Science.gov

Sample records for abundant genetic diversity

  1. Genetic diversity in aspen and its relation to arthropod abundance

    PubMed Central

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  2. Positive relationships between genetic diversity and abundance in fishes.

    PubMed

    McCusker, Megan R; Bentzen, Paul

    2010-11-01

    Molecular markers, such as mitochondrial DNA and microsatellite loci, are widely studied to assess population genetics and phylogeography; however, the selective neutrality of these markers is increasingly being questioned. Given the importance of molecular markers in fisheries science and conservation, we evaluated the neutrality of both mtDNA and microsatellite loci through their associations with population size. We surveyed mtDNA and microsatellite data from the primary literature and determined whether genetic diversity increased with abundance across a total of 105 marine and freshwater fishes, with both global fisheries catch data and body size as proxies for abundance (with an additional 57 species for which only body size data were assessed). We found that microsatellite data generally yielded higher associations with abundance than mtDNA data, and within mtDNA analyses, number of haplotypes and haplotype diversity were more strongly associated with abundance than nucleotide diversity, particularly for freshwater fishes. We compared genetic diversity between freshwater and marine fishes and found that marine fishes had higher values of all measures of genetic diversity than freshwater fishes. Results for both mtDNA and microsatellites generally conformed to neutral expectations, although weaker relationships were often found between mtDNA nucleotide diversity and 'abundance' compared to any other genetic statistic. We speculate that this is because of historical events unrelated to natural selection, although a role for selection cannot be ruled out. © 2010 Blackwell Publishing Ltd.

  3. Bee genera, diversity and abundance in genetically modified canola fields.

    PubMed

    O'Brien, Colton; Arathi, H S

    2018-01-02

    Intensive agricultural practices resulting in large scale habitat loss ranks as the top contributing factors in the global bee decline. Growing Genetically Modified Herbicide Tolerant (GMHT) crops as large monocultures has resulted extensive applications of herbicides leading to the degradation of natural habitats surrounding farmlands. Herbicide tolerance trait is beneficial for crops such as Canola (Brassica napus) that are extremely vulnerable to weed competition. While the trait in itself does not harm pollinators, growing genetically modified herbicide tolerant cultivars indirectly contributes towards pollinator declines through habitat loss. Canola, a mass-flowering crop is highly attractive to bee pollinators and the extensive adoption of the herbicide tolerant trait has led to depletion of non-crop floral resources. Extensive use of herbicide in and near fields with herbicide tolerant cultivars systematically eliminates semi-natural habitats around agricultural fields which consist of non-crop flowering plants. Planting pollinator strips provides floral resources for bees after crop flowering. We document the bee genera in canola and the adjoining pollinator strip. The overlap in bee genera reinforces the importance of pollinator habitats in agricultural landscape.

  4. Abundance and Genetic Diversity of Aerobic Anoxygenic Phototrophic Bacteria of Coastal Regions of the Pacific Ocean

    PubMed Central

    Ritchie, Anna E.

    2012-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities. PMID:22307290

  5. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    PubMed Central

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  6. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    PubMed Central

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  7. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    PubMed

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.

  8. Abundance and Genetic Diversity of Microbial Polygalacturonase and Pectate Lyase in the Sheep Rumen Ecosystem

    PubMed Central

    Wang, Yaru; Luo, Huiying; Huang, Huoqing; Shi, Pengjun; Bai, Yingguo; Yang, Peilong; Yao, Bin

