicles -- is examined in detail. In general, the range of feasible scenarios for meeting the 80in50 target is narrow enough that several common themes are apparent: electrification of light-duty vehicles must occur; continued improvements in vehicle efficiency must be applied to improving fuel economy; and energy carriers must de-carbonize to less than half of the carbon intensity of gasoline and diesel. Reaching the 80in50 goal will require broad success in travel demand reduction, fuel economy improvements and low-carbon fuel supply, since there is little opportunity to increase emission reductions in one area if we experience failure in another. Although six scenarios for meeting the 80in50 target are defined, only one also meets the intermediate target of reducing greenhouse gas emissions to 1990 levels by the year 2020. Furthermore, the transition path taken to reach any

  15. Analysis of Restricted Natural Gas Supply Cases

    EIA Publications

    2004-01-01

    The four cases examined in this study have progressively greater impacts on overall natural gas consumption, prices, and supply. Compared to the Annual Energy Outlook 2004 reference case, the no Alaska pipeline case has the least impact; the low liquefied natural gas case has more impact; the low unconventional gas recovery case has even more impact; and the combined case has the most impact.

  16. Designing Sustainable Supply Chains for Biofuels

    EPA Science Inventory

    Driven by the Energy and Independence Act of 2007 mandate to increase production of alternative fuels and to ensure that this increase causes minimal environmental impact, a project to design sustainable biofuel supply chains has been developed. This effort uses life cycle asses...

  17. CBTL Design Case Summary Conventional Feedstock Supply System - Herbaceous

    SciTech Connect

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional bale feedstock design has been established that represents supply system technologies, costs, and logistics that are achievable today for supplying herbaceous feedstocks as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move herbaceous biomass feedstock from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the uses of field-dried corn stover or switchgrass as a feedstock to annually supply an 800,000 DM ton conversion facility.

  18. The solar abundance of Oxygen

    NASA Astrophysics Data System (ADS)

    Grevesse, N.

    2009-07-01

    With Martin Asplund (Max Planck Institute of Astrophysics, Garching) and Jacques Sauval (Observatoire Royal de Belgique, Brussels) I recently published detailed reviews on the solar chemical composition ({Asplund et al. 2005}, {Grevesse et al. 2007}). A new one, with Pat Scott (Stockholm University) as additional co-author, will appear in Annual Review of Astronomy and Astrophysics ({Asplund et al. 2009}). Here we briefly analyze recent works on the solar abundance of Oxygen and recommend a value of 8.70 in the usual astronomical scale.

  19. Abundance measurements in stellar environments

    NASA Astrophysics Data System (ADS)

    Leone, F.

    2014-05-01

    Most of what we know about stars, and systems of stars, is derived from the analysis of their electromagnetic radiation. This lesson is an attempt to describe to Physicists, without any Astrophysical background, the framework to understand the present status of abundance determination in stellar environments and its limit. These notes are dedicated to the recently passed, November 21, 2013, Prof. Dimitri Mihalas who spent his life confuting the 19th century positivist philosopher Auguste Comte who stated that we shall not at all be able to determine the chemical composition of stars.

  20. Abundance measurements in stellar environments

    SciTech Connect

    Leone, F.

    2014-05-09

    Most of what we know about stars, and systems of stars, is derived from the analysis of their electromagnetic radiation. This lesson is an attempt to describe to Physicists, without any Astrophysical background, the framework to understand the present status of abundance determination in stellar environments and its limit. These notes are dedicated to the recently passed, November 21, 2013, Prof. Dimitri Mihalas who spent his life confuting the 19th century positivist philosopher Auguste Comte who stated that we shall not at all be able to determine the chemical composition of stars.

  1. Silicon to iron abundances in solar cosmic rays and in the sun

    NASA Technical Reports Server (NTRS)

    Vahia, M. N.; Biswas, S.; Durgaprasad, N.

