Science.gov

Sample records for abundant fluid inclusions

  1. Fluid Inclusion Gas Analysis

    DOE Data Explorer

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  2. Shock Re-equilibration of Fluid Inclusions

    NASA Technical Reports Server (NTRS)

    Madden, M. E. Elwood; Horz, F.; Bodnar, R. J.

    2004-01-01

    Fluid inclusions (microscopic volumes of fluid trapped within minerals as they precipitate) are extremely common in terrestrial minerals formed under a wide range of geological conditions from surface evaporite deposits to kimberlite pipes. While fluid inclusions in terrestrial rocks are nearly ubiquitous, only a few fluid inclusion-bearing meteorites have been documented. The scarcity of fluid inclusions in meteoritic materials may be a result of (a) the absence of fluids when the mineral was formed on the meteorite parent body or (b) the destruction of fluid inclusions originally contained in meteoritic materials by subsequent shock metamorphism. However, the effects of impact events on pre-existing fluid inclusions trapped in target and projectile rocks has received little study. Fluid inclusions trapped prior to the shock event may be altered (re-equilibrated) or destroyed due to the high pressures, temperatures, and strain rates associated with impact events. By examining the effects of shock deformation on fluid inclusion properties and textures we may be able to better constrain the pressure-temperature path experienced by terrestrial and meteoritic shocked materials and also gain a clearer understanding of why fluid inclusions are rarely found in meteorite samples.

  3. Salinity of oceanic hydrothermal fluids: a fluid inclusion study

    NASA Astrophysics Data System (ADS)

    Nehlig, Pierre

    1991-03-01

    An extensive microthermometric study of quartz, epidote, plagioclase, anhydrite and sphalerite-hosted fluid inclusions from ophiolitic [Semail (Oman) and Trinity (California) ophiolites] and oceanic (East Pacific Rise hydrothermal vents, Gorringe Bank, ODP Leg 111 Hole 504B) crust has been carried out in order to constrain a model accounting for wide salinity variations measured in the oceanic hydrothermal fluids. Recorded salinities in fluid inclusions vary between 0.3 and 52 wt% NaCl eq. However, more than 60% of the mean (± standard deviation) salinities of the samples are within the range 3.2 ± 0.3wt% NaCl eq (= microthermometric error) and the mean salinity of all fluid inclusions (without the brines) is 4.0 wt% NaCl eq with a standard deviation of 1.6 wt% NaCl eq. Whereas most samples display slightly higher salinities than seawater, several samples exhibit very high salinities (more than two times that of seawater). These high salinities are restricted to the plagiogranites (Semail and Trinity ophiolites) which mark the top of the fossil magma chamber, in the transition zone between the plutonic sequence and the sheeted dyke complex. The fluid inclusion population studied in the plagiogranites is characterized by the occurrence of four major fluid inclusion families: (1) low- to medium-salinity Liquid/Vapor fluid inclusions which homogenize into the liquid phase; (2) low-salinity Liquid/Vapor fluid inclusions with pseudocritical homogenization; (3) low- to medium-salinity Liquid/Vapor fluid inclusions which homogenize into the vapor phase; and (4) high-salinity Liquid/Vapor/Halite fluid inclusions which homogenize into the liquid phase by halite dissolution and exhibit salinities as high as 52 wt% NaCl eq. These fluid inclusion families are interpreted as resulting from phase separation occurring in hydrothermal or magmatic fluids within the transition zone between the hydrothermal system and the magma chamber at temperatures higher than 500°C. Very low

  4. Paleotemperatures preserved in fluid inclusions in halite

    SciTech Connect

    Roberts, S.M.; Spencer, R.J.

    1995-10-01

    A variety of paleoclimate proxy records allow determination of relative warming or cooling. However, if we are to understand climate change, quantification of past temperature fluctuations is essential. Our research indicates that fluid inclusions in halite can yield homogenization temperatures that record surface brine temperatures at the time of halite precipitation. To avoid problems with stretching, leaking, and initial trapping of air, samples with primary, single-phase (liquid) fluid inclusions are chilled in a freezer to nucleate vapor bubbles. We tested the reliability of this method of obtaining fluid-inclusion homogenization temperatures using modern salts precipitated at Badwater Basin, Death Valley, California. Homogenization temperatures correlate well with measured brine temperatures. The same method is applied to fluid inclusions in Pleistocene halite from a core taken at the same location in Death Valley. Results are at several scales, recording diurnal temperature variations, seasonal temperature fluctuations, and longer-term warming and cooling events that correlate with major changes in the sedimentary environment related to climate. This technique is uniquely instrumental for paleoclimate studies because it offers actual, not just proxy, paleotemperature data. 27 refs., 17 figs.

  5. Gaseous species in fluid inclusions: A tracer of fluids and indicator of fluid processes

    SciTech Connect

    Norman, David I.; Moore, Joseph N.; Yonaka, Brad; Musgrave, John

    1996-01-24

    Quantitative bulk analysis of fluid inclusion volatiles measures the composition of trapped geothermal liquids and vapor. Fluid-inclusion gas-analyses may identify fluid boiling and mixing, and the analyses can be used as a fluid tracer. Fluid boiling is indicated by excess gaseous species. Linear arrays of data points on gas ratio diagrams indicate fluid mixing. Nitrogen-argon ratios are used to discriminate atmospheric fiom magmatic volatiles. Crustal components in geothermal fluids are best indicated by concentrations of methane and helium. Methane strongly correlates with other organic compounds, and N2-Ar-CH4 plots are similar to N2-Ar-He diagrams. Alkene to alkane ratios of C2-7 organic species indicate the oxidation state of geothermal fluids. The Geysers inclusion analyses are an example of how inclusion fluids may be used to understand the paleo hydrology of a geothermal system.

  6. An overview on current fluid-inclusion research and applications

    USGS Publications Warehouse

    Chi, G.; Chou, I.-Ming; Lu, H.-Z.

    2003-01-01

    This paper provides an overview of some of the more important developments in fluid-inclusion research and applications in recent years, including fluid-inclusion petrography, PVTX studies, and analytical techniques. In fluid-inclusion petrography, the introduction of the concept of 'fluid-inclusion assemblage' has been a major advance. In PVTX studies, the use of synthetic fluid inclusions and hydrothermal diamond-anvil cells has greatly contributed to the characterization of the phase behaviour of geologically relevant fluid systems. Various analytical methods are being developed and refined rapidly, with the Laser-Raman and LA-ICP-MS techniques being particularly useful for volatile and solute analyses, respectively. Ore deposit research has been and will continue to be the main field of application of fluid inclusions. However, fluid inclusions have been increasingly applied to other fields of earth science, especially in petroleum geology and the study of magmatic and earth interior processes.

  7. Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions: Analyses of microstandards and synthetic inclusions in quartz

    USGS Publications Warehouse

    Böhlke, J.K.; Irwin, J.J.

    1992-01-01

    Ar, Kr, Xe, Cl, Br, I, and K abundances and isotopic compositions have been measured in microscopic fluid inclusions in minerals by noble gas mass spectrometry following neutron irradiation and laser extraction. The laser microprobe noble gas mass spectrometric (LMNGMS) technique was quantified by use of microstandards, including air-filled capillary tubes, synthetic basalt glass grains, standard hornblende grains, and synthetic fluid inclusions in quartz. Common natural concentrations of halogens (Cl, Br, and I) and noble gases (Ar and Kr) in trapped groundwaters and hydrothermal fluids can be analyzed simultaneously by LMNGMS in as little as 10-11 L of inclusion fluid, with accuracy and precision to within 5-10% for element and isotope ratios. Multicomponent element and isotope correlations indicate contaminants or persistent reservoirs of excess Xe and/or unfractionated air in some synthetic and natural fluid inclusion samples. LMNGMS analyses of natural fluid inclusions using the methods and calibrations reported here may be used to obtain unique information on sources of fluids, sources of fluid salinity, mixing, boiling (or unmixing), and water-rock interactions in ancient fluid flow systems. ?? 1992.

  8. Fluid inclusions in salt from the Rayburn and Vacherie domes, Louisiana

    USGS Publications Warehouse

    Roedder, Edwin; Belkin, H.E.

    1979-01-01

    Core samples from the Rayburn and Vacherie salt domes in Louisiana were examined for fluid inclusions, in connection with the possible use of such domes for nuclear waste storage sites. Three types of fluid inclusions were found, brine, compressed gas, and oil (in decreasing volume percent abundance). The total amount of such fluids is small, certainly < 0.1 vol. % and probably in the range 0.01 to 0.001 volume %, but the inclusions are highly erratic in distribution. Unlike many bedded salt deposits, the brine inclusions in this salt contain fluids that are not far from simple NaCl-H2O solutions, with very little of other ions. One of three possible explanations for such fluids is that fresh water penetrated the salt at some unknown time in the past and was trapped; if such entry of fresh water has occurred in the past, it might also occur again in the future.

  9. Nature and interpretation of fluid inclusions in granulites

    NASA Technical Reports Server (NTRS)

    Touret, Jacques L. R.

    1988-01-01

    Many granulites contain CO2 rich high density fluid inclusions (carbonic fluids). This observation has led to the concept of carbonic metamorphism, the dry character of granulites being less explained by the absence of water (vapor absent metamorphism) than by the presence of a CO2-rich fluid phase which dilutes the water and lowers considerably its partial pressure. Recent observations have indicated that the situation is much more complicated than initially assumed and that any interpretation must be carefully evaluated and discussed against other, independent evidence. The nature of fluid inclusions and the interpretation of fluid inclusion densities are discussed.

  10. Fluid inclusion studies of ejected nodules from plinian eruptions of Mt. Somma-Vesuvius

    USGS Publications Warehouse

    Belkin, H.E.; de Vivo, B.

    1993-01-01

    Mt. Somma-Vesuvius (Naples, Italy) has erupted potassium-rich and silica-undersaturated products during a complicated history of plinian and non-plinian events. Coarse-grained cognate nodules are commonly found in the pyroclastics and are upper crustal in origin. We examined cumulate and subeffusive nodules from the 3800 y.B.P. Avellino. A.D. 79 Pompei, and A.D. 472 Pollena eruptions. Silicate-melt and liquid-vapor fluid inclusion studies in clinopyroxene from both types of nodules have been used to assess the fluids attending crystallization and to place constraints on the pressure and temperature of nodule formation. Thermometric and volumetric data from primary and pseudosecondary CO2-H2O and CO2 and coeval silicate-melt fluid inclusions indicate that they were trapped at a pressure of ???1 to ???2.5 kbar at ???1200??C. This suggests a crystallization depth of ???4 to ???10 km. The H2O-bearing fluid inclusions are abundant from plinian eruptions in contrast to non-plinian eruptions where H2O-bearing fluid inclusions were rare. The presence of primary H2O-CO2 fluid inclusions indicates that an immiscible, supercritical H2O-CO2 fluid was in the nodule-forming environment. The H2O-bearing fluid inclusions in plinian nodules may record a higher pre-eruptive H2O content in the bulk magma that is dramatically reflected in the eruption dynamics. ?? 1993.

  11. Trace Element Abundances in Refractory Inclusions from Antarctic Micrometeorites

    NASA Astrophysics Data System (ADS)

    Greshake, A.; Hoppe, P.; Bischoff, A.

    1995-09-01

    Refractory inclusions are charcteristic components in carbonaceous chondrites. Therefore, refractory inclusions found in micrometeorites can give important hints about the relationship between micrometeorites and carbonaceous chondrites. So far, only a few inclusions were found in micrometeorites [1-4]. In this study we report the first trace element analysis of perovskite and fassaite found in micrometeorites. We studied two Antarctic micrometeorites by ASEM, EMP, and SIMS. The first particle is 120 micrometers in size mainly consisting of a fine-grained matrix of dehydrated former phyllosilikates that enclose a 5 micrometers sized perovskite [5]. The perovskite is surrounded by a 1 micrometers thick rim of ilmenite and contains up to 1.3 wt% FeO as determined by EMP. The trace element abundances were determined by SIMS following the procedure described by [6]. The REE pattern of the perovskite is shown in Fig. 1. The pattern is closely related to the Group II pattern with its typical depletion of the more refractory REEs [7]. It is also very similar to the REE abundances of perovskite from Murchison (CM) [8] and CH-chondrites [9]. This may indicate a relationship between this micrometeorite and components in carbonaceous chondrites. The second micrometeorite is 100 micrometers in size consisting of a fine-grained (20 micrometers across) and a coarse-grained (80 micrometers across) area. Both areas contain fassaite with different chemical compositions. The particle was previously analyzed by Lindstrom and Kloeck [1] without knowing the mineralogy. We carried out SIMS analysis of each area of the micrometeorite separately. The TEE patterns of these two areas are similar and show in general a Group III pattern (20-30x CI) in which the more refractory REEs are not fractionated. The negative Eu anomaly is much more apparent in the coarse-grained area and no Yb anomaly is apparent in one of the areas. This is the first CAI of a micrometeorite showing a Group III REE

  12. The Chemical Behavior of Fluids Released during Deep Subduction Based on Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Frezzotti, M. L.; Ferrando, S.

    2014-12-01

    We present a review of current research on fluid inclusions in (HP-) UHP metamorphic rocks that, combined with existing experimental research and thermodynamic models, allow us to investigate the chemical and physical properties of fluids released during deep subduction, their solvent and element transport capacity, and the subsequent implications for the element recycling in the mantle wedge. An impressive number of fluid inclusion studies indicate three main populations of fluid inclusions in HP and UHP metamorphic rocks: i) aqueous and/or non-polar gaseous fluid inclusions (FI), ii) multiphase solid inclusions (MSI), and iii) melt inclusions (MI). Chemical data from preserved fluid inclusions in rocks match with and implement "model" fluids by experiments and thermodynamics, revealing a continuity behind the extreme variations of physico-chemical properties of subduction-zone fluids. From fore-arc to sub-arc depths, fluids released by progressive devolatilization reactions from slab lithologies change from relatively diluted chloride-bearing aqueous solutions (± N2), mainly influenced by halide ligands, to (alkali) aluminosilicate-rich aqueous fluids, in which polymerization probably governs the solubility and transport of major (e.g., Si and Al) and trace elements (including C). Fluid inclusion data implement the petrological models explaining deep volatile liberation in subduction zones, and their flux into the mantle wedge.

  13. Fluid inclusion geobarometry from ejected Mt. Somma-Vesuvius nodules.

    USGS Publications Warehouse

    Belkin, H.E.; de Vivo, B.; Roedder, E.; Cortini, M.

    1985-01-01

    The results of a microthermometric study of fluid inclusions from seven cumulate and three 'skarn' nodules collected from the pyroclastics of three non-Plinian eruptive episodes are presented. -J.A.Z.

  14. Fluid inclusions in quartz crystals from South-West Africa

    USGS Publications Warehouse

    Kvenvolden, K.A.; Roedder, E.

    1971-01-01

    Quartz crystals from calcite veins of unknown age in Precambrian metasedimentary rocks at Geiaus No. 6 and Aukam farms in South-West Africa contain both primary and secondary inclusions filled with one or a variable combination of: organic liquid, moderately saline aqueous liquid, dark-colored solid, and vapor. Analysis of these materials by microscopy and by gas chromatography and mass spectrometry shows the presence of constituents of both low and high molecular weights. The former include CH4, C2H6, C3H8 and possibly C4H10 as well as CO, CO2, H2O, N2 and H2. High molecular weight components are dominantly n-alkanes and isoprenoid hydrocarbons. The n-alkanes range from at least n-C10 to n-C33. Concentrations of n-alkanes larger than n-C17 decrease regularly with increasing carbon number. An homologous series of isoprenoid hydrocarbons ranging from at least C14 to C20 is present in unusually high concentrations. Pristane (C19) is most abundant, and C17 isoprenoid is least abundant. The molecular composition and distribution of hydrocarbons suggest biological precursors for these components. Consideration of data provided by freezing, crushing and heating experiments suggests that the pressures at the time these in part supercritical fluids were trapped probably exceeded 30-40 atm, and the minimum trapping temperature was about 120-160??C. Both primary and secondary inclusions apparently containing only organic materials were trapped by the growth of the host quartz from aqueous solution. The data obtained neither prove nor preclude Precambrian, Paleozoic or younger sources for the organic materials. ?? 1971.

  15. Fluid Inclusions in Extraterrestrial Samples Fact or Fiction?

    NASA Technical Reports Server (NTRS)

    Bodnar, R. J.; Zolensky, M. E.; Gibson, E. K.

    2000-01-01

    Over the years there have been numerous reports of liquid inclusions in meteorites. Roedder reviews the reported occurrences of liquid inclusions in meteorites and states that "silicate-melt inclusions are expectable and apparently ubiquitous, but the presence of actual liquid inclusions (i.e., with moving bubbles at room temperature) would seem almost impossible." The reason for this conclusion is that meteorites (presumably) form in space at high temperatures and very low pressures where liquid water (or carbon dioxide) is not stable. Perhaps the most infamous report of fluid inclusions in meteorites was that of Warner et al. In that study, the authors reported the presence of two-phase, liquid-vapor inclusions in a diogenite from Antarctica. This report of fluid inclusions generated considerable interest in the meteorite community, and caused many to question existing models for the origin of the diogenites. This interest was short-lived however, as later investigations of the same samples showed that the inclusions were most likely artifacts. Rudnick et al. showed that many of the inclusions in meteorites prepared at the Johnson Space Center contained a fluid that fluoresced strongly under the laser beam on the Raman microprobe. They interpreted this to indicate that the inclusions contained Almag oil used in the preparation of thin sections. Presumably, the Almag oil entered empty vesicles along fractures that were opened intermittently during cutting. Here, the occurrence of unambiguous fluid inclusions that could not have been introduced during sample preparation are described in samples from two different extraterrestrial environments. One environment is represented by the SNC (martian) meteorites ALH 84001 and Nakhla. The second environment is represented by the Monahans 1998 meteorite that fell recently in the USA.

  16. Fluid inclusions and microstructures in experimentally deformed quartz single crystals

    NASA Astrophysics Data System (ADS)

    Thust, A.; Tarantola, A.; Heilbronner, R.; Stünitz, H.

    2009-04-01

    to H2O loss into the healed cracks. First observations of deformed samples show abundant deformation lamellae. With higher deformation the lamellae form conjugated zones of high dislocation density and undulatory extinction. Micro cracks are frequently connected to fluid inclusions. Recrystallized grains are rare in deformed samples because of the low strain acquired. In semi-brittle experiments at lower temperature and faster strain rates considerable recrystallization features are visible and clearly connected to initial brittle deformation features. We conclude that fluid inclusion rupture and fast crack healing at high temperatures are necessary for the redistribution of H2O and a prerequisite of ductile deformation. References: Griggs, D.T. & Balcic, J.D. 1965: Quartz: anomalous weakness of synthetic crystals. Science 147, 293-295. FitzGerald, J.D., Boland, J.N., McLaren, A.C., Ord, A., Hobbs, B.E. 1991: Microstructures in water-weakened single crystals of quartz. Journal of Geophysical Research Vol. 96 No. B2, 2139-2155 Kronenberg, A.K. & Tullis, J. 1984: Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. Journal of Geophysical Research Vol.89, No. B6, 4281-4297. Kronenberg, A.K., Kirby, S.H., Aines, R.D., Rossman G.R. 1986: Solubility and diffusional uptake of hydrogen in quartz at high water pressures: implication for hydrolytic weakening. Journal of Geophysical Research Vol.91, NO. B12, 12,723-12,744. Paterson, M.S.1989: The interaction of water with quartz and the influence in dislocation flow - an overview. In: S. Karato and M. Toriumi (Editors), Rheology of Solids and of the Earth. Oxford University Press, London, pp. 107-142.

  17. Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry

    SciTech Connect

    Dilley, Lorie M.

    2015-04-13

    The purpose of this project was to: 1) evaluate the relationship between geothermal fluid processes and the compositions of the fluid inclusion gases trapped in the reservoir rocks; and 2) develop methodologies for interpreting fluid inclusion gas data in terms of the chemical, thermal and hydrological properties of geothermal reservoirs. Phase 1 of this project was designed to conduct the following: 1) model the effects of boiling, condensation, conductive cooling and mixing on selected gaseous species; using fluid compositions obtained from geothermal wells, 2) evaluate, using quantitative analyses provided by New Mexico Tech (NMT), how these processes are recorded by fluid inclusions trapped in individual crystals; and 3) determine if the results obtained on individual crystals can be applied to the bulk fluid inclusion analyses determined by Fluid Inclusion Technology (FIT). Our initial studies however, suggested that numerical modeling of the data would be premature. We observed that the gas compositions, determined on bulk and individual samples were not the same as those discharged by the geothermal wells. Gases discharged from geothermal wells are CO2-rich and contain low concentrations of light gases (i.e. H2, He, N, Ar, CH4). In contrast many of our samples displayed enrichments in these light gases. Efforts were initiated to evaluate the reasons for the observed gas distributions. As a first step, we examined the potential importance of different reservoir processes using a variety of commonly employed gas ratios (e.g. Giggenbach plots). The second technical target was the development of interpretational methodologies. We have develop methodologies for the interpretation of fluid inclusion gas data, based on the results of Phase 1, geologic interpretation of fluid inclusion data, and integration of the data. These methodologies can be used in conjunction with the relevant geological and hydrological information on the system to

  18. Fluid inclusion study of some Sarrabus fluorite deposits, Sardinia, Italy.

    USGS Publications Warehouse

    Belkin, H.E.; de Vivo, B.; Valera, R.

    1984-01-01

    Fluid inclusions in six deposits of fluorite fracture fillings associated with Hercynian (Carboniferous) cycle magmatism were studied by microthermometric techniques. All the inclusions were liquid dominated, aqueous, and homogenized in the liquid phase. One-phase (liquid), two-phase (liquid + vapour) and three-phase (liquid, vapour, and solid NaCl daughter mineral) fluid inclusions were noted. This study indicates that five of the fluorite deposits formed from 95o-125oC fluids with approx 15 wt.% NaCl. One other deposit appears to have been formed by very dilute solutions at approx 125oC. It is suggested that the local fluorite-forming process was the formation of fracture-localized hydrothermal systems in which magmatic water interaction with some other fluid-connate, meteoric, or marine.-G.J.N.

  19. Fluid inclusion analyses of detrital quartz grains - new Provenance Tool

    SciTech Connect

    Bloch, J.D.

    1985-02-01

    Preliminary analyses by microthermometry of fluid inclusions in detrital quartz of the Upper Cambrian Lamotte Sandstone revealed the occurrence of 2 distinct groups of aqueous fluid inclusions. Specific salinity signatures and homogenization temperatures may be used to distinguish specific granite types of the source rock terrain. The inclusions chosen for analysis occur in isolated clusters or are randomly distributed within a grain, commonly in association with mineral inclusions of zircon, sphene, rutile, and/or tourmaline. Secondary inclusions are present in the Lamotte but are not included in this study. The first group of inclusions is characterized by low salinities (< 1.0-8.0 wt.% eq. NaCl), the second by high salinities (12.1-29.6 wt. % eq. NaCl). Final melting temperatures as low as -30.6/sup 0/C indicate the presence of divalent ions in these inclusions. Both groups yield homogenization temperatures of between 150/sup 0/C and 220/sup 0/C. The low-salinity inclusions occur predominantly in subrounded to well-rounded sand less than 1.0 mm in size that is derived from a distal source. The brine inclusions occur exclusively in subangular to angular gravel 2.0-3.0 mm in size, implying a more proximal source area. A comparison of these inclusions with inclusions found in the granites of the apparent source terrain indicates that a medium-silica amphiboleorthoclase granite (Slabtown type) or a low-silica amphibole-plagioclase granite (Sivermines type) or both are the primary source rocks for this quartz. These granite types have limited areal distribution in the present day St. Francois mountains and the identification of these granite types as the source rock for the locally derived quartz has broad implications for reconstructing Cambrian depositional environments and paleostructure of the ancient St. Francois mountains.

  20. Permian paleoclimate data from fluid inclusions in halite

    USGS Publications Warehouse

    Benison, K.C.; Goldstein, R.H.

    1999-01-01

    This study has yielded surface water paleotemperatures from primary fluid inclusions in mid Permian Nippewalla Group halite from western Kansas. A 'cooling nucleation' method is used to generate vapor bubbles in originally all-liquid primary inclusions. Then, surface water paleotemperatures are obtained by measuring temperatures of homogenization to liquid. Homogenization temperatures ranged from 21??C to 50??C and are consistent along individual fluid inclusion assemblages, indicating that the fluid inclusions have not been altered by thermal reequilibration. Homogenization temperatures show a range of up to 26??C from base to top of individual cloudy chevron growth bands. Petrographic and fluid inclusion evidence indicate that no significant pressure correction is needed for the homogenization temperature data. We interpret these homogenization temperatures to represent shallow surface water paleotemperatures. The range in temperatures from base to top of single chevron bands may reflect daily temperatures variations. These Permian surface water temperatures fall within the same range as some modern evaporative surface waters, suggesting that this Permian environment may have been relatively similar to its modern counterparts. Shallow surface water temperatures in evaporative settings correspond closely to local air temperatures. Therefore, the Permian surface water temperatures determined in this study may be considered proxies for local Permian air temperatures.

  1. Mass spectrometric identification of boric acid in fluid inclusions in pegmatite minerals

    SciTech Connect

    Williams, A.E.; Taylor, M.C.

    1996-09-01

    Direct, on-line mass spectrometric analyses were performed on volatiles released from microscopic fluid inclusions in quartz, feldspar, and tourmaline from the miarolitic Belo Horizonte No. 1 pegmatite in the San Jacinto district, and Himalaya pegmatite dike system in the Mesa Grande district of southern California. These analyses are the first inclusion volatile studies to indicate the presence of significant and variable concentrations of B compounds in pegmatite formation fluids. Boron appears as boric acid B(OH){sub 3}, which is found at levels ranging from less than detection limit (<10{sup {minus}7} mole fraction) to as high as 10{sup {minus}4} mole fraction. High B concentrations are seen in inclusion fluids from miarolite filling quartz, cleavelandite variety albite feldspar, and schorl tourmaline from the Belo Horizonte No. 1, while negligible amounts appear in late-stage green/pink-zoned gem elbaite tourmalines from that mine. Fluid inclusions in quartz, as well as grey and pink tourmaline form the miarolites in the Himalaya mine, have undetectable levels of B compounds. In addition to confirming the presence of very high boric acid concentrations in some pegmatite forming solutions, observations of large variations in abundance may provide new constraints on fluid chemical evolution trends during the genesis of these regionally and paragenetically complex gem deposits. 38 refs., 6 figs., 1 tab.

  2. Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy

    SciTech Connect

    Dilley, Lorie M.; Norman, David; Owens, Lara

    2008-06-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

  3. Isotope geochemistry and fluid inclusion study of skarns from Vesuvius

    USGS Publications Warehouse

    Gilg, H.A.; Lima, A.; Somma, R.; Belkin, H.E.; de Vivo, B.; Ayuso, R.A.

    2001-01-01

    We present new mineral chemistry, fluid inclusion, stable carbon and oxygen, as well as Pb, Sr, and Nd isotope data of Ca-Mg-silicate-rich ejecta (skarns) and associated cognate and xenolithic nodules from the Mt. Somma-Vesuvius volcanic complex, Italy. The typically zoned skarn ejecta consist mainly of diopsidic and hedenbergitic, sometimes "fassaitic" clinopyroxene, Mg-rich and Ti-poor phlogopite, F-bearing vesuvianite, wollastonite, gehlenite, meionite, forsterite, clinohumite, anorthite and Mg-poor calcite with accessory apatite, spinell, magnetite, perovskite, baddeleyite, and various REE-, U-, Th-, Zr- and Ti-rich minerals. Four major types of fluid inclusions were observed in wollastonite, vesuvianite, gehlenite, clinopyroxene and calcite: a) primary silicate melt inclusions (THOM = 1000-1050??C), b) CO2 ?? H2S-rich fluid inclusions (THOM = 20-31.3??C into the vapor phase), c) multiphase aqueous brine inclusions (THOM = 720-820??C) with mainly sylvite and halite daughter minerals, and d) complex chloride-carbonate-sulfate-fluoride-silicate-bearing saline-melt inclusions (THOM = 870-890??C). The last inclusion type shows evidence for immiscibility between several fluids (silicate melt - aqueous chloride-rich liquid - carbonate/sulfate melt?) during heating and cooling below 870??C. There is no evidence for fluid circulation below 700??C and participation of externally derived meteoric fluids in skarn formation. Skarns have considerably variable 206Pb/204Pb (19.047-19.202), 207Pb/204Pb (15.655-15.670), and 208Pb/204Pb (38.915-39.069) and relatively low 143Nd/144Nd (0.51211-0.51244) ratios. The carbon and oxygen isotope compositions of skarn calcites (??13CV-PDB = -5.4 to -1.1???; ??18OV-SMOW = 11.7 to 16.4???) indicate formation from a 18O- and 13C-enriched fluid. The isotope composition of skarns and the presence of silicate melt inclusion-bearing wollastonite nodules suggests assimilation of carbonate wall rocks by the alkaline magma at moderate depths (< 5

  4. Mineral and Fluid Inclusions in the Diamonds from the Ural Placers, Russia

    NASA Astrophysics Data System (ADS)

    Sobolev, N. V.; Logvinova, A. M.; Fedorova, E. N.; Luk'yanova, L. I.; Wirth, R.; Tomilenko, A. A.; Bul'bak, T. A.; Reustsy, V. N.; Efimova, E. S.

    2015-12-01

    A study of compositions of mineral inclusions from representative collection (more than 150 samples) of diamonds from the placers of Ural Mountains was performed. Overwhelming majority of rounded octahedral and dodecahedral stones typical for placers contain eclogitic (E-type) mineral inclusions (up to 80%) represented by garnets with Mg# 40-75 and Ca# 10-56 including a unique high calcic "grospydite" composition, omphacitic pyroxenes containing up to 65% of jadeite as well as kyanite, coesite, sulphides and rutile. U/P type inclusions are represented by olivine, Cr-pyrope, chromediopside, enstatite and chromite typical for diamonds worldwide. One typical rounded dodecahedral diamond was found to contain abundant primary oriented submicrometer (<0.5 mm) octahedral fluid inclusions identified by TEM, caused a milky color of the whole diamond crystal. EEL spectrum of an inclusion has a peak at about 405 eV indicating the presence of nitrogen. Raman spectrum with a peak at 2348 cm-1 confirms the solid state of the nitrogen. This means that fossilized pressure inside fluid inclusions may be within the range of 4.0-4.5 GPa at room T. Volatile components of inclusions were analyzed by combined gas chromatography mass-spectrometry. They are represented by nitrogen (40%), water (26%), carbon dioxide (3,0%) and heavy hydrocarbons (CnH2n+2) which represent 30% rel. of all detected hydrocarbons. Equilibration PT conditions were estimated mainly from chemical composition of coexisting garnets and clinopyroxenes (35 pairs) as 950-1250oC at 5.0 GPa. However, the identification of unique fluid inclusions in one typical placer diamond allows to expand pressure limit at least up to 6.0 GPa. We conclude that Ural placer diamonds are of kimberlitic origin and are comparable in their high E-type/P-type inclusion ratios with those from north-eastern part of the Siberian Craton and in part with diamonds of Arkhangelsk kimberlite province.

  5. Diagenetic palaeotemperatures from aqueous fluid inclusions: re- equilibration of inclusions in carbonate cements by burial heating.

    USGS Publications Warehouse

    Burruss, R.C.

    1987-01-01

    Calculations based on the observed behaviour of inclusions in fluorite under external confining P allows prediction of the T and depths of burial necessary to initiate re-equilibration of aqueous inclusions in the common size range 40-4 mu m. Heating of 20-60oC over the initial trapping T may cause errors of 10-20oC in the homogenization T. This suggests that re-equilibration may cause aqueous inclusions in carbonates to yield a poor record of their low-T history, but a useful record of the maximum T experienced by the host rock. Previous work suggests that inclusions containing petroleum fluids will be less susceptible to re-equilibration.This and the following six abstracts represent papers presented at a joint meeting of the Applied Mineralogy Group of the Mineralogical Society and the Petroleum Group of the Geological Society held in Newcastle upon Tyne in April 1986.-R.A.H.

  6. Gas chromatographic analysis of volatiles in fluid and gas inclusions

    USGS Publications Warehouse

    Andrawes, F.; Holzer, G.; Roedder, E.; Gibson, E.K.; Oro, J.

    1984-01-01

    Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These inclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusions in a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crusing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the process involved in the history of the samples analyzed. ?? 1984.

  7. Mineralogical and Fluid Inclusion Studies on Seafloor Hydrothermal Vents at TA25 Caldera, Tonga Arc

    NASA Astrophysics Data System (ADS)

    Choi, S. K.; Pak, S. J.; Choi, S. H.; Lee, K. Y.; Kim, H. S.; Lee, I. K.

    2015-12-01

    The extensive hydrothermal vent field was discovered at TA25("V18s-HR" in the SO-167 cruise) caldera in the Tonga arc, southwest Pacific. The TA25 caldera is a submarine volcano of dacitic composition and hosts the NE- and NW-trending hydrothermal vent on the western caldera wall. These active hydrothermal crusters are mostly small (chimney: <0.5m in tall; sulfide mound: <3m in diameter) and immature, and emit the transparent fluids of which temperature range from 150℃ to 242℃ (average = 203℃). The hydrothermal sulfide ores, recovered by ROV and/or TV-grab, are mainly composed of sphalerite, pyrite, marcasite, galena, chalcopyrite, covellite, tennantite, enargite and sulfates such as barite, gypsum/anhydrite. It is observed that three distinct mineralogical zonation from exterior to interior of the chimneys: (1) barite-gypsum/anhydrite-pyrite-sphalerite; (2) sphalerite-pyrite-galena±chalcopyrite; (3) sphaleirte-pyrite-chalcopyrite-enargite-tennantite±galena±covellite. FeS content in sphalerite increases from chimney exterior to interior. Chalcopyrite is more abundant in the mound than in the chimney, implying fluid temperatures in mound are greater than in the chimney. The enargite assemblage (pyrite-chalcopyrite-enargite-tennantite) is indicative of high-sulfidation epithermal deposits. Fluid inclusions on barite crystals from mound samples show mono-type inclusion (two-phase liquid-rich inclusions) which is less than 20㎛ in diameter. Homogenization temperatures and salinities from fluid inclusion study range from 148℃ to 341℃ (average = 213℃) and 0.4 to 3.6 equiv. wt.% NaCl, respectively. The main mineralization temperature in mound might be greater than 200℃ since barite on fluid inclusion is early stage mineral.

  8. Synthesis of diamonds with mineral, fluid and melt inclusions

    NASA Astrophysics Data System (ADS)

    Bataleva, Yuliya V.; Palyanov, Yuri N.; Borzdov, Yuri M.; Kupriyanov, Igor N.; Sokol, Alexander G.

    2016-11-01

    Experiments on the synthesis of inclusions-bearing diamond were performed in the SiO2-((Mg,Ca)CO3-(Fe,Ni)S system at 6.3 GPa and 1650-1750 °C, using a multi-anvil high pressure apparatus of the ;split-sphere; type. Diamond synthesis was realized in the ;sandwich-type; experiments, where the carbonate-oxide mixture acted as a source of both CO2-dominated fluid and carbonate-silicate melt, and Fe,Ni-sulfide played a role of reducing agent. As a result of redox reactions in the carbonate-oxide-sulfide system, diamond was formed in association with graphite and Mg,Fe-silicates, coexisting with CO2-rich fluid, carbonate-silicate and sulfide melts. The synthesized diamonds are predominantly colorless or light-yellow monocrystals with octahedral habit (20-200 μm), and polycrystalline aggregates (300-400 μm). Photoluminescence spectroscopy revealed defects related to nickel impurity (S3 optical centers), which are characteristic of many diamonds in nature. The density of diamond crystallization centers over the entire reaction volume was 3 × 102-103 cm- 3. The overwhelming majority of diamonds synthesized were inclusions-bearing. According to Raman spectroscopy data, diamond trapped a wide variety of inclusions (both mono- and polyphase), including orthopyroxene, olivine, carbonate-silicate melt, sulfide melt, CO2-fluid, graphite, and diamond. The Raman spectral pattern of carbonate-silicate melt inclusions have bands characteristic of magnesite and orthopyroxene (± SiO2). The spectra of sulfide melt displayed marcasite and pyrrhotite peaks. We found that compositions of sulfide, silicate and carbonate phases are in good agreement not only with diamond crystallization media in experiments, but with data on natural diamond inclusions of peridotitic and eclogitic parageneses. The proposed methodological approach of diamond synthesis can be used for experimental simulation of the formation of several types of mineral, fluid and melt inclusions, observed in natural

  9. Inclusions of Hydrocarbon Fluids in Diamonds From Wafangdian, Liaoning, China

    NASA Astrophysics Data System (ADS)

    Leung, I. S.; Tsao, C.

    2015-12-01

    We studied a large number of industrial-grade diamonds from Pipe 50 of Liaoning, China. These diamonds are not suitable for polishing into gems or making cutting tools. They are usually crushed to form abrasives, without much scientific scrutiny. We report here fluid inclusions in dozens of diamonds. The first type of fluids occur in the outer rim of diamonds, just below the surface, while their interior is free of visible fluids. Under UV radiation, when a non-fluorescent diamond appeared dim, bubbles of included fluids became visible as yellow and blue spherules. Such diamonds are sometimes encrusted with euhedral micro-diamonds resembling those on thin films grown by CVD. The second type of fluid-rich diamonds display iridescence of pink, blue, green and yellow colors. They show lamellar, filamentous, or tubular structures, some of the tubes are filled with granules, probably grown from fluids in the tubes. An FT-IR investigation of both types yielded similar results. Apart from absorption due to intrinsic diamond lattice vibrations, we found an outstanding group of bands just below wavenumber 3000. This indicates the presence of a saturated aliphatic hydrocarbons of long chain length. Our results seem to implicate that hydrocarbons might be an important component in Earth's mantle, which might even have provided carbon from which diamonds crystllized.

  10. First results on stable isotopes in fluid inclusions in cryogenic carbonates from Ural Mountains (Russia)

    NASA Astrophysics Data System (ADS)

    Dublyansky, Yuri; Luetscher, Mark; Spötl, Christoph; Töchterle, Paul; Kadebskaya, Olga

    2015-04-01

    Cryogenic cave carbonates (CCC) were found in a number of caves in the Ural. In contrast to the CCC previously reported from Central Europe, the Uralian CCC have larger sizes (up to 4-5 cm), which allows for more detailed petrographic and geochemical studies. CCCs from Uralian caves commonly show spherulitic shapes due to crystal splitting, supporting the model of calcite precipitating in a freezing water pond. δ18O values of studied CCCs are lower by 1 to 14 o compared to noncryogenic speleothems of Pleistocene and Holocene age from the same caves. δ18O and δ13C values are inversely correlated and typically show a fractionation between the core and the rim of individual samples. These trends are similar to those reported for CCCs from European caves (Žák et al., 2004). Petrographic observations performed on doubly polished, 100-150 micron-thick sections revealed abundant fluid inclusions, trapped between fibres of the spherulites. Petrographic relationships suggest that these inclusions are primary. The isotopic composition of water trapped in fluid inclusions in CCCs from two caves was analyzed following mechanical crushing at 120 °C, cryo-trapping of released water, pyrolysis on glassy carbon at 1400 °C (TC/EA device; Thermo), and analysis of the evolved gases on an isotope ratio mass spectrometer (Delta V Advantage; Thermo Fisher). The lack of peaks on the m/z 2 trace during the heating of the loaded crushing cell attests for a good sealing of the fluid inclusions. The measured δD values range between -136 o and -145 o VSMOW. The values measured in CCCs are more negative than the typical values of fluid inclusion water measured in the Holocene stalagmites from central Ural (-99 to -108 ). This shift toward more negative values is attributed to the isotopic fractionation between ice and water during the freezing. Reference: Žák et al., 2004, Chemical Geology, 2006, 119-136.

  11. Constraints from fluid inclusions in mantle minerals on the composition of subduction-zone fluids

    NASA Astrophysics Data System (ADS)

    Schiano, P.; Provost, A.; Cluzel, N.

    2013-12-01

    Slab-derived fluids are thought to enrich the mantle wedge in water and trace elements, and this metasomatized mantle region becomes the source of island arc basalts. Much of the evidence for this model has been derived indirectly through the study of the composition of the end-products, the lavas, and there have only been a few direct studies of the metasomatism of the mantle rocks from these regions. Therefore important aspects of the model have remained somewhat hypothetical. In particular, there are different viewpoints on the nature of subduction fluids, their trace element compositions and their pathways in the slab and overlying mantle. The whole debate is also hampered by the limited memory that high-pressure metamorphic rocks preserve of their subduction history, due to retrograde overprinting during exhumation, and by uncertainties in reproducing the conditions of subduction during experiments. Here we identify trapped pristine samples of the fluid phase percolating through the mantle wedge beneath island arcs, by examining fluid inclusions trapped within spinel-harzburgite xenoliths in an arc-front volcano (Batan island, Luzon arc). The xenoliths correspond to previously metasomatized mantle fragments incorporated in the lavas during ascent. Cl-bearing H2O-rich fluid inclusions occur within both primary (ol, opx) and late metasomatic minerals (e.g., cpx, phlogopite, amphibole). They were formed by the addition of aqueous fluids or by separation of aqueous fluids from H2O-saturated melt inclusions, as suggested by the occurrence of composite inclusions consisting of silicate glass and H2O (liq+vap). The associated silicate melt inclusions were previously shown to display silica-rich compositions that are consistent with slab-derived melts [1] or melts of metasomatized mantle peridotites [2]. In situ Raman spectroscopy reveals that at room temperature, the fluid inclusions are composed mainly of H2O, H2S and HS- and contain also sulphur (S6) and Mg

  12. Comparative Fluid Inclusion Chemistry of Miarolitic Pegmatites from San Diego County, California, USA

    NASA Astrophysics Data System (ADS)

    Nymberg, D.; Sirbescu, M. L. C.

    2014-12-01

    Miarolitic Li-Cs-Ta pegmatites are an important source of gemstones such as tourmaline var. elbaite and spodumene var. kunzite, but the distribution of gem-bearing pegmatites within a pegmatite field is not understood. This microthermometry, LA-ICP-MS, Raman spectroscopy, and crush-leach study of fluid inclusions in pegmatite quartz aims to discern the chemical variations of late-stage pegmatite fluids in relation to gem mineralization. We studied five mines from three San Diego Co. districts: Chihuahua Valley (C), Jacumba (J), and Pala (P). The ~100 Ma old, 1-10 m thick, subparallel magma sheets intruded plutons of the Peninsular Ranges Batholith or prebatholitic metasediments at an estimated pressure of 200-300 MPa. The pegmatites formed sequentially, from outer zones with comb, layered, and graphic quartz-feldspar textures at the magmatic stage to massive cores and miarolitic pockets at a late, fluid-saturated stage. Pocket quartz was analyzed from pegmatites of variable host rock, magmatic mineral assemblages, and known gem production. The inclusions contained two-phase aqueous fluids and no CO2 or other gases. Fluid salinity ranged from 0.5 to 8.6 wt.% NaCl eq. and correlated positively with inclusion homogenization temperature. Isochoric T at 250 MPa calculated for primary and pseudosecondary inclusions in pocket quartz ranged from 280 to 500 °C in district P, 310-420°C in J, and 230-290°C in C. We attribute the higher T of pocket formation in districts P and J to higher surrounding T at emplacement caused by proximity to other dikes. This preliminary study suggests that gem elbaite and/or kunzite occurrence correlates to Li and B contents in the pocket fluid, which, in turn, are a function of consumption by early, magmatic minerals. The P district has a simple leucogranite mineralogy at the magmatic stage; has as much as 5760 ppm B and 4950 ppm Li in the pocket fluid; and produced both elbaite and kunzite. The J district has abundant magmatic tourmaline

  13. Fluid inclusion analysis of chert veins from the Mendon Formation, Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Farber, Katja; Dziggel, Annika; Meyer, Franz M.

    2013-04-01

    Strongly silicified volcanic rocks and overlying sediments are a common feature in the Mesoarchean Barberton Greenstone Belt, South Africa. The silification predominantly occurs at the top of mafic to ultramafic lava flows at the contact to sedimentary chert horizons, and has been interpreted as a result of fluid circulation in shallow subseafloor convection cells (Hofmann & Harris, 2008). Six samples of silicified rocks of the Mendon Formation were used for a fluid inclusion study to better constrain the conditions of formation and the source and physico-chemical evolution of the fluid that might have been responsible for the alteration. The studied samples consist of silicified ultramafic rock and chemical precipitates with abundant chert and/or quartz veins. The silicified ultramafic rocks are mainly made up of quartz, Cr-muscovite and Cr-Spinell. Tourmaline and chlorite are locally present. Sedimentary cherts are nearly pure quartz with minor accessory minerals such as rutile and Fe-(hydr)oxides. Fluid inclusions are present in coarse-grained quartz in mainly bedding parallel syntaxial veins. Primary fluid inclusions occur as clusters in the crystal's core with an average size of 5-10 µm. They occur as two phase aqueous (liquid-vapour) inclusions at room temperature with a relatively constant vapour fraction (c.15-20 vol.%). Most fluid inclusions from veins crosscutting the silicified ultramafic rocks have a salinity between 0.5 and 11.0. wt.% NaCl equiv., one sample additionally contains inclusions with distinctly higher salinities (18 - 30 wt.% NaCl equiv.). Homogenization into the liquid phase occurs from 110°C to 210°C; with most values ranging between 150 and 180°C. The sample showing two distinct groups in salinity shows the lowest Th ranging from 110°C to 150°C. The sedimentary cherts show substantial differences i.e. the presence of a phase that prohibits freezing with a N-cooled freezing stage; probably CH4 or N2. Independent temperature

  14. Experimental Simulation of Shock Reequilibration of Fluid Inclusions During Meteorite Impact

    NASA Technical Reports Server (NTRS)

    Madden, M. E. Elwood; Hoerz, R. J.; Bodnar, R. J.

    2003-01-01

    Fluid inclusions are microscopic volumes of fluid trapped within minerals as they precipitate. Fluid inclusions are common in terrestrial minerals formed under a wide array of geological settings from surface evaporite deposits to kimberlite pipes. While fluid inclusions in terrestrial rocks are the rule rather than the exception, only few fluid inclusion-bearing meteorites have been documented. The rarity of fluid inclusions in meteoritic material may be explained in two ways. First, it may reflect the absence of fluids (water?) on meteorite parent bodies. Alternatively, fluids may have been present when the rock formed, but any fluid inclusions originally trapped on the parent body were destroyed by the extreme P-T conditions meteorites often experience during impact events. Distinguishing between these two possibilities can provide significant constraints on the likelihood of life on the parent body. Just as textures, structures, and compositions of mineral phases can be significantly altered by shock metamorphism upon hypervelocity impact, fluid inclusions contained within component minerals may be altered or destroyed due to the high pressures, temperatures, and strain rates associated with impact events. Reequilibration may occur when external pressure-temperature conditions differ significantly from internal fluid isochoric conditions, and result in changes in fluid inclusion properties and/or textures. Shock metamorphism and fluid inclusion reequilibration can affect both the impacted target material and the meteoritic projectile. By examining the effects of shock deformation on fluid inclusion properties and textures we may be able to better constrain the pressure-temperature path experienced by shocked materials and also gain a clearer understanding of why fluid inclusions are rarely found in meteoritic samples.

  15. Ion probe and fluid inclusion evidence for co-seismic fluid infiltration in a crustal detachment

    NASA Astrophysics Data System (ADS)

    Famin, V.; Hébert, R.; Philippot, P.; Jolivet, L.

    2005-10-01

    We have investigated the geochemical pattern of fluid infiltration in the extensional detachment of Tinos Island (Cyclades, Greece). Ion microprobe O-isotope analyses and fluid inclusion studies have been conducted in strain fringes developing around pyrite blasts in the mylonite of the shear zone. Micro-scale traverses in quartz and calcite fibres show that δ18O increases from 17-18 to 20-21‰ in 1 mm towards the blast, drops of 3‰ in ˜200 μm, then rises again in the direction of growth. δ18O variations are interpreted as transient influxes of exotic fluids into the shear zone between periods of closed system buffering by the host rock. Fluid inclusions trapped in the fibres show fluctuating salinities (0-4 wt% NaCl eq.) and densities that reflect drops of the pore pressure from lithostatic (λ=1) to hydrostatic (λ=0.4) values during fringe growth. Isotopic and microthermometric data are consistent with models of seismic pumping developed for compressive shear zones. We therefore suggest that co-seismic pore pressure variations developed suction forces sufficient to drive large-scale fluid migration in the Tinos detachment, as in convergent tectonic settings.

  16. P-T condition fo deformation from fluid inclusions in mylonites

    NASA Technical Reports Server (NTRS)

    Mclellan, Eileen

    1990-01-01

    Structural petrology of fluid inclusions in deformed rocks can be used to identify inclusions entrapped during various stages of deformation. Standard thermobarometry on these inclusions can then provide estimates of the P-T (pressure-temperature) conditions of deformation. The application of this technique is illustrated using fluid inclusions in mylonites from the Quetico Fault Zone, Canada. The inferred P-T conditions fall with the P-T field of mylonitisation derived from isotopic, microstructural and phase equilibrium studies.

  17. Trace Element Abundances in an Unusual Hibonite-Perovskite Refractory Inclusion from Allende

    NASA Technical Reports Server (NTRS)

    Mane, Prajkta; Wadhwa, M.; Keller, L. P.

    2013-01-01

    Calcium-aluminum-rich refractory inclusions (CAIs) are thought to be the first-formed solids in the Solar protoplanetary disk and can provide information about the earliest Solar System processes (e.g., [1]). A hibonite-perovskitebearing CAI from the Allende CV3 chondrite (SHAL, [2]) contains a single of 500 micrometers hibonite grain and coarse-grained perovskite. The mineralogy and oxygen isotopic composition of this CAI shows similarities with FUN inclusions, especially HAL [2]. Here we present trace element abundances in SHAL.

  18. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions.

    PubMed

    Lowenstein, T K; Timofeeff, M N; Brennan, S T; Hardie, L A; Demicco, R V

    2001-11-02

    Systematic changes in the chemistry of evaporated seawater contained in primary fluid inclusions in marine halites indicate that seawater chemistry has fluctuated during the Phanerozoic. The fluctuations are in phase with oscillations in seafloor spreading rates, volcanism, global sea level, and the primary mineralogies of marine limestones and evaporites. The data suggest that seawater had high Mg2+/Ca2+ ratios (>2.5) and relatively high Na+ concentrations during the Late Precambrian [544 to 543 million years ago (Ma)], Permian (258 to 251 Ma), and Tertiary through the present (40 to 0 Ma), when aragonite and MgSO4 salts were the dominant marine precipitates. Conversely, seawater had low Mg2+/Ca2+ ratios (<2.3) and relatively low Na+ concentrations during the Cambrian (540 to 520 Ma), Silurian (440 to 418 Ma), and Cretaceous (124 to 94 Ma), when calcite was the dominant nonskeletal carbonate and K-, Mg-, and Ca-bearing chloride salts, were the only potash evaporites.

  19. CO2-rich fluid inclusions in greenschists, migmatites, granulites, and hydrated granulites

    NASA Technical Reports Server (NTRS)

    Hollister, L. S.

    1988-01-01

    Data was discussed from several different terrains in which CO2-rich fluid inclusions occur despite parageneses that predict the presence of H2O-rich fluids. CO2-rich fluid inclusions, some having densities appropriate for peak-metamorphic conditions, were found in greenschists, amphibolites, migmatites, and hydrated granulites. The author suggested that there may be a common process that leads to CO2-rich secondary inclusions in metamorphic rocks.

  20. Fluid mixing and recycling during Pyrenean thrusting: evidence from fluid inclusion halogen ratios

    NASA Astrophysics Data System (ADS)

    McCaig, A. M.; Tritlla, J.; Banks, D. A.

    2000-10-01

    Syntectonic fluids have been sampled through fluid inclusion microthermometry and crush-leach analyses (cations and halogens) from a 50 km N-S transect through the central-southern Pyrenees. The fluid inclusions are contained in syntectonic quartz veins in Triassic redbeds, Cretaceous carbonates and Hercynian basement rocks, with some calcite and dolomite data from limestones and evaporites in more external parts of the belt. The main datasets come from (1) Alpine shear zones cutting the Néouvielle granodiorite in the Hercynian Axial Zone at the north end of the transect; (2) An imbricate zone beneath the Alpine Gavarnie Thrust at the Pic de Port Vieux; (3) Several localities in the footwall and hangingwall of the Gavarnie Thrust on the southern margin of the Axial Zone. The inclusion fluids generally decrease in salinity from 27-35% at the northern end of the transect to 7-22% on the southern margin of the Axial Zone. The majority of the inclusions have Cl/Br ratios lower than seawater and are interpreted as relict fluids after seawater evaporation and halite precipitation in the upper Trias. This interpretation is supported by Cl-Br-Na systematics, which are consistent with a change from halite to halite + sylvite precipitation with progressive evaporation. Fluids in the basement shear zones are interpreted to have essentially the same evaporitic origin as those still contained in sedimentary formations, although it is possible that final concentration of brines in the Néouvielle Massif involved retrograde hydration reactions with removal of water by precipitation of hydrous minerals. The fluids are also very similar in salinity and halogen chemistry to those found in veins associated with Mesozoic Pb-Zn-F deposits which predate the thrusting. The lower salinities seen at the southern margin of the Axial Zone are interpreted to reflect mixing of the brines with a higher level fluid (connate or meteoric water) circulating within the Mesozoic carbonates of the

  1. Fluid inclusion studies of chemosynthetic carbonates: strategy for seeking life on Mars.

    PubMed

    Parnell, John; Mazzini, Adriano; Honghan, Chen

    2002-01-01

    Fluid inclusions in minerals hold the potential to provide important data on the chemistry of the ambient fluids during mineral precipitation. Especially interesting to astrobiologists are inclusions in low-temperature minerals that may have been precipitated in the presence of microorganisms. We demonstrate that it is possible to obtain data from inclusions in chemosynthetic carbonates that precipitated by the oxidation of organic carbon around methane-bearing seepages. Chemosynthetic carbonates have been identified as a target rock for astrobiological exploration. Other surficial rock types identified as targets for astrobiological exploration include hydrothermal deposits, speleothems, stromatolites, tufas, and evaporites, each of which can contain fluid inclusions. Fracture systems below impact craters would also contain precipitates of minerals with fluid inclusions. As fluid inclusions are sealed microchambers, they preserve fluids in regions where water is now absent, such as regions of the martian surface. Although most inclusions are < 5 microns, the possibility to obtain data from the fluids, including biosignatures and physical remains of life, underscores the advantages of technological advances in the study of fluid inclusions. The crushing of bulk samples could release inclusion waters for analysis, which could be undertaken in situ on Mars.

  2. The Iceland Deep Drilling Project (IDDP): (4) A Quartz Fluid Inclusion Tool for Sampling Supercritical Geothermal Fluids Downhole

    NASA Astrophysics Data System (ADS)

    Reed, M. H.; Grist, H.; Fridriksson, T.; Danielsen, P.; Senkovich, D.; Johnston, A.; Elders, W. A.; Fridleifsson, G. O.

    2009-12-01

    Chemical analyses of in situ samples of supercritical geothermal fluids would provide a uniquely good measure of fluid composition at depth relative to compositions reconstructed from analyses of gas and liquid sampled at wellheads. Fluids sampled at the wellhead are commonly a mixture from multiple aquifers and, in many circumstances, they lack components such as sulfate, sulfide, Ca, Cu, Zn, and Fe that precipitated in scale minerals where the fluids boiled or cooled during their ascent. To circumvent the above problems and the failings of downhole mechanical samplers at temperatures exceeding 300°C and to obtain total fluid samples at supercritical conditions in the IDDP wells, we plan to trap fluids in fluid inclusions formed in fractured quartz that we suspend in a geothermal well on a wireline. In a series of hydrothermal laboratory experiments at 450°C and 600 bar and spanning 6 hr to 5 days in length, thermal shock fractures in natural and synthetic quartz crystals heal, forming ragged fluid inclusions in one day and many well formed inclusions in three days. Amorphous silica is added to the experimental charge, without which, fractures heal little and only 1-2 micron inclusions form. Microthermometry measurements on the inclusions produced in experiments return the run temperature within 20°C at the experimental pressure, indicating that inclusions formed and sealed at the run conditions. The fluid inclusion tool (FIT) consists of a perforated stainless steel pipe containing multiple stainless steel mesh canisters with non-mesh ends to minimize vertical fluid flow. The canisters contain 10mm-scale chunks of fractured quartz surrounded by ground quartz glass. The perforated pipe will be fixed within a one-meter outer perforated stainless steel housing that is suspended on a stainless steel slick line. The FIT is weighed by one or more 10kg lead sinker bars. The entire assembly is lowered into the well from a lubricator fitted on the wellhead, thus

  3. Hydrothermal mineralogy and fluid inclusions chemistry to understand the roots of active geothermal systems

    NASA Astrophysics Data System (ADS)

    Chambefort, I. S.; Dilles, J. H.; Heinrich, C.

    2013-12-01

    An integrated study to link magmatic textures, magmatic mineral compositions, hydrothermal alteration zoning, hydrothermal mineral chemistry, and fluid inclusion compositions has been undertaken to link an intrusive complex and its degassing alteration halo with their surface equivalent in an active geothermal system. Ngatamariki geothermal system, New Zealand, presents a unique feature in the Taupo Volcanic Zone (TVZ). Drilling intercepted an intrusive complex with a high temperature alteration halo similarly to what is observed in magmatic-derived ore deposits. Thus it presents the perfect opportunity to study the magmatic-hydrothermal transition of the TVZ by characterizing the nature of the deep magmatic fluids link to the heat source of the world known geothermal fields. The record of magmatic-hydrothermal fluid-rock interactions preserved at Ngatamariki may be analogous of processes presently occurring at depth beneath TVZ geothermal systems. The intrusive complex consists of over 5 km3 of tonalite, diorite, basalt and aplitic dykes. Evidence of undercooling subsolidus magmatic textures such as myrmekite and skeletal overgrowth are commonly observed and often linked to volatile loss. The fluids released during the crystallization of the intrusive complex are interpreted to be at the origin of the surrounding high temperature alteration halo. Advanced argillic to potassic alteration and high temperature acidic assemblage is associated with high-temperature quartz veining at depth and vuggy silica at the paleo-surface. Major element compositions of the white micas associated with the high temperature halo show a transition from, muscovite to phengite, muscovitic illite away from the intrusion, with a transition to pyrophyllite and/ or topaz, and andalusite characteristic of more acidic conditions. Abundant high-density (up to 59 wt% NaCl eq and homogenization temperatures of 550 degree Celsius and above) coexist with low-density vapor fluid inclusions. This

  4. The role of CO2-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Berkesi, Márta; Guzmics, Tibor; Szabó, Csaba; Dubessy, Jean; Bodnar, Robert J.; Hidas, Károly; Ratter, Kitti

    2012-05-01

    Upper mantle peridotite xenoliths from the Tihany Maar Volcanic Complex, Bakony-Balaton Highland Volcanic Field (Central Pannonian Basin, Hungary) contain abundant pyroxene-hosted negative crystal shaped CO2-rich fluid inclusions. The good correlation between enrichment of the clinopyroxenes in Al2O3, TiO2, Na2O, MREE and Zr, and the presence of fluid inclusions in the xenoliths provide strong evidence for fluid-related cryptic metasomatism of the studied xenoliths. The FIB-SEM (focused ion beam-scanning electron microscopy) exposure technique revealed a thin glass film, covering the wall of the fluid inclusions, which provides direct evidence that the silicate components were formerly dissolved in the CO2-rich fluid phase. This means that at upper mantle conditions CO2-rich fluids are capable of transporting trace and major elements, and are the agents responsible for cryptic metasomatism of the peridotite wall rock. Several daughter phases, including magnesite, quartz and sulfide, were identified in the fluid inclusions. Magnesite and quartz are the products of a post entrapment carbonation reaction, whereby the reactants are the CO2-rich fluid and the host orthopyroxene. It is likely that the thin glass film prevented or arrested further growth of the magnesite and quartz by isolating the fluid from the host orthopyroxene, resulting in the preservation of residual CO2 in the fluid inclusions.

  5. Imprints of hydrocarbon-bearing basinal fluids on a karst system: mineralogical and fluid inclusion studies from the Buda Hills, Hungary

    NASA Astrophysics Data System (ADS)

    Poros, Zsófia; Mindszenty, Andrea; Molnár, Ferenc; Pironon, Jacques; Győri, Orsolya; Ronchi, Paola; Szekeres, Zoltán

    2012-03-01

    Calcite veins and related sulphate-sulphide mineralisation are common in the Buda Hills. Also, abundant hypogenic caves are found along fractures filled with these minerals pointing to the fact that young cave-forming fluids migrated along the same fractures as the older mineralising fluids did. The studied vein-filling paragenesis consists of calcite, barite, fluorite and sulphides. The strike of fractures is consistent—NNW-SSE—concluding a latest Early Miocene maximum age for the formation of fracture-filling minerals. Calcite crystals contain coeval primary, hydrocarbon-bearing- and aqueous inclusions indicating that also hydrocarbons have migrated together with the mineralising fluids. Hydrocarbon inclusions are described here for the first time from the Buda Hills. Mixed inclusions, i.e., petroleum with `water-tail', were also detected, indicating that transcrystalline water migration took place. The coexistence of aqueous and petroleum inclusions permitted to establish the entrapment temperature (80°C) and pressure (85 bar) of the fluid and thus also the thickness of sediments, having been eroded since latest Early Miocene times, was calculated (800 m). Low salinity of the fluids (<1.7 NaCl eq. wt%) implies that hydrocarbon-bearing fluids were diluted by regional karst water. FT-IR investigations revealed that CO2 and CH4 are associated with hydrocarbons. Groundwater also contains small amounts of HC and related gases on the basin side even today. Based on the location of the paleo- and recent hydrocarbon indications, identical migration pathways were reconstructed for both systems. Hydrocarbon-bearing fluids are supposed to have migrated north-westward from the basin east to the Buda Hills from the Miocene on.

  6. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  7. Decrepitometry of fluid inclusions in quartz from the guadalcazar granite of Mexico; principles and application to mineral exploration

    NASA Astrophysics Data System (ADS)

    Chryssoulis, S. L.; Rankin, A. H.

    1988-01-01

    A simple acoustic decrepitometric method, with which samples of granite quartz are heated to about 600°C while the number of decrepitations are counted, has been developed to study rock samples derived from the mineralized guadalcazar granite in Mexico. Decrepitation temperatures for individual inclusions have also been determined by observing the point at which they rupture upon heating using a microscope heating stage. Decrepitation temperatures of individual fluid inclusions in granite quartz are influenced by a variety of factors notably size, shape, composition, homogenization temperature and proximity to the surface. There is a positive correlation between total decrepitation activity and fluid inclusion abundances (determined optically using point counting methods). Decrepitographs show a period of low intensity decrepitation activity below 390°C followed by a period of intensive decrepitation up to 570°C. The onset of massive decrepitation at around 390°C is constant for all samples, but variations in decrepitation activity often occur between mineralized and barren samples. These variations reflect complex differences in the fluid inclusion populations, but illustrate the potential for applying simple audio-decrepitometry as an aid to mineral exploration in granite terrains.

  8. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    walls of the inclusion [3,5]. Results indicate that carbonic inclusions possess higher concentrations of Cu (47 to 2387 ppm; mean 453 ppm) compared to aqueous inclusions (5 to 190 ppm; mean 50 ppm). The aqueous inclusions also are much higher in Cl (Na), K, Ca, and Mn, but have similar abundances of Fe, Zn, and Pb. The metal ratios Cu/Fe, Cu/Zn, and Cu/Pb are 2 to 22 times higher in the carbonic inclusions than in the aqueous inclusions. Interpretation of these 17 Mile Hill PIXE data, however, requires some caution because carbonic and aqueous inclusions in a different grain of quartz from the same vein have similarly low concentrations of Cu (38 to 928 ppm), Fe (152 to 1168 ppm), Zn (26 to 162 ppm) and Pb (121 to 914 ppm). For these inclusions, the preferential partitioning of metals apparently has not occurred. These first PIXE data for deposits of the new RPCG subclass demonstrate the greater potential of these systems, compared to the classically oxidized porphyry Cu-Au systems, to transport Cu and probably precious metals in a magmatic aqueous vapor phase. These PIXE data also support the possibility that Cu partitions preferentially into an immiscible CO2-rich magmatic fluid. References: [1] Heinrich, C.A. et al. (1992) Econ. Geol., 87, 1566-1583. [2] Heinrich, C.A. et al. (1999) Geology, 27, 755-758. [3] Rowins, S.M. (2000) Geology, 28, 491-494. [4] Rowins, S.M. (2000) The Gangue, GAC-MDD Newsletter, 67, 1-7 (www.gac.ca). [5] Rowins, S.M. et al. (1993) Geol. Soc. Australia Abs., 34, 68-70.

  9. Raman imaging of fluid inclusions in garnet from UHPM rocks (Kokchetav massif, Northern Kazakhstan).

    PubMed

    Korsakov, Andrey V; Dieing, Thomas; Golovin, Aleksandr V; Toporski, Jan

    2011-10-01

    Confocal Raman imaging of fluid inclusions in garnet porphyroblasts from diamond-grade metamorphic calc-silicate rocks from the Kumdy-Kol microdiamond deposit (Kokchetav Massif, Northern Kazakhstan) reveals that these fluid inclusions consist of almost pure water with different step-daughter phases (e.g., calcite, mica and rare quartz). These fluid inclusions are characterized by negative crystal shape of the host-garnet and they exclusively occur within the core of garnet porphyroblasts. These observations are consistent with their primary origin, most likely at ultrahigh-pressure (UHP) metamorphic conditions. The euhedral newly formed garnet, different in color and composition, was found to be associated with these fluid inclusions. It is proposed that newly formed garnet and water fluid inclusions appear by reaction between the hydrous fluid and the garnet-host. These fluid inclusions provide an unequivocal record of almost pure H(2)O fluids, indicating water-saturated conditions within subducted continental crust during prograde stage and/or ultrahigh-P metamorphism.

  10. Experimental stretching of fluid inclusions in calcite—Implications for diagenetic studies

    NASA Astrophysics Data System (ADS)

    Prezbindowski, Dennis R.; Larese, Richard E.

    1987-04-01

    Homogenization temperatures of fluid inclusions trapped in calcite crystals may change with increased heating beyond the homogenization temperature. Fluid inclusions trapped in calcite during basin subsidence will tend to yield homogenization temperatures approaching maximum burial temperatures. Diagenetic studies that depend on these data will be biased. Coarse crystalline calcite containing saline fluid inclusions was used to examine the influence of increased temperatures and pressures on measured homogenization temperatures. Stepped heating experiments were conducted at 1 atm, over a temperature range of 90 to 245 °C, along with hydrothermal experiments at confining pressures of 173 and 691 bar and temperatures of 160, 250, and 350 °C. In all cases, significant increases in the homogenization temperatures of the inclusion population were recorded. Presumably, stresses generated during heating of the fluid inclusions exceeded the combined strength of the calcite crystal and the external pore pressure and thus caused fluid-inclusion stretching. Size is a secondary factor that controls fluid-inclusion reequilibration.

  11. Mineral and fluid inclusion study of emeralds from the Lake Manyara and Sumbawanga deposits, Tanzania

    NASA Astrophysics Data System (ADS)

    Moroz, I.; Vapnik, Y.; Eliezri, I.; Roth, M.

    2001-08-01

    Mineral and fluid inclusions were investigated in Tanzanian emeralds sampled in the Lake Manyara and Sumbawanga deposits. Microthermometry and Raman microprobe analyses were applied for this study. Primary and pseudosecondary H 2O-CO 2 inclusions, with numerous daughter solid phases, are common in the emeralds from the Lake Manyara deposit. Magnesite, Mg-calcite, aragonite, dolomite, calcite, nahcolite, quartz and chrysoberyl were identified as trapped solids in fluid inclusions. Similar mineral inclusions were also found in the emeralds themselves. The composition of the trapped fluid present at emerald growth is estimated to be a carbonic-rich solution with chloride content of about 6 wt% NaCl equiv. The P-T conditions of emerald growth are as follows: T = 370-470°C and P=3.0-7.0 kbar. Mineral inclusions of phenakite, euclase, bertrandite and helvite are common in the emeralds of the Sumbawanga deposit. CO 2-rich inclusions with an aqueous phase (usually below the detection limit), and CaCl 2-rich inclusions with salinity of up to 17 wt% NaCl equiv. are related to emerald growth. The trapping of fluid inclusions postdates the growth of mineral inclusions. The P-T conditions of emerald growth are as follows: T = 220-300°C and P = 0.7-3.0 kbar.

  12. Seminal fluid proteins differ in abundance between genetic lineages of honeybees.

    PubMed

    Baer, Boris; Zareie, Reza; Paynter, Ellen; Poland, Veronica; Millar, A Harvey

    2012-10-22

    Seminal fluid is transferred to the females' reproductive tract as part of the ejaculate and contains highly complex molecular machinery that is of central importance for male and female reproductive success. Interspecific studies suggest rapid evolutionary changes in the sequences of some seminal fluid proteins and also highlight the importance of specific seminal fluid proteins for sperm function and paternity success. Much less work has been conducted to study if variation in the steady-state abundance of seminal fluid proteins occurs within a species, which could provide a foundation for future selection to act upon. Here we used a unique breeding program of the honeybee Apis mellifera to provide evidence for quantified differences in seminal fluid protein abundances between three genetic lineages that have been bred for ~20 generations. We found the same subset of seminal fluid proteins to be present in all lines, but protein abundance or protein modification state varied significantly for 16% of the protein spots investigated. Protein spots with changed abundances were identified using mass spectrometry, with the abundance of a number documented from other species to be correlated with male fertility, reproductive success or immune-competence. We conclude that significant alterations in the abundance or modification state of specific proteins in seminal fluid can be linked to different genotypes in honeybees.

  13. Noble gas measurements from tiny water amounts: fluid inclusions in carbonates of speleothemes and coral skeletons

    NASA Astrophysics Data System (ADS)

    Papp, Laszlo; Palcsu, Laszlo; Major, Zoltan

    2010-05-01

    pressure range has been calibrated by measuring ten well known water aliquots between 0.45 mg and 3.14 mg sealed in glass capillaries. With this method, the quantity of the water can be determined better than 1% uncertainty. After the dissolved noble gases has been released from the fluid inclusions, they are collected and separated from each other by a cryo system which consists of a stainless steel empty trap and a trap filled with charcoal. The argon, krypton, xenon fraction and the other chemically active gases (N2, O2, CO2, etc.) are trapped in the stainless steel trap at 25 K, while the isotopes of helium and neon in the charcoal trap held at 10 K. So far, the abundance of helium is not measured, because helium does not play a role in the NGT determination due to radiogenic helium component. The helium is pumped away. The neon is released from the stainless steel trap at temperature of 90 K and admitted to the noble gas mass spectrometer. The ion source is tuned for the best sensitivity for neon. The neon isotopes are detected by an electron multiplier in ion counting mode. The argon, krypton and xenon isotopes are measured simultaneously. The gases are released from the stainless steel trap at 150 K, and introduced into a getter trap in order to be purified from the other non-inert gases. Then the pure argon, krypton, xenon fraction is admitted to the mass spectrometer. The isotopes of argon are detected by a Faraday cup, while krypton and xenon isotopes are detected by an electron multiplier. After every single mass spectrometric measurement fast calibration are executed. The calibration of the mass spectrometric measurement is performed by means of well known air aliquots taken from an air reservoir in which the pressure is 2.0052 Pa. The results of the calibration measurements show that the reproducibility is about 2% for all noble gas isotopes measured. This error in noble gas concentrations results in an uncertainty of about 1 °C or lower in the determination

  14. Entrapment of bacteria in fluid inclusions in laboratory-grown halite.

    PubMed

    Adamski, James C; Roberts, Jennifer A; Goldstein, Robert H

    2006-08-01

    Cells of the bacterium Pseudomonas aeruginosa, which were genetically modified to produce green fluorescent protein, were entrapped in fluid inclusions in laboratory-grown halite. The bacteria were used to inoculate NaCl-saturated aqueous solutions, which were allowed to evaporate and precipitate halite. The number, size, and distribution of fluid inclusions were highly variable, but did not appear to be affected by the presence of the bacteria. Many of the inclusions in crystals from inoculated solutions contained cells in populations ranging from two to 20. Microbial attachment to crystal surfaces was neither evident nor necessary for entrapment. Cells occurred exclusively within fluid inclusions and were not present in the crystal matrix. In both the inclusions and the hypersaline solution, the cells fluoresced and twitched, which indicates that the bacteria might have remained viable after entrapment. The fluorescence continued up to 13 months after entrapment, which indicates that little degradation of the bacteria occurred over that time interval. The entrapment, fluorescence, and preservation of cells were independent of the volume of hypersaline solution used or whether the solutions were completely evaporated prior to crystal extraction. The results of this study have a wide range of implications for the long-term survival of microorganisms in fluid inclusions and their detection through petrography. The results also demonstrate the preservation potential for microbes in hypersaline fluid inclusions, which could allow cells to survive harsh conditions of space, the deep geologic past, or burial in sedimentary basins.

  15. Fluid inclusions in the Stripa granite and their possible influence on the groundwater chemistry

    USGS Publications Warehouse

    Nordstrom, D.K.; Lindblom, S.; Donahoe, R.J.; Barton, C.C.

    1989-01-01

    Fluid inclusions in quartz and calcite of the Proterozoic Stripa granite, central Sweden, demonstrate that the rock and its fracture fillings have a complex evolutionary history. The majority of inclusions indicate formation during a hydrothermal stage following emplacement of the Stripa pluton. Total salinities of quartz inclusions range from 0-18 eq.wt% NaCl for unfractured rock and from 0-10 eq.wt% for fractured rock. Vein calcites contain up to 25 eq.wt% NaCl but the inclusion size is larger and the population density is lower. Homogenization temperatures are 100-150??C for unfractured rock and 100-250?? for fractured rock. Pressure corrections, assuming immediate post-emplacement conditions of 2 kbar, give temperatures about 160??C higher. Measurements of fluid-inclusion population-densities in quartz range from about 108 inclusions/cm3 in grain quartz to 109 inclusions/cm3 in vein quartz. Residual porosity from inclusion densities has been estimated to be at least 1% which is two orders of magnitude greater than the flow porosity. Breakage and leaching of fluid inclusions is proposed as an hypothesis for the origin of major solutes (Na-Ca-Cl) in the groundwater. Evidence for the hypothesis is based on (1) mass balance-only a small fraction of the inclusions need to leak to account for salt concentrations in the groundwater, (2) chemical signatures- Br Cl ratios of fluid inclusion leachates (0.0101) match those ratios for the deep groundwaters (0.0107), (3) leakage mechanisms-micro-stresses from isostatic rebound or mining activities acting on irregular-shaped inclusions could cause breakage and provide connection with the flow porosity, and (4) experimental studies-water forced through low permeability granites leach significant quantities of salt. This hypothesis is consistent with the available data although alternate hypotheses cannot be excluded. ?? 1989.

  16. Retrograde methane-dominated fluid inclusions from high-temperature granulites of Rogaland, southwestern Norway

    SciTech Connect

    Van Den Kerkhof, A.M. ); Touret, J.L.R. ); Maijer, C.; Jansen, J.B.H. )

    1991-09-01

    Non-aqueous inclusions in the high-grade (800-1,000C; 4kbar) metamorphic Rogaland region, southwestern Norway, consist of mixtures of CO{sub 2}-CH{sub 4}-N{sub 2}. In particular the fluid inclusions in quartz veins in migmatites are characterized by high CH{sub 4} concentrations and they were re-equilibrated at temperatures below 500C during isobaric cooling. Observations by microthermometry demonstrated several complicated sequences of phase transitions, including partial and metastable homogenization (at lower temperature than melting), and S-L or S-V transitions. The phase behavior reflects a wide variation in composition and molar volume. Fluid compositions were measured by Raman microspectrometry. By this method, also small amounts of graphite have been detected in CO{sub 2}-CH{sub 4} inclusions. The instantaneous formation of graphite in a CO{sub 2}-CH{sub 4} inclusion by induction of the argon laser beam has been observed which points to the metastability of the CO{sub 2}-CH{sub 4} mixture. The calculated densities of the observed fluid mixtures are relatively low, necessitating a revision of the earlier interpretation of these inclusions as containing pure high-density fluids. Inclusions in quartz, trapped after the peak of metamorphism, record fluid heterogeneity which may present evidence for fluid-deficient metamorphism during the retrograde M2-M3 metamorphism.

  17. Occurrence of silicate melt, carbonate-rich melt and fluid during medium pressure anatexis of metapelitic gneisses (Oberpfalz, Bavaria) revealed by melt and fluid inclusions study

    NASA Astrophysics Data System (ADS)

    Ferrero, Silvio; O'Brien, Patrick; Hecht, Lutz; Wunder, Bernd

    2014-05-01

    In the last decades our understanding of partial melting processes in the lower crust profited from the investigation of fluid inclusions (Touret et al., 2009) and more recently of anatectic melt inclusions (Cesare et al., 2011) within enclaves and high-grade terranes. The latter finding allowed us to directly analyse the original anatectic melt (Ferrero et al., 2012; Bartoli et al., 2013) preserved within peritectic phases, i.e. mainly garnet, but also ilmenite and spinel, before fractionation, mixing and contamination processes took place. Furthermore, the occurrence of primary fluid inclusions (FI) and anatectic melt inclusions (MI) within enclaves allowed the characterization of the COH fluid present during anatexis under fluid+melt immiscibility conditions (Ferrero et al., 2014). Primary crystallized MI, or "nanogranites", and FI have been identified to occur as clusters in garnet from stromatic migmatites (Zeilengneise) from Oberpfalz, Eastern Bavaria (Moldanubian Zone). During the late Carboniferous, these Grt+Bt+Sill+Crd+Spl metapelitic gneisses underwent HT/MP metamorphism, followed by a HT/LP event (Tanner & Behrmann, 1995). Nanogranites, ≤20 µm in size, consist of Qtz+Bt+Wm+Ab±Ap, and show abundant nanoporosity, localized in the quartz. Fluid inclusions are smaller, generally ≤10 µm, and contain CO2+N2+CH4 plus siderite, pyrophillite and cristobalite, mineral phases not observed in the surrounding rock or as mineral inclusion in garnet. Polycrystalline inclusions containing Cc+Wm+Opx±Qz, commonly ≤10 µm in diameter, occur in the same cluster with MI and FI. Microstructural features, negative-crystal shape and the well-developed crystalline faces of calcite within inclusions suggest that they may result from the crystallization of a carbonate-rich melt. The lack of arrays of carbonate-bearing MI, verified by cathodoluminiscence investigation, supports their primary nature, i.e. they formed during garnet growth. This would suggest the occurrence

  18. Genetic characteristics of fluid inclusions in sphalerite from the Silesian-Cracow ores, Poland

    USGS Publications Warehouse

    Kozlowski, A.; Leach, D.L.; Viets, J.G.

    1996-01-01

    Fluid inclusion studies in sphalerite from early-stage Zn-Pb mineralization in the Silesian-Cracow region (southern Poland), yielded homogenization temperatures (Th) from 80 to 158??C. Vertical thermal gradient of the parent fluids was 6 to 10??C, and the ore crystallization temperature ranges varied from <10??C at deep levels to 25??C at shallow levels. The peculiarities of formation of primary and secondary fluid inclusions from organic-matter-bearing water-dominated medium, position of the inclusions in crystals, features of secondary inclusions, the inclusion refilling phenomena, their formation on recrystallization of ores, and Th distribution in single fissure fillings were considered. The ore-forming fluids were liquid-hydrocarbon-bearing aqueous solutions of Na-Ca-Cl type with lower Ca contents in the south and higher Ca contents in the north of the region. The ore-forming fluids had salinities from nul to about 23 weight percent of NaCl equivalent. Three types of fluids were recognized, that mixed during ore precipitation: a) ascending fluids of low-to-moderate salinity and high, b) formation brines of high salinity and moderate Th, and c) descending waters of low salinity and low-to-moderate Th.

  19. Surface water paleotemperatures and chemical compositions from fluid inclusions in Permian Nippewalla Group halite

    SciTech Connect

    Benison, K.C.

    1996-12-31

    Quantitative climatic data for the Permian have been determined from Nippewalla Group halite. The middle Permian Nippewalla Group of Kansas and Oklahoma consists of several hundred feet of bedded halite, anhydrite, and red beds. Study of core and surface samples suggest that this halite was deposited by ephemeral lakes. Fluid inclusions provide evidence for the geochemistry of these Permian saline lake waters, including temperatures, salinities, and chemical compositions. Primary fluid inclusions are well-preserved in the Nippewalla halite. They are 5 - 30 {mu}m cubic inclusions situated along chevron and cornet growth bands. Most are one phase aqueous inclusions, but some also contain anhydride {open_quote}accidental{close_quotes} crystals. Rare two phase liquid-vapor inclusions may have formed by subaqueous outgassing or trapping of air at the water surface. Fluid inclusion freezing-melting behavior and leachate analyses suggest that Nippewalla halite precipitated from Na-Cl-rich waters with lesser quantities of SO{sub 4}, Mg, K, Al, and Si. This composition may be a product of long-term weathering. Surface water paleotemperatures were determined from one phase aqueous fluid inclusions. Homogenization temperatures range from 32 to 46{degrees}C in primary fluid inclusions and are consistent (within 3{degrees}C) along individual chevrons and cornets. These homogenization temperatures are interpreted to represent maximum surface water temperatures. These fluid inclusion data are significant in addressing global change problems. Temperatures and chemistries in these Permian lake waters agree with some modern shallow saline lake waters and with Permian climate models. This study suggests that this Permian environment was relatively similar to its modern counterparts.

  20. Surface water paleotemperatures and chemical compositions from fluid inclusions in Permian Nippewalla Group halite

    SciTech Connect

    Benison, K.C. )

    1996-01-01

    Quantitative climatic data for the Permian have been determined from Nippewalla Group halite. The middle Permian Nippewalla Group of Kansas and Oklahoma consists of several hundred feet of bedded halite, anhydrite, and red beds. Study of core and surface samples suggest that this halite was deposited by ephemeral lakes. Fluid inclusions provide evidence for the geochemistry of these Permian saline lake waters, including temperatures, salinities, and chemical compositions. Primary fluid inclusions are well-preserved in the Nippewalla halite. They are 5 - 30 [mu]m cubic inclusions situated along chevron and cornet growth bands. Most are one phase aqueous inclusions, but some also contain anhydride [open quote]accidental[close quotes] crystals. Rare two phase liquid-vapor inclusions may have formed by subaqueous outgassing or trapping of air at the water surface. Fluid inclusion freezing-melting behavior and leachate analyses suggest that Nippewalla halite precipitated from Na-Cl-rich waters with lesser quantities of SO[sub 4], Mg, K, Al, and Si. This composition may be a product of long-term weathering. Surface water paleotemperatures were determined from one phase aqueous fluid inclusions. Homogenization temperatures range from 32 to 46[degrees]C in primary fluid inclusions and are consistent (within 3[degrees]C) along individual chevrons and cornets. These homogenization temperatures are interpreted to represent maximum surface water temperatures. These fluid inclusion data are significant in addressing global change problems. Temperatures and chemistries in these Permian lake waters agree with some modern shallow saline lake waters and with Permian climate models. This study suggests that this Permian environment was relatively similar to its modern counterparts.

  1. Stable isotope study of fluid inclusions in fluorite from Idaho: implications for continental climates during the Eocene

    USGS Publications Warehouse

    Seal, R.R.; Rye, R.O.

    1993-01-01

    Isotopic studies of fluid inclusions from meteoric water-dominated epithermal ore deposits offer a unique opportunity to study paleoclimates because the fluids can provide direct samples of ancient waters. Fluorite-hosted fluid inclusions from the Eocene (51-50 Ma) epithermal deposits of the Bayhorse mining district, have low salinities and low to moderate homogenization temperatures indicating meteoric origins for the fluids. Oxygen and hydrogen isotope data on inclusion fluids are almost identical to those of modern meteoric waters in the area. The equivalence of the isotope composition of the Eocene inclusion fluids and modern meteoric waters indicates that the Eocene climatic conditions were similar to those today. -from Authors

  2. Development and application of a mass spectrometric system to study volatile components of fluid inclusions

    SciTech Connect

    Sloan, R.C. Jr.

    1992-06-01

    A quadrupole mass spectrometric system coupled with mechanical decrepitation was constructed and calibrated to study fluid inclusions from an active geothermal system. Fluid inclusions in Salton Sea Scientific Drilling Project well cores and ejects from flow tests were analyzed. Ion currents from selected mass/charge ratio numbers were measured for gases from ruptured inclusions in epidote, calcite, and hematite vein minerals from different depths. Water, carbon dioxide, hydrogen sulfide, sulfur dioxide, and C1{minus}C4+ hydrocarbons and free nitrogen were analyzed.

  3. Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Chi, Guoxiang; Haid, Taylor; Quirt, David; Fayek, Mostafa; Blamey, Nigel; Chu, Haixia

    2017-02-01

    The End deposit is one of several uranium deposits in the Kiggavik area near the Proterozoic Thelon Basin, which is geologically similar to the Athabasca Basin known for its unconformity-related uranium deposits. The mineralization occurs as uraninite and coffinite in quartz veins and wall rocks (psammopelitic gneisses) in the sub-Thelon basement and is associated with clay- and hematite-altered fault zones. Fluid inclusions were studied in quartz cementing unmineralized breccias formed before mineralization (Q2), quartz veins that were formed before mineralization but spatially associated with uranite (Q4), and calcite veins that were formed after mineralization. Four types of fluid inclusions were recognized, namely liquid-dominated biphase (liquid + vapor), vapor-dominated biphase (vapor + liquid), monophase (vapor-only), and triphase (liquid + vapor + halite) inclusions. The first three types were found in Q2, whereas all four types were found in Q4 and calcite. The coexistence of these different types of inclusions within individual fluid inclusion assemblages is interpreted to indicate fluid immiscibility and heterogeneous trapping. Based on microthermometry, the fluids associated with Q2 are characterized by low salinities (0.4 to 6.6 wt%) and moderate temperatures from 148 to 261 °C, and the fluids associated with calcite show high salinities (26.8 to 29.3 wt%) and relatively low temperatures from 146 to 205 °C, whereas the fluids associated with Q4 have a wide range of salinities from 0.7 to 38.8 wt% and temperatures from 80 to 332 °C. Microthermometric and cryogenic Raman spectroscopic studies indicate that the high-salinity fluids in Q4 and calcite belong to the H2O-NaCl-CaCl2 ± MgCl2 system, with some dominated by NaCl and others by CaCl2. The fluid inclusions in Q2 are interpreted to be unrelated to mineralization, whereas those in Q4 and calcite reflect the mineralizing fluids. The fluid inclusion data are consistent with a genetic link of

  4. Petrography, fluid inclusion analysis, and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Chi, Guoxiang; Haid, Taylor; Quirt, David; Fayek, Mostafa; Blamey, Nigel; Chu, Haixia

    2016-04-01

    The End deposit is one of several uranium deposits in the Kiggavik area near the Proterozoic Thelon Basin, which is geologically similar to the Athabasca Basin known for its unconformity-related uranium deposits. The mineralization occurs as uraninite and coffinite in quartz veins and wall rocks (psammopelitic gneisses) in the sub-Thelon basement and is associated with clay- and hematite-altered fault zones. Fluid inclusions were studied in quartz cementing unmineralized breccias formed before mineralization (Q2), quartz veins that were formed before mineralization but spatially associated with uranite (Q4), and calcite veins that were formed after mineralization. Four types of fluid inclusions were recognized, namely liquid-dominated biphase (liquid + vapor), vapor-dominated biphase (vapor + liquid), monophase (vapor-only), and triphase (liquid + vapor + halite) inclusions. The first three types were found in Q2, whereas all four types were found in Q4 and calcite. The coexistence of these different types of inclusions within individual fluid inclusion assemblages is interpreted to indicate fluid immiscibility and heterogeneous trapping. Based on microthermometry, the fluids associated with Q2 are characterized by low salinities (0.4 to 6.6 wt%) and moderate temperatures from 148 to 261 °C, and the fluids associated with calcite show high salinities (26.8 to 29.3 wt%) and relatively low temperatures from 146 to 205 °C, whereas the fluids associated with Q4 have a wide range of salinities from 0.7 to 38.8 wt% and temperatures from 80 to 332 °C. Microthermometric and cryogenic Raman spectroscopic studies indicate that the high-salinity fluids in Q4 and calcite belong to the H2O-NaCl-CaCl2 ± MgCl2 system, with some dominated by NaCl and others by CaCl2. The fluid inclusions in Q2 are interpreted to be unrelated to mineralization, whereas those in Q4 and calcite reflect the mineralizing fluids. The fluid inclusion data are consistent with a genetic link of

  5. Fluid inclusion geochemistry of halite from the Silurian A-1 Evaporite, Michigan Basin

    SciTech Connect

    Leibold, A.W.; Walter, L.M.; Huston, T.J.; O'Neil, J.R. . Dept. of Geological Sciences)

    1992-01-01

    Fluids trapped in primary, inclusion-rich halite from the Silurian A-1 Evaporite of the Michigan Basin were analyzed to determine their elemental and isotopic composition and so constrain the fluid chemistry and regional variability of parent brines. The samples were collected from stratigraphically more complete basin center and basin margin cores than hitherto have been available. These include both inclusion-rich whole rock chips and fluids leached with isopropanol from crushed, inclusion-rich halite. Elemental ratios were determined relative to Mg, which is present only in the fluid phase of monomineralic halite samples and acts as a normalizing parameter against which to quantify fluid inclusion chemistry. Stable isotope ratios were determined on fluids collected from inclusion-rich halite by vacuum-thermal decrepitation. Inclusion fluids define a geochemical trend characterized by a Ca:Mg ratio of 1.4 [+-] 0.47, an Sr:Mg ratio of 0.015 [+-] 0.004 and a K:Mg ratio of 0.5 [+-] 0.17. Fluids are also depleted in SO[sub 4]. Importantly, these values are significantly different from any Michigan Basin formation brines and also cannot be derived from evaporation of modern seawater without extensive diagenetic modification. Two explanations of the data are possible. Pervasive syndepositional dolomitization and anhydrite precipitation may have altered Silurian brines of initial modern seawater composition, as has been suggested for similar data. However, consistently high cation ratios in the A-1 Evaporite on a regional scale demand striking uniformity in the timing and location of such reactions. Alternatively, Silurian seawater may have had elevated Ca:Mg, Sr:Mg and possibly K:Mg ratios relative to modern seawater.

  6. Evolution of the Geysers (US) - Data From Fluid-Inclusion Microthermometry and Gas Geochemistry

    SciTech Connect

    Moore, J.N.; Hulen, J.B.; Norman, D.I.

    1995-01-01

    The Geysers, California, is the site of an active hydrothermal system that initially developed between about 1.5 and 2 Ma in response to intrusion of a hypabyssal granitic pluton. Mineralogic and fluid-inclusion data demonstrate that the present vapor-dominated regime evolved from an earlier and more extensive, liquid-dominated hydrothermal system. Circulation of these early fluids produced veins characterized by tourmaline and/or biotite {+-} actinolite {+-} clinopyroxene within the pluton and adjacent biotite-rich hornfels, actinolite {+-} ferroaxinite {+-} epidote, and epidote {+-} chlorite {+-} wairakite within the intermediate parts of the thermal system, and calcite in the outer parts. Potassium feldspar and quartz are present in all assemblages. Maximum pressure-corrected homogenization temperatures and apparent salinities of fluid-inclusions in these veins range from 440 C and 44 weight percent NaCl equivalent within the hornfels (<600 m from the pluton) to 325 C and 5 weight percent NaCl equivalent at approximately 1500 m from the intrusion. We suggest that the shallow, moderate-salinity fluids are crustal waters modified by water-rock interactions and that the high-salinity fluids are magmatic brines. The formation of vapor-dominated conditions is reflected in the abrupt appearance of low salinity (0.0 to 0.4 weight percent NaCl equivalent) fluid inclusions with homogenization temperatures near 265 C. These inclusion fluids are thought to represent steam condensate formed as the liquid-dominated system boiled off.

  7. Preliminary mineralogic, fluid inclusion, and stable isotope study of the Mahd adh Dhahab gold mine, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Rye, Robert O.; Hall, W.E.; Cunningham, C.G.; Czamanske, G.K.; Afifi, A.M.; Stacey, J.S.

    1983-01-01

    The Mahd adh Dhahab mine, located about 280 km northeast of Jiddah, Kingdom of Saudi Arabia, has yielded more than 2 million ounces of gold from periodic production during the past 3,000 years. A new orebody on the southern side of the ancient workings, known as the South orebody, is being developed by Gold Fields-Mahd adh Dhahab Limited. A suite of samples was collected from the newly exposed orebody for preliminary mineralogic, stable isotope, fluid inclusion, and geochemical studies. The Mahd adh Dhahab deposit is in the carapace of a Proterozoic epizonal rhyolite stock that domed pyroclastic and metasedimentary rocks of the Proterozoic Halaban group. Ore of gold, silver, copper, zinc, tellurium, and lead is associated with north-trending, steeply dipping quartz veins in a zone 1,000 m long and 400 m wide. The veins include an assemblage of quartz-chlorite-pyrite-hematite-chalcopyrite-sphalerite-precious metals, which is similar to the mineral assemblage at the epithermal deposit at Creede, Colorado. The primary ore contains abundant chalcopyrite, sphalerite, and pyrite in addition to a complex precious metal assemblage. Gold and silver occur principally as minute grains of telluride minerals disseminated in quartz-chlorite-hematite and as inclusions in chalcopyrite and sphalerite. Telluride minerals include petzite, hessite, and sylvanite. Free gold is present but not abundant. All of the vein-quartz samples contained abundant, minute inclusions of both low-density, vapor-rich fluids and liquid-rich fluids. Primary fluid inclusions yielded homogenization temperatures of from 110? to 238? C. Preliminary light-stable isotope studies of the sulfide minerals and quartz showed that all of the d34S values are between 1.2 and 6.3 per mil, which is a typical range for hydrothermal sulfide minerals that derive their sulfur from an igneous source. The data-suggest that the sulfide sulfur isotope geochemistry was controlled by exchange with la large sulfur isotope

  8. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    SciTech Connect

    Roedder, E.; Whelan, J.F.; Vaniman, D.T.

    1994-12-31

    Calcite vein and vug fillings at four depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid raitos: Most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at <100{degrees}C. The vapor-filled inclusions provide evidence that a separate vapor phase was present in the fluid during crystallization. Studies of these vapor-filled inclusions on the microscope crushing stage were interpreted in an earlier paper as indicating trapping of an air-water-CO{sub 2} vapor phase at ``<100{degrees}C``. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface.

  9. Decrepitation and crack healing of fluid inclusions in San Carlos olivine

    SciTech Connect

    Wanamaker, B.J. ); Wong, Tengfong ); Evans, B. )

    1990-09-10

    Fluid inclusions break, or decrepitate, when the fluid pressure exceeds the least principal lithostatic stress by a critical amount. After decrepitation, excess fluid pressure is relaxed, resulting in crack arrest; subsequently, crack healing may occur. The authors developed a linear elastic fracture mechanics model to analyze new data on decrepitation and crack arrest in San Carlos Olivine, compared the model with previous fluid inclusion investigations, and used it to interpret some natural decrepitation microstructures. The common experimental observation that smaller inclusions may sustain higher internal fluid pressures without decrepitating may be rationalized by assuming that flaws associated with the inclusion scale with the inclusion size. According to the model, the length of the crack formed by decrepitation depends on the lithostatic pressure at the initiation of cracking, the initial sizes of the flaw and the inclusion, and the critical stress intensity factor. Further experiments show that microcracks in San Carlos olivine heal within several days at 1,280 to 1,400{degree}C; healing rates depend on the crack geometry, temperature, and chemistry of the buffering gas. The regression distance of the crack tip during healing can be related to time through a power law with exponent n = 0.6. Chemical changes which become apparent after extremely long heat-treatments significantly affect the healing rates. Many of the inclusions in the San Carlos xenoliths stretched, decrepitated, and finally healed during uplift. The crack arrest model indicates that completely healed cracks had an initial fluid pressure of the order of 1 GPa. Using the crack arrest model and the healing kinetics, they estimate the ascent rate of these xenoliths to be between 0.001 and 0.1 m/s.

  10. Fluid inclusion and sulphur isotope evidence for syntectonic mineralisation at the Elura mine, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Seccombe, P. K.

    1990-10-01

    Fluid inclusion and sulphur isotope data for the discordant, metasediment-hosted massive sulphide deposit at Elura are consistent with a syntectonic origin of the orebodies. Thermometric and laser Raman microprobe analyses indicate that two-phase, primary fluid inclusions are low salinity and H2O-CO2-CH4 types. Inclusion fluids from quartz in ore yield homogenisation temperatures (Th) ranging from 298 ° to 354 °C (mean 320 °C). They are likely to have been trapped close to the solvus of the H2O-CO2-(CH4-NaCl) system and thus should give temperatures of the mineralising fluid. An additional, low Th population of later fluid inclusions is recognised in quartz from ore and syntectonic extension veins in the adjacent wallrock. Th's for these low CO2bearing inclusions range from 150 to 231 °C (mean 190 °C), and should be considerably lower than true trapping temperatures. Sulphur isotopic composition (δ34S) of pyrite, sphalerite, pyrrhotite and galena ranges from 4.7 to 12.6% and indicates a sulphur source from underlying Cobar Supergroup metasediments. An average temperature of 275 °C from the sphalerite-galena sulphur isotopic thermometer suggests isotopic re-equilibration below peak metamorphic temperatures.

  11. Fluid-inclusion evidence for previous higher temperatures in the miravalles geothermal field, Costa Rica

    USGS Publications Warehouse

    Bargar, K.E.; Fournier, R.O.

    1988-01-01

    Heating and freezing data were obtained for liquid-rich secondary fluid inclusions in magmatic quartz, hydrothermal calcite and hydrothermal quartz crystals from 19 sampled depths in eight production drill holes (PGM-1, 2, 3, 5, 10, 11, 12 and 15) of the Miravalles geothermal field in northwestern Costa Rica. Homogenization temperatures for 386 fluid inclusions range from near the present measured temperatures to as much as 70??C higher than the maximum measured well temperature of about 240??C. Melting-point temperature measurements for 76 fluid inclusions suggest a calculated salinity range of about 0.2-1.9 wt% NaCl equivalent. Calculated salinities as high as 3.1-4.0 wt% NaCl equivalent for 20 fluid inclusions from the lower part of drill hole PGM-15 (the deepest drill hole) indicate that higher salinity water probably was present in the deeper part of the Miravalles geothermal field at the time these fluid inclusions were formed. ?? 1988.

  12. Fluid chemistry in the fault propataion zone in the mid-crust -fluid inclusion chemistry from the Lishan fault, Taiwan-

    NASA Astrophysics Data System (ADS)

    Okamoto, K.; Iijima, C.; Kurosawa, M.; Chan, Y.; Terabayashi, M.

    2011-12-01

    Liberation of CO2-rich gas from fluid preserved in the fault propagation zone would be important phenomena in the earthquake and aftershock process. We have detected that injected fluid in link thrust would cause fault propagation and fault lubrication due to vapor-separation [1]. Recently, one of the authors, Yu-Chang Chan found unusual quartz vein on the great link-thrust, Lishan fault, in Taiwan orogenic belt [1]. The quartz vein is spherical shape and is composed of large crystals. The transparent quartz grains contain large primary fluid inclusions over 100 microns in diameters. The fluid inclusion is classified as three kinds of group. That is, two phase, vapor phase and three phase inclusion. Homogenization temperature is 260 oC and NaCl weight pecent is estimated to be 7.41. In order to measure the fluid chemistry, PIXE analysis was done at Tsukuba University. Analytical procedure is shown in [2]. The result is summarized as follows. 1. Br/Cr ratio is lower than that in seawater. 2. Ti, Cr, and Ni contents are high, suggesting that fluid is related to magma activity. 3. Vapor-phase inclusion contains considerable amount of metal elements (Ti, Zn, Ge, Mn, Ca, Fe, Pb, Rb, and Cu) as well as K, and Br. Fractionation between the vapor and the fluid would be useful tool to detect vapor separation due to fault propagation. References [1] Chan, Y. et al., Terra Nova 17, 439-499 (2005) [2] Kurosawa M. et al.,Island Arc, 19, 17-29 (2010)

  13. Paleothermal study of Triassic Formation in Syria by using fluid inclusion

    SciTech Connect

    Bilal, A.

    1988-08-01

    This study of fluid inclusions examined several hundred samples collected from different wells distributed throughout Syria. The results show the existence of aqueous, carbon, and hydrocarbon inclusions. Since aqueous inclusions vary in their common (form, distribution) and physicochemical properties (fusion temperature, homogeneity temperature, density, etc), a chronological relation could be made giving the following results: aqueous inclusions in the detritic minerals (type q/sub 1/) are prediagenesis, and aqueous inclusions related to overgrowth minerals (type q/sub 2/) are contemporary with diagenesis. But type q/sub 3/ aqueous inclusions in the secondary fractures that cross many minerals are post-diagenesis. Therefore, type q/sub 3/ inclusions are used to determine the temperature of Triassic formations, taking into consideration their saltiness (NaCl content is 10%, according to applied data). Carbon and hydrocarbon inclusions are postdiagenesis according to aqueous inclusion type q/sub 2/. By using both the density of type q/sub 2/ aqueous inclusions and the heaviness of the rock overburden according to the depth of the samples studies, thermal gradient can be determined. It ranges between 5 and 7% and increases from the north-northeast toward the west-southwest, i.e., in the direction of tectonic anomaly and volcanic activity connected with the Great Syrian Rift, which is a continuation of the Great African Rift. In addition, thermal gradient increases with depth in every well but is mainly related to the location of the well according to the common trend mentioned above.

  14. Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction.

    PubMed

    Sankaranarayanan, Krithivasan; Timofeeff, Michael N; Spathis, Rita; Lowenstein, Tim K; Lum, J Koji

    2011-01-01

    Fluid inclusions in evaporite minerals (halite, gypsum, etc.) potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka), with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system.

  15. Investigation of biomolecules trapped in fluid inclusions inside halite crystals by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Osterrothová, Kateřina; Jehlička, Jan

    2011-12-01

    Raman spectroscopy was tested for the identification of biomolecules (glycine, L-alanine, β-alanine, L-serine, and γ-aminobutyric acid) trapped in fluid inclusions inside halite model crystals. The investigated biomolecules represent important targets for future astrobiological missions. We know from terrestrial conditions that organic molecules and microorganisms can be sealed within fluid inclusions and can survive intact even for hundreds of millions of years. Raman spectroscopy is currently being miniaturized for future extraterrestrial planetary exploration (ExoMars 2018). Raman spectroscopy has shown the ability to detect investigated aminoacids nondestructively without any sample preparation, in short measurement times, and in relatively low concentrations. The number of registered Raman bands of investigated aminoacids and their intensity clearly correlate with the given concentration of biomolecules within fluid inclusions.

  16. Dynamic transverse shear modulus for a heterogeneous fluid-filled porous solid containing cylindrical inclusions

    NASA Astrophysics Data System (ADS)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.; Duan, Yunda

    2016-09-01

    An exact analytical solution is presented for the effective dynamic transverse shear modulus in a heterogeneous fluid-filled porous solid containing cylindrical inclusions. The complex and frequency-dependent properties of the dynamic shear modulus are caused by the physical mechanism of mesoscopic-scale wave-induced fluid flow whose scale is smaller than wavelength but larger than the size of pores. Our model consists of three phases: a long cylindrical inclusion, a cylindrical shell of poroelastic matrix material with different mechanical and/or hydraulic properties than the inclusion and an outer region of effective homogeneous medium of laterally infinite extent. The behavior of both the inclusion and the matrix is described by Biot's consolidation equations, whereas the surrounding effective medium which is used to describe the effective transverse shear properties of the inner poroelastic composite is assumed to be a viscoelastic solid whose complex transverse shear modulus needs to be determined. The determined effective transverse shear modulus is used to quantify the S-wave attenuation and velocity dispersion in heterogeneous fluid-filled poroelastic rocks. The calculation shows the relaxation frequency and relative position of various fluid saturation dispersion curves predicted by this study exhibit very good agreement with those of a previous 2-D finite-element simulation. For the double-porosity model (inclusions having a different solid frame than the matrix but the same pore fluid as the matrix) the effective shear modulus also exhibits a size-dependent characteristic that the relaxation frequency moves to lower frequencies by two orders of magnitude if the radius of the cylindrical poroelastic composite increases by one order of magnitude. For the patchy-saturation model (inclusions having the same solid frame as the matrix but with a different pore fluid from the matrix), the heterogeneity in pore fluid cannot cause any attenuation in the

  17. Fluid inclusions in Martian samples: Clues to early crustal development and the hydrosphere

    NASA Technical Reports Server (NTRS)

    Brown, Philip E.

    1988-01-01

    Major questions about Mars that could be illuminated by examining fluid inclusions in Martian samples include: (1) the nature, extent and timing of development (and decline) of the hydrosphere that existed on the planet; and (2) the evolution of the crust. Fluid inclusion analyses of appropriate samples could provide critical data to use in comparison with data derived from analogous terrestrial studies. For this study, sample handling and return restrictions are unlikely to be as restrictive as the needs of other investigators. The main constraint is that the samples not be subjected to excessively high temperatures. An aqueous fluid inclusion trapped at elevated pressure and temperature will commonly consist of liquid water and water vapor at room temperature. Heating (such as is done in the laboratory to fix P-V-T data for the inclusion) results in moderate pressure increases up to the liquid-vapor homogenization temperature followed by a sharp increase in pressure with continued heating because the inclusion is effectively a fixed volume system. This increased pressure can rupture the inclusion; precise limits are dependent on size, shape, and composition as well as the host material.

  18. Systematics of stretching of fluid inclusions I: fluorite and sphalerite at 1 atmosphere confining pressure.

    USGS Publications Warehouse

    Bodnar, R.J.; Bethke, P.M.

    1984-01-01

    Measured homogenization T of fluid inclusions in fluorite and sphalerite may be higher than the true homogenization T of samples that have been previously heated in the laboratory or naturally in post-entrapment events. As T and with it internal P is increased, the resulting volume increase may become inelastic. If the volume increase exceeds the precision of T measurement, the inclusion is said to have stretched. More than 1300 measurements on fluid inclusions in fluorite and sphalerite indicate that stretching is systematically related to P-V-T-X properties of the fluid, inclusion size and shape, physical properties of the host mineral, and the confining P. Experimental methods are detailed in an appendix. The mechanism of stretching is probably plastic deformation or - not observed - microfracturing. The systematic relationship between the internal P necessary to initiate stretching and the inclusion volume provides a means of recognizing previously stretched inclusions and estimating the magnitude of post-entrapment thermal events. -G.J.N.

  19. Petrogenesis and Fluid inclusions of the Band-e Narges skarn iron ore, Central Iran

    NASA Astrophysics Data System (ADS)

    Nazari, Maliheh; Lotfi, Mohammad; Omran, Neematollah R. N.

    2015-04-01

    The Band Narges iron deposit is located approximately 205km NE of Isfhan and is a small area in the NE of Urumieh- Dokhtar Magmatic Arc, Iran. The skarn hosted in a Cretaceous limestone, intruded by granite and granodiorite. The calcic skarn has experienced two stages of metamorphism: 1) prograde stage, which include endoskarn and exoskarnfacies with clinopyroxene, garnet, scapolite and albite mineralization, and 2) retrograde stage which produced actinolite, epidote, chlorite and apatite assemblage through retrograde alteration. The ore minerals in Band-e Nargesskarn are magnetite, with minor chalcopyrite, pyrrhotite and pyrite. Gange minerals are predominantly diopside, andradite, epidote, chlorite, quartz and calcite. Micro-thermometric measurements yield a homogenization temperature range for skarn alteration of 414 to 448°C, with a salinity of 11 to 13.186 wt.%NaCl equivalent. Fluid inclusions in calcite associated with mineralization generally consist of a vapor bubble and a liquid phase with a rare occurrence of three-phase inclusions. Homogenization temperatures for two phase inclusions vary from 168 °C to 203 °C with a salinity of 0.5 to 2 wt% NaCl equivalent. Homogenization of three phase inclusions was observed between 162 °C to 278 °C with salinity of 4 to 23 wt.%NaCl equivalent. The high-temperature and high-salinity of fluids indicate magmatic nature of the trapped fluids within progradeskarn mineral assemblages in contrast the fluids with lower temprature and lower salinity displaying a possible meteoric source within the retrograde skarn assemblages. Therefore moderate temperature and high-salinity fluids could infer to possible isothermal mixing between the fluids. Key word:Skarn,Band-e Narges,fluid inclusion

  20. Influence of H2O Rich Fluid Inclusions on Quartz Deformation

    NASA Astrophysics Data System (ADS)

    Thust, Anja; Heilbronner, Renée.; Stünitz, Holger; Tarantola, Alexandre; Behrens, Harald

    2010-05-01

    The effect of H2O on the strength of quartz is well known and has been discussed many times in the literature (e.g. Griggs & Blacic 1965, Kronenberg 1994). In this project we study the H2O interactions between natural dry quartz and H2O rich fluid inclusions during deformation in the solid medium Griggs apparatus. High pressure and temperature experiments were carried out using a quartz single crystal containing a large number of H2O-rich fluid inclusions. Adjacent to the fluid inclusions the crystal is essentially dry (< 100 H/106Si, as determined by FTIR). Two sample orientations where used: (1) ⊥{m} orientation: normal to one of the prism planes, (2) O+ orientation: 45° to and 45° to [c]. Confining pressures were 700 MPa, 1000 MPa and 1500 MPa, with a constant displacement rate of 10-6 s-1 and a constant temperature of 900° C. Additionally, experiments where carried out at lower temperatures (800° C, 700° C) and faster strain rate ( 10-5 s-1). During increasing pressure and temperature we remained close to the fluid inclusion isochore and exceeded the α - β transition as late as possible. The strengths of the majority of the samples are between 150 and 250 MPa (the weakest is 84 MPa, the strongest 414 MPa). Low strength can be explained by dynamic recrystallization and deformation by dislocation creep, higher strength correlates with a lower H2O content and absence of dislocation creep. In the undeformed material, the H2O rich fluid inclusions contain different chlorides like antarticite (CaCl2×6H2O) and hydrohalite (NaCl×2H2O), as measured with micro thermometry. They show a large range in size from 50 μm to 700 μm and their spatial distribution is extremely heterogeneous. After deformation the inclusions are more homogeneously distributed throughout the sample and dramatically reduced in size (< 0.1μm). Regions with a high density of very small fluid inclusions are the regions with the highest concentration of deformation and yield an H2O content

  1. Fluid-inclusion evidence for past temperature fluctuations in the Kilauea East Rift Zone geothermal area, Hawaii

    USGS Publications Warehouse

    Bargar, K.E.; Keith, T.E.C.; Trusdell, F.A.

    1995-01-01

    Heating and freezing data were obtained for fluid inclusions in hydrothermal quartz, calcite, and anhydrite from several depths in three scientific observation holes drilled along the lower East Rift Zone of Kilauea volcano, Hawaii. Comparison of measured drill-hole temperatures with fluid-inclusion homogenization-temperature (Th) data indicates that only about 15% of the fluid inclusions could have formed under the present thermal conditions. The majority of fluid inclusions studied must have formed during one or more times in the past when temperatures fluctuated in response to the emplacement of nearby dikes and their subsequent cooling. -from Authors

  2. Preliminary report on fluid inclusions from halites in the Castile and lower Salado formations of the Delaware Basin, southeastern New Mexico. [Freezing-point depression

    SciTech Connect

    Stein, C.L.

    1985-09-01

    A suite of samples composed primarily of halite from the upper Castile and lower Salado Formations of the Permian Basin was selected from Waste Isolation Pilot Plant (WIPP) core for a reconnaissance study of fluid inclusions. Volume percent of these trapped fluids averaged 0.7% to 1%. Freezing-point depressions varied widely and appeared to be unrelated to fluid-inclusion type, to sedimentary facies, or to stratigraphic depth. However, because very low freezing points were usually associated with anhydrite, a relation may exist between freezing-point data and lithology. Dissolved sulfate values were constant through the Castile, then decreased markedly with lesser depth in the lower Salado. This trend correlates very well with observed mineralogy and is consistent with an interpretation of the occurrence of secondary polyhalite as a result of gypsum or anhydrite alteration with simultaneous consumption of dissolved sulfate from the coexisting fluids. Together with the abundance and distribution of fluid inclusions in primary or ''hopper'' crystal structures, this evidence suggests that inclusions seen in these halites did not migrate any significant geographical distance since their formation. 28 refs., 17 figs., 2 tabs.

  3. Paleotemperature reconstructions from speleothem fluid inclusions between 14 - 10 ka BP in Milandre cave (NW Switzerland)

    NASA Astrophysics Data System (ADS)

    Affolter, Stéphane; Häuselmann, Anamaria; Fleitmann, Dominik; Leuenberger, Markus

    2016-04-01

    In cave environments, speleothems constitute a well preserved and precisely dated continental climate archive that record past environmental changes such as paleotemperature or moisture source, namely through oxygen and hydrogen isotopes variations. Fluid inclusions are common in speleothems and they correspond to micrometric voids that often contain fossil liquid water representing past precipitation falling above the cave nearly at the time the inclusions were sealed. To measure the δD and δ18O isotopic composition of speleothem fluid inclusions, we extracted submicrolitre amounts of water from stalagmites (old and recent) coming from Milandre cave (Switzerland) using a new online method developed at the University of Bern (Affolter et al., 2014). The released water is then flushed directly to a Picarro L1102-i or L2140-i laser based instrument that allows to simultaneously monitor hydrogen and oxygen isotopes. At Milandre cave site, a two year isotope monitoring campaign has confirmed that isotopes in precipitation for northwestern Switzerland are principally controlled by air temperature (Affolter et al., 2015). Therefore, when combined with calcite δ18O, the fluid inclusion water isotopes can be used to calculate paleotemperatures. We reconstructed a cold season biased (roughly autumn - winter - spring) paleotemperature trend for the time interval covering the Allerød, the Younger Dryas cold interval and the early Holocene (13'900 - 9'900 BP). References: Affolter S., Fleitmann D., and Leuenberger M.: New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS), Clim. Past, 10, 1291-1304, doi:10.5194/cp-10-1291-2014, 2014. Affolter S., Häuselmann A.D., Fleitmann D., Häuselmann P., Leuenberger M.: Triple isotope (δD, δ17O, δ18O) study on precipitation, drip water and speleothem fluid inclusions for a Western Central European cave (NW Switzerland), Quat. Sci. Rev., 127, pp. 73-89, 2015.

  4. Semi-quantitative FT-IR microanalysis limits: Evidence from synthetic hydrocarbon fluid inclusions in sylvite

    NASA Astrophysics Data System (ADS)

    Pironon, J.; Barres, O.

    1990-03-01

    Infrared microspectrometry is an essential technique for the in situ analysis of individual fluorescent hydrocarbon inclusions. In order to calibrate this technique alkane and benzene inclusions have been synthesized in sylvite crystals below 100°C at atmospheric pressure. We show that the infrared spectra obtained on pure alkane synthetic inclusions differ from equivalent composition standards. The n-alkane and cyclohexane inclusions exhibit an intense spectral deformation characterized by a broadening, a flattening, and a waving of the peak. This spectral deformation takes place in the C-H stretching and bending infrared regions and affects the CH 2/CH 3 peak area ratio measurements. No spectral deformation occurs for benzene inclusions in the C-H stretching region. Raman analysis confirms that no change in composition occurs during trapping. When the dilution of alkanes in a solvent increases, the infrared spectral deformation observed for the inclusions disappears. This dilution effect is not observed for pure alkane standards. It is possible to approximate the alkyl chain carbon number ( X) which is between the pure n-alkane standard value and the synthetic inclusion value: (AREA [∑ CH2]/AREA [∑ CH3] + 0.1)/0.27 < X < (AREA [∑ CH2]/ AREA [∑ CH3] - 0.8)/0.09. These results can be applied to the natural environments taking into account the limits of the FT-IR (Fourier Transform-Infra Red) microanalysis of fluid inclusions.

  5. Fluid inclusion study of the Fiumarella barite deposit (Catanzaro — S. Italy)

    NASA Astrophysics Data System (ADS)

    Buchanan, L. J.; de Vivo, B.; Kramer, A. K.; Lima, A.

    1981-08-01

    Samples from a barite vein deposit, located in the Catanzaro Fiumarella (Calabria) were examined by fluid inclusion and ore minerographic techniques. The barite vein occur in plutonic rocks of the Stilo Unit, where some Mo mineralizations were reported. The purpose of the study was to determine the characteristics of the fluid inclusions and to compare them to those of typical porphyry Cu/Mo systems. The ore minerographic study shows that the sulfides, associated to the barite, are clearly post-barite. The fluid inclusion results indicate that the average minimum temperature of the barite formation can be assumed to be about 210°C, with a range of 190 235°C. The salinity of the barite forming solutions is in the range 0 19.5 wt% NaCl and the average minimum pressure on the system was of 18.04 bars equivalent to a minimum depth of 201 m of barite formation below the paleowatertable. No genetic link is suggested to exist between the fluid inclusions of the Fiumarella barite deposit and those characteristic of typical porphyry Cu/Mo systems, whereas a close relation with epithermal precious metal (with base metals) vein deposits or with their distant cousins, the Kuroko deposits, is suggested to exist.

  6. Temperatures of quartz cementation in Jurassic sandstones from the Norwegian continental shelf -- evidence from fluid inclusions

    SciTech Connect

    Walderhaug, O. )

    1994-04-01

    Recent studies of fluid inclusions in quartz overgrowths have shown quartz cementation to have taken place at temperatures within the range 60--145 C in several sandstones from the North Sea and offshore mid-Norway (Malley et al. 1986; Konnerup-Madsen and Dypvik 1988; Burley et al. 1989; Walderhaug 1990; Ehrenberg 1990; Saigal et al. 1992; Nedkvitne et al. 1993). This study aims at determining whether these results are typical for quartz cementation of sandstones by presenting homogenization temperatures for 274 aqueous and 366 hydrocarbon inclusions in quartz overgrowths from Jurassic reservoir sandstones on the Norwegian continental shelf, and by reviewing previously published fluid-inclusion data. Possible explanations for different ranges of homogenization temperatures in different sandstones are also discussed, and possible sources of quartz cement and the effect of hydrocarbon emplacement on quartz cementation are considered.

  7. Fluid inclusions in carbonado diamond_Implication to the crystal growth environment

    NASA Astrophysics Data System (ADS)

    Kagi, H.; Ishibashi, H.; Sakurai, H.; Ohfuji, H.

    2010-12-01

    Diamond is a unique geological material carrying inside fluid and solid inclusions which are pristine witnesses of diamond crystallization media. Carbonado is natural polycrystalline diamond whose origin is still under hot depate. Our previous study on Central African carbonado reported the presence of fluid inclusions and high residual pressure in the diamond [1]. These results suggested that C-O-H mantle fluid was trapped in the carbonado sample and carbonado had grown in the volatile-rich environment in the mantle. However, it was unclear that the fluid inclusions in carbonado existed inside of diamond grains or in the grain boundaries. In this study, we precisely investigated the location of fluid inclusions from spectroscopic measurements and TEM observations. A carbonado grain with hundreds of micrometer in diameter was heated incrementally at temperatures from 700 to 1100°C under vacuum. After heating at each temperature condition, infrared absorption spectra were measured. Dehydration of hydrous minerals were observed with increasing temperature. In contrast, absorption bands assignable to liquid water were observed up to 950°C right before graphitization occurred. This observation strongly suggests that the fluid was trapped inside of diamond grains. For obtaining direct evidence of fluid inclusion existing inside of a diamond grain, we conducted TEM observations on an FIB-fabricated thin foil of carbonado. We found a void in the carbonado sample. The void was surrounded by (111) equivalent crystal faces. The octahedral void controlled by crystal habit of host diamond strongly suggests that the void is the negative crystal of diamond. The existence of negative crystal of diamond indicates that the fluid equilibrated with surrounding diamond crystals. Moreover, it was found that the grain boundary of the polished carbonado sample was in zig-zag texture. The detailed EBSD analyses on the grain boundary indicated that the grain boundary corresponded to the

  8. Characterization of gas chemistry and noble-gas isotope ratios of inclusion fluids in magmatic-hydrothermal and magmatic-steam alunite

    USGS Publications Warehouse

    Landis, G.P.; Rye, R.O.

    2005-01-01

    Chemical and isotope data were obtained for the active gas and noble gas of inclusion fluids in coarse-grained samples of magmatic-hydrothermal and magmatic-steam alunite from well-studied deposits (Marysvale, Utah; Tambo, Chile; Tapajo??s, Brazil; Cactus, California; Pierina, Peru), most of which are discussed in this Volume. Primary fluid inclusions in the alunite typically are less than 0.2 ??m but range up to several micrometers. Analyses of the active-gas composition of these alunite-hosted inclusion fluids released in vacuo by both crushing and heating indicate consistent differences in the compositions of magmatic-hydrothermal and magmatic-steam fluids. The compositions of fluids released by crushing were influenced by contributions from significant populations of secondary inclusions that trapped largely postdepositional hydrothermal fluids. Thermally released fluids gave the best representation of the fluids that formed primary alunite. The data are consistent with current models for the evolution of magmatic-hydrothermal and magmatic-steam fluids. Magmatic-steam fluids are vapor-dominant, average about 49 mol% H2O, and contain N2, H2, CH4, CO, Ar, He, HF, and HCl, with SO2 the dominant sulfur gas (average SO2/ H2S=202). In contrast, magmatic-hydrothermal fluids are liquid-dominant, average about 88 mol% H2O, and N2, H2, CO2, and HF, with H2S about as abundant as SO2 (average SO2/H2 S=0.7). The low SO2/H2S and N2/Ar ratios, and the near-absence of He in magmatic-hydrothermal fluids, are consistent with their derivation from degassed condensed magmatic fluids whose evolution from reduced-to-oxidized aqueous sulfur species was governed first by rock and then by fluid buffers. The high SO2/H2S and N2/Ar with significant concentrations of He in magmatic-steam fluids are consistent with derivation directly from a magma. None of the data supports the entrainment of atmospheric gases or mixing of air-saturated gases in meteoric water in either magmatic

  9. Constraints from fluid inclusions on sulfide precipitation mechanisms and ore fluid migration in the Viburnum Trend lead district, Missouri

    USGS Publications Warehouse

    Rowan, E.L.; Leach, D.L.

    1989-01-01

    Homogenization temperatures and freezing point depressions were determined for fluid inclusions in Bonneterre Dolomite-hosted dolomite cements in mine samples, as well as drill core from up to 13 km outside of the district. A well-defined cathodoluminescent zonation distinguishes dolomite growth zones as older or younger than main-stage mineralization. Homogenization temperatures and salinities in samples from mines are not systematically different from those of samples outside of the district. The absence of a significant, recognizable decrease in temperature either vertically within the section or east-west across the district, coupled with the minor amount of silica in the district, argues against cooling as a primary cause of sulfide precipitation. In a reduced sulfur mineralization model with Pb carried as chloride complexes, dilution is also a possible sulfide precipitation mechanism. The difference in Pb solubility in the extremes of the chloride concentration range, 3.9 vs. 5.9 molal, reaches 1 ppm only for pH values below approximately 4.5. The distribution of warm inclusions beyond the Viburnum Trend district implies that fluid migration was regional in scale. Elevated temperatures observed in fluid inclusions at shallow stratigraphic depths are consistent with a gravity flow hydrologic system characterized by rapid flow rates and the capacity for advective heat transport. -from Authors

  10. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    SciTech Connect

    Lorie M. Dilley

    2011-03-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the

  11. Biomarkers from Huronian oil-bearing fluid inclusions: An uncontaminated record of life before the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Adriana; Volk, Herbert; George, Simon C.; Ridley, John; Buick, Roger

    2006-06-01

    We report detailed molecular geochemistry of oil-bearing fluid inclusions from a ca. 2.45 Ga fluvial metaconglomerate of the Matinenda Formation at Elliot Lake, Canada. The oil, most likely derived from the conformably overlying McKim Formation, was trapped in quartz and feldspar during diagenesis and early metamorphism of the host rock, probably before ca. 2.2 Ga. The presence of abundant biomarkers for cyanobacteria and eukaryotes derived from and trapped in rocks deposited before the Great Oxidation Event is consistent with an earlier evolution of oxygenic photosynthesis than previously thought and suggests that some aquatic settings had become sufficiently oxygenated for sterol biosynthesis by this time. It also implies that eukaryotes survived several extreme climatic events, including the Paleoproterozoic “snowball Earth” glaciations. The extraction of biomarker molecules from Paleoproterozoic oil-bearing fluid inclusions thus establishes a new method, using low detection limits and system blank levels, to trace evolution of life through Earth's early history that avoids the potential contamination problems affecting shale-hosted hydrocarbons.

  12. Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A.

    USGS Publications Warehouse

    Roedder, E.; d'Angelo, W. M.; Dorrzapf, A.F.; Aruscavage, P. J.

    1987-01-01

    Several methods have been developed and used to extract and chemically analyze the two major types of fluid inclusions in bedded salt from the Palo Duro Basin, Texas. Data on the ratio K: Ca: Mg were obtained on a few of the clouds of tiny inclusions in "chevron" salt, representing the brines from which the salt originally crystallized. Much more complete quantitative data (Na, K, Ca, Mg, Sr, Cl, SO4 and Br) were obtained on ??? 120 individual "large" (mostly ???500 ??m on an edge, i.e., ??? ??? 1.6 ?? 10-4 g) inclusions in recrystallized salt. These latter fluids have a wide range of compositions, even in a given piece of core, indicating that fluids of grossly different composition were present in these salt beds during the several (?) stages of recrystallization. The analytical results indicating very large inter-and intra-sample chemical variation verify the conclusion reached earlier, from petrography and microthermometry, that the inclusion fluids in salt and their solutes are generally polygenetic. The diversity in composition stems from the combination of a variety of sources for the fluids (Permian sea, meteoric, and groundwater, as well as later migrating ground-, formation, or meteoric waters of unknown age), and a variety of subsequent geochemical processes of dissolution, precipitation and rock-water interaction. The compositional data are frequently ambiguous but do provide constraints and may eventually yield a coherent history of the events that produced these beds. Such an understanding of the past history of the evaporite sequence of the Palo Duro Basin should help in predicting the future role of the fluids in the salt if a nuclear waste repository is sited there. ?? 1987.

  13. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with

  14. Fluid flow histories in Permo-Triass sediments of the Sydney Basin, SE Australia; isotope and fluid inclusion constraints

    SciTech Connect

    Hamilton, P.J.; Bai, G.P.

    1996-12-31

    A petrographic, isotopic and fluid inclusion investigation of Permo-Triassic sandstones in the Sydney Basin has enabled reconstruction of the history of fluid flow. Diagenetic cements in Triassic sandstones comprise, in order, grain coating clays and carbonates, pore filling carbonates, kaolin, quartz, late interstitial carbonate and illite. Diagenesis in the Permian sandstones began with pore filling siderite prior to saddle ankerite, followed by quartz and then illite and late carbonates. Fluid rock interaction during burial resulted in increases in pore water 8180 from depositional values of -17{per_thousand} to about -12{per_thousand} to -7{per_thousand} at the time of quartz overgrowth crystallization and to between -7{per_thousand} to -1{per_thousand} at the time of illite crystallisation. Interpretation of fluid inclusion data and maturity measurements indicates that heat flow increased during the Triassic and Jurassic, reaching a maximum of about 2.1 HFU in the Cretaceous. Late Cretaceous uplift, cooling and erosion was initiated at the same time as, and probably related to, the initiation of Tasman Sea rifting. The rocks had previously been more deeply buried by 1500-2100m. The uplift resulted in cessation of illite diagenesis timed at 90Ma and meteoric water invasion of the sandstones in turn causing partial resetting of {delta}D compositions of the diagenetic clays to less D-depleted values.

  15. Fluid flow histories in Permo-Triass sediments of the Sydney Basin, SE Australia; isotope and fluid inclusion constraints

    SciTech Connect

    Hamilton, P.J. ); Bai, G.P. )

    1996-01-01

    A petrographic, isotopic and fluid inclusion investigation of Permo-Triassic sandstones in the Sydney Basin has enabled reconstruction of the history of fluid flow. Diagenetic cements in Triassic sandstones comprise, in order, grain coating clays and carbonates, pore filling carbonates, kaolin, quartz, late interstitial carbonate and illite. Diagenesis in the Permian sandstones began with pore filling siderite prior to saddle ankerite, followed by quartz and then illite and late carbonates. Fluid rock interaction during burial resulted in increases in pore water 8180 from depositional values of -17[per thousand] to about -12[per thousand] to -7[per thousand] at the time of quartz overgrowth crystallization and to between -7[per thousand] to -1[per thousand] at the time of illite crystallisation. Interpretation of fluid inclusion data and maturity measurements indicates that heat flow increased during the Triassic and Jurassic, reaching a maximum of about 2.1 HFU in the Cretaceous. Late Cretaceous uplift, cooling and erosion was initiated at the same time as, and probably related to, the initiation of Tasman Sea rifting. The rocks had previously been more deeply buried by 1500-2100m. The uplift resulted in cessation of illite diagenesis timed at 90Ma and meteoric water invasion of the sandstones in turn causing partial resetting of [delta]D compositions of the diagenetic clays to less D-depleted values.

  16. Isotope analysis of water trapped in fluid inclusions in deep sea corals

    NASA Astrophysics Data System (ADS)

    Vonhof, Hubert; Reijmer, John; Feenstra, Eline; Mienis, Furu

    2015-04-01

    Extant Lophelia pertusa deep sea coral specimens from the Loachev mound region in the North Atlantic Ocean contain water filled fluid inclusions in their skeleton. This fluid inclusion water was extracted with a crushing device, and its hydrogen and oxygen isotope ratios analysed. The resulting data span a wide range of isotope values which are remarkably different from the seawater isotope composition of the sites studied. Comparison with food source isotope signatures suggests that coral inclusion water contains a high, but variable proportion of metabolic water. The isotope composition of the inclusion water appears to vary with the position on the deep see coral reef, and shows a correlation with the stable isotope composition of the coral aragonite. This correlation seems to suggest that growth rate and other ecological factors play an important role in determining the isotope composition of fluids trapped in the coral skeleton, which can potentially be developed as a proxy for non-equilibrium isotope fractionation observed in the aragonite skeleton of many of the common deep sea coral species.

  17. Fluid inclusion and stable isotope data for the Pea Ridge Fe-REE orebody, Missouri

    SciTech Connect

    Sidder, G.B.; Day, W.C.; Rye, R.O. )

    1993-03-01

    New fluid-inclusion and stable-isotope data define the character of the mineralizing fluids that formed the iron and rare-earth-element ore deposit at the Pea Ridge Mine, southeast Missouri. These fluids were very hot and highly saline brines that may have been magmatically derived. Early, pre-magnetite ore skarn alteration of the host rhyolitic tuff took place at temperatures greater than 420 C and possibly as high as 680 C based upon calculated temperatures of quartz-magnetite pairs. Halite homogenization of three- or more phase (liquid + vapor + salts) fluid inclusions in quartz indicates that the skarn-forming fluid had a temperature of about 460 C to > 530 C and a salinity of about 45 to 57 equivalent weight percent NaCl. Analyses of [delta][sup 18]O in quartz from the skarn zone average about 14.5[per thousand], compared to a value of about 13.0[per thousand] for quartz in the host rhyolite. Average [delta][sup 34]S values for pyrite of about 2.3[per thousand] in the skarn zone may reflect a magmatic source. Magnetite ore was deposited at temperatures between about 340 C and 530 C from a fluid with a salinity between about 54 and 60 equivalent weight percent NaCl. The large apparent range of temperatures indicated by both fluid-inclusion and stable-isotope data within each zone may be due to contamination by quartz from multiple stages of quartz deposition. Also, the assumed isotopic equilibrium between some mineral pairs may be incorrect. Moreover, fluid inclusions are relatively rare in all ore and alteration zones except the silicified zone, and only a few inclusions are clearly primary in origin. Nonetheless, the predominance of high temperatures and high salinities in all of the mineralized and altered zones supports the interpretation that Pea ridge is a magmatic hydrothermal deposit. This magmatic hydrothermal model is also supported by paragenetic relations defined by geologic mapping and geochemical modeling of major-, minor-, and trace-element data.

  18. Fluid-inclusion gases in sphalerite, galena, and dolomite from the Silesian-Cracow Zn-Pb district, Poland

    USGS Publications Warehouse

    Leach, D.L.; Apodaca, L.E.; Kozlowski, A.; Landis, G.P.; Hofstra, A.H.

    1996-01-01

    The gases in fluid inclusions from samples of sphalerite, galena, and sparry dolomite from ore deposits in the Silesian-Cracow zinc-lead district were determined by mass spectrometry. The results show that CO2 is the major gas in the fluid inclusions with lesser amounts of CH4. Samples of galena and sphalerite also commonly contain H2S and short-chain hydrocarbon gases. Gases in sphalerite and galena appear to contain two end-member compositions, CO2-CH4 and CO2-H2S bearing fluid inclusions. The apparent end member compositions could represent chemically distinct generations of fluid inclusions trapped at different times or at least two distinct fluids present during ore formation. The presence of distinct fluid inclusion gas compositions is consistent with previous fluid inclusion studies that show the presence of multiple fluids during ore deposition. The presence of multiple fluids in the ore-forming environment could lead to ore precipitation through processes of fluid mixing.

  19. Fluid inclusion and isotopic systematics of an evolving magmatic-hydrothermal system

    SciTech Connect

    Moore, J.N.; Gunderson, R.P.

    1995-10-01

    The Geysers, California, is the site of a long-lived hydrothermal system that initially developed 1.5-2 m.y. ago in response to the intrusion of a hypabyssal granitic pluton. Although wells drilled into The Geysers produce only dry steam, fluid inclusion, isotopic, and mineralogic data demonstrate that the present vapor-dominated regime evolved from an earlier and more extensive, liquid-dominated hydrothermal system. Circulation of these early fluids produced veins characterized by tourmaline {+-} biotite {+-} actinolite {+-} clinopyroxene within the pluton and adjacent biotite-rich hornfels, actinolite {+-} ferroaxinite {+-} epidote and epidote {+-} chlorite within the intermediate parts of the thermal system and calcite in the outer parts. Potassium feldspar and quartz are present in all assemblages. Pressure-corrected homogenization temperatures and apparent salinities of fluid inclusions trapped in vein minerals range from 440{degrees}C and 44 wt% NaCl equivalent within the hornfels (<600 m from the pluton) to 325{degrees}C and 5 wt% NaCl equivalent at distances of approximately 1500 m from the intrusion. We suggest that the shallow, moderate salinity fluids are connate waters modified by water-rock interactions while the high-salinity fluids are interpreted as magmatic brines. Halite-dissolution temperatures of inclusions in the hornfels and pluton indicate that the magnetic fluids were trapped at lithostatic pressures (300-900 bars). In contrast, homogenization temperatures of the connate fluids suggest trapping under hydrostatic pressures of less than several hundred bars. Whole-rock {delta}{sup 18}O values of samples from The Geysers display systematic variations with respect to depth, location within the field, and grade of alteration. At depths below +610 m relative to mean sea level, the {delta}{sup 18}O values are strongly zoned around a northwest-southeast trending low located near the center of the steam reservoir. 77 refs., 15 figs., 2 tabs.

  20. Fluid inclusions in microstructures of shocked quartz from the Keurusselkä impact site, Central Finland

    NASA Astrophysics Data System (ADS)

    Poutiainen, Matti; Heikkilä, Pasi

    2013-06-01

    Granitoid rock samples from the assumed center of the Keurusselkä impact site were subjected to a systematic study of fluid-inclusion compositions and densities in various microstructures of the shocked quartz. The results are consistent with the following impact-induced model of formation. After cessation of all major regional tectonic activity and advanced erosional uplift of the Fennoscandian shield, a meteorite impact (approximately 1.1 Ga) caused the formation of planar fractures (PFs) and planar deformation features (PDFs) and the migration of shock-liberated metamorphic fluid (CO2 ± H2O) to the glass in the PDFs. Postimpact annealing of the PDFs led to the formation of CO2 (±H2O) fluid-inclusion decorated PDFs. The scarce fluid-inclusion implosion textures (IPs) suggest a shock pressure of 7.6-10 GPa. The postimpact pressure release and associated heating initiated hydrothermal activity that caused re-opening of some PFs and their partial filling by moderate-salinity/high temperature (>200 °C) H2O (+ chlorite + quartz) and moderate-density CO2. The youngest postimpact endogenic sub- and nonplanar microfractures (MFs) are characterized by low-density CO2 and low-salinity/low-temperature (<200 °C) H2O.

  1. Spectroscopic study of chromium, iron, OH, fluid and mineral inclusions in uvarovite and fuchsite.

    PubMed

    Sanchez Navas, Antonio; Reddy, B J; Nieto, Fernando

    2004-08-01

    Octahedrally-coordinated Cr(3+) possesses peculiar spectral features which made easy to identify it in minerals, even in minor amounts. Chromium has been studied in uvarovite and fuchsite by optical and EPR spectra. Optical, EPR, FT-infrared and EPMA studies have also let to determine the presence of Fe(3+) and Ti(3+) and fluid inclusions within uvarovite and fuchsite. Absorption and scattering effects on the optical spectra obtained for Cr-bearing samples, resulting from the presence of inclusions, are also discussed in this work.

  2. Fluid Inclusion Characteristics of Domaniç (Kütahya) Porphyry Cu-Mo Mineralization

    NASA Astrophysics Data System (ADS)

    Sendir, H.; Sarıiz, K.; Bozkaya, G.

    2012-04-01

    The study area is located at 30 km northwest of Domaniç (Kütahya) and covers on approximately 250 square kilometers. The Devonian (Paleozoic) schists which are composed of gneiss, mica schist and chlorite schist is the oldest unit of the study area. This units are overlain unconformably by the Permian Allıkaya Marbles. Eocene granodioritic intrusives cut other rock series and located as a batholite. Magmatic units present porphyric and holocrystalline textures. Granodioritic intrusions are represented by tonalite, tonalite porphyr, granodiorite, granodiorite porphyr, granite, diorite, diorite porphyries. Potassic, phyllitic and prophyllitic hydrothermal alteration zones are determined in host rocks and wallrocks. Mineralizations are observed as disseminated, and stockwork types within the granodioritic rocks. Ore minerals are pyrotine, pyrite, chalcopyrite, molybdenite, rutile, bornite, sphalerite, marcasite and limonite. Geochemically, it is of sub-alkaline affinity, belongs to the high-K, calc-alkaline series and displays features of typical I-type affinity. They show enrichment in large-ion lithophile elements (LIL) and depletion Nb and Ti indicating a subduction zone related magmatic signature for their origin. Fluid inclusion assemblages (FIAs) were measured from quartz using a Linkam THMS-600 heating/cooling stage. The inclusions contain two-phase aqueous fluids (L+V) at room temperature. All fluid inclusions belong to the H2O- NaCl-CaCl2 system. Fluid inclusion microthermometry in the ore deposits suggest two main hydrothermal fluids, with modal homogenization temperatures and salinities (wt. % equivalent NaCl): (a) between 380.2o 140.7oC and ~22.3 - 13.1 %, (b) 75.2o -128.7oC and between ~10.8 - 9.2 %, respectively.

  3. A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic material

    USGS Publications Warehouse

    Chou, I.-Ming; Song, Y.; Burruss, R.C.

    2008-01-01

    Considerable advances in our understanding of physicochemical properties of geological fluids and their roles in many geological processes have been achieved by the use of synthetic fluid inclusions. We have developed a new method to synthesize fluid inclusions containing organic and inorganic material in fused silica capillary tubing. We have used both round (0.3 mm OD and 0.05 or 0.1 mm ID) and square cross-section tubing (0.3 ?? 0.3 mm with 0.05 ?? 0.05 mm or 0.1 ?? 0.1 mm cavities). For microthermometric measurements in a USGS-type heating-cooling stage, sample capsules must be less than 25 mm in length. The square-sectioned capsules have the advantage of providing images without optical distortion. However, the maximum internal pressure (P; about 100 MPa at 22 ??C) and temperature (T; about 500 ??C) maintained by the square-sectioned capsules are less than those held by the round-sectioned capsules (about 300 MPa at room T, and T up to 650 ??C). The fused silica capsules can be applied to a wide range of problems of interest in fluid inclusion and hydrothermal research, such as creating standards for the calibration of thermocouples in heating-cooling stages and frequency shifts in Raman spectrometers. The fused silica capsules can also be used as containers for hydrothermal reactions, especially for organic samples, including individual hydrocarbons, crude oils, and gases, such as cracking of C18H38 between 350 and 400 ??C, isotopic exchanges between C18H38 and D2O and between C19D40 and H2O at similar temperatures. Results of these types of studies provide information on the kinetics of oil cracking and the changes of oil composition under thermal stress. When compared with synthesis of fluid inclusions formed by healing fractures in quartz or other minerals or by overgrowth of quartz at elevated P-T conditions, the new fused-silica method has the following advantages: (1) it is simple; (2) fluid inclusions without the presence of water can be formed; (3

  4. Ore genesis constraints on the Idaho Cobalt Belt from fluid inclusion gas, noble gas isotope, and ion ratio analyses

    USGS Publications Warehouse

    Hofstra, Albert H.; Landis, Gary P.

    2012-01-01

    The Idaho cobalt belt is a 60-km-long alignment of deposits composed of cobaltite, Co pyrite, chalcopyrite, and gold with anomalous Nb, Y, Be, and rare-earth elements (REEs) in a quartz-biotite-tourmaline gangue hosted in Mesoproterozoic metasedimentary rocks of the Lemhi Group. It is the largest cobalt resource in the United States with historic production from the Blackbird Mine. All of the deposits were deformed and metamorphosed to upper greenschist-lower amphibolite grade in the Cretaceous. They occur near a 1377 Ma anorogenic bimodal plutonic complex. The enhanced solubility of Fe, Co, Cu, and Au as chloride complexes together with gangue biotite rich in Fe and Cl and gangue quartz containing hypersaline inclusions allows that hot saline fluids were involved. The isotopes of B in gangue tourmaline are suggestive of a marine source, whereas those of Pb in ore suggest a U ± Th-enriched source. The ore and gangue minerals in this belt may have trapped components in fluid inclusions that are distinct from those in post-ore minerals and metamorphic minerals. Such components can potentially be identified and distinguished by their relative abundances in contrasting samples. Therefore, we obtained samples of Co and Cu sulfides, gangue quartz, biotite, and tourmaline and post-ore quartz veins as well as Cretaceous metamorphic garnet and determined the gas, noble gas isotope, and ion ratios of fluid inclusion extracts by mass spectrometry and ion chromatography. The most abundant gases present in extracts from each sample type are biased toward the gas-rich population of inclusions trapped during maximum burial and metamorphism. All have CO2/CH4 and N2/Ar ratios of evolved crustal fluids, and many yield a range of H2-CH4-CO2-H2S equilibration temperatures consistent with the metamorphic grade. Cretaceous garnet and post-ore minerals have high RH and RS values suggestive of reduced sulfidic conditions. Most extracts have anomalous 4He produced by decay of U and Th and

  5. A New Method of Obtaining High-Resolution Paleoclimate Records from Speleothem Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Logan, A. J.; Horton, T. W.

    2010-12-01

    We present a new method for stable hydrogen and oxygen isotope analysis of ancient drip water trapped within cave speleothems. Our method improves on existing fluid inclusion isotopic analytical techniques in that it decreases the sample size by a factor of ten or more, dramatically improving the spatial and temporal precision of fluid inclusion-based paleoclimatology. Published thermal extraction methods require large samples (c. 150 mg) and temperatures high enough (c. 500-900°C) to cause calcite decomposition, which is also associated with isotopic fractionation of the trapped fluids. Extraction by crushing faces similar challenges, where the failure to extract all the trapped fluid can result in isotopic fractionation, and samples in excess of 500 mg are required. Our new method combines the strengths of these published thermal and crushing methods using continuous-flow isotope ratio analytical techniques. Our method combines relatively low-temperature (~250°C) thermal decrepitation with cryogenic trapping across a switching valve sample loop. In brief, ~20 mg carbonate samples are dried (75°C for >1 hour) and heated (250°C for >1 hour) in a quartz sample chamber under a continuously flowing stream of ultra-high purity helium. Heating of the sample chamber is achieved by use of a tube furnace. Fluids released during the heating step are trapped in a coiled stainless steel cold trap (~ -98°C) serving as the sample loop in a 6-way switching valve. Trapped fluids are subsequently injected into a high-temperature conversion elemental analyzer by switching the valve and rapidly thawing the trap. This approach yielded accurate and precise measurements of injected liquid water IAEA reference materials (GISP; SMOW2; SLAP2) for both hydrogen and oxygen isotopic compositions. Blanking tests performed on the extraction line demonstrate extremely low line-blank peak heights (<50mv). Our tests also demonstrate that complete recovery of liquid water is possible and that

  6. Interpretation of fluid inclusions in quartz deformed by weak ductile shearing: reconstruction of differential stress magnitudes and pre-deformation fluid properties

    NASA Astrophysics Data System (ADS)

    Tarantola, Alexandre; Diamond, Larryn W.

    2015-04-01

    A well developed theoretical framework is available in which paleofluid properties, such as chemical composition and density, can be reconstructed from fluid inclusions in minerals that have undergone no ductile deformation. Fluid inclusions are known to reequilibrate during strong post-entrapment changes in hydrostatic confining pressure (e.g. Sterner and Bodnar 1989). The present study extends this framework to encompass fluid inclusions hosted by quartz that has undergone weak ductile deformation following fluid entrapment. Recent piston-cylinder experiments (Griggs apparatus) made on single quartz crystals have shown that such deformation causes inclusions to become dismembered into clusters of irregularly shaped relict inclusions surrounded by planar arrays of tiny, new-formed (neonate) inclusions (Diamond et al. 2010; Tarantola et al. 2010, 2012). Comparison of the experimental samples with a naturally sheared quartz vein from Grimsel Pass, Central Alps, Switzerland, reveals striking similarities. This strong concordance justifies applying the experimentally derived rules of fluid inclusion behaviour to nature. Thus, planar arrays of dismembered inclusions defining cleavage planes in quartz may be taken as diagnostic of small amounts of intracrystalline strain. Deformed inclusions preserve their pre-deformation concentration ratios of gases to electrolytes, but their H2O contents typically have changed. Morphologically intact inclusions, in contrast, preserve the pre-deformation composition and density of their originally trapped fluid. The orientation of the maximum principal compressive stress (σ1) at the time of shear deformation can be derived from the pole to the cleavage plane within which the dismembered inclusions are aligned. Finally, the density of neonate inclusions is commensurate with the pressure value of σ1 at the temperature and time of deformation. This last rule offers a means to estimate magnitudes of shear stresses from fluid inclusion

  7. Fluid inclusion chemistry of adularia-sericite epithermal Au-Ag deposits of the southern Hauraki Goldfield, New Zealand

    USGS Publications Warehouse

    Simpson, Mark P.; Strmic Palinkas, Sabina; Mauk, Jeffrey L.; Bodnar, Robert J.

    2015-01-01

    LA-ICP-MS analyses show that in some cases different fluid inclusion assemblages (FIAs) within a single sample trapped fluids with variable chemistries. These differences likely reflect modification of a single parent fluid through mineral dissolution and precipitation, water/rock interactions, boiling and vapor loss, conductive cooling, and mixing.

  8. Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity.

    PubMed

    McKeegan, K D; Leshin, L A; Russell, S S; MacPherson, G J

    1998-04-17

    The oxygen isotopic compositions of two calcium-aluminum-rich inclusions (CAIs) from the unequilibrated ordinary chondrite meteorites Quinyambie and Semarkona are enriched in 16O by an amount similar to that in CAIs from carbonaceous chondrites. This may indicate that most CAIs formed in a restricted region of the solar nebula and were then unevenly distributed throughout the various chondrite accretion regions. The Semarkona CAI is isotopically homogeneous and contains highly 16O-enriched melilite, supporting the hypothesis that all CAI minerals were originally 16O-rich, but that in most carbonaceous chondrite inclusions some minerals exchanged oxygen isotopes with an external reservoir following crystallization.