    1985-01-01

    Differential spectra of even charged nuclei between Si and Fe in the August 4, 1972 event were made in the energy region of 10 to 40 MeV/n-1 using rocket borne plastic detectors. The resulting relative abundances of elements and low energy enhancements are obtained and compared with spectroscopically determined photospheric abundances. The implications of the relative abundances on the acceleration mechanisms is discussed.

  2. Quantitative Measures of Mineral Supply Risk

    NASA Astrophysics Data System (ADS)

    Long, K. R.

    2009-12-01

    Almost all metals and many non-metallic minerals are traded internationally. An advantage of global mineral markets is that minerals can be obtained from the globally lowest-cost source. For example, one rare-earth element (REE) mine in China, Bayan Obo, is able to supply most of world demand for rare earth elements at a cost significantly less than its main competitors. Concentration of global supplies at a single mine raises significant political risks, illustrated by China’s recent decision to prohibit the export of some REEs and severely limit the export of others. The expected loss of REE supplies will have a significant impact on the cost and production of important national defense technologies and on alternative energy programs. Hybrid vehicles and wind-turbine generators, for example, require REEs for magnets and batteries. Compact fluorescent light bulbs use REE-based phosphors. These recent events raise the general issue of how to measure the degree of supply risk for internationally sourced minerals. Two factors, concentration of supply and political risk, must first be addressed. Concentration of supply can be measured with standard economic tools for measuring industry concentration, using countries rather than firms as the unit of analysis. There are many measures of political risk available. That of the OECD is a measure of a country’s commitment to rule-of-law and enforcement of contracts, as well as political stability. Combining these measures provides a comparative view of mineral supply risk across commodities and identifies several minerals other than REEs that could suddenly become less available. Combined with an assessment of the impact of a reduction in supply, decision makers can use these measures to prioritize risk reduction efforts.

  3. Energy supply for buildings with focus on solar power in the urban context - an interactive WebGIS implementation for citizens

    NASA Astrophysics Data System (ADS)

    Castellazzi, Bernhard; Biberacher, Markus

    2016-04-01

    Many European cities nowadays offer their citizens Web-GIS applications to access data about solar potentials for specific buildings. However, the actual benefit of such solar systems can only be investigated, if their generation is not considered singularly, but in combination with information about temporal appearance of energy demand (heat, electricity), type of primary heating system, hourly internal consumption of photovoltaic power, feed-in power and other important financial and ecological aspects. Hence, the presented application addresses citizens, who are interested in the integration of solar power in buildings and would like to have an extended view on related impacts. Based on user inputs on building parameters and energy use, as well as high spatial and temporal resolved solar data for individual roof areas, financial and ecological effects of solar thermal installations and PV are estimated. Also interactions between heat and power generation are considered in the implemented approach. The tool was developed within the Central Europe project „Cities on Power" and is being realized for the cities Torino, Warsaw, Dresden, Klagenfurt and Ravenna.

  4. Hydrogen use projections and supply options

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1976-01-01

    Two projections of future hydrogen demand, based on the Ford technical fix and the Westinghouse nuclear electric economy energy supply and demand scenarios, are analyzed. It is suggested that hydrogen use will increase during the remainder of this century by at least a factor of five, and perhaps by a factor of twenty. Primary energy sources for producing hydrogen are discussed in terms of the transition from low to high demand for hydrogen.

  5. Influence of Coronal Abundance Variations

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D. (Technical Monitor); Kashyap, Vinay