  9. Inclusion.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1992-01-01

    This theme journal issue focuses on current activities of the Office of Special Education and Rehabilitative Services which stress inclusion of students with disabilities in the mainstream. It begins with a message from the Assistant Secretary, Robert R. Davila which examines the full meaning of an "inclusive" education. Next, Barbara…

  10. Thermal history of Alberta deep basin: a comparative study of fluid inclusion and vitrinite reflectance data

    SciTech Connect

    Tilley, B.J.; Nesbitt, B.E.; Longstaffe, F.J.

    1989-03-01

    The thermal history of the Alberta Deep basin, the gas-saturated westernmost part of the Western Canada sedimentary basin, has been studied by analyzing fluid inclusions in diagenetic cements and comparing the results with coal maturity data. Analyses of fluid inclusions in diagenetic quartz and calcite cements from Lower Cretaceous conglomerates and sandstones indicate that the fluids which precipitated these minerals attained temperatures of at least 190/degree/C. These fluids had salinities of 2-3 wt % equivalent NaCl and were CH/sub 4/ saturated. Time-temperature calculations for vitrinite reflectance data from coal interbeds using the Lopatin-Waples method indicate maximum burial temperatures of only 145/degree/-155/degree/C. The discrepancy in the results from the two types of temperature determinations suggests that either fluids in the conglomerates were 40/degree/C hotter than the ambient rock temperature or the correlation of coal maturity with maximum burial temperature is inaccurate. If the first scenario is correct, hot fluids would have had to have moved through permeable conglomerate beds and bedding plane fractures at a rate fast enough such that their heat was not substantially dissipated along the pathway. If the second scenario is correct, a paleogeothermal gradient of 38/degree/c/km (vs. the present-day 27/degree/C/km) is indicated and a time-temperature index can be calibrated to vitrinite reflectance data specifically for the Alberta Deep basin (1.4 % R/sub 0/ correlates to 190/degree/C). With the available data, neither scenario can be conclusively proven. In either case, unexpectedly high temperatures (190/degree/C) indicate the redistribution of heat by fluid flow in the Falher and Cadotte Members in the Alberta Deep basin.

  11. Stability and abundance of the trisulfur radical ion S3- in hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Pokrovski, Gleb S.; Dubessy, Jean

    2015-02-01

    The interpretation of sulfur behavior in geological fluids and melts is based on a long-standing paradigm that sulfate, sulfide, and sulfur dioxide are the major sulfur compounds. This paradigm was recently challenged by the discovery of the trisulfur ion S3- in aqueous S-bearing fluids from laboratory experiments at elevated temperatures. However, the stability and abundance of this potentially important sulfur species remain insufficiently quantified at hydrothermal conditions. Here we used in situ Raman spectroscopy on model thiosulfate, sulfide, and sulfate aqueous solutions across a wide range of sulfur concentration (0.5-10.0 wt%), acidity (pH 3-8), temperature (200-500 °C), and pressure (15-1500 bar) to identify the different sulfur species and determine their concentrations. Results show that in the low-density (< 0.2 g /cm3) vapor phase, H2S is the only detectable sulfur form. By contrast, in the denser liquid and supercritical fluid phase, together with sulfide and sulfate, the trisulfur radical ion S3- is a ubiquitous and thermodynamically stable species from 200 °C to at least 500 °C. In addition, the disulfur radical ion S2- is detected at 450-500 °C in most solutions, and polymeric molecular sulfur with a maximum abundance around 300 °C in S-rich solutions. These results, combined with revised literature data, allow the thermodynamic properties of S3- to be constrained, enabling quantitative predictions of its abundance over a wide temperature and pressure range of crustal fluids. These predictions suggest that S3- may account for up to 10% of total dissolved sulfur (Stot) at 300-500 °C in fluids from arc-related magmatic-hydrothermal systems, and more than 50% Stot at 600-700 °C in S-rich fluids produced via prograde metamorphism of pyrite-bearing rocks. The trisulfur ion may favor the mobility of sulfur itself and associated metals (Au, Cu, Pt, Mo) in geological fluids over a large range of depth and provide the source of these elements for

  12. Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota—Evidence from fluid inclusions

    NASA Astrophysics Data System (ADS)

    Sirbescu, Mona-Liza C.; Nabelek, Peter I.

    2003-07-01

    A microthermometric study of inclusions in granites and pegmatites in the Proterozoic Harney Peak Granite system identified four types of inclusions. Type 1 inclusions are mixtures of CO 2 and H 2O and have low salinities, on average 3.5 wt.% NaCl eq; type 2 inclusions are aqueous solutions of variable salinities, from 0 to 40% wt.% NaCl eq; type 3 inclusions are carbonic, dominated by CO 2, with no detectable water; and type 4 inclusions consist of 20 to 100% solids, with the remaining volume occupied by a CO 2-H 2O fluid. Many inclusions have a secondary character; however, a primary character can be unambiguously established in several occurrences of the type 1 inclusions. These inclusions were trapped above the solidus and represent the exsolved magmatic fluid. The secondary populations of types 1, 2, and 3 probably formed as a result of reequilibration and unmixing of the type 1 fluid that progressively changed composition and density with decreasing temperature and pressure and was finally trapped along healed microfractures under subsolidus conditions. Type 4 inclusions are primary and are interpreted to be trapped, fluid-bearing, complex silicate melts that subsequently solidified or underwent other posttrapping changes. It is demonstrated that primary type 1 fluid inclusions that coexist with crystallized melt inclusions in the complex, Li-bearing Tin Mountain pegmatite were trapped along the two-fluid phase boundary in the system CO 2-H 2O-NaCl eq. Consequently, the temperature and pressure conditions of trapping are identical to the bulk homogenization conditions—on average 340°C and 2.7 kbar. These conditions indicate that this Li-, Cs-, Rb-, P-, and B-rich pegmatite crystallized at some of the lowest known temperatures for a silicate melt in the crust. An internally consistent, empirical solvus surface in P- T- XCO2 coordinates was generated for the pseudobinary CO 2-(H 2O-4.3 wt.% NaCl eq) pegmatite fluid system. Distribution coefficients for the

  13. Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging: Implications for CL-petrography, fluid inclusion analysis and trace-element geothermometry

    NASA Astrophysics Data System (ADS)

    Lambrecht, Glenn; Diamond, Larryn William

    2014-09-01

    Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are

  14. Fluid-deposited graphitic inclusions in quartz: Comparison between KTB (German Continental Deep-Drilling) core samples and artificially reequilibrated natural inclusions

    USGS Publications Warehouse

    Pasteris, J.D.; Chou, I.-Ming

    1998-01-01

    We used Raman microsampling spectroscopy (RMS) to determine the degree of crystallinity of minute (2-15 ??m) graphite inclusions in quartz in two sets of samples: experimentally reequilibrated fluid inclusions in a natural quartz grain and biotite-bearing paragneisses from the KTB deep drillhole in SE Germany. Our sequential reequilibration experiments at 725??C on initially pure CO2 inclusions in a quartz wafer and the J. Krautheim (1993) experiments at 900-1100??C on organic compounds heated in gold or platinum capsules suggest that, at a given temperature, (1) fluid-deposited graphite will have a lower crystallinity than metamorphosed organic matter and (2) that the crystallinity of fluid-deposited graphite is affected by the composition of the fluid from which it was deposited. We determined that the precipitation of more-crystalline graphite is favored by lower fH2 (higher fO2), and that the crystallinity of graphite is established by the conditions (including gas fugacities) that pertain as the fluid first reaches graphite saturation. Graphite inclusions within quartz grains in the KTB rocks show a wide range in crystallinity index, reflecting three episodes of carbon entrapment under different metamorphic conditions. Isolated graphite inclusions have the spectral properties of totally ordered, completely crystalline graphite. Such crystallinity suggests that the graphite was incorporated from the surrounding metasedimentary rocks, which underwent metamorphism at upper amphibolite-facies conditions. Much of the fluid-deposited graphite in fluid inclusions, however, shows some spectral disorder. The properties of that graphite resemble those of experimental precipitates at temperatures in excess of 700??C and at elevated pressures, suggesting that the inclusions represent precipitates from C-O-H fluids trapped under conditions near those of peak metamorphism at the KTB site. In contrast, graphite that is intimately associated with chlorite and other

  15. Subseafloor Boiling Within the PACMANUS Hydrothermal System Indicated by Anhydrite-Hosted Fluid Inclusions from ODP Leg 193 Cores

    NASA Astrophysics Data System (ADS)

    Vanko, D. A.; Bach, W.; Scott, S. D.; Yeats, C.; Roberts, S.; Beaudoin, Y.

    2001-12-01

    Drilling during Leg 193 was in an area of active hydrothermal venting from dacitic rocks on Pual Ridge in the Manus Basin. All the cored rocks underlying the fresh surficial volcanic rocks are intensively hydrothermally altered. Primary fluid inclusions preserved in anhydrite veins provide unique fluid samples that provide direct evidence on the chemical and physical properties of hydrothermal fluids present beneath the seafloor. Site 1188 is located on Snowcap Knoll, an area of diffuse warm venting at a water depth of ~1645 m. Fluid inclusions have been studied from a coarse anhydrite +/- pyrite vein from ~123 m below the seafloor. The ambient hydrostatic pressure for this sample is calculated to be ~180 bars. The ambient temperature is unknown, but the T measured after 8 days of thermal rebound at a depth of 360 m in this hole was 313° C. Primary fluid inclusions measuring up to 100 μ m across are dominantly two-phase L + V inclusions, yet fluid inclusions with up to three daughter crystals are also observed. The largest daughter crystal is halite, commonly accompanied by a small transparent granular daughter crystal and an even smaller granular opaque crystal. Consequently, optical inspection alone demonstrates the co-occurrence of both hypersaline, multicomponent brines and less saline aqueous fluids. Ice melting temperatures for L+V inclusions vary from -0.1° to -14.5° C, with a strong mode at -2° C, corresponding to a seawater-like salinity. However, the range in Tm(ice) indicates that a significant number contain quite fresh water, and others contain quite saline water. Ice melting temperatures from the multiphase inclusions, measured in the presence of hydrohalite, range from -29.5° to -39.9° C, confirming their hypersaline composition. These data, as well as measured halite dissolution temperatures ranging from 125° to 257° C, indicate salinities of ~30+/-3 wt.% NaCl equivalent. Most two-phase inclusions homogenize to liquid between 191° C and

  16. Fluid-inclusion data on samples from Creede, Colorado, in relation to mineral paragenesis

    USGS Publications Warehouse

    Woods, T.L.; Roedder, Edwin; Bethke, P.M.

    1982-01-01

    Published and unpublished data on 2575 fluid inclusions in ore and gangue minerals from the Creede, Colorado, Ag-Pb-Zn-Cu vein deposit collected in our laboratories from 1959 to 1981 have shown that the average salinity (wt. % NaCl equivalent, hereinafter termed wt.% eq.) and homogenization temperature (Th), and the ranges of these two parameters for fluid inclusions in sphalerite, quartz, fluorite, and rhodochrosite, respectively, are 8.1 (4.6 - 13.4), 239?C (195-274?C); 6.1 (1.1-10.0), 260?C (190->400?C); 10.7 (6.1-11.1), 217?C (213-229?C) and 260?C (247-268?C) (bimodal distribution of Th); and 9.9 (9.3 - 10.6), 214?C (185-249?C). Inclusions have been measured in minerals from four of the five stages of mineralization previously recognized at Creede. The few inclusions of fluids depositing rhodochrosite (A-stage, earliest in the paragenesis) yield Th and salinity values more similar to those of the low-temperature (average Th 217?C) fluids forming some of the much later fluorite (C-stage) than to any of the other fluids. Th measurements on A-stage quartz range from 192?C to 263?C and average 237?C. The early, fine-grained, B-stage sphalerites yielded Th of 214 to 241?C and salinities of 6.1 to 10.2 wt. % eq. D-stage sphalerite (late in the paragenesis) has been studied in detail (growth-zone by growth-zone) for several localities along the OH vein and reveals a generally positive correlation among Th, salinity and iron content of the host sphalerite. The deposition of D-stage sphalerite was characterized by repeated cycling through different regions of salinity/Th space, as Th and salinity generally decreased with time. Seventeen salinity-Th measurements were made on D-stage sphalerite from one locality on the Bulldog Mountain vein system, which, like the OH vein, is one of four major ore-producing vein systems at Creede. These data suggest a lower Th for a given salinity fluid from sphalerite on the Bulldog Mountain vein than on the OH vein. The very high values

  17. Geological, fluid inclusion and stable isotope studies of Mo mineralization, Galway Granite, Ireland

    NASA Astrophysics Data System (ADS)

    Gallagher, V.; Feely, M.; Högelsberger, H.; Jenkin, G. R. T.; Fallick, A. E.

    1992-09-01

    Mo mineralization within the Galway Granite at Mace Head and Murvey, Connemara, western Ireland, has many features of classic porphyry Mo deposits including a chemically evolved I-type granite host, associated K- and Si-rich alteration, quartz vein(Mace Head) and granite-hosted (Murvey) molybdenite, chalcopyrite, pyrite and magnetite mineralization and a gangue assemblage which includes quartz, muscovite and K-feldspar. Most fluid inclusions in quartz veins homogenize in the range 100 350°C and have a salinity of 1 13 eq. wt.% NaCl. They display Th-salinity covariation consistent with a hypothesis of dilution of magmatic water by influx of meteoric water. CO2-bearing inclusions in an intensely mineralized vein at Mace Head provide an estimated minimum trapping temperature and pressure for the mineralizing fluid of 355°C and 1.2 kb and are interpreted to represent a H2O-CO2 fluid, weakly enriched in Mo, produced in a magma chamber by decompression-activated unmixing from a dense Mo-bearing NaCl-H2O-CO2 fluid. δ34S values of most sulphides range from c. 0‰ at Murvey to 3 4‰ at Mace Head and are consistent with a magmatic origin. Most quartz vein samples have δ18O of 9 10.3‰ and were precipitated from a hydrothermal fluid with δ18O of 4.6 6.7‰. Some have δ18O of 6 7‰ and reflect introduction of meteoric water along vein margins. Quartz-muscovite oxygen isotope geothermometry combined with fluid inclusion data indicate precipitation of mineralized veins in the temperature range 360 450°C and between 1 and 2 kb. Whole rock granite samples display a clear δ18O-δD trend towards the composition of Connemara meteoric waters. The mineralization is interpreted as having been produced by highlyfractionated granite magma; meteoric water interaction postdates the main mineralizing event. The differences between the Mace Head and Murvey mineralizations reflect trapping of migrating mineralizing fluid in structural traps at Mace Head and precipitation of

  18. Limit for the Survivability from Potassium Decay of Bacterial Spores in Halite Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Kminek, G.; Bada, J. L.

    2001-12-01

    Vreeland et al.1 recently claimed to have isolated and cultured a viable spore forming halotolerant bacterium from a 250 million year old brine inclusion present in a salt crystal from the Salado formation. An earlier report suggested that viable bacterial spores could be revived from samples obtained from insects entombed in 25-40 million year old Dominican amber2. On the bases of these reports, Parkes3 raised the question of whether bacterial spores under some conditions might be effectively immortal. Sporulation, induced by an adverse change in the environmental conditions, is able to stabilize the DNA primarily against hydrolytic depurination for extended periods of time4. However, the organism is still exposed to ionizing radiation from the environment. Dormant spores have a reduced sensitivity to ionizing radiation per se, but unlike active organisms are unable to repair DNA damage encountered during long-term exposure to ionizing radiation. The accumulated damage may overwhelm any repair mechanism that starts in the early stage of spore germination5. The main radionuclide in a halite fluid inclusion is 40K, which accounts for 0.0117% of natural potassium. 40K decays via beta decay to 40Ca and via electron capture to 40Ar, releasing a primary gamma-ray. About 83.3 % of the beta's emitted are in the energy range of 0.3-1.3 MeV. We assume 7 g/l for an average concentration of natural potassium in a halite fluid inclusion, which means that the amount of 40K in a 10 μ l fluid inclusion is 8.19 ng. We have chosen a 10 μ l because this volume is typical of that used to obtain chemical data and in the attempts to extract bacteria. Less than a percent of the gamma decay energy is absorbed in a fluid inclusion of 10 μ l. Thus, we will not take the gamma decay energy into account for the further discussion. Almost all the beta energy is absorbed in the fluid inclusion. The total decay energy absorbed in a time period of 250 million years is about 87 kGy. The most

  19. A method for temperature estimation in high-temperature geothermal reservoirs by using synthetic fluid inclusions

    NASA Astrophysics Data System (ADS)

    Ruggieri, Giovanni; Orlando, Andrea; Chiarantini, Laura; Borrini, Daniele; Weisenberger, Tobias B.

    2016-04-01

    Super-hot geothermal systems in magmatic areas are a possible target for the future geothermal exploration either for the direct exploitation of fluids or as a potential reservoirs of Enhanced Geothermal Systems. Reservoir temperature measurements are crucial for the assessment of the geothermal resources, however temperature determination in the high-temperature (>380°C) zone of super-hot geothermal systems is difficult or impossible by using either mechanical temperature and pressure gauges (Kuster device) and electronic devices. In the framework of Integrated Methods for Advanced Geothermal Exploration (IMAGE) project, we developed a method to measure high reservoir temperature by the production of synthetic fluid inclusions within an apparatus that will be placed in the high-temperature zone of geothermal wells. First experiments were carried out by placing a gold capsule containing pre-fractured quartz and an aqueous solution (10 wt.% NaCl + 0.4 wt.% NaOH) in an externally heated pressure vessel. Experimental pressure-temperature conditions (i.e. 80-300 bars and 280-400°C) were set close to the liquid/vapour curve of pure H2O or along the H2O critical isochore. The experiments showed that synthetic fluid inclusions form within a relatively short time (even in 48 hours) and that temperatures calculated from homogenization temperatures and isochores of newly formed inclusions are close to experimental temperatures. A second set of laboratory experiments were carried out by using a stainless steel micro-rector in which a gold capsule (containing the pre-fractured quartz and the aqueous solution) was inserted together with an amount of distilled water corresponding to the critical density of water. These experiments were conducted by leaving the new micro-reactor within a furnace at 400°C and were aimed to reproduce the temperature existing in super-hot geothermal wells. Synthetic fluid inclusions formed during the experiments had trapping temperature

  20. Origin of fluid inclusion water in bedded salt deposits, Palo Duro Basin, Texas

    SciTech Connect

    Knauth, L.P.; Beeunas, M.A.

    1985-07-01

    Salt horizons in the Palo Duro Basin being considered for repository sites contain fluid inclusions which may represent connate water retained in the salt from the time of original salt deposition and/or external waters which have somehow penetrated the salt. The exact origin of this water is important to the question of whether or not internal portions of the salt deposit have been, and are likely to be, isolated from the hydrosphere for long periods of time. The /sup 18/O//sup 16/O and D/H ratios measured for water extracted from solid salt samples show the inclusions to be dissimilar in isotopic composition to meteoric waters and to formation waters above and below the salt. The fluid inclusions cannot be purely external waters which have migrated into the salt. The isotope data are readily explained in terms of mixed meteoric-marine connate evaporite waters which date back to the time of deposition and early diagenesis of the salt (>250 million years). Any later penetration of the salt by meteoric waters has been insufficient to flush out the connate brines.

  1. Cretaceous mantle of the Congo craton: Evidence from mineral and fluid inclusions in Kasai alluvial diamonds

    NASA Astrophysics Data System (ADS)

    Kosman, Charles W.; Kopylova, Maya G.; Stern, Richard A.; Hagadorn, James W.; Hurlbut, James F.

    2016-11-01

    Alluvial diamonds from the Kasai River, Democratic Republic of the Congo (DRC) are sourced from Cretaceous kimberlites of the Lucapa graben in Angola. Analysis of 40 inclusion-bearing diamonds provides new insights into the characteristics and evolution of ancient lithospheric mantle of the Congo craton. Silicate inclusions permitted us to classify diamonds as peridotitic, containing Fo91-95 and En92-94, (23 diamonds, 70% of the suite), and eclogitic, containing Cr-poor pyrope and omphacite with 11-27% jadeite (6 diamonds, 18% of the suite). Fluid inclusion compositions of fibrous diamonds are moderately to highly silicic, matching compositions of diamond-forming fluids from other DRC diamonds. Regional homogeneity of Congo fibrous diamond fluid inclusion compositions suggests spatially extensive homogenization of Cretaceous diamond forming fluids within the Congo lithospheric mantle. In situ cathodoluminescence, secondary ion mass spectrometry and Fourier transform infrared spectroscopy reveal large heterogeneities in N, N aggregation into B-centers (NB), and δ13C, indicating that diamonds grew episodically from fluids of distinct sources. Peridotitic diamonds contain up to 2962 ppm N, show 0-88% NB, and have δ13C isotopic compositions from - 12.5‰ to - 1.9‰ with a mode near mantle-like values. Eclogitic diamonds contain 14-1432 ppm N, NB spanning 29%-68%, and wider and lighter δ13C isotopic compositions of - 17.8‰ to - 3.4‰. Fibrous diamonds on average contain more N (up to 2976 ppm) and are restricted in δ13C from - 4.1‰ to - 9.4‰. Clinopyroxene-garnet thermobarometry suggests diamond formation at 1350-1375 °C at 5.8 to 6.3 GPa, whereas N aggregation thermometry yields diamond residence temperatures between 1000 and 1280 °C, if the assumed mantle residence time is 0.9-3.3 Ga. Integrated geothermobaromtery indicates heat fluxes of 41-44 mW/m2 during diamond formation and a lithosphere-asthenosphere boundary (LAB) at 190-210 km. The hotter

  2. Trace-element compositions and Br/Cl ratios of fluid inclusions in the Tsushima granite, Japan: Significance for formation of granite-derived fluids

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masanori; Sasa, Kimikazu; Shin, Ki-Choel; Ishii, Satoshi

    2016-06-01

    Fluid inclusions in quartz samples from a miarolitic cavity, two quartz veins, and a hydrothermal ore vein in the Tsushima granite, Japan, were analyzed by particle-induced X-ray emission to examine the chemistry and process of formation of hydrothermal fluids in an island-arc granite. Most of the inclusions were polyphase or vapor, and there were smaller numbers of two-phase aqueous inclusions. The inclusions contained Cl, K, Ca, Ti, Mn, Fe, Cu, Zn, Ge, Br, Rb, Sr, Ba, and Pb. For each inclusion, there was a strong positive correlation between Cl content and contents of other elements identified. Concentration ranges for most elements (other than Rb and Ge) in polyphase inclusions from the miarolitic cavity were comparable to those from cavities in alkaline granites; those from the ore vein were comparable to large-scale continental hydrothermal ore deposits. The lower Rb and higher Ge contents in the polyphase inclusions of the Tsushima granite may be characteristic of hydrothermal fluids from calc-alkaline granites in an island-arc setting. Br/Cl ratios (by weight) for the vapor and two-phase inclusions were 0.0013-0.0030 and differed among the three geological settings. Br/Cl ratios of polyphase inclusions increased with increasing Cl content in single-crystal and polycrystalline quartz, and high values of more than 0.0100 were found. The high Br/Cl ratios and the differences among the geological settings sampled may be due to pressure dependences of partitioning of Cl and Br between fluid and magma during fluid segregation and between liquid and vapor during boiling. Using a simple model based on these dependences, we calculated Br/Cl ratios greater than 0.01 in brine generated at pressures <0.89 kbar. Differences in Br/Cl ratios in polyphase and vapor inclusions from each geological setting were attributed to mixing between two end-member fluids: a high Br/Cl fluid generated at low pressure and a low Br/Cl fluid generated at high pressure. Br/Cl ratios of

  3. Thermodynamic calculation of solute concentrations in fluid inclusions based on bulk element ratios and microthermometric data.

    NASA Astrophysics Data System (ADS)

    Mironenko, Mikhail; Diamond, Larryn

    2010-05-01

    Recent improvements in chemical analysis of fluid inclusions (using techniques such as LA-ICP-MS, PIXE, SXRF, LIBS and SIMS for individual inclusions, and crush-leach analysis for bulk samples), now permit ratios of certain solute elements to be determined with high accuracy. In order to apply these results to geochemical problems, the element ratios must be converted to concentrations in the inclusions. Approaches to this conversion problem have remained very approximate so far, and have not kept pace with the improved quality of the raw analytical data. We have developed a thermodynamic procedure to calculate the absolute solute concentrations in multicomponent electrolyte solutions from input element ratios and microthermometric determinations of final-melting temperatures of daughter crystals such as ice and various salts. Equilibria are calculated using the algorithm of Mironenko and Polyakov (2009), which employs the Gibbs free energy minimization method and applies Pitzer's model to calculate the water activity and solute activity coefficients. The thermodynamic database of Marion (2008) is used for the system Na-K-Ca-Mg-FeCl-SO4-CO3-H-H2O over the temperature range -60 °C to 25 °C, and the database of Greenberg and Møller (1998) is used for the system Na-K-Ca-Cl-SO4-H2O for phase transitions from 25 °C to 250 °C. The model has been verified with experimentally studied systems. In addition to providing the solute concentrations, the model also predicts other melting transitions not used as input for the calculations (eutectic, peritectic, etc.), thereby allowing the results for specific fluid inclusions to be checked for consistency.

  4. The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions - Implications for chemical and physical processes in the solar nebula

    NASA Technical Reports Server (NTRS)

    Kornacki, Alan S.; Fegley, Bruce, Jr.

    1986-01-01

    The relative volatilities of lithophile refractory trace elements (LRTE) were determined using calculated 50-percent condensation temperatures. Then, the refractory trace-element abundances were measured in about 100 Allende inclusions. The abundance patterns found in Allende Ca,Al-rich inclusions (CAIs) and ultrarefractory inclusions were used to empirically modify the calculated LRTE volatility sequence. In addition, the importance of crystal-chemical effects, diffusion constraints, and grain transport for the origin of the trace-element chemistry of Allende CAIs (which have important implications for chemical and physical processes in the solar nebula) is discussed.

  5. Biogenic gas(?) in fluid inclusions from sandstones in contact with oil-mature coals

    SciTech Connect

    Ohm, S.E.; Karlsen, D.A.

    2007-05-15

    This study was initiated to investigate if coals on the Norwegian offshore continental shelf (NOCS) expel petroleum and in which form. The results revealed that equally isotopically light methane (C{sub 1}) was released from fluid inclusions in sandstones and from adjacent coal (-60.9 to -72.7 parts per thousand). The analyzed samples were collected from cored northern North Sea and mid-Norwegian shelf wells in the depth interval 3924-5095 m. The vitrinite reflectance (R{sub o}) values of the coals range between 0.53 and 1.12%, with most values between 0.8 and 1.0%. The light C{sub 1} isotope values released both from the coals and from the fluid inclusions in the adjacent sandstones suggest that the origin of the gas is the coal, and that no isotope fractionation occurs during release of the gas in nature. Traditional isotope interpretation schemes suggest the C{sub 1} to have a biogenic origin, whereas recently published data also show the possibility for an early mature thermogenic origin. The isotope values represent averages of the total gas released from all the individual disintegrated fluid inclusions in each sample. These did not form simultaneously, but during multiple events potentially covering several million years. We speculate that significant volumes of isotopically light C{sub 1} have been expelled from the analyzed coals over time. The expelled isotopically light C{sub 1}, may mix with mature thermogenically produced gas and skew the overall methane isotope values of gas accumulations toward lighter values, thus explaining the isotopically lighter-than-expected gas accumulations on the NOCS (e.g., Troll, Frigg, and Draugen fields).

  6. Interpretation of fluid inclusions in quartz deformed by weak ductile shearing: Reconstruction of differential stress magnitudes and pre-deformation fluid properties

    NASA Astrophysics Data System (ADS)

    Diamond, Larryn W.; Tarantola, Alexandre

    2015-05-01

    A well developed theoretical framework is available in which paleofluid properties, such as chemical composition and density, can be reconstructed from fluid inclusions in minerals that have undergone no ductile deformation. The present study extends this framework to encompass fluid inclusions hosted by quartz that has undergone weak ductile deformation following fluid entrapment. Recent experiments have shown that such deformation causes inclusions to become dismembered into clusters of irregularly shaped relict inclusions surrounded by planar arrays of tiny, new-formed (neonate) inclusions. Comparison of the experimental samples with a naturally sheared quartz vein from Grimsel Pass, Aar Massif, Central Alps, Switzerland, reveals striking similarities. This strong concordance justifies applying the experimentally derived rules of fluid inclusion behaviour to nature. Thus, planar arrays of dismembered inclusions defining cleavage planes in quartz may be taken as diagnostic of small amounts of intracrystalline strain. Deformed inclusions preserve their pre-deformation concentration ratios of gases to electrolytes, but their H2O contents typically have changed. Morphologically intact inclusions, in contrast, preserve the pre-deformation composition and density of their originally trapped fluid. The orientation of the maximum principal compressive stress (σ1) at the time of shear deformation can be derived from the pole to the cleavage plane within which the dismembered inclusions are aligned. Finally, the density of neonate inclusions is commensurate with the pressure value of σ1 at the temperature and time of deformation. This last rule offers a means to estimate magnitudes of shear stresses from fluid inclusion studies. Application of this new paleopiezometer approach to the Grimsel vein yields a differential stress (σ1-σ3) of ˜ 300 MPa at 390 ± 30 °C during late Miocene NNW-SSE orogenic shortening and regional uplift of the Aar Massif. This differential

  7. Fluid and melt inclusions in the Mesozoic Fangcheng basalt from North China Craton: implications for magma evolution and fluid/melt-peridotite reaction

    NASA Astrophysics Data System (ADS)

    Sun, He; Xiao, Yilin; Gao, Yongjun; Lai, Jianqing; Hou, Zhenhui; Wang, Yangyang

    2013-05-01

    Melt inclusions and fluid inclusions in the Fangcheng basalt were investigated to understand the magma evolution and fluid/melt-peridotite interaction. Primary silicate melt inclusions were trapped in clinopyroxene and orthopyroxene phenocrysts in the Fangcheng basalt. Three types of melt inclusions (silicate, carbonate, and sulfide) coexisting with fluid inclusions occur in clinopyroxene xenocrysts and clinopyroxene in clinopyroxenite xenoliths. In situ laser-ablation ICP-MS analyses of major and trace element compositions on individual melt inclusions suggest that the silicate melt inclusions in clinopyroxene and orthopyroxene phenocrysts were trapped from the same basaltic magma. The decoupling of major and trace elements in the melt inclusions indicates that the magma evolution was controlled by melt crystallization and contamination from entrapped ultramafic xenoliths. Trace element patterns of melt inclusions are similar to those of the average crust of North China Craton and Yangtze Craton, suggesting a considerable crustal contribution to the magma source. Calculated parental melt of the Fangcheng basalt has features of low MgO (5.96 wt%), high Al2O3 (16.81 wt%), Sr (1,670 ppm), Y (>35 ppm), and high Sr/Y (>40), implying that subducted crustal material was involved in the genesis of the Fangcheng basalt. The coexisting fluid and melt inclusions in clinopyroxene xenocrysts and in clinopyroxene of xenoliths record a rare melt-peridotite reaction, that is olivine + carbonatitic melt1 (rich in Ca) = clinopyroxene + melt2 ± CO2. The produced melt2 is enriched in LREE and CO2 and may fertilize the mantle significantly, which we consider to be the cause for the rapid replacement of lithospheric mantle during the Mesozoic in the region.

  8. Methanethiol abundance in high-temperature hydrothermal fluids from the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Reeves, E.; Seewald, J. S.; Saccocia, P.; van der Meer, M.

    2008-12-01

    The formation of aqueous organic sulfur compounds in hydrothermal systems remains poorly constrained, despite their potential significance in 'prebiotic' chemistry and the origin of life. The simplest - methanethiol (CH3SH) - has been implicated as a critical abiogenic precursor to the establishment of primitive microbial metabolism in early Earth hydrothermal settings. It also represents a readily-utilized substrate for microbial sulfate-reducing communities and a potential intermediate species in abiotic CH4 formation. To assess the abundance of CH3SH and factors regulating its stability under hydrothermal conditions we measured CH3SH concentrations in a suite of hydrothermal fluids collected from the Rainbow, Lucky Strike, TAG and Lost City hydrothermal sites located on the Mid-Atlantic Ridge. Fluids were collected using isobaric gas-tight samplers and analyzed for CH3SH by shipboard purge-and-trap gas chromatography. Measured concentrations at Rainbow (1.2 -- 223nM), Lucky Strike (1.1 -- 26nM), TAG (8.5 -- 11nM) and Lost City (1.6 -- 3.0nM) are all substantially lower than predicted for thermodynamic equilibrium with CO2, H2 and H2S at measured vent conditions. The highest concentrations (91 -- 223nM), however, were observed at Rainbow in intermediate temperature (128 -- 175°C) H2-rich fluids that may have undergone conductive cooling. Increased concentrations with decreasing temperature is consistent with the thermodynamic drive for the formation from CO2, suggesting a possible abiotic origin for CH3SH in some fluids. Substantially lower concentrations in the low temperature fluids at Lost City are consistent with the extremely low levels of CO2 and H2S in these fluids. Other possible sources of CH3SH to vent fluids must be considered, however, and include thermal alteration of biomass present in low-temperature environments and microbial consortia that produce CH3SH as a byproduct of anaerobic methane oxidation. Current models for the emergence of primordial

  9. Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion

    NASA Astrophysics Data System (ADS)

    Palot, M.; Jacobsen, S. D.; Townsend, J. P.; Nestola, F.; Marquardt, K.; Miyajima, N.; Harris, J. W.; Stachel, T.; McCammon, C. A.; Pearson, D. G.

    2016-11-01

    In this study, we report the first direct evidence for water-bearing fluids in the uppermost lower mantle from natural ferropericlase crystal contained within a diamond from São Luíz, Brazil. The ferropericlase exhibits exsolution of magnesioferrite, which places the origin of this assemblage in the uppermost part of the lower mantle. The presence of brucite-Mg(OH)2 precipitates in the ferropericlase crystal reflects the later-stage quenching of H2O-bearing fluid likely in the transition zone, which has been trapped during the inclusion process in the lower mantle. Dehydration melting may be one of the key processes involved in transporting water across the boundary between the upper and lower mantle.

  10. Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands

    NASA Astrophysics Data System (ADS)

    Wang, Qiangqiang; Zhang, Lifeng; Sridhar, Seetharaman

    2016-08-01

    During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment

  11. CO2 fluid inclusion barometry in mantle xenoliths from central Mexico: A detailed record of magma ascent

    NASA Astrophysics Data System (ADS)

    Levresse, Gilles; Cervantes-de la Cruz, Karina Elizabeth; Aranda-Gómez, José Jorge; Dávalos-Elizondo, María Guadalupe; Jiménez-Sandoval, Sergio; Rodríguez-Melgarejo, Francisco; Alba-Aldave, Leticia Araceli

    2016-01-01

    Chemical equilibrium and CO2 fluid inclusion barometry are complementary techniques, as they register different geological processes. Chemical equilibrium barometry records the pressure at the site where the xenoliths were incorporated into the transporting magma, but it is not a sensible technique to document magma ascent. CO2 fluid inclusion pore pressure in xenoliths does not register the P-T conditions in the source area, but it allows illustrating a fairly detailed record of different geological processes that occurred during the magma transport to the surface and as the eruption proceeded. Mantle xenoliths from Ventura-Espíritu Santo and Santo Domingo volcanic fields contain dominant CO2 pseudosecondary and secondary fluid inclusions trapped in cpx and ol. Cpx chemical equilibrium pressures indicate a maximum pressure of 10 kbar for the source area. Pore pressures obtained in CO2 pseudosecondary and secondary fluid inclusions show a distribution with three maximum peaks at ca. 8, 5-7, and less than 3 kbar. A comparison with geophysical models for the area where the xenoliths-bearing volcanoes are located shows that the three peaks in the pore pressures correspond to three physico-chemical transitions within the continental crust. Likewise, the pore pressure suggests that rapid magma ascent is momentarily interrupted by these discontinuities, a fact that allows the formation of new fluid inclusions and the re-equilibration of some of the inclusions already present in the primary minerals of the xenoliths.

  12. The campi flegrei (Italy) geothermal system: A fluid inclusion study of the mofete and San Vito fields

    USGS Publications Warehouse

    de, Vivo B.; Belkin, H.E.; Barbieri, M.; Chelini, W.; Lattanzi, P.; Lima, A.; Tolomeo, L.

    1989-01-01

    A fluid inclusion study of core from the Mofete 1, Mofete 2, Mofete 5, San Vito 1, and San Vito 3 geothermal wells (Campi Flegrei, Campania, Italy) indicates that the hydrothermal minerals were precipitated from aqueous fluids (??CO2) that were moderately saline (3-4 wt.% NaCl equiv.) to hypersaline (> 26 wt.% NaCl equiv.) and at least in part, boiling. Three types of primary fluid inclusions were found in authigenic K-feldspar, quartz, calcite, and epidote: (A) two-phase [liquid (L) + vapor (V)], liquid-rich inclusions with a range of salinity; (B) two-phase (L + V), vaporrich inclusions with low salinity; and (C) three-phase [L + V + crystals (NaCL)], liquid-rich inclusions with hypersalinity. Results of microthermometric and crushing studies are reported for twenty drill core samples taken from the lower portions of the five vertical wells. Data presented for selected core samples reveal a general decrease in porosity and increase in bulk density with increasing depth and temperature. Hydrothermal minerals commonly fill fractures and pore-spaces and define a zonation pattern, similar in all five wells studied, in response to increasing depth (pressure) and temperature. A greenschist facies assemblage, defined by albite + actinolite, gives way to an amphibolite facies, defined by plagioclase (andesine) + hornblende, in the San Vito 1 well at about 380??C. The fluid inclusion salinity values mimic the saline and hypersaline fluids found by drilling. Fluid inclusion V/L homogenization temperatures increase with depth and generally correspond to the extrapolated down-hole temperatures. However, fluid inclusion data for Mofete 5 and mineral assemblage data for San Vito 3, indicate fossil, higher-temperature regimes. A limited 87Sr/86Sr study of leachate (carbonate) and the leached cores shows that for most samples (except San Vito 3) the carbonate deposition has been from slightly 87Sr-enriched fluids and that Sr isotopic exchange has been incomplete. However, San

  13. (Sulfide-oxide-silicate phase equilibria and associated fluid inclusion properties in the Salton Sea geothermal system, California)

    SciTech Connect

    McKibben, M.A.

    1988-06-01

    Our studies involved petrographic, fluid inclusion, geochemical and stable isotopic studies of drillcores and fluids from the Salton Sea geothermal system. Our initial studies revealed the presence of previously-unrecognized evaporitic anhydrite at depth throughout the geothermal system. The high salinity of the Salton Sea geothermal brines previously had been attributed to low-temperature dissolution of surficial evaporitic deposits by meteoric waters. Our microthermometric studies of halite--containing fluid inclusions in the meta-evaporites indicated that the high salinity of the geothermal brines is derived in part from the hydrothermal metamorphism of relatively deeply-buried salt and evaporites. In addition, our research concentrated on mineralized fractures in drillcores.

  14. Relationship between recent cave temperatures and noble gas temperatures derived from fluid inclusions of modern soda straw stalactites

    NASA Astrophysics Data System (ADS)

    Palcsu, Laszlo; Papp, Laszlo; Major, Zoltan; Molnar, Mihaly

    2010-05-01

    Recently, strong effort is devoted to establish a new method to derive palaeotemperatures from noble gas (Ne, Ar, Kr, Xe) concentrations dissolved in fluid inclusions of speleothems [1-2]. It has been already shown that the water content of the speleothems can be determined via the water vapour pressure after the water has been released from the carbonate samples and collected in a cold finger and then heated up to room temperature. Additionally, the noble gas contents can be precisely measured with noble gas mass spectrometers. Based on these noble gas concentration data sets, a so-called noble gas temperature (NGT) can be calculated meaning a temperature at which the noble gases have been dissolved in water. To use these NGT's as a palaeoclimate proxy, one of the main questions is how these noble gas temperatures reflect the prevailing cave temperature in which the carbonate has grown. We studied noble gas significances in recent soda straw stalactites from more than ten Central European caves covering a temperature range of 1 to 14 °C. Kluge et al. (2008) has shown the soda straw stalactites might contain less excess air, hence they are more suitable samples to derive NGT's, because noble gas abundances from large air inclusions can mask the temperature information. The 14C ages of these soda straw dripstones were obtained to be recent or at least Holocene ages. Thus one can assume that the cave temperatures during carbonate formation were as same as at present. We measured the water and noble gas contents of numerous carbonate samples from soda straw stalactites and calculated noble gas temperatures by a precision of 1 °C or better. Comparing these temperatures with cave temperatures we obtained that they agree well within the uncertainty of the noble gas temperature determination. Therefore, we can conclude if diffusion of noble gas isotopes does not play a significant role in the carbonate lattice this new tool helps the palaeoclimate community to gain

  15. A XANES study of Cu speciation in high-temperature brines using synthetic fluid inclusions

    SciTech Connect

    Berry, Andrew J.; Hack, Alistair C.; Mavrogenes, John A.; Newville, Matthew; Sutton, Stephen R.

    2010-12-03

    Cu K-edge X-ray absorption near edge structure (XANES) spectra were recorded from individual synthetic brine fluid inclusions as a function of temperature up to 500 C. The inclusions serve as sample cells for high-temperature spectroscopic studies of aqueous Cu-Cl speciation. Cu{sup +} and Cu{sup 2+} can both be identified from characteristic pre-edge features. Mixed oxidation states can be deconvoluted using linear combinations of Cu{sup +} and Cu{sup 2+} spectra. This work illustrates how complex Cu XANES spectra can be interpreted successfully. Cu{sup 2+} is the stable oxidation state in solution at room temperature and Cu{sup +} at high temperatures. The change in oxidation state with temperature was completely reversible. Cu{sup +} was found to occur exclusively as the linear species [CuCl{sub 2}]{sup -} in solutions containing KCl with Cu:Cl ratios up to 1:6. In the absence of K{sup +}, there is evidence for higher order coordination of Cu{sup +}, in particular the tetrahedral complex [CuCl{sub 4}]{sup 3-}. The importance of such complexes in natural ore-forming fluids is yet to be determined, but may explain the vapor-phase partitioning of Cu as a Cl complex from a Cl-rich brine.

  16. Acidophilic halophilic microorganisms in fluid inclusions in halite from Lake Magic, Western Australia.

    PubMed

    Conner, Amber J; Benison, Kathleen C

    2013-09-01

    Lake Magic is one of the most extreme of hundreds of ephemeral acid-saline lakes in southern Western Australia. It has pH as low as 1.7, salinity as high as 32% total dissolved solids, temperatures ranging from 0°C to 50°C, and an unusually complex aqueous composition. Optical petrography, UV-vis petrography, and laser Raman spectrometry were used to detect microorganisms and organic compounds within primary fluid inclusions in modern bedded halite from Lake Magic. Rare prokaryotes appear as 1-3 μm, bright cocci that fluoresce green with UV-vis illumination. Dimpled, 5-7 μm yellow spherules that fluoresce blue with UV-vis illumination are interpreted as Dunaliella algae. Yellow-orange beta-carotene crystals, globules, and coatings are characterized by orange-red fluorescence and three distinct Raman peaks. Because acid saline lakes are good Mars analogues, the documentation of prokaryotes, eukaryotes, and organic compounds preserved in the halite here has implications for the search for life on Mars. Missions to Mars should incorporate such in situ optical and chemical examination of martian evaporites for possible microorganisms and/or organic compounds in fluid inclusions.

  17. Sultan Mountain mine, western San Juan Mountains, Colorado: A fluid inclusion and stable isotope study

    SciTech Connect

    Musgrave, J.A. ); Thompson, T.B. . Dept. of Earth Resources)

    1991-01-01

    The Sultan Mountain (SM) mine, in the western San Juan Mountains of Colorado, has produced Cu-Pb-Zn-Ag-Au ores from the mid-1870s until the 1950s. Production was from veins filling faults and fissures along the southern margin of the Silverton caldera. The principal host rock to the veins is a quartz monzonite stock. Five periods of hypogene mineralization have been recognized: (1) early quartz-pyrite; (2) quartz-pyrite; (3) rhodochrosite-siderite; (4) main ore-stage chalcopyrite, tetrahedrite, galena, sphalerite, and gold; and (5) quartz-fluorite. Evidence of open-space filling (banding, crustification, vugs) is widespread. Heating studies of fluid inclusions in quartz, rhodochrosite-siderite, sphalerite, and fluorite indicate temperatures were approximately 200 C for stages 1 to 4 and 186 C for stage 5. Stages 1, 2, and 4 show evidence of boiling. Crushing studies indicate that high-pressure gas, probably CO[sub 2], is present in the fluid inclusions. Freezing point depression estimates of salinity, corrected for CO[sub 2], indicate a range of 13.6 to 1.3 wt percent NaCl equiv. These data together with P-V-T data for saline solutions and P[sub CO[sub 2

  18. Integrated mineralogical and fluid inclusion study of the Coso geothermal systems, California

    SciTech Connect

    Lutz, Susan J.; Moore, Joseph N.; Copp, John F.

    1996-01-24

    Coso is one of several high-temperature geothermal systems on the margins of the Basin and Range province that is associated with recent volcanic activity. This system, which is developed entirely in fractured granitic and metamorphic rocks, consists of a well-defined thermal plume that originates in the southern part of the field and then flows upward and laterally to the north. Fluid inclusion homogenization temperatures and salinities demonstrate that cool, low salinity ground waters were present when the thermal plume was emplaced. Dilution of the thermal waters occurred above and below the plume producing strong gradients in their compositions. In response to heating and mixing, clays and carbonate minerals precipitated, sealing the fractures along the margins of the reservoir and strongly influencing its geometry. The alteration mineralogy varies systematically with depth and temperature. Based on the clay mineralogy, three zones can be recognized: the smectite zone, the illite-smectite zone, and the illite zone. The smectite zone thickens from the north to south and is characterized by smectite, kaolin, stilbite and a variety of carbonate minerals. The illite-smectite zone contains mixed-layer clays and also thickens to the south. The deepest zone (the illite zone) contains illite, chlorite, epidote, and wairakite. Quartz and calcite veins occur in all three zones. Comparison of mineral and fluid inclusion based temperatures demonstrates that cooling has occurred along the margins of the thermal system but that the interior of the system is still undergoing heating.

  19. Fluid inclusions from the Jinchang Cu-Au deposit, Heilongjiang Province, NE China: Genetic style and magmatic-hydrothermal evolution

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-Dong; Zhang, Hua-Feng; Santosh, M.; Li, Sheng-Rong

    2014-03-01

    The Jinchang Cu-Au deposit is located in the easternmost part of the Central Asian Orogenic Belt (CAOB). The mineralization here is associated with Cretaceous porphyritic intrusions of ca. 120-110 Ma and is mainly hosted within intensely altered Mesozoic granites, breccia pipes, ringed and radial faults. The gold ores are disseminated in the wall rock, and also occur as massive auriferous quartz-sulfide veins in fractures and breccias. Fluid inclusion data from breccias, chalcopyrite-quartz vein, and pyrite-quartz vein display homogenization temperatures in the range of 200 to >550 °C and the fluids show variable salinity in the range of 0-58 wt.% (NaCl equiv.). The halite absent fluid inclusions shows a slight increase in salinity with a sharp decrease in temperature. We interpret that the high-salinity brine and low salinity vapor- or aqueous-rich fluids from ores represent fluid unmixing from magma. The fluid inclusion data from Jinchang demonstrate that the main mineralization took place at temperatures from 480 °C to 200 °C, and evolved from high to low salinities. Geology and fluid inclusion data suggest that the Jinchang deposit is an oxidized intrusion-related Cu-Au deposit. The voluminous hydrothermal magnetite formed during high temperature potassic alteration of wall rocks in this ore deposit can be used as a potential prospecting tool.

  20. Resolving mantle and crustal contributions to ancient hydrothermal fluids: HeAr isotopes in fluid inclusions from Dae Hwa WMo mineralisation, South Korea

    NASA Astrophysics Data System (ADS)

    Stuart, F. M.; Burnard, P. G.; Taylor, R. P.; Turner, G.

    1995-11-01

    Helium and argon isotopes from fluid inclusions in individual colour zones (B, C, D, and E) of a large scheelite crystal from the 88 Ma Dae Hwa WMo deposit, South Korea, trace the source and history of the ore fluids. A gradual decrease of the fluid 3He/4He, 3He/36Ar, and 40Ar/36Ar from the core to the edge of the scheelite reflects the progressive dilution of a magmatic fluid by meteoric water and is consistent with the previously observed decrease of δ 18O H 2O and fluid inclusion homogenisation temperatures ( Th) (Shelton et al., 1987). The covariation of fluid inclusion HeAr isotope systematics with δ 18O and Th defines a magmatic component with 3He/4He = 1-2 × 10 -6, 3He/36Ar > 0.01 , and 40Ar/36Ar > 1000 . Anomalously high helium and argon isotope ratios in zone D fluids represents undiluted magmatic noble gases. This may reflect local variation in the magmatic gas flux or gas loss due to boiling of the hydrothermal fluids prior to mixing with magmatic gas. Helium and argon isotope systematics constrain mantle and crustal components in the hydrothermal fluids. 40Ar/3He (4.5 × 10 4) are close to the mid-ocean ridge basalt value, implying that 40Ar is mantle in origin. Radiogenic isotope ratios of the mantle endmember ( 40Ar/4He = 0.69 ± 0.06 ) are similar to contemporary geothermal fluids. The coincidence of mantle-derived He and Ar in the fluids is strong evidence that mantle melting during Late Cretaceous subduction triggered the crystal melting responsible for granite formation. 40Ar/4He of the meteoric fluid (0.007 ± 0.001) is far lower than the crystal production ratio (0.2) implying an origin in crust below 200°C.

  1. Mineralisation at the Carrock Fell Tungsten Mine, N. England: Paragenetic, fluid inclusion and geochemical study

    NASA Astrophysics Data System (ADS)

    Ball, T. K.; Fortey, N. J.; Shepherd, T. J.

    1985-01-01

    Tungsten ore at Carrock Fell Mine comprises wolframite and scheelite in polyminerallic quartz veins which traverse the Grainsgill Granite cupola and surrounding country rocks. In the veins, a wolframite-scheelite-apatite assemblage pre-dates a scheelite-arsenopyrite-pyrite (plus other sulphides) assemblages. Temperatures of mineralisation declined from a peak near 350°C to 170°C, and the hydrothermal fluid contained about 6 weight% NaCl and 3 wt% NaHCO3. Contemporaneous greisenisation involved loss of Na, Cr, Ca and Ba from granite, but Si and K were retained while B, Be and Al increased slightly. Sn also increased but is always a trace constituent, and F appears to have decreased. Zones of intense alteration contain high concentrations of quartzhosted fluid inclusions resulting from penetration of the granite by fluid chemically similar to that in the vein quartz. The W-rich, Sn-poor nature of the mineralisation may relate to the weakly saline, F-deficient but CO2-rich fluid chemistry. The alteration and mineralisation processes took place during late cooling of the Lower-Devonian Skiddaw Granite. Cross-cutting quartz-ankerite veins and argillitic zones which may be considerably younger than those producing the tungsten ore, have a distinct mineral suite lacking W and As and including major Pb and Zn. Temperatures at this late stage were below 150°C, and the fluid is estimated to have contained approximately 12 wt% NaCl and 15 wt% CaCl2.

  2. Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: Implications for sources of salinity in some ancient hydrothermal fluids

    USGS Publications Warehouse

    Böhlke, J.K.; Irwin, J.J.

    1992-01-01

    The relative concentrations of Cl, Br, I, and K in fluid inclusions in hydrothermal minerals were measured by laser microprobe noble gas mass spectrometry on irradiated samples containing 10-10 to 10-8 L of fluid. Distinctive halogen signatures indicate contrasting sources of fluid salinity in fluid inclusions from representative "magmatic" (St. Austell), "metamorphic" (Alleghany), and "geothermal" (Creede, Salton Sea) aqueous systems. Br/Cl mol ratios are lowest at Salton Sea (0.27-0.33 ?? 10-3), where high salinities are largely due to halite dissolution; intermediate at St. Austell (0.85 ?? 10-3), possibly representative of magmatic volatiles; and highest (near that of seawater) at Creede (1.5-2.1 ?? 10-3) and Alleghany (1.2-2.4 ?? 10-3), where dissolved halogens probably were leached from volcanic and (or) nonevaporitic sedimentary rocks. I C1 mol ratios are lowest (near that of seawater) at Creede (1-14 ?? 10-6), possibly because organisms scavenged I during low temperature recharge; intermediate at Salton Sea (24-26 ?? 10-6) and St. Austell (81?? 10-6); and highest at Alleghany (320-940 ?? 10-6), probably because the fluids interacted with organic-rich sediments at high temperatures before being trapped. K Cl mol ratios indicate disequilibrium with respect to hypothetical feldspathic alkali-Al-silicate mineral buffers at fluid inclusion trapping temperatures at Creede, and large contributions of (Na, K)-bicarbonate to total fluid ionic strength at Alleghany. Significant variations in Cl/Br/I/K ratios among different fluid inclusion types are correlated with previously documented mineralization stages at Creede, and with the apparent oxidation state of dissolved carbon at Alleghany. The new data indicate that Cl/ Br/I ratios in hydrothermal fluid inclusions vary by several orders of magnitude, as they do in modern surface and ground waters. This study demonstrates that halogen signatures of fluid inclusions determined by microanalysis yield important

  3. Ore-forming process of the Huijiabao gold district, southwestern Guizhou Province, China: Evidence from fluid inclusions and stable isotopes

    NASA Astrophysics Data System (ADS)

    Peng, Yiwei; Gu, Xuexiang; Zhang, Yongmei; Liu, Li; Wu, Chengyun; Chen, Siyao

    2014-10-01

    The Huijiabao gold district is one of the major producers for Carlin-type gold deposits in southwestern Guizhou Province, China, including Taipingdong, Zimudang, Shuiyindong, Bojitian and other gold deposits/occurrences. Petrographic observation, microthermometric study and Laser Raman spectroscopy were carried out on the fluid inclusions within representative minerals in various mineralization stages from these four gold deposits. Five types of fluid inclusions have been recognized in hydrothermal minerals of different ore-forming stages: aqueous inclusions, CO2 inclusions, CO2-H2O inclusions, hydrocarbon inclusions, and hydrocarbon-H2O inclusions. The ore-forming fluids are characterized by a H2O + CO2 + CH4 ± N2 system with medium to low temperature and low salinity. From early mineralization stage to later ones, the compositions of the ore-forming fluids experienced an evolution of H2O + NaCl → H2O + NaCl + CO2 + CH4 ± N2 → H2O + NaCl ± CH4 ± CO2 with a slight decrease in homogenization temperature and salinity. The δ18O values of the main-stage quartz vary from 15.2‰ to 24.1‰, while the δDH2O and calculated δ18OH2O values of the ore-forming fluids range from -56.9 to -116.3‰ and from 2.12‰ to 12.7‰, respectively. The δ13CPDB and δ18OSMOW values of hydrothermal calcite change in the range of -9.1‰ to -0.5‰ and 11.1-23.2‰, respectively. Stable isotopic characteristics indicate that the ore-forming fluid was mainly composed of ore- and hydrocarbon-bearing basinal fluid. The dynamic fractionation of the sulfur in the diagenetic pyrite is controlled by bacterial reduction of marine sulfates. The hydrothermal sulfides and the diagenetic pyrite from the host rocks are very similar in their sulfur isotopic composition, suggesting that the sulfur in the ore-forming fluids was mainly derived from dissolution of diagenetic pyrite. The study of fluid inclusions indicates that immiscibility of H2O-NaCl-CO2 fluids took place during the main

  4. A mechanism for fluid transport within oceanic shear zones: An experimental study on the role and fate of fluid inclusions in olivine aggregates

    NASA Astrophysics Data System (ADS)

    Carter, M. J.; Zimmerman, M. E.; Teyssier, C.; Warren, J. M.

    2011-12-01

    Studies have investigated hydrothermal circulation in the oceanic lithosphere and the role of water on mantle rheology. Yet, the role and fate of fluid inclusions (FIs) in the ductilely deforming oceanic lithosphere is poorly known. Fluid-filled fractures may transport fluids from the brittle upper lithosphere into mantle shear zones within the seismogenic zone of transform systems and oceanic core complexes. Based on mylonite thermometry, and the maximum observed depth of earthquakes, these conditions are estimated as >600-700°C and > ~15 km depth - where olivine deforms in the ductile regime. Abundant, homogeneously distributed primary FIs were produced in olivine aggregates by adding 1-2 μl of liquid water to San Carlos olivine powders prior to hot pressing the sample at 1200 °C and 300 MPa confining pressure (Pc) for 2-3 hours. A torsion experiment of this sample was run at a strain rate of 2.5 x 10-4 s-1 to a finite shear strain of γ = 3 at 1200 °C and 300 MPa (Pc). Peak shear stress (180 MPa) was achieved at γ = 0.5. Axial and tangential thin sections reveal an S-C'-type foliation. A penetrative, low angle foliation is defined by aligned FIs and pores and is evenly spaced 5-10 μm (same as the grain size) throughout the sample (Fig. 1). Another foliation is defined by the alignment of recrystallized olivine grains (Fig. 1). EBSD data indicate that [100] axes are sub-parallel to the shear direction and (010) planes are sub-parallel to the shear plane. Observations from the axial thin section reveal that foliations and CPO patterns are weakly developed at the center and strongly developed toward the edge (γ > 1). Our experiment provides an analogue for naturally deformed peridotite mylonites from transform faults and core complexes where we observe FIs and syn-deformational amphiboles. These preliminary results indicate that FIs segregate and orient into channelized bands along grain boundaries with increasing strain. This organization has strong

  5. Sapphirine and fluid inclusions in Tel Thanoun mantle xenoliths,Syria

    NASA Astrophysics Data System (ADS)

    Bilal, Ahmad

    2016-04-01

    Volcanoes along the Syrian rift, which extend a distance of about 1000 km, brought to the surface mantle xenoliths within erupted basalts, during multiples periods of volcanic activity. Xenoliths in early Cretaceous volcanoes originate in the garnet peridotite field of the subcontinental mantle, whereas those in recent Cenozoic volcanoes, the prime object of this study, are issued from shallower levels (spinel peridotite field). The recent discovery of sapphirine-bearing websterite in Tel Thanoun, a small volcanic diatreme inside the larger Quaternary volcanic field (Djebel Al Arab), allows us to estimate the P-T evolution and fluid-rock interaction at the volcanic source. Harzburgites and lherzolites are equilibrated at a temperature of about 1000 °C at a depth of 35-40 km. Sapphirine appears to have formed during cooling, at depth at a temperature of about 900 °C, at a time where spinel exsolution occurred in harzburgite and lherzolite pyroxenes. This occurred in the presence of a high-density pure CO2 fluid phase, still present in primary fluid inclusions. The highly-aluminous sapphirine-bearing protolith might be former garnet websterite (possibly uplifted during cretaceous magmatism), which resided and cooled in the spinel peridotite stability field, and was then dragged and brought to the surface by quaternary basalts.

  6. Role of evaporitic sulfates in iron skarn mineralization: a fluid inclusion and sulfur isotope study from the Xishimen deposit, Handan-Xingtai district, North China Craton

    NASA Astrophysics Data System (ADS)

    Wen, Guang; Bi, Shi-Jian; Li, Jian-Wei

    2016-08-01

    The Xishimen iron skarn deposit in the Handan-Xingtai district, North China Craton, contains 256 Mt @ 43 % Fe (up to 65 %). The mineralization is dominated by massive magnetite ore along the contact zone between the early Cretaceous Xishimen diorite stock and middle Ordovician dolomite and dolomitic limestones with numerous intercalations of evaporitic beds. Minor lenticular magnetite-dominated bodies also occur in the carbonate rocks proximal to the diorite stock. Hydrothermal alteration is characterized by extensive albitization within the diorite stock and extreme development of magnesian skarn along the contact zone consisting of diopside, forsterite, serpentine, tremolite, phlogopite, and talc. Magmatic quartz and amphibole from the diorite and hydrothermal diopside from the skarns contain abundant primary or pseudosecondary fluid inclusions, most of which have multiple daughter minerals dominated by halite, sylvite, and opaque phases. Scanning electron microscopy (SEM) and laser Raman spectrometry confirm that pyrrhotite is the predominant opaque phase in most fluid inclusions, in both the magmatic and skarn minerals. These fluid inclusions have total homogenization temperatures of 416-620 °C and calculated salinities of 42.4-74.5 wt% NaCl equiv. The fluid inclusion data thus document a high-temperature, high-salinity, ferrous iron-rich, reducing fluid exsolved from a cooling magma likely represented by the Xishimen diorite stock. Pyrite from the iron ore has δ34S values ranging from 14.0 to 18.6 ‰, which are significantly higher than typical magmatic values (δ34S = 0 ± 5 ‰). The sulfur isotope data thus indicate an external source for the sulfur, most likely from the evaporitic beds in the Ordovician carbonate sequences that have δ34S values of 24 to 29 ‰. We suggest that sulfates from the evaporitic beds have played a critically important role by oxidizing ferrous iron in the magmatic-hydrothermal fluid, leading to precipitation of massive

  7. Hypersaline fluids generated by high-grade metamorphism of evaporites: fluid inclusion study of uranium occurrences in the Western Zambian Copperbelt

    NASA Astrophysics Data System (ADS)

    Eglinger, Aurélien; Ferraina, Clément; Tarantola, Alexandre; André-Mayer, Anne-Sylvie; Vanderhaeghe, Olivier; Boiron, Marie-Christine; Dubessy, Jean; Richard, Antonin; Brouand, Marc

    2014-02-01

    In the Pan-African Lufilian belt (Western Zambian Copperbelt), uranium mineralizations, preferentially scattered in kyanite ± talc micaschists (metamorphosed evaporitic sediments) or concentrated along transposed quartz veins provide an opportunity to (1) understand the time/space relationship between the ore minerals and the deformation of the host rocks, (2) identify the different fluid events associated with specific stages of quartz deformation and (3) characterize the ore fluid geochemistry in terms of fluid origin and fluid/rock interactions. In the U occurrences studied in Lolwa and Mitukuluku (Domes region, Western Zambian Copperbelt), two mineralizing stages are described. The first generation of ore fluids (53-59 wt% CaCl2, 13-15 wt% NaCl; N2-H2 in the gas phase of fluid inclusions) circulated during the high-temperature quartz recrystallization, at 500-700 °C. This temperature is in agreement with the P- T conditions recorded during the crustal thickening related to continental collision at ca. 530 Ma. LA-ICPMS analyses show the presence of uranium within this fluid, with a concentration mode around 20 ppm. The second generation of ore fluid (21-32 wt% NaCl, 19-21 wt% CaCl2; CO2-CO in the gas phase of fluid inclusions) percolated at lower temperature conditions, at the brittle-ductile transition, between 200 and 300 °C. This temperature could be related to the exhumation of the high-grade metamorphic rocks at ca. 500 Ma. The formation of H2 and CO is interpreted as the result of radiolysis in the presence of dissolved uranium in the aqueous phase of these fluid inclusions. Finally, a late fluid (14-16 wt% NaClequiv) circulated in the brittle domain but seems unrelated to U (re-)mobilization event.

  8. Extremely halophilic archaea from ancient salt sediments and their possible survival in halite fluid inclusions

    NASA Astrophysics Data System (ADS)

    Stan-Lotter, H.; Fendrihan, S.; Gerbl, F. W.; Dornmayr-Pfaffenhuemer, M.; Frethem, C.

    2008-09-01

    Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, marine solar salterns and alkaline salt lakes; they have also been isolated from ancient subsurface salt sediments of great geological age (195-280 million years) and some of those strains were described as novel species (1). The cells survived perhaps while being enclosed within small fluid inclusions in the halite. The characterization of subsurface microbial life is of astrobiological relevance since extraterrestrial halite has been detected and since microbial life on Mars, if existent, may have retreated into the subsurface. We attempted to simulate the embedding process of extremely halophilic archaea and to analyse any cellular changes which might occur. When enclosing haloarchaea in laboratory grown halite, cells accumulated preferentially in fluid inclusions, as could be demonstrated by pre-staining with fluorescent dyes. With increased time of embedding, rod-shaped cells of Halobacterium salinarum strains were found to assume roundish morphologies. Upon dissolution of the salt crystals, these spheres were stable and viable for months when kept in buffers containing 4 M NaCl. Scanning electron microscopy (SEM) following fixation with glutaraldehyde suggested a potentially gradual transformation from rods to spheres. This notion was supported by fluorescence microscopy of Halobacterium cells, following embedding in halite and staining with SYTO 9. One-dimensional protein patterns of rods and spheres, following SDS polyacrylamide gel electrophoresis, were similar except that the S-layer protein appeared reduced by about 15 - 20 % in spheres. The reddish-orange pigmentation of spheres was much lighter compared to that of rod-shaped cells, suggesting lowered concentrations of carotenoids; this was confirmed by extraction and spectrometry of pigments. The data suggested that Halobacterium cells are capable of forming specific

  9. Pressure-temperature-fluid constraints for the Emmaville-Torrington emerald deposit, New South Wales, Australia: Fluid inclusion and stable isotope studies

    NASA Astrophysics Data System (ADS)

    Loughrey, Lara; Marshall, Dan; Jones, Peter; Millsteed, Paul; Main, Arthur

    2012-06-01

    The Emmaville-Torrington emeralds were first discovered in 1890 in quartz veins hosted within a Permian metasedimentary sequence, consisting of meta-siltstones, slates and quartzites intruded by pegmatite and aplite veins from the Moule Granite. The emerald deposit genesis is consistent with a typical granite-related emerald vein system. Emeralds from these veins display colour zonation alternating between emerald and clear beryl. Two fluid inclusion types are identified: three-phase (brine+vapour+halite) and two-phase (vapour+liquid) fluid inclusions. Fluid inclusion studies indicate the emeralds were precipitated from saline fluids ranging from approximately 33 mass percent NaCl equivalent. Formational pressures and temperatures of 350 to 400 °C and approximately 150 to 250 bars were derived from fluid inclusion and petrographic studies that also indicate emerald and beryl precipitation respectively from the liquid and vapour portions of a two-phase (boiling) system. The distinct colour zonations observed in the emerald from these deposits is the first recorded emerald locality which shows evidence of colour variation as a function of boiling. The primary three-phase and primary two-phase FITs are consistent with alternating chromium-rich `striped' colour banding. Alternating emerald zones with colourless beryl are due to chromium and vanadium partitioning in the liquid portion of the boiling system. The chemical variations observed at Emmaville-Torrington are similar to other colour zoned emeralds from other localities worldwide likely precipitated from a boiling system as well.

  10. Graphite-bearing CO 2-fluid inclusions in granulites: Insights on graphite precipitation and carbon isotope evolution

    NASA Astrophysics Data System (ADS)

    Satish-Kumar, Madhusoodhan

    2005-08-01

    Graphite in deep crustal enderbitic (orthopyroxene + garnet + plagioclase + quartz) granulites (740°C, 8.9 kb) of Nilgiri hills, southern India were investigated for their spectroscopic and isotopic characteristics. Four types of graphite crystals were identified. The first type (Gr I), which is interstitial to other mineral grains, can be grouped into two subtypes, Gr IA and Gr IB. Gr IA is either irregular in shape or deformed, and rough textured with average δ 13C values of -12.7 ± 0.4‰ ( n = 3). A later generation of interstitial graphite (Gr IB) shows polygonal crystal shapes and highly reflecting smooth surface features. These graphite grains are more common and have δ 13C values of -11.9 ± 0.3‰ ( n = 14). Both subtypes show well-defined Raman shifts suggesting a highly crystalline nature. Cores of interstitial graphite grains have, on average, lower δ 13C values by ˜0.5‰ compared to that of the rim. The second type of graphite (Gr II) occurs as solid inclusions in silicate minerals, commonly forming regular hexagonal crystals with a slightly disordered structure. The third type of graphite (Gr III) is associated with solid inclusions (up to 100 μm) that have decrepitation halos of numerous small (<15 μm) satellite fluid inclusions of pure CO 2 with varying density (1.105 to 0.75 g/cm 3). The fourth type of graphite (Gr IV) is found as daughter crystals within primary type CO 2-fluid inclusions in garnet and quartz. These fluid inclusions have a range of densities (1.05 to 0.90 g/cm 3), but in general are significantly less dense than graphite-free primary, pure CO 2 fluid inclusions (1.12 g/cm 3). Raman spectral characteristics of graphite inside fluid inclusions suggest graphite crystallization at low temperature (˜ 500°C). The precipitation of graphite probably occurred during the isobaric cooling of CO 2-rich peak metamorphic fluid as a result of oxyexsolution of oxide phases. The oxyexsolution process is evidenced by the magnetite

  11. Metamorphic fluids and uplift-erosion history of a portion of the Kapuskasing structural zone, Ontario, as deduced from fluid inclusions

    NASA Technical Reports Server (NTRS)

    Rudnick, R. L.; Ashwal, L. D.; Henry, D. J.

    1983-01-01

    Fluid inclusions can be used to determine the compositional evolution of fluids present in high grade metamorphic rocks (Touret, 1979) along with the general P-T path followed by the rocks during uplift and erosion (Hollister et al., 1979). In this context, samples of high grade gneisses from the Kapuskasing structural zone (KSZ, Fig. 1) of eastern Ontario were studied in an attempt to define the composition of syn- and post-metamorphic fluids and help constrain the uplift and erosion history of the KSZ. Recent work by Percival (1980), Percival and Card (1983) and Percival and Krogh (1983) shows that the KSZ represents lower crustal granulites that form the lower portion of an oblique cross section through the Archean crust, which was up faulted along a northeast striking thrust fault. The present fluid inclusion study places constraints upon the P-T path which the KSZ followed during uplift and erosion.

  12. Source and evolution of ore-forming hydrothermal fluids in the northern Iberian Pyrite Belt massive sulphide deposits (SW Spain): evidence from fluid inclusions and stable isotopes

    NASA Astrophysics Data System (ADS)

    Sánchez-España, Javier; Velasco, Francisco; Boyce, Adrian J.; Fallick, Anthony E.

    2003-08-01

    A fluid inclusion and stable isotopic study has been undertaken on some massive sulphide deposits (Aguas Teñidas Este, Concepción, San Miguel, San Telmo and Cueva de la Mora) located in the northern Iberian Pyrite Belt. The isotopic analyses were mainly performed on quartz, chlorite, carbonate and whole rock samples from the stockworks and altered footwall zones of the deposits, and also on some fluid inclusion waters. Homogenization temperatures of fluid inclusions in quartz mostly range from 120 to 280 °C. Salinity of most fluid inclusions ranges from 2 to 14 wt% NaCl equiv. A few cases with Th=80-110 °C and salinity of 16-24 wt% NaCl equiv., have been also recognized. In addition, fluid inclusions from the Soloviejo Mn-Fe-jaspers (160-190 °C and ≈6 wt% NaCl equiv.) and some Late to Post-Hercynian quartz veins (130-270 °C and ≈4 wt% NaCl equiv.) were also studied. Isotopic results indicate that fluids in equilibrium with measured quartz (δ18Ofluid ≈-2 to 4‰), chlorites (δ18Ofluid ≈8-14‰, δDfluid ≈-45 to -27‰), whole rocks (δ18Ofluid ≈4-7‰, δDfluid ≈-15 to -10‰), and carbonates (δ18Oankerite ≈14.5-16‰, δ13Cfluid =-11 to -5‰) evolved isotopically during the lifetime of the hydrothermal systems, following a waxing/waning cycle at different temperatures and water/rock ratios. The results (fluid inclusions, δ18O, δD and δ13C values) point to a highly evolved seawater, along with a variable (but significant) contribution of other fluid reservoirs such as magmatic and/or deep metamorphic waters, as the most probable sources for the ore-forming fluids. These fluids interacted with the underlying volcanic and sedimentary rocks during convective circulation through the upper crust.

  13. Brillouin spectroscopy of fluid inclusions proposed as a paleothermometer for subsurface rocks.

    PubMed

    El Mekki-Azouzi, Mouna; Tripathi, Chandra Shekhar Pati; Pallares, Gaël; Gardien, Véronique; Caupin, Frédéric

    2015-08-28

    As widespread, continuous instrumental Earth surface air temperature records are available only for the last hundred fifty years, indirect reconstructions of past temperatures are obtained by analyzing "proxies". Fluid inclusions (FIs) present in virtually all rock minerals including exogenous rocks are routinely used to constrain formation temperature of crystals. The method relies on the presence of a vapour bubble in the FI. However, measurements are sometimes biased by surface tension effects. They are even impossible when the bubble is absent (monophasic FI) for kinetic or thermodynamic reasons. These limitations are common for surface or subsurface rocks. Here we use FIs in hydrothermal or geodic quartz crystals to demonstrate the potential of Brillouin spectroscopy in determining the formation temperature of monophasic FIs without the need for a bubble. Hence, this novel method offers a promising way to overcome the above limitations.

  14. Design of two crushing devices for release of the fluid inclusion volatiles

    NASA Astrophysics Data System (ADS)

    Dublyansky, Yuri V.

    2012-06-01

    Two crushing cells have been described for the release of volatiles from fluid inclusions in minerals in vacuum, static gas, and gas-flow applications. To minimize the adsorption of released volatiles on the freshly created mineral surfaces, both devices employed heated crushing. In the MTSN (Museo Tridentine di Scienze Naturali) crusher, samples were disintegrated by a piston driven by an induction coil. For efficient crushing, the electromagnet operated in dynamic impulse mode. In the LFU (Leopold-Franzens-Universität) crusher, the sample was disintegrated through the combined action of compression (manually operated hydraulic ram) and attrition. Crushers are able to be used in off-line and on-line modes, in gas chromatographic and mass spectrometric analyses.

  15. Brillouin spectroscopy of fluid inclusions proposed as a paleothermometer for subsurface rocks

    PubMed Central

    Mekki-Azouzi, Mouna El; Tripathi, Chandra Shekhar Pati; Pallares, Gaël; Gardien, Véronique; Caupin, Frédéric

    2015-01-01

    As widespread, continuous instrumental Earth surface air temperature records are available only for the last hundred fifty years, indirect reconstructions of past temperatures are obtained by analyzing “proxies”. Fluid inclusions (FIs) present in virtually all rock minerals including exogenous rocks are routinely used to constrain formation temperature of crystals. The method relies on the presence of a vapour bubble in the FI. However, measurements are sometimes biased by surface tension effects. They are even impossible when the bubble is absent (monophasic FI) for kinetic or thermodynamic reasons. These limitations are common for surface or subsurface rocks. Here we use FIs in hydrothermal or geodic quartz crystals to demonstrate the potential of Brillouin spectroscopy in determining the formation temperature of monophasic FIs without the need for a bubble. Hence, this novel method offers a promising way to overcome the above limitations. PMID:26316328

  16. Chemical and textural characteristics of multistage fluid inclusions with high Li/B ratio found from the Sanbagawa belt.

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Hirajima, T.

    2012-04-01

    Recent studies invoked that the variation of peculiar fluid soluble light elements, such as Li, B and Cl, are capable of suggesting generation depths of fluid released in subduction zones (e.g., Scambelluri et al., 2004; Bebout et al., 2007; Marschall et al., 2009). Crush-leached fluids extracted from quartz veins intercalated with metabasites of the Sanbagawa metamorphic belt show high Li and B concentrations, whose Li/B ratios show a positive correlation with metamorphic grade of the host rocks, i.e., from 0.02 for pumpellyite-actinolite facies to 0.27 for eclogite facies (Sengen et al., 2009). Furthermore, crush-leached fluids extracted from quartz veins intercalated with metasediments in proximal to the eclogite unit in the Besshi district show much higher Li/B ratio (ca. 0.36-1.99). Yoshida et al. (2011) pointed out that Li/B ratio of dehydrated fluids was controlled by the rock types of the host rocks, i.e., Li/B ratio of dehydrated fluids derived from tourmaline-free metasediments show much higher values than those expected from metabasites. Those obtained data suggest that the Li/B ratio of the deep fluid has a potential as a depth indicator but there remain many unknown factors for establishing it. The Li/B ratio of extracted fluid obtained by the crush-leached method integrates the whole fluid activities which the host rocks were taken place. To investigate the fluid activity history for the sample showing the highest Li/B ratio (1.99), detailed petrographical and microthemometric studies were performed. The studied sample IR04 is a foliation-parallel quartz vein intercalated with a Grt-Hbl-Ph schist probably derived from clay, whose peak P-T conditions are estimated as 600 °C and 1.3 GPa using pseudosection analysis. The quartz vein shows a foam microstructure, suggesting that low differential stress and high-T conditions were attained during its texture formation. Three types of fluid inclusions have been identified: the earliest one, FIA-I, is

  17. Fluid inclusion petrology and microthermometry of the Cocos Ridge hydrothermal system, IODP Expedition 344 (CRISP 2), Site U1414

    NASA Astrophysics Data System (ADS)

    Brandstätter, Jennifer; Kurz, Walter; Krenn, Kurt; Micheuz, Peter

    2016-04-01

    In this study, we present new data from microthermometry of fluid inclusions entrapped in hydrothermal veins along the Cocos Ridge from the IODP Expedition 344 Site U1414. The results of our study concern a primary task of IODP Expedition 344 to evaluate fluid/rock interaction linked with the tectonic evolution of the incoming Cocos Plate from the Early Miocene up to recent times. Aqueous, low saline fluids are concentrated within veins from both the Cocos Ridge basalt and the overlying lithified sediments of Unit III. Mineralization and crosscutting relationships give constraints for different vein generations. Isochores from primary, reequilibrated, and secondary fluid inclusions crossed with litho/hydrostatic pressures indicate an anticlockwise PT evolution during vein precipitation and modification by isobaric heating and subsequent cooling at pressures between ˜210 and 350 bar. Internal over and underpressures in the inclusions enabled decrepitation and reequilibration of early inclusions but also modification of vein generations in the Cocos Ridge basalt and in the lithified sediments. We propose that lithification of the sediments was accompanied with a first stage of vein development (VU1 and VC1) that resulted from Galapagos hotspot activity in the Middle Miocene. Heat advection, either related to the Cocos-Nazca spreading center or to hotspot activity closer to the Middle America Trench, led to subsequent vein modification (VC2, VU2/3) related to isobaric heating. The latest mineralization (VC3, VU3) within aragonite and calcite veins and some vesicles of the Cocos Ridge basalt occurred during crustal cooling up to recent times. Fluid inclusion analyses and published isotope data show evidence for communication with deeper sourced, high-temperature hydrothermal fluids within the Cocos Plate. The fluid source of the hydrothermal veins reflects aqueous low saline pore water mixed with invaded seawater.

  18. Fluid inclusion petrology and microthermometry of the Cocos Ridge hydrothermal system, IODP Expedition 344 (CRISP 2), Site U1414

    PubMed Central

    Brandstätter, Jennifer; Krenn, Kurt; Micheuz, Peter

    2016-01-01

    Abstract In this study, we present new data from microthermometry of fluid inclusions entrapped in hydrothermal veins along the Cocos Ridge from the IODP Expedition 344 Site U1414. The results of our study concern a primary task of IODP Expedition 344 to evaluate fluid/rock interaction linked with the tectonic evolution of the incoming Cocos Plate from the Early Miocene up to recent times. Aqueous, low saline fluids are concentrated within veins from both the Cocos Ridge basalt and the overlying lithified sediments of Unit III. Mineralization and crosscutting relationships give constraints for different vein generations. Isochores from primary, reequilibrated, and secondary fluid inclusions crossed with litho/hydrostatic pressures indicate an anticlockwise PT evolution during vein precipitation and modification by isobaric heating and subsequent cooling at pressures between ∼210 and 350 bar. Internal over and underpressures in the inclusions enabled decrepitation and reequilibration of early inclusions but also modification of vein generations in the Cocos Ridge basalt and in the lithified sediments. We propose that lithification of the sediments was accompanied with a first stage of vein development (VU1 and VC1) that resulted from Galapagos hotspot activity in the Middle Miocene. Heat advection, either related to the Cocos‐Nazca spreading center or to hotspot activity closer to the Middle America Trench, led to subsequent vein modification (VC2, VU2/3) related to isobaric heating. The latest mineralization (VC3, VU3) within aragonite and calcite veins and some vesicles of the Cocos Ridge basalt occurred during crustal cooling up to recent times. Fluid inclusion analyses and published isotope data show evidence for communication with deeper sourced, high‐temperature hydrothermal fluids within the Cocos Plate. The fluid source of the hydrothermal veins reflects aqueous low saline pore water mixed with invaded seawater. PMID:27570496

  19. Fluid inclusion analysis of twinned selenite gypsum beds from the Miocene of the Madrid basin (Spain). Implication on dolomite bioformation

    NASA Astrophysics Data System (ADS)

    Ayllón-Quevedo, F.; Souza-Egipsy, V.; Sanz-Montero, M. E.; Rodríguez-Aranda, J. P.

    2007-09-01

    This research work is centred on continental lacustrine gypsum deposits of Miocene age cropping out in the easternmost part of the Madrid Basin. These gypsum deposits, accumulated in a continental saline lake, are characterized by a spectacular, distinctive Christmas-tree morphology and a peculiar dolomite replacement. A combination of microscopic (petrography and scanning electron microscopy) and analytical techniques (fluid inclusion microthermometry, X-ray energy dispersive spectroscopy and X-ray diffractometry) was used in order to study the crystallographic distribution and the composition of the fluid inclusions within the gypsum. The objectives were to characterize the continental brine from which the mineral precipitated, and to detect mineral and element traces that could indicate early diagenetic processes altering the gypsum deposits. Data from primary fluid inclusions indicated that gypsum precipitated from an aqueous fluid (lake water) of low to moderate total salinity (between 20 and 90 g/L NaCl). Secondary fluid inclusions represent interstitial lake brine in contact with gypsum, slightly enriched in total salt content as crystal formation proceeded. Textural, ultrastructural and microanalytical analysis indicate that the presence of dolomite precipitates inside the gypsum layers is related to the microbial colonization of the gypsum deposits and the biomineralization of the cell walls and extracellular polymeric substances around the cells. Our investigation emphasizes necessity of a multidisciplinary approach to assess geobiological processes.

  20. Motions of deformable inclusions in a horizontally oscillating vessel with a compressible fluid

    NASA Astrophysics Data System (ADS)

    Demidov, I. V.; Sorokin, V. S.

    2016-11-01

    The paper is concerned with the analysis of rigid particle and compressible gas bubble motion in a horizontally oscillating vessel with a compressible fluid. A nonlinear differential equation describing motion of inclusions with respect to the vessel is derived and solved by the method of direct separation of motions. It is shown that rigid particles and gas bubbles can move both in nodes and antinodes of the pressure, depending on their size, density, and vibration parameters. The conditions under which different kinds of motion can incur have been determined. An expression for the critical radius of the bubbles which are affected by the negligible vibrational force is found. Also an approximate expression has been obtained for the average velocity of bubble's motion in the fluid; relationship between this velocity and bubble radius and vibration parameters has been revealed. A simple physical explanation of the noticed effects is proposed. Series of numerical experiments has been conducted, their results confirming those obtained theoretically. These results may be of interest for development of the flotation theory and other technological processes.

  1. In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS: a powerful tool to identify fluid sources

    USGS Publications Warehouse

    Hammerli, Johannes; Rusk, Brian; Spandler, Carl; Emsbo, Poul; Oliver, Nicholas H.S.

    2013-01-01

    Bromine and chlorine are important halogens for fluid source identification in the Earth's crust, but until recently we lacked routine analytical techniques to determine the concentration of these elements in situ on a micrometer scale in minerals and fluid inclusions. In this study, we evaluate the potential of in situ Cl and Br measurements by LA-ICP-MS through analysis of a range of scapolite grains with known Cl and Br concentrations. We assess the effects of varying spot sizes, variable plasma energy and resolve the contribution of polyatomic interferences on Br measurements. Using well-characterised natural scapolite standards, we show that LA-ICP-MS analysis allows measurement of Br and Cl concentrations in scapolite, and fluid inclusions as small as 16 μm in diameter and potentially in sodalite and a variety of other minerals, such as apatite, biotite, and amphibole. As a demonstration of the accuracy and potential of Cl and Br analyses by LA-ICP-MS, we analysed natural fluid inclusions hosted in sphalerite and compared them to crush and leach ion chromatography Cl/Br analyses. Limit of detection for Br is ~8 μg g−1, whereas relatively high Cl concentrations (> 500 μg g−1) are required for quantification by LA-ICP-MS. In general, our LA-ICP-MS fluid inclusion results agree well with ion chromatography (IC) data. Additionally, combined cathodoluminescence and LA-ICP-MS analyses on natural scapolites within a well-studied regional metamorphic suite in South Australia demonstrate that Cl and Br can be quantified with a ~25 μm resolution in natural minerals. This technique can be applied to resolve a range of hydrothermal geology problems, including determining the origins of ore forming brines and ore deposition processes, mapping metamorphic and hydrothermal fluid provinces and pathways, and constraining the effects of fluid–rock reactions and fluid mixing.

  2. Fluid inclusions and biomarkers in the Upper Mississippi Valley zinc-lead district; implications for the fluid-flow and thermal history of the Illinois Basin

    USGS Publications Warehouse

    Rowan, E. Lanier; Goldhaber, Martin B.

    1996-01-01

    The Upper Mississippi Valley zinc-lead district is hosted by Ordovician carbonate rocks at the northern margin of the Illinois Basin. Fluid inclusion temperature measurements on Early Permian sphalerite ore from the district are predominantly between 90?C and I50?C. These temperatures are greater than can be explained by their reconstructed burial depth, which was a maximum of approximately 1 km at the time of mineralization. In contrast to the temperatures of mineral formation derived from fluid inclusions, biomarker maturities in the Upper Mississippi Valley district give an estimate of total thermal exposure integrated over time. Temperatures from fluid inclusions trapped during ore genesis with biomarker maturities were combined to construct an estimate of the district's overall thermal history and, by inference, the late Paleozoic thermal and hydrologic history of the Illinois Basin. Circulation of groundwater through regional aquifers, given sufficient flow rates, can redistribute heat from deep in a sedimentary basin to its shallower margins. Evidence for regional-scale circulation of fluids is provided by paleomagnetic studies, regionally correlated zoned dolomite, fluid inclusions, and thermal maturity of organic matter. Evidence for igneous acti vity contemporaneous with mineralization in the vicinity of the Upper Mississippi Valley district is absent. Regional fluid and heat circulation is the most likely explanation for the elevated fluid inclusion temperatures (relative to maximum estimated burial depth) in the Upper Mississippi Valley district. One plausible driving mechanism and flow path for the ore-forming fluids is groundwater recharge in the late Paleozoic Appalachian-Ouachita mountain belt and northward flow through the Reelfoot rift and the proto- Illinois Basin to the Upper Mississippi Valley district. Warm fluid flowing laterally through Cambrian and Ordovician aquifers would then move vertically upward through the fractures that control

  3. A continuous-flow crushing device for on-line delta2H analysis of fluid inclusion water in speleothems.

    PubMed

    Vonhof, Hubert B; van Breukelen, Martin R; Postma, Onno; Rowe, Peter J; Atkinson, Tim C; Kroon, Dick

    2006-01-01

    A method for the isotope analysis of fluid inclusion water in speleothem calcite is presented. The technique is based on a commercially available continuous-flow pyrolysis furnace (ThermoFinnigan TC-EA). The main adaptation made to the standard TC-EA configuration is the addition of a crusher and cold trap unit, which is connected to the carrier gas inlet at the top of the TC-EA reactor tube. A series of tests conducted with this device shows that: (1) standard waters, injected in the crusher, and passed through a cryogenic trapping routine, yield accurate delta(2)H values; (2) crushed cubes of speleothem calcite from two Peruvian caves with rather dissimilar seepage water delta(2)H values yield fluid inclusion delta(2)H values in good accordance with these drip waters. The clear advantage of this continuous-flow technique for fluid inclusion isotope analysis is that it is relatively quick compared with other techniques. Since the conditions of water sample introduction into the TC-EA are identical for delta(2)H and delta(18)O analysis, we expect that only limited adaptations to the extraction procedure are required to provide delta(18)O analysis of fluid inclusion samples with the same device.

  4. Regional fluid flow as a factor in the thermal history of the Illinois basin: Constraints from fluid inclusions and the maturity of Pennsylvanian coals

    USGS Publications Warehouse

    Rowan, E.L.; Goldhaber, M.B.; Hatch, J.R.

    2002-01-01

    Vitrinite reflectance measurements on Pennsylvanian coals in the Illinois basin indicate significantly higher thermal maturity than can be explained by present-day burial depths. An interval of additional sedimentary section, now removed by erosion, has been suggested to account for the discrepancy. Although burial could indeed account for the observed maturity levels of organic matter, fluid-inclusion temperatures provide a stringent additional constraint. In this article, we combine measurements of coal maturity with fluid-inclusion temperatures from three sites to constrain the basin's thermal and burial history: the Fluorspar district at the Illinois basin's southern margin, the Upper Mississippi Valley zinc district at the basin's northern margin, and a north-central location. Two-dimensional numerical modeling of a north-south cross section through the basin tests scenarios both with and without regional fluid flow. Vitrinite reflectance values can be matched assuming burial by 1.8-2.8 km of southward-thickening additional, post-Pennsylvanian sedimentary section. In the central and northern Illinois basin, however, these burial depths and temperatures are not sufficient to account for the fluid-inclusion data. To account for both parameters with burial alone does not appear feasible. In contrast, our best hypothesis assumes a wedge of post-Pennsylvanian sediment-thickening southward to about 1.2 km and a brief period of magmatism in the Fluorspar district. Significant advective heat redistribution by northward regional fluid flow accounts for fluid-inclusion temperatures and coal maturities throughout the basin. The modeling results demonstrate the potential contribution of advective heat transport to the thermal history of the Illinois basin.

  5. Strain response and re-equilibration of CH4-rich synthetic aqueous fluid inclusions in calcite during pressure drops

    NASA Astrophysics Data System (ADS)

    Bourdet, Julien; Pironon, Jacques

    2008-06-01

    Aqueous fluids in sedimentary basins often contain dissolved methane, particularly in petroleum environments. PVTX (Pressure-Volume-Temperature-Composition) reconstructions performed using fluid inclusion data are largely based on the assumption that inclusions do not change from the time of trapping until the present. Many authors, however, consider that fluid inclusions can re-equilibrate, particularly in fragile minerals like calcite. In order to understand this re-equilibration phenomenon in the metamorphic domain, previous experiments have been performed under high PT conditions, but few have been performed at low to medium PT conditions such as those associated with sedimentary burial diagenesis, and no previous studies have examined CH4-bearing aqueous inclusions in calcite. An experimental study of the preservation/modification of CH4-rich synthetic fluid inclusions in calcite during isothermal decompression was conducted. An autoclave was used for accurate PTX control allowing equilibrium between liquid and vapour in the CH4-H2O system. PTX conditions were maintained at four stages of decreasing pressure, with each stage held for 7 days to simulate an isothermal pressure drop. In order of decreasing pressure, the pressure-temperature conditions monitored were 276 ± 10 bar at 180 ± 7 °C, 176 ± 10 bar at 180 ± 7 °C, 76 ± 10 bar at 180 ± 7 °C and 10 ± 3 bar at 180 ± 15 °C. At the end of the experiment, the calcite was recovered and analyzed by microthermometry and Raman microspectroscopy for PTX reconstruction. A careful procedure was adopted to limit re-equilibration of inclusions during analytical procedures. Four types of inclusion shapes and four types of strain patterns were differentiated. Classification of the petrographic strain patterns was carried out. These strain patterns were associated with inclusion stretching and/or leakage regarding CH4, Th and Ph compared to experimental conditions. Factors controlling the preservation or

  6. Different carbon reservoirs of auriferous fluids in African Archean and Proterozoic gold deposits? Constraints from stable carbon isotopic compositions of quartz-hosted CO2-rich fluid inclusions

    NASA Astrophysics Data System (ADS)

    Lüders, Volker; Klemd, Reiner; Oberthür, Thomas; Plessen, Birgit

    2015-04-01

    Stable carbon (and when present, nitrogen) isotope ratios of fluid inclusions in quartz from selected gold deposits in Ghana and Zimbabwe have been analyzed using a crushing device interfaced to an isotopic ratio mass spectrometer (IRMS) in order to constrain possible sources of the auriferous fluids. The study revealed a striking difference in stable carbon isotopic compositions of CO2 in quartz-hosted fluid inclusions from Archean and Paleoproterozoic orogenic gold deposits and points to diverse sources of CO2 in the studied deposits. Whether this finding can be generalized for other Archean and Proterozoic orogenic gold deposits worldwide remains open. However, a significant CO2 contribution by mantle degassing can be ruled out for every deposit studied. Devolatilization of greenstone belt rocks is the most likely source for CO2 in some Archean Au deposits in Zimbabwe, whereas CO2 in Proterozoic vein-type Au deposits in the West African Craton is most likely derived from Corg-bearing metasedimentary rocks. The δ13CCO2 values of high-density CO2-rich, water-poor inclusions hosted in quartz pebbles from the world-class Au-bearing conglomerate deposits at Tarkwa (Ghana) differ considerably from the δ13CCO2 values of similar high-density CO2-rich inclusions in vein quartz from the giant Ashanti deposit (Ghana) and disprove the idea of derivation of the Tarkwaian quartz (and gold?) from an older equivalent to the Ashanti vein-type gold deposit.

  7. A possible genetic model of the Shuangwang hydrothermal breccia gold deposit, Shaanxi Province, central China: Evidence from fluid inclusion and stable isotope

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Liu, Jiajun; Carranza, Emmanuel John M.; Liu, Zhenjiang; Liu, Chonghao; Liu, Bizheng; Wang, Kexin; Zeng, Xiangtao; Wang, Huan

    2015-11-01

    The Shuangwang gold deposit (with a gold resource of approximately 70 t Au), hosted in a NW-trending breccia belt, is located in the Fenxian-Taibai fore-arc basin in the West Qinling Orogen of central China. Four stages of ore paragenesis are identified, demonstrating mineral assemblages of ankerite-quartz-albite, quartz-albite-pyrite-ankerite, pyrite-calcite-quartz, and fluorite-dickite-gypsum, respectively. Fluid inclusions hosted in stages I, II, and III hydrothermal minerals yield homogeneous temperatures of 300-463 °C, 220-340 °C and 100-279 °C, with salinities lower than 22.7 wt% NaCl equiv. Trapping pressures estimated from CO2-H2O fluid inclusions show a gradual decrease from 100-170 MPa (KT8 ore body) to 17-55 MPa (KT2 ore body), corresponding to mineralization depths from 3.8-6.4 km (KT8) to 0.6-2.1 km (KT2). Hydrogen and oxygen isotopic data suggest that the ore-forming fluids evolved from metamorphic water to magmatic water, and lately meteoric water. Sulfur and carbon isotope compositions show that these fluids might have originated from interaction with the host rocks with minor additional magmatic source. Based on geochemical investigations, with combination of regional and ore deposit geology, a possible genetic model with a three-step ore-forming process is proposed. The Devonian Xinghongpu sedimentary rocks are characterized by a relatively high gold content, which might provide the initial gold source. Linear folds and faults formed during Triassic orogenic processes provided the subsequent pathways for ore-forming fluids and suitable space for gold mineralization. Postorogenic magmatic activity induced voluminous hydrothermal fluids that mixed with the basinal fluids and may have started the ore formation process. Over pressure led to hydrofracturing and the subsequent pressure drop promoted fluid boiling, which in turn resulted in abundant gold deposition. Induced by postorogenic magmatic hydrothermal activity, the Shuangwang gold deposit is

  8. In-situ Cl/Br measurements in scapolite and fluid inclusions by LA-ICP-MS: A powerful tool to constrain fluid sources

    NASA Astrophysics Data System (ADS)

    Hammerli, J.; Rusk, B.; Spandler, C.; Oliver, N. H. S.; Emsbo, P.

    2012-04-01

    Chlorine and bromine are highly conservative elements, and are therefore widely used to trace the origin of fluids in sedimentary and hydrothermal/magmatic systems (e.g. Hanor & McIntosh, 2007; Nahnybida et al., 2009). Halogens are important ligands for metal transport in hydrothermal solutions and thus their behavior in hydrothermal environments is crucial for comprehending ore-forming processes. Besides fluid inclusions, scapolite-group minerals hold great potential as a tracer of igneous, metamorphic, and hydrothermal processes, as no Cl/Br fractionation in scapolite has been observed and therefore halogen ratios in scapolite are thought to mirror the halogen ratios in coexisting melts and fluids (Pan & Dong, 2003). Hence, Cl/Br ratios in fluid inclusions and minerals can be utilized to trace the origin of fluids and fluid-rock interaction pathways. Due to their high ionization energies, bromine and chlorine are not routinely measured by LA-ICP-MS and suitable standards are rare. Little is known about the potential interferences and analytical limitations of in-situ chlorine and bromine analysis by LA-ICP-MS. Nevertheless, Seo et al. (2011) showed that quantification of Br and Cl in single synthetic and natural fluid inclusions is possible. In this study, we have analyzed several scapolite grains of known bromine and chlorine concentrations by LA-ICP-MS and assess the capabilities and limitations of this method. The results show that Cl/Br ratios measured by LA-ICP-MS closely reproduce known values determined by microprobe (Cl), the Noble Gas Method (Br) and INAA (Br) (Kendrick, 2011; Lieftink et al., 1993) using laser ablation spot sizes from 24-120 μm. The well-characterized scapolite grains cover bromine concentrations from 50-883 ppm and chlorine concentrations from 3 to 4 wt.%. In order to further assess the method, we analyzed Cl/Br ratios in natural fluid inclusions hosted in sphalerite that were previously characterized by crush and leach ion

  9. Gangue mineral textures and fluid inclusion characteristics of the Santa Margarita Vein in the Guanajuato Mining District, Mexico

    NASA Astrophysics Data System (ADS)

    Moncada, Daniel; Bodnar, Robert

    2012-06-01

    Successful exploration for mineral deposits requires tools that the explorationist can use to distinguish between targets with high potential for mineralization and those with lower economic potential. In this study, we describe a technique based on gangue mineral textures and fluid inclusion characteristics that has been applied to identify an area of high potential for gold-silver mineralization in the epithermal Ag-Au deposits at Guanajuato, Mexico. The Guanajuato mining district in Mexico is one of the largest silver producing districts in the world with continuous mining activity for nearly 500 years. Previous work conducted on the Veta Madre vein system that is located in the central part of this district identified favorable areas for further exploration in the deepest levels that have been developed and explored. The resulting exploration program discovered one of the richest gold-silver veins ever found in the district. This newly discovered vein that runs parallel to the Veta Madre was named the Santa Margarita vein. Selected mineralized samples from this vein contain up to 249 g/t of Au and up to 2,280 g/t Ag. Fluid inclusions in these samples show homogenization temperatures that range from 184 to 300°C and salinities ranging from 0 to 5 wt.% NaCl. Barren samples show the same range in homogenization temperature, but salinities range only up to 3 wt.% NaCl. Evidence of boiling was observed in most of the samples based on fluid inclusions and/or quartz and calcite textures. Liquid-rich inclusions with trapped illite are closely associated with high silver grades. The presence of assemblages of vapor-rich-only fluid inclusions, indicative of intense boiling or "flashing", shows the best correlation with high gold grades.

  10. Diamond growth from C-H-N-O recycled fluids in the lithosphere: Evidence from CH4 micro-inclusions and δ13C-δ15N-N content in Marange mixed-habit diamonds

    NASA Astrophysics Data System (ADS)

    Smit, Karen V.; Shirey, Steven B.; Stern, Richard A.; Steele, Andrew; Wang, Wuyi

    2016-11-01

    Mixed-habit (octahedral+ cuboid) diamonds from the Marange alluvial deposits in the eastern Zimbabwe craton have high nitrogen and hydrogen contents that provide an opportunity to evaluate diamond growth mechanisms and C-N-H-O bearing fluids in the lithospheric keel. Light grey cuboid sectors with hydrogen-containing defects trap abundant dispersed CH4 inclusions (Raman peaks at 2917 cm-1) associated with graphite (Raman peaks at 1580 cm-1). Clear octahedral sectors are richer in nitrogen and free of any such inclusions. Core to rim co-variations of δ13C-δ15N and N content can be explained by a mixing trend between earlier fluids that are CH4-rich and later fluids that are more CO3- or CO2-rich. Marange diamonds have limited overall δ13C variation, but do show fractionation during growth towards higher δ13C values. This trend can be explained by diamond precipitation from mixed CH4 and CO2 fluids, where isotopic fractionation occurs as the amount of fluid wanes. Calculated δ15N values for diamond source fluids evolving in this manner are between + 2.3 and + 6.4‰. These N isotopic compositions require CH4-rich and CO3-/CO2-rich 'end-member' fluids to have a recycled metasedimentary component perhaps introduced with subduction of eclogite.

  11. P- V- T properties of fluids in the system H 2O ± CO 2 ± NaCl: New graphical presentations and implications for fluid inclusion studies

    NASA Astrophysics Data System (ADS)

    Brown, Philip E.; Lamb, William M.

    1989-06-01

    Understanding the role of fluids in geologic processes requires a knowledge of the P- V- T properties of fluids over a wide range of conditions. Comparisons of several published equations of state with available experimental data for fluids composed of H 2O and CO 2 lead to the conclusion that the hard-sphere modified Redlich-Kwong equation of state of Kerrick and Jacobs (1981) most accurately predicts the P- V- T properties in this binary system. To model the volumetric properties in the H 2OCO 2NaCl system a formulation is presented involving a linear (ideal) interpolation between a pure-CO 2 isochore predicted by the equation of state of Kerrick. and Jacobs (1981) and an H 2O-NaCl isochore predicted by an empirical equation derived from the regression of available P- V- T data for the H 2O-NaCl system. This formulation is applicable over a wide range of temperatures (>350°C) and pressures (2-10 kbars) and is especially suitable for high pressures and low-to-moderate temperatures (fluid densities ≥ 1.0 cm 3). Determination of the appropriate isochore for an H 2OCO 2NaCl fluid inclusion requires (1) the relative salinity (NaCl/H 2O + NaCl), (2) bulk density of the combined gas and liquid CO 2 phases, and (3) volume percent estimate of the aqueous p the total homogenization temperature. The commonly encountered problem of estimating the volume percents of phases in inclusions may be avoided in some applications, and several new P- X(CO 2) diagrams have been constructed and contoured with (a) the solvi in the mixed volatile system and (b) the measured density of the CO 2 phase. The effects of H 2OCO 2 clathrates during microthermometric observations in the laboratory are evaluated and in most instances can be minimized or avoided. Application of these results to fluid inclusion studies have led to improved determinations of (1) pressures and temperatures of fluid entrapment in a variety of geologic settings and (2) pressures and temperatures of

  12. Magmatogene fluids of metal-bearing reefs in the Bushveld Complex, South Africa: Based on research data on fluid inclusions in quartz

    NASA Astrophysics Data System (ADS)

    Zhitova, L. M.; Kinnaird, J. A.; Gora, M. P.; Shevko, E. P.

    2016-01-01

    Fluid inclusions in the Merensky Reef quartz and later pegmatite veins crosscutting the Platreef rocks of the Bushveld Complex are studied by a suite of advanced high-precision methods. Based on the conducted studies, we identify a few types of fluids, some having been separated during the crystallization of volatile matter-rich residual melt of original basic magma, while others are derivatives of later felsic (granite) melts that formed crosscutting veins in fully devitrified ultrabasic and basic rocks. The earliest fluid is captured by quartz in symplectitic intergrowths with intercumulus plagioclase from the Merensky Reef pyroxenite occurs as a homogenous dense dry reduced gas (CH4-N2 ± CO2) mixture separated from the aluminosilicate melt at 800-900°C and 3050 bar. The following heterophase highly concentrated fluids (60-80 wt % NaCl eq.) separated at over 550°C and below 3050 bar transport a large number of metals. Major saline components of such fluids included Na, K, Fe, Ca, and Mn chlorides, Ca and Na sulphates and carbonates. According to LA ICP-MS analysis data, inclusions of these fluids contain high concentrations of Fe, Cr, K, and Na at the level of a few wt % and also significant contents of Cu, Sn, Sb, Mo, Au, Ag, Bi, and Ni in a concentration range from a few to thousands of ppm. Relatively lower-temperature (much higher than 450°C) fluids accompanying the crystallization of crosscutting quartz-feldspar pegmatite veins at the Platreef are also highly concentrated (from 70-80% to 40-14 wt % NaCl eq.), oxidized and metal-bearing. High concentrations of metals such as Na, K, Ca, Mn, Fe, and Pb at the level of wt % and also Ni, Co, Cu, As, Mo, Sn, Sb, and Bi (1-500 ppm) in inclusions in quartz of later pegmatite veins suggest the possible participation of magmatogene fluids related to later felsic intrusions in the redistribution of primary magmatic concentrations of metals. The oxidation of reduced heterophase fluids may be the most important

  13. Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites

    NASA Astrophysics Data System (ADS)

    Timofeeff, Michael N.; Lowenstein, Tim K.; da Silva, Maria Augusta Martins; Harris, Nicholas B.

    2006-04-01

    The major-ion (Mg 2+, Ca 2+, Na +, K +, SO42-, and Cl -) chemistry of Cretaceous seawater was determined from analyses of seawater-derived brines preserved as fluid inclusions in marine halites. Fluid inclusions in primary halite from three evaporite deposits were analyzed by the environmental scanning electron microscopy (ESEM) X-ray energy dispersive spectrometry (EDS) technique: the Early Cretaceous (Aptian, 121.0-112.2 Ma) of the Sergipe basin, Brazil and the Congo basin, Republic of the Congo, and the Early to Late Cretaceous (Albian to Cenomanian, 112.2-93.5 Ma) of the Khorat Plateau, Laos, and Thailand. The fluid inclusions in halite indicate that Cretaceous seawater was enriched several fold in Ca 2+, depleted in SO42-, Na +, and Mg 2+, and had lower Na +/Cl -, Mg 2+/Ca 2+, and Mg 2+/K + ratios compared to modern seawater. Elevated Ca 2+ concentrations, with Ca 2+ > SO42- at the point of gypsum saturation, allowed Cretaceous seawater to evolve into Mg 2+-Ca 2+-Na +-K +-Cl - brines lacking measurable SO42-.The major-ion composition of Cretaceous seawater was modeled from fluid inclusion chemistries for the Aptian and the Albian-Cenomanian. Aptian seawater was extreme in its Ca 2+ enrichment, more than three times higher than present day seawater, with a Mg 2+/Ca 2+ ratio of 1.1-1.3. Younger, Albian-Cenomanian seawater had lower Ca 2+ concentrations, and a higher Mg 2+/Ca 2+ ratio of 1.2-1.7. Cretaceous (Aptian) seawater has the lowest Mg 2+/Ca 2+ ratios so far documented in Phanerozoic seawater from fluid inclusions in halite, and within the range chemically favorable for precipitation of low-Mg calcite ooids and cements. Results from halite fluid inclusions, together with Mg 2+/Ca 2+ ratios measured from echinoderm and rudist calcite, all indicate that Early Cretaceous seawater (Hauterivian, Barremian, Aptian, and Albian) had lower Mg 2+/Ca 2+ ratios than Late Cretaceous seawater (Coniacian, Santonian, and Campanian). Low Aptian-Albian Mg 2+/Ca 2+ seawater

  14. A salt diapir-related Mississippi Valley-type deposit: the Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: fluid inclusion and isotope study

    NASA Astrophysics Data System (ADS)

    Bouhlel, Salah; Leach, David L.; Johnson, Craig A.; Marsh, Erin; Salmi-Laouar, Sihem; Banks, David A.

    2016-08-01

    The Bou Jaber Ba-F-Pb-Zn deposit is located at the edge of the Bou Jaber Triassic salt diapir in the Tunisia Salt Diapir Province. The ores are unconformity and fault-controlled and occur as subvertical column-shaped bodies developed in dissolution-collapse breccias and in cavities within the Late Aptian platform carbonate rocks, which are covered unconformably by impermeable shales and marls of the Fahdene Formation (Late Albian-Cenomanian age). The host rock is hydrothermally altered to ankerite proximal to and within the ore bodies. Quartz, as fine-grained bipyramidal crystals, formed during hydrothermal alteration of the host rocks. The ore mineral assemblage is composed of barite, fluorite, sphalerite, and galena in decreasing abundance. The ore zones outline distinct depositional events: sphalerite-galena, barite-ankerite, and fluorite. Fluid inclusions, commonly oil-rich, have distinct fluid salinities and homogenization temperatures for each of these events: sphalerite-galena (17 to 24 wt% NaCl eq., and Th from 112 to 136 °C); ankerite-barite (11 to 17 wt% NaCl eq., and Th from 100 to 130 °C); fluorite (19 to 21 wt% NaCl eq., Th from 140 to 165 °C). The mean temperature of the ore fluids decreased from sphalerite (125 °C) to barite (115 °C) and increased during fluorite deposition (152 °C); then decreased to ˜110 °C during late calcite precipitation. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of fluid inclusions in fluorite are metal rich (hundreds to thousands ppm Pb, Zn, Cu, Fe) but the inclusions in barite are deficient in Pb, Zn, Cu, Fe. Inclusions in fluorite have Cl/Br and Na/Br ratios of several thousand, consistent with dissolution of halite while the inclusions analysed in barite have values lower than seawater which are indicative of a Br-enriched brine derived from evaporation plus a component of halite dissolution. The salinity of the barite-hosted fluid inclusions is less than obtained simply by the

  15. Simulation of Fluid and Inclusions Dynamics during Filtration Operations of Ductile Iron Melts Using Foam Filters

    NASA Astrophysics Data System (ADS)

    Dávila-Maldonado, O.; Adams, A.; Oliveira, L.; Alquist, B.; Morales, R. D.

    2008-12-01

    The use of ceramic foam filters in ductile iron foundries to reduce the number of inclusions that reach the casting has been widely accepted. However, the exact mechanisms contributing to foam filter effectiveness are not yet known; this limits the ability to maximize filter performance and inclusion reduction. The objective of this work is to qualify and quantify the effects of the foam filter structure on inclusion retention. This has been accomplished through the development of a three-dimensional (3-D) mathematical model, based on physical water modeling and mathematical simulations. It was found that the casting rate and inclusion density play minor roles in the capture ratio, while inclusion size is the most influent variable. One mechanism for capturing inclusions involves the direct impact of an inclusion on the web wall and its adhesion after crossing over the liquid film. Two additional mechanisms involve the entrainment of inclusions by buoyancy-lift forces into low-velocity fields and the ulterior adhesion through buoyancy effects. The second mechanism is the entrainment of inclusions into microrecirculating flows; the inclusions remain in these flows for times that exceed the mold filling time. The latter mechanism has limited intensity for inclusions approximately 30 to 100 μm in size. In order to enhance the effects of this mechanism in this range of sizes, the vorticity magnitude in the microfree shear flows in the filter’s pores must be increased, through changes in the structure geometry of this device.

  16. Quantitative fluid inclusion gas analysis of airburst, nuclear, impact and fulgurite glasses.

    SciTech Connect

    Parnell, John; Newsom, Horton E.; Blamey, Nigel J. F.; Boslough, Mark Bruce Elrick

    2010-10-01

    We present quantitative fluid inclusion gas analysis on a suite of violently-formed glasses. We used the incremental crush mass spectrometry method (Norman & Blamey, 2001) to analyze eight pieces of Libyan Desert Glass (LDG). As potential analogues we also analyzed trinitite, three impact crater glasses, and three fulgurites. The 'clear' LDG has the lowest CO{sub 2} content and O{sub 2}/Ar ratios are two orders of magnitude lower than atmospheric. The 'foamy' glass samples have heterogeneous CO{sub 2} contents and O{sub 2}/Ar ratios. N{sub 2}/Ar ratios are similar to atmospheric (83.6). H{sub 2} and He are elevated but it is difficult to confirm whether they are of terrestrial or meteoritic origin. Combustion cannot account for oxygen depletion that matches the amount of CO{sub 2} produced. An alternative mechanism is required that removes oxygen without producing CO{sub 2}. Trinitite has exceedingly high CO{sub 2} which we attribute to carbonate breakdown of the caliche at ground zero. The O{sub 2}/Ar ratio for trinitite is lower than atmospheric but higher than all LDG samples. N{sub 2}/Ar ratios closely match atmospheric. Samples from Lonar, Henbury and Aouelloul impact craters have atmospheric N{sub 2}/Ar ratios. O{sub 2}/Ar ratios at Lonar and Henbury are 9.5 to 9.9 whereas the O{sub 2}/Ar ratio is 0.1 for the Aouelloul sample. In most fulgurites the N{sub 2}/Ar ratio is higher than atmospheric, possibly due to interference from CO. Oxygen ranges from 1.3 to 19.3%. Gas signatures of LDG inclusions neither match those from the craters, trinitite nor fulgurites. It is difficult to explain both the observed depletion of oxygen in the LDG and a CO{sub 2} level that is lower than it would be if the CO{sub 2} were simply a product of hydrocarbon combustion in air. One possible mechanism for oxygen depletion is that as air turbulently mixed with a hot jet of vaporized asteroid from an airburst and expanded, the atmospheric oxygen reacted with the metal vapor to form

  17. Fluid inclusions and preliminary studies of hydrothermal alteration in core hole PLTG-1, Platanares geothermal area, Honduras

    USGS Publications Warehouse

    Bargar, K.E.

    1991-01-01

    The Platanares geothermal area in western Honduras consists of more than 100 hot springs that issue from numerous hot-spring groups along the banks or within the streambed of the Quebrada de Agua Caliente (brook of hot water). Evaluation of this geothermal area included drilling a 650-m deep PLTG-1 drill hole which penetrated a surface mantling of stream terrace deposits, about 550 m of Tertiary andesitic lava flows, and Cretaceous to lower Tertiary sedimentary rocks in the lower 90 m of the drill core. Fractures and cavities in the drill core are partly to completely filled by hydrothermal minerals that include quartz, kaolinite, mixed-layer illite-smectite, barite, fluorite, chlorite, calcite, laumontite, biotite, hematite, marcasite, pyrite, arsenopyrite, stibnite, and sphalerite; the most common open-space fillings are calcite and quartz. Biotite from 138.9-m depth, dated at 37.41 Ma by replicate 40Ar/39 Ar analyses using a continuous laser system, is the earliest hydrothermal mineral deposited in the PLTG-1 drill core. This mid-Tertiary age indicates that at least some of the hydrothermal alteration encountered in the PLTG-1 drill core occured in the distant past and is unrelated to the present geothermal system. Furthermore, homogenization temperatures (Th) and melting-point temperatures (Tm) for fluid inclusions in two of the later-formed hydrothermal minerals, calcite and barite, suggest that the temperatures and concentration of dissolved solids of the fluids present at the time these fluid inclusions formed were very different from the present temperatures and fluid chemistry measured in the drill hole. Liquid-rich secondary fluid inclusions in barite and caicite from drill hole PLTG-1 have Th values that range from about 20??C less than the present measured temperature curve at 590.1-m depth to as much as 90??C higher than the temperature curve at 46.75-m depth. Many of the barite Th measurements (ranging between 114?? and 265??C) plot above the

  18. Mineral thermobarometry and fluid inclusion studies on the Closepet granite, Eastern Dharwar Craton, south India: Implications to emplacement and evolution of late-stage fluid

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourabh; Panigrahi, Mruganka K.; Jayananda, M.

    2014-09-01

    The Closepet granite (CPG), a spectacularly exposed magmatic body along with other intrusive bodies (to the east of it) typifies the late Archean granitic activity in the Eastern Dharwar Craton (EDC), south India. In the present study, the P-T-fO2 conditions of emplacement and physico-chemical environment of the associated magmatic-hydrothermal regime of CPG have been retrieved on the basis of mineral chemical and fluid inclusion studies. Amphibole-plagioclase Ti-in-amphibole and Ti-in-biotite geothermometers along with Al-in-amphibole geobarometer have been used to reconstruct the emplacement temperature and pressure conditions in the majority of the pluton. Estimated temperatures of emplacement of CPG vary from to 740 to 540 °C. A variation of pressure from 4.8 to 4.1 kilo bars corresponding to this temperature range was obtained. While there is a faint south to north negative gradient in temperature, the variation of pressure does not seem to follow this trend and indicates more or less same crustal level of emplacement for the body between Ramanagaram-Kalyandurga segment extending for about 230 km. Mineral chemistry of biotite indicates crystallization of CPG under high oxygen fugacity conditions (mostly above QFM buffer) with no clear spatial variation in the fugacity of halogen species in the late-stage magmatic fluid. It may be surmised that barring the southernmost part of CPG, there is no perceptible variation in the physicochemical environment of emplacement. Fluid Inclusion studies in the granitic matrix quartz and pegmatite/vein quartz show dominance of H2O and H2O-CO2 fluids respectively in them. The difference in the fluid characteristics is interpreted in terms of the initial loss of CO2 rich fluid from granitic magma and aqueous-rich nature during the later stages of crystallization of quartz. The exsolved CO2-rich fluid was responsible in formation of the later quartz and pegmatitic veins at different crustal levels and also possibly was

  19. Fluid inclusion petrography and microthermometry of the Cocos Ridge hydrothermal system, IODP Expedition 344 (CRISP 2), Site U1414

    NASA Astrophysics Data System (ADS)

    Brandstätter, J.; Kurz, W.; Krenn, K.; Micheuz, P.

    2015-12-01

    We present new data from microthermometric analyses of fluid inclusions entrapped in hydrothermal veins within lithified sediments and Cocos Ridge (CCR) basalt from IODP Expedition 344 site U1414 (Costa Rica) and concern on a primary task of Expedition 344, i.e. to evaluate fluid/rock interaction, the hydrologic system, and the geochemical processes (indicated by composition and volume of fluids) active within the incoming Cocos Plate. Mineralization of the veins and crosscutting relationships gives constraints for the different generation of veins. Calcium carbonate, commonly aragonite in the upper part and calcite in the lower part of the igneous basement, is usually present in veins as a late phase following the quartz precipitation and the clay minerals formation. The sequence of vein generations in the lithified sediments close to the contact within the CCR basalt is characterized by smaller veins filled by quartz, followed by massive intersecting calcite veins. A high fluid pressure can be concluded, due to wall rock fragments embedded within the filling and fractured mineral grains in the ground mass, which are close to the veins. This requires that the magmatic basement and the lithified sediments were covered by sequences of low permeability sediments forming a barrier that enabled build up elevated fluid pressure. The investigation of fluid inclusions in the lowest units of borehole 344-U1414, give clues about the source of the fluids and about the vein evolution within the incoming Cocos Plate close to Middle American Trench. The microthermometric analyses of the primary, almost aqueous, inclusions indicate a temperature range during entrapment between 200 and 420°C. The data indicate that seawater within the Cocos Ridge aquifer communicated with high-temperature fluids and/or were modified by heat advection. We consider the Galapagos hotspot and/ or the Cocos-Nazca spreading center as heat source. Fluids originated from mobilized sediment pore water

  20. Strain localization in brittle-ductile shear zones: fluid abundant vs fluid limited conditions (an example from Wyangala area, Australia)

    NASA Astrophysics Data System (ADS)

    Spruzeniece, L.; Piazolo, S.

    2015-04-01

    This study focuses on physiochemical processes occurring in a brittle-ductile shear zone at both fluid-present and fluid-limited conditions. In the studied shear zone (Wyangala, SE Australia), a coarse-grained two feldspar-quartz-biotite granite is transformed into a medium grained orthogneiss at the shear zone margins and a fine-grained quartz-muscovite phyllonite in the central parts. The orthogneiss displays cataclasis of feldspar and crystal-plastic deformation of quartz. Quartz accommodates most of the deformation and is extensively recrystallized showing distinct crystallographic preferred orientation (CPO). Feldspar-to-muscovite, biotite-to-muscovite and albitization reactions occur locally at porphyroclasts' fracture surfaces and margins. However, the bulk rock composition shows very little change in respect to the wall rock composition. In contrast, in the shear zone centre quartz occurs as large, weakly deformed porphyroclasts, in sizes similar to that in the wall rock, suggesting that it has undergone little deformation. Feldspars and biotite are almost completely reacted to muscovite, which is arranged in a fine-grained interconnected matrix. Muscovite-rich layers contain significant amounts of fine-grained intermixed quartz with random CPO. These domains are interpreted to have accommodated most of the strain. Bulk rock chemistry data shows a significant increase in SiO2 and depletion in NaO content compared to the wall rock composition. We suggest that the high and low strain fabrics represent markedly different scenarios and cannot be interpreted as a simple sequential development with respect to strain. We suggest that the fabrics and mineralogical changes in the shear zone centre have formed due to fluid influx probably along an initially brittle fracture. Here, hydration reactions dramatically changed the rheological properties of the rock. In the newly produced muscovite-quartz layers creep cavitation associated with grain boundary sliding and

  1. Diagenesis associated with subaerial exposure of Miocene strata, southeastern Spain: Implications for sea-level change and preservation of low-temperature fluid inclusions in calcite cement

    USGS Publications Warehouse

    Goldstein, R.H.; Franseen, E.K.; Mills, M.S.

    1990-01-01

    Many ancient carbonate rocks contain calcite cements that precipitated from shallow, fresh groundwater that entered strata during events of subaerial exposure. Such low-temperature cementation may be difficult to interpret from fluid inclusion studies because some of the inclusions may reequilibrate during later thermal events. Miocene rocks of southeast Spain provide an example of the utility of fluid inclusion studies in rocks that have not been subjected to significant heating. In the Mesa Roldan area, one type of calcite cement occurs exclusively below a regional stratigraphic surface of enigmatic origin. The cement has petrographic characteristics indicative of cementation in the vadose zone (generally thought to be a zone of oxidation) but has cathodoluminescent bands containing reduced manganese and iron. Primary fluid inclusions contain mostly fresh water, have variable ratios of vapor to liquid, and are at one atmosphere of pressure. Our observations indicate that calcite precipitated from a freshwater vadose zone, which was subjected to local or repetitive saturation, and minor brackish water. The fluid inclusion data indicate that low-temperature fluid inclusions can be preserved in ancient sequences despite a later history of different pore fluids. This indication of subaerial diagenesis of distal slope deposits suggests a relative sea-level drop of at least 50-55 m during the Late Miocene. Similar petrographic and fluid inclusion observations can be used to interpret sea-level changes in other areas. ?? 1990.

  2. Radiation-Dependent Limit for the Viability of Bacterial Spores in Halite Fluid Inclusions and on Mars

    PubMed Central

    Kminek, Gerhard; Bada, Jeffrey L.; Pogliano, Kit; Ward, John F.

    2014-01-01

    Kminek, G., Bada, J. L., Pogliano, K. and Ward, J. F. Radiation-Dependent Limit for the Viability of Bacterial Spores in Halite Fluid Inclusions and on Mars. Radiat. Res. 159, 722–729 (2003). When claims for the long-term survival of viable organisms are made, either within terrestrial minerals or on Mars, considerations should be made of the limitations imposed by the naturally occurring radiation dose to which they have been exposed. We investigated the effect of ionizing radiation on different bacterial spores by measuring the inactivation constants for B. subtilis and S. marismortui spores in solution as well as for dry spores of B. subtilis and B. thuringiensis. S. marismortui is a halophilic spore that is genetically similar to the recently discovered 2-9-3 bacterium from a halite fluid inclusion, claimed to be 250 million years old (Vreeland et al., Nature 407, 897–900, 2000). B. thuringiensis is a soil bacterium that is genetically similar to the human pathogens B. anthracis and B. cereus (Helgason et al., Appl. Environ. Microbiol. 66, 2627–2630, 2000). To relate the inactivation constant to some realistic environments, we calculated the radiation regimen in a halite fluid inclusion and in the Martian subsurface over time. Our conclusion is that the ionizing dose of radiation in those environments limits the survival of viable bacterial spores over long periods. In the absence of an active repair mechanism in the dormant state, the long-term survival of spores is limited to less than 109 million years in halite fluid inclusions, to 100 to 160 million years in the Martian subsurface below 3 m, and to less than 600,000 years in the uppermost meter of Mars. PMID:12751954

  3. Radiation-Dependent Limit for the Viability of Bacterial Spores in Halite Fluid Inclusions and on Mars

    NASA Technical Reports Server (NTRS)

    Kminek, Gerhard; Bada, Jeffrey L.; Pogliano, Kit; Ward, John F.

    2003-01-01

    When claims for the long-term survival of viable organisms are made, either within terrestrial minerals or on Mars, considerations should be made of the limitations imposed by the naturally occurring radiation dose to which they have been exposed. We investigated the effect of ionizing radiation on different bacterial spores by measuring the inactivation constants for B. subtilis and s. marismortui spores in solution as well as for dry spores of B. subtilis and B. thuringiensis. S. marismortui is a halophilic spore that is genetically similar to the recently discovered 2-9-3 bacterium from a halite fluid inclusion, claimed to be 250 million years old, B. thuringiensis is a soil bacterium that is genetically similar to the human pathogens B. anthracis and B. cereus. To relate the inactivation constant to some realistic environments, we calculated the radiation regimen in a halite fluid inclusion and in the Martian subsurface over time. Our conclusion is that the ionizing dose of radiation in those environments limits the survival of viable bacterial spores over long periods. In the absence of an active repair mechanism in the dormant state, the long-term survival of spores is limited to less than 109 million years in halite fluid inclusions, to 100 to 160 million years in the Martian subsurface below 3 m, and to less than 600,000 years in the upper-most meter of Mars.

  4. The major composition of a middle-late Eocene salt lake in the Yunying depression of Jianghan Basin of Middle China based on analyses of fluid inclusions in halite

    NASA Astrophysics Data System (ADS)

    Meng, Fan-Wei; Galamay, A. R.; Ni, Pei; Yang, Chun-He; Li, Yin-Ping; Zhuo, Qin-Gong

    2014-05-01

    During the Cretaceous-Tertiary transition in eastern China, abundant halites formed in non-marine areas. Many continental salt deposits from inland salt lakes were formed in eastern China in faulted basins as a result of the northward movement and collision of the Indo-China Plate with the Eurasian Plate, including the Bohai Gulf Basin. However, a marine transgression versus a non-marine origin of these evaporites remains to be determined. Primary fluid inclusions trapped in halite deposits can directly record the composition of evaporated seawater or salt lake water, such as those in the Cretaceous halite in the Khorat Plateau (Laos and Thailand) area can resolve the origins of the evaporate deposits; recent fluid inclusions data in the Khorat Plateau coincide with the predicted secular variation of seawater and are comparable to other fluid inclusions in Cretaceous marine halite, indicating these fluid inclusions are directly related to a marine transgression. Our analyses in this study shows that the average K+, Mg2+, and SO42- contents are 8.8, 5.0, and 6.8 g/l, respectively, in the primary fluid inclusions in halite of middle-late Eocene from the Yunying depression of China. These numbers are much less than those in the contemporary Spanish primary fluid inclusions in halite precipitated from seawater (16.4, 36.3, and 12.5 g/l for K+, Mg2+, and SO42-, respectively). Furthermore, Br contents of all fluid inclusion samples in halite from the Yunying depression are lower than 2 ppm (vs. 55-58 ppm at the base of Spanish contemporary marine halite), and their δ37Cl values range from -0.11‰ to +2.94‰ (vs. -0.09‰ to -0.24‰ in sylvite of Spanish deposit), indicating that the compositions of the middle-late Eocene brines trapped in halite in the Yunying depression of China are very different from those derived from the contemporary seawater, and are considered to be resulted from evaporation of an inland saline lake water with little influence of seawater.

  5. Ore genesis constraints on the Idaho cobalt belt from fluid inclusion gas, noble gas isotope, and ion ratio analyses--a reply

    USGS Publications Warehouse

    Hofstra, Albert H.; Landis, Gary P.

    2013-01-01

    Burlinson (2013) questions the veracity of the H2 concentrations reported for fluid inclusion extracts from minerals in the Idaho cobalt belt (Table 2; Landis and Hofstra, 2012) and suggests that they are an analytical artifact of electron-impact mass spectrometry. He also declares that H2 should not be present in fluid inclusions because it is invariably lost by diffusion and is never detected in fluid inclusions by laser Raman. We welcome this opportunity to reply and maintain that the reported H2 contents are accurate. Below we explain why Burlinson’s criticisms are invalid.

  6. Fluid inclusion studies of the Rodeo de Los Molles REE and Th deposit, Las Chacras Batholith, Central Argentina

    NASA Astrophysics Data System (ADS)

    Lira, Raul; Ripley, Edward M.

    1990-03-01

    The Rodeo de Los Molles rare earth element (REE) and thorium deposit is located in granitic rocks of the Las Chacras-Piedras Coloradas Batholith, in the southern block of the Eastern Pampean Ranges, Central Argentina. Mineralization occurs within an elongate (2 km × 0.6 km) body of alkalifeldspar granite (alaskite) localized along the northeastern edge of a composite batholith. The surrounding lithology is predominantly a biotite monzogranite. Both the alaskite and localized areas of quartz alkalifeldspar syenite within the alaskite have been produced by hydrothermal alteration of a late-crystallizing phase of the monzogranite. REE minerals are primarily of the cerium group and include britholite and allanite, both partially replaced by bastnaesite or thorbastnaesite. These minerals occur as nodules with quartz, fluorite, aegirine-augite, sphene, and Fe-Ti oxides within aplitic to pegmatoidal quartz alkalifeldspar syenite. Uranothorite, along with a second generation of fluorite and minor amounts of MnBa oxides, occurs in the alaskite as nodules, or within quartz-lined miarolitic cavities, but is not found with the Ce-mineralization. Studies of fluid inclusions contained in quartz and fluorite indicate a complex history of open-system fluid migration and interaction with monzogranite host rocks. Fluids responsible for REE mineralization and quartz deposition, along with initial alteration of the monzogranite to alaskite and quartz alkalifeldspar syenite, were of relatively high temperature (T h of fluid inclusions in quartz = 356-535°C) and moderate salinity (15-25 eq. wt% NaCl). Mixed CO 2H 2O fluids (XCO 2 = .13-.07) found as both primary and secondary inclusions within fluorite are representative of fluids involved in the replacement of britholite-allanite by bastnaesite and sphene, aegirine-augite, and plagioclase by calcite. Minimum pressures of mineral deposition estimated from H 2OCO 2NaCl phase relations range from 1 to 2 kbars. Secondary

  7. Formation conditions of leucogranite dykes and aplite-pegmatite dykes in the eastern Mt. Capanne plutonic complex (Elba, Italy): fluid inclusion studies in quartz, tourmaline, andalusite and plagioclase

    NASA Astrophysics Data System (ADS)

    Bakker, Ronald J.; Schilli, Sebastian E.

    2016-02-01

    Leucogranite and aplite-pegmatite dykes are associated with the Mt. Capanne pluton (Elba) and partly occur in the thermally metamorphosed host rock (serpentinites). Crystallization conditions of these dykes in the late magmatic-hydrothermal stage are estimated from fluid inclusion studies and mineralogical characterisation, obtained from detailed microthermometry, Raman spectroscopy, and electron microprobe analyses. Fluid inclusion assemblages are analysed in andalusite, quartz, and plagioclase from the leucogranite dykes, and in tourmaline and quartz from the aplite-pegmatite dykes. The fluid inclusion assemblages record multiple pulses of low salinity H2O-rich magmatic and reduced metamorphic fluid stages. Magmatic fluids are characterized by the presence of minor amounts of CO2 and H3BO3, whereas the metamorphic fluids contain CH4 and H2. The highly reduced conditions are also inferred from the presence of native arsenic in some fluid inclusions. Several fluid inclusion assemblages reveal fluid compositions that must have resulted from mixing of both fluid sources. In leucogranite dykes, magmatic andalusite contains a low-density magmatic CO2-rich gas mixture with minor amounts of CH4 and H2. Accidentally trapped crystals (mica) and step-daughters (quartz and diaspore) are detected in some inclusions in andalusite. The first generation of inclusions in quartz that crystallized after andalusite contains a highly reduced H2O-H2 mixture and micas. The second type of inclusions in quartz from the leucogranite is similar to the primary inclusion assemblage in tourmaline from the aplite-pegmatite, and contains up to 4.2 mass% H3BO3, present as a sassolite daughter crystal or dissolved ions, in addition to a CO2-CH4 gas mixture, with traces of H2, N2, H2S, and C2H6. H2O is the main component of all these fluids ( x = 0.91 to 0.96) with maximally 7 mass% NaCl. Some accidentally trapped arsenolite and native arsenic are also detected. These fluids were trapped in the

  8. A new technique for surface and shallow subsurface paleobarometry using fluid inclusions: An example from the Upper Ordovician Viola Formation, Kansas, USA

    USGS Publications Warehouse

    Newell, K.D.; Goldstein, R.H.

    1999-01-01

    This research illustrates a new approach for paleobarometry employing heterogeneously entrapped fluid inclusions to determine timing and depth of diagenesis. Heterogeneously entrapped fluid inclusions (gas + water) in vug-filling quartz from the Upper Ordovician Viola Formation in the Midcontinent of the United States were analyzed for their internal pressure with a fluid-inclusion crushing stage. The free gas in fluid inclusions was entrapped at near-surface temperature, as indicated by the presence of all-liquid fluid inclusions and fluid inclusions with low homogenization temperatures ( <40??C). Crushing the crystal and measuring the change in bubble size determines the pressure of entrapment directly. Heterogeneous trapping is indicated by widely varying L:V ratios, from all-liquid to vapor-rich. Gas bubbles in most fluid inclusions analyzed expanded upon release to atmospheric pressure, but some collapsed. A mode of 1.5 to 2.0 atm internal pressure was indicated by the crushing runs, but pressures up to 42.9 atm were recorded. Quartz precipitation and associated fluid-inclusion entrapment therefore occurred over a wide depth-range, but principally at depths of approximately 10 m. Crushing runs done in kerosene confirmed the presence of hydrocarbon gases in most of these inclusions, and bulk analyses of gases in the quartz by quadrupole mass spectrometer revealed methane, ethane, and atmospheric gases. The hydrocarbon gases may have originated in deeper thermogenically mature sedimentary strata, and then leaked to the near-surface where they were entrapped in the precipitating quartz cement. Freezing data indicate an event of quartz precipitation from fluids of marine-fresh water intermediate salinity and other events of precipitation from more saline fluids. Considering the determined pressures, the precipitating fluids probably originated at surfaces of subaerial exposure (unconformities) and surfaces of evaporite precipitation in the overlying Silurian

  9. New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    NASA Astrophysics Data System (ADS)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-07-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (-210 to 0 ‰ for δ D and -27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass

  10. New on-line method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    NASA Astrophysics Data System (ADS)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-01-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us to simultaneously measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the on-line water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δD reliability. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water resulting in an artificial water background with well-known δD and δ18O values. The speleothem sample is placed into a copper tube, attached to the line and after system stabilisation is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain δD and δ18O isotopic composition of measured water aliquots. Precision is better than 1.5‰ for δD and 0.4‰ for δ18O for water measurement for an extended range (-210 to 0‰ for δD and -27 to 0‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to Isotope Ratio Mass Spectrometry (IRMS) technique.

  11. Improvement of the determination of element concentrations in quartz-hosted fluid inclusions by LA-ICP-MS and Pitzer thermodynamic modeling of ice melting temperature

    NASA Astrophysics Data System (ADS)

    Leisen, Mathieu; Dubessy, Jean; Boiron, Marie-Christine; Lach, Philippe

    2012-08-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has become an essential analytical tool for the study of paleofluid chemistry through the analysis of individual fluid inclusions. The calculation of major and trace element concentrations in fluid inclusions is usually based on empirical equations whose significance and accuracy are questionable. In addition, methods for estimation of analytical uncertainties element concentration in individual fluid inclusions are lacking. This study describes a method based upon Pitzer's thermodynamic model for the calculation of major element (Na, K, Mg and Ca) concentrations in low-to moderate-salinity fluid inclusions. A signal processing protocol, used in combination with the new method is also developed to calculate the concentration, for each inclusion, and uncertainty for each major and trace element. In order to validate the proposed method, synthetic and natural fluid inclusions (from Alpine quartz veins) were ablated with a 193 nm ArF excimer laser and analyzed with a quadrupole ICP-MS, equipped with an octopole collision-reaction cell. The difference between the calculated and actual element concentration (i.e. accuracy) does not exceed 20% and the calculated relative standard deviation (i.e. precision) for all element concentrations is ˜10% in standards (glasses, solutions in capillary tubes and synthetic fluid inclusions). The element concentrations obtained with this new method for the Alpine fluid inclusions are in good agreement with those previously measured using Laser Induced Breakdown Spectroscopy (LIBS) or crush-leach methods. Finally, the calculated concentrations and associated uncertainties determined for each element in individual fluid inclusions show that the sensitivity of LA-ICP-MS analysis is high enough to reflect small variations of major and trace element concentrations in the Alpine paleofluid, initially considered to have a constant chemistry. The new approach presented in

  12. Origin of REE-rich ferrocarbonatites in southern Siberia (Russia): implications based on melt and fluid inclusions

    NASA Astrophysics Data System (ADS)

    Prokopyev, Ilya R.; Borisenko, Alexander S.; Borovikov, Andrey A.; Pavlova, Galina G.

    2016-12-01

    Fe-rich carbonatites with a mineral assemblage of ankerite-calcite or siderite are widespread in southern Siberia, Russia. The siderite carbonatites are associated with F-Ba-Sr-REE mineralization and have a 40Ar/39Ar age of 117.2 ± 1.3 Ma. Melt and fluid inclusions suggest that the carbonatites formed from volatile-rich alkali- and chloride-bearing carbonate melts. Ankerite-calcite carbonatites formed from carbonatite melt at a temperature of more than 790 °C. The ferrocarbonatites (the second phase of carbonatite intrusion) formed from a sulfate-carbonate-chloride fluid phase (brine-melt) at >650 °C and ≥360 MPa. The brine-melt fluid phase had high concentrations of Fe and LREEs. A subsequent hydrothermal overprint contributed to the formation of economically important barite-Sr-fluorite-REE mineralization in polymict siderite breccia.

  13. Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: A mantle connection for mineralization?

    USGS Publications Warehouse

    Mao, J.; Li, Y.; Goldfarb, R.; He, Y.; Zaw, K.

    2003-01-01

    The Dongping gold deposit (>100 t Au) occurs about 200 km inboard of the northern margin of the North China craton. The deposit is mainly hosted by syenite of a middle Paleozoic alkalic intrusive complex that was emplaced into Late Archean basement rocks. Both groups of rocks are intruded by Late Jurassic to Early Cretaceous crustal-melt granite dikes and stocks, some within a few kilometers of the deposit. The gold ores were deposited during this latter magmatic period at about 150 Ma, a time that was characterized by widespread regional north-south compression that formed the east-west-trending Yanshan deformational belt. The ores include both the telluride mineral-bearing, low sulfide quartz veins and the highly K-feldspar-altered syenite, with most of the resource concentrated in two orebodies (1 and 70). Fluid inclusion microthermometry indicates heterogeneous trapping of low-salinity (e.g., 5-7 wt % NaCl equiv) fluids that varied from a few to 60 mole percent nonaqueous volatile species. Laser Raman spectroscopy confirms that the vapor phase in these inclusions is dominated by CO2, but may be comprised of as much as 9 mole percent H2S and 20 mole percent N2; methane concentrations in the vapor phase are consistently <1 mole percent. The variable phase ratios are consistent with fluid immiscibility during ore formation. Fluid inclusion trapping conditions are estimated to be 250?? to 375??C and 0.6 to 1.0 kbar. Helium isotope studies of fluid inclusions in ore-stage pyrites indicate He/He ratios of 2.1 to 5.2 Ra (Ra = 1.4 x 10-6 for air) for orebody 1 and 0.3 to 0.8 Ra for orebody 70. The former data suggest that at least 26 to 65 percent mantle helium occurs in the fluids that deposited the veins in orebody 1. The lower values for orebody 70, which is characterized by a more disseminated style of gold mineralization, are interpreted to reflect an increased interaction of ore fluids with surrounding crustal rocks, which may have contributed additional He to

  14. Fluid inclusion from drill hole DW-5, Hohi geothermal area, Japan: Evidence of boiling and procedure for estimating CO2 content

    USGS Publications Warehouse

    Sasada, M.; Roedder, E.; Belkin, H.E.

    1986-01-01

    Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.

  15. Stable isotope and fluid inclusion studies of carbonate deposits from the Tolfa Mountains mining district (Latium, central Italy)

    USGS Publications Warehouse

    Masi, U.; Ferrini, V.; O'Neil, J.R.; Batchelder, J.N.

    1980-01-01

    Carbon and oxygen isotope analyses were made of representative samples of calcite and quartz from the carbonate deposits in the Tolfa Mountains mining district. Measurements were also made of hydrogen isotope compositions, filling temperatures and salinities of fluid inclusions in these minerals. There are three stages of mineralization at Tolfa. In stage I, characterized by calc-silicate hornfels, the carbonates have relatively high ?? 18O values of 14.5 to 21.6 suggesting a rather low water/rock ratio. ??13C values of -0.3 to 2.1 indicate that appreciable decarbonation or introduction of deep-seated carbon did not occur. Stage II is marked by phanerocrystalline carbonates; ?? 18O values of 13.1 to 20.0 and ??13C values of 0.7 to 5.0 identify them as hydrothermal veins rather than marbles. ?? D values of -56 to -50 for inclusion fluids suggest a possible magmatic component to the hydrothermal fluid. Filling temperatures of coarse-grained samples of Calcite II are 309?? to 362?? C with a salinity range of 5.3 to 7.1 weight percent NaCl. Calculated ??18O values of 11-12 for these fluids are again indicative of low water/rock ratios. The sparry calcites of stage III have ??18O and ??13C values of 8.1 to 12.9 and -1.7 to 3.2, respectively. ?? D values of inclusion fluids are -40 to -33, clearly heavier than in earlier stages and similar to values of modern local ground waters. A salinity measurement of <0.1 weight percent NaCl in a sample of Calcite III is compatible with a relatively unaltered ground water origin for this fluid. Precipitation of the sparry calcite took place at much lower temperatures, around 160?? C. For quartz, ??18O values of 9.3 to 12.4 and ?? D values for inclusions of -53 to -28 are consistent with its late occurrence and paragenetic link with associated carbonates. ?? 1980 Springer-Verlag.

  16. Seawater fluid inclusions preserved within Cambrian-Ordovician marine cements indicate Cambrian-Ordovician seawater precipitated low-magnesium calcite

    SciTech Connect

    Johnson, W.J.; Goldstein, R.H. . Dept. of Geology)

    1992-01-01

    The San Saba Member of the Wilberns Formation (Llano Uplift, Texas) contains a series of Late Cambrian-Early Ordovician hardgrounds. Bladed low-Mg calcite cements are truncated at hardground surfaces and overlain by shallow marine limestones, indicating a syndepositional shallow marine origin. Primary one-phase fluid inclusions within bladed cements have marine salinities, suggesting that these low-Mg calcite cements formed as a precipitate from Late Cambrian and Early Ordovician seawater and have not undergone recrystallization. Stable isotope analysis of the bladed cement yields delta O-18 values that cluster between [minus]5.6--[minus]6.0 ([per thousand] PDB) which is comparable to those previously reported for Early Ordovician marine calcite. The delta C-13 values are more positive than those reported for this time interval (0.6--1.3 [per thousand] PDB). Trace element analysis indicates that strontium content ranges from 200 to 2,200 ppm. Iron ranges from below detection by electron microprobe to 800 ppm. Mg is generally below detection, however, cements in one hardground display Mg contents that increase progressively toward pore centers. Trace element data lack covariance that would suggest recrystallization. In addition, closed system recrystallization cannot be supported here due to a lack of microdolomite inclusions. Stable isotope, trace element, and fluid inclusion data are consistent with submarine cementation at or below the sediment-water interface. These cements have not undergone significant recrystallization and preserve a primary low Mg calcite mineralogy. These data suggest that early Paleozoic seawater differed chemically from modern seawater. Moreover, preservation of ancient seawater, within fluid inclusions, may provide a direct means of determining those differences.

  17. An Odorant-Binding Protein Is Abundantly Expressed in the Nose and in the Seminal Fluid of the Rabbit

    PubMed Central

    Niccolini, Alberto; Serra, Andrea; Gazzano, Angelo; Scaloni, Andrea; Pelosi, Paolo

    2014-01-01

    We have purified an abundant lipocalin from the seminal fluid of the rabbit, which shows significant similarity with the sub-class of pheromone carriers “urinary” and “salivary” and presents an N-terminal sequence identical with that of an odorant-binding protein (rabOBP3) expressed in the nasal tissue of the same species. This protein is synthesised in the prostate and found in the seminal fluid, but not in sperm cells. The same protein is also expressed in the nasal epithelium of both sexes, but is completely absent in female reproductive organs. It presents four cysteines, among which two are arranged to form a disulphide bridge, and is glycosylated. This is the first report of an OBP identified at the protein level in the seminal fluid of a vertebrate species. The protein purified from seminal fluid is bound to some organic chemicals whose structure is currently under investigation. We reasonably speculate that, like urinary and salivary proteins reported in other species of mammals, this lipocalin performs a dual role, as carrier of semiochemicals in the seminal fluid and as detector of chemical signals in the nose. PMID:25391153

  18. A salt diapir-related Mississippi Valley-type deposit: The Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: Fluid inclusion and isotope study

    USGS Publications Warehouse

    Bouhlel, Salah; Leach, David; Johnson, Craig A.; Marsh, Erin; Salmi-Laouar, Sihem; Banks, David A.