    2005-01-01

    The PI of this project was Jeff Scargle of NASA/Ames. Co-I's were Alma Connors of Eureka Scientific/Wellesley, and myself. Part of the work was subcontracted to Eureka Scientific via SAO, with Vinay Kashyap as PI. This project was originally assigned grant number NCC2-1206, and was later changed to NCC2-1350 for administrative reasons. The goal of the project was to obtain, derive, and develop statistical and data analysis tools that would be of use in the analyses of high-resolution, high-sensitivity data that are becoming available with new instruments. This is envisioned as a cross-disciplinary effort with a number of "collaborators" including some at SA0 (Aneta Siemiginowska, Peter Freeman) and at the Harvard Statistics department (David van Dyk, Rostislav Protassov, Xiao-li Meng, Epaminondas Sourlas, et al). We have developed a new tool to reliably measure the metallicities of thermal plasma. It is unfeasible to obtain high-resolution grating spectra for most stars, and one must make the best possible determination based on lower-resolution, CCD-type spectra. It has been noticed that most analyses of such spectra have resulted in measured metallicities that were significantly lower than when compared with analyses of high- resolution grating data where available (see, e.g., Brickhouse et al., 2000, ApJ 530,387). Such results have led to the proposal of the existence of so-called Metal Abundance Deficient, or "MAD" stars (e.g., Drake, J.J., 1996, Cool Stars 9, ASP Conf.Ser. 109, 203). We however find that much of these analyses may be systematically underestimating the metallicities, and using a newly developed method to correctly treat the low-counts regime at the high-energy tail of the stellar spectra (van Dyk et al. 2001, ApJ 548,224), have found that the metallicities of these stars are generally comparable to their photospheric values. The results were reported at the AAS (Sourlas, Yu, van Dyk, Kashyap, and Drake, 2000, BAAS 196, v32, #54.02), and at the

  6. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  7. Discontinuous Mode Power Supply

    NASA Technical Reports Server (NTRS)

    Lagadinos, John; Poulos, Ethel

    2012-01-01

    A document discusses the changes made to a standard push-pull inverter circuit to avoid saturation effects in the main inverter power supply. Typically, in a standard push-pull arrangement, the unsymmetrical primary excitation causes variations in the volt second integral of each half of the excitation cycle that could lead to the establishment of DC flux density in the magnetic core, which could eventually cause saturation of the main inverter transformer. The relocation of the filter reactor normally placed across the output of the power supply solves this problem. The filter reactor was placed in series with the primary circuit of the main inverter transformer, and is presented as impedance against the sudden changes on the input current. The reactor averaged the input current in the primary circuit, avoiding saturation of the main inverter transformer. Since the implementation of the described change, the above problem has not reoccurred, and failures in the main power transistors have been avoided.

  8. Natural Gas Supply SBIR Program

    SciTech Connect

    Shoemaker, H.D.; Gwilliam, W.J.

    1995-07-01

    The Small Business Innovation Research (SBIR) program was created in 1982 by Public Law 97-219 and reauthorized in 1992 until the year 2000 by Public Law 102-564. The purposes of the new law are to (1) expand and improve the SBIR program, 2) emphasize the program`s goal of increasing private sector commercialization of technology developed through Federal R&D, (3) increase small business participation in Federal R&D, and (4) improve the Federal Government`s dissemination of information concerning the SBIR program. DOE`s SBIR pro-ram has two features that are unique. In the 1995 DOE SBIR solicitation, the DOE Fossil Energy topics were: environmental technology for natural gas, oil, and coal; advanced recovery of oil; natural gas supply; natural gas utilization; advanced coal-based power systems; and advanced fossil fuels research. The subtopics for this solicitation`s Natural Gas Supply topic are (1) drilling, completion, and stimulation; (2) low-permeability Formations; (3) delivery and storage; and (4) natural gas upgrading.

  9. Streamlining the supply chain.

    PubMed

    Neumann, Lydon

    2003-07-01

    Effective management of the supply chain requires attention to: Product management--formulary development and maintenance, compliance, clinical involvement, standardization, and demand-matching. Sourcing and contracting--vendor consolidation, GPO portfolio management, price leveling, content management, and direct contracting Purchasing and payment-cycle--automatic placement, web enablement, centralization, evaluated receipts settlement, and invoice matching Inventory and distribution management--"unofficial" and "official" locations, vendor-managed inventory, automatic replenishment, and freight management.

  10. Streamlining the supply chain.

    PubMed

    Neumann, Lydon

    2003-07-01

    Effective management of the supply chain requires attention to: Product management--formulary development and maintenance, compliance, clinical involvement, standardization, and demand-matching. Sourcing and contracting--vendor consolidation, GPO portfolio management, price leveling, content management, and direct contracting Purchasing and payment-cycle--automatic placement, web enablement, centralization, evaluated receipts settlement, and invoice matching Inventory and distribution management--"unofficial" and "official" locations, vendor-managed inventory, automatic replenishment, and freight management. PMID:12866156

  11. Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners

    SciTech Connect

    Not Available

    1991-09-01

    Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

  12. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost... 10 Energy 4 2013-01-01 2013-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for...

  13. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost... 10 Energy 4 2010-01-01 2010-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for...

  14. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost... 10 Energy 4 2011-01-01 2011-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for...

  15. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost... 10 Energy 4 2012-01-01 2012-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for...

  16. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6 (Cost... 10 Energy 4 2014-01-01 2014-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for...

  17. Abundance and Source Population of Suprathermal Heavy Ions in Corotating Interaction Regions

    NASA Astrophysics Data System (ADS)

    Jensema, R. J.; Desai, M. I.; Broiles, T. W.; Dayeh, M. A.

    2015-12-01

    In this study we analyze the abundances of suprathermal heavy ions in 75 Corotating Interaction Region (CIR) events between January 1st 1995 and December 31st 2008. We correlate the heavy ion abundances in these CIRs with those measured in the solar wind and suprathermal populations upstream of these events. Our analysis reveals that the CIR suprathermal heavy ion abundances vary by nearly two orders of magnitude over the solar activity cycle, with higher abundances (e.g., Fe/O) occurring during solar maximum and depleted values occurring during solar minimum. The abundances are also energy dependent, with larger abundances at higher energies, particularly during solar maximum. Following the method used by Mason et al. 2008, we correlate the CIR abundances with the corresponding solar wind and suprathermal values measured during 6-hour intervals for upstream periods spanning 10 days prior to the start of each CIR event. This correlation reveals that suprathermal heavy ions are better correlated with upstream suprathermal abundances measured at the same energy compared with the solar wind heavy ion abundances. Using the 6-hour averaging method, we also identified timeframes of maximum correlation between the CIR and the upstream suprathermal abundances, and find that the time of maximum correlation depends on the energy of the suprathermal ions. We discuss the implications of these results in terms of previous studies of CIR and suprathermal particles, and CIR seed populations and acceleration mechanisms.

  18. Monthly energy review June 1996

    SciTech Connect

    1996-06-01

    This report presents data on energy consumption, fossil fuels imports, supply and disposition, energy prices, electricity, nuclear energy electricity production, and international energy production and consumption.

  19. Cell abundance and microbial community composition along a complete oil sand mining and reclamation process

    NASA Astrophysics Data System (ADS)

    Lappé, M.; Schneider, B.; Kallmeyer, J.

    2012-12-01

    Hydrocarbons constitute an important energy source for microbes but can also be of environmental concern. Microbial activity causes hydrocarbon degradation and thereby loss of economical value, but also helps to remove hydrocarbons from the environment. The present study characterizes the abundance of microbes along the oil sand mining process in Alberta, Canada, as a first approach to assess the impact of mining and oil extraction on the microbial population. After mining the oil is extracted from the sediment by a hot-water extraction (50-60°C), resulting in three major fractions: crude oil, tailings sand and fine tailings. The tailings sand is used as substratum for newly developing soils on the reclamation areas. The very liquid fine tailings still have a TOC content of about 4.3% and are pumped into tailings ponds, where they need up to three decades to settle and solidify. After deposition, these mature fine tailings (MFTs) are enriched in organics (TOC content between 9.6 and 16.8%) and dredged out of the ponds and put on dumps for several years for dewatering. Finally they are brought out onto the reclamation sites and deposited below the sand layer. Cells were extracted from oily sediments according to the protocol of Lappé and Kallmeyer (2011), stained with SYBR Green I and counted by fluorescence microscopy. Cell abundance in the unprocessed oil sand is around 1.6 x 107 cells cm-3. After processing the fresh fine tailings still contain around 1.6 x 107 cells cm-3. Cell counts in the processed MFTs are 5.8 x 107 cells cm-3, whereas in the sand used as substratum for newly developing soils, they are twice as high (1.4 x 108). In root-bearing horizons, cell counts reach 1.1 x 109 cell cm-3. Cell numbers calculated from cultivation experiments are in the same range. Higher cell counts in the tailings sand are probably due to a higher nitrogen supply through the addition of a 35 cm top layer of a peat-mineral mix. In the sand nitrate concentrations are high