    2016-01-01

    The Bou Jaber Ba-F-Pb-Zn deposit is located at the edge of the Bou Jaber Triassic salt diapir in the Tunisia Salt Diapir Province. The ores are unconformity and fault-controlled and occur as subvertical column-shaped bodies developed in dissolution-collapse breccias and in cavities within the Late Aptian platform carbonate rocks, which are covered unconformably by impermeable shales and marls of the Fahdene Formation (Late Albian–Cenomanian age). The host rock is hydrothermally altered to ankerite proximal to and within the ore bodies. Quartz, as fine-grained bipyramidal crystals, formed during hydrothermal alteration of the host rocks. The ore mineral assemblage is composed of barite, fluorite, sphalerite, and galena in decreasing abundance. The ore zones outline distinct depositional events: sphalerite-galena, barite-ankerite, and fluorite. Fluid inclusions, commonly oil-rich, have distinct fluid salinities and homogenization temperatures for each of these events: sphalerite-galena (17 to 24 wt% NaCl eq., and Th from 112 to 136 °C); ankerite-barite (11 to 17 wt% NaCl eq., and Th from 100 to 130 °C); fluorite (19 to 21 wt% NaCl eq., Th from 140 to 165 °C). The mean temperature of the ore fluids decreased from sphalerite (125 °C) to barite (115 °C) and increased during fluorite deposition (152 °C); then decreased to ∼110 °C during late calcite precipitation. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of fluid inclusions in fluorite are metal rich (hundreds to thousands ppm Pb, Zn, Cu, Fe) but the inclusions in barite are deficient in Pb, Zn, Cu, Fe. Inclusions in fluorite have Cl/Br and Na/Br ratios of several thousand, consistent with dissolution of halite while the inclusions analysed in barite have values lower than seawater which are indicative of a Br-enriched brine derived from evaporation plus a component of halite dissolution. The salinity of the barite-hosted fluid inclusions is less than obtained

  19. Alteration, oxygen isotope, and fluid inclusion study of the Meishan iron oxide-apatite deposit, SE China

    NASA Astrophysics Data System (ADS)

    Yu, Jinjie; Che, Linrui; Wang, Tiezhu

    2015-10-01

    The Meishan deposit (338 Mt at 39 % Fe) comprises massive ores in the main orebody and stockwork and disseminated ores along the main orebody. Four stages of mineralization and related alteration have been identified. The second stage of mineralization, which was the main stage of iron mineralization, formed stringer, disseminated iron ores, as well as the main Meishan orebody. The fourth stage formed small pyrite and/or gold orebodies above or alongside the main magnetite orebody. Stage 2 apatites have homogenization temperatures of 257-485 °C and salinities of 7.3-11 wt% NaCleq. Calculated δ18Ofluid values of magnetite and apatite from the disseminated ores vary between 7.7 and 14.9 ‰, which is similar to values observed in the massive ores (8.1-12.9 ‰). The high-18O fluids at Meishan have been interpreted as being of magmatic-hydrothermal origin. These fluids are indicative of the boiling of ore-forming fluids. Quartz, occurring as cavity fillings, gives homogenization temperatures from 202 to 344 °C, with most values lying between 250 and 330 °C. Corresponding salinities are ˜5 wt% NaCleq. Calculated δ18Ofluid values are +6.4 to +6.8 ‰. These values indicate that the lower-temperature (250-330 °C) quartz was deposited from a cooling magmatic-hydrothermal fluid. Stage 3 siderites contain fluid inclusions that homogenized between 190 and 310 °C, mainly between 210 and 290 °C. Corresponding salinities are 4-8 wt% NaCleq. Stage 4 quartz-carbonate veinlets contain fluid inclusions that homogenized at moderate to low temperatures (150-230 °C) and exhibit low salinities (2-10 wt% NaCl eq). δ18Ofluid values of the mineralizing fluids for the quartz and calcite can be calculated to vary from -0.7 to +5.6 ‰ and +6.3 to +10.2 ‰, respectively. While there is some overlap, the δ18O values of the fluids are generally lower than those observed in the massive and disseminated magnetite ores. δD values for the quartz and calcite vary between -154 and -123

  20. Orientation, composition, and entrapment conditions of fluid inclusions in the footwall of the northern Snake Range detachment, Nevada

    NASA Astrophysics Data System (ADS)

    Carter, Matthew J.; Siebenaller, Luc; Teyssier, Christian

    2015-12-01

    Footwall rocks of the northern Snake Range detachment fault (Hampton and Hendry's Creeks) offer exposures of quartzite mylonites (sub-horizontal foliation) that were permeated by surface fluids. An S-C-C‧ mylonitic fabric is defined by dynamically recrystallized quartz and mica. Electron backscatter diffraction analyses indicate a strong preferred orientation of quartz that is overprinted by two sets of sub-vertical, ESE and NNE striking fractures. Analyses of sets of three perpendicular thin sections indicate that fluid inclusions (FIs) are arranged according to macroscopic fracture patterns. FIs associated with NNE and ESE-striking fractures coevally trapped unmixed CO2 and H2O-rich fluids at conditions near the critical CO2-H2O solvus, giving minimum trapping conditions of T = 175-200 °C and ∼100 MPa H2O-rich FIs trapped along ESE-trending microcracks in single crystals of quartz may have been trapped at conditions as low as 150 °C and 50 MPa indicating the latest microfracturing and annealing of quartz in an overall extensional system. Results suggest that the upper crust was thin (4-8 km) during FI trapping and had an elevated geotherm (>50 °C/km). Footwall rocks that have been exhumed through the brittle-ductile transition in such extensional systems experience both brittle and crystal-plastic deformation that may allow for circulation of meteoric fluids and grain-scale fluid-rock interactions.

  1. Stable isotope composition of fluid inclusions preserved in halite derived from Wieliczka and Bochnia Salt Beds (Southern Poland)

    NASA Astrophysics Data System (ADS)

    Dulinski, Marek; Rozanski, Kazimierz; Bukowski, Krzysztof

    2010-05-01

    Halite deposits located in the southern Poland, near Krakow, are famous mostly due to the medieval salt mine located in Wieliczka. Contrary to most salt deposits in Europe forming large domes, the halite deposits near Krakow form distinct beds, extending from west to east on the area of ca. 10 km2, with several types of salt identified. The deposits were formed in shallow environment, ca. 15 mln years ago and represent initial stages of Miocene sea water evaporation. Stable isotope composition of fluid inclusions trapped in the halite crystals originating from Wieliczka and Bochnia salt mines was investigated. Three distinct groups of samples were analysed: (i) samples derived from so-called 'green salt' beds forming extensive horizontal structures, (ii) samples derived from so-called zuber-type salt, and (iii) large monocrystals of halite collected in two crystal caves existing in the mine. The samples belonging to the first and second group were heated under vacuum to extract the fluid inclusions, according to the procedure used previously to extract inclusions from speleothem samples. The macro-inclusions present in some monocrystals of halite collected in crystal caves were removed for analysis without any thermal treatment. The concentration of bivalent cations (Ca2+, Mg2+) was measured in the bulk material (green salt). K+, Mg2+ and SO4-2 content was measured in the fluid inclusions derived from macro-crystals. The stable isotope data points form two clusters in the δ2H-δ18O space, representing crystal caves and green- and zuber-type salts, respectively. The cluster representing green- and zuber-type salt deposit is shifted to the right-hand side of the Local Meteoric Water Line (LMWL), towards more positive δ2H and δ18O values, pointing to evaporative conditions during formation of these deposits. Although the evaporation trajectories for the sea water in the δ2H - δ18O space suggest that fluid inclusions might represent remnants of the original

  2. Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Yanagawa, Katsunori; Sunamura, Michinari; Takano, Yoshinori; Ishibashi, Jun-ichiro; Kakegawa, Takeshi; Utsumi, Motoo; Yamanaka, Toshiro; Toki, Tomohiro; Noguchi, Takuroh; Kobayashi, Kensei; Moroi, Arimichi; Kimura, Hiroyuki; Kawarabayasi, Yutaka; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2009-12-01

    To extend knowledge of subseafloor microbial communities within the oceanic crust, the abundance, diversity and composition of microbial communities in crustal fluids at back-arc hydrothermal fields of the Southern Mariana Trough (SMT) were investigated using culture-independent molecular techniques based on 16S rRNA gene sequences. Seafloor drilling was carried out at two hydrothermal fields, on- and off-ridge of the back-arc spreading centre of the SMT. 16S rRNA gene clone libraries for bacterial and archaeal communities were constructed from the fluid samples collected from the boreholes. Phylotypes related to Thiomicrospira in the Gammaproteobacteria (putative sulfide-oxidizers) and Mariprofundus in the Zetaproteobacteria (putative iron-oxidizers) were recovered from the fluid samples. A number of unique archaeal phylotypes were also recovered. Fluorescence in situ hybridization (FISH) analysis indicated the presence of active bacterial and archaeal populations in the fluids. The Zetaproteobacteria accounted for up to 32% of the total prokaryotic cell number as shown by FISH analysis using a specific probe designed in this study. Our results lead to the hypothesis that the Zetaproteobacteria play a role in iron oxidation within the oceanic crust.

  3. Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead-zinc (-copper) deposit, Eastern Iran

    NASA Astrophysics Data System (ADS)

    Malekzadeh Shafaroudi, Azadeh; Karimpour, Mohammad Hassan

    2015-07-01

    The Sechangi lead-zinc (-copper) deposit lies in the Lut block metallogenic province of Eastern Iran. This deposit consists of ore-bearing vein emplaced along fault zone and hosted by Late Eocene monzonite porphyry. Hydrothermal alteration minerals developed in the wall rock include quartz, kaolinite, illite, and calcite. Microscopic studies reveal that the vein contains galena and sphalerite with minor chalcopyrite and pyrite as hypogene minerals and cerussite, anglesite, covellite, malachite, hematite, and goethite as secondary minerals. Fluorite and quartz are the dominant gangue minerals and show a close relationship with sulfide mineralization. Calculated δ34S values for the ore fluid vary between -9.9‰ and -5.9‰. Sulfur isotopic compositions suggest that the ore-forming aqueous solutions were derived from magmatic source and mixed with isotopically light sulfur, probably leached from the volcanic and plutonic country rocks. Microthermometric study of fluid inclusions indicates homogenization temperatures of 151-352 °C. Salinities of ore-forming fluids ranged from 0.2 to 16.5 wt.% NaCl equivalent. The ore-forming fluids of the Sechangi deposit are medium- to low-temperature and salinity. Fluid mixing may have played an important role during Pb-Zn (-Cu) mineralization. The key factors allowing for metal transport and precipitation during ore formation include the sourcing of magmatic fluids with high contents of metallogenic elements and the mixing of these hydrothermal fluids with meteoric waters resulting in the formation of deposit. In terms of the genetic type of deposit, the Sechangi is classified as a volcanic-subvolcanic hydrothermal-related vein deposit.

  4. Characteristics and Distribution of Mineral Textures and Fluid Inclusions in the Epithermal Ag-Au Deposits at Guanajuato, Mexico

    NASA Astrophysics Data System (ADS)

    Moncada, D.; Bodnar, R. J.; Reynolds, T. J.; Rimstidt, J. D.; Mutchler, S.

    2009-05-01

    Fluid inclusion and mineralogical features indicative of boiling have been characterized in 855 samples from epithermal precious metals deposits along the Veta Madre at Guanajuato, Mexico. Features associated with boiling that have been identified include colloform texture silica, plumose texture silica, moss texture silica, ghost-sphere texture silica, lattice-bladed calcite, lattice-bladed calcite replaced by quartz and pseudo-acicular quartz after calcite and coexisting liquid-rich and vapor-rich fluid inclusions. Samples were assayed for Au, Ag, Cu, Pb, Zn, As and Sb, and were divided into high-grade and low-grade samples based on the gold and silver concentrations. For silver, the cutoff for high grade was 100 ppm, and for gold the cutoff was 1 ppm. The feature that is most closely associated with high grades of both gold and silver is colloform texture silica, and this feature also shows the largest difference in grade based on the presence or absence of that feature (178.8 ppm Ag versus 17.2 ppm Ag, and 1.1 ppm Au versus 0.2 ppm Au). For both Ag and Au, there is no significant difference in average grade in samples that contain coexisting liquid-rich and vapor-rich fluid inclusions and those where this feature is absent. The textural and fluid inclusion data were analyzed using the binary classifier within SPSS Clementine. The models that correctly distinguish between high and low grade samples most consistently (˜70-75% of the tests) for both Ag and Au were the neural network, the C5 decision tree and Quest decision tree models. For both Au and Ag, the presence of colloform silica texture is the variable with the greatest importance, i.e., the variable that has the greatest predictive power. Boiling features are absent or rare in samples collected along a traverse perpendicular to the Veta Madre. This suggests that if an explorationist observes these features in samples collected during exploration, an environment favorable to precious metal mineralization

  5. ORIGIN OF THERMAL FLUIDS AT LASSEN VOLCANIC NATIONAL PARK: EVIDENCE FROM NOBLE AND REACTIVE GAS ABUNDANCES.

    USGS Publications Warehouse

    Truesdell, Alfred H.; Mazor, Emanuel; Nehring, Nancy L.

    1983-01-01

    Thermal fluid discharges at Lassen are dominated by high-altitude fumaroles and acid-sulfate hot springs in the Park, and lower altitude, neutral, high-chloride hot springs in Mill Valley 7-10 km to the south. The interrelations of these fluids have been studied by noble and reactive gas analyses. Atmospheric noble gas (ANG) contents of superheated fumaroles are similar to those of air-saturated recharge water (ASW) at 5 degree C and 2500-m elevation. Low-elevation, high-chloride, hot-spring waters are highly depleted in ANG, relative to the ASW. The surface temperatures and gas chemistry of the fumaroles and hot springs suggest that steam originating from partial to near-complete vaporization of liquid from a boiling, high-chloride, hot water aquifer is decompressed adiabatically, and more or less mixed with shallow groundwater to form superheated and drowned fumaroles within the Park. Refs.

  6. Geology, mineralization, and fluid inclusion characteristics of the Kumbel oxidized W-Cu-Mo skarn and Au-W stockwork deposit in Kyrgyzstan, Tien Shan

    NASA Astrophysics Data System (ADS)

    Soloviev, Serguei G.

    2015-02-01

    The Kumbel deposit is located within a metallogenic belt of W-Mo, Cu-Mo, Au-W, and Au deposits along the Late Paleozoic active continental margin of Tien Shan. The deposit is related to a Late Carboniferous multiphase pluton, with successive intrusive phases from early olivine monzogabbro through monzonite-quartz monzonite to granodiorite and granite, with the latest monzogabbro-porphyry dikes. The deposit represents an example of a complex W-Cu-Mo-Au magmatic-hydrothermal system related to magnetite-series high-K calc-alkaline to shoshonitic igneous suite. It contains large bodies of W-Cu-Mo oxidized prograde and retrograde skarns, with abundant andradite garnet, magnetite, and especially hematite, as well as K-feldspar, molybdoscheelite, chalcopyrite, and molybdenite, with transitions to zones of intense quartz-K-feldspar (with minor andradite and hematite) veining. The skarns are cut by quartz-carbonate ± adularia ± sericite veins (locally sheeted) and stockworks bearing scheelite and minor Cu, Zn, Pb sulfides, as well as Au, Bi, Te, and As mineralization. The association of these veins with the oxidized skarns and magnetite-series intrusion is consistent with the general oxidized, intrusion-related W-Mo-Cu-Au type of deposit, with an affinity to the alkalic (silica-saturated) Cu-Au ± Mo porphyry deposits. The fluid inclusion data show the predominance of magmatic-hydrothermal aqueous chloride fluid during the formation of skarns and quartz-carbonate-scheelite-sulfide veins. The high fluid pressures (˜1,750 bars), together with their high temperature (up to 600 °C) and high salinity (˜50-60 wt% NaCl-equiv.), suggest the formation of skarns and quartz-K-feldspar-andradite-hematite veins under conditions typical of magmatic-hydrothermal transition (depth of ≥4-5 km) of intrusion-related mineralized system, possibly by exsolution of the fluids from crystallizing magma. The auriferous quartz-carbonate-scheelite-sulfide veins formed from high to moderate

  7. Extreme alkali bicarbonate- and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark

    NASA Astrophysics Data System (ADS)

    Thomas, Rainer; Davidson, Paul; Schmidt, Christian

    2011-02-01

    Our study of fluid and melt inclusions in quartz and feldspar from granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark revealed extremely alkali bicarbonate- and carbonate-rich inclusions. The solid phases (daughter crystals) are mainly nahcolite [NaHCO3], zabuyelite [Li2CO3], and in rare cases potash [K2CO3] in addition to the volatile phases CO2 and aqueous carbonate/bicarbonate solution. Rare melt inclusions contain nahcolite, dawsonite [NaAl(CO3)(OH)2], and muscovite. In addition to fluid and melt inclusions, there are primary CO2-rich vapor inclusions, which mostly contain small nahcolite crystals. The identification of potash as a naturally occurring mineral would appear to be the first recorded instance. From the appearance of high concentrations of these carbonates and bicarbonates, we suggest that the mineral-forming media were water- and alkali carbonate-rich silicate melts or highly concentrated fluids. The coexistence of silicate melt inclusions with carbonate-rich fluid and nahcolite-rich vapor inclusions indicates a melt-melt-vapor equilibrium during the crystallization of the pegmatite. These results are supported by the results of hydrothermal diamond anvil cell experiments in the pseudoternary system H2O-NaHCO3-SiO2. Additionally, we show that boundary layer effects were insignificant in the Bornholm pegmatites and are not required for the origin of primary textures in compositionally simple pegmatites at least.

  8. Inclusion of ion orbit loss and intrinsic rotation in plasma fluid rotation theory

    SciTech Connect

    Stacey, W. M.; Wilks, T. M.

    2016-01-15

    The preferential ion orbit loss of counter-current directed ions leaves a predominantly co-current ion distribution in the thermalized ions flowing outward through the plasma edge of tokamak plasmas, constituting a co-current intrinsic rotation. A methodology for representing this essentially kinetic phenomenon in plasma fluid theory is described and combined with a previously developed methodology of treating ion orbit particle and energy losses in fluid theory to provide a complete treatment of ion orbit loss in plasma fluid rotation theory.

  9. Time-resolved fluorescence microspectroscopy for characterizing crude oils in bulk and hydrocarbon-bearing fluid inclusions.

    PubMed

    Ryder, Alan G; Przyjalgowski, Milosz A; Feely, Martin; Szczupak, Boguslaw; Glynn, Thomas J

    2004-09-01

    Time-resolved fluorescence data was collected from a series of 23 bulk crude petroleum oils and six microscopic hydrocarbon-bearing fluid inclusions (HCFI). The data was collected using a diode laser fluorescence lifetime microscope (DLFLM) over the 460-700 nm spectral range using a 405 nm excitation source. The correlation between intensity averaged lifetimes (tau) and chemical and physical parameters was examined with a view to developing a quantitative model for predicting the gross chemical composition of hydrocarbon liquids trapped in HCFI. It was found that tau is nonlinearly correlated with the measured polar and corrected alkane concentrations and that oils can be classified on this basis. However, these correlations all show a large degree of scatter, preventing accurate quantitative prediction of gross chemical composition of the oils. Other parameters such as API gravity and asphaltene, aromatic, and sulfur concentrations do not correlate well with tau measurements. Individual HCFI were analyzed using the DLFLM, and time-resolved fluorescence measurements were compared with tau data from the bulk oils. This enabled the fluid within the inclusions to be classified as either low alkane/high polar or high alkane/low polar. Within the high alkane/low polar group, it was possible to clearly discriminate HCFI from different locales and to see differences in the trapped hydrocarbon fluids from a single geological source. This methodology offers an alternative method for classifying the hydrocarbon content of HCFI and observing small variations in the trapped fluid composition that is less sensitive to fluctuations in the measurement method than fluorescence intensity based methods.

  10. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Li, Tiegang; Wu, Guang; Liu, Jun; Wang, Guorui; Hu, Yanqing; Zhang, Yunfu; Luo, Dafeng; Mao, Zhihao; Xu, Bei

    2016-09-01

    The large Chaganbulagen Pb-Zn-Ag deposit is located in the Derbugan metallogenic belt of the northern Great Xing'an Range. The vein-style orebodies of the deposit occur in the NWW-trending fault zones. The ore-forming process at the deposit can be divided into three stages: an early quartz-pyrite-arsenopyrite-pyrrhotite-sphalerite-galena-chalcopyrite stage, a middle quartz-carbonate-pyrite-sphalerite-galena-silver-bearing minerals stage, and a late quartz-carbonate-pyrite stage. The sericite sample yielded a 40Ar -39Ar plateau age of 138 ± 1 Ma and an isochron age of 137 ± 3 Ma, and the zircon LA-ICP-MS U-Pb age of monzogranite porphyry was 143 ± 2 Ma, indicating that the ages of mineralization and monzogranite porphyry in the Chaganbulagen deposit should be the Early Cretaceous, and that the mineralization should be slightly later than the intrusion of monzogranite porphyry. There are only liquid inclusions in quartz veins of the Chaganbulagen deposit. Homogenization temperatures, densities, and salinities of the fluid inclusions from the early stage are 261-340 °C, 0.65-0.81 g/cm3, and 0.7-6.3 wt.% NaCl eqv., respectively. Fluid inclusions of the middle stage have homogenization temperatures, densities, and salinities of 209-265 °C, 0.75-0.86 g/cm3, and 0.5-5.7 wt.% NaCl eqv., respectively. For fluid inclusions of the late stage, their homogenization temperatures, densities, and salinities are 173-219 °C, 0.85-0.91 g/cm3, and 0.4-2.7 wt.% NaCl eqv., respectively. The ore-forming fluids of the deposit are generally characterized by moderate temperature and low salinity and density, and belong to an H2O-NaCl ± CO2 ± CH4 system. The δ18Owater values calculated for ore-bearing quartz vary from - 17.9‰ to - 10.8‰, and the δDV-SMOW values from bulk extraction of fluid inclusion waters vary from - 166‰ to - 127‰, suggesting that the ore-forming fluids consist dominantly of meteoric water. The δ34SV-CDT values range from 1.4‰ to 4.1‰. The 206Pb/204

  11. Rock chemistry and fluid inclusion studies as exploration tools for ore deposits in the Sila batholith, southern Italy

    USGS Publications Warehouse

    de Vivo, B.; Ayuso, R.A.; Belkin, H.E.; Lima, A.; Messina, A.; Viscardi, A.

    1991-01-01

    The Sila batholith is the focus of an extensive petrogenetic research program, which includes an assessment of its potential to host granite-related ore deposits. Univariate and multivariate statistical techniques were applied to major- and minor-element rock geochemical data. The analysis indicates that the highest potential for mineralization occurs in corundum-normative, peraluminous, unfoliated, relatively late-stage plutons. The plutons are enriched in Rb, Nb, Ta and U, but depleted in Fe, Mg and Sr. The K/Rb, Ba/Rb, Rb/Sr and Rb3/Ba??Sr??K indices and high R-factor scores of Si-K-Rb are typical of mineralized granitic rocks. A reconnaissance fluid inclusion study indicates that the sub-solidus rock was infiltrated by solutions of widely different temperatures (50-416??C) and variable salinities (0 to ???26 wt.% NaCl equivalent). The higher-temperature solutions probably represent granite or magmatic-related Hercynian fluids, whereas the lower-temperature fluids may be either Hercynian or Alpine in age. Fluids with characteristics typical of mineralized "porphyry" systems have not been recognized. ?? 1991.

  12. Chemistry of fluid inclusions in halite from the Salina group of the Michigan basin: Implications for Late Silurian seawater and the origin of sedimentary brines

    SciTech Connect

    Das, N.; Horita, J.; Holland, H.D. )

    1990-02-01

    Fluid was extracted from 18 fluid inclusions in halite of the Late Silurian Salina Group exposed in the Crystal Mine on the outskirts of Detroit, Michigan. Compared with modern seawater evaporated to the same degree, the inclusion fluids are severely depleted in SO{sub 4}{sup {minus}2}, somewhat depleted in Na{sup +} and Mg{sup +2}, and greatly enriched in Ca{sup +2}. The composition of the inclusion fluids can be derived from Silurian seawater with a composition close to that of modern seawater, if it is assumed that the composition of the Silurian seawater was modified by dolomitizing CaCO{sub 3}-rich sediments and by albitizing silicate minerals during its evolution into evaporite brines. Since the evolution of the brines involved a number of chemical reactions, it is impossible to recover the initial concentration of all of the major ions in the parent Silurian seawater from the composition of the inclusion fluids alone. It is likely, however, that the m{sub K+}/m{sub Br-} ratio and the functions in Late Silurian seawater had values close to those of modern seawater. Measurements of the isotopic composition of sulfur and of Sr in anhydrite within and associated with the halite host of the fluid inclusions are consistent with previous measurements of {delta}{sup 34}S in Silurian marine anhydrites and with the {sup 87}Sr/{sup 86}Sr ratios of Late Silurian marine carbonates.

  13. Amplitude of Biot's slow wave scattered by a spherical inclusion in a fluid-saturated poroelastic medium

    NASA Astrophysics Data System (ADS)

    Ciz, Radim; Gurevich, Boris

    2005-03-01

    Spatial heterogeneity of hydrocarbon reservoirs causes significant attenuation and dispersion of seismic waves due to wave-induced flow of the pore fluid between more compliant and less compliant areas. This paper investigates the interaction between a plane elastic wave in a poroelastic medium with a spherical inhomogeneity of another porous material. The behaviour of both the inclusion and the background medium is described by the low-frequency variant of Biot's equations of poroelasticity with the standard boundary conditions at the inclusion surface, and for the inclusion size much smaller than the wavelength of the fast compressional wave. The scattering problem is formulated as a series expansion of displacements expressed in the spherical harmonics. The resulting scattered wavefield consists of the scattered normal compressional and shear waves and Biot's slow wave, which attenuates rapidly with distance from the inclusion and represents the main difference from the elastic case. This study concentrates on the attenuation effects caused by the mode conversion into Biot's slow wave. The solution obtained for Biot's slow wave is well described by the two terms of order n= 0 and n= 2 of the scattering series. The scattering amplitude for the term of order n= 0 is given by a simple expression. The full expression for the term of order n= 2 is very complicated, but can be simplified assuming that the amplitude of the scattered fast (normal) compressional and shear waves are well approximated by the solution of the equivalent elastic problem. This assumption yields a simple approximation for the amplitude of the scattered slow wave, which is accurate for a wide range of material properties and is sufficient for the analysis of the scattering amplitude as a function of frequency. In the low-frequency limit the scattering amplitude of the slow wave scales with ω3/2, and reduces to the asymptotic long-wavelength solution of Berryman (1985), which is valid for

  14. Fluid inclusion and stable isotope studies of the Mesloula Pb-Zn-Ba ore deposit, NE Algeria: Characteristics and origin of the mineralizing fluids

    NASA Astrophysics Data System (ADS)

    Laouar, Rabah; Salmi-Laouar, Sihem; Sami, Lounis; Boyce, Adrian J.; Kolli, Omar; Boutaleb, Abdelhak; Fallick, Anthony E.

    2016-09-01

    In the Saharan Atlas (NE Algeria), the Triassic evaporitic formation was brought to the surface through the thick Cretaceous and Tertiary sedimentary cover as diapirs due to the effect of Atlasic tectonic events. The diapir piercing began in the Jurassic and has continued through present day. Many outcrops of several square kilometres are distributed in a large area (approximately 80 km wide) that extends northeasterly over 300 km towards Tunisia. The diapiric evaporitic formation is often accompanied by the emplacement of Pb-Zn-Ba-F mineralization. The Mesloula massif is an example of these deposits. Fluid inclusion and sulphur, carbon and oxygen isotope studies were carried out on Pb-Zn-Ba mineralization and associated gangue carbonates. Gypsum of the Triassic formation was also analysed for its sulphur isotope composition to show the role of evaporates in the generation of this typical peridiapiric deposit. Gypsum from the Triassic formation showed a narrow range of δ34SVCDT values, ranging from +14.6 to +15.5‰ (n = 8). This range is comparable to that of Triassic seawater sulphates. Sulphide minerals yielded δ34SVCDT values between 0 and + 11.7‰ (n = 15), indicating that sulphide sulphur was likely derived from Triassic sulphates through thermochemical sulphate reduction (TSR) because fluid inclusion microthermometric measurements yielded a mean temperature of 150 °C. Residual sulphate in such a system would have been enriched in 34S; this is reflected in the barite δ34SVCDT values, which range from +21.1 to +33.5‰ (n = 5). The δ13CVPDB values of calcite minerals, ranging from +2.1 to +6.3‰ (n = 4), indicate an inorganic carbon origin, likely from the host carbonate rocks. δ18OVSMOW values were between +21.9 and + 24.9‰, indicating that the most likely source of mineralizing fluids was formation water.

  15. Contribution of infrared microscopy to studies of fluid inclusions hosted in some opaque ore minerals: possibilities, limitations, and perspectives

    NASA Astrophysics Data System (ADS)

    Lüders, Volker

    2016-11-01

    During the past two decades, several studies of fluid inclusions hosted in some opaque ore minerals using near-infrared microscopy have been performed. Results indicated that this method can be applied to several sulfidic ores and metal oxides depending on their electronic band structures and infrared-active vibration modes. Infrared transmittance of individual ore minerals can be best characterized using Fourier transform infrared spectroscopy. Infrared microscopic observations are limited to the near-infrared region to about 2.3 μm depending on the IR sensitivity of the IR camera. The trace element content in ore minerals can be another limiting factor for optical observations in near-infrared light. Still, IR transmittance gradually decreases upon heating caused by shifting of IR absorption edges for higher wavelengths. Possibilities and limitations of studying fluid inclusions hosted in opaque minerals by near-infrared light microthermometry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are discussed.

  16. D/H ratios in speleothem fluid inclusions: A guide to variations in the isotopic composition of meteoric precipitation?

    USGS Publications Warehouse

    Harmon, R.S.; Schwarcz, H.P.; O'Neil, J.R.

    1979-01-01

    D/H ratios of fluid inclusion waters extracted from 230Th/234U-dated speleothems that were originally deposited under conditions of isotopic equilibrium should provide a direct estimate of the hydrogen isotopic composition of ancient meteoric waters. We present here D/H ratios for 47 fluid inclusion samples from thirteen speleothems deposited over the past 250,000 years at cave sites in Iowa, West Virginia, Kentucky and Missouri. At each site glacial-age waters are depleted in deuterium relative to those of interglacial age. The average interglacial/glacial shift in the hydrogen isotopic composition of meteoric precipitation over ice-free areas of east-central North America is estimated to be -12???. This shift is consistent with the present climatic models and can be explained in terms of the prevailing pattern of atmospheric circulation and an increased ocean-continent temperature gradient during glacial times which more than compensated for the increase in deuterium content of the world ocean. ?? 1979.

  17. Determination of pressure from measured Raman frequency shifts of anhydrite and its application in fluid inclusions and HDAC experiments

    NASA Astrophysics Data System (ADS)

    Yuan, Xueyin; Mayanovic, Robert A.; Zheng, Haifei

    2016-12-01

    A new geobarometry was derived from the quantified relationships among Raman vibrational frequencies of anhydrite, pressure and temperature, as determined from in-situ micro-Raman spectroscopy of natural anhydrite crystals measured at p-T conditions up to 560 °C and 1400 MPa by using a hydrothermal diamond anvil cell (HDAC). With this geobarometry, the pressure in HDAC experiments and in anhydrite-bearing fluid inclusions can be determined directly from the ν1, 1016, ν3, 1128 and ν3, 1160 Raman frequency shifts of anhydrite at high p-T conditions relative to their values measured at ambient conditions. The pressure can be determined to an accuracy of better than 30 MPa based on the attainable accuracy of ±0.1 cm-1 for the fitted ν1 Raman peak positions, provided the measured spectra are calibrated using the emission peak of an external fluorescent light source. The feasibility and reliability of this geobarometry were verified by rebuilding the p-T history of two fluid inclusions from the ν1 frequency shifts of anhydrite daughter minerals from room to high temperatures, and by measuring the phase-transition pressures of calcite-CaCO3(II)-CaCO3(III) sequence at ambient temperature in a HDAC experiment using anhydrite as a Raman pressure sensor.

  18. Are the 3,800-Myr-old Isua objects microfossils, limonite-stained fluid inclusions, or neither?

    NASA Astrophysics Data System (ADS)

    Roedder, Edwin

    1981-10-01

    Bridgwater et al.1 issued a `cautionary note' concerning several reports published by Pflug and co-workers2-5 describing objects called yeast-like microfossils (Isuasphaera isua Pflug) from a metamorphosed quartzite of the 3,800-Myr-old Isua supracrustal belt of south-west Greenland; Bridgwater et al. believe that the objects described by Pflug et al.2-5 are `indistinguishable from limonite-stained fluid inclusions' and hence are non-biogenic. I show here that the objects are neither limonite-stained fluid inclusions nor microfossils, but are limonite-stained cavities from the otherwise complete dissolution by weathering of ferruginous dolomite grains in these rocks. Several supporting arguments presented by both sides are believed to be invalid, and others are ambiguous. In view of the extensive research on the earliest life forms, and then significance to evolution, to early geochemical cycles and to the origin of the atmosphere and some ore deposits, the exact nature of the Isua objects, and particularly the validity of the evidence either for or against a biological origin, are of considerable importance. A careful evaluation of the evidence from Isua is particularly pertinent, as bona fide Precambrian fossils are also found in chemically similar (but much younger) silica-rich environments.

  19. Are the 3,800-Myr-old Isua objects microfossils, limonite-stained fluid inclusions, or neither?

    USGS Publications Warehouse

    Roedder, E.

    1981-01-01

    Bridgwater et al.1 issued a 'cautionary note' concerning several reports published by Pflug and co-workers2-5 describing objects called yeast-like microfossils (Isuasphaera isua Pflug) from a metamorphosed quartzite of the 3,800-Myr-old Isua supracrustal belt of south-west Greenland; Bridgwater et al. believe that the objects described by Pflug et al. 2-5 are 'indistinguishable from limonite-stained fluid inclusions' and hence are non-biogenic. I show here that the objects are neither limonite-stained fluid inclusions nor microfossils, but are limonite-stained cavities from the otherwise complete dissolution by weathering of ferruginous dolomite grains in these rocks. Several supporting arguments presented by both sides are believed to be invalid, and others are ambiguous. In view of the extensive research on the earliest life forms, and then significance to evolution, to early geochemical cycles and to the origin of the atmosphere and some ore deposits, the exact nature of the Isua objects, and particularly the validity of the evidence either for or against a biological origin, are of considerable importance. A careful evaluation of the evidence from Isua is particularly pertinent, as bona fide Precambrian fossils are also found in chemically similar (but much younger) silica-rich environments. ?? 1981 Nature Publishing Group.

  20. Fluid inclusion evidence for recent temperature increases at Fenton Hill hot dry rock test site west of the Valles Caldera, New Mexico, U.S.A.

    NASA Astrophysics Data System (ADS)

    Sasada, Masakatsu

    1989-02-01

    The fluid inclusions in calcite veins and those in quartz of the host Precambrian rocks from the GT-2 drill hole have been studied microthermometrically to determine the recent thermal history of the Fenton Hill Hot Dry Rock test site west of the Valles caldera, New Mexico. The calcite veins were collected from 1876 m and 2624 m depth. They contain primary liquid-rich inclusions and secondary liquid-rich and monophase liquid inclusions. The homogenization temperature ( T h) and final melting point of ice ( T m) of these inclusions and the secondary inclusions in quartz from the host Precambrian rocks were measured using α USGS-type gas flow heating/freezing stage. The CO 2 content was also determined semiquantitatively using a microscope crushing stage. The trapping temperature was determined on the isochore under the assumption of lithostatic pressure. NaCl eq. salinity was also determined from T m after correction for CO 2. Microthermometry of primary inclusions in calcite and secondary inclusions in quartz indicates that the calcite veins precipitated from low-salinity geothermal fluids at temperatures at least 10-15°C lower than the thermal maximum recorded in the secondary inclusions in quartz of the Precambrian rocks. The lowest temperature determined from the minimum trapping temperature of secondary inclusions in calcite is 26°C lower than the present borehole temperature of 178°C at 2624 m. After this cooling the temperature increased again up to the present geothermal profile.

  1. Influence of isotopic re-equilibration on speleothem and fluid inclusion isotope ratios after primary calcite precipitation

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Haderlein, Astrid; Weißbach, Therese

    2016-04-01

    Oxygen isotope ratios in speleothems (notably stalagmites) have been used since decades to successfully infer paleotemperatures and deduce paleo-environmental information. In addition, recent technical developments allow to increasingly use fluid inclusions as an archive for drip-water and together with the surrounding calcite as paleothermometer. A basic requirement for isotope data interpretation is the complete knowledge of the fractionation between calcite and fluid. Most laboratory and in-situ cave experiments focus on calcite growth and the isotope fractionation between calcite and feed solution. Potential isotope exchange and re-equilibration processes after the initial deposition have mostly been neglected. However, experiments of Oelkers et al. (2015) showed that the isotope exchange between minerals and fluid can proceed rapidly (within days), even at chemical equilibrium. In hydrous Mg carbonates a similar process of continuous isotope exchange between carbonate and fluid was observed after the carbonate precipitation was completed (Mavromatis et al., 2015). These observations suggest that the isotope ratios of speleothem calcite may be affected by this continuous exchange, likely driving the isotope composition continuously towards equilibrium at the respective cave conditions. In addition, fluid inclusions are suspected to be sensitive to an isotope exchange with the surrounding carbonate highlighting the need to precisely understand and quantify this effect. We assessed the oxygen isotope exchange between calcite and solution at chemical equilibrium conditions with theoretical estimates and laboratory experiments over an intermediate time scale (hours-weeks). A large isotope gradient (~20 ‰)) between solution and calcite was prepared in the experiment to investigate the dynamics of this re-equilibration process. We used a theoretical model based on a Rayleigh fractionation approach and the direct comparison with the experiment to determine

  2. Origin and evolution of mineralizing fluids and exploration of the Cerro Quema Au-Cu deposit (Azuero Peninsula, Panama) from a fluid inclusion and stable isotope perspective

    USGS Publications Warehouse

    Corral, Isaac; Cardellach, Esteve; Corbella, Merce; Canals, Angels; Griera, Albert; Gomez-Gras, David; Johnson, Craig A.

    2017-01-01

    Cerro Quema is a high sulfidation epithermal Au-Cu deposit with a measured, indicated and inferred resource of 35.98 Mt. @ 0.77 g/t Au containing 893,600 oz. Au (including 183,930 oz. Au equiv. of Cu ore). It is characterized by a large hydrothermal alteration zone which is interpreted to represent the lithocap of a porphyry system. The innermost zone of the lithocap is constituted by vuggy quartz with advanced argillic alteration locally developed on its margin, enclosed by a well-developed zone of argillic alteration, grading to an external halo of propylitic alteration. The mineralization occurs in the form of disseminations and microveinlets of pyrite, chalcopyrite, enargite, tennantite, and trace sphalerite, crosscut by quartz, barite, pyrite, chalcopyrite, sphalerite and galena veins.Microthermometric analyses of two phase (L + V) secondary fluid inclusions in igneous quartz phenocrysts in vuggy quartz and advanced argillically altered samples indicate low temperature (140–216 °C) and low salinity (0.5–4.8 wt% NaCl eq.) fluids, with hotter and more saline fluids identified in the east half of the deposit (Cerro Quema area).Stable isotope analyses (S, O, H) were performed on mineralization and alteration minerals, including pyrite, chalcopyrite, enargite, alunite, barite, kaolinite, dickite and vuggy quartz. The range of δ34S of sulfides is from − 4.8 to − 12.7‰, whereas δ34S of sulfates range from 14.1 to 17.4‰. The estimated δ34SΣS of the hydrothermal fluid is − 0.5‰. Within the advanced argillic altered zone the δ34S values of sulfides and sulfates are interpreted to reflect isotopic equilibrium at temperatures of ~ 240 °C. The δ18O values of vuggy quartz range from 9.0 to 17.5‰, and the δ18O values estimated for the vuggy quartz-forming fluid range from − 2.3 to 3.0‰, indicating that it precipitated from mixing of magmatic fluids with surficial fluids. The δ18O of kaolinite ranges from 12.7 to 18.1‰ and

  3. Application of Scanning-Imaging X-Ray Microscopy to Fluid Inclusion Candidates in Carbonates of Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, Akira; Nakano, Tsukasa; Miyake, Akira; Akihisa, Takeuchi; Uesugi, Kentaro; Suzuki, Yoshio; Kitayama, Akira; Matsuno, Junya; Zolensky, Michael E.

    2016-01-01

    In order to search for such fluid inclusions in carbonaceous chondrites, a nondestructive technique using x-ray micro-absorption tomography combined with FIB sampling was developed and applied to a carbonaceous chondrite. They found fluid inclusion candidates in calcite grains, which were formed by aqueous alteration. However, they could not determine whether they are really aqueous fluids or merely voids. Phase and absorption contrast images can be simultaneously obtained in 3D by using scanning-imaging x-ray microscopy (SIXM). In refractive index, n=1-sigma+i(beta), in the real part, 1-sigma is the refractive index with decrement, sigma, which is nearly proportional to the density, and the imaginary part, beta, is the extinction coefficient, which is related to the liner attenuation coefficient, mu. Many phases, including water and organic materials as well as minerals, can be identified by SIXM, and this technique has potential availability for Hayabusa-2 sample analysis too. In this study, we examined quantitative performance of d and m values and the spatial resolution in SIXM by using standard materials, and applied this technique to carbonaceous chondrite samples. We used POM ([CH2O]n), silicon, quartz, forsterite, corundum, magnetite and nickel as standard materials for examining the sigma and mu values. A fluid inclusion in terrestrial quartz and bi-valve shell (Atrina vexillum), which are composed of calcite and organic layers with different thickness, were also used for examining the spatial resolution. The Ivuna (CI) and Sutter's Mill (CM) meteorites were used as carbonaceous chondrite samples. Rod- or cube-shaped samples 20-30 micron in size were extracted by using FIB from cross-sectional surfaces of the standard materials or polished thin sections of the chondrites, which was previously observed with SEM. Then, the sample was attached to a thin W-needle and imaged by SIXM system at beamline BL47XU, SPring-8, Japan. The slice thickness was 109.3 nm

  4. In situ quantitative analysis of individual H2O-CO2 fluid inclusions by laser Raman spectroscopy

    USGS Publications Warehouse

    Azbej, T.; Severs, M.J.; Rusk, B.G.; Bodnar, R.J.

    2007-01-01

    Raman spectral parameters for the Raman ??1 (1285??cm- 1) and 2??2 (1388??cm- 1) bands for CO2 and for the O-H stretching vibration band of H2O (3600??cm- 1) were determined in H2O-CO2 fluid inclusions. Synthetic fluid inclusions containing 2.5 to 50??mol% CO2 were analyzed at temperatures equal to or greater than the homogenization temperature. The results were used to develop an empirical relationship between composition and Raman spectral parameters. The linear peak intensity ratio (IR = ICO2/(ICO2 + IH2O)) is related to the CO2 concentration in the inclusion according to the relation:Mole % C O2 = e- 3.959 IR2 + 8.0734 IRwhere ICO2 is the intensity of the 1388 cm- 1 peak and IH2O is the intensity of the 3600 cm- 1 peak. The relationship between linear peak intensity and composition was established at 350????C for compositions ranging from 2.5 to 50??mol% CO2. The CO2-H2O linear peak intensity ratio (IR) varies with temperature and the relationship between composition and IR is strictly valid only if the inclusions are analyzed at 350????C. The peak area ratio is defined as AR = ACO2/(ACO2 + AH2O), where ACO2 is the integrated area under the 1388??cm- 1 peak and AH2O is the integrated area under the 3600??cm- 1 peak. The relationship between peak area ratio (AR) and the CO2 concentration in the inclusions is given as:Mole % C O2 = 312.5 AR. The equation relating peak area ratio and composition is valid up to 25??mol% CO2 and from 300 to 450????C. The relationship between linear peak intensity ratio and composition should be used for inclusions containing ??? 50??mol% CO2 and which can be analyzed at 350????C. The relationship between composition and peak area ratios should be used when analyzing inclusions at temperatures less than or greater than 350????C (300-450) but can only be used for compositions ??? 25??mol% CO2. Note that this latter relationship has a somewhat larger standard deviation compared to the intensity ratio relationship. Calibration

  5. Search for Fluid Inclusions in a Carbonaceous Chondrite Using a New X-Ray Micro-Tomography Technique Combined with FIB Sampling

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Miyake, A.; Zolensky, M. E.; Uesugi, K.; Nakano, T.; Takeuchi, A.; Suzuki, Y.; Yoshida, K.

    2014-01-01

    Early solar system aqueous fluids are preserved in some H chondrites as aqueous fluid inclusions in halite (e.g., [1]). Although potential fluid inclusions are also expected in carbonaceous chondrites [2], they have not been surely confirmed. In order to search for these fluid inclusions, we have developped a new X-ray micro-tomography technique combined with FIB sampling and applied this techniqu to a carbanaceous chondrite. Experimental: A polished thin section of Sutter's Mill meteorite (CM) was observed with an optical microscope and FE-SEM (JEOL 7001F) for chosing mineral grains of carbonates (mainly calcite) and sulfides (FeS and ZnS) 20-50 microns in typical size, which may have aqueous fluid inclusions. Then, a "house" similar to a cube with a roof (20-30 microns in size) is sampled from the mineral grain by using FIB (FEI Quanta 200 3DS). Then, the house was atached to a thin W-needle by FIB and imaged by a SR-based imaging microtomography system with a Fresnel zone plate at beamline BL47XU, SPring-8, Japan. One sample was imaged at two X-ray energies, 7 and 8 keV, to identify mineral phases (dual-enegy microtomography: [3]). The size of voxel (pixel in 3D) was 50-80 nm, which gave the effective spatial resolution of approx. 200 nm. A terrestrial quartz sample with an aqueous fluid inclusion with a bubble was also examined as a test sample by the same method. Results and discussion: A fluid inclusion of 5-8 microns in quartz was clearly identified in a CT image. A bubble of approx. 4 microns was also identified as refraction contrast although the X-ray absorption difference between fluid and bubble is small. Volumes of the fluid and bubble were obtained from the 3D CT images. Fourteen grains of calcite, two grains of iron sulfide and one grain of (Zn,Fe)S were examined. Ten calcite, one iron sulfide and one (Zn,Fe)S grains have inclusions >1 micron in size (the maximum: approx. 5 microns). The shapes are spherical or irregular. Tiny inclusions (<1 micron

  6. Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet

    NASA Astrophysics Data System (ADS)

    Li, Yang; Selby, David; Feely, Martin; Costanzo, Alessandra; Li, Xian-Hua

    2016-04-01

    The Qulong porphyry copper and molybdenum deposit is located at the southwest margin of the Lhasa Terrane and in the eastern region of the Gangdese magmatic belt. It represents China's largest porphyry copper system, with ˜2200 million tonnes of ore comprising 0.5 % Cu and 0.03 % Mo. The mineralization is associated with Miocene granodiorite, monzogranite and quartz-diorite units, which intruded into Jurassic volcanic units in a post-collisional (Indian-Asian) tectonic setting. Field observations and core logging demonstrate the alteration and mineralization at Qulong are akin to typical porphyry copper systems in subduction settings, which comprise similar magmatic-hydrothermal, potassic, propylitic and phyllic alteration assemblages. Molybdenite Re-Os geochronology confirms the relative timeframe defined by field observations and core logging and indicates that the bulk copper and molybdenum at Qulong were deposited within 350,000 years: between 16.10 ± 0.06 [0.08] (without and with decay constant uncertainty) and 15.88 ± 0.06 [0.08] Ma. This duration for mineralization is in direct contrast to a long-lived intrusive episode associated with mineralization based on previous zircon U-Pb data. Our fluid inclusion study indicates that the ore-forming fluid was oxidized and contained Na, K, Ca, Fe, Cu, Mo, Cl and S. The magmatic-hydrothermal transition occurred at ˜425 °C under lithostatic pressure, while potassic, propylitic and phyllic alteration occurred at hydrostatic pressure with temperature progressively decreasing from 425 to 280 °C. The fluid inclusion data presented here suggests that there has been ˜2.3 km of erosion at Qulong after its formation, and this erosion may be related to regional uplift of the Lhasa Terrane.

  7. Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet

    NASA Astrophysics Data System (ADS)

    Li, Yang; Selby, David; Feely, Martin; Costanzo, Alessandra; Li, Xian-Hua

    2017-02-01

    The Qulong porphyry copper and molybdenum deposit is located at the southwest margin of the Lhasa Terrane and in the eastern region of the Gangdese magmatic belt. It represents China's largest porphyry copper system, with ˜2200 million tonnes of ore comprising 0.5 % Cu and 0.03 % Mo. The mineralization is associated with Miocene granodiorite, monzogranite and quartz-diorite units, which intruded into Jurassic volcanic units in a post-collisional (Indian-Asian) tectonic setting. Field observations and core logging demonstrate the alteration and mineralization at Qulong are akin to typical porphyry copper systems in subduction settings, which comprise similar magmatic-hydrothermal, potassic, propylitic and phyllic alteration assemblages. Molybdenite Re-Os geochronology confirms the relative timeframe defined by field observations and core logging and indicates that the bulk copper and molybdenum at Qulong were deposited within 350,000 years: between 16.10 ± 0.06 [0.08] (without and with decay constant uncertainty) and 15.88 ± 0.06 [0.08] Ma. This duration for mineralization is in direct contrast to a long-lived intrusive episode associated with mineralization based on previous zircon U-Pb data. Our fluid inclusion study indicates that the ore-forming fluid was oxidized and contained Na, K, Ca, Fe, Cu, Mo, Cl and S. The magmatic-hydrothermal transition occurred at ˜425 °C under lithostatic pressure, while potassic, propylitic and phyllic alteration occurred at hydrostatic pressure with temperature progressively decreasing from 425 to 280 °C. The fluid inclusion data presented here suggests that there has been ˜2.3 km of erosion at Qulong after its formation, and this erosion may be related to regional uplift of the Lhasa Terrane.

  8. Methane-bearing fluid inclusions as evidence of the collisional nature of high-alumina granites, northern Sikhote-Alin, Russian Far East

    SciTech Connect

    Berdnikov, N.V.; Karsakov, L.P.

    1999-07-01

    The Khungariisk high-alumina S-type granites (northern Sikhote-Alin fold system, Russian Far East) have been formed as a result of anatectic melting during collision of the Anyuy sialic block with the continental margin in the Early Cretaceous. Methane-rich fluid inclusions are characteristic of these granites. The CH{sub 4}-H{sub 2}O fluid composition is explained by the release of water and methane from the sedimentary units residing on the oceanic plate, as it was subducted beneath sialic block. This fluid seeped into the heated and deformed metamorphic rocks of the overlying block and initiated partial fusion of the granites. A comparison of the new data with the results of fluid-inclusion studies of high-alumina collisional granites from the Pamir Mountains and Japan reveals similarities. Thus, methane-bearing fluid is probably one of the general features of this granite type, reflecting its anatectic origin.

  9. Phase equilibrium modeling, fluid inclusions and origin of charnockites in the Datian region of the northeastern Cathaysia Block, South China

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Qiang; Li, Zi-Long; Yu, Sheng-Qiang

    2016-08-01

    Charnockites in the Datian region of the northeastern Cathaysia Block, South China have an assemblage of garnet, clinopyroxene, orthopyroxene, plagioclase, anti-perthite, K-feldspar, biotite, quartz and ilmenite. Phase equilibrium modeling indicates that the Datian charnockite was formed at T = 845-855 °C and P = 8.2-8.4 kbar with corresponding water activity lower than 0.50. Fluid inclusions in the Datian charnockite are dominated by N2 and CO2 with minor CH4. The fluids homogenized to liquid at -153.0 to -138.8 °C and 18.3-21.6 °C, respectively, showing a low-density nature. The low-density fluids could be attributed to selective leakage of water due to the affinity of water to melt and decompression-dominated retrograde process. Combined with previous studies, a two-stage formation model is proposed to interpret the petrogenesis of the Datian charnockite, viz emplaced at the Paleoproterozoic and underwent the granulite-facies metamorphism during the Phanerozoic tectonic event.

  10. A new purge-and-trap headspace technique to analyse volatile organohalogens from fluid inclusions of rocks and minerals

    NASA Astrophysics Data System (ADS)

    Mulder, Ines; Huber, Stefan; Schöler, Heinfried

    2010-05-01

    Recently, advances were made in the detection of low boiling point volatile organohalogens (VOCs) at trace gas concentrations of air samples employing sophisticated and complex experimental setups (Sive et al. 2005, Miller et al. 2008) while conventional fluid inclusion gas analysis via GC/MS (gas chromatography coupled with mass spectrometry) do not include halogenated VOCs in their analytical routine (e.g. Samson et al. 2003). At the same time Svensen et al. (2009) have just confirmed the release of chlorinated and brominated VOC from halites after heat treatment using GC/MS into which they injected compounds previously trapped on adsorption tubes. Already in 1998, Harnish and Eisenhauer reported the presence of CF4 and SF6 released from natural fluorite and granite samples after milling but appear to have received little resonance in the scientific community. In this work we present the development of a new method for the analysis of halogenated VOCs from fluid inclusions. The mineral or rock sample is milled in an air-tight tempered steel container that fits into a regular planetary mill. Starting at a particle size of around 2-3 mm a final mean particle fineness of 1000 to 750 nm for quartz and fluorites, respectively, is achieved. The grinding container is equipped with two septa that can be pierced by the two needles through which the sample is connected to the GC/MS system and through which the gases are purged similar to a standard purge-and-trap system. The gases are trapped at liquid nitrogen temperatures before entering directly onto the column of the GC/MS system. Compounds that were released during grinding are separated and detected by an ion trap mass spectrometer. To prevent contamination with fine particles a 0.5 µm sintered steel filter element is interconnected after the sample needle. Optimizations and calibrations were conducted using diluted pure gases. First results show that this modified GC/MS purge-and-trap method appears to be an

  11. Microbial Prevalence, Diversity and Abundance in Amniotic Fluid During Preterm Labor: A Molecular and Culture-Based Investigation

    PubMed Central

    DiGiulio, Daniel B.; Romero, Roberto; Amogan, Harold P.; Kusanovic, Juan Pedro; Bik, Elisabeth M.; Gotsch, Francesca; Kim, Chong Jai; Erez, Offer; Edwin, Sam; Relman, David A.

    2008-01-01

    Background Preterm delivery causes substantial neonatal mortality and morbidity. Unrecognized intra-amniotic infections caused by cultivation-resistant microbes may play a role. Molecular methods can detect, characterize and quantify microbes independently of traditional culture techniques. However, molecular studies that define the diversity and abundance of microbes invading the amniotic cavity, and evaluate their clinical significance within a causal framework, are lacking. Methods and Findings In parallel with culture, we used broad-range end-point and real-time PCR assays to amplify, identify and quantify ribosomal DNA (rDNA) of bacteria, fungi and archaea from amniotic fluid of 166 women in preterm labor with intact membranes. We sequenced up to 24 rRNA clones per positive specimen and assigned taxonomic designations to approximately the species level. Microbial prevalence, diversity and abundance were correlated with host inflammation and with gestational and neonatal outcomes. Study subjects who delivered at term served as controls. The combined use of molecular and culture methods revealed a greater prevalence (15% of subjects) and diversity (18 taxa) of microbes in amniotic fluid than did culture alone (9.6% of subjects; 11 taxa). The taxa detected only by PCR included a related group of fastidious bacteria, comprised of Sneathia sanguinegens, Leptotrichia amnionii and an unassigned, uncultivated, and previously-uncharacterized bacterium; one or more members of this group were detected in 25% of positive specimens. A positive PCR was associated with histologic chorioamnionitis (adjusted odds ratio [OR] 20; 95% CI, 2.4 to 172), and funisitis (adjusted OR 18; 95% CI, 3.1 to 99). The positive predictive value of PCR for preterm delivery was 100 percent. A temporal association between a positive PCR and delivery was supported by a shortened amniocentesis-to-delivery interval (adjusted hazard ratio 4.6; 95% CI, 2.2 to 9.5). A dose-response association was

  12. Nature and composition of gold-forming fluids at Umm Rus area, Eastern Desert, Egypt: evidence from fluid inclusions in vein materials

    NASA Astrophysics Data System (ADS)

    Harraz, H. Z.; El-Dahhar, M. A.

    1993-04-01

    The Umm Rus gold lode is housed along fractures in granitoid-gabbroic rocks, being largely controlled by a NE-SW trending fracture system that affected the Eastern Desert. Mineralogically, the gold lode consists of quartz and carbonate gangue enclosing minor amounts of auriferous pyrite and arsenopyrite. Trace amounts of sphalerite, galena, marcasite and pyrrhotite are also present. The lode can be divided into: (i) Au-poor, pyrite-quartz vein, (ii) Au-rich, pyrite-arsenopyrite-quartz vein and (iii) gangue dominant. Inspection of primary inclusions from the Umm Rus gold lode showed that the ore was formed from CO 2-H 2O-rich fluids (ca. 30-46 mol % CO 2) of low salinity (6.75-7.75 wt. % NaCl equiv.) and alkaline to neutral pH with a density of 0.76-0.85 g/cc. These data are consistent with dissolution of gold as a bisulphide complex. Deposition of Au most likely occurred over a temperature range of 250-300°C and at pressures around 0.35 Kbars. The deposition may have occurred in response to separation of a liquid CO 2-phase from an originally CO 2-H 2O-rich aqueous fluids. The style of mineralization at Umm Rus bears certain resemblances to Au-bearing quartz veins in the Archaean deposits of Canada and Australia and the "Mother Lode" deposits of the U.S.A.

  13. Raman and micro-thermometric investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras, Central America)

    NASA Astrophysics Data System (ADS)

    Bersani, D.; Salvioli-Mariani, E.; Mattioli, M.; Menichetti, M.; Lottici, P. P.

    2009-08-01

    Fluid inclusions in the quartz crystals present in gold-rich veins from central Honduras have been studied by means of micro-thermometry and micro-Raman spectroscopy in order to provide information on the physico-chemical conditions and chemical composition of the mineralizing fluids. The use of a confocal micro-Raman apparatus allowed to obtain information on the fluid composition, in particular on the gas phase, minimizing the contributions of the host matrix to the Raman signal. The samples studied were collected from an area (Lepaguare mining district, Northern-Central Honduras) rich in ore deposits due to the Cenozoic magmatic activity, where the gold and sulphide mineralization is connected with a system of quartz veins (few decimetres thick) occurring in low-grade metamorphic rocks and produced by hydrothermal fluids. The quartz crystals present in the gold-rich veins often contain fluid inclusions. Four types of fluid inclusions have been observed, but their assemblage in the same clusters and fracture systems, as well as their comparable salinity and homogenization data, suggest that they have the same origin. Micro-thermometry and Raman spectroscopy provide a composition of the mineralizing fluids attributable to the system H 2O-NaCl-KCl-CO 2-CH 4, with temperature and pressure intervals of 210-413 °C and 1050-3850 bar, respectively. These data agree with an epigenetic origin of the gold deposit (depth < 6 km) related to granitoid or granodiorite intrusions associated to orogenic environments.

  14. Raman and micro-thermometric investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras, Central America).

    PubMed

    Bersani, D; Salvioli-Mariani, E; Mattioli, M; Menichetti, M; Lottici, P P

    2009-08-01

    Fluid inclusions in the quartz crystals present in gold-rich veins from central Honduras have been studied by means of micro-thermometry and micro-Raman spectroscopy in order to provide information on the physico-chemical conditions and chemical composition of the mineralizing fluids. The use of a confocal micro-Raman apparatus allowed to obtain information on the fluid composition, in particular on the gas phase, minimizing the contributions of the host matrix to the Raman signal. The samples studied were collected from an area (Lepaguare mining district, Northern-Central Honduras) rich in ore deposits due to the Cenozoic magmatic activity, where the gold and sulphide mineralization is connected with a system of quartz veins (few decimetres thick) occurring in low-grade metamorphic rocks and produced by hydrothermal fluids. The quartz crystals present in the gold-rich veins often contain fluid inclusions. Four types of fluid inclusions have been observed, but their assemblage in the same clusters and fracture systems, as well as their comparable salinity and homogenization data, suggest that they have the same origin. Micro-thermometry and Raman spectroscopy provide a composition of the mineralizing fluids attributable to the system H(2)O-NaCl-KCl-CO(2)-CH(4), with temperature and pressure intervals of 210-413 degrees C and 1050-3850 bar, respectively. These data agree with an epigenetic origin of the gold deposit (depth < 6 km) related to granitoid or granodiorite intrusions associated to orogenic environments.

  15. Physicochemical conditions and timing of rodingite formation: evidence from rodingite-hosted fluid inclusions in the JM Asbestos mine, Asbestos, Québec

    PubMed Central

    2007-01-01

    Fluid inclusions and geological relationships indicate that rodingite formation in the Asbestos ophiolite, Québec, occurred in two, or possibly three, separate episodes during thrusting of the ophiolite onto the Laurentian margin, and that it involved three fluids. The first episode of rodingitization, which affected diorite, occurred at temperatures of between 290 and 360°C and pressures of 2.5 to 4.5 kbar, and the second episode, which affected granite and slate, occurred at temperatures of between 325 and 400°C and pressures less than 3 kbar. The fluids responsible for these episodes of alteration were moderately to strongly saline (~1.5 to 6.3 m eq. NaCl), rich in divalent cations and contained appreciable methane. A possible third episode of alteration is suggested by primary fluid inclusions in vesuvianite-rich bodies and secondary inclusions in other types of rodingite, with significantly lower trapping temperatures, salinity and methane content. The association of the aqueous fluids with hydrocarbon-rich fluids containing CH4 and higher order alkanes, but no CO2, suggests strongly that the former originated from the serpentinites. The similarities in the composition of the fluids in all rock types indicate that the ophiolite had already been thrust onto the slates when rodingitization occurred. PMID:17961257

  16. Physicochemical conditions and timing of rodingite formation: evidence from rodingite-hosted fluid inclusions in the JM Asbestos mine, Asbestos, Québec.

    PubMed

    Normand, Charles; Williams-Jones, Anthony E

    2007-10-25

    Fluid inclusions and geological relationships indicate that rodingite formation in the Asbestos ophiolite, Québec, occurred in two, or possibly three, separate episodes during thrusting of the ophiolite onto the Laurentian margin, and that it involved three fluids. The first episode of rodingitization, which affected diorite, occurred at temperatures of between 290 and 360 degrees C and pressures of 2.5 to 4.5 kbar, and the second episode, which affected granite and slate, occurred at temperatures of between 325 and 400 degrees C and pressures less than 3 kbar. The fluids responsible for these episodes of alteration were moderately to strongly saline (approximately 1.5 to 6.3 m eq. NaCl), rich in divalent cations and contained appreciable methane. A possible third episode of alteration is suggested by primary fluid inclusions in vesuvianite-rich bodies and secondary inclusions in other types of rodingite, with significantly lower trapping temperatures, salinity and methane content. The association of the aqueous fluids with hydrocarbon-rich fluids containing CH4 and higher order alkanes, but no CO2, suggests strongly that the former originated from the serpentinites. The similarities in the composition of the fluids in all rock types indicate that the ophiolite had already been thrust onto the slates when rodingitization occurred.

  17. Fluid inclusion studies on the Koraput Alkaline Complex, Eastern Ghats Province, India: Implications for mid-Neoproterozoic granulite facies metamorphism and exhumation

    NASA Astrophysics Data System (ADS)

    Nanda, J.; Panigrahi, M. K.; Gupta, S.

    2014-03-01

    Following ultrahigh temperature granulite metamorphism at ˜1 Ga, the Eastern Ghats Province of India was intruded by the Koraput Alkaline Complex, and was subsequently re-metamorphosed in the granulite facies in the mid-Neoproterozoic time. Fluid inclusion studies were conducted on silica undersaturated alkali gabbro and syenites in the complex, and a pre-metamorphic pegmatitic granite dyke that intrudes it. High density (1.02-1.05 g/cc), pseudo-secondary pure CO2 inclusions are restricted to metamorphic garnets within the gabbro and quartz within the granite, whereas moderate (˜0.92-0.95 g/cc) and low density (˜0.75 g/cc) secondary inclusions occur in garnet, magmatic clinopyroxene, plagioclase, hornblende and quartz. The isochores calculated for high density pseudo-secondary inclusions pass very close to the peak metamorphic window (˜8 kbar, 750 °C), and are interpreted to represent the fluid present during peak metamorphism that was entrapped by the growing garnet. Microscopic round inclusions of undigested, relict calcite in garnet suggest that the CO2 present during metamorphism of the complex was internally derived through carbonate breakdown. Pure to low salinity (0.00-10.1 wt% NaCl equivalent) aqueous intra-/intergranular inclusions showing unimodal normal distribution of final ice-melting temperature (Tm) and temperature of homogenization (Th) are present only in quartz within the granite. These represent re-equilibrated inclusions within the quartz host that were entrapped at the metamorphic peak. Rare, chemically precipitated graphite along the walls of carbonic inclusions is interpreted as a post-entrapment reaction product formed during decompression. The fluid inclusion evidence is consistent with rapid exhumation of a thickened lower crust following the mid-Neoproterozoic granulite facies metamorphic event. The study suggests that mantle CO2, transported by alkaline magma into the crust, was locked up within carbonates and released during

  18. Application of a new Raman microprobe spectrometer to nondestructive analysis of sulfate and other ions in individual phases in fluid inclusions in minerals

    USGS Publications Warehouse

    Rosasco, G.J.; Roedder, E.

    1979-01-01

    Rosasco et al. (1975), reported the first successful application of laser-excited Raman spectroscopy for the identification and nondestructive partial analysis of individual solid, liquid, and gaseous phases in selected fluid inclusions. We report here the results of the application of a new instrument, based on back-scattering, that eliminates many of the previous stringent sample limitations and hence greatly expands the range of applicability of Raman spectroscopy to fluid inclusions. Fluid inclusions in many porphyry copper deposits contain 5-10 ??m 'daughter' crystals thought to be anhydrite but too small for identification by the previous Raman technique. Using the new instrument, we have verified that such daughter crystals in quartz from Bingham, Utah, are anhydrite. They may form by leakage of hydrogen causing internal autooxidation of sulfide ion. Daughter crystals were also examined in apatite (Durango, Mexico) and emerald (Muzo, Colombia). Valid analyses of sulfur species in solution in small fluid inclusions from ore deposits would be valuable, but are generally impossible by conventional methods. We present a calibration procedure for analyses for SO42- in such inclusions from Bingham, Utah (12,000 ?? 4000 ppm) and Creede, Colo. (probably < 500 ppm). A fetid Brazilian quartz, originally thought to contain liquid H2S, is shown to contain only HS- in major amounts. ?? 1979.

  19. Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions.

    PubMed

    Qiu, C; Krüger, Y; Wilke, M; Marti, D; Rička, J; Frenz, M

    2016-10-12

    We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996-916 kg m(-3)) in quartz. Microthermometric measurements include: (i) prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. We used single ultrashort laser pulses to stimulate vapour bubble nucleation in initially monophase liquid inclusions. Water densities were calculated based on prograde homogenisation temperatures using the IAPWS-95 formulation. We found retrograde liquid-vapour homogenisation temperatures in excellent agreement with IAPWS-95. (ii) Retrograde ice nucleation. Raman spectroscopy was used to determine the nucleation of ice in the absence of the vapour bubble. Our ice nucleation data in the doubly metastable region are inconsistent with the low-temperature trend of the spinodal predicted by IAPWS-95, as liquid water with a density of 921 kg m(-3) remains in a homogeneous state during cooling down to a temperature of -30.5 °C, where it is transformed into ice whose density corresponds to zero pressure. (iii) Ice melting. Ice melting temperatures of up to 6.8 °C were measured in the absence of the vapour bubble, i.e. in the negative pressure region. (iv) Spontaneous retrograde and, for the first time, prograde vapour bubble nucleation. Prograde bubble nucleation occurred upon heating at temperatures above ice melting. The occurrence of prograde and retrograde vapour bubble nucleation in the same inclusions indicates a maximum of the bubble nucleation curve in the ϱ-T plane at around 40 °C. The new experimental data represent valuable benchmarks to evaluate and further improve theoretical models describing the p-V-T properties of metastable water in the low-temperature region.

  20. Stable isotope systematics and fluid inclusion studies in the Cu-Au Visconde deposit, Carajás Mineral Province, Brazil: implications for fluid source generation

    NASA Astrophysics Data System (ADS)

    da Costa Silva, Antonia Railine; Villas, Raimundo Netuno Nobre; Lafon, Jean-Michel; Craveiro, Gustavo Souza; Ferreira, Valderez Pinto

    2015-06-01

    The Cu-Au Visconde deposit is located in the Carajás Mineral Province (CMP), northern Brazil, near the contact between the ca. 2.76 Ga metavolcano-sedimentary rocks of the Itacaiunas Supergroup rocks and the ~3.0 Ga granitic-gneissic basement. It is hosted by mylonitized Archean rocks, mainly metadacites, the Serra Dourada granite, and gabbros/diorites, which have been successively altered by sodic, sodic-calcic-magnesian, potassic, and calcic-magnesian hydrothermal processes, producing diverse mineralogical associations (albite-scapolite; albite-actinolite-scapolite-epidote; K-feldspar-biotite; chlorite-actinolite-epidote-calcite, etc.). Chalcopyrite is the dominant ore mineral and occurs principally in breccias and veins/veinlets. The aqueous fluids responsible for the alteration/mineralization were initially hot (>460 °C) and very saline (up to 58 wt.% equivalent (equiv.) NaCl), but as the system evolved, they experienced successive dilution processes. Mineral oxygen and hydrogen isotope data show that 18O-rich ( to +9.4 ‰) fluids prevailed in the earlier alteration (including magnetitites) and reached temperatures as high as 410-355 °C. Metamorphic/formation waters, most likely derived from the Carajás Basin rocks, appear to have contributed a major component to the fluid composition, although some magmatic input cannot be discounted. In turn, the later alterations and the mineralization involved cooler (<230 °C), 18O-depleted ( to +3.7 ‰) and less saline (7-30 wt.% equiv. NaCl) fluids, indicating the influx of meteoric water. Fluid dilution and cooling might have caused abundant precipitation of sulfides, especially as breccia cement. Ore δ 34 S values (+0.5 to +3.4 ‰) suggest a magmatic source for sulfur (from sulfide dissolution in pre-existing igneous rocks). The chalcopyrite Pb-Pb ages (2.73 ± 0.15 and 2.74 ± 0.10 Ga) indicate that the Visconde mineralization is Neoarchean, rather than Paleoproterozoic as previously considered. If so, the

  1. Fluid inclusion and stable isotopes studies of epithermal gold-bearing veins in the SE Afar Rift (Djibouti)

    NASA Astrophysics Data System (ADS)

    Moussa, N.; Boiron, M. C.; Grassineau, N.; Fouquet, Y.; Le Gall, B.; Mohamed, J.

    2015-12-01

    The Afar rift results from the interaction of a number of actively-propagating tectono-magmatic axes. Recent field investigations in the SE Afar rift have emphasized the importance of hydrothermal system in rift-related volcanic complexes. Mineralization occur as gold-silver bearing veins and are associated with felsic volcanism. Late carbonate veins barren of sulfides and gold are common. The morphologies and textures of quartz show crustiform colloform banding, massive and breccias. Microthermometric measurements were made on quartz-hosted two phases (liquid + vapor) inclusions; mean homogenization temperature range from 150°C to 340°C and ice-melting temperatures range from -0.2° to 1.6°C indicating that inclusion solutions are dilute and contain 0.35 to 2.7 equivalent wt. % NaCl. Furthermore, δ18O and δ13C values from calcite range from 3.7 to 26.6 ‰ and -7.5 to 0.3‰, respectively. The presence of platy calcite and adularia indicate that boiling condition existed. This study shows that precious-metal deposition mainly occurred from hydrothermal fluids at 200°C at around 300 and 450 m below the present-day surface in a typical low-sulphidation epithermal environment.

  2. Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites

    NASA Astrophysics Data System (ADS)

    Usui, Tomohiro; Alexander, Conel M. O'D.; Wang, Jianhua; Simon, Justin I.; Jones, John H.

    2012-12-01

    Volatile elements have influenced the differentiation and eruptive behavior of Martian magmas and played an important role in the evolution of Martian climate and near-surface environments. However, the abundances of volatiles, and in particular the amount of water in the Martian interior, are disputed. A record of volatile reservoirs is contained in primitive Martian basalts (shergottites). Olivine-hosted melt inclusions from a geochemically depleted shergottite (Yamato 980459, representing a very primitive Martian melt) possess undegassed water with a chondritic and Earth-like D/H ratio (δD≤275‰). Based on volatile measurements in these inclusions, the water content of the depleted shergottite mantle is calculated to be 15-47 ppm, which is consistent with the dry mantle hypothesis. In contrast to D/H in the depleted shergottite, melt from an enriched shergottite (Larkman Nunatak 06319), which either formed by melting of an enriched mantle or by assimilation of crust, exhibits an extreme δD of ˜5000‰, indicative of a surface reservoir (e.g., the Martian atmosphere or crustal hydrosphere). These data provide strong evidence that the Martian mantle had retained the primordial low-δD component until at least the time of shergottite formation, and that young Martian basalts assimilated old Martian crust.

  3. The effect of fluid and deformation on zoning and inclusion patterns in poly-metamorphic garnets

    NASA Astrophysics Data System (ADS)

    Erambert, Muriel; Austrheim, Håkon

    1993-11-01

    Within the Bergen Arcs of W Norway, Caledonian eclogite facies assemblages ( T≥650°C, P≥15 kbar) have formed from Grenvillian granulites ( T= 800 900°C, P≥10 kbar) along shear zones and fluid pathways. Garnets in the granulites (grtI: Pyr56 40 Alm45 25Gro19 14) are unzoned or display a weak (ca. 1 wt% FeO over 1000μm) zoning. The eclogite facies rocks contain garnets inherited from their granulite facies protoliths. These relict garnets have certain areas with compositions identical to the garnets in their nearby granulite, but can be crosscut by bands of a more Almrich composition (grtII: Pyr31 41Alm40 47Gro17 21) formed during the eclogite facies event. These bands, orientated preferentially parallel or perpendicular to the eclogite foliation, may contain mineral filled veins or trails of eclogite-facies minerals (omphacite, amphibole, white mica, kyanite, quartz and dolomite). Steep compositional gradients (up to 9 wt% FeO over 40 μm) separate the two generations of garnets, indicating limited volume diffusion. The bands are interpreted as fluid rich channels where element mobility must have been infinitely greater than it was for the temperature controlled volume diffusion at mineral interfaces in the granulites. The re-equilibration of granulite facies garnets during the eclogite facies event must, therefore, be a function of fracture density (deformation) and fluid availability. The results cast doubts on modern petrological and geochronological methods that assume pure temperature controlled chemical re-equilibration of garnets.

  4. Origin of the Rubian carbonate-hosted magnesite deposit, Galicia, NW Spain: mineralogical, REE, fluid inclusion and isotope evidence

    NASA Astrophysics Data System (ADS)

    Kilias, Stephanos P.; Pozo, Manuel; Bustillo, Manuel; Stamatakis, Michael G.; Calvo, José P.