  20. 48 CFR 951.103 - Ordering from Government supply sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Ordering from Government supply sources. 951.103 Section 951.103 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT MANAGEMENT USE OF GOVERNMENT SOURCES BY CONTRACTORS Contractor Use of Government Supply...

  1. 48 CFR 951.103 - Ordering from Government supply sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Ordering from Government supply sources. 951.103 Section 951.103 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT MANAGEMENT USE OF GOVERNMENT SOURCES BY CONTRACTORS Contractor Use of Government Supply...

  2. 76 FR 18749 - National Fuel Gas Supply Corporation; Notice Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... Energy Regulatory Commission National Fuel Gas Supply Corporation; Notice Application Take notice that on March 7, 2011, National Fuel Gas Supply Corporation (National Fuel), filed an application in Docket No... Access Project. National Fuel requests authorization to: (1) Construct a new compressor station in...

  3. Procurement Options for New Renewable Electricity Supply

    SciTech Connect

    Kreycik, C. E.; Couture, T. D.; Cory, K. S.

    2011-12-01

    State renewable portfolio standard (RPS) policies require utilities and load-serving entities (LSEs) to procure renewable energy generation. Utility procurement options may be a function of state policy and regulatory preferences, and in some cases, may be dictated by legislative authority. Utilities and LSEs commonly use competitive solicitations or bilateral contracting to procure renewable energy supply to meet RPS mandates. However, policymakers and regulators in several states are beginning to explore the use of alternatives, namely feed-in tariffs (FITs) and auctions to procure renewable energy supply. This report evaluates four procurement strategies (competitive solicitations, bilateral contracting, FITs, and auctions) against four main criteria: (1) pricing; (2) complexity and efficiency of the procurement process; (3) impacts on developers access to markets; and (4) ability to complement utility decision-making processes. These criteria were chosen because they take into account the perspective of each group of stakeholders: ratepayers, regulators, utilities, investors, and developers.

  4. International Oil Supplies and Demands. Volume 2

    SciTech Connect

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  5. International Oil Supplies and Demands. Volume 1

    SciTech Connect

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  6. Current energy usage and sustainable energy in Kazakhstan: A review

    NASA Astrophysics Data System (ADS)

    Karatayev, Marat; Islam, Tofazzal; Salnikov, Vitaliy

    2014-05-01

    Kazakhstan has abundant natural resources. The country has enough coal to supply its energy needs for the next 150 years, and has the world's largest deposits of uranium, substantial quantities of natural gas and petroleum deposits. However, despite such energy riches, due to the size of the territory, its geography, and the country's economic structure, distribution of electricity in Kazakhstan is not uniform. As a result, Kazakhstani rural and remote areas suffer from serious electricity deficits. According to the latest estimates from the Ministry of Industry and New Technologies, about 25-30% of the Kazakhstani population lives in rural communities, where access to affordable energy (for heating, cooling, cooking, refrigeration, lighting, household as well as IT use) is limited. Furthermore, with the main electricity production infrastructure concentrated in the main urban areas, a high amount of electricity is therefore lost during transmission. Moreover, the consumption of poor quality coal as the main source of power generation creates a significant amount of environmental pollution. To illustrate this development, fuel combustion from coal has produced around 75% of carbon dioxide emissions in Kazakhstan. Thus, in order to address the country's electricity and environmental challenges, the Kazakhstani government is taking initiatives to promote renewable energy resources. However, so far, the outcome of these initiatives remains negligible. The current contribution of renewable energy to the total energy consumption is less than 1% (with 90% provided by hydropower) despite the significant potential for renewable energy in the country. As yet, no comprehensive study has been published on the energy scenario and on the potential for renewable energy resources in Kazakhstan. This comprehensive review aims to present an overview of the country's energy resources, supply and demand as the current energy scenario, while discussing the potential for renewable