    2006-10-01

    The Rubian magnesite deposit (West Asturian—Leonese Zone, Iberian Variscan belt) is hosted by a 100-m-thick folded and metamorphosed Lower Cambrian carbonate/siliciclastic metasedimentary sequence—the Cándana Limestone Formation. It comprises upper (20-m thickness) and lower (17-m thickness) lens-shaped ore bodies separated by 55 m of slates and micaceous schists. The main (lower) magnesite ore body comprises a package of magnesite beds with dolomite-rich intercalations, sandwiched between slates and micaceous schists. In the upper ore body, the magnesite beds are thinner (centimetre scale mainly) and occur between slate beds. Mafic dolerite dykes intrude the mineralisation. The mineralisation passes eastwards into sequence of bedded dolostone (Buxan) and laminated to banded calcitic marble (Mao). These show significant Variscan extensional shearing or fold-related deformation, whereas neither Rubian dolomite nor magnesite show evidence of tectonic disturbance. This suggests that the dolomitisation and magnesite formation postdate the main Variscan deformation. In addition, the morphology of magnesite crystals and primary fluid inclusions indicate that magnesite is a neoformed hydrothermal mineral. Magnesite contains irregularly distributed dolomite inclusions (<50 μm) and these are interpreted as relics of a metasomatically replaced dolostone precursor. The total rare earth element (REE) contents of magnesite are very similar to those of Buxan dolostone but are depleted in light rare earth elements (LREE); heavy rare earth element concentrations are comparable. However, magnesite REE chondrite normalised profiles lack any characteristic anomaly indicative of marine environment. Compared with Mao calcite, magnesite is distinct in terms of both REE concentrations and patterns. Fluid inclusion studies show that the mineralising fluids were MgCl2-NaCl-CaCl2-H2O aqueous brines exhibiting highly variable salinities (3.3 to 29.5 wt.% salts). This may be the result

  5. Dynamics of mineral crystallization at inclusion-garnet interface from precipitated slab-derived fluid phase: first in-situ synchrotron x-ray measurements

    NASA Astrophysics Data System (ADS)

    Malaspina, Nadia; Alvaro, Matteo; Campione, Marcello; Nestola, Fabrizio

    2015-04-01

    Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. These inclusions are frequently hosted by minerals stable at mantle depths, such as garnet, and show the same textural features as fluid inclusions. The mineral infillings of the solid multiphase inclusions are generally assumed to have crystallized by precipitation from the solute load of dense supercritical fluids equilibrating with the host rock. Notwithstanding the validity of this assumption, the mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatised at ~ 4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometers and negative crystal shapes. Infilling minerals (spinel: 10-20 vol.%; amphibole, chlorite, talc, mica: 80- 90 vol.%) occur with constant volume ratios and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by means of Synchrotron Radiation at DLS-Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and their reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Epitaxy drives a first-stage nucleation of spinel under near-to-equilibrium conditions

  6. Major element compositions of fluid inclusions from hydrothermal vein-type deposits record eroded sedimentary units in the Schwarzwald district, SW Germany

    NASA Astrophysics Data System (ADS)

    Walter, Benjamin F.; Burisch, Mathias; Marks, Michael A. W.; Markl, Gregor

    2017-02-01

    Mixing of sedimentary formation fluids with basement-derived brines is an important mechanism for the formation of hydrothermal veins. We focus on the sources of the sediment-derived fluid component in ore-forming processes and present a comprehensive fluid inclusion study on 84 Jurassic hydrothermal veins from the Schwarzwald mining district (SW Germany). Our data derive from about 2300 fluid inclusions and reveal differences in the average fluid composition between the northern, central, and southern Schwarzwald. Fluids from the northern and southern Schwarzwald are characterised by high salinities (18-26 wt% NaCl+CaCl2), low Ca/(Ca+Na) mole ratios (0.1-0.4), and variable Cl/Br mass ratios (30-1140). In contrast, fluids from the central Schwarzwald show even higher salinities (23-27 wt% NaCl+CaCl2), higher Ca/(Ca+Na) mole ratios (0.2-0.9), and less variable Cl/Br mass ratios (40-130). These fluid compositions correlate with the nature and thickness of the now eroded sedimentary cover rocks. Compared to the northern and the southern Schwarzwald, where halite precipitation occurred during the Middle Triassic, the sedimentary basin in the central Schwarzwald was relatively shallow at this time and no halite was precipitated. Accordingly, Cl/Br ratios of fluids from the central Schwarzwald provide no evidence for the reaction of a sedimentary brine with halite, whereas those from the northern and southern Schwarzwald do. Instead, elevated Ca/(Ca+Na), high SO4 contents, and relatively low Cl/Br imply the presence of a gypsum dissolution brine during vein formation in the central Schwarzwald which agrees with the reconstructed regional Triassic geology. Hence, the information archived in fluid inclusions from hydrothermal veins in the crystalline basement has the potential for reconstructing sedimentary rocks in the former overburden.

  7. The Beryllium-10 Abundance in an Unusual Hibonite-Perovskite Refractory Inclusion from Allende: Implications for the Origin of Be-10

    NASA Technical Reports Server (NTRS)

    Liu, M-C.; Keller, L. P.

    2017-01-01

    Beryllium-10 (decays to B-10, t1/2 = t(sub 1/2) = 1.3 Myr) 1.3 Myr) is a radionuclide that exclusively requires a is a radionuclide that exclusively requires a spallation origin. Therefore, one could obtain important insights into the irradiation environment in the solar nebula by understanding the distribution and abundance of this radionuclide in meteoritic inclusions. Most previous data are derived from B isotopic analysis of coarse-grained CV3 Ca-Al-rich Inclusions (CAIs) that have AL-26.Al-27 Al close to the canonical level of 5 x 10 (exp -5) and inferred Be-10/Be-9 ratios between 4 x 10(exp -4) and 1 x 10 (exp -2=3) [1-5]. Al-26-depleted FUN (Fractionaed and Unknown Nuclear anomalies) CAIs are less studied due to their rarity. FUN CAIs are thought to have formed prior to homogenization of Al-26/Al-27 Al and stable isotope anomalies (e.g., Ti-50) in the solar nebula, and thus represent one of the oldest Solar System solids [6]. So far, only three FUN CAIs (Axtell 2771, KT-1 and HAL) from CV3 chondrites have been measured for Be-10. They are characterized by variable Be-10/Be-9 ratios between (2.7-4.4) × 10(exp -4) [4,7]. Another group of rare, Al-26-free and and isotopically more anomalous inclusions, namely platy hibonite crystals (PLACs) from CM2 chondrites, have well-defined Be-10/Be-9 = (5.3 +/- 1.0) x 10 (exp -4) [9]. Al-26-free CAIs appear to have lower Be-1-/Be-9 than Al-26-bearing CAIs, although large analytical errors associated with some data would allow for an apparent overlap. It has been argued that the observed Be-10 variation resulted from the in-situ production of this radionuclide in CAIs (or their precursors) by irradiation, and the ratio difference simply reflects the fluctuation in projectile fluences [e.g., 9]. Another observation in support of this explanation comes from these CAIs' initial B-10/B-11 ratios, most of which are higher than the chondritic value 0.2478 [10]. This has been interpreted as a result of mixing between spallogenic

  8. Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada)

    NASA Astrophysics Data System (ADS)

    Richard, Antonin; Cathelineau, Michel; Boiron, Marie-Christine; Mercadier, Julien; Banks, David A.; Cuney, Michel

    2016-02-01

    The Paleoproterozoic Athabasca Basin (Canada) hosts numerous giant unconformity-related uranium deposits. The scope of this study is to establish the pressure, temperature, and composition (P-T-X conditions) of the brines that circulated at the base of the Athabasca Basin and in its crystalline basement before, during and after UO2 deposition. These brines are commonly sampled as fluid inclusions in quartz- and dolomite-cementing veins and breccias associated with alteration and U mineralization. Microthermometry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data from five deposits (Rabbit Lake, P-Patch, Eagle Point, Millennium, and Shea Creek) complement previously published data for the McArthur River deposit. In all of the deposits investigated, fluid inclusion salinity is between 25 and 40 wt.% NaCl equiv., with compositions displaying a continuum between a "NaCl-rich brine" end-member (Cl > Na > Ca > Mg > K) and a "CaCl2-rich brine" end-member (Cl > Ca ≈ Mg > Na > K). The CaCl2-rich brine has the highest salinity and shows evidence for halite saturation at the time of trapping. The continuum of compositions between the NaCl-rich brine and the CaCl2-rich brine end-members combined with P-T reconstructions suggest anisothermal mixing of the two brines (NaCl-rich brine, 180 ± 30 °C and 800 ± 400 bars; CaCl2-rich brine, 120 ± 30 °C and 600 ± 300 bars) that occurred under fluctuating pressure conditions (hydrostatic to supra-hydrostatic). However, because the two brines were U bearing and therefore oxidized, brine mixing was probably not the driving force for UO2 deposition. Several scenarios are put forward to account for the Cl-Na-Ca-Mg-K composition of the brines, involving combinations of seawater evaporation, halite dissolution, mixing with a halite-dissolution brine, Mg/Ca exchange by dolomitization, Na/Ca exchange by albitization of plagioclase, Na/K exchange by albitization of K-feldspar, and Mg loss by Mg

  9. Temporal and spatial distribution of alteration, mineralization and fluid inclusions in the transitional high-sulfidation epithermal-porphyry copper system at Red Mountain, Arizona

    USGS Publications Warehouse

    Lecumberri-Sanchez, Pilar; Newton, M. Claiborne; Westman, Erik C.; Kamilli, Robert J.; Canby, Vertrees M.; Bodnar, Robert J.

    2013-01-01

    Red Mountain, Arizona, is a Laramide porphyry Cu system (PCD) that has experienced only a modest level of erosion compared to most other similar deposits in the southwestern United States. As a result, the upper portion of the magmatic–hydrothermal system, which represents the transition from shallower high-sulfidation epithermal mineralization to deeper porphyry Cu mineralization, is well preserved. Within the Red Mountain system, alteration, mineralization and fluid inclusion assemblages show a systematic distribution in both time and space. Early-potassic alteration (characterized by the minerals biotite and magnetite) is paragenetically earlier than late-potassic alteration (K-feldspar–anhydrite) and both are followed by later phyllic (sericite–pyrite) alteration. Advanced argillic alteration (pyrophyllite–alunite–other clay minerals) is thought to be coeval with or postdate phyllic alteration. Minerals characteristic of advanced argillic alteration are present in the near surface. Phyllic alteration extends to greater depths compared to advanced argillic alteration. Early-potassic and late-potassic alteration are only observed in the deepest part of the system. Considerable overlap of phyllic alteration with both early-potassic and late-potassic alteration zones is observed. The hypogene mineralization contains 0.4–1.2% Cu and is spatially and temporally related to the late-potassic alteration event. Molybdenum concentration is typically In the deepest part of the system, an early generation of low-to-moderate density and salinity liquid + vapor inclusions with opaque daughter minerals is followed in time by halite-bearing inclusions that also contain opaque daughter minerals indicating that an early intermediate-density magmatic fluid evolved to a high-density, high-salinity mineralizing fluid. The increase in density and salinity of fluids with time observed in the deeper parts of the system may be the result of immiscibility (“boiling”) of

  10. Evolution of fluid-rock interactions: fluid inclusion, isotopic, and major/minor element chemistry of hydrothermally altered volcanic rock in core RN-17B, Reykjanes, Iceland

    NASA Astrophysics Data System (ADS)

    Fowler, A. P.; Zierenberg, R. A.; Schiffman, P.; Marks, N. E.; Fridleifsson, G. O.

    2011-12-01

    The Reykjanes Peninsula, Iceland, hosts a seawater-dominated geothermal system. Previous studies indicate an evolution of the system from meteoric to seawater. The inclined 4-inch diameter RN-17B drill core was collected from 2798.5 m to 2808.5 m (~2555 m below surface) at in situ temperature of approximately 330°C. Samples for this study were obtained from the Iceland Deep Drilling Project (IDDP). The core contains hydrothermally altered rocks of basaltic composition. Hydrothermal alteration ranges from upper greenschist to lower amphibolite grade, dependent on protolith size and composition. Veins in the core grade inward from radial epidote + acicular hornblende + titanite + pyrite, to clearer equant and compositionally zoned epidote vein centers. Felted amphibole replaces hyaloclastite and smaller crystalline clasts within the core, but is absent from the centers of crystalline pillow basalt fragments. Amphibole in vein selvages and vesicle fillings is green and acicular. Electron microprobe analyses of amphibole indicate it spans a compositional range of ferrohornblende through paragasite. The pistacite component (Xps) of vein epidote ranges from 16.5 to 36.7. The Xps component shows both normal and reverse zoning within single epidote crystals across this range, and follows no distinct pattern. Vein epidote adjacent to the wall rock has a higher aluminum concentration than vein centers. This may be due to mobilization of aluminum from plagioclase in the wall rock during albitization. Solutions flowing through open fractures may have lower Al-content and thus precipitate more Fe-rich epidote than those next to the fracture walls. Primary fluid inclusions in epidote range in size from <1 to 10 μm in diameter. Secondary fluid inclusions are <1 μm in diameter and not measurable. Calculated fluid inclusion salinities range from 0.5 to 7.6 weight percent NaCl, with lower salinities adjacent to the wall rock and higher salinities in the vein centers

  11. Geochemistry and fluid inclusions across a crustal strike-slip Mesozoic fault: insights of fluid-flow / rock interaction in the Atacama Fault System

    NASA Astrophysics Data System (ADS)

    Gomila, R.; Mitchell, T. M.; Arancibia, G.; Jensen, E.; Rempe, M.; Cembrano, J. M.; Hoshino, K.; Faulkner, D.

    2012-12-01

    presence of H2O-rich clays (and gypsum) in the boundary of the fault core represented as fault gouge zones while in the cataclastic zone, the decrease in L.O.I, is explained by the presence of epidote minerals. XRD analyses show a background chloritic alteration. These preliminary analyses give an insight into the evolution of the fault zone in which, at an early stage a cataclasite-rich core is formed and, as deformation continues, a gouge-bounded core is developed. The JF is likely to have had an evolving permeability structure with time with the later stage development of these gouge-rich zones acting as a fluid-barrier for hydrothermal fluids passing across the JF. Fluid inclusions of two quartz veins within the damage zone were analyzed. The results show primary L-V type FI, no boiling evidence, with a wide range of homogenization temperatures (Th) from 119 to 230 °C with variable low salinities of 0,5 - 9,3 (wt% NaCleq.). This is consistent with fluids found in epithermal systems. FONDECYT Project 1100464 is funding this research.

  12. Geochemical investigations and Fluid inclusion studies on iron ores from Qatruyeh area, Sanandaj-Sirjan zone, SW Iran: implications for a hydrothermal-metasomatic genetic model

    NASA Astrophysics Data System (ADS)

    Asadi, Sina; Rajabzadeh, Mohammad Ali

    2010-05-01

    for primary types (A) of fluid inclusion may indicate episodes of hydrothermal activities in mesothermal systems for Fe deposits in this region. Type B inclusions, characterized by much more gas bubble within an aqueous liquid are commonly found in all selected samples. Type B inclusions are dominated by more than 60 vol % H2O-CO2 at room temperature. In the Type B inclusions liquid-CO2 homogenize to vapor in the temperature range 396° to 410°C. A general increase in Th values is observed for Type B inclusions in comparison to Type A. Values of Tm of type B inclusions fall within a narrow range from -54.9 to -55.4oC. Salinities determined by last ice Tm were 2.8 to 3.9 weight percent NaCl equivalent. These fluids consist of mixtures of H2O and CO2, the most common fluids released during metamorphic reactions. Fluid inclusion data indicate that the ore forming fluids at Qatruyeh were CO2-bearing, low to moderately saline, NaCl-MgCl2-CaCl2-H2O rich fluids. Fluid mixing, cooling and effervescence played an important role in the formation of the Qatruyeh deposits. Therefore, The range of homogenization temperatures, presence of CO2 in quartz fluid inclusions and an increase in pH indicate that the mixing of fluids and reaction with dolomitic-marble host rock were the most important mechanisms for deposition of magnetite.

  13. Abundance and isotope systematics of carbon in subglacial basalts, geothermal gases and fluids from Iceland's rift zones

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Fueri, E.; Halldorsson, S. A.; Fischer, T. P.; Gronvold, K.

    2010-12-01

    P. H. BARRY1*, D. R. HILTON1, E. FÜRI1, S.A. HALLDÓRSON1, T.P. FISCHER2, K. GRONVOLD3 1 Scripps Institution of Oceanography, UCSD, La Jolla, California 92093, USA (*Correspondence: pbarry@ucsd.edu). 2University of New Mexico, Albuquerque, NM 87131, USA. 3University of Iceland, Askja, Sturlugata 7, IS-101, Reykjavik, Iceland Carbon dioxide (CO2) is the dominant non-aqueous volatile species found in oceanic basalts and geothermal fluids and serves as the carrier gas for trace volatiles such as He and other noble gases. The aim of this study is to identify the superimposed effects of degassing and crustal contamination on the CO2 systematics of the Icelandic hotspot in order to reveal and characterize the carbon abundance and isotopic features of the underlying mantle source. Our approach involves coupling CO2 with He, utilizing the sensitivity of 3He/4He ratios to reveal mantle and crustal inputs. We report new C-isotope (δ13C) and abundance characteristics for a suite of 47 subglacial basalts and 50 geothermal gases and fluids from Iceland. CO2 contents in hyaloclastite glasses are extremely low (10-100 ppm) and likely residual following extensive degassing whereas geothermal fluids are dominated by CO2 (>90 %). C-isotopes range from -27.2 to -3.6 ‰ (vs. PDB) for basalts and from -18.8 to 2.86 ‰ (vs. PDB) for geothermal samples (mean = -4.2 ± 3.6 ‰). CO2/3He ratios range from 108 to 1012 for basalts and from 105 to 1012 for geothermal samples: In both cases, our results extend He-CO2 relationships over a much broader range than reported previously [1]. Taken together, these data suggest that several processes including mixing, degassing, and/or syn- or post-eruptive crustal contamination may act to modify CO2 source characteristics. Equilibrium degassing models are compatible with ~75 % of the basalt data, and preliminary results indicate that initial Icelandic source characteristics are ~500 ppm CO2 and δ13C ~ -5 ‰ (vs. PDB). These values are high

  14. Fluid inclusions in quartz-pebbles of the gold-bearing Tarkwaian conglomerates of Ghana as guides to their provenance area

    NASA Astrophysics Data System (ADS)

    Klemd, R.; Hirdes, W.; Olesch, M.; Oberthür, T.

    1993-11-01

    Quartz-pebbles of the early Proterozoic Au-bearing Tarkwaian conglomerates in Ghana reveal several original (inherited) pre-sedimentary fluid inclusions. These inclusions are CO2-N2 rich and display a distinct high density (up to 1.15 g/cm3). The unusual high density and composition compare well with CO2-N2-rich inclusions in quartz-vein type gold deposits of the Birimian Supergroup in Ghana and Burkina Faso. This type of fluid inclusions has not been reported from any other lode-gold deposit of greenstone affiliation and is thus a specific characteristic for Birimian-hosted gold deposits. Therefore, it can be used as an unequivocal pathfinder for epigenetic as well as for syn-sedimentary gold mineralization of the early Proterozoic of West Africa. The inherited fluid inclusions with the unique physicochemical characteristics suggest that the Tarkwaian quartz-pebbles and possibly some gold were derived from Au-quartz vein deposits comparable in mineralogy, petrography and genesis to those along the NW-margin of the Ashanti belt (e.g. Ashanti Mine, Prestea Mine).

  15. A reinterpretation of the δDH2O of inclusion fluids in contemporaneous quartz and sphalerite, Creede mining district, Colorodo: a generic problem for shallow orebodies?

    USGS Publications Warehouse

    Foley, Nora K.; Bethke, Philip M.; Rye, Robert O.

    1989-01-01

    The unusually high contrast between the salinities of the ore-depositing fluids and the ground water overlying the ore zone allowed recognition of this phenomenon at Creede. It is likely, however, that Creede is not unique. Similar phenomena may be common in shallow ore zones where rapid fluctuation of an interface between a deep, high-temperature thermal plume and an overlying, cooler ground water may be expected to occur. Careful study of the origins of fluid inclusions, particularly in quartz, is essential to characterize the primary ore fluids and to assess the role of ground water in the hydrology of shallow ore deposits.

  16. The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite

    USGS Publications Warehouse

    Brennan, Sean T.; Lowenstein, Tim K.; Cendon, Dioni I.

    2013-01-01

    Fluid inclusions from ten Cenozoic (Eocene-Miocene) marine halites are used to quantify the major-ion composition (Mg2+, Ca2+, K+, Na+, SO42−, and Cl−) of seawater over the past 36 My. Criteria used to determine a seawater origin of the halites include: (1) stratigraphic, sedimentologic, and paleontologic observations; (2) Br− in halite; (3) δ34S of sulfate minerals; (4) 87Sr/86Sr of carbonates and sulfates; and (5) fluid inclusion brine compositions and evaporation paths, which must overlap from geographically separated basins of the same age to confirm a “global” seawater chemical signal. Changes in the major-ion chemistry of Cenozoic seawater record the end of a systematic, long term (>150 My) shift from the Ca2+-rich, Mg2+- and SO42−-poor seawater of the Mesozoic (“CaCl2 seas”) to the “MgSO4 seas” (with higher Mg2+ and SO42−>Ca2+) of the Cenozoic. The major ion composition of Cenozoic seawater is calculated for the Eocene-Oligocene (36-34 Ma), Serravallian-Tortonian (13.5-11.8 Ma) and the Messinian (6-5 Ma), assuming chlorinity (565 mmolal), salinity, and the K+ concentration (11 mmolal) are constant and the same as in modern seawater. Fluid inclusions from Cenozoic marine halites show that the concentrations of Mg2+and SO42− have increased in seawater over the past 36 My and the concentration of Ca2+ has decreased. Mg2+ concentrations increased from 36 mmolal in Eocene-Oligocene seawater (36-34 Ma) to 55 mmolal in modern seawater. The Mg2+/Ca2+ ratio of seawater has risen from ∼2.3 at the end of the Eocene, to 3.4 and 4.0, respectively, at 13.5 to 11.8 Ma and 6 to 5 Ma, and to 5 in modern seawater. Eocene-Oligocene seawater (36-34 Ma) has estimated ranges of SO42− = 14–23 mmolal and Ca2+ = 11–20 mmolal. If the (Ca2+)(SO42−) product is assumed to be the same as in modern seawater (∼300 mmolal2), Eocene-Oligocene seawater had Ca2+ ∼16 mmolal and SO42− ∼19 mmolal. The same estimates of Ca2+ and SO42− for Serravallian

  17. Origin and timing of Dauphiné twins in quartz cement in fractured sandstones from diagenetic environments: Insight from fluid inclusions

    NASA Astrophysics Data System (ADS)

    Fall, András; Ukar, Estibalitz; Laubach, Stephen E.

    2016-09-01

    Electron backscattered diffraction techniques (EBSD) show that Dauphiné twins in quartz are widespread in many tectonometamorphic environments. Our study documents that under diagenetic temperatures (< 200 °C) and burial depths < 5 km Dauphiné twins are common in isolated fracture quartz deposits spanning between fracture walls (i.e., quartz bridges) in low-porosity quartz-cemented sandstones. Using examples from East Texas and Colorado cores, we show that twins are associated with crack-seal microstructure and fluid inclusions. Fracture wall-parallel and wall-normal inclusion trails contain coexisting aqueous and hydrocarbon gas inclusions, so homogenization temperatures of aqueous inclusions record true trapping temperatures. Inclusions in alignments normal to fracture walls are large and irregularly shaped compared to those aligned parallel to walls, but both show similar liquid-to-vapor ratios. Stacking transmitted light images with scanning electron microscope cathodoluminescence (SEM-CL) and EBSD images demonstrates that Dauphiné twin boundaries are localized along wall-normal inclusion trails. Trapping temperatures for wall-normal inclusion trails are usually higher than those aligned parallel to the fracture wall. Wall-normal fluid inclusion assemblage temperatures typically match the highest temperatures of wall-parallel assemblages trapped during sequential widening, but not necessarily the most recent. In context of burial histories for these samples, this temperature pattern implies that wall-normal assemblages form at discrete times during or after crack-seal fracture widening. Localization in isolated, potentially high-stress quartz deposits in fractures is compatible with a mechanical origin for these Dauphiné twins. Punctuated temperature values and discrepant sizes and shapes of inclusions in wall-normal trails implies that twinning is a by-product of the formation of the wall-normal inclusion assemblages. The association of Dauphiné twins

  18. Formation of Archean batholith-hosted gold veins at the Lac Herbin deposit, Val-d'Or district, Canada: Mineralogical and fluid inclusion constraints

    NASA Astrophysics Data System (ADS)

    Rezeau, Hervé; Moritz, Robert; Beaudoin, Georges

    2016-07-01

    The Lac Herbin deposit consists of a network of mineralized, parallel steep-reverse faults within the synvolcanic Bourlamaque granodiorite batholith at Val-d'Or in the Archean Abitibi greenstone belt. There are two related quartz-tourmaline-carbonate fault-fill vein sets in the faults, which consist of subvertical fault-fill veins associated with subhorizontal veins. The paragenetic sequence is characterized by a main vein filling ore stage including quartz, tourmaline, carbonate, and pyrite-hosted gold, chalcopyrite, tellurides, pyrrhotite, and cubanite inclusions. Most of the gold is located in fractures in deformed pyrite and quartz in equilibrium with chalcopyrite and carbonates, with local pyrrhotite, sphalerite, galena, cobaltite, pyrite, or tellurides. Petrography and microthermometry on quartz from the main vein filling ore stage reveal the presence of three unrelated fluid inclusion types: (1) gold-bearing aqueous-carbonic inclusions arranged in three-dimensional intragranular clusters in quartz crystals responsible for the main vein filling stage, (2) barren high-temperature, aqueous, moderately saline inclusions observed in healed fractures, postdating the aqueous-carbonic inclusions, and considered as a remobilizing agent of earlier precipitated gold in late fractures, and (3) barren low-temperature, aqueous, high saline inclusions in healed fractures, similar to the crustal brines reported throughout the Canadian Shield and considered to be unrelated to the gold mineralization. At the Lac Herbin deposit, the aqueous-carbonic inclusions are interpreted to have formed first and to represent the gold-bearing fluid, which were generated contemporaneous with regional greenschist facies metamorphism. In contrast, the high-temperature aqueous fluid dissolved gold from the main vein filling ore stage transported and reprecipitated it in late fractures during a subsequent local thermal event.

  19. Formation of Archean batholith-hosted gold veins at the Lac Herbin deposit, Val-d'Or district, Canada: Mineralogical and fluid inclusion constraints

    NASA Astrophysics Data System (ADS)

    Rezeau, Hervé; Moritz, Robert; Beaudoin, Georges

    2017-03-01

    The Lac Herbin deposit consists of a network of mineralized, parallel steep-reverse faults within the synvolcanic Bourlamaque granodiorite batholith at Val-d'Or in the Archean Abitibi greenstone belt. There are two related quartz-tourmaline-carbonate fault-fill vein sets in the faults, which consist of subvertical fault-fill veins associated with subhorizontal veins. The paragenetic sequence is characterized by a main vein filling ore stage including quartz, tourmaline, carbonate, and pyrite-hosted gold, chalcopyrite, tellurides, pyrrhotite, and cubanite inclusions. Most of the gold is located in fractures in deformed pyrite and quartz in equilibrium with chalcopyrite and carbonates, with local pyrrhotite, sphalerite, galena, cobaltite, pyrite, or tellurides. Petrography and microthermometry on quartz from the main vein filling ore stage reveal the presence of three unrelated fluid inclusion types: (1) gold-bearing aqueous-carbonic inclusions arranged in three-dimensional intragranular clusters in quartz crystals responsible for the main vein filling stage, (2) barren high-temperature, aqueous, moderately saline inclusions observed in healed fractures, postdating the aqueous-carbonic inclusions, and considered as a remobilizing agent of earlier precipitated gold in late fractures, and (3) barren low-temperature, aqueous, high saline inclusions in healed fractures, similar to the crustal brines reported throughout the Canadian Shield and considered to be unrelated to the gold mineralization. At the Lac Herbin deposit, the aqueous-carbonic inclusions are interpreted to have formed first and to represent the gold-bearing fluid, which were generated contemporaneous with regional greenschist facies metamorphism. In contrast, the high-temperature aqueous fluid dissolved gold from the main vein filling ore stage transported and reprecipitated it in late fractures during a subsequent local thermal event.

  20. Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations

    USGS Publications Warehouse

    Wang, X.; Chou, I.-Ming; Hu, W.; Burruss, R.C.; Sun, Q.; Song, Y.

    2011-01-01

    Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (??, cm-1) and CO2 density (??, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2 fluids having densities between 0.21 and 0.75g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9cm-1. The relationship between the CO2 Fermi diad split and density can be represented by: ??=47513.64243-1374.824414????+13.25586152????2-0.04258891551????3 (r2=0.99835, ??=0.0253g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined. ?? 2011 Elsevier Ltd.

  1. Determination of H2O and CO2 concentrations in fluid inclusions in minerals using laser decrepitation and capacitance manometer analysis

    NASA Technical Reports Server (NTRS)

    Yonover, R. N.; Bourcier, W. L.; Gibson, E. K.

    1985-01-01

    Water and carbon dioxide concentrations within individual and selected groups of fluid inclusions in quartz were analyzed by using laser decrepitation and quantitative capacitance manometer determination. The useful limit of detection (calculated as ten times the typical background level) is about 5 x 10(-10) mol of H2O and 5 x 10(-11) mol of CO2; this H2O content translates into an aqueous fluid inclusion approximately 25 micrometers in diameter. CO2/H2O determinations for 38 samples (100 separate measurements) have a range of H2O amounts of 5.119 x 10(-9) to 1.261 x 10(-7) mol; CO2 amounts of 7.216 x 10(-10) to 1.488 x 10(-8) mol, and CO2/H2O mole ratios of 0.011 to 1.241. Replicate mole ratio determinations of CO2/H2O for three identical (?) clusters of inclusions in quartz have average mole ratios of 0.0305 +/- 0.0041 1 sigma. Our method offers much promise for analysis of individual fluid inclusions, is sensitive, is selective when the laser energy is not so great as to melt the mineral (laser pits approximately 50 micrometers in diameter), and permits rapid analysis (approximately 1 h per sample analysis).

  2. The composition of fluid inclusions in ore and gangue minerals from the Silesian-Cracow Mississippi Valley-type Zn-Pb deposits Poland: Genetic and environmental implications

    USGS Publications Warehouse

    Viets, J.G.; Hofstra, A.H.; Emsbo, P.; Kozlowski, A.

    1996-01-01

    The composition of fluids extracted from ore and gangue sulfide minerals that span most of the paragenesis of the Silesian-Cracow district was determined using a newly developed ion chromatographic (IC) technique. Ionic species determined were Na+, NH+4, Ca2+, Mg2+, K+, Rb+, Sr2+, Ba2+, Cl-, Br-, F-, I-, PO3-4, CO2-3, HS-, S2O2-3, SO2-4, NO-3, and acetate. Mineral samples included six from the Pomorzany mine and one from the Trzebionka mine which are hosted in the Triassic Muschelkalk Formation, and two samples of drill core from mineralized Upper Devonian strata. Nine paragenetically identifiable sulfide minerals occur throughout the Silesian-Cracow district. These include from earliest to latest: early iron sulfides, granular sphalerite, early galena, light-banded sphalerite, galena, dark-banded sphalerite, iron sulfides, late dark-banded sphalerite with late galena, and late iron sulfides. Seven of the minerals were sampled for fluid inclusion analysis in this study. Only the early iron sulfides and the last galena stage were not sampled. Although the number of analyses are limited to nine samples and two replicates and there is uncertainty about the characteristics of the fluid inclusions analyzed, the data show clear temporal trends in the composition of the fluids that deposited these minerals. Fluid inclusions in minerals deposited later in the paragenesis have significantly more K+, Br-, NH+4, and acetate but less Sr2+ than those deposited earlier in the paragenesis. The later minerals are also characterized by isotopically lighter sulfur and significantly more Tl and As in the solid minerals. The change in ore-fluid chemistry is interpreted to reflect a major change in the hydrologic regime of the district. Apparently, the migrational paths of ore fluids from the Upper Silesian basin changed during ore deposition and the fluids which deposited early minerals reacted with aquifers with very different geochemical characteristics than those that deposited

  3. Na-Cl-Br systematics of fluid inclusions from Mississippi Valley-type deposits, Appalachian Basin: Constraints on solute origin and migration paths

    SciTech Connect

    Kesler, S.E.; Martini, A.M.; Appold, M.S.; Walter, L.M.; Huston, T.J.; Furman, F.C.

    1996-01-01

    This study evaluated Na-Cl-Br systematics of fluid inclusion-hosted brines in Mississippi Valley-type (MVT) deposits from the Appalachian Basin. Unlike other geochemical tracers such as lead and strontium isotopes which constrain metal sources, Na-Cl-Br systematics identify sources of brine salinity. Saline formation waters can vary systematically within and between basins with regard to their Na-Cl-Br compositions depending on the importance of halite dissolution relative to retention of subaerially evaporated seawater for the halogen budget. Oil field brine compositions from the Illinois and Appalachian basins are quite distinct in their Na-Cl-Br systematics. Compositions of saline fluid inclusions in MVT deposits generally are consistent with these regional differences. These results shed new light on the extent of regional flow systems and on the geochemical evolution of saline fluids responsible for mineralization. Nearly all fluid inclusions analyzed from the Appalachian MVT deposits have Na/Br and Cl/Br ratios less than modern seawater, consistent with ratios observed in marine brines involved in halite precipitation. The Na-Cl-Br systematics of the brines responsible for Appalachian MVT deposits may be inherited from original marine brines refluxed into the porous carbonate shelf sediments that host these deposits. The Cl/Br and Na/Br ratios of most fluid inclusion-hosted brines from Appalachian MVT sphalerites and fluorites fall into two compositional groups, one from the Lower Cambrian paleoaquifer and another from the Lower Ordovician paleoaquifer. Leachates from most MVT barite deposits form a third compositional group having lower Na/Br and Cl/Br ratios than the other two. Appalachian MVT leachate compositions differ significantly from those in MVT deposits in the Cincinnati arch-midcontinent region suggesting that these two MVT provinces formed from brines of different origin or flow path. 59 refs., 8 figs., 2 tabs.

  4. Abundance of volatile and organic species in intermediate temperature fluids from the Von Damm and Piccard deep sea hydrothermal fields, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; Reeves, E. P.; German, C. R.; Sylva, S. P.; Klein, F.

    2012-12-01

    vent fluids, and imply the presence of a CO2 sink. Von Damm fluid CO2/CH4 ratios are relatively constant at 1.0 to 1.5 (mol/mol) in the higher temperature fluids, and are low compared with CO2/CH4 ratios of 200 to 250 (mol/mol) in the higher temperature Piccard fluids. All vent fluids at Von Damm are enriched in CH4 and longer-chain n-alkanes. Von Damm fluid H2 and H2S abundances are consistent with those at Rainbow and other ultramafic-influenced systems. At the Von Damm vent field, H2 shows non-conservative behavior in intermediate fluids at temperatures ≤114 °C. Such behavior is consistent with previous studies, which attributed non-conservative H2 behavior in ~30 °C vent fluids to microbial consumption (e.g. Von Damm and Lilley, 2004). Similar activity may be occurring at Von Damm. At Piccard, H2 shows non-conservative mixing behavior at temperatures ≤149 °C. H2 depletion at Piccard occurs at higher temperatures than at Von Damm, in excess of the currently known limit for life at 122 °C (Takei et al., 2008), suggesting that abiotic as well as microbial processes may be affecting H2 abundance. Methylated organic compounds, including methanethiol and methanol, were also observed in vent fluids at Piccard and Von Damm, and further organic compound analyses are ongoing.

  5. FORTRAN programs for generating fluid inclusion isochores and fugacity coefficients for the system H 2O-CO 2-NaCl at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Bowers, Teresa Suter; Helgeson, Harold C.

    Program DENFIND permits calculation of pressures and temperatures corresponding to isochores for H 2O-CO 2-NaCl fluids which can be used to generate pressure corrections of fluid inclusion homogenization temperatures. Program FUGCO facilitates calculation of fugacity coefficients in the system H 2O-CO 2-NaCl as a function of pressure, temperature and fluid composition. Both programs employ a modified Redlich-Kwong equation of state for the ternary system (Bowers and Helgeson, 1983a), which is applicable to fluids containing up to 35 wt. % NaCl (relative to H 2O + NaCl) at pressures above 500 bars and temperature from 350 to 600°C.

  6. Constraints on the thermal history of Taylorsville Basin, Virginia, U.S.A., from fluid-inclusion and fission-track analyses: Implications for subsurface geomicrobiology experiments

    USGS Publications Warehouse

    Tseng, H.-Y.; Onstott, T.C.; Burruss, R.C.; Miller, D.S.

    1996-01-01

    Microbial populations have been found at the depth of 2621-2804 m in a borehole near the center of Triassic Taylorsville Basin, Virginia. To constrain possible scenarios for long-term survival in or introduction of these microbial populations to the deep subsurface, we attempted to refine models of thermal and burial history of the basin by analyzing aqueous and gaseous fluid inclusions in calcite/quartz veins or cements in cuttings from the same borehole. These results are complemented by fission-track data from the adjacent boreholes. Homogenization temperatures of secondary aqueous fluid inclusions range from 120?? to 210??C between 2027- and 3069-m depth, with highest temperatures in the deepest samples. The salinities of these aqueous inclusions range from 0 to ??? 4.3 eq wt% NaCl. Four samples from the depth between 2413 and 2931 m contain both two-phase aqueous and one-phase methane-rich inclusions in healed microcracks. The relative CH4 and CO2 contents of these gaseous inclusions was estimated by microthermometry and laser Raman spectroscopy. If both types of inclusions in sample 2931 m were trapped simultaneously, the density of the methane-rich inclusions calculated from the Peng - Robinson equation of state implies an entrapment pressure of 360 ?? 20 bar at the homogenization temperature (162.5 ?? 12.5??C) of the aqueous inclusions. This pressure falls between the hydrostatic and lithostatic pressures at the present depth 2931 m of burial. If we assume that the pressure regime was hydrostatic at the time of trapping, then the inclusions were trapped at 3.6 km in a thermal gradient of ??? 40??C/km. The high temperatures recorded by the secondary aqueous inclusions are consistent with the pervasive resetting of zircon and apatite fission-track dates. In order to fit the fission-track length distributions of the apatite data, however, a cooling rate of 1-2??C/Ma following the thermal maximum is required. To match the integrated dates, the thermal maximum

  7. Calcite Fluid Inclusion, Paragenetic, and Oxygen Isotopic Records of Thermal Event(s) at Yucca Mountain, Nevada

    SciTech Connect

    B. Peterman; R. Moscati

    2000-08-10

    Yucca Mountain, Nevada, is under consideration as a potential high-level radioactive waste repository situated above the water table in 12.7 Ma tuffs. A wealth of textural and geochemical evidence from low-temperature deposits of calcite and silica, indicates that their genesis is related to unsaturated zone (UZ) percolation and that the level of the potential repository has never been saturated. Nonetheless, some scientists contend that thermal waters have periodically risen to the surface depositing calcite and opal in the tuffs and at the surface. This hypothesis received some support in 1996 when two-phase fluid inclusions (FIs) with homogenization temperatures (Th) between 35 and 75 C were reported from UZ calcite. Calcite deposition likely followed closely on the cooling of the tuffs and continues into the present. The paragenetic sequence of calcite and silica in the UZ is early stage calcite followed by chalcedony and quartz, then calcite with local opal during middle and late stages. Four types of FIs are found in calcite assemblages: (1) all-liquid (L); (2) all-vapor (V); (3) 2-phase with large and variable V:L ratios; and (4) a few 2-phase with small and consistent V:L ratios. Late calcite contains no FI assemblages indicating elevated depositional temperatures. In early calcite, the Th of type 4 FIs ranges from {approx} 40 to {approx} 85 C. Such temperatures (sub-boiling) and the assemblage of FIs are consistent with deposition in the UZ. Some delta 18O values < 10 permil in early calcite support such temperatures. Type 4 FIs, however, seem to be restricted to the early calcite stage, during which either cooling of the tuffs or regional volcanism were possible heat sources. Nonetheless, at present there is no compelling evidence of upwelling water as a source for the calcite/opal deposits.

  8. A New Formulation for Volume-of-Fluid Simulations of Drops on Solid Surfaces: Inclusion of Adhesion Force

    NASA Astrophysics Data System (ADS)

    Chang, C.; Criscione, A.; Jakirlic, S.; Tropea, C.; Amirfazli, Alidad

    2012-11-01

    The capillary forces acting on a sessile drop placed on a solid surface has two basic components: (1) the Laplace pressure (LP) due to the curvature of the liquid-gas interface, and (2) the Surface Tension Force (STF) as a concentrated force acting at the three-phase contact line. STF can be thought of adhesion force for a drop placed on a solid surface. To date, Volume-of-Fluid (VoF) simulations of drops on solid surfaces have only considered LP, and ignored the STF. Ignoring the STF can lead to incorrect description of the physics for systems involving sessile drops (e.g. shedding of a drop from a surface) especially when capillary and external (e.g. inertial) forces are of the same order of magnitude. Continuum Surface Force (CSF) method is widely used in VoF to model the LP. By modifying the CSF implementation at the contact line, we have added the STF to the VoF formulation. Two case studies, i.e. water drops on an inclined surface and a sessile drop exposed to a shearing airflow are considered. When the STF was ignored, a drop placed on an inclined surface moved at an unrealistically low inclination (e.g. 1 degree for a system with considerable contact angle hysteresis of 10-30 deg.). Same unrealistic motion for the drop was observed when exposed to very low air velocities. Inclusion of the STF corrected both of these unphysical outcomes. A discussion of various systems with different wettabilities (adhesion force values) for each of the two case studies will be provided and comparisons with experiments will be presented.

  9. Metamorphosed Plio-Pleistocene evaporites and the origins of hypersaline brines in the Salton Sea geothermal system, California: Fluid inclusion evidence

    SciTech Connect

    McKibben, M.A.; Williams, A.E.; Okubo, Susumu )

    1988-05-01

    The Salton Sea geothermal system (SSGS) occurs in Plio-Pleistocene deltaic-lacustrine-evaporite sediments deposited in the Salton Trough, an active continental rift zone. Temperatures up to 365{degree}C and hypersaline brines with up to 26 wt.% TDS are encountered at 1-3 km depth in the sediments, which are undergoing active greenschist facies hydrothermal metamorphism. Previous models for the origins of the Na-Ca-K-Cl brines have assumed that the high salinities were derived mainly from the downward percolation of cold, dense brines formed by low-temperature dissolution of shallow non-marine evaporites. New drillcores from the central part of the geothermal field contain metamorphosed, bedded evaporites at 1 km depth consisting largely of hornfelsic anhydrite interbedded with anhydrite-cemented solution-collapse shale breccias. Fluid inclusions trapped within the bedded and breccia-cementing anhydrite homogenize at 300{degree}C and contain saline Na-Ca-K-Cl brines. Some of the inclusions contain up to 50 vol.% halite, sylvite and carbonate crystals at room temperature, and some halite crystals persist to above 300{degree}C upon laboratory heating. The data are consistent with the trapping of halite-saturated Na-Ca-K-Cl fluids during hydrothermal metamorphism of the evaporites and accompanying solution collapse of interbedded shales. The authors conclude that many of the slat crystals in inclusions are the residuum of bedded evaporitic salt that was dissolved during metamorphism by heated connate fluids.

  10. Ore Metal-rich Fluids Degassed from a Fractionating Magma Chamber in the Eastern Manus Basin, Western Pacific: Evidence from Melt Inclusions and Vesicles

    NASA Astrophysics Data System (ADS)

    Yang, K.; Scott, S. D.

    2002-12-01

    Magmatic fluids are found in vesicular volcanic rocks that host several hydrothermal fields in the eastern Manus backarc basin. Dredged samples of fresh lavas, of basalt to rhyolite composition, define a calc-alkalic trend consistent with fractionation of a common source. Their vesicularity decreases with Si, K, Ba and Zr, and increases with Ca, Mg, Fe and Sc of the bulk samples, suggesting that the degassing of volatiles was linked to crystal fractionation of the magma. The felsic rocks have much lower vesicularities (<10%) than the mafic rocks (>30%), indicating that the fractionated felsic magma lost most of its vesicles before its eruption. High concentrations of H2O (0.9 to 2.5%) and Cl (up to 0.45%) observed in the mafic melt inclusions in phenocryst minerals of the basaltic andesite point to a volatile-rich magma. A separate fluid phase is present in the melt inclusions so the magma must have been saturated with volatiles in the magma chamber. The volatiles exsolved as an immiscible fluid with increasing crystal fractionation, and the composition of the degassed magmatic fluid changed with the evolving magma. The fluid is CO2-dominated during the degassing of weakly fractionated mafic magma and becomes a mixture of CO2 and H2O as H2O is increasingly exsolved from the highly-fractionated felsic magma. The ore metals in the degassed fluid, as inferred from the compositions (by EPMA, SEM/EDS and TOF-SIMS) of metallic precipitates in the vesicles of melt inclusions and matrix glass, progressively change from Ni+Cu+Zn+Fe in basalt and basaltic andesite, to Cu+Zn+Fe in andesite, Cu+Fe in dacite, Fe in rhyodacite and Fe+Zn (+Pb?) in rhyolite. This trend provides evidence that fluids, released from a fractionating magma, could be an enriched source of metals for various types of ore deposits. In particular, the pre-eruptive degassing of magmatic fluids from felsic magmas could be responsible for the Fe, Cu, Zn and Pb metals in the sulfide chimneys at PACMANUS and

  11. The Thermal Evolution of the Benton and Broken Bow uplifts, Ouachita Orogen, Arkansas and Oklahoma from Quartz-Calcite Thermometry and Fluid Inclusion Thermobarometry

    NASA Astrophysics Data System (ADS)

    Piper, J.; Wiltschko, D.

    2011-12-01

    To understand the fluid temperature and pressure during the Ouachita orogeny, we use isotopic analysis of syntectonic veins and adjacent host material, quartz-calcite oxygen isotope thermometry and fluid inclusion analysis. The veins were at or near isotopic equilibrium with their host rocks; neither the host nor veins have been isotopically reset. The average isotopic variation in δ18O between vein and host is 2.4% ± 1.7% and 0.7% ± 1.7% for quartz and calcite, respectively. The temperature of vein formation from quartz-calcite oxygen isotope thermometry is about 210°-430°C. Although this is a large range, the temperature does not vary systematically in the exposed Ordovician through Mississippian rocks. The lack of isotopic difference between host and vein suggests that the host oxygen determined that of the veins. This in turn suggests that the fluid in the rocks did not change regionally. The vitrinite reflectance/temperature of the host rocks increases with restored stratigraphic depth more than that calculated with the quart-calcite thermometer in veins. Fluid inclusion analysis in vein quartz constrains homogenization temperatures to be from 106°-285°C. Isochores from fluid inclusion analyses were constrained using quartz-calcite thermometry and vitrinite reflectance temperatures to calculate vein formation pressures of 0.3-4.7 kbars. These pressures correspond to vein formation depths up to 19 km assuming an unduplicated stratigraphic section. Using burial curves and a reasonable range of geothermal gradients places vein formation between 300 to 315 Ma, i.e., Early to Middle Pennsylvanian.

  12. Evolution of ore forming fluid in the orogenic type gold deposit in Tavt, Mongolia: trace element geochemistry and fluid inclusions in quartz

    NASA Astrophysics Data System (ADS)

    Lee, K.; Oyungerel, S.; Lee, I.

    2011-12-01

    The Tavt gold deposit of Dzhida-Selengisky metallogenic belt is located in the Dzhida terrane, northern Mongolia. This deposit commonly occurs with massive auriferous quartz veins that contain sulfides and less commonly occurs with disseminated- and stockwork-type quartz veins. Such gold-bearing quartz veins have an average grade of 6.3 g/t Au, 29.4 g/t Ag, and 1.3% Cu. This gold deposit is composed of three stages of quartz vein groups. The first stage quartz group is widely spread with medium to large grain size, showing white-grey and milky white colors. It underwent intensive cataclasis with strong cuts via fractures and includes a small amount of sulfides, secondary minerals and Au. The second stage quartz group is grey and includes an oxidation zone. The oxidation zone distributed on the outside of the vein is brown and green-grey; it is also enriched with sulfide minerals containing gold. This quartz group is located in a brittle and cataclastic zone with the first stage quartz group. The main mineralization process for gold is related to this second stage quartz group. The transition between the first and second groups is not clear, and their contact relationship is complex. The third stage quartz group is transparent to translucent, and has small euhedral crystals that were formed in the second stage quartz group. The third stage of quartz is partly associated with chlorite and montmorillonite that was formed in the latest stage. Each generation of quartz was analyzed by SEM-CL, EPMA, and ICP-MS. Fluid inclusion data were collected from the USGS gas-flow heating/freezing stage and Raman-spectroscopy. The electron microprobe data show the distribution of Al, Ca, K and Fe among distinguished CL intensities and textures of quartz from different stages. The prepared pure quartz samples were analyzed by ICP-MS. The analysis also shows different patterns of trace elements according to the quartz stages.

  13. Letter : NIR FT-Raman microspectroscopy of fluid inclusions: Comparisons with VIS Raman and FT-IR microspectroscopies

    NASA Astrophysics Data System (ADS)

    Pironon, J.; Sawatzki, J.; Dubessy, J.

    1991-12-01

    The first Raman spectra of hydrocarbon inclusions using Fourier transform (FT) Raman microspectroscopy were obtained with a 1064 nm laser excitation in the near-infrared range (NIR FT-Raman). Some inclusions reveal the typical CH vibrational bands of organic compounds, but most of the inclusions that are fluorescent during visible Raman microspectroscopy (514 nm excitation) are still fluorescent in the NIR range. These Raman spectra are presented and compared to the conventional visible (VIS) Raman and FT-IR spectra. For spectra obtained on the same nonfluorescent inclusion, the signal/background ratio is lower in NIR FT-Raman than in VIS Raman. This ratio should be improved by application of more sensitive detectors. The increase of the power density (laser power/impact laser area) could be a future improvement in the limit of thermal background excitation and pyrolysis of the oils trapped in inclusions.

  14. Brine history indicated by argon, krypton, chlorine, bromine, and iodine analyses of fluid inclusions from the Mississippi Valley type lead-fluorite-barite deposits at Hansonburg, New Mexico

    USGS Publications Warehouse

    Böhlke, J.K.; Irwin, J.J.

    1992-01-01

    Argon, krypton, chlorine, bromine, and iodine were measured in a homogeneous population of high-salinity hydrothermal fluid inclusions from the Tertiary-age Mississippi Valley-type (MVT) lead-fluorite-barite deposits at Hansonburg, New Mexico to establish new types of evidence for the history of both the fluid and the major dissolved salts. Noble gases and halogens in fluid inclusions containing 10-10-10-9 L of brine (Cl = 3 molal) were analyzed by laser microprobe noble-gas mass spectrometry (lmngms) on neutron-irradiated samples. The concentrations of 36Ar (4.7 ?? 10-8 molal) and 84Kr 1.8 ?? 10-9 molal) in the fluid inclusions are equal to those of fresh surface waters in equilibrium with air at approximately 20 ?? 5??. The mole ratios of Br Cl (1.2 ?? 10-4) and I Cl (1-2 ?? 10-6) are among the lowest measured in any natural waters, similar to those of modern brines formed by dissolution of Permian NaCl-bearing evaporites in southeast New Mexico. 40Ar 36Ar ratios (600) are twice that of air, and indicate that the fluid inclusions had excess radiogenic 40Ar (1.4 ?? 10-5 molal) when trapped. The amount of excess 40Ar appears to be too large to have been acquired with Cl by congruent dissolution of halite-bearing evaporites, and possibly too small to have been acquired with Pb by congruent dissolution of granitic basement rocks with Proterozoic KAr ages. From the lmngms data, combined with published Pb and S isotope data, we infer the following sequence of events in the history of the Hansonburg MVT hydrothermal brine: (1) the brine originated as relatively dilute meteoric water, and it did not gain or lose atmospheric Ar or Kr after recharge; (2) the originally dilute fluid acquired the bulk of its Cl and sulfate in the subsurface after recharge by dissolving halite-bearing Permian? marine evaporites; (3) the high salinity brine then acquired most of its Pb and excess radiogenic 40Ar from interactions with aquifer rocks other than evaporites, possibly clastic

  15. The formation of saline mantle fluids by open-system crystallization of hydrous silicate-rich vein assemblages - Evidence from fluid inclusions and their host phases in MARID xenoliths from the central Kaapvaal Craton, South Africa

    NASA Astrophysics Data System (ADS)

    Konzett, Jürgen; Krenn, Kurt; Rubatto, Daniela; Hauzenberger, Christoph; Stalder, Roland

    2014-12-01

    The composition of texturally primary fluid inclusions and their host phases clinopyroxene, K-richterite, and zircon were investigated in two MARID-type (mica-amphibole-rutile-ilmenite-diopside) mantle xenoliths sampled by the Kimberley cluster of Cretaceous kimberlites erupted in the central Kaapvaal Craton, South Africa. P-T conditions of crystallization for the MARID assemblages of 4.2 GPa and 960 °C were estimated based on Ca-in-opx thermometry and the assumption of a 40 mW/m2 geotherm applied to two orthopyroxene-bearing MARIDs collected from the same locality. Cooling/heating stage measurements and Raman spectroscopy indicate a fluid system dominated by H2O-NaCl-MgCl2 with variable total salinities in the range ⩽6.4-32.4 mass% and minor amounts of MgCl2, the latter inferred from the crystallization of MgCl2 × 12H2O during cooling of the inclusions. In addition to liquid and vapour, enstatite, baddeleyite, barite, calcite and a K-Ba-Fe-Cr-titanate were identified as solid phases in opened fluid inclusions, indicating high LIL-(HFS) element concentrations in the saline hydrous fluids prior to solid phase precipitation. The Cl contents of apatite (⩽0.35 wt.%), phlogopite (⩽0.09 wt.%) and K-richterite (⩽0.025 wt.%) follow the enrichment pattern Clap ≫ Clphl > ClKr which is typical for upper mantle rocks. Fluid inclusion-bearing clinopyroxenes show very low H2O contents of ∼45 μg/g which is consistent with a reduced aH2O of the fluids due to the presence of NaCl-MgCl2-SiO2-LILE combined with high fO2 and very low Al3+ contents of the clinopyoxenes. The zircons show a complex compositional zoning with variable and positively correlated Y (⩽1260 μg/g), P (⩽1870 μg/g) and Sc (⩽1373 μg/g) contents, indicating a pretulite-type substitution Si4+ + Zr4+ = P5+ + (Sc, Y, REE)3+. The Sc contents of the zircons are amongst the highest Sc concentrations reported so far for upper mantle silicates. Oxygen isotope analyses of selected zircons yields δ18O

  16. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    SciTech Connect

    Fairbank, Brian D.

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award be transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified

  17. Sn-polymetallic greisen-type deposits associated with late-stage rapakivi granites, Brazil: fluid inclusion and stable isotope characteristics

    NASA Astrophysics Data System (ADS)

    Bettencourt, Jorge S.; Leite, Washington B.; Goraieb, Claudio L.; Sparrenberger, Irena; Bello, Rosa M. S.; Payolla, Bruno L.

    2005-03-01

    Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondônia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondônia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Bárbara deposit (Rondônia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sn (±W, ±Ta, ±Nb), and base-metal suite (Zn-Cu-Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0-19 wt.% NaCl eq.) CO 2-bearing aqueous fluids homogenizing at 245-450 °C, and (2) aqueous solutions with low CO 2, low to moderate salinity (0-14 wt.% NaCl eq.), which homogenize between 100 and 340 °C. In the Santa Bárbara deposit, the early inclusions are represented by (1) low-salinity (5-12 wt.% NaCl eq.) aqueous fluids with variable CO 2 contents, homogenizing at 340 to 390 °C, and (2) low-salinity (0-3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320-380 °C. Cassiterite, wolframite, columbite-tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0-6 wt.% NaCl eq.) CO 2-free aqueous solution, which homogenizes at (100-260 °C) and characterizes the sulfide-fluorite-sericite association in the Correas deposit. The late fluid in the Santa Bárbara deposit has lower salinity (0-3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite

  18. Fluid assisted shearing at the depth of the Brittle-Ductile Transition: an integrated structural, petrological, fluid inclusions study of the Erbalunga shear zone, Schistes Lustrés Nappe, Alpine Corsica (France).

    NASA Astrophysics Data System (ADS)

    Maggi, M.; Rossetti, F.; Tecce, F.; Vignaroli, G.

    2009-04-01

    In this work we present structural, petrological and fluid inclusion studies performed in a major retrogressive shear zone (the Erbalunga shear zone), which occurs within the HP/LT domain of the Schistes Lustrés Nappe of eastern Alpine Corsica. This shear zone is part of the post-orogenic network of shear zones that favoured the exhumation of the HP core of Alpine Corsica (Daniel et al., 1996) during Late Oligocene/Early Miocene times (Brunet et al., 2000). The shear zone is characterised by a progressive ductile-to-brittle top-to-the-E shearing, starting at greenschist facies conditions (ca. 600 MPa, 400-450 °C). Evidence for vigorous fluid flow through the shear zone is documented by widespread quartz and quartz-calcite vein segregations, which accompanied the progressive evolution of shearing. Textural characteristics of three main generations of veins record the incremental evolution of the shear zone tracing the continuum transition from ductile- to brittle-dominated deformation environments. Regardless of the vein generation, fluid inclusions hosted in quartz grains hosted within the three different sets of veins document a low-salinity (<5% NaCl eq.) fluid circulation. Fluid trapping occurred under pore pressure conditions fluctuating from lithostatic to hydrostatic values, as also attested by the crack-sealing textures preserved in most of the veins. The findings of this study suggest that the main source of fluid was of meteoric origin and argue for fluid percolation and infiltration at the brittle-ductile depths. Such a fluid supply cause the availability of a higher amount of fluids in the deforming rock volume, working against ductile deformation and tendency to pore space reduction by recovery during progressive deformation. This impose definition of the (i) mechanism through which superficial fluids infiltrate the mid-lower crust; and (ii) the modes (fracturing vs. ductile creep) of creation and maintenance of the structural permeability moving from

  19. The formation of the Yichun Ta-Nb deposit, South China, through fractional crystallization of magma indicated by fluid and silicate melt inclusions

    NASA Astrophysics Data System (ADS)

    Li, Shenghu; Li, Jiankang; Chou, I.-Ming; Jiang, Lei; Ding, Xin

    2017-04-01

    The Yichun Ta-Nb deposit, which is located in Jiangxi Province, South China, can be divided into four lithological zones (from bottom upward): two-mica granite, muscovite granite, albite granite, and lepidolite-albite granite zones. It remains controversial whether these distinct vertical zones were formed through late magmatic-hydrothermal metasomatic alteration or fractional crystallization of magma. To investigate the evolution mechanism of rock- and ore-forming fluid in this deposit, we studied fluid and melt inclusions in quartz and lepidolite in these four granite zones. These fluid inclusions are mainly composed of H2O-NaCl, and have homogenization temperatures ranging from 160 °C to 240 °C, with densities between 0.86 and 0.94 g/cm3 and salinities between 0.5 and 6.5 wt% NaCl equivalent. Raman spectroscopic analyses showed that the daughter minerals contained in silicate melt inclusions are mainly quartz, lepidolite, albite, muscovite, microcline, topaz, and sassolite. From the lower to upper granite zones, the albite contents in silicate melt inclusions increase, while the muscovite contents decrease gradually until muscovite is substituted by lepidolite in the lepidolite-albite granite zone. Additionally, the calculated densities of the silicate melt inclusions exhibit decreasing trends from bottom upward. The total homogenization temperatures of silicate melt inclusions, which were observed under external pressures created in the sample chamber of a hydrothermal diamond-anvil cell, decreased from 860 °C in the lower lithological zone to 776 °C in the upper lithological zone, and the initial melting temperatures of solid phases were 570-710 °C. The calculated initial H2O contents of granitic magma showed an increasing trend from the lower (∼2 wt% in the two-mica granite zone) to the upper granitic zones (∼3 wt% in the albite granite zone). All of these features illustrate that the vertical granite zones in the Yichun Ta-Nb deposit formed through

  20. Fluid inclusion gas chemistry as a potential minerals exploration tool: Case studies from Creede, CO, Jerritt Canyon, NV, Coeur d'Alene district, ID and MT, southern Alaska mesothermal veins, and mid-continent MVT's

    USGS Publications Warehouse

    Landis, G.P.; Hofstra, A.H.

    1991-01-01

    Recent advances in instrumentation now permit quantitative analysis of gas species from individual fluid inclusions. Fluid inclusion gas data can be applied to minerals exploration empirically to establish chemical (gas composition) signatures of the ore fluids, and conceptually through the development of genetic models of ore formation from a framework of integrated geologic, geochemical, and isotopic investigations. Case studies of fluid inclusion gas chemistry from ore deposits representing a spectrum of ore-forming processes and environments are presented to illustrate both the empirical and conceptual approaches. We consider epithermal silver-gold deposits of Creede, Colorado, Carlin-type sediment-hosted disseminated gold deposits of Jerritt Canyon, Nevada, metamorphic silver-base-metal veins of the Coeur d'Alene district, Idaho and Montana, gold-quartz veins in accreted terranes of southern Alaska, and the mid-continent base-metal sulfide deposits of Mississippi Valley-Type (MVT's). Variations in gas chemistry determine the redox state of the ore fluids, provide compositional input for gas geothermometers, characterize ore fluid chemistry (e.g., CH4CO2, H2SSO2, CO2/H2S, organic-rich fluids, gas-rich and gas-poor fluids), identify magmatic, meteoric, metamorphic, shallow and deep basin fluids in ore systems, locate upwelling plumes of magmatic-derived volatiles, zones of boiling and volatile separation, interfaces between contrasting fluids, and important zones of fluid mixing. Present techniques are immediately applicable to exploration programsas empirical studies that monitor fluid inclusion gas threshold concentration levels, presence or absence of certain gases, or changes in gas ratios. We suggest that the greater contribution of fluid inclusion gas analysis is in the integrated and comprehensive chemical dimension that gas data impart to genetic models, and in the exploration concepts based on processes and environments of ore formation derived from

  1. Cu-Mo-Au mineralization in Qarachilar area, Qaradagh batholith (NW Iran): Fluid inclusion and stable isotope studies and Re-Os dating

    NASA Astrophysics Data System (ADS)

    Simmonds, Vartan; Moazzen, Mohssen

    2015-04-01

    The Qaradagh batholith is located in NW Iran, neighboring the Meghri-Ordubad granitoid in southern Armenia. This magmatic complex is emplaced in the northwestern part of the Urumieh-Dokhtar magmatic arc, which formed through north-eastward subduction of Neo-Tethyan oceanic crust beneath the central Iranian domain in the late-Mesozoic and early-Cenozoic and hosts most of the porphyry copper deposits and prospects in Iran, such as Sarcheshmeh and Sungun. The Qaradagh batholith is comprised of Eocene-Oligocene intrusive rocks occurring as multi-episode stocks, where the dominant rock type is granodiorite. Hydrothermal alterations have also occurred in these rocks including potassic, phyllic-sericitic, argillic and propylitic alterations and silicification. These alterations are accompanied by vein-type and disseminated Cu, Mo and Au mineralization. The Qarachilar area is located in the central part of the Qaradagh batholith, which hosts mono-mineralic and quartz-sulfide veins and veinlets (several mm to <1 m thick and 50-700 m long) and silicic zones containing Cu-Mo-Au-Ag ore minerals (mainly pyrite, chalcopyrite and molybdenite). Microthermometric studies on the fluid inclusions of quartz-sulfide veins-veinlets show that the salinity ranges between 15-70 wt% NaCl, with the highest peak between 35-40 wt% NaCl. The homogenization temperature for primary 2-phase and multi-phase inclusions ranges between 220 and 540 °C. Two-phase inclusions homogenizing by vapor disappearance have TH values between 280 and 440 °C (mainly between 300 and 360 °C). A few of them homogenize into vapor state with TH values of 440-540 °C. Multi-phase inclusions show 3 types of homogenization. Most of them homogenize by simultaneous disappearance of vapor bubble and dissolution of halite daughter crystal, for which the TH value is 240-420 °C (mostly between 260 and 340 °C). Those homogenizing by halite dissolution show TH values about 220-360 °C and a few homogenizing by vapor

  2. Investigating fossil hydrothermal systems by means of fluid inclusions and stable isotopes in banded travertine: an example from Castelnuovo dell'Abate (southern Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Rimondi, Valentina; Costagliola, Pilario; Ruggieri, Giovanni; Benvenuti, Marco; Boschi, Chiara; Brogi, Andrea; Capezzuoli, Enrico; Morelli, Guia; Gasparon, Massimo; Liotta, Domenico

    2016-03-01

    Southern Tuscany (Italy) hosts geothermal anomalies with associated widespread CO2 gas-rich manifestations and active travertine-deposing thermal springs. Geothermal anomalies have been active since the Late Miocene and have led to the formation of widespread Late Miocene-Pleistocene travertine deposits and meso- and epithermal mineralizations. This study investigates the travertine deposit exposed in the Castelnuovo dell'Abate area of southern Tuscany. Here, a fissure-ridge type travertine deposit and its feeding conduits, currently filled with banded calcite veins (i.e. banded travertine), represent a spectacular example of fossil hydrothermal circulation in the peripheral area of the exploited Monte Amiata geothermal field. The Castelnuovo dell'Abate travertine deposit and associated calcite veins were analysed to establish the characteristics of the parent hydrothermal fluids, and the age of this circulation. The focus of the study was on fluid inclusions, rarely considered in travertine studies, but able to provide direct information on the physico-chemical characteristics of the original fluid. Uranium-thorium geochronological data provided further constraints on the: (1) age of tectonic activity; (2) age of the hydrothermal circulation; and (3) evolution of the Monte Amiata geothermal anomaly. Results indicate that brittle deformation (NW- and SE-trending normal to oblique-slip faults) was active during at least the Middle Pleistocene and controlled a hydrothermal circulation mainly characterized by fluids of meteoric origin, and as old as 300-350 ka. This is the oldest circulation documented to date in the Monte Amiata area. The fluid chemical composition is comparable to that of fluids currently exploited in the shallow reservoir of the Monte Amiata geothermal field, therefore suggesting that fluid composition has not changed substantially over time. These fluids, however, have cooled by about 70 °C in the last 300-350 ka, corresponding to a cooling rate

  3. Fluid inclusion and vitrinite-reflectance geothermometry compared to heat-flow models of maximum paleotemperature next to dikes, western onshore Gippsland Basin, Australia

    USGS Publications Warehouse

    Barker, C.E.; Bone, Y.; Lewan, M.D.

    1999-01-01

    Nine basalt dikes, ranging from 6 cm to 40 m thick, intruding the Upper Jurassic-Lower Cretaceous Strzelecki Group, western onshore Gippsland Basin, were used to study maximum temperatures (Tmax) reached next to dikes. Tmax was estimated from fluid inclusion and vitrinitereflectance geothermometry and compared to temperatures calculated using heat-flow models of contact metamorphism. Thermal history reconstruction suggests that at the time of dike intrusion the host rock was at a temperature of 100-135??C. Fracture-bound fluid inclusions in the host rocks next to thin dikes ( 1.5, using a normalized distance ratio used for comparing measurements between dikes regardless of their thickness. In contrast, the pattern seen next to the thin dikes is a relatively narrow zone of elevated Rv-r. Heat-flow modeling, along with whole rock elemental and isotopic data, suggests that the extended zone of elevated Rv-r is caused by a convection cell with local recharge of the hydrothermal fluids. The narrow zone of elevated Rv-r found next to thin dikes is attributed to the rise of the less dense, heated fluids at the dike contact causing a flow of cooler groundwater towards the dike and thereby limiting its heating effects. The lack of extended heating effects suggests that next to thin dikes an incipient convection system may form in which the heated fluid starts to travel upward along the dike but cooling occurs before a complete convection cell can form. Close to the dike contact at X/D 1.5. ?? 1998 Elsevier Science B.V. All rights reserved.

  4. Taolin Zn-Pb-fluorite deposit, People's Republic of China: an example of some problems in fluid inclusion research on mineral deposits.

    USGS Publications Warehouse

    Roedder, E.; Howard, K.W.

    1988-01-01

    The ore in this large Zn-Pb-fluorite deposit in NE Hunan Province occurs as open space-filling in a major fault zone between granite and metasedimentary rocks. Following barren, pre-ore quartz, three stages of ore deposition are recognized. Studies on 400 fluid inclusions from all four stages show homogenization T of 120-200oC (av. approx 160o) and salinities of 0-14 wt.% equiv. NaCl (av. 7.7) . These results differ considerably from some previously published sulphur isotopic T (221-344oC), and data for five inclusions that are more saline (9.0-7.7 wt.% equiv. NaCl) and hotter (up to 345oC) (M.A. 85M/2835, 87M/0888).-R.A.H.

  5. Strain localization in brittle-ductile shear zones: fluid-abundant vs. fluid-limited conditions (an example from Wyangala area, Australia)

    NASA Astrophysics Data System (ADS)

    Spruzeniece, L.; Piazolo, S.

    2015-07-01

    This study focuses on physiochemical processes occurring in a brittle-ductile shear zone at both fluid-present and fluid-limited conditions. In the studied shear zone (Wyangala, SE Australia), a coarse-grained two-feldspar-quartz-biotite granite is transformed into a medium-grained orthogneiss at the shear zone margins and a fine-grained quartz-muscovite phyllonite in the central parts. The orthogneiss displays cataclasis of feldspar and crystal-plastic deformation of quartz. Quartz accommodates most of the deformation and is extensively recrystallized, showing distinct crystallographic preferred orientation (CPO). Feldspar-to-muscovite, biotite-to-muscovite and albitization reactions occur locally at porphyroclasts' fracture surfaces and margins. However, the bulk rock composition shows very little change in respect to the wall rock composition. In contrast, in the shear zone centre quartz occurs as large, weakly deformed porphyroclasts in sizes similar to that in the wall rock, suggesting that it has undergone little deformation. Feldspars and biotite are almost completely reacted to muscovite, which is arranged in a fine-grained interconnected matrix. Muscovite-rich layers contain significant amounts of fine-grained intermixed quartz with random CPO. These domains are interpreted to have accommodated most of the strain. Bulk rock chemistry data show a significant increase in SiO2 and depletion in NaO content compared to the wall rock composition. We suggest that the high- and low-strain microstructures in the shear zone represent markedly different scenarios and cannot be interpreted as a simple sequential development with respect to strain. Instead, we propose that the microstructural and mineralogical changes in the shear zone centre arise from a local metasomatic alteration around a brittle precursor. When the weaker fine-grained microstructure is established, the further flow is controlled by transient porosity created at (i) grain boundaries in fine

  6. Evidence for a hypogene paleohydrogeological event at the prospective nuclear waste disposal site Yucca Mountain, Nevada, USA, revealed by the isotope composition of fluid-inclusion water

    NASA Astrophysics Data System (ADS)

    Dublyansky, Yuri V.; Spötl, Christoph

    2010-01-01

    Secondary calcite residing in open cavities in the unsaturated zone of Yucca Mountain has long been interpreted as the result of downward infiltration of meteoric water through open fractures. In order to obtain information on the isotopic composition (δD and δ 18O) of the mineral-forming water we studied fluid inclusions from this calcite. Water was extracted from inclusions by heated crushing and the δD values were measured using a continuous-flow isotope-ratio mass spectrometry method. The δ 18O values were calculated from the δ 18O values of the host calcite assuming isotopic equilibrium at the temperature of formation determined by fluid-inclusion microthermometry. The δD values measured in all samples range between - 110 and - 90‰, similar to Holocene meteoric water. Coupled δ 18O-δD values plot significantly, 2 to 8‰, to the right of the meteoric water line. Among the various processes operating at the topographic surface and/or in the unsaturated zone only two processes, evaporation and water-rock exchange, could alter the isotope composition of percolating water. Our analysis indicates, however, that none of these processes could produce the observed large positive δ 18O-shifts. The latter require isotopic interaction between mineral-forming fluid and host rock at elevated temperature (>100 °C), which is only possible in the deep-seated hydrothermal environment. The stable isotope data are difficult to reconcile with a meteoric origin of the water from which the secondary minerals at Yucca Mountain precipitated; instead they point to the deep-seated provenance of the mineral-forming waters and their introduction into the unsaturated zone from below, i.e. a hypogene origin.

  7. Mineralogical, stable isotope, and fluid inclusion studies of spatially related porphyry Cu and epithermal Au-Te mineralization, Fakos Peninsula, Limnos Island, Greece

    NASA Astrophysics Data System (ADS)

    Fornadel, Andrew P.; Voudouris, Panagiotis Ch.; Spry, Paul G.; Melfos, Vasilios

    2012-05-01

    The Fakos porphyry Cu and epithermal Au-Te deposit, Limnos Island, Greece, is hosted in a ~20 Ma quartz monzonite and shoshonitic subvolcanic rocks that intruded middle Eocene to lower Miocene sedimentary basement rocks. Metallic mineralization formed in three stages in quartz and quartz-calcite veins. Early porphyry-style (Stage 1) metallic minerals consist of pyrite, chalcopyrite, galena, bornite, sphalerite, molybdenite, and iron oxides, which are surrounded by halos of potassic and propylitic alteration. Stage 2 mineralization is composed mostly of quartz-tourmaline veins associated with sericitic alteration and disseminated pyrite and molybdenite, whereas Stage 3, epithermal-style mineralization is characterized by polymetallic veins containing pyrite, chalcopyrite, sphalerite, galena, enargite, bournonite, tetrahedrite-tennantite, hessite, petzite, altaite, an unknown cervelleite-like Ag-telluride, native Au, and Au-Ag alloy. Stage 3 veins are spatially associated with sericitic and argillic alteration. Fluid inclusions in quartz from Stage 1 (porphyry-style) mineralization contain five types of inclusions. Type I, liquid-vapor inclusions, which homogenize at temperatures ranging from 189.5°C to 403.3°C have salinities of 14.8 to 19.9 wt. % NaCl equiv. Type II, liquid-vapor-NaCl, Type III liquid-vapor-NaCl-XCl2 (where XCl is an unknown chloride phase, likely CaCl2), and Type IV, liquid-vapor-hematite ± NaCl homogenize to the liquid phase by liquid-vapor homogenization or by daughter crystal dissolution at temperatures of 209.3 to 740.5 °C, 267.6 to 780.8 °C, and 357.9 to 684.2 °C, respectively, and, Type V, vapor-rich inclusions. Stage 2 veins are devoid of interpretable fluid inclusions. Quartz from Stage 3 (epithermal-style) veins contains two types of fluid inclusions, Type I, liquid-vapor inclusions that homogenize to the liquid phase (191.6 to 310.0 °C) with salinities of 1.40 to 9.73 wt. % NaCl equiv., and Type II, vapor-rich inclusions. Mixing

  8. Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates.

    PubMed

    Libiaková, Michaela; Floková, Kristýna; Novák, Ondřej; Slováková, L'udmila; Pavlovič, Andrej

    2014-01-01

    The trap of the carnivorous plant Venus flytrap (Dionaea muscipula) catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs) result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl) and P(K) stimulation) on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl) stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA) but jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed.