  7. Lithium Abundance in Planet Search Stars

    NASA Astrophysics Data System (ADS)

    Myles, Justin; Yale Exoplanets

    2016-01-01

    Since most lithium in the universe is primordial and is destroyed in stars, lithium abundance can be used as a stellar age indicator. Some research seems to show that planet formation may also affect lithium abundance in exoplanet host stars (EHS). However, small and heterogenous samples have made both of these phenomena unclear. Further study of lithium abundance in EHS is needed to better understand possible physical roles of lithium in planet formation theory. We use a large homogenous sample with accurate stellar parameters on which we will use equivalent width analysis to determine precise lithium abundances. From these abundance values we determine an age vs. abundance relation. Additionally, we aim to explore correlation between lithium abundance and planet formation.

  8. 18 CFR 2.105 - Gas supply charges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statement of General Policy to... Gas supply charges. An interstate natural gas pipeline that transports under part 284 of this...

  9. CBTL Design Case Summary Conventional Feedstock Supply System - Woody

    SciTech Connect

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional woody feedstock design has been developed that represents supply system technologies, costs, and logistics that are achievable today for supplying woody biomass as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints and consideration of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move woody biomass from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the use of the slash stream since it is a more conservative analysis and represents the material actually used in the experimental part of the project.

  10. Observing chemical abundances in comets

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1981-01-01

    The atomic resonance lines of the major elements were observed in the atmospheres of a few comets, by using vacuum ultraviolet spectrographs on board rockets or orbiting observatories. Dust-to-gas ratios were also deduced for two comets through a Finson-Probstein's analysis of their dust-tail isophotes. The geometric albedo of the dust for the phase angle alpha of the observations is not accurately known but, the dust-to-gas ratio is not overly sensitive to the actual value of this albedo. Infrared observations of the dust head of some comets show that the bulk of cometary dust must be silicates, although a minor component (5-10 percent) of carbon compounds is rather likely, because of poor dielectric properties of the grains. This interpretation is confirmed by the fact that interplanetary dust probably of cometary origin, that was collected in the stratosphere by NASA-U2 Spacecraft, is chondritic in nature. Metal abundances in the head of a sungrazing comet support the chondritic hypothesis.

  11. Molecular Abundances in CRL 618

    NASA Astrophysics Data System (ADS)

    Pardo, Juan R.; Cernicharo, José

    2007-01-01

    In previous works we have modeled the different gas regions of the proto-planetary nebula CRL 618 by studying the large number of lines from the cyanopolyynes detected in a millimeter-wave line survey of this object. In this work we retrieve the rotational temperatures (Tr) and abundance ratios R with respect to HC3N (used as reference) for all molecular species detected in the survey by running grids of models in the (R,Tr) space to find the minimum of a weighted χ2 defined for this analysis. This provides the best knowledge to date of the (polar) molecular composition of CRL 618 thanks to the uniform calibration of the whole survey and the large number of lines available from each species, allowing comparisons with predictions made by chemical models of C-rich post-AGB objects. A significantly lower value of the 12C/13C ratio has been revealed in the gas closest to central star with respect to the colder and outer envelope. It can be due to 13C-rich material, produced in a late CNO cycling occurred in the central star, being currently injected into this inner gas envelope.

  12. How the food supply harvestable by waders in the Wadden Sea depends on the variation in energy density, body weight, biomass, burying depth and behaviour of tidal-flat invertebrates

    NASA Astrophysics Data System (ADS)

    Zwarts, Leo; Wanink, Jan H.