  9. Abundance of Cysteine Endopeptidase Dionain in Digestive Fluid of Venus Flytrap (Dionaea muscipula Ellis) Is Regulated by Different Stimuli from Prey through Jasmonates

    PubMed Central

    Libiaková, Michaela; Floková, Kristýna; Novák, Ondřej; Slováková, L'udmila; Pavlovič, Andrej

    2014-01-01

    The trap of the carnivorous plant Venus flytrap (Dionaea muscipula) catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs) result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl) and P(K) stimulation) on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl) stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA) but jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed. PMID:25153528

  10. The genesis of the amethyst geodes at Artigas (Uruguay) and the paleohydrology of the Guaraní aquifer: structural, geochemical, oxygen, carbon, strontium isotope and fluid inclusion study

    NASA Astrophysics Data System (ADS)

    Morteani, Giulio; Kostitsyn, Y.; Preinfalk, C.; Gilg, H. A.

    2010-06-01

    The amethyst-bearing geodes found in the flood basalts of the Arapey formation at Artigas (Uruguay) were formed as protogeodes by bubbles of CO2-rich basalt-derived fluids. The formation of the celadonite rim and the lining of the geodes by agate followed by quartz and amethyst were driven by the artesian water of the Guaraní aquifer percolating the basalts from below. The temperature of the amethyst formation is estimated from fluid inclusion data to be between 50° and 120°C. Oxygen stable isotope data suggest a crystallization temperature of calcite of about only 24°C. The actual wellhead temperature of the water produced from the Guaraní aquifer in the study area is around 29°C.

  11. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process.

    PubMed

    Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David

    2016-07-01

    The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state.

  12. Carbonic inclusions

    NASA Astrophysics Data System (ADS)

    Van den Kerkhof, Alfons; Thiéry, Régis

    2001-01-01

    The paper gives an overview of the phase relations in carbonic fluid inclusions with pure, binary and ternary mixtures of the system CO 2-CH 4-N 2, compositions, which are frequently found in geological materials. Phase transitions involving liquid, gas and solid phases in the temperature range between -192°C and 31°C are discussed and presented in phase diagrams ( PT, TX and VX projections). These diagrams can be applied for the interpretation of microthermometry data in order to determine fluid composition and molar volume (or density).

  13. Hydrothermal Evolution of the Giant Cenozoic Kadjaran porphyry Cu-Mo deposit, Tethyan metallogenic belt, Armenia, Lesser Caucasus: mineral paragenetic, cathodoluminescence and fluid inclusion constraints

    NASA Astrophysics Data System (ADS)

    Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik; Rezeau, Hervé

    2016-04-01

    stockwork. One of them is the east-west-oriented 6th vein zone in the northern part of the deposit, which contains quartz-molybdenite veins and late quartz-galena-sphalerite veins. This is interpreted as a telescoping between porphyry and epithermal environments. It is supported by microscopic studies of mineral paragenesis, which reveal the presence of enargite and tennantite-tetrahedrite, luzonite, sphalerite, and galena, generally in a gangue of quartz, followed by a late carbonate and gypsum stage. On-going fluid inclusion studies are being carried out on quartz samples from the different mineralization stages. Five types of fluid inclusions were distinguished according to their nature, bubble size, and daughter mineral content: vapor-rich, aqueous-carbonic, brine, polyphase brine and liquid-rich inclusions. Cathodoluminescence images from the porphyry veins reveal four generations of quartz. Molybdenite and chalcopyrite are associated with two different dark luminescent quartz generations, which contain typical brine, aqueous-carbonic and vapour-rich H2O fluid inclusions, with some of them coexisting locally as boiling assemblages. Epithermal veins are mainly characterized by liquid-rich H2O fluid inclusions. Microthermometric studies of fluid inclusions reveal a major difference in homogenisation temperatures between the early quartz-molybdenite- chalcopyrite stage (Thtotal between 3600 and 4250C) and the late quartz-galena-sphalerite vein stage (Thtotal 300-2700C), which is attributed to the transition from a porphyry to an epithermal environment in the Kadjaran deposit.

  14. SEM-Cathodoluminescence and fluid inclusion study of quartz veins in Hugo Dummett porphyry Cu-Au deposit,South Mongolia

    NASA Astrophysics Data System (ADS)

    Sanjaa, M.; Fujimaki, H.; Ken-Ichiro, H.

    2010-12-01

    The Hugo Dummett porphyry copper-gold deposit in Oyu Tolgoi, South Mongolia is a high-sulfidation type deposit which consists of Cu-Au bearing quartz veins. Cathodoluminescence (CL) analysis using scanning electron microscope (SEM) and fluid inclusion microthermometer were performed to elucidate the relationship between CL structures, fluid inclusion microthermometer of different quartz generations, and ore forming process of the Hugo Dummett deposit. Hydrothermal quartz from quartz-sulfide veins in the porphyry Cu-Au deposit in Hugo Dummett, revealing the following textures: (1) euhedral growth zones (2) embayed and rounded CL-bright cores, with CL-dark and CL-gray overgrowths, (3) concentric and non concentric growth zones, and (4) CL dark/bright microfractures. These textures indicate that many veins have undergone fracturing, growth of quartz into fluid-filled space and quartz dissolution of quartz. SEM-CL imaging indicates vein quartz in the Hugo Dummett deposit, initially grew as individual CL-bright crystals 356 ± 10°C liquid-reservoir (average Th value for fluid inclusions in the crystal cores is 359°C). In contract, SEM-CL imaging shows the edges of the micron-scale growth zones of varying CL intensity, reflecting quartz precipitation at some later time, when the Hugo Dummett deposit hydrothermal system had cooled, when reservoir conditions were about 211 ± 25°C (average Th value of 212°C). Crystal growth is SEM-CL evidence of the vein quartz having been partly dissolved. Pressure change has a large effect on quartz solubility and may have been responsible for quartz dissolution and precipitation textures in the cooling hydrothermal system. CL-dark microfractures homogenization temperatures lower 169 ± 16°C (average Th value 170°C) than CL bright and CL gray. Temperature and pressure of the mineralized fluid estimates a pressure of formation of 0.3-0.5 kbar (lithostatic), was formed at approximately 2 km depth, as well as a formation temperature

  15. Invisible gold distribution on pyrite and ore-forming fluid process of the Huangshan orogenic-type gold deposit of Zhejiang, SE China: implications from mineralogy, trace elements, impurity and fluid inclusion studies

    NASA Astrophysics Data System (ADS)

    Sundarrajan, Vijay Anand; Li, Zilong; Hu, Yizhou; Fu, Xuheng; Zhu, Yuhuo

    2016-07-01

    The Huangshan orogenic-type gold deposit in Zhejiang of SE China occurred in quartz-pyrite veins. It is hosted by phyllonite that underwent greenschist-facies metamorphism along a large Jiangshan-Shaoxing tectonic belt with a NE-SW direction. Trace elemental characteristics, ore-forming process and invisible gold on different forms of pyrite and quartz are studied. The Au associated pyrite can be classified into two categories; recrystallized pyrite and euhedral pyrite. The precipitation of invisible Au on pyrite is mainly derived by Co and Ni with AuHS2 - complex in the mineralizing fluids in different events. The XPS results revealed that valence states of Au3+ replaced 2Fe2+ in the pyrite and Au0 replaced Si4+ in the quartz structure. The electron paramagnetic resonance and trace elemental results suggested that the element pairs of Ge-Li-Al in quartz and Mn-Co-Ni in pyrite have distinct impurities as identified. A fluid inclusion study showed that the auriferous quartz is characterized by low-saline and CO2-rich fluids. Coexistence of the type I-type III inclusions and same range of homogenization temperature with different mode are evidences of immiscible fluid process. The temperature-pressure values of ca. 250 °C/1250 bar and ca. 220 °C/780 bar for gold precipitation have been calculated by intersection of coexisting fluids during the entrapment. The Huangshan orogenic-type gold deposit may be associated with the Wuyi-Yunkai orogeny during the early Paleozoic, including an upper-mid greenschist-facies metamorphism (450-420 Ma). All the features suggest that the Huangshan gold deposit is probably a product linking with the early Paleozoic orogeny in South China.

  16. Fluid inclusions in the system H sub 2 O-CH sub 4 -NaCl-CO sub 2 from metasomatic tourmaline within the border unit of the Tanco zoned granitic pegmatite, S. E. Manitoba

    SciTech Connect

    Thomas, A.V.; Spooner, E.T. )

    1988-05-01

    Fluid inclusions from the tourmaline phase of alteration of the footwall amphibolite from the Tanco zoned granitic pegmatite lie in the system H{sub 2}O-CH{sub 4}-NaCl-CO{sub 2}. These inclusions contain a liquid and vapor phase at room temperature and develop a second liquid phase on cooling in the range {minus}77 to {minus}95{degree}C: the second liquid and the vapor are methane. Isochores for inclusions showing vapor phase (CH{sub 4}) homogenization were constructed from the equations of Jacobs and Kerrick (1981). The intersections of these isochores with the univariant melting curves for methane clathrate hydrates give estimates of salinity for the inclusions of between 7 and 10 equivalent wt.% NaCl, which are lower than those derived from measurement of the depression of the melting point of ice; a result consistent with salt exclusion by clathrate. The bulk composition of the fluid is estimated to be 91 mol.% H{sub 2}O, 6 mol.% CH{sub 4}, 2 equiv. mol.% NaCl and <1 mol.% CO{sub 2}. Total homogenization temperatures have a mean value of 371{degree}C {plus minus} 36{degree}C. Calculation of f{sub O2} from the bulk inclusion composition gives values near WI at these conditions which is unreasonably low for fluids derived from the pegmatite, which were probably between QFM and HM. The metasomatic fluids may have resulted from fluid mixing in the wall rock immediately adjacent to the pegmatite. The fluid derived from the pegmatite, a H{sub 2}O-CO{sub 2} fluid, introduced the B necessary to form tourmaline in the amphibolite. Supporting evidence is provided by pegmatite wall zone fluids with higher CH{sub 4} than the bulk of the pegmatite H{sub 2}O-CO{sub 2} fluids, suggesting marginal fluid contamination.

  17. Conformal mapping for the Helmholtz equation: acoustic wave scattering by a two dimensional inclusion with irregular shape in an ideal fluid.

    PubMed

    Liu, Gang; Jayathilake, Pahala G; Khoo, Boo Cheong; Han, Feng; Liu, Dian Kui

    2012-02-01

    The complex variables method with mapping function was extended to solve the linear acoustic wave scattering by an inclusion with sharp/smooth corners in an infinite ideal fluid domain. The improved solutions of Helmholtz equation, shown as Bessel function with mapping function as the argument and fractional order Bessel function, were analytically obtained. Based on the mapping function, the initial geometry as well as the original physical vector can be transformed into the corresponding expressions inside the mapping plane. As all the physical vectors are calculated in the mapping plane (η,η), this method can lead to potential vast savings of computational resources and memory. In this work, the results are validated against several published works in the literature. The different geometries of the inclusion with sharp corners based on the proposed mapping functions for irregular polygons are studied and discussed. The findings show that the variation of angles and frequencies of the incident waves have significant influence on the bistatic scattering pattern and the far-field form factor for the pressure in the fluid.

  18. Spherical particles of halophilic archaea correlate with exposure to low water activity--implications for microbial survival in fluid inclusions of ancient halite.

    PubMed

    Fendrihan, S; Dornmayr-Pfaffenhuemer, M; Gerbl, F W; Holzinger, A; Grösbacher, M; Briza, P; Erler, A; Gruber, C; Plätzer, K; Stan-Lotter, H

    2012-09-01

    Viable extremely halophilic archaea (haloarchaea) have been isolated from million-year-old salt deposits around the world; however, an explanation of their supposed longevity remains a fundamental challenge. Recently small roundish particles in fluid inclusions of 22 000- to 34 000-year-old halite were identified as haloarchaea capable of proliferation (Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA, 2010, Environmental Microbiology, 12, 440-454). Searching for a method to produce such particles in the laboratory, we exposed rod-shaped cells of Halobacterium species to reduced external water activity (a(w)). Gradual formation of spheres of about 0.4 μm diameter occurred in 4 M NaCl buffer of a(w) ≤ 0.75, but exposure to buffered 4 M LiCl (a(w) ≤ 0.73) split cells into spheres within seconds, with concomitant release of several proteins. From one rod, three or four spheres emerged, which re-grew to normal rods in nutrient media. Biochemical properties of rods and spheres were similar, except for a markedly reduced ATP content (about 50-fold) and an increased lag phase of spheres, as is known from dormant bacteria. The presence of viable particles of similar sizes in ancient fluid inclusions suggested that spheres might represent dormant states of haloarchaea. The easy production of spheres by lowering a(w) should facilitate their investigation and could help to understand the mechanisms for microbial survival over geological times.

  19. Cierco Pb-Zn-Ag vein deposits: Isotopic and fluid inclusion evidence for formation during the mesozoic extension in the pyrenees of Spain

    USGS Publications Warehouse

    Johnson, C.A.; Cardellach, E.; Tritlla, J.; Hanan, B.B.

    1996-01-01

    The Cierco Pb-Zn-Ag vein deposits, located in the central Pyrenees of Spain, crosscut Paleozoic metasedimentary rocks and are in close proximity to Hercynian granodiorite dikes and plutons. Galena and sphalerite in the deposits have average ??34S values of -4.3 and -0.8 per mil (CDT), respectively. Coexisting mineral pairs give an isotopic equilibration temperature range of 89?? to 163??C which overlaps with the 112?? to 198??C range obtained from primary fluid inclusions. Coexisting quartz has a ??18O value of 19 ?? 1 per mil (VSMOW). The fluid which deposited these minerals is inferred to have had ??18OH2o and ??34SH2s values of 5 ?? 1 and -1 ?? 1 per mil, respectively. Chemical and microthermometric analyses of fluid inclusions in quartz and sphalerite indicate salinities of 3 to 29 wt percent NaCl equiv with Na+ and Ca2+ as the dominant cations in solution. The Br/Cl and I/Cl ratios differ from those characteristic of magmatic waters and pristine seawater, but show some similarity to those observed in deep ground waters in crystalline terranes, basinal brines, and evaporated seawater, Barite, which postdates the sulfides, spans isotopic ranges of 13 to 21 per mil, 10 to 15 per mil, and 0.7109 to 0.7123 for ??34S, ??18O, and 87Sr/86Sr, respectively. The three parameters are correlated providing strong evidence that the barites are products of fluid mixing. We propose that the Cierco deposits formed along an extensional fault system at the margin of a marine basin during the breakup of Pangea at some time between the Early Triassic and Early Cretaceous. Sulfide deposition corresponded to an upwelling of hydrothermal fluid from the Paleozoic basement and was limited by the amount of metals carried by the fluid. Barite deposition corresponded to the waning of upward flow and the collapse of sulfate-rich surface waters onto the retreating hydrothermal plume. Calcite precipitated late in the paragenesis as meteoric or marine waters descended into the fault system

  20. Stability of natural gas in the deep subsurface. Technical progress report. [Composition of gases in fluid inclusions from calcite, quartz, anorthosite and olivine

    SciTech Connect

    Barker, C.

    1986-04-30

    Although present gas reserves are adequate for immediate needs, they will eventually be consumed and exploration for additional reserves will have to be pushed steadily deeper. We have continued to try and establish depth limits for commercial gas accumulations in deep reservoirs using a combined theoretical and experimental approach. Theoretical: The computer program, developed over the last few years for calculating the stabilities of natural gas components in reservoirs of various mineralogies, is running routinely. It finds the minimum free energy in multicomponent (up to 70), multiphase (up to 20) systems for conditions corresponding to temperatures and pressure down to 40,000 ft (12 km). The program has been used to calculate gas composition for a wide range of potential reservoir mineralogy. In addition, some preliminary studies have been carried out to make the program compatible with the widely available microcomputers (''PC's''). Analytical: Fluid inclusions have been used to provide uncontaminated samples of deep gas. The fast-scanning, computer-controlled mass spectrometer system available for analyzing gases in individual fluid inclusions separately, has been used to study a wide range of minerals. Currently, up to 225 inclusions can be analyzed in a 10 mg sample with a dynamic range of approximately 1:10,000. Samples analyzed include: (1) calcite cements from deep sedimentary sections (down to 20,000 ft) which are frequently rich in hydrogen sulfide, (2) deep metamorphic quartz (probably > 50,000 ft) which was very rich in methane, (sometimes > 70%), and (3) mid-ocean ridge basalt plagioclase and Hawaiian olivines, which were high in carbon dioxide with minor water and carbon monoxide. 7 figs., 2 tabs.

  1. Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: Integration of geological, stable-isotope, and fluid-inclusion evidence

    USGS Publications Warehouse

    Bethke, P.M.; Rye, R.O.; Stoffregen, R.E.; Vikre, P.G.

    2005-01-01

    The Summitville Au-Ag-Cu deposit is a classic volcanic dome-hosted high-sulfidation deposit. It occurs in the Quartz Latite of South Mountain, a composite volcanic dome that was emplaced along the coincident margins of the Platoro and Summitville calderas at 22.5??0.5 Ma, penecontemporaneous with alteration and mineralization. A penecontemporaneous quartz monzonite porphyry intrusion underlies the district and is cut and overlain by pyrite-quartz stockwork veins with traces of chalcopyrite and molybdenite. Alteration and mineralization proceeded through three hypogene stages and a supergene stage, punctuated by at least three periods of hydrothermal brecciation. Intense acid leaching along fractures in the quartz latite produced irregular pipes and lenticular pods of vuggy silica enclosed sequentially by alteration zones of quartz-alunite, quartz-kaolinite, and clay. The acid-sulfate-altered rocks host subsequent covellite+enargite/luzonite+chalcopyrite mineralization accompanied by kaolinite, and later barite-base-metal veins, some containing high Au values and kaolinite. The presence of both liquid- and vapor-rich fluid inclusions indicates the episodic presence of a low-density fluid at all levels of the system. In the mineralized zone, liquid-rich fluid inclusions in healed fractures in quartz phenocrysts and in quartz associated with mineralization homogenize to temperatures between 160 and 390 ??C (90% between 190 and 310 ??C), consistent with the range (200-250 ??C) estimated from the fractionation of sulfur isotopes between coexisting alunite and pyrite. A deep alunite-pyrite pair yielded a sulfur-isotope temperature of 390 ??C, marking a transition from hydrostatic to lithostatic pressure at a depth of about 1.5 km. Two salinity populations dominate the liquid-rich fluid inclusions. One has salinities between 0 and 5 wt.% NaCl equivalent; the other has salinities of up to 43 wt.% NaCl equivalent. The occurrence of high-salinity fluid inclusions in vein

  2. Petrology and fluid inclusions of garnet-clinopyroxene rocks from the Gondwana suture zone in southern India: Implications for prograde high-pressure metamorphism

    NASA Astrophysics Data System (ADS)

    Tsunogae, T.

    2012-04-01

    , which is consistent with the occurrence of high-pressure Mg-rich staurolite in Mg-Al-rich rocks from this region. Fluid inclusion study of some garnet-clinopyroxene rock samples identified CO2-rich fluid inclusions trapped as primary phases within garnet, suggesting that prograde high-pressure metamorphism was dominated by CO2-rich fluids. The results therefore confirmed that the PCSZ underwent regional dry high-pressure metamorphism followed by the peak ultrahigh-temperature event probably associated with the continent-continent collisional and suturing history along the PCSZ.

  3. Syntectonic fluids redistribution and circulation coupled to quartz recrystallization in the ductile crust (Naxos Island, Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Siebenaller, Luc; Vanderhaeghe, Olivier; Jessell, Mark; Boiron, Marie-Christine; Hibsch, Christian

    2016-11-01

    The presence of external fluids in metamorphic rocks has been shown to have a profound impact on rock rheology as high fluid pressure processes promote embrittlement and favor ductile deformation by recrystallization. Moreover, it has been proposed that brittle deformation guides fluid circulation and that intracrystalline deformation is responsible for fluid redistribution at the grain scale. Nevertheless, the amount of fluid present in the metamorphic ductile crust is debated and the nature of the interaction between fluids and recrystallization processes are not clearly identified. The aim of this study is to document the spatial distribution of fluid inclusions relative to microstructures in quartz grains and aggregates from veins sampled in amphibolite facies metamorphic rocks, exposed in the island of Naxos in the center of the Attic-Cycladic Metamorphic Complex in Greece. The veins, ranging from discordant structures with sharp contacts to totally transposed structures into the metamorphic foliation, display a large variety of microstructures and fluid evidences interpreted as recording exhumation processes through the ductile/brittle transition: (i) remnants of primary quartz grains contain abundant CO2-H2O fluid inclusions, decrepitated for the most part, distributed in clusters and in fluid inclusion trails, (ii) fluid inclusions with a similar composition are less abundant in recrystallized zones and in subgrains but are concentrated along grain boundaries indicating that grain boundary migration is responsible for redistribution of CO2-H2O fluids, (iii) subgrains of the last generation are almost devoid of fluid inclusions and are characterized by thick grain boundaries with abundant metamorphic fluids locally forming a continuous film. CO2-H2O fluid inclusions aligned in parallel, regularly spaced intragranular trails, locally rooted into grain boundaries, are interpreted as reflecting the spatial redistribution of these fluids in quartz slip planes

  4. The mangazeya Ag-Pb-Zn vein deposit hosted in sedimentary rocks, Sakha-Yakutia, Russia: Mineral assemblages, fluid inclusions, stable isotopes (C, O, S), and origin

    NASA Astrophysics Data System (ADS)

    Anikina, E. Yu.; Bortnikov, N. S.; Klubnikin, G. K.; Gamyanin, G. N.; Prokof'ev, V. Yu.

    2016-05-01

    The succession of mineral assemblages, chemistry of gangue and ore minerals, fluid inclusions, and stable isotopes (C, O, S) in minerals have been studied in the Mangazeya silver-base-metal deposit hosted in terrigenous rocks of the Verkhoyansk Fold-Thrust Belt. The deposit is localized in the junction zone of the Kuranakh Anticlinorium and the Sartanga Synclinorium at the steep eastern limb of the Endybal Anticline. The deposit is situated at the intersection of the regional Nyuektame and North Tirekhtyakh faults. Igneous rocks are represented by the Endybal massif of granodiorite porphyry 97.8 ± 0.9 Ma in age and dikes varying in composition. One preore and three types of ore mineralization separated in space are distinguished: quartz-pyrite-arsenopyrite (I), quartz-carbonate-sulfide (II), and silver-base-metal (III). Quartz and carbonate (siderite) are predominant in ore veins. Ore minerals are represented by arsenopyrite, pyrite, sphalerite, galena, fahlore, and less frequent sulfosalts. Three types of fluid inclusions in quartz differ in phase compositions: two- or three-phase aqueous-carbon dioxide (FI I), carbon dioxide gas (FI II), and two-phase (FI III) containing liquid and a gas bubble. The homogenization temperature and salinity fall within the ranges of 367-217°C and 13.8-2.6 wt % NaCl equiv in FI I; 336-126°C and 15.4-0.8 wt % NaCl equiv in FI III. Carbon dioxide in FI II was homogenized in gas at +30.2 to +15.3°C and at +27.2 to 29.0°C in liquid. The δ34S values for minerals of type I range from-1.8 to +4.7‰ (V-CDT); of type II, from-7.4 to +6.6‰; and of type III, from-5.6 to +7.1‰. δ13C and δ18O vary from-7.0 to-6.7‰ (V-PDB) and from +16.6 to +17.1 (V-SMOW) in siderite-I; from-9.1 to-6.9‰ (V-PDB) and from +14.6 to +18.9 (V-SMOW) in siderite-II; from-5.4 to-3.1‰ (V-PDB) and from +14.6 to +19.5 (V-SMOW) in ankerite; and from-4.2 to-2.9‰ (V-PDB) and from +13.5 to +16.8 (V-SMOW) in calcite. The data on mineral assemblages, fluid

  5. Constraining the origin of the Messinian gypsum deposits using coupled measurement of δ^{18}O$/δD in gypsum hydration water and salinity of fluid inclusions

    NASA Astrophysics Data System (ADS)

    Evans, Nicholas P.; Gázquez, Fernando; McKenzie, Judith A.; Chapman, Hazel J.; Hodell, David A.

    2016-04-01

    We used oxygen and hydrogen isotopes of gypsum hydration water (GHW) coupled with salinity deduced from ice melting temperatures of primary fluid inclusions in the same samples (in tandem with 87Sr/86Sr, δ34S and other isotopic measurements) to determine the composition of the mother fluids that formed the gypsum deposits of the Messinian Salinity Crisis from shallow and intermediate-depth basins. Using this method, we constrain the origin of the Messinian Primary Lower Gypsum (PLG) of the Sorbas basin (Betic foreland) and both the Upper Gypsum (UG) and the Lower Gypsum of the Sicilian basin. We then compare these results to measurements made on UG recovered from the deep Ionian and Balearic basins drilled during DSDP Leg 42A. The evolution of GHW δ18O/δD vs. salinity is controlled by mixing processes between fresh and seawater, coupled with the degree of evaporation. Evaporation and subsequent precipitation of gypsum from fluids dominated by freshwater will result in a depressed 87Sr/86Sr values and different trajectory in δ18O/δD vs. salinity space compared to fluids dominated by seawater. The slopes of these regression equations help to define the end-members from which the fluid originated. For example, salinity estimates from PLG cycle 6 in the Sorbas basin range from 18 to 51ppt, and after correction for fractionation factors, estimated δ18O and δD values of the mother water are low (-2.6 < δ18O < 2.7‰ ; -16.2 < δD < 15.8‰). The intercepts of the regression equations (i.e. at zero salinity) are within error of the average isotope composition of the modern precipitation and groundwater in this region of SE Spain. This indicates there was a significant contribution of meteoric water during gypsum deposition, while 87Sr/86Sr (0.708942 < 87Sr/86Sr < 0.708971) indicate the ions originated from the dissolution of previously marine evaporites. Gypsum from cycle 2 displays similar mother water values (-2.4 < δ18O < 2.4‰ ; -13.2 < δD < 17.0‰) to

  6. Comparison of clumped isotope signatures of dolomite cements to fluid inclusion thermometry in the temperature range of 74-180 °C

    NASA Astrophysics Data System (ADS)

    Came, R. E.; Azmy, K.; Tripati, A. K.

    2015-12-01

    Widespread application of the novel clumped isotope paleothermometer (Δ47) using carbonate samples from shallow crustal settings has been hindered by a lack of knowledge about clumped isotope systematics in carbonate minerals forming at temperatures greater than 50ºC. Furthermore, the utility of the Δ47 proxy in the mineral dolomite is limited because calibration data for dolomites that formed at any temperature are lacking. Consequently, applications involving diagenetic temperatures have required extrapolations beyond the range of most Δ47-temperature calibrations. Here we compare Δ47 values in dolomite cements to temperatures independently determined using fluid-inclusion microthermometry, and compare this rock-based "calibration" to previously published laboratory-derived calibrations for synthetic carbonates. This combination of approaches yields results that are consistent with the shallow calibration slope that has been reported from some laboratory experiments.

  7. A petrographic and fluid inclusion comparison of silver-poor and silver-rich zinc-lead ores, N.E. Washington State

    NASA Astrophysics Data System (ADS)

    Brown, Philip E.; Ahmed, Gaafar A.

    1986-04-01

    Many of the zinc-lead deposits of NE Washington State are poorly known examples of Mississippi Valley Type (MVT) mineralization. This study compares inclusion fluids from the Josephine Breccia ores with the later cross-cutting sulfide-bearing quartz veins. The breccia ores are cemented mainly by open space fillings of dolomite, sphalerite, quartz, galena, jasperoid and calcite. Replacement is of minor importance. Ore and gangue deposition occurred over the range 150 250 °C with most of the temperatures less than 200 °C. The aqueous brines typically contain 17 23 equivalent weight percent NaCl with often substantial amounts of Ca and/or Mg chlorides. Homogenization temperatures do not delineate any cooling or paragenetic sequence. The cross-cutting vein quartz contains CO2-rich inclusions with overall densities usually less than 0.7 g/cc and homogenization temperatures from 250 325 °C. Sulfur isotope analyses yield two populations with the quartz vein ores being lighter (<13 permil CDT) than the average for the conformable ores. The later veins are not remobilized MVT sulfides but represent a separate, high-silver period of mineralization.

  8. Dialogs by Yuri V. Dublyansky regarding ``Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, tuffs: Environment of formation``. Special report number 15, Contract number 94/96.0003

    SciTech Connect

    1994-07-01

    This report is a review of a paper published in the 5th Annual International Conference on High Level Radioactive Wastes. The paper dealt with fluid inclusion studies of calcite veins from Yucca Mountain. This paper is included with this report. The author of this report analyzes the paper`s theory of the origin of these calcite deposits as dissolution and precipitation of carbonate materials from simple rainwater infiltration. The author reviews some of the methods utilized in the original research and the problems with thermometry of fluid inclusions in calcite. The author also expresses concerns over other laboratory procedures utilized to calculate various compositional values.

  9. Geochronology and fluid inclusion study of the Yinjiagou porphyry-skarn Mo-Cu-pyrite deposit in the East Qinling orogenic belt, China

    NASA Astrophysics Data System (ADS)

    Wu, Guang; Chen, Yuchuan; Li, Zongyan; Liu, Jun; Yang, Xinsheng; Qiao, Cuijie

    2014-01-01

    The Yinjiagou Mo-Cu-pyrite deposit of Henan Province is located in the Huaxiong block on the southern margin of the North China craton. It differs from other Mo deposits in the East Qingling area because of its large pyrite resource and complex associated elements. The deposit's mineralization process can be divided into skarn, sulfide, and supergene episodes with five stages, marking formation of magnetite in the skarn episode, quartz-molybdenite, quartz-calcite-pyrite-chalcopyrite-bornite-sphalerite, and calcite-galena-sphalerite in the sulfide episode, and chalcedony-limonite in the supergene episode. Re-Os and 40Ar-39Ar dating indicates that both the skarn-type and porphyry-type orebodies of the Yinjiagou deposit formed approximately 143 Ma ago during the Early Cretaceous. Four types of fluid inclusions (FIs) have been distinguished in quartz phenocryst, various quartz veins, and calcite vein. Based on petrographic observations and microthermometric criteria the FIs include liquid-rich, gas-rich, H2O-CO2, and daughter mineral-bearing inclusions. The homogenization temperature of FIs in quartz phenocrysts of K-feldspar granite porphyry ranges from 341 °C to >550 °C, and the salinity is 0.4-44.0 wt% NaCl eqv. The homogenization temperature of FIs in quartz-molybdenite veins is 382-416 °C, and the salinity is 3.6-40.8 wt% NaCl eqv. The homogenization temperature of FIs in quartz-calcite-pyrite-chalcopyrite-bornite-sphalerite ranges from 318 °C to 436 °C, and the salinity is 5.6-42.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz-molybdenite stockworks is in a range of 321-411 °C, and the salinity is 6.3-16.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz-sericite-pyrite is in a range of 326-419 °C, and the salinity is 4.7-49.4 wt% NaCl eqv. The ore-forming fluids of the Yinjiagou deposit are mainly high-temperature, high-salinity fluids, generally with affinities to an H2O-NaCl-KCl ± CO2 system. The δ18OH2O values of ore

  10. Microscale depletion of high abundance proteins in human biofluids using IgY14 immunoaffinity resin: Analysis of human plasma and cerebrospinal fluid

    DOE PAGES

    Hyung, Seok Won; Piehowski, Paul D.; Moore, Ronald J.; ...

    2014-09-06

    Removal of highly abundant proteins in plasma is often carried out using immunoaffinity depletion to extend the dynamic range of measurements to lower abundance species. While commercial depletion columns are available for this purpose, they generally are not applicable to limited sample quantities (<20 µL) due to low yields stemming from losses caused by nonspecific binding to the column matrix. Additionally, the cost of the depletion media can be prohibitive for larger scale studies. Modern LC-MS instrumentation provides the sensitivity necessary to scale-down depletion methods with minimal sacrifice to proteome coverage, which makes smaller volume depletion columns desirable for maximizingmore » sample recovery when samples are limited, as well as for reducing the expense of large scale studies. We characterized the performance of a 346 µL column volume micro-scale depletion system, using four different flow rates to determine the most effective depletion conditions for ~6 μL injections of human plasma proteins and then evaluated depletion reproducibility at the optimum flow rate condition. Depletion of plasma using a commercial 10 mL depletion column served as the control. Results showed depletion efficiency of the micro-scale column increased as flow rate decreased, and that our micro-depletion was reproducible. We found, in an initial application, a 600 µL sample of human cerebral spinal fluid (CSF) pooled from multiple sclerosis patients was depleted and then analyzed using reversed phase liquid chromatography-mass spectrometry to demonstrate the utility of the system for this important biofluid where sample quantities are more commonly limited.« less

  11. Microscale depletion of high abundance proteins in human biofluids using IgY14 immunoaffinity resin: Analysis of human plasma and cerebrospinal fluid

    SciTech Connect

    Hyung, Seok Won; Piehowski, Paul D.; Moore, Ronald J.; Orton, Daniel J.; Schepmoes, Athena A.; Clauss, Therese R.; Chu, Rosalie K.; Fillmore, Thomas L.; Brewer, Heather M.; Liu, Tao; Zhao, Rui; Smith, Richard D.

    2014-09-06

    Removal of highly abundant proteins in plasma is often carried out using immunoaffinity depletion to extend the dynamic range of measurements to lower abundance species. While commercial depletion columns are available for this purpose, they generally are not applicable to limited sample quantities (<20 µL) due to low yields stemming from losses caused by nonspecific binding to the column matrix. Additionally, the cost of the depletion media can be prohibitive for larger scale studies. Modern LC-MS instrumentation provides the sensitivity necessary to scale-down depletion methods with minimal sacrifice to proteome coverage, which makes smaller volume depletion columns desirable for maximizing sample recovery when samples are limited, as well as for reducing the expense of large scale studies. We characterized the performance of a 346 µL column volume micro-scale depletion system, using four different flow rates to determine the most effective depletion conditions for ~6 μL injections of human plasma proteins and then evaluated depletion reproducibility at the optimum flow rate condition. Depletion of plasma using a commercial 10 mL depletion column served as the control. Results showed depletion efficiency of the micro-scale column increased as flow rate decreased, and that our micro-depletion was reproducible. We found, in an initial application, a 600 µL sample of human cerebral spinal fluid (CSF) pooled from multiple sclerosis patients was depleted and then analyzed using reversed phase liquid chromatography-mass spectrometry to demonstrate the utility of the system for this important biofluid where sample quantities are more commonly limited.

  12. Carbonate Mineral Assemblages as Inclusions in Yakutian Diamonds: TEM Verifications

    NASA Astrophysics Data System (ADS)

    Logvinova, A. M.; Wirth, R.; Sobolev, N. V.; Taylor, L. A.

    2014-12-01

    Carbonate mineral inclusions are quite rare in diamonds from the upper mantle, but are evidence for a carbonate abundance in the mantle. It is believed that such carbonatitic inclusions originated from high-density fluids (HDFs) that were enclosed in diamond during its growth. Using TEM and EPMA, several kinds of carbonate inclusions have been identified in Yakutian diamonds : aragonite, dolomite, magnesite, Ba-, Sr-, and Fe-rich carbonates. Most of them are represented by multi-phase inclusions of various chemically distinct carbonates, rich in Ca, Mg, and K and associated with minor amounts of silicate, oxide, saline, and volatile phases. Volatiles, leaving some porosity, played a significant role in the diamond growth. A single crystal of aragonite (60μm) is herein reported for the first time. This inclusion is located in the center of a diamond from the Komsomolskaya pipe. Careful CL imaging reveals the total absence of cracks around the aragonite inclusion - i.e., closed system. This inclusion has been identified by X-ray diffraction and microprobe analysis. At temperatures above 1000 0C, aragonite is only stable at high pressures of 5-6 GPa. Inside this aragonite, we observed nanocrystalline inclusions of titanite, Ni-rich sulfide, magnetite, water-bearing Mg-silicate, and fluid bubbles. Dolomite is common in carbonate multi-phase inclusions in diamonds from the Internatsionalnaya, Yubileinaya, and Udachnaya kimberlite pipes. Alluvial diamonds of the northeastern Siberian Platform are divided into two groups based on the composition of HDFs: 1) Mg-rich multi-phase inclusions (60% magnesite + dolomite + Fe-spinel + Ti-silicate + fluid bubbles); and 2) Ca-rich multi-phase inclusions (Ca,Ba-, Ca,Sr-, Ca,Fe-carbonates + Ti-silicate + Ba-apatite + fluid bubbles). High-density fluids also contain K. Volatiles in the fluid bubbles are represented by water, Cl, F, S, CO2, CH4, and heavy hydrocarbons. Origin of the second group of HDFs may be related to the non

  13. Hydrocarbon migration and accumulation in the Upper Cretaceous Qingshankou Formation, Changling Sag, southern Songliao Basin: Insights from integrated analyses of fluid inclusion, oil source correlation and basin modelling

    NASA Astrophysics Data System (ADS)

    Dong, Tian; He, Sheng; Wang, Dexi; Hou, Yuguang

    2014-08-01

    The Upper Cretaceous Qingshankou Formation acts as both the source and reservoir sequence in the Changling Sag, situated in the southern end of the Songliao Basin, northeast China. An integrated approach involving determination of hydrocarbon charging history, oil source correlation and hydrocarbon generation dynamic modeling was used to investigate hydrocarbon migration processes and further predict the favorable targets of hydrocarbon accumulations in the Qingshankou Formation. The hydrocarbon generation and charge history was investigated using fluid inclusion analysis, in combination with stratigraphic burial and thermal modeling. The source rocks began to generate hydrocarbons at around 82 Ma and the hydrocarbon charge event occurred from approximately 78 Ma to the end of Cretaceous (65.5 Ma) when a large tectonic uplift took place. Correlation of stable carbon isotopes of oils and extracts of source rocks indicates that oil was generated mainly from the first member of Qingshankou Formation (K2qn1), suggesting that hydrocarbon may have migrated vertically. Three dimensional (3D) petroleum system modeling was used to evaluate the processes of secondary hydrocarbon migration in the Qingshankou Formation since the latest Cretaceous. During the Late Cretaceous, hydrocarbon, mainly originated from the Qianan depression, migrated laterally to adjacent structural highs. Subsequent tectonic inversion, defined as the late Yanshan Orogeny, significantly changed hydrocarbon migration patterns, probably causing redistribution of primary hydrocarbon reservoirs. In the Tertiary, the Heidimiao depression was buried much deeper than the Qianan depression and became the main source kitchen. Hydrocarbon migration was primarily controlled by fluid potential and generally migrated from relatively high potential areas to low potential areas. Structural highs and lithologic transitions are potential traps for current oil and gas exploration. Finally, several preferred hydrocarbon

  14. Petrographic, REE, fluid inclusion and stable isotope study of magnesite from the Upper Triassic Burano Evaporites (Secchia Valley, northern Apennines): contributions from sedimentary, hydrothermal and metasomatic sources

    NASA Astrophysics Data System (ADS)

    Lugli, Stefano; Morteani, Giulio; Blamart, Dominique

    2002-06-01

    Sparry and microcrystalline magnesite are minor constituents of the Upper Triassic Burano Evaporite Formation of the northern Apennines in Italy. Petrography and geochemistry of magnesite suggest three modes of formation. (1) Evaporitic precipitation of stratified microcrystalline magnesite layers associated with sulfate and carbonate rocks. Most REE are below ICP-MS detection limits. δ18O is +20.2‰ (SMOW) and δ13C is -2.6‰ (PDB). (2) Hydrothermal infill of Fe-rich (9.78 wt% FeO) lenticular sparry magnesite. This type of magnesite is characterized by very low LREE concentrations, whereas HREEs are relatively high. The fluid inclusion composition is NaCl-MgCl2-H2O, salinity is ~30 wt% NaCl equiv., and total homogenization temperatures range from 204-309 °C; δ18O is +17.5‰ and δ13C is +1‰. (3) The partial or total replacement of dolostones by lenticular sparry magnesite. LREEs are lower in magnesite compared with the partly replaced dolostones. Magnesite yields δ18O and δ13C compositions of +17.3 to +23.6‰ and +0.5 to +1.4‰, respectively, whereas the partly replaced dolostones yield δ18O and δ13C values of +25.0 to +26.2 and +1.3 to +1.9, respectively. Complete replacement of dolostones produced massive lenticular sparry magnesite rock containing ooids and axe-head anhydrite relicts; LREEs are depleted compared to unaffected dolostones; δ18O and δ13C compositions range from +16.4 to +18.4‰ and +0.4 to +0.9‰, respectively. These data and the association between fracture-filling and replacive magnesite suggests a metasomatic system induced by hydrothermal circulation of hot and saline Mg-rich fluids. These processes probably occurred in the Oligocene-Miocene, when the Burano Formation acted as main detachment horizon for the Tuscan Nappe during the greenschist facies metamorphism of the Apuane complex. Thrusting over the Apuane zone produced large scale fluid flow focused at the Tuscan Nappe front. Sources of Mg-rich fluids were metamorphic

  15. New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia Cu-Au deposit, Carajás Province, Brazil

    NASA Astrophysics Data System (ADS)

    Dreher, Ana M.; Xavier, Roberto P.; Taylor, Bruce E.; Martini, Sérgio L.

    2008-02-01

    The Igarapé Bahia Cu-Au deposit in the Carajás Province, Brazil, is hosted by steeply dipping metavolcano-sedimentary rocks of the Igarapé Bahia Group. This group consists of a low greenschist grade unit of the Archean (˜2,750 Ma) Itacaiúnas Supergroup, in which other important Cu-Au and iron ore deposits of the Carajás region are also hosted. The orebody at Igarapé Bahia is a fragmental rock unit situated between chloritized basalt, with associated hyaloclastite, banded iron formation (BIF), and chert in the footwall and mainly coarse- to fine-grained turbidites in the hanging wall. The fragmental rock unit is a nearly concordant, 2 km long and 30-250 m thick orebody made up of heterolithic, usually matrix-supported rocks composed mainly of coarse basalt, BIF, and chert clasts derived from the footwall unit. Mineralization is confined to the fine-grained matrix and comprises disseminated to massive chalcopyrite accompanied by magnetite, gold, U- and light rare earth element (LREE)-minerals, and minor other sulfides like bornite, molybdenite, cobaltite, digenite, and pyrite. Gangue minerals include siderite, chlorite, amphibole, tourmaline, quartz, stilpnomelane, epidote, and apatite. A less important mineralization style at Igarapé Bahia is represented by late quartz-chalcopyrite-calcite veins that crosscut all rocks in the deposit area. Fluid inclusions trapped in a quartz cavity in the ore unit indicate that saline aqueous fluids (5 to 45 wt% NaCl + CaCl2 equiv), together with carbonic (CO2 ± CH4) and low-salinity aqueous carbonic (6 wt% NaCl equiv) fluids, were involved in the mineralization process. Carbonates from the fragmental layer have δ13C values from -6.7 to -13.4 per mil that indicate their origin from organic and possibly also from magmatic carbon. The δ34S values for chalcopyrite range from -1.1 to 5.6 per mil with an outlier at -10.8 per mil, implying that most sulfur is magmatic or leached from magmatic rocks, whereas a limited

  16. Comparison of clumped isotope signatures of dolomite cements to fluid inclusion thermometry in the temperature range of 73-176 °C

    NASA Astrophysics Data System (ADS)

    Came, Rosemarie E.; Azmy, Karem; Tripati, Aradhna; Olanipekun, Babatunde-John

    2017-02-01

    Widespread application of the novel clumped isotope paleothermometer (Δ47) using dolomite samples from shallow crustal settings has been hindered by a lack of adequate constraints on clumped isotope systematics in dolomites that formed at temperatures greater than 50 °C. Consequently, many high-temperature applications involving diagenetic dolomites have required an assumption that the relationship between temperature and Δ47 in diagenetic dolomite resembles the theoretical temperature dependence for calcite. Here we present Δ47 results from dolomite cements for which precipitation temperatures were determined independently using fluid inclusion microthermometry. We compare a rock-based ;calibration; for samples from the temperature range of ∼73 to 176 °C to previously published laboratory-derived calibrations for synthetic calcites. This novel combination of approaches yields results that are broadly consistent with results reported from controlled laboratory experiments, providing an important confirmation of the utility of clumped isotopes in real-world systems. Our results suggest that the Δ47 of dolomite cements may provide key information in the reconstruction of burial and thermal histories and also in the recognition of potential petroleum reservoirs.

  17. VOC and VOX in fluid inclusions of quartz: New chemical insights into hydrothermal vein mineralization by GC-MS and GC-IRMS measurements

    NASA Astrophysics Data System (ADS)

    Sattler, Tobias; Kirnbauer, Thomas; Keppler, Frank; Greule, Markus; Fischer, Jan; Spiekermann, Patrik; Schreiber, Ulrich; Mulder, Ines; Schöler, Heinz Friedrich

    2015-04-01

    Fluid inclusions (FIs) in minerals are known to contain a variety of different liquids, gases, and solids. The fluids get trapped during mineral growth and can preserve the original mineral-forming fluid or fluids of later events. A new analytical technique developed by Mulder et al. (2013) [1] allows to measure trace gases in FIs. For the measurements, grains of 3-5 mm diameter are ground in an airtight grinding device, releasing the volatiles from FIs into the gas phase, where they can be measured by GC-MS, GC-FID and GC-IRMS. The Taunus covers the southeastern part of the thrust-and-fold-belt of the Rhenish Massif (Germany). The Variscan rock sequences comprise sedimentary and volcanic units ranging from Ordovician to Lower Carboniferous. Several types of hydrothermal mineralization can be distinguished, which are - in regard to the Variscan orogeny - pre-orogenic, orogenic, late-orogenic, post-orogenic and recent in age [2]. They include SEDEX, vein, Alpine fissure, disseminated and stockwerk mineralizations. Thus, the Taunus mineralizations enable investigations of different hydrothermal systems at different age in one region. For most of them extensive studies of stable and radiogenic isotopes exist. Quartz crystals of post-orogenic quartz veins and Pb-Zn-Cu bearing veins [3] were selected for our FI investigation. Sulphur containing compounds like COS and CS2 dominate the FIs but there are also volatile hydrocarbons (VOC) like different butenes, benzene, toluene and cyclopentene that were found very often. In some samples volatile halogenated organic carbons (VOX) like chloro- and bromomethane were found. Some FIs even contain iodomethane, chlorobenzene, vinyl chloride and -bromide. The non-fossil-fuel subsurface chemistry of VOC and VOX is not fully understood. There are a lot of unknown geogenic sources [4][5]. For a better understanding δ13C- and δ2H-values of CH4 were measured by GC-IRMS to examine if the detected organic compounds are formed biotic

  18. The solubility of platinum and gold in NaCl brines at 1.5 kbar, 600 to 800°C: A laser ablation ICP-MS pilot study of synthetic fluid inclusions

    NASA Astrophysics Data System (ADS)

    Hanley, Jacob J.; Pettke, Thomas; Mungall, James E.; Spooner, Edward T. C.

    2005-05-01

    The concentration and distribution of Pt and Au in a fluid-melt system has been investigated by reacting the metals with S-free, single-phase aqueous brines (20, 50, 70 wt% eq. NaCl) ± peraluminous melt at a confining pressure of 1.5 kbar and temperatures of 600 to 800 °C, trapping the fluid in synthetic fluid inclusions (quartz-hosted) and vesicles (silicate melt-hosted), and quantifying the metal content of the trapped fluid and glass by laser ablation ICP-MS. HCl concentration was buffered using the assemblage albite-andalusite-quartz and f was buffered using the assemblage Ni-NiO. Over the range of experimental conditions, measured concentrations of Pt and Au in the brines ( CPtfluid, CAufluid) are on on the order of 1-10 3 ppm. Concentrations of Pt and Au in the melt ( CPtmelt, CAumelt) are ˜35-100 ppb and ˜400-1200 ppb, respectively. Nernst partition coefficients ( DPtfluid/melt, DAufluid/melt) are on the order of 10 2-10 3 and vary as a function of Cmetalfluid (non-Henry's Law behavior). Trapped fluids show a significant range of metal concentrations within populations of inclusions from single experiments (˜ 1 log unit variability for Au; ˜2-3 log unit variability for Pt). Variability in metal concentration within single inclusion groups is attributed to premature brine entrapment (prior to metal-fluid-melt equilibrium being reached); this allows us to make only minimum estimates of metal solubility using metal concentrations from primary inclusions. The data show two trends: (i) maximum and average values of CAufluid and CPtfluid in inclusions decrease ˜2 orders of magnitude as fluid salinity ( m∑Clfluid) increases from ˜4 to 40 molal (20 to 70 wt % eq. NaCl) at a constant temperature; (ii) maximum and average values of CAufluid increase approximately 1 order of magnitude for every 100°C increase temperature at a fixed m∑Clfluid. The observed behavior may be described by the general expression: log⁡(mmetalfluid,T,1.5kbar

  19. Geology, hydrothermal petrology, stable isotope geochemistry, and fluid inclusion geothermometry of LASL geothermal test well C/T-1 (Mesa 31-1), East Mesa, Imperial Valley, California, USA

    SciTech Connect

    Miller, K.R.; Elders, W.A.

    1980-08-01

    Borehole Mesa 31-1 (LASL C/T-1) is an 1899-m (6231-ft) deep well located in the northwestern part of the East Mesa Geothermal Field. Mesa 31-1 is the first Calibration/Test Well (C/T-1) in the Los Alamos Scientific Laboratory (LASL), Geothermal Log Interpretation Program. The purpose of this study is to provide a compilation of drillhole data, drill cuttings, well lithology, and formation petrology that will serve to support the use of well LASL C/T-1 as a calibration/test well for geothermal logging. In addition, reviews of fluid chemistry, stable isotope studies, isotopic and fluid inclusion geothermometry, and the temperature log data are presented. This study provides the basic data on the geology and hydrothermal alteration of the rocks in LASL C/T-1 as background for the interpretation of wireline logs.

  20. Phase equilibria modeling applied to fluid inclusions: Liquid-vapor equilibria and calculation of the molar volume in the CO[sub 2]-CH[sub 4]-N[sub 2] system

    SciTech Connect

    Thiery, R.; Dubessy, J. ); Vidal, J. )

    1994-02-01

    Quantitative use of fluid inclusions requires the determination of composition and molar volume. The molar volume can be calculated in the CO[sub 2]-CH[sub 4]N[sub 2] system from both the determination of the temperature of a L + V [yields] L (or V) equilibrium if the composition is known independently, provided an equation of state (EOS) reproduces the P-V-T-X properties of each phase at equilibrium. This study is applicable to fluids for which the sequence of phase transition is S[sub CO2] + L + V [yields] L + V [yields] L (or V) at increasing temperature. The molar volume is determined by following a two-step algorithm: (1) the pressure is calculated from a two-parameter cubic EOS with interaction parameters optimized along experimental L-V isotherms (2) the molar volume is then calculated by the correlation of LEE and KESLER (1975) with the pressure calculated in the first step. Projections of polybaric L-V isotherms in [upsilon]-X diagrams of the CO[sub 2]-CH[sub 4], CO[sub 2]-N[sub 2], and CH[sub 4]-N[sub 2] systems can be directly applied to fluid inclusion studies. In addition, it is shown that the molar volume of CO[sub 2]-rich fluids (X[sub CO2] > 0.6) in the ternary system can be estimated with sufficient accuracy using empirical formulae relating to the [upsilon]-X diagrams of the CO[sub 2]-CH[sub 4] and CO[sub 2]-N[sub 2] binary systems.

  1. Paleofluid-flow circulation within a Triassic rift basin: Evidence from oil inclusions and thermal histories

    USGS Publications Warehouse

    Tseng, H.-Y.; Burruss, R.C.; Onstott, T.C.; Omar, G.

    1999-01-01

    The migration of subsurface fluid flow within continental rift basins has been increasingly recognized to significantly affect the thermal history of sediments and petroleum formation. To gain insight into these paleofluid flow effects, the thermal history of the Taylorsville basin in Virginia was reconstructed from fluid-inclusion studies, apatite fission-track data, and vitrinite reflectance data. Models of thermal history indicate that the basin was buried to the thermal maximum at 200 Ma; a cooling event followed during which the eastern side of the basin cooled earlier and faster than the western side, suggesting that there was a differential uplift and topographically driven fluid flow. This hypothesis is supported by analyses of secondary oil and aqueous inclusions trapped in calcite and quartz veins during the uplift stage. Gas chromatograms of inclusion oils exhibit variable but extensive depletion of light molecular-weight hydrocarbons. The relative abundance of n-alkanes, petrographic observations, and the geological data indicate that the alteration process on these inclusion oils was probably neither phase separation nor biodegradation, but water washing. Water:oil ratios necessary to produce the observed alteration are much greater than 10000:1. These exceedingly high ratios are consistent with the migration of inclusion oils along with fluid flow during the early stages of basin evolution. The results provide significant evidence about the role of a subsurface flow system in modifying the temperature structure of the basin and the composition of petroleum generated within the basin.

  2. Comment on “Effect of the vapor phase on the salinity of halite-bearing aqueous fluid inclusions estimated from the halite dissolution temperature”, by M. Steele-MacInnis and R.J. Bodnar

    NASA Astrophysics Data System (ADS)

    Bakker, Ronald J.

    2014-06-01

    Recently Steele-MacInnis and Bodnar reported an experimental study on the estimation of the salinity of halite bearing fluid inclusions from dissolution temperatures of halite crystals, in the presence and absence of a vapour phase Steele-MacInnis and Bodnar (2013). The authors present new purely empirical equations to calculate fluid inclusion bulk salinity, which is mainly determined by dissolution temperature of halite (SLV→LV) with a minor correction due to presence of a vapour phase at higher temperatures, similar to the study of Bakker (2012). The experimental approach in their work is inappropriate, it does not provide experimental data, and it does not illustrate an estimate of uncertainty, accuracy and precision of the results. The mathematical modelling with purely empirical best-fit equations is insufficient, and partly erroneous. Comparison with the model from Bakker (2012) results in highly incorrect, inconsistent and imprecise statements about the quality of the results from Bakker (2012). Furthermore, the authors use “supplementary data” to continue a discussion without peer-review.

  3. Mechanisms of submicron inclusion re-equilibration during host mineral deformation

    NASA Astrophysics Data System (ADS)

    Griffiths, Thomas; Habler, Gerlinde; Abart, Rainer; Rhede, Dieter; Wirth, Richard

    2014-05-01

    data, and no subgrain boundaries. Secondly, garnet lattice rotation of up to 10° around rational garnet crystal axes is observed in connection with some already coarsened inclusions. Strain concentrations are widespread in some trails, but rare in others. A TEM foil transecting a garnet domain with concentrated lattice rotation in association with inclusions reveals well developed polygonal subgrain walls with few free dislocations. Where dislocation density is greatest, almost no <100nm inclusions are observed, whereas these are more abundant in unstrained garnet domains despite the foil being located entirely within the optically visible bleaching zone. Chlorite inclusions and formation of etch pits at dislocations at the garnet-chlorite interface demonstrate the presence of fluid along subgrain boundaries during this second bleaching process. In summary, brittle deformation in these garnets led to enhanced transport and inclusion re-equilibration by coarsening, forming inclusion trails. The precise mechanism allowing enhanced transport is still to be determined and may have involved fluid supply with or without pipe diffusion along introduced dislocations. Later ductile deformation via dislocations, concentrated at already coarsened inclusions and enhanced by fluid availability, further affected the nanoinclusion population. The inclusion trail microstructure records complex small-scale interaction between deformation and reaction, shedding light on the mechanisms by which re-equilibration and strain localisation can influence each other in deforming host-inclusion systems. Bestmann et al. (2008) Journal of Structural Geology 30: 777-790

  4. Seasonal abundance and spatio-temporal distribution of dominant xylem fluid-feeding hemiptera in vineyards of central Texas and surrounding habitats.

    PubMed

    Lauzière, Isabelle; Sheather, Simon; Mitchell, Forrest

    2008-08-01

    A survey of xylem fluid-feeding insects (Hemiptera) exhibiting potential for transmission of Xylella fastidiosa, the bacterium causing Pierce's disease of grapevine, was conducted from 2004 to 2006 in the Hill Country grape growing region of central Texas. Nineteen insect species were collected from yellow sticky traps. Among these, two leafhoppers and one spittlebug comprised 94.57% of the xylem specialists caught in this region. Homalodisca vitripennis (Germar), Graphocephala versuta (Say), and Clastoptera xanthocephala Germar trap catches varied significantly over time, with greatest counts usually recorded between May or June and August and among localities. A comparison of insect counts from traps placed inside and outside vineyards indicated that G. versuta is always more likely captured on the vegetation adjacent to the vineyard. C. xanthocephala was caught inside the vineyard during the summer. Between October and December, the natural habitat offers more suitable host plants, and insects were absent from the vineyards after the first freezes. H. vitripennis was caught in higher numbers inside the vineyards throughout the grape vegetative season. However, insects were also caught in the habitat near the affected crop throughout the year, and residual populations overwintering near vineyards were also recorded. This study shed new light on the fauna of xylem fluid-feeding insects of Texas. These results also provide critical information to vineyard managers for timely applications of insecticides before insect feeding and vectoring to susceptible grapevines.

  5. Evidence for Oxygen-Isotope Exchange in Chondrules and Refractory Inclusions During Fluid-Rock Interaction on the CV Chondrite Parent Body

    NASA Astrophysics Data System (ADS)

    Krot, A. N.; Nagashima, K.

    2016-08-01

    Plagioclase in chondrules, CAIs and AOAs from the carbonaceous chondrite Kaba (CV3.1) experienced oxygen-isotope exchange with a metasomatic fluid responsible for the formation of magnetite, fayalite and Ca,Fe-rich silicates on the CV parent body.

  6. Fluid Evolution in the Nepheline Syenites of the Ditrau Alkaline Massif, Romania

    NASA Astrophysics Data System (ADS)

    Fall, A.; Bodnar, R. J.; Szabo, C.

    2004-12-01

    The Ditrau Alkaline Massif (Romania) is situated in the central part of the Eastern Carpathians, as an intrusion in the Bukovina nappe system of the Mesozoic crystalline zone. Nepheline syenites are the most abundant rocks occurring in the central and eastern part of the Massif, and representing the youngest intrusion of the complex. The nepheline syenite is composed of perthitic feldspars, nepheline, biotite, amphibole, pyroxene and titanite as primary minerals, and sodalite, cancrinite, calcite, analcite as secondary minerals formed at the expense of nepheline. Petrographic observations and fluid inclusion studies were performed on nepheline syenites in order to examine the effect of residual magmatic fluids on the alteration of nepheline to secondary minerals listed above. The alteration of nepheline to secondary minerals is obvious from textural relationships and comparison of the compositions of the minerals. Fluid inclusion studies provide evidence for the role of highly saline fluids in the incongruent transformation reactions (nepheline to sodalite and/or cancrinite and/or analcite). The fluids, in most cases, can be modeled by the H2O-NaCl system with various NaCl contents; however inclusions with more complex fluid (containing also K, Ca, CO3, etc. besides H2O and NaCl) composition are abundant in the nepheline. The alteration process is supported by the presence of fluid inclusions in cancrinite, showing lower salinity compared to those in nepheline. During the crystallization period of the nepheline syenites the rock was in equilibrium with a salty solution whose salinity increased with time, mostly by the loss of H2O to produce H2O-bearing minerals like amphiboles and micas. One possible interpretation of the fluid inclusions and textural observations is that nepheline alteration to sodalite, cancrinite and analcite was associated with increasing salinity of the fluids with time.

  7. The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada

    NASA Astrophysics Data System (ADS)

    Bussweiler, Y.; Stone, R. S.; Pearson, D. G.; Luth, R. W.; Stachel, T.; Kjarsgaard, B. A.; Menzies, A.

    2016-07-01

    Megacrystic (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) xenocrysts within kimberlites from Lac de Gras (Northwest Territories, Canada) contain fully crystallized melt inclusions. These `polymineralic inclusions' have previously been interpreted to form by necking down of melts at mantle depths. We present a detailed petrographical and geochemical investigation of polymineralic inclusions and their host crystals to better understand how they form and what they reveal about the evolution of kimberlite melt. Genetically, the megacrysts are mantle xenocrysts with peridotitic chemical signatures indicating an origin within the lithospheric mantle (for the Cr-diopsides studied here ~4.6 GPa, 1015 °C). Textural evidence for disequilibrium between the host crystals and their polymineralic inclusions (spongy rims in Cr-diopside, kelyphite in Cr-pyrope) is consistent with measured Sr isotopic disequilibrium. The preservation of disequilibrium establishes a temporal link to kimberlite eruption. In Cr-diopsides, polymineralic inclusions contain phlogopite, olivine, chromite, serpentine, and calcite. Abundant fluid inclusion trails surround the inclusions. In Cr-pyropes, the inclusions additionally contain Al-spinel, clinopyroxene, and dolomite. The major and trace element compositions of the inclusion phases are generally consistent with the early stages of kimberlite differentiation trends. Extensive chemical exchange between the host phases and the inclusions is indicated by enrichment of the inclusions in major components of the host crystals, such as Cr2O3 and Al2O3. This chemical evidence, along with phase equilibria constraints, supports the proposal that the inclusions within Cr-diopside record the decarbonation reaction: dolomitic melt + diopside → forsterite + calcite + CO2, yielding the observed inclusion mineralogy and producing associated (CO2-rich) fluid inclusions. Our study of polymineralic inclusions in megacrysts provides clear mineralogical

  8. Geology, mineralization, and fluid inclusion characteristics of the Skrytoe reduced-type W skarn and stockwork deposit, Sikhote-Alin, Russia

    NASA Astrophysics Data System (ADS)

    Soloviev, Serguei G.; Kryazhev, Sergey G.

    2017-01-01

    The Skrytoe deposit (>145 Kt WO3, average grade 0.449% WO3) in the Sikhote-Alin orogenic system (Eastern Russia) is situated in a metallogenic belt of W, Sn-W, Au, and Au-W deposits formed in a late to post-collisional tectonic environment after cessation of active subduction. It is localized within a mineralized district of reduced-type skarn W and veined Au (±W) deposits and occurrences related to the Early Cretaceous ilmenite-series plutonic suite. The deposit incorporates large stockworks of scheelite-bearing veinlets related to propylitic (amphibole, chlorite, quartz) and phyllic (quartz, sericite, albite, apatite, and carbonate) hydrothermal alteration. The stockwork cuts flat-lying mafic volcanic rocks and limestone partially replaced by pyroxene skarn that host the major W orebodies. Scheelite is associated with pyrrhotite and/or arsenopyrite, with minor chalcopyrite and other sulfide minerals; the late phyllic stage assemblages hosts Bi and Au mineralization. The fluid evolution included low-salinity moderate-temperature, moderate-pressure (˜370-390 °C, ˜800 bars) methane-dominated carbonic-aqueous fluids that formed post-skarn propylitic alteration assemblages. Then, at the phyllic stage, there has been an evolution from methane-dominated, moderate-temperature (330-360 °C), low-salinity (<12.3 wt% NaCl equiv.) fluids forming the early quartz-sericite-albite-arsenopyrite assemblage, through lower temperature (290-330 °C) methane-dominated, low-salinity (˜9-10 wt% NaCl equiv.) fluids forming the intermediate quartz-sericite-albite-scheelite-pyrrhotite assemblage, to yet lower temperature (245-320 °C) CO2-dominated carbonic-aqueous low-salinity (˜1-7 wt% NaCl equiv.) fluids forming the late quartz-sericite-sulfide-Bi-Au assemblage. Recurrent fluid immiscibility (phase separation) and cooling probably affected W solubility and promoted scheelite deposition. The stable isotope data support a sedimentary source of carbon (δ13Cfluid = ˜-21 to -10

  9. Saline Fluids in Subduction Channels and Mantle Wedge

    NASA Astrophysics Data System (ADS)

    Kawamoto, T.; Hertwig, A.; Schertl, H. P.; Maresch, W. V.; Shigeno, M.; Mori, Y.; Nishiyama, T.

    2015-12-01

    Saline fluids can transport large-ion-lithophile elements and carbonate. Subduction-zone fluids contain salts with various amounts of NaCl equivalent similar to that of the present and/or Phanerozoic seawater (about 3.5 wt% NaCl). The salinity of aqueous fluids in the mantle wedge decreases from trench side to back-arc side, although available data have been limited. Such saline fluids from mantle peridotite underneath Pinatubo, a frontal volcano of the Luzon arc, contain 5.1 wt% NaCl equivalent and CO2 [Kawamoto et al., 2013 Proc Natl Acad Sci USA] and in Ichinomegeta, a rear-arc volcano of the Northeast Japan arc, contain 3.7 wt% NaCl equivalent and CO2 [Kumagai et al., Contrib Mineral Petrol 2014]. Abundances of chlorine and H2O in olivine-hosted melt inclusions also suggest that aqueous fluids to produce frontal basalts have higher salinity than rear-arc basalts in Guatemala arc [Walker et al., Contrib Mineral Petrol 2003]. In addition to these data, quartz-free jadeitites contain fluid inclusions composed of aqueous fluids with 7 wt% NaCl equivalent and quartz-bearing jadeitite with 4.6 wt% NaCl equivalent in supra-subduction zones in Southwest Japan [Mori et al., 2015, International Eclogite Conference] and quartz-bearing jadeitite and jadeite-rich rocks contain fluid inclusions composed of aqueous fluids with 4.2 wt% NaCl equivalent in Rio San Juan Complex, Dominica Republic [Kawamoto et al., 2015, Goldschmidt Conference]. Aqueous fluids generated at pressures lower than conditions for albite=jadeite+quartz occurring at 1.5 GPa, 500 °C may contain aqueous fluids with higher salinity than at higher pressures.

  10. Evaluation of argon ages and integrity of fluid-inclusion compositions: Stepwise noble gas heating experiments on 1.87 Ga alunite from Tapajós Province, Brazil

    USGS Publications Warehouse

    Landis, G.P.; Snee, L.W.; Juliani, Caetano

    2005-01-01

    Diffusion coefficients and activation energies for the diffusion of Ar and He, as determined using Arrhenius plots, indicate two distinct groups definable by their differences in activation energies. Argon log Do=2.45 and 15.33, with activation energies of 225 and 465 kJ mol−1, respectively; the diffusion of He in alunite is quantified with log Do=−4.33 and E=106.8 kJ mol−1. Model calculations of simplistic 1/e-folding times and diffusion distance–time curves indicate that He should remain in alunite for millions of years at ≤100°C, whereas at <200–220°C, the alunite will retain Ar almost indefinitely. The data demonstrate why alunite is suitable for Ar geochronological applications and also show that, unless the alunite is subjected to metamorphic deformation, the inclusion fluids should retain their primary compositions.

  11. CaCl[sub 2]-NaCl-H[sub 2]O fluid inclusions in the Box Vein of Lyonsdale,NY a fossil shield brine in northern, New York

    SciTech Connect

    Garside, A.R.; Darling, R.S. . Dept. of Geology)

    1993-03-01

    The Box Vein of Lyonsdale, NY is characterized by calcite-hosted, box-like cavities (equidimensional to tabular in shape) lined with comb-structured quartz. Quartz deposition was followed by late calcite, rare chalcopyrite, and solid organic matter (similar to anthraxolite associated with Herkimer quartz). The geologic setting of the vein is similar to Rossie-type veins in that it is hosted by Precambrian gneisses, but postdates Grenville metamorphism. Primary fluid inclusions in quartz (defined by growth zones) contain H[sub 2]O (vapor) + H[sub 2]O (brine) at room temperature. Upon warming from liquid nitrogen temperatures ([minus]196C), the ice and salt-hydrates gradually darkened and became granular between [minus]65C and [minus]52C, temperatures and phase behavior consistent with first melting in the CaCl[sub 2]-NaCl-H[sub 2]O system. Final ice melting temperatures average [minus]25.2C [plus minus] 1.4C (1 [sigma], N = 9). Final hydrohalite melting temperatures average [minus]13.2C [plus minus] 2.9C (1 [sigma], N = 6). Hydrohalite was distinguished from ice by its higher birefringence and lower relief. Inclusions homogenized to liquid at temperatures averaging 151C [plus minus] 7C (1 [sigma], N = 17). The microthermometric measurements were recorded by temperature cycling. Final melting temperatures of ice and hydrohalite indicate NaCl and CaCl[sub 2] contents of 17 [plus minus] 0.5 and 9 [plus minus] 1 wt. %, respectively (as modeled in the ternary CaCl[sub 2]-NaCl-H[sub 2]O system). The geologic setting, saline fluid chemistry, and relatively low temperature ([approximately]150C) of the Box Vein are similar to characteristics of shield brines described by Frape and Fritz in Canadian basement rocks.

  12. Coupled measurement of δ18O/δD in gypsum hydration water and salinity of fluid inclusions in gypsum: A novel tool for reconstructing parent water chemistry and depositional environment

    NASA Astrophysics Data System (ADS)

    Evans, Nick; Gázquez, Fernando; Turchyn, Alexandra; Chapman, Hazel; Hodell, David

    2015-04-01

    The measurement of oxygen and hydrogen isotopes in gypsum hydration water (CaSO4•2H2O) is a powerful tool to determine the isotopic composition of the parent fluid from which gypsum precipitated. To be useful, however, the hydration water must retain its original isotope signal and not have undergone postdepositional exchange. We developed a novel method to ascertain whether hydration waters have secondarily exchanged by coupling oxygen and hydrogen isotopes of gypsum hydration water with the salinities of fluid inclusions. Salinity is obtained through microthermometric analysis of the same gypsum crystals measured for hydration water by freezing the sample and then measuring the melting point of the fluid inclusions. We apply the method to Messinian gypsum deposits of Cycle 6 within the Yesares Member, Río de Aguas section, Sorbas Basin (SE Spain). After correction of oxygen and hydrogen isotopes of gypsum hydration water for fractionation factors, the estimated range of the mother water is -1.8o to 2.8o for δ18O and -12.5o to 16.3o for δD. In the same samples, estimated salinity of primary fluid inclusions range from 18 to 51ppt. Salinity is highly correlated with δ18O and δD, yielding an r2 of 0.88 and 0.87, respectively. The intercepts of the regression equations (i.e., at zero salinity) define the isotope composition of the freshwater endmember, and average -4.4±1.3o for δ18O and -28.9±8.7o for δD. These values are within error of the average isotope composition of precipitation and groundwater data from the local region of Almería today (-4.3o and -22.2o for δ18O and δD, respectively). This agreement provides strong evidence that the gypsum hydration water has retained its isotope composition and has not undergone postdepositional exchange. Furthermore, the isotope and salinity values indicate a significant contribution of meteoric water during gypsum deposition. This observation contrasts with sulfur and oxygen isotopes in sulfate (21.9 > δ34S

  13. Gassmann-Consistency of Inclusion Models

    NASA Astrophysics Data System (ADS)

    Goebel, M.; Wollner, U.; Dvorkin, J. P.

    2015-12-01

    Mathematical inclusion theories predict the effective elastic properties of a porous medium with idealized-shape inclusions as a function of the elastic moduli of the host matrix and those of the inclusions. These effective elastic properties depend on the volumetric concentration of the inclusions (the porosity of the host frame) and the aspect ratio of an inclusion (the ratio between the thickness and length). Seemingly, these models can solve the problem of fluid substitution and solid substitution: any numbers can be used for the bulk and shear moduli of the inclusions, including zero for empty inclusions (dry rock). In contrast, the most commonly used fluid substitution method is Gassmann's (1951) theory. We explore whether inclusion based fluid substitution is consistent with Gassmann's fluid substitution. We compute the effective bulk and shear moduli of a matrix with dry inclusions and then conduct Gassmann's fluid substitution, comparing these results to those from directly computing the bulk and shear moduli of the same matrix but with the inclusions having the bulk modulus of the fluid. A number of examples employing the differential effective medium (DEM) model and self-consistent (SC) approximation indicate that the wet-rock bulk moduli as predicted by DEM and SC are approximately Gassmann-consistent at high aspect ratio and small porosity. However, at small aspect ratios and high porosity, these inclusion models are not Gassmann-consistent. For all cases, the shear moduli are not Gassmann-consistent at all, meaning that the wet-rock shear modulus as given by DEM or SC is very different from the dry-rock moduli as predicted by the same theories. We quantify the difference between the two methods for a range of porosity and aspect ratio combinations.

  14. Fluid evolution in the nepheline syenites of the Ditrău Alkaline Massif, Transylvania, Romania

    NASA Astrophysics Data System (ADS)

    Fall, András; Bodnar, Robert J.; Szabó, Csaba; Pál-Molnár, Elemér

    2007-05-01

    The Ditrău Alkaline Massif is an intrusion into the Bucovina nappe system that is part of the Mesozoic crystalline zone located in Transylvania, Romania, in the Eastern Carpathians. Nepheline syenites are the most abundant rocks in the central and eastern part of the Massif, and represent the last major intrusion of the complex. Fluid inclusions in nepheline, aegirine and albite were trapped at magmatic conditions on or below the H 2O-saturated nepheline syenite solidus at about 400-600 °C and 2.5-5 kbars. Early nepheline, and to a lesser extent albite, were altered by highly saline fluids to produce cancrinite, sodalite and analcime, during this process cancrinite also trapped fluid inclusions. The fluids, in most cases, can be modeled by the H 2O-NaCl system with varying salinity; however inclusions with more complex fluid composition (containing K, Ca, CO 3, etc., in addition to NaCl) are common. Raman spectroscopic analyses of daughter minerals confirm the presence of alkali-carbonate fluids in some of the earliest inclusions in nepheline, aegirine and albite. During crystallization, the melts exsolved a high salinity, carbonate-rich magmatic fluid that evolved to lower salinity as crystallization progressed. Phases that occur early in the paragenesis contain high-salinity inclusions while late phases contain low-salinity inclusions. The salinity trend is consistent with experimental data for the partitioning of chlorine between silicic melt and exsolved aqueous fluid at about 2.0 kbars. The activity of water ( aH 2O ) in the melt increases during crystallization, resulting in the formation of hydrous phases during late-stage crystallization of the nepheline syenites.