    For several reasons, waders in the Wadden Sea face a large seasonal and annual variation in their food supply. Observations on a tidal flat in the Dutch Wadden Sea have shown that: - (1) The average energy density of ten invertebrate prey species varies between 21 and 23 kJ·g -1 AFDW. In Scrobicularia plana and Mya arenaria, but not in Macoma balthica, the energy density is 10% lower in winter than in summer. - (2) Depending on the species, body weights of prey of similar size are 30 to 60% lower in winter than in summer. - (3) The year-to-year fluctuation in standing-crop biomass is larger in some species than in others, the difference depending mainly on the frequency of successful recruitment. The overall biomass of the macrobenthos in winter is half of that in summer, but the timing of the peak biomass differs per species. - (4) The burying depth varies per species: Cerastoderma edule live just beneath the surface, while M. balthica, S. plana, M. arenaria, Arenicola marina and Nereis diversicolor bury more deeply and the majority of these prey live out of reach of the bird's bill. In all six species, burying depth increases with size. There is no seasonal variation in depth of C. edule and M. arenaria, but the four other species live at most shallow depth in early summer and most deeply in midwinter. Burying depths in winter vary from year to year, but are unrelated to temperature. Neither has temperature any effect on depth within months. For knot Calidris canutus feeding on M. balthica, the fluctuation in the accessible fraction was the main source of variation in the biomass of prey that is actually harvestable, i.e. the biomass of prey of suitable size that is accessible. Accordingly, the paper reviews the available data on the temporal variations in accessibility, detectability, ingestibility, digestibility and profitability of prey for waders. Only a small part of the prey is harvestable since many accessible prey are ignored because of their low

  13. The abundances of nuclei in the cosmic radiation

    NASA Technical Reports Server (NTRS)

    Reames, D. V.

    1974-01-01

    The relative abundances are treated as a consequence of processes in cosmic ray transport occurring during passage of the radiation through interstellar material at high velocity. Some of the subjects mentioned are nuclear fragmentation and the production of secondary nuclei, nuclear reactions, energy loss and nuclear decay, ionization, the range-energy relation and propagation variables, capture and loss of electrons, the propagation of nuclei, the transport equation, equilibrium solutions, energy-dependent path length distribution, exponential path length distributions, discrete spectra, sources, supernovae, and the origin of the abundances. The connection between the space-time features of the sources, the material traversed, and the effects of magnetic fields is established by describing the particle-field interaction as a diffusive or random-walk process.

  14. Power Supply Unit

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Cuk DC to DC Switching Converter was developed by Caltech Professors, Slobodan Cuk and R. D. Middlebrook. The converter changes unsuitable dc voltage into one or more voltages suitable for powering electronic equipment; it can also be used in converting dc current to ac and vice versa. It was named one of the 100 most significant technical advances of 1979. The Cuk converter is more efficient than previous conversion devices, simpler, smaller, lighter, cheaper and highly reliable. The first application of the technology is in the Compucorp 685 word/data processor, manufactured by Compucorp. NASA waived title rights; Caltech granted exclusive license to the inventors, who in turn, transferred their rights to a company they founded called TESLA Company, which sublicenses the converter design and related technology to companies making power supplies for use in their own products.

  15. NNSA TRITIUM SUPPLY CHAIN

    SciTech Connect

    Wyrick, Steven; Cordaro, Joseph; Founds, Nanette; Chambellan, Curtis

    2013-08-21

    Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

  16. Petroleum engineering manpower supply

    SciTech Connect

    Dorfman, M.