  15. Mesozoic vein-type Pb-Zn mineralization in the Pyrenees: Lead isotopic and fluid inclusion evidence from the Les Argentières and Lacore deposits

    NASA Astrophysics Data System (ADS)

    Munoz, Marguerite; Baron, Sandrine; Boucher, Adrien; Béziat, Didier; Salvi, Stefano

    2016-03-01

    The Axial Zone of the Pyrenees contains numerous sedimentary-exhalative Pb-Zn deposits formed during the Early Palaeozoic, which have been the subject of several studies. In addition to these, base-metal vein-type mineralizations are also exposed within the Axial Zone metasediments. These deposits, however, have not been investigated in depth and the timing and geodynamic context of their formation has not been specifically addressed. The vein-type Pb-Zn deposits of Les Argentières and Lacore are located in Devonian terranes of the eastern Pyrenees, south of the Mesozoic Aulus basin. They are interpreted as having been emplaced under an extensional setting. They are characterized by silver-rich tetrahedrite that occurs with Pb-Zn sulphides deposited by low-temperature NaCl-CaCl2 brines. Lead isotopic 208Pb/204Pb and 206Pb/204Pb ratios acquired on galena show more radiogenic values compared to those from the Palaeozoic sedimentary-exhalative mineralization, thus indicating younger ages. According to the model ages, the formation of the two deposits may be narrowed down to middle Late Triassic and Late Jurassic periods, respectively, which allows us to argue in favour of the role of pre-Alpine rifting phases in hydrothermal fluids circulation and mineralization deposition in a vein system bounding the Mesozoic Aulus basin.

  16. Stiffening solids with liquid inclusions

    NASA Astrophysics Data System (ADS)

    Style, Robert W.; Boltyanskiy, Rostislav; Allen, Benjamin; Jensen, Katharine E.; Foote, Henry P.; Wettlaufer, John S.; Dufresne, Eric R.

    2015-01-01

    From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and synthetic materials. Eshelby’s inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite’s bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby’s theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet’s deformation is strongly size-dependent, with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straightforward extension of Eshelby’s theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive stiffening of solids by fluid inclusions is expected whenever inclusion radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young’s modulus of the solid matrix. These results suggest that surface tension can be a simple and effective mechanism to cloak the far-field elastic signature of inclusions.

  17. Selective copper diffusion into quartz-hosted vapor inclusions: Evidence from other host minerals, driving forces, and consequences for Cu-Au ore formation

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hun; Heinrich, Christoph A.

    2013-07-01

    Recent experimental studies have raised concerns that Cu concentrations in quartz-hosted fluid inclusions from magmatic-hydrothermal ore deposits do not represent pristine concentrations in the trapped fluids, but are modified by post-entrapment diffusional exchange through the host quartz. New microanalyses of fluid inclusions hosted in topaz show significantly lower Cu concentrations in vapor inclusions, compared to otherwise identical inclusions hosted by coexisting quartz, whereas coeval brine (hypersaline liquid) inclusions are very similar independent of host mineral in one sample. Sulfur is present as a major component in all vapor inclusions, as in most porphyry-related vapor inclusions, and Cu never exceeds S, but commonly matches the S content at a molar ratio of Cu:S ⩽ 2 in vapor inclusions hosted by quartz. Univalent ions with a radius smaller than ˜1 Å are known to diffuse rapidly through the channels of the quartz structure, parallel to its crystallographic c axis. Since only Cu concentrations differ between topaz- and quartz-hosted inclusions, we hypothesize that Cu+ and H+ re-equilibrate by diffusional ion exchange through these channels, while all other element concentrations remain essentially unchanged. A thermodynamic model considering charge-balanced Cu+H+ exchange and diffusive H2 re-equilibration of an initially Cu-poor but S-rich vapor inclusion with a typical rock-buffered fluid environment outside the host crystal demonstrates a strong chemical driving force for Cu+ to migrate from the surrounding rock into the fluid inclusion during cooling of the system. The driving force for Cu diffusion, against the gradient in total Cu concentration, is the abundant H+ liberated inside the inclusion by dissociation of HCl and particularly by the precipitation of CuFeS2 by reaction with the initially trapped H2S and/or SO2. Gold is not only a much larger ion, but is subject to an opposing driving force, suggesting that high concentrations of this

  18. Earth science: role of fO2 on fluid saturation in oceanic basalt.

    PubMed

    Scaillet, Bruno; Pichavant, Michel

    2004-07-29

    Assessing the conditions under which magmas become fluid-saturated has important bearings on the geochemical modelling of magmas because volatile exsolution may profoundly alter the behaviour of certain trace elements that are strongly partitioned in the coexisting fluid. Saal et al. report primitive melt inclusions from dredged oceanic basalts of the Siqueiros transform fault, from which they derive volatile abundances of the depleted mantle, based on the demonstration that magmas are not fluid-saturated at their eruption depth and so preserve the mantle signature in terms of their volatile contents. However, in their analysis, Saal et al. consider only fluid-melt equilibria, and do not take into account the homogeneous equilibria between fluid species, which, as we show here, may lead to a significant underestimation of the pressure depth of fluid saturation.

  19. New constraints on fluid sources in orogenic gold deposits, Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Fu, Bin; Kendrick, Mark A.; Fairmaid, Alison M.; Phillips, David; Wilson, Christopher J. L.; Mernagh, Terrence P.

    2012-03-01

    Fluid inclusion microthermometry, Raman spectroscopy and noble gas plus halogen geochemistry, complemented by published stable isotope data, have been used to assess the origin of gold-rich fluids in the Lachlan Fold Belt of central Victoria, south-eastern Australia. Victorian gold deposits vary from large turbidite-hosted `orogenic' lode and disseminated-stockwork gold-only deposits, formed close to the metamorphic peak, to smaller polymetallic gold deposits, temporally associated with later post-orogenic granite intrusions. Despite the differences in relative timing, metal association and the size of these deposits, fluid inclusion microthermometry indicates that all deposits are genetically associated with similar low-salinity aqueous, CO2-bearing fluids. The majority of these fluid inclusions also have similar 40Ar/36Ar values of less than 1500 and 36Ar concentrations of 2.6-58 ppb (by mass) that are equal to or much greater than air-saturation levels (1.3-2.7 ppb). Limited amounts of nitrogen-rich fluids are present at a local scale and have the highest measured 40Ar/36Ar values of up to 5,700, suggesting an external or distinct source compared to the aqueous fluids. The predominance of low-salinity aqueous-carbonic fluids with low 40Ar/36Ar values, in both `orogenic' and `intrusion-related' gold deposits, is attributed to fluid production from common basement volcano-sedimentary sequences and fluid interaction with sedimentary cover rocks (turbidites). Aqueous fluid inclusions in the Stawell-Magdala deposit of western Victoria (including those associated with N2) preserve mantle-like Br/Cl and I/Cl values. In contrast, fluid inclusions in deposits in the eastern structural zones, which contain more abundant shales, have elevated molar I/Cl ratios with maximum values of 5,170 × 10-6 in the Melbourne Zone. Br/I ratios in this zone range from 0.5 to 3.0 that are characteristic of fluid interaction with organic-rich sediments. The maximum I/Cl and characteristic

  20. Fluid inclusion volatile analysis by gas chromatography with photoionization/micro-thermal conductivity detectors: Applications to magmatic MoS sub 2 and other H sub 2 O-CO sub 2 and H sub 2 O-CH sub 4 fluids

    SciTech Connect

    Bray, C.J.; Spooner, E.T.C. )

    1992-01-01

    Eighteen fluid inclusion volatile peaks have been detected and identified from 1-2 g samples (quartz) by gas chromatography using heated on-line crushing, helium carrier gas, a single porous polymer column, two temperature programmed conditions for separate sample aliquots, micro-thermal conductivity (TCD) and photoionization detectors (PID), and off-line digital peak processing. In order of retention time these volatile peaks are: N{sub 2}, Ar, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 2}H{sub 2}, COS, C{sub 3}H{sub 6}, C{sub 3}H{sub 8}, C{sub 3}H{sub 4} (propyne), H{sub 2}O, SO{sub 2} {plus minus} iso-C{sub 4}H{sub 10} {plus minus} C{sub 4}H{sub 8} (1-butene) {plus minus} CH{sub 3}SH, C{sub 4}H{sub 8} (iso-butylene), ( ) C{sub 4}H{sub 6} (1,3 butadiene), and {plus minus} n-C{sub 4}H{sub 10} {plus minus}C{sub 4}H{sub 8} (trans-2-butene). H{sub 2}O is analyzed directly. O{sub 2} can be analyzed cryogenically between N{sub 2} and Ar, but has not been detected in natural samples to date in this study. Initial inclusion volatile analyses of fluids of interpreted magmatic origin from the Cretaceous Boss Mtn. monzogranite stock-related MoS{sub 2} deposit, central British Columbia of 97 mol% H{sub 2}O, 3% CO{sub 2}, 140-150 ppm N{sub 2}, and 16-39 ppm CH{sub 4} are reasonable in comparison with high temperature volcanic gas analyses from four, active calc-alkaline volcanoes, e.g., the H{sub 2}O contents of volcanic gases from the White Island (New Zealand), Mount St. Helens (Washington, USA), Merapi (Bali, Indonesia), and Momotombo (Nicaragua) volcanoes are 88-95%, > 90%, 88-95% and 93%, respectively; CO{sub 2} contents are 3-10%, 1-10%, 3-8%, and 3.5%. It appears that low, but significant concentrations of alkanes, alkenes, and alkynes have been detected in magmatically derived fluids.

  1. Using vein fabric and fluid inclusion characteristics as an integrated proxy to constrain the relative timing of non cross-cutting, syn- to late-orogenic quartz vein generations

    NASA Astrophysics Data System (ADS)

    Jacques, Dominique; Muchez, Philippe; Sintubin, Manuel

    2014-05-01

    gradual exhumation of the slate belt from ca. 7.5 to 6 km depth along a retrograde deformation path. A comparison of these results with a former study of syn- to late-orogenic calcite veins at the Variscan front zone (Kenis et al., 2000), indicates that exhumation processes throughout the Rhenohercynian fold-and-thrust belt were diachronous. While exhumation and related quartz veining in the High-Ardenne slate belt occurred during the Sudetic stage of the Variscan orogeny (ca. 325-310 Ma), the exhumation and related calcite veining at the Variscan front zone occurred during the Asturian stage of the Variscan orogeny (ca. 300 Ma). With this study we demonstrate that a relative timing for different vein generations, lacking any cross-cutting relationship, can still be attained through an integration of petrographic and microthermometric arguments. Moreover, this particular approach, enables to further delineate the P-T history of an orogenic system from its pre-, to its syn-, late- and finally postkinematic stages. References Jacques, D., Derez, T., Muchez, P., Sintubin, M., 2014. Syn- to late-orogenic quartz veins marking a retrograde deformation path in a slate belt: Examples from the High-Ardenne slate belt (Belgium). Journal of Structural Geology, 58, 43-58. Kenis, I., Muchez, P., Sintubin, M., Mansy, J.-L., Lacquement, F., 2000. The use of a combined structural, stable isotope and fluid inclusion study to constrain the kinematic history at the northern Variscan front zone (Bettrechies, northern France). Journal of Structural Geology, 22, 589-602.

  2. Diversity in C-Xanes Spectra Obtained from Carbonaceous Solid Inclusions from Monahans Halite

    NASA Technical Reports Server (NTRS)

    Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Kilcoyne, A. L. D.; Rahman, Z.; Cody, G. D.

    2014-01-01

    Monahans meteorite (H5) contains fluid inclusion- bearing halite (NaCl) crystals [1]. Microthermometry and Raman spectroscopy showed that the fluid in the inclusions is an aqueous brine and they were trapped near 25degC [1]. Their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism [2]. Abundant solid inclusions are also present in the halites. The solid inclusions include abundant and widely variable organics [2]. Analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction and TEM reveal that these grains include macromolecular carbon similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo99-59), high- and low-Ca pyroxene, feldspars, magnetite, sulfides, lepidocrocite, carbonates, diamond, apatite and possibly the zeolite phillipsite [3]. Here we report organic analyses of these carbonaceous residues in Monahans halite using C-, N-, and O- X-ray absorption near edge structure (XANES). Samples and Methods: Approximately 100 nm-thick sections were extracted with a focused ion beam (FIB) at JSC from solid inclusions from Monahans halite. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory for XANES spectroscopy. Results and Discussion: C-XANES spectra of the solid inclusions show micrometer-scale heterogeneity, indicating that the macromolecular carbon in the inclusions have complex chemical variations. C-XANES features include 284.7 eV assigned to aromatic C=C, 288.4-288.8 eV assigned to carboxyl, and 290.6 eV assigned to carbonate. The carbonyl features obtained by CXANES might have been caused by the FIB used in sample preparation. No specific N-XANES features are observed. The CXANES spectra obtained from several areas in the FIB sections include type 1&2 chondritic IOM like, type 3 chondritic IOM like, and none of the above

  3. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  4. Volatile Contents of Olivine-Hosted Melt Inclusions From the Central Oregon High Cascades

    NASA Astrophysics Data System (ADS)

    Ruscitto, D.; Johnson, E.; Wallace, P.; Kent, A.; Mercer, C.; Bindeman, I.

    2007-12-01

    The young (~ 16 Ma) and slowly subducting (~ 5 cm/a NNW) Juan de Fuca plate should be mostly dehydrated at typical arc magma generation depths (~ 100 km) beneath the Central Oregon High Cascades, resulting in small amounts of slab-derived fluids infiltrating the overlying mantle wedge (Green and Harry, 1999; Peacock, 2003). To investigate this hypothesis, we analyzed olivine-hosted melt inclusions in mafic tephra deposits from five volcanic centers (Blue Lake Crater, Yapoah Crater, Twin Crater, Palagonite Tuff, and North Sister Volcano) by FTIR, LA-ICPMS, and electron probe to characterize the pre-eruptive volatile contents (H2O, CO2, S, F, Cl) and their relationship to major and trace element compositions. Host olivine phenocrysts (Fo79-84) have δ18O values of 5.35 ±0.2 ‰. The melt inclusions have compositions of 49 - 54 wt. % SiO2 and 4.9 - 5.5 wt. % MgO. H2O contents for the entire dataset vary from ~ 0.2 to 4.0 wt. % and CO2 contents vary from below detection up to 2000 ppm, implying maximum pressures of entrapment between 1.7 and 3.9 kbar during ascent and degassing (Newman and Lowenstern, 2002). Additionally, within-cone averages for inclusions range from 800 - 1500 ppm F, 900 - 1400 ppm S, and 350 - 1000 ppm Cl. For the set of inclusions from each cone, we assume that the highest H2O content is least affected by degassing and therefore represents the minimum amount of H2O in the parent magma. Highly fluid mobile to less fluid mobile element ratios (e.g., Ba/La and Sr/La) correlate positively with maximum H2O/La ratios for Cascades melt inclusions (r2 ~ 0.60; n = 5 volcanic centers). High incompatible element abundances relative to NMORB closely correspond to an EMORB-type source mantle, overprinted with even higher abundances of incompatible and fluid mobile elements (e.g., Ba, U, Pb), resulting in a distinct, negative Nb-Ta anomaly. The volatile data, taken together with olivine δ18O values, trace element abundances and conservative element ratios (e

  5. Mantle melts, metasomatism and diamond formation: Insights from melt inclusions in xenoliths from Diavik, Slave Craton

    NASA Astrophysics Data System (ADS)

    Araújo, D. P.; Griffin, W. L.; O'Reilly, S. Y.

    2009-11-01

    Abundant carbonatitic to ultramafic melt inclusions 0.2-2.5mm in diameter occur in the Cr-diopside of megacrystalline lherzolite xenoliths from the A154 kimberlite of the Diavik mine, Lac de Gras area. The melts range from carbonatitic (50-97% carbonate) to Ca-Mg-silicic (10-50% carbonate) to Mg-silicic (< 10% dispersed calcite) compositions, and are connected by veinlets of similar material, or by fractures bordered by spongy Cr-diopside. Phenocrysts and quench crystals of calcite, olivine and mica are set in carbonatitic to Mg-silicic matrices, and irregular volumes of carbonatite and Mg-silicate melt appear to have unmixed from one another within single inclusions. Calculated bulk compositions of the more silicic melts are similar in major- and trace elements to kimberlites from the Slave province. The Cr-diopside adjacent to melt inclusions is enriched in LREE, Ba, alkali elements, HFSE, Th and U. Calculated compositions of the metasomatising fluids are strongly enriched in these elements relative to the trapped melts, and are similar to fluids trapped in the opaque coats found on many Diavik diamonds. The microstructures, the metasomatic effects and the genetic relationship to diamond formation suggest that the melt inclusions formed when kimberlite-like melts penetrated the lherzolites along fractures deep in the lithospheric mantle. The melts began to differentiate into carbonatitic and ultramafic end-members, were trapped as globular inclusions during recrystallisation and necking-down prior to entrainment of the xenoliths in the kimberlite, and were quenched during ascent. The evolution of saline, water- and carbonate-rich fluids from melts such as these may play an important role in diamond genesis.

  6. Inclusion and Museums: Developing Inclusive Practice

    ERIC Educational Resources Information Center

    Shepherd, Hannah

    2009-01-01

    Recent policy on inclusion has had an impact on the development of museum galleries and related educational provision. Museums are used as learning organisations and, as such, need to consider how to create an inclusive environment. However, inclusive provision for people with learning difficulties in museums tends to be isolated and small scale,…

  7. Origin and evolution of ore-forming fluids in the Hemushan magnetite-apatite deposit, Anhui Province, Eastern China, and their metallogenic significance

    NASA Astrophysics Data System (ADS)

    Luo, Gan; Zhang, Zhiyu; Du, Yangsong; Pang, Zhenshan; Zhang, Yanwen; Jiang, Yongwei

    2015-12-01

    The Middle-Lower Yangtze River Metallogenic Belt in the northern Yangtze Block is one of the most important economic mineral districts in China. The Hemushan deposit is a medium-class Fe deposit located in the southern part of the Ningwu iron ore district of the Middle-Lower Yangtze River Metallogenic Belt. The Fe-orebodies are mainly hosted in the contact zone between diorite and Triassic marble. The actinolite-phlogopite-apatite-magnetite ore shows metasomatic/filling textures and disseminated/mesh-vein structures. Based on evidences and petrographic observations, the ore-forming process can be divided into three distinct periods-the early metallogenic period (albite-diopside stage), the middle metallogenic period (magnetite stage and hematite stage), and the late metallogenic period (quartz-pyrite stage and carbonate stage). Fluid inclusion studies show four types of inclusions: type I daughter mineral-bearing three-phase inclusions (L + V + S), type II vapor-rich two-phase inclusions (L + V), type III liquid-rich two phase inclusions (L + V), and minor type IV liquid-phase inclusions (L). Apatites from the magnetite stage contain type I, type II and type III inclusions; anhydrites from the hematite stage mainly contain abundant type II inclusions and relatively less type I inclusions; quartz and calcite from the late metallogenic stage are mainly characterized by type III inclusions. Laser Raman spectroscopy and microthermometry of fluid inclusions show that the ore-forming fluids broadly correspond to unsaturated NaCl-H2O system. From the magnetite stage to the carbonate stage, the ore-forming fluids evolved from moderate-high temperature (average 414 °C), moderate salinity (average 25.01 wt.% NaCl equiv.) conditions to low temperature (average 168 °C), low salinity (average 6.18 wt.% NaCl equiv.) conditions. Hydrogen and oxygen isotopic studies indicate that the ore-forming fluid during the early stage of middle metallogenic period was mainly of magmatic

  8. Inclusive Education in Taiwan

    ERIC Educational Resources Information Center

    Wu-Tien, Wu

    2007-01-01

    As an echo of the worldwide movement of inclusive education and because of the conviction of inclusive ideas, special education in Taiwan is moving toward a goal of inclusion, though not necessarily full inclusion. While its terminology is as yet undesignated, principles and strategies are significantly reflected in the Special Education Act and…

  9. Limits to Inclusion

    ERIC Educational Resources Information Center

    Hansen, Janne Hedegaard

    2012-01-01

    In this article, I will argue that a theoretical identification of the limit to inclusion is needed in the conceptual identification of inclusion. On the one hand, inclusion is formulated as a vision that is, in principle, limitless. On the other hand, there seems to be an agreement that inclusion has a limit in the pedagogical practice. However,…

  10. Volatile Abundances and Magma Geochemistry of Recent (2006) Through Ancient Eruptions (Less Than 2100 aBP) of Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Webster, J. D.; Mandeville, C. W.; Gerard, T.; Goldoff, B.; Coombs, M. L.

    2006-12-01

    Augustine Volcano, Cook Inlet, Alaska, is a subduction-related Aleutian arc volcano located approximately 275 km southwest of Anchorage. During the past 200 years, Augustine volcano has shown explosive eruptive behavior seven times, with the most recent activity occurring in January through March 2006. Its ash and pumice eruptions pose a threat to commercial air traffic, the local fishing industry, and the inhabitants of the region. Following prior investigations on volatile abundances and processes of evolution for magmas associated with the 1976 (Johnston, 1978) and 1986 (Roman et al., 2005) eruptions of Augustine, we have analyzed phenocrysts, matrix glasses, and silicate melt inclusions in andesites formed during 5 pre-historic eruptions (ranging from 2100 to 1000 years in age) as well as the 1986 and recent 2006 eruptions. Outcrops of basaltic units on Augustine are rare, and basaltic melt inclusions are as well, so most melt inclusions studied range from andesitic to rhyolitic compositions. Comparison of the volatile abundances in felsic melt inclusion glasses shows few differences in H2O, CO2, S, and Cl, respectively, between eruptive materials of the pre- historic, 1976 (Johnston, 1978), and 1986 (Roman et al., 2005; our data) events. The magmas associated with these eruptions contained 1.6 to 8.0 wt.% H2O with 0.21 to 0.84 wt.% Cl, 100 to 1800 ppm CO2, and 100 to 400 ppm S. In contrast, preliminary research on rhyodacitic to rhyolitic melt inclusions in a single 2006 andesite sample collected from a lahar deposit indicates they contain somewhat lower H2O contents and higher Cl and S abundances than felsic melt inclusions from prior eruptions, and they exhibit geochemical trends consonant with magma mixing. Relationships involving H2O, CO2, S, and Cl in prehistoric through 1986 melt inclusions are consistent with fluid-saturated magma evolution of andesitic to rhyolitic melt compositions during closed-system ascent. The various batches of magma rose through

  11. The He-CO 2 isotope and relative abundance characteristics of geothermal fluids in El Salvador and Honduras: New constraints on volatile mass balance of the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    de Leeuw, G. A. M.; Hilton, D. R.; Fischer, T. P.; Walker, J. A.

    2007-06-01

    We report helium and carbon isotope and relative abundance data of fumaroles, hot springs, water springs, mud-pots and geothermal wells from El Salvador and Honduras to investigate both along and across-arc controls on the release of CO 2 from the subducted slab. El Salvador localities show typical volcanic front volcanic gas signatures, with 3He/ 4He ratios of 5.2-7.6 RA, δ13C values of - 3.6‰ to - 1.3‰ and CO 2/ 3He ratios of 8-25 × 10 9. In Honduras, we find similar values only for volatiles collected in the Sula Graben region located ˜ 200 km behind the volcanic front. All other areas in Honduras show significantly lower 3He/ 4He ratios (0.7-3.5 RA), lower δ13C values (< - 7.3‰) and more variable CO 2/ 3He ratios (6.2 × 10 7-2.0 × 10 11): characteristics consistent with degassing-induced fractionation of CO 2 and He and/or interaction with crustal rocks. The provenance of CO 2 released along the volcanic front is dominated by subducted marine carbonates (L = 76 ± 4%) and organic sediments (S = 14 ± 3%), with the mantle wedge (M) contributing 10 ± 3% to the total carbon flux. The L/S ratio of the El Salvador volatiles (average = 5.6) is comparable to volcanic front localities in Costa Rica and Nicaragua [A.M. Shaw, D.R. Hilton, T.P. Fischer, L.A. Walker, G.E. Alvarado, Contrasting He-C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet. Sci. Lett. 214 (2003) 499-513] but is approximately one-half the input value of sediments at the trench (L. Li, G.E. Bebout, Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: Insights regarding subduction input fluxes, diagenesis, and paleoproductivity, J. Geophys. Res. 110 (2005), doi: 10.1029/2004JB003276). We use the L/S ratio of El Salvador geothermal fluids, together with estimates of the CO 2 output flux from the arc, to constrain the amount and composition of subducted sediments involved in the supply of CO 2 to the

  12. Microstructures and petrology of melt inclusions in the anatectic sequence of Jubrique (Betic Cordillera, S Spain): Implications for crustal anatexis

    NASA Astrophysics Data System (ADS)

    Barich, Amel; Acosta-Vigil, Antonio; Garrido, Carlos J.; Cesare, Bernardo; Tajčmanová, Lucie; Bartoli, Omar

    2014-10-01

    We report a new occurrence of melt inclusions in polymetamorphic granulitic gneisses of the Jubrique unit, a complete though strongly thinned crustal section located above the Ronda peridotite slab (Betic Cordillera, S Spain). The gneissic sequence is composed of mylonitic gneisses at the bottom and in contact with the peridotites, and porphyroblastic gneisses on top. Mylonitic gneisses are strongly deformed rocks with abundant garnet and rare biotite. Except for the presence of melt inclusions, microstructures indicating the former presence of melt are rare or absent. Upwards in the sequence, garnet decreases whereas biotite increases in modal proportion. Melt inclusions are present from cores to rims of garnets throughout the entire sequence. Most of the former melt inclusions are now totally crystallized and correspond to nanogranites, whereas some of them are partially made of glass or, more rarely, are totally glassy. They show negative crystal shapes and range in size from ≈ 5 to 200 μm, with a mean size of ≈ 30-40 μm. Daughter phases in nanogranites and partially crystallized melt inclusions include quartz, feldspars, biotite and muscovite; accidental minerals include kyanite, graphite, zircon, monazite, rutile and ilmenite; glass has a granitic composition. Melt inclusions are mostly similar throughout all the gneissic sequence. Some fluid inclusions, of possible primary origin, are spatially associated with melt inclusions, indicating that at some point during the suprasolidus history of these rocks granitic melt and fluid coexisted. Thermodynamic modeling and conventional thermobarometry of mylonitic gneisses provide peak conditions of ≈ 850 °C and 12-14 kbar, corresponding to cores of large garnets with inclusions of kyanite and rutile. Post-peak conditions of ≈ 800-850 °C and 5-6 kbar are represented by rim regions of large garnets with inclusions of sillimanite and ilmenite, cordierite-quartz-biotite coronas replacing garnet rims, and the

  13. Microstructures and Petrology of Melt Inclusions in the Anatectic Sequence of Jubrique (Betic Cordillera, S Spain): Implications for Crustal Anatexis

    NASA Astrophysics Data System (ADS)

    Acosta-vigil, A.; Barich, A.; Garrido, C. J.; Cesare, B.; Tajčmanová, L.; Bartoli, O.

    2014-12-01

    We report a new occurrence of melt inclusions in polymetamorphic granulitic gneisses of the Jubrique unit, a complete though thinned crustal section located above the Ronda peridotite slab (Betic Cordillera, S Spain). The gneissic sequence is composed of mylonitic gneisses at the bottom and porphyroblastic gneisses on top. Mylonitic gneisses are strongly deformed rocks with abundant garnet and rare biotite. Except for the presence of melt inclusions, microstructures indicating the former presence of melt are rare or absent. Upwards in the sequence garnet decreases whereas biotite increases in proportion. Melt inclusions are present from cores to rims of garnets throughout the entire sequence. Most of the former melt inclusions are now totally crystallized and correspond to nanogranites, whereas some of them are partially made of glass or, more rarely, are totally glassy. They show negative crystal shapes and range in size from ≈5 to 200 micrometers, with a mean size of ≈30-40 micrometers. Daughter phases in nanogranites and partially crystallized melt inclusions include quartz, feldspars, biotite and muscovite; accidental minerals include kyanite, graphite, zircon, monazite, rutile and ilmenite; glass has a granitic composition. Melt inclusions are mostly similar throughout all the gneissic sequence. Some fluid inclusions, of possible primary origin, are spatially associated with melt inclusions, indicating that at some point during the suprasolidus history of these rocks granitic melt and fluid coexisted. Thermodynamic modeling and conventional thermobarometry of mylonitic gneisses provide peak conditions of ≈850 ºC and 12-14 kbar, corresponding to cores of large garnets with inclusions of kyanite and rutile. Post-peak conditions of ≈800-850 ºC and 5-6 kbar are represented by rim regions of large garnets with inclusions of sillimanite and ilmenite, cordierite-quartz-biotite coronas replacing garnet rims, and the matrix with oriented sillimanite. Previous

  14. Nano-inclusion suite and high resolution micro-computed-tomography of polycrystalline diamond (framesite) from Orapa, Botswana

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Wirth, R.; Enzmann, F.; Kronz, A.; Schreiber, A.

    2011-08-01

    A single polycrystalline diamond aggregate from the Orapa kimberlite (Botswana) contains a syngenetic micro- and nano-inclusion suite of magnetite, pyrrhotite, omphacite, garnet, rutile and C-O-H fluid in order of abundance. This suite of inclusions is distinctly different from those in fibrous diamonds, although the presence of sub-micrometer fluid inclusions provides evidence for a similarly important role of fluids in the genesis of polycrystalline diamond. It is the first study of polycrystalline diamond by High resolution μ-CT (Computed Tomography) reaching a resolution of 1.3 μm using polychromatic X-rays. Combined with Focused Ion Beam assisted Transmission Electron Microscopy the method reveals epigenetic replacement coatings of hematite and late stage sheet silicates around the magnetites showing that magnetites are often (but not always) interstitial to the diamond and, thus, were open to late stage overprinting. It is proposed that the polycrystalline diamond formed by a redox reaction between a small-scale carbonatitic melt and a sulfide-bearing eclogite. The water released from the melt during diamond precipitation fluxed local melting of the surrounding eclogite, and oxidation of sulfide phases to magnetite, which mingled with the carbonatitic melt and (re-)precipitated locally.

  15. Diamond growth in mantle fluids

    NASA Astrophysics Data System (ADS)

    Bureau, Hélène; Frost, Daniel J.; Bolfan-Casanova, Nathalie; Leroy, Clémence; Esteve, Imène; Cordier, Patrick

    2016-11-01

    In the upper mantle, diamonds can potentially grow from various forms of media (solid, gas, fluid) with a range of compositions (e.g. graphite, C-O-H fluids, silicate or carbonate melts). Inclusions trapped in diamonds are one of the few diagnostic tools that can constrain diamond growth conditions in the Earth's mantle. In this study, inclusion-bearing diamonds have been synthesized to understand the growth conditions of natural diamonds in the upper mantle. Diamonds containing syngenetic inclusions were synthesized in multi-anvil presses employing starting mixtures of carbonates, and silicate compositions in the presence of pure water and saline fluids (H2O-NaCl). Experiments were performed at conditions compatible with the Earth's geotherm (7 GPa, 1300-1400 °C). Results show that within the timescale of the experiments (6 to 30 h) diamond growth occurs if water and carbonates are present in the fluid phase. Water promotes faster diamond growth (up to 14 mm/year at 1400 °C, 7 GPa, 10 g/l NaCl), which is favorable to the inclusion trapping process. At 7 GPa, temperature and fluid composition are the main factors controlling diamond growth. In these experiments, diamonds grew in the presence of two fluids: an aqueous fluid and a hydrous silicate melt. The carbon source for diamond growth must be carbonate (CO32) dissolved in the melt or carbon dioxide species in the aqueous fluid (CO2aq). The presence of NaCl affects the growth kinetics but is not a prerequisite for inclusion-bearing diamond formation. The presence of small discrete or isolated volumes of water-rich fluids is necessary to grow inclusion-bearing peridotitic, eclogitic, fibrous, cloudy and coated diamonds, and may also be involved in the growth of ultradeep, ultrahigh-pressure metamorphic diamonds.

  16. Chalcophile and siderophile elements in sulphide inclusions in eclogitic diamonds and metal cycling in a Paleoproterozoic subduction zone

    NASA Astrophysics Data System (ADS)

    Aulbach, Sonja; Stachel, Thomas; Seitz, Hans-Michael; Brey, Gerhard P.

    2012-09-01

    In the central Slave craton, eclogitic diamonds are suggested to have formed during Paleoproterozoic subduction in a meta-gabbroic substrate representing former lower oceanic crust that interacted with serpentinite-derived fluids at high fluid-rock ratios. In order to assess the behaviour of chalcophile and siderophile elements (CSE) during this process, we measured trace-element concentrations of sulphide inclusions in diamonds from the Diavik mine by laser ablation ICPMS. The nitrogen systematics of the diamonds (average N concentration of ˜600 ppm and aggregation state 4% N as B-aggregates) indicate average mantle residence temperatures of ˜1050 °C for a 1.85 Ga formation age, corresponding ˜170 km depth. Based on the available evidence from natural samples and experiments, we suggest that the highly siderophile elements (HSE: Os, Ir, Ru, Rh, Pd, Pt, Re) except Au behaved largely conservatively during fluid-induced metamorphism, which may point to a reducing and Cl-poor nature of the fluid. The abundances of the moderately siderophile and chalcophile elements Cr, Co, Ni, Cu, Ag, Sn, Mo and W may also have changed little, whereas As, Sb, Tl, Pb and Bi may have been mobilised from the subducting lower oceanic crust. The partitioning of CSE in eclogite and geochemical behaviour during oceanic crust formation was assessed for inferred conservative elements. Assuming an average sulphide mode of 0.3 wt.% for the oceanic crust, its abundances of HSE, Cu, Mo, Se and Te can mostly be accounted for by sulphide minerals alone. Lithophile behaviour of W, Cd, In and Sn and enrichment in residual melts may explain their lower abundances in the gabbroic eclogitic sulphide inclusions compared to MORB sulphide. These elements, as well as Cr, Co, Ni, Zn and Ga require additional host phases both in eclogite, where rutile partitions significant amounts of Cr, Zn, W, Ga and Sn, and in the oceanic crust.

  17. Creating an Inclusive School.

    ERIC Educational Resources Information Center

    Villa, Richard A., Ed.; Thousand, Jacqueline S., Ed.

    This collection of readings in support of inclusive education for students with disabilities offers rationales for inclusion, personal accounts of individuals involved, and strategies for facilitating change. Stressed throughout is the idea that inclusion is an attitude or belief system, not an action or set of actions. The readings identify…

  18. Inclusion in Middle Tennessee

    ERIC Educational Resources Information Center

    Salter, Derrick; Ashley, Mandi; Hayes, Brandalyn

    2013-01-01

    The overall purpose of this study was to provide school districts within Tennessee with more research about how weekly hours of inclusion impact student achievement. Specifically, researchers examined which models of inclusion were in use in two school districts in Tennessee, administrators' and teachers' perceptions of inclusion, and whether or…

  19. Footstep towards Inclusive Education

    ERIC Educational Resources Information Center

    Abbas, Faiza; Zafar, Aneeka; Naz, Tayyaba

    2016-01-01

    Inclusive education is a rising trend in the world. The first step towards inclusive education is providing the awareness to the general education teachers. This study focused to investigate the general education teachers of primary and secondary level awareness about the special education and inclusive education. This study is descriptive method…

  20. Towards Inclusive Schooling

    ERIC Educational Resources Information Center

    Gafoor, K. Abdul

    2010-01-01

    Social inclusion is the process that will enable every person in society to participate in normal activities of societies they live in, including education, employment, public services and social recreational activities. For the development of an inclusive society, preparation of younger generation also needs to be inclusive. Our schools must…

  1. Inclusive Education in Bangladesh

    ERIC Educational Resources Information Center

    Ahsan, Mohammad Tariq; Burnip, Lindsay

    2007-01-01

    This article reports on inclusive education in Bangladesh for children with special needs. Bangladesh is not behind other developed countries in enacting laws and declarations in favour of inclusive education, but a lack of resources is the main barrier in implementing inclusive education. Special education and integrated education models exist in…

  2. Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles

    NASA Astrophysics Data System (ADS)

    Lou, Wentao; Zhu, Miaoyong

    2013-06-01

    A computation fluid dynamics-population balance model (CFD-PBM) coupled model has been proposed to investigate the bubbly plume flow and inclusion behavior including growth, size distribution, and removal in gas-stirred ladles, and some new and important phenomena and mechanisms were presented. For the bubbly plume flow, a modified k- ɛ model with extra source terms to account for the bubble-induced turbulence was adopted to model the turbulence, and the bubble turbulent dispersion force was taken into account to predict gas volume fraction distribution in the turbulent gas-stirred system. For inclusion behavior, the phenomena of inclusions turbulent random motion, bubbles wake, and slag eye forming on the molten steel surface were considered. In addition, the multiple mechanisms both that promote inclusion growth due to inclusion-inclusion collision caused by turbulent random motion, shear rate in turbulent eddy, and difference inclusion Stokes velocities, and the mechanisms that promote inclusion removal due to bubble-inclusion turbulence random collision, bubble-inclusion turbulent shear collision, bubble-inclusion buoyancy collision, inclusion own floatation near slag-metal interface, bubble wake capture, and wall adhesion were investigated. The importance of different mechanisms and total inclusion removal ratio under different conditions, and the distribution of inclusion number densities in ladle, were discussed and clarified. The results show that at a low gas flow rate, the inclusion growth is mainly attributed to both turbulent shear collision and Stokes collision, which is notably affected by the Stokes collision efficiency, and the inclusion removal is mainly attributed to the bubble-inclusion buoyancy collision and inclusion own floatation near slag-metal interface. At a higher gas flow rate, the inclusions appear as turbulence random motion in bubbly plume zone, and both the inclusion-inclusion and inclusion-bubble turbulent random collisions become

  3. Ancient metasomatism recorded by ultra-depleted garnet inclusions in diamonds from DeBeers Pool, South Africa

    NASA Astrophysics Data System (ADS)

    Banas, A.; Stachel, T.; Phillips, D.; Shimizu, N.; Viljoen, K. S.; Harris, J. W.

    2009-11-01

    Peridotitic garnet inclusions in diamonds from the DeBeers Pool mines represent samples from an extremely depleted mantle source. A large number of garnet inclusions have CaO contents of less than 1.8 wt.% and olivine inclusions are characterized by very high Mg-numbers (average: 94.6). These observations suggest that initial melt depletion in the protolith for the cratonic root beneath Kimberley (Kaapvaal Craton) exceeded orthopyroxene exhaustion (i.e. ≥ 50% melt extraction) and hence went farther than typically observed for cratonic peridotites worldwide. This signature of extreme depletion is not readily apparent from the study of mantle xenoliths from the same area and strongly underlines the unique role that diamond may play as a time capsule. Analyses of rare earth and other trace elements show that DeBeers Pool garnet inclusions, despite their ultra-depleted major element composition, were affected by metasomatic enrichment processes similar to those recorded by inclusions in diamonds worldwide. The DeBeers Pool garnet inclusions have a wide range of REE concentrations with variable sinuosity of their chondrite normalized abundance patterns. Sinuosity of garnet REE N patterns generally decreases with increasing fertility (i.e. higher Ca Ti, Fe, Y, and Zr); however, a distinction between the REE N signatures of harzburgitic and lherzolitic garnets is not possible. The REE signatures indicate that the source rocks of these garnets were affected by two phases of metasomatism. LREE-MREE enrichment is preserved by all garnets and indicates interaction with a fluid of highly fractionated character. The variable LREE-MREE concentrations of the garnet inclusions result from progressive evolution of the fluid to higher LREE/HREE ratios during continued equilibration with or precipitation of garnet. This metasomatic fluid was pervasive and affected the entire depth section of the lithosphere represented by the DeBeers Pool inclusions. A second phase of enrichment by

  4. Fluid storage and transport in thrust belts: the Gavarnie Thrust system revisited

    NASA Astrophysics Data System (ADS)

    McCaig, Andrew

    2015-04-01

    There has been renewed interest in the pressure and movement of fluids in thrust systems in recent years with the discovery and increasing importance of slow slip earthquakes. Unfortunately the overpressured regime thought to be the source region for both normal and slow-slip earthquakes is inaccessible to direct observation, so information about the actual water content, flow regimes and permeability structure at the time of thrusting can only be obtained in exhumed rocks. The Gavarnie Thrust System in the Pyrenees (including the immediate footwall of the thrust and overlying thrust sheets) is exceptionally well studied in terms of structural and microstructural work, fluid inclusions, and isotopic tracing of fluid flow. Southward thrusting by 12-15 km occurred during the Eocene, and the current geometry of the thrust is a broad dome, allowing sampling at many locations. There is abundant evidence for near-lithostatic fluid pressures at depths of 8-15 km in the crust and temperatures of 300-400 °C, and fluids at these levels are dominated by hypersaline brines with Cl/Br ratios indicating evaporation of seawater. They are inferred to be derived from widespread Triassic evaporates, and stored in underlying redbeds and fractured basement rocks. There is also evidence from fluid inclusions for periodic pressure cycling down to near-hydrostatic values. This is thought to be related to co-seismic fault valve behaviour with release of fluid both into the shallow thrust and into steeply dipping shear zones in the hangingwall. Isotopic studies of carbonate mylonites along the Gavarnie thrust indicate unidirectional southward (structurally upward) flow of fluid , again probably mainly during transient veining events. These relatively slow moving fluids appear to have fed into a hydrostatic regime with topographically driven flow at higher levels. If time averaged permeability was high, most of the fluid would have rapidly escaped, since there is little opportunity to

  5. Abundances in Przybylski's star

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Ryabchikova, T.; Kupka, F.; Bord, D. J.; Mathys, G.; Bidelman, W. P.

    2000-09-01

    We have derived abundances for 54 elements in the extreme roAp star HD101065. ESO spectra with a resolution of about 80000, and S/N of 200 or more were employed. The adopted model has Teff=6600K, and log(g)=4.2. Because of the increased line opacity and consequent low gas pressure, convection plays no significant role in the temperature structure. Lighter elemental abundances through the iron group scatter about standard abundance distribution (SAD) (solar) values. Iron and nickel are about one order of magnitude deficient while cobalt is enhanced by 1.5dex. Heavier elements, including the lanthanides, generally follow the solar pattern but enhanced by 3 to 4dex. Odd-Z elements are generally less abundant than their even-Z neighbours. With a few exceptions (e.g. Yb), the abundance pattern among the heavy elements is remarkably coherent, and resembles a displaced solar distribution.

  6. Geobarometry of ultramafic xenoliths from Loihi Seamount, Hawaii, on the basis of CO2 inclusions in olivine

    USGS Publications Warehouse

    Roedder, E.

    1983-01-01

    Abundant fluid inclusions in olivine of dunite xenoliths (???1-3 cm) in basalt dredged from the young Loihi Seamount, 30 km southeast of Hawaii, are evidence for three coexisting immiscible fluid phases-silicate melt (now glass), sulfide melt (now solid), and dense supercritical CO2 (now liquid + gas)-during growth and later fracturing of some of these olivine crystals. Some olivine xenocrysts, probably from disaggregation of xenoliths, contain similar inclusions. Most of the inclusions (2-10 ??m) are on secondary planes, trapped during healing of fractures after the original crystal growth. Some such planes end abruptly within single crystals and are termed pseudosecondary, because they formed during the growth of the host olivine crystals. The "vapor" bubble in a few large (20-60 ??m), isolated, and hence primary, silicate melt inclusions is too large to be the result of simple differential shrinkage. Under correct viewing conditions, these bubbles are seen to consist of CO2 liquid and gas, with an aggregate ??{variant} = ??? 0.5-0.75 g cm-3, and represent trapped globules of dense supercritical CO2 (i.e., incipient "vesiculation" at depth). Some spinel crystals enclosed within olivine have attached CO2 blebs. Spherical sulfide blebs having widely variable volume ratios to CO2 and silicate glass are found in both primary and pseudosecondary inclusions, demonstrating that an immiscible sulfide melt was also present. Assuming olivine growth at ??? 1200??C and hydrostatic pressure from a liquid lava column, extrapolation of CO2 P-V-T data indicates that the primary inclusions were trapped at ??? 220-470 MPa (2200-4700 bars), or ??? 8-17 km depth in basalt magma of ??{variant} = 2.7 g cm-3. Because the temperature cannot change much during the rise to eruption, the range of CO2 densities reveals the change in pressure from that during original olivine growth to later deformation and rise to eruption on the sea floor. The presence of numerous decrepitated inclusions

  7. Retrograde fluids in granulites: Stable isotope evidence of fluid migration

    SciTech Connect

    Morrison, J. ); Valley, J.W. )

    1991-07-01

    Widespread retrograde alteration assemblages document the migration of mixed H{sub 2}O-CO{sub 2} fluids into granulite facies rocks in the Adirondack Mountains. Fluid migration is manifest by (1) veins and patchy intergrowths of chlorite {plus minus} sericite {plus minus} calcite, (2) small veins of calcite, many only identifiable by cathodoluminescence, and (3) high-density, CO{sub 2}-rich or mixed H{sub 2}O-CO{sub 2} fluid inclusions. The distinct and varied textural occurrences of the alteration minerals indicate that fluid-rock ratios were low and variable on a local scale. Stable isotope ratios of C, O, and S have been determined in retrograde minerals from samples of the Marcy anorthosite massif and adjacent granitic gneisses (charnockites). Retrograde calcite in the anorthosite has a relatively small range in both {delta}{sup 18}O{sub SMOW} and {delta}{sup 13}C{sub PDB} (8.6 to 14.9% and {minus}4.1 to 0.4%, respectively), probably indicating that the hydrothermal fluids that precipitated the calcite had exchanged with a variety of crustal lithologies including marbles and orthogneisses, and that calcite was precipitated over a relatively narrow temperature interval. Values of {delta}{sup 34}S{sub CDT} that range from 2.8 to 8.3% within the anorthosite can also be interpreted to reflect exchange between orthogneisses and metasediments. The recognition of retrograde fluid migration is particularly significant in granulite facies terranes because the controversy surrounding the origin of granulites arises in part from differing interpretations of fluid inclusion data, specifically, the timing of entrapment of high-density, CO{sub 2}-rich inclusions. Results indicate that retrograde fluid migration, which in some samples may leave only cryptic petrographic evidence, is a process capable of producing high-density, CO{sub 2}-rich fluid inclusions.

  8. Inclusion-localised crystal-plasticity, dynamic porosity, and fast-diffusion pathway generation in zircon

    NASA Astrophysics Data System (ADS)

    Timms, Nicholas E.; Reddy, Steven M.; Fitz Gerald, John D.; Green, Leonard; Muhling, Janet R.

    2012-02-01

    A population of oscillatory zoned, igneous zircon grains in a Javanese andesite contains fluid and mineral inclusions (up to 10 μm across) trapped during zircon growth. Orientation contrast imaging and orientation mapping by electron backscatter diffraction reveal that crystal-plastic deformation overprints growth zoning and has localized around 1-10 μm pores and inclusions. Cumulative crystallographic misorientation of up to 25° around pores and inclusions in zircon is predominantly accommodated by low-angle (<5°) orientation boundaries, with few free dislocations in subgrain interiors. Low-angle boundaries are curved, with multiple orientation segments at the sub-micrometer scale. Misorientation axes associated with the most common boundaries align with the zircon c-axis and are consistent with dislocation creep dominated by <100>(010) slip. A distinctly different population of sub-micron pores is present along subgrain boundaries and their triple junctions. These are interpreted to have formed as a geometric consequence of dislocation interaction during crystal-plasticity. Dislocation creep microstructures are spatially related to differences in cathodoluminescence spectra that indicate variations in the abundance of CL-active rare earth elements. The extent of the modification suggests deformation-related fast-pathway diffusion distances that are over five orders of magnitude greater than expected for volume diffusion. This enhanced diffusion is interpreted to represent a combination of fast-diffusion pathways associated with creep cavitation, dislocations and along low-angle boundaries. These new data indicate that ductile deformation localised around inclusions can provide fast pathways for geochemical exchange. These pathways may provide links to the zircon grain boundary, thus negating the widely held assumption that inclusions in fracture-free zircon are geochemically armoured once they are physically enclosed.

  9. What Counts as Inclusion?

    ERIC Educational Resources Information Center

    Walton, E.; Nel, N.

    2012-01-01

    In the years since the publication in South Africa of White Paper Six: Special needs education (Department of Education (DoE) 2001) various schools in the state and independent sectors have begun to implement inclusive policies and practices. With reference to the Guidelines for full-service/inclusive schools issued in 2009, and by discussing a…

  10. Understanding Inclusion in Cyprus

    ERIC Educational Resources Information Center

    Mamas, Christoforos

    2013-01-01

    This paper provides a framework for understanding inclusion in Cyprus. The evidence base is the result of a six-month qualitative research study in five Cypriot mainstream primary schools. Despite the rhetoric in favour of inclusion, it seems that the Cypriot educational system is still highly segregating in its philosophy and does not fully…

  11. Inclusive Services Innovation Configuration

    ERIC Educational Resources Information Center

    Holdheide, Lynn R.; Reschly, Daniel J.

    2011-01-01

    Teacher preparation to deliver inclusive services to students with disabilities is increasingly important because of changes in law and policy emphasizing student access to, and achievement in, the general education curriculum. This innovation configuration identifies the components of inclusive services that should be incorporated in teacher…

  12. Handbook for Successful Inclusion.

    ERIC Educational Resources Information Center

    Kochhar, Carol A.; West, Lynda L.

    This manual is intended to help regular and special educators and related professionals to better serve special learners in inclusive settings through identifying practical strategies for the classroom and school, and techniques for overcoming barriers to inclusion. The manual is written in a question-and-answer format. The first chapter addresses…

  13. Learning Styles and Inclusion

    ERIC Educational Resources Information Center

    Reid, Gavin

    2005-01-01

    This book is about learning styles and inclusion, but essentially it is about learning, and how to make learning more effective for all learners. To recognise the needs of learners as well as those of teachers, and at the same time appreciate that the inclusive education environment, irrespective of its merits, will present barriers for learners,…

  14. School Inclusion Programmes (SIPS)

    ERIC Educational Resources Information Center

    Drossinou-Korea, Maria; Matousi, Dimitra; Panopoulos, Nikolaos; Paraskevopoulou, Aikaterini

    2016-01-01

    The purpose of this work was to understand the school inclusion programmes (SIPs) for students with special educational needs (SEN). The methodology was conducted in the field of special education (SE) and focuses on three case studies of students who was supported by SIPs. The Targeted, Individual, Structured, Inclusion Programme for students…

  15. Jet inclusive cross sections

    SciTech Connect

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons.

  16. Adapted Aquatics and Inclusion.

    ERIC Educational Resources Information Center

    Block, Martin E.; Conatser, Phillip

    2002-01-01

    Presents strategies and techniques to help instructors and directors promote successful inclusive aquatics programs for students with disabilities, discussing the importance of considering issues related to: teaching style, collaborative planning, goal determination, appropriate inclusive placement, personnel preparation, curriculum adaptation,…

  17. The Inclusion Facilitator's Guide

    ERIC Educational Resources Information Center

    Jorgensen, Cheryl M.; Schuh, Mary C.; Nisbet, Jan

    2005-01-01

    Inclusion facilitators are educators who do more than teach children with disabilities--they advocate for change in schools and communities, sparking a passion for inclusion in teachers, administrators, and families and giving them the practical guidance they need to make it work. This is an essential new role in today's schools, and this guide…

  18. Exsolution halos surrounding ruptured inclusions in garnets from UHT and UHP rocks

    NASA Astrophysics Data System (ADS)

    Axler, Jennifer; Ague, Jay

    2015-04-01

    Distinctive halos of rutile ± apatite needles and/or plates centered on quartz or multiphase inclusions with radial cracks in garnet are investigated. The quartz is likely former coesite and the multiphase inclusions are interpreted to be decrepitated fluid inclusions. We study samples from two localities: (1) ultrahigh-temperature (UHT) metapelitic gneisses from the Central Maine Terrane in Connecticut, USA (Ague et al., 2013) (rutile halos only) and (2) ultrahigh-pressure (UHP) diamondiferous saidenbachite from the Saxonian Erzgebirge (Massonne, 2003) (rutile and apatite halos). The rutile and apatite needles in the halos are typically oriented in three directions. Within the halos, garnet is depleted in Ti (and P if apatite is present). The halos extend about three inclusion radii away from the central quartz or multiphase inclusions. We propose that the inclusion halos of rutile ± apatite formed by exsolution out of garnet due to rupturing of the central inclusions. The internal pressure of an inclusion in garnet can be larger than the surrounding lithostatic pressure if the entrapment pressure is maintained or if a large positive volume phase change occurs. A large pressure difference between an inclusion and host strains the host and causes deformation, which in turn produces dislocations and other defects. During exhumation the pressure difference between inclusions and the surrounding rock matrix can become so great that rupturing of the garnet occurs. The rupturing creates more dislocations and defects in the garnet with the dislocation density highest around the inclusion. The defects in the crystal structure are ideal nucleation sites for exsolved precipitates. Another factor assisting exsolution is the drop in pressure in the surrounding garnet caused by the rupturing which should in turn decrease the solubility of Ti and P in garnet. To test the exsolution hypothesis, chemical reintegration of the Ti or P contents of the garnet in the halos plus the

  19. Amniotic fluid

    MedlinePlus

    ... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...

  20. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V. E-mail: serkor@skyline.od.ua E-mail: scan@deneb1.odessa.ua

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  1. Extinction efficiency of "elastic-sheet" beams by a cylindrical (viscous) fluid inclusion embedded in an elastic medium and mode conversion—Examples of nonparaxial Gaussian and Airy beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-10-01

    Stemming from the law of the conservation of energy in an elastic medium, this work extends the scope of the previous analysis for a scatterer immersed in a nonviscous liquid [F. G. Mitri, Ultrasonics 62, 20-26 (2015)] to the case of a (viscous) fluid circular cylinder cross-section encased in a homogeneous, isotropic, elastic matrix. Analytical expressions for the absorption, scattering, and extinction efficiencies (or cross-sections) are derived for "elastic-sheets" (i.e., finite beams in 2D propagating in elastic media) of arbitrary wavefront, in contrast to the ideal case of plane waves of infinite extent. The mathematical expressions are formulated in generalized partial-wave series expansions in cylindrical coordinates involving the beam-shape coefficients of finite elastic-sheet beams with arbitrary wavefront, and the scattering coefficients of the fluid cylinder encased in the elastic matrix. The analysis shows that in elastodynamic scattering, both the scattered L-wave as well as the scattered T-wave contribute to the time-averaged scattered efficiency (or power). However, the extinction efficiency only depends on the scattering coefficients characterizing the same type (L or T) as the incident wave. Numerical computations for the (non-dimensional energy) efficiency factors such as the absorption, scattering, and extinction efficiencies of a circular cylindrical viscous fluid cavity embedded in an elastic aluminum matrix are performed for nonparaxial focused Gaussian and Airy elastic-sheet beams with arbitrary longitudinal and transverse normally-polarized (shear) wave incidences in the Rayleigh and resonance regimes. A series of elastic resonances are manifested in the plots of the efficiencies as the non-dimensional size parameters for the L- and T-waves are varied. As the beam waist for the nonparaxial Gaussian beam increases, the plane wave result is recovered, while for a tightly focused wavefront, some of the elastic resonances can be suppressed

  2. Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China.

    PubMed

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-06-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of approximately 0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 x 10(3) to 2.4 x 10(4) cells/g and 3.5 x 10(8) to 4.2 x 10(9) cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids.

  3. Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China

    PubMed Central

    Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun

    2005-01-01

    Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of ∼0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 × 103 to 2.4 × 104 cells/g and 3.5 × 108 to 4.2 × 109 cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids. PMID:15933024

  4. Melt inclusions: Chapter 6

    USGS Publications Warehouse

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  5. On the abundance of Europium. [in Ap and Am stars

    NASA Technical Reports Server (NTRS)

    Hartoog, M. R.; Cowley, C. R.; Adelman, S. J.

    1974-01-01

    The inclusion of the effects of hyperfine splitting can significantly lower the abundance estimate of Eu from singly ionized lines which lie on the flat portion of the curve of growth. In the 21 cool Ap stars studied by Adelman and the five Am stars studied by Smith, the Eu abundance was reduced by 0.4 dex on the average. In individual cases, the reductions were as great as 0.9 dex. This makes the Eu abundance comparable to that of its neighboring rare earths Sm and Gd in the Ap stars and less than Sm and Gd in the Am stars, but still substantially overabundant with respect to solar values.

  6. Petroleum and aqueous inclusions from deeply buried reservoirs: Experimental simulations and consequences for overpressure estimates

    NASA Astrophysics Data System (ADS)

    Pironon, Jacques; Bourdet, Julien

    2008-10-01

    Synthetic hydrocarbon and aqueous inclusions have been created in the laboratory batch reactors in order to mimic inclusion formation or re-equilibration in deeply buried reservoirs. Inclusions were synthesized in quartz and calcite using pure water and Mexican dead oil, or n-tetradecane (C 14H 30), at a temperature and pressure of 150 °C and 1 kbar. One-phase hydrocarbon inclusions are frequently observed at standard laboratory conditions leading to homogenization temperatures between 0 and 60 °C. UV epifluorescence of Mexican oil inclusions is not uniform; blue and green-yellow colored inclusions coexist; however, no clear evidence of variations in fluid chemistry were observed. Homogenization temperatures were recorded and the maxima of Th plotted on histograms are in good agreement with expected Th in a range of 6 °C. Broad histograms were reconstructed showing non-symmetrical Th distributions over a 20 °C temperature range centered on the expected Th. This histogram broadening is due to the fragility of the fluid inclusions that were created by re-filling of pre-existing microcavities. Such Th histograms are similar to Th histograms recorded on natural samples from deeply buried carbonate reservoirs. Th values lower than those expected were measured for hydrocarbon inclusions in quartz and calcite, and for aqueous inclusions in calcite. However, the results confirm the ability of fluid inclusions containing two immiscible fluids to lead to PT reconstructions, even in overpressured environments.

  7. Ammonia abundances in comets

    NASA Astrophysics Data System (ADS)

    Wyckoff, S.; Tegler, S.; Engel, L.

    The emission band strengths of the NH2 bands of Comets Halley, Hartley-Good, Thiele, and Borrelly were measured to determine the NH2 column densities for the comets. Production rates obtained using the Haser and vectorial models are in agreement within the observational errors, suggesting that a simple two-step decay model may be used to approximate the NH2 distribution in a comet's coma. Ammonia-to-water abundance ratios from 0.01 to 0.4 percent were found for the four comets. The ratio in Comet Halley is found to be Q(NH3)/Q(H2O) = 0.002 + or - 0.001. No significant difference in the ammonia abundance was found before or after perihelion in Comet Halley.

  8. Novel inclusion in laser crystals

    SciTech Connect

    Ma Xiaoshan; Wang Siting; Jin Zhongru; Shen Yafang; Chen Jiaguang

    1986-12-01

    In growing alexandrite crystals, a novel inclusion has been found. The inclusions are quantitatively analyzed by an electronic probe and the mechanism for forming inclusions is suggested. In our Bridgman MgF/sub 2/ crystals, the inclusions in <001> direction have also been observed.

  9. Linguistic Diversity and Social Inclusion

    ERIC Educational Resources Information Center

    Piller, Ingrid; Takahashi, Kimie

    2011-01-01

    This introduction provides the framework for the special issue by describing the social inclusion agenda of neoliberal market democracies. While the social inclusion agenda has been widely adopted, social inclusion policies are often blind to the ways in which language proficiency and language ideologies mediate social inclusion in linguistically…

  10. Inclusion Body Myositis

    PubMed Central

    Dimachkie, Mazen M.; Barohn, Richard J.

    2012-01-01

    The idiopathic inflammatory myopathies are a group of rare disorders that share many similarities. These include dermatomyositis (DM), polymyositis (PM), necrotizing myopathy (NM), and sporadic inclusion body myositis (IBM). Inclusion body myositis is the most common idiopathic inflammatory myopathy after age 50 and it presents with chronic proximal leg and distal arm asymmetric mucle weakness. Despite similarities with PM, it is likely that IBM is primarily a degenerative disorder rather than an inflammatory muscle disease. Inclusion body myositis is associated with a modest degree of creatine kinase (CK) elevation and an abnormal electromyogram demonstrating an irritative myopathy with some chronicity. The muscle histopathology demonstrates inflammatory exudates surrounding and invading nonnecrotic muscle fibers often times accompanied by rimmed vacuoles. In this chapter, we review sporadic IBM. We also examine past, essentially negative, clinical trials in IBM and review ongoing clinical trials. For further details on DM, PM, and NM, the reader is referred to the idiopathic inflammatory myopathies chapter. PMID:23117948

  11. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  12. Rare earth element budgets in subduction-zone fluids

    NASA Astrophysics Data System (ADS)

    Tsay, A.; Zajacz, Z.; Sanchez-Valle, C.

    2012-12-01

    Subduction zone fluids play a fundamental role in the geochemical cycle of the Earth. The nature and composition of these fluids are determined by complex processes and still poorly understood. As a result of a variety of metasomatic and partial melting events, arc-related magmas display a typical trace element abundance spectrum, in which the rare earth elements' (REE) signature is an important record of petrogenetic processes. Therefore, investigating the behavior of REE in fluids at high pressure (P) and temperature (T) conditions is crucial for constraining fluid composition, as well as understanding subduction-zone processes in general. However, up to date, the experimental studies on REE solubility and speciation are limited to quite low P-T conditions (300 °C, saturated water vapor pressure) [1]. The theoretical predictions of the stability of REE complexes have been performed up to 350 °C [2] and 1000 °C, 0.5 GPa [3] by the extrapolation of thermodynamic data obtained at ambient conditions. In this study we present new experimental data on REE silicate (REE2Si2O7) solubility in aqueous quartz saturated fluids, containing various ligands, at conditions relevant for subducting slabs (600, 700, 800 °C, 2.6 GPa). The aim of the experiments was to investigate the relative effect of temperature and ligands on the solubility of REE. The experiments were conducted in an end-loaded piston-cylinder apparatus and the fluids were in situ sampled at P-T in the form of primary fluid inclusions in quartz [4]. The gold capsule was typically loaded with a chip of synthetic REE silicate (La,Nd,Gd,Dy,Er,Yb)2Si2O7, an aqueous fluid (~20 wt.%) and a piece of natural quartz. During the experiment (24-48 h) a thermal gradient along the capsule promoted intensive dissolution of quartz at the hottest part and precipitation of new quartz at the cooler part of the capsule, allowing the primary fluid inclusions to be trapped (~30-50 μm). Rubidium and cesium were added to the

  13. Nanotubular Toughening Inclusions

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Working, Dennis C. (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2015-01-01

    Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the matrix's intrinsic physical properties.

  14. Nanotubular Toughening Inclusions

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Working, Dennis C. (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2017-01-01

    Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the intrinsic physical properties of the matrix.

  15. Bacterial inclusion body purification.

    PubMed

    Seras-Franzoso, Joaquin; Peternel, Spela; Cano-Garrido, Olivia; Villaverde, Antonio; García-Fruitós, Elena

    2015-01-01

    Purification of bacterial inclusion bodies (IBs) is gaining importance due to the raising of novel applications for this type of submicron particulate protein clusters, with potential uses in the biomedical field among others. Here, we present two optimized methods to purify IBs adapting classical procedures to the material nature as well as the requirements of its final application.

  16. Against Being Inclusive

    ERIC Educational Resources Information Center

    Carlson, Jeffrey

    2016-01-01

    The term "inclusive excellence," made popular by the Association of American Colleges and Universities and adopted by many schools across the country is in some ways unfortunate, in that the concept of "including," arguably, assumes the priority and ongoing dominance of a given reality into which one may (or may not) be granted…

  17. Positive Inclusion Experiences.

    ERIC Educational Resources Information Center

    Ensign, Arselia, Ed.

    1996-01-01

    This guide focuses on the use of low-end technology to make education more inclusive for children and adolescents with disabilities. The definition of "assistive technology" is discussed, and low-end technology is defined as simple modification/adaptation of toys and games, design and construction of simple switching devices, and the…

  18. Collaborative Support for Inclusion

    ERIC Educational Resources Information Center

    Sanahuja-Gavaldà, Josep M.; Olmos-Rueda, Patricia; Morón-Velasco, Mar

    2016-01-01

    Nowadays, in Catalonia, students with autism spectrum disorders (ASD) are increasingly in regular schools although their presence, participation, learning and success are unequal. Barriers towards inclusion often depend on how to organise supporting at regular schools and the teachers' collaboration during this process. In this paper, the support…

  19. Relationships in Inclusive Classrooms

    ERIC Educational Resources Information Center

    Santos, Graça Duarte; Sardinha, Susana; Reis, Silvia

    2016-01-01

    Climate in the classroom is one of the determining factors in the development of practices in Inclusive Education. Many factors contribute to the climate in the classroom. However, there are predominance on affective-relational factors, with impact on action, norms and values, social interactions and learning processes. In this paper, the authors…

  20. Education for Inclusion

    ERIC Educational Resources Information Center

    Preece, Julia

    2006-01-01

    Poverty can be both a consequence of, and contributory factor to, educational exclusion. This paper argues that poverty and exclusion are multidimensional. They require a multisectoral and multilevel approach in education if the most vulnerable sectors of society are to benefit from initiatives to turn exclusion into inclusion. This paper also…

  1. Inclusion on the Bookshelf

    ERIC Educational Resources Information Center

    Jackson, Camille

    2009-01-01

    Three decades have passed since federal law mandated inclusion--ending, officially at least, a system that segregated students with disabilities from the rest of the student population. The publishing world has yet to catch up. In children's books, characters with disabilities often inhabit their own separate world, where disability is the only…

  2. Exploring Inclusive Pedagogy

    ERIC Educational Resources Information Center

    Florian, Lani; Black-Hawkins, Kristine

    2011-01-01

    This paper reports on a study designed to examine teachers' craft knowledge of their practice of "inclusion" in terms of what they do, why and how. The research approach offers an important alternative to studies of students with "additional needs" and the search to articulate the specialist knowledge and skill required to…

  3. Inclusion Strategies that Work

    ERIC Educational Resources Information Center

    Hammel, Alice M.

    2004-01-01

    Many school systems are moving toward an inclusion model for teaching special learners in which all students are included in general classrooms. The basic premise is that all students should first be placed in the general classroom. Students receive as many necessary supplementary aids and services as possible in the general classroom, and then,…

  4. Electrorheological fluids

    SciTech Connect

    Adolf, D.; Anderson, R.; Garino, T.; Halsey, T.C.; Hance, B.; Martin, J.E.; Odinek, J.

    1996-10-01

    An Electrorheological fluid is normally a low-viscosity colloidal suspension, but when an electric field is applied, the fluid undergoes a reversible transition to a solid, being able to support considerable stress without yield. Commercial possibilities for such fluids are enormous, including clutches, brakes, valves,shock absorbers, and stepper motors. However, performance of current fluids is inadequate for many proposed applications. Our goal was to engineer improved fluids by investigating the key technical issues underlying the solid-phase yield stress and the liquid to solid switching time. Our studies focused on field-induced interactions between colloidal particles that lead to solidification, the relation between fluid structure and performance (viscosity, yield stress), and the time evolution of structure in the fluid as the field is switched on or off.

  5. Inclusions of chlorides in natural diamonds from Siberia

    NASA Astrophysics Data System (ADS)

    Titkov, Sergey; Ryabchikov, Igor; Pomazansky, Bogdan; Magazina, Larisa

    2010-05-01

    In recent years, microinclusions of Cl-bearing high density fluids that contained silicic, carbonatitic and saline components in variable proportions have been revealed in octahedral diamonds with cloudy central or intermediate growth zones, in diamonds with fibrous coat and in fibrous cubic diamonds from many kimberlite deposits (Tomlinson et al., 2006; Klein-BenDavid et al., 2007 and references therein). Experimental works have shown that chloride-bearing system is a favorable medium for diamond growth (Palyanov et al., 2007). In course of study of microinclusions in diamonds from Siberia unusual chloride microinclusions with specific morphologies have been found by us in a rounded dark-grey dodecahedron from the placer deposits with unknown source in northern Yakutia and in a dark-grey coarse-grained polycrystalline aggregate of diamond from the kimberlites of western Yakutia. The rounded dodecahedron represented V variety according to the diamond classification by Y.L.Orlov consisted of a quite perfect core and fibrous coat with abundant black microinclusions. Its rounded shape was formed during post growth dissolution. The polycrystalline diamond aggregate contained numerous black microinclusions of magnetite and some other Fe-phase as was reported previously (Titkov et al., 2003). The microinclusions were studied using a JEOL JSM-5300 scanning electron microscope equipped with an Oxford LINK ISIS energy-dispersive spectrometer with an analytical range from Be to U. In preparation for analysis, each sample was crushed after being wrapped in a special paper to avoid contamination. Analysis was performed on rough surfaces of fragments that were fairly flat and oriented nearly perpendicular to the electron beam. These samples were carbon coated. Study of rounded dodecahedron fragments revealed irregular cavity, about 30 m across. Its main volume was occupied by a large inclusion of variable composition with an average of 20.6 wt% Na, 15.5 wt% K, 0.6 wt% S, 0

  6. Fluid(s)/Melt Partitioning of COHSCl Volatiles and Associated Controls on Volcanic Degassing (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, J. D.

    2013-12-01

    -enriched fluid is the first fluid that exsolves in magma, because the [fluid/melt] partition coefficients for CO2 exceed those for H2O, S, and Cl. Thus, S partitions strongly in favor of aqueous-carbonic fluids even when fluid exsolution first occurs at depth. This has consequences for processes of magmatic gas sparging of S by CO2-enriched fluids, for compositions of silicate melt inclusions representing fluid(s)-saturated magmas, and for S/C ratios of volcanic gases. Although Cl is generally the least abundant of the four primary volatiles, Cl exerts a fundamental influence on the phase equilibria of vapor only, vapor plus saline liquid, or saline liquid only for magmas as they ascend to near-surface depths. This influence is exacerbated by the addition of CO2, because the size of the stability field of vapor plus saline liquid increases dramatically as the Cl and CO2 concentrations of magmas increase even to modest magmatic levels. The condensation of a saline liquid from vapor-saturated melt exerts strong controls on the associated partitioning behavior of H2O and S, impacts compositions of silicate melt inclusions, and affects S/Cl and C/Cl ratios of volcanic gases. [Teague et al., 2008, EOS/AGU 89(53), V21B-2086; Lesne et al., 2011, J.Pet. Vol. 52, p. 1737-1762; Witham et al., 2012, Comp. & Geoscien. Vol. 45, p. 87-97.

  7. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  8. Interstellar grains: Effect of inclusions on extinction

    NASA Astrophysics Data System (ADS)

    Katyal, N.; Gupta, R.; Vaidya, D. B.

    2011-10-01

    A composite dust grain model which simultaneously explains the observed interstellar extinction, polarization, IR emission and the abundance constraints, is required. We present a composite grain model, which is made up of a host silicate oblate spheroid and graphite inclusions. The interstellar extinction curve is evaluated in the spectral region 3.4-0.1 μm using the extinction efficiencies of composite spheroidal grains for three axial ratios. Extinction curves are computed using the discrete dipole approximation (DDA). The model curves are subsequently compared with the average observed interstellar extinction curve and with an extinction curve derived from the IUE catalogue data.

  9. Martian fluid and Martian weathering signatures identified in Nakhla, NWA 998 and MIL 03346 by halogen and noble gas analysis

    NASA Astrophysics Data System (ADS)

    Cartwright, J. A.; Gilmour, J. D.; Burgess, R.

    2013-03-01

    We report argon (Ar) noble gas, Ar-Ar ages and halogen abundances (Cl, Br, I) of Martian nakhlites Nakhla, NWA 998 and MIL 03346 to determine the presence of Martian hydrous fluids and weathering products. Neutron-irradiated samples were either crushed and step-heated (Nakhla only), or simply step-heated using a laser or furnace, and analysed for noble gases using an extension of the 40Ar-39Ar technique to determine halogen abundances. The data obtained provide the first isotopic evidence for a trapped fluid that is Cl-rich, has a strong correlation with 40ArXS (40ArXS = 40Armeasured - 40Arradiogenic) and displays 40ArXS/36Ar of ˜1000 - consistent with the Martian atmosphere. This component was released predominantly in the low temperature and crush experiments, which may suggest a fluid inclusion host. For the halogens, we observe similar Br/Cl and I/Cl ratios between the nakhlites and terrestrial reservoirs, which is surprising given the absence of crustal recycling, organic matter and frequent fluid activity on Mars. In particular, Br/Cl ratios in our Nakhla samples (especially olivine) are consistent with previously analysed Martian weathering products, and both low temperature and crush analyses show a similar trend to the evaporation of seawater. This may indicate that surface brines play an important role on Mars and on halogen assemblages within Martian meteorites and rocks. Elevated I/Cl ratios in the low temperature NWA 998 and MIL 03346 releases may relate to in situ terrestrial contamination, though we are unable to distinguish between low temperature terrestrial or Martian components. Whilst estimates of the amount of water present based on the 36Ar concentrations are too high to be explained by a fluid component alone, they are consistent with a mixed-phase inclusion (gas and fluid) or with shock-implanted Martian atmospheric argon. The observed fluid is dilute (low salinity, but high Br/Cl and I/Cl ratios), contains a Martian atmospheric component

  10. Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions.

    PubMed

    Mormile, Melanie R; Biesen, Michelle A; Gutierrez, M Carmen; Ventosa, Antonio; Pavlovich, Justin B; Onstott, Tullis C; Fredrickson, James K

    2003-11-01

    Halite crystals were selected from a 186 m subsurface core taken from the Badwater salt pan, Death Valley, California to ascertain if halophilic Archaea and their associated 16S rDNA can survive over several tens of thousands of years. Using a combined microscope microdrill/micropipette system, fluids from brine inclusions were aseptically extracted from primary, hopper texture, halite crystals from 8 and 85 metres below the surface (mbls). U-Th disequilibrium dating indicates that these halite layers were deposited at 9,600 and 97,000 years before present (ybp) respectively. Extracted inclusions were used for polymerase chain reaction (PCR) analysis with haloarchaea-specific 16S rDNA primers or placed into haloarchaea culture medium. Enrichment cultures were obtained from 97 kyr halite crystal inclusion fluid and haloarchaea-containing prepared crystals (positive controls), whereas inclusions from crystals of 9.6 kyr halite and the haloarchaea-free halite crystals (negative controls) resulted in no growth. Phylogenetic analysis (16S rDNA) of the 97 kyr isolate, designated BBH 001, revealed a homology of 100% with Halobacterium salinarum. DNA-DNA hybridization experiments confirmed that BBH 001 was closely related to H. salinarum (81-75% hybridization) and its ascription to this haloarchaea species. The described method of retrieving particle-containing brine from fluid inclusions offers a robust approach for assessing the antiquity of microorganisms associated with evaporites.

  11. Inclusive Education in Italy: Description and Reflections on Full Inclusion