    1982-09-01

    The supply of Petroleum Engineers within the U.S. has shown an exponential growth during the last decade due to increases in the price of petroleum and concommitant demand for engineers in the petroleum industry at all levels of activity. Schools currently have very large enrollments; many lack sufficient faculty and facilities to adequately handle the large loads. Recent uncertainty in long range forecasting of petroleum demand, coupled with uncertainty in the price of oil due to turmoil in the Middle East and the discovery of additional large reserves of petroleum as a result of increased drilling, has led to a decline of approximately 25% in the price of crude oil on the spot market and subsequent reductions in drilling in 1982 from a high of 4,500 rigs in the U.S. to 2528 rigs by August 31, 1982; a reduction of 44% this year. This reduction in activity will be reflected in reduced job opportunities for many new graduates in December 1982 and in 1983, and the ''pipelines'' within the schools are filled with students in expectation of good jobs in the private sector of the economy. Since Petroleum Engineering departments maintain a close tie with industry, it is essential that some balance be maintained between supply and demand, so as to try to prevent a glut of engineers descending upon the market. Steps are underway at many schools. to reduce enrollments by a variety of methods at the present time. An upturn in demand in petroleum prices may serve to mitigate the problem within the next two years, but a long-range interchange between industrial hiring forecasts and universities is essential in planning for the future.

  17. Oxygen supplies in disaster management.

    PubMed

    Blakeman, Thomas C; Branson, Richard D

    2013-01-01

    Mass casualty events and disasters, both natural and human-generated, occur frequently around the world and can generate scores of injured or ill victims in need of resources. Of the available medical supplies, oxygen remains the critical consumable resource in disaster management. Strategic management of oxygen supplies in disaster scenarios remains a priority. Hospitals have large supplies of liquid oxygen and a supply of compressed gas oxygen cylinders that allow several days of reserve, but a large influx of patients from a disaster can strain these resources. Most backup liquid oxygen supplies are attached to the main liquid system and supply line. In the event of damage to the main system, the reserve supply is rendered useless. The Strategic National Stockpile supplies medications, medical supplies, and equipment to disaster areas, but it does not supply oxygen. Contracted vendors can deliver oxygen to alternate care facilities in disaster areas, in the form of concentrators, compressed gas cylinders, and liquid oxygen. Planning for oxygen needs following a disaster still presents a substantial challenge, but alternate care facilities have proven to be valuable in relieving pressure from the mass influx of patients into hospitals, especially for those on home oxygen who require only an electrical source to power their oxygen concentrator. PMID:23271827

  18. Oxygen supplies in disaster management.

    PubMed

    Blakeman, Thomas C; Branson, Richard D

    2013-01-01

    Mass casualty events and disasters, both natural and human-generated, occur frequently around the world and can generate scores of injured or ill victims in need of resources. Of the available medical supplies, oxygen remains the critical consumable resource in disaster management. Strategic management of oxygen supplies in disaster scenarios remains a priority. Hospitals have large supplies of liquid oxygen and a supply of compressed gas oxygen cylinders that allow several days of reserve, but a large influx of patients from a disaster can strain these resources. Most backup liquid oxygen supplies are attached to the main liquid system and supply line. In the event of damage to the main system, the reserve supply is rendered useless. The Strategic National Stockpile supplies medications, medical supplies, and equipment to disaster areas, but it does not supply oxygen. Contracted vendors can deliver oxygen to alternate care facilities in disaster areas, in the form of concentrators, compressed gas cylinders, and liquid oxygen. Planning for oxygen needs following a disaster still presents a substantial challenge, but alternate care facilities have proven to be valuable in relieving pressure from the mass influx of patients into hospitals, especially for those on home oxygen who require only an electrical source to power their oxygen concentrator.

  19. Energy and remote sensing applications

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1978-01-01

    The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.

  20. Stardust Abundance Variations among Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Walker, Robert M.

    2009-01-01

    Presolar grain abundances reflect the degree of processing primitive materials have experienced. This is evidenced by the wide range of silicate stardust abundances among primitive meteorites (10 to 300 ppm) [1], attributable to parent body hydrothermal processing. Stardust abundance variations are also pronounced in anhydrous interplanetary dust particles (CPIDPs), that have not experienced parent body processing (300 to > 10,000 ppm) [2-4]. The large range in stardust abundances among CP IDPs thus reflect nebular processing. Here we present results of a systematic search for stardust among cluster CP IDPs. Our goals are to establish mineralogical trends among IDPs with different stardust abundances. This may shed light into the nature of isotopically normal presolar grains (GEMS grains?; 5) if their abundances vary similarly to that of isotopically exotic stardust grains.