    2012-01-01

    Background Efficient degradation of pectin in the rumen is necessary for plant-based feed utilization. The objective of this study was to characterize the diversity, abundance, and functions of pectinases from microorganisms in the sheep rumen. Methodology/Principal Findings A total of 103 unique fragments of polygalacturonase (PF00295) and pectate lyase (PF00544 and PF09492) genes were retrieved from microbial DNA in the rumen of a Small Tail Han sheep, and 66% of the sequences of these fragments had low identities (<65%) with known sequences. Phylogenetic tree building separated the PF00295, PF00544, and PF09492 sequences into five, three, and three clades, respectively. Cellulolytic and noncellulolytic Butyrivibrio, Prevotella, and Fibrobacter species were the major sources of the pectinases. The two most abundant pectate lyase genes were cloned, and their protein products, expressed in Escherichia coli, were characterized. Both enzymes probably act extracellularly as their nucleotide sequences contained signal sequences, and they had optimal activities at the ruminal physiological temperature and complementary pH-dependent activity profiles. Conclusion/Significance This study reveals the specificity, diversity, and abundance of pectinases in the rumen ecosystem and provides two additional ruminal pectinases for potential industrial use under physiological conditions. PMID:22815874

  9. SXT/R391 integrative and conjugative elements in Proteus species reveal abundant genetic diversity and multidrug resistance

    PubMed Central

    Li, Xinyue; Du, Yu; Du, Pengcheng; Dai, Hang; Fang, Yujie; Li, Zhenpeng; Lv, Na; Zhu, Baoli; Kan, Biao; Wang, Duochun

    2016-01-01

    SXT/R391 integrative and conjugative elements (ICEs) are self-transmissible mobile genetic elements that are found in most members of Enterobacteriaceae. Here, we determined fifteen SXT/R391 ICEs carried by Proteus isolates from food (4.2%) and diarrhoea patients (17.3%). BLASTn searches against GenBank showed that the fifteen SXT/R391 ICEs were closely related to that from different Enterobacteriaceae species, including Proteus mirabilis. Using core gene phylogenetic analysis, the fifteen SXT/R391 ICEs were grouped into six distinct clusters, including a dominant cluster and three clusters that have not been previously reported in Proteus isolates. The SXT/R391 ICEs shared a common structure with a set of conserved genes, five hotspots and two variable regions, which contained more foreign genes, including drug-resistance genes. Notably, a class A β-lactamase gene was identified in nine SXT/R391 ICEs. Collectively, the ICE-carrying isolates carried resistance genes for 20 tested drugs. Six isolates were resistant to chloramphenicol, kanamycin, streptomycin, trimethoprim-sulfamethoxazole, sulfisoxazole and tetracycline, which are drug resistances commonly encoded by ICEs. Our results demonstrate abundant genetic diversity and multidrug resistance of the SXT/R391 ICEs carried by Proteus isolates, which may have significance for public health. It is therefore necessary to continuously monitor the antimicrobial resistance and related mobile elements among Proteus isolates. PMID:27892525

  10. Shifts in Abundance and Diversity of Mobile Genetic Elements after the Introduction of Diverse Pesticides into an On-Farm Biopurification System over the Course of a Year

    PubMed Central

    Dealtry, Simone; Holmsgaard, Peter N.; Dunon, Vincent; Jechalke, Sven; Ding, Guo-Chun; Krögerrecklenfort, Ellen; Heuer, Holger; Hansen, Lars H.; Springael, Dirk; Zühlke, Sebastian; Sørensen, Søren J.

    2014-01-01

    Biopurification systems (BPS) are used on farms to control pollution by treating pesticide-contaminated water. It is assumed that mobile genetic elements (MGEs) carrying genes coding for enzymes involved in degradation might contribute to the degradation of pesticides. Therefore, the composition and shifts of MGEs, in particular, of IncP-1 plasmids carried by BPS bacterial communities exposed to various pesticides, were monitored over the course of an agricultural season. PCR amplification of total community DNA using primers targeting genes specific to different plasmid groups combined with Southern blot hybridization indicated a high abundance of plasmids belonging to IncP-1, IncP-7, IncP-9, IncQ, and IncW, while IncU and IncN plasmids were less abundant or not detected. Furthermore, the integrase genes of class 1 and 2 integrons (intI1, intI2) and genes encoding resistance to sulfonamides (sul1, sul2) and streptomycin (aadA) were detected and seasonality was revealed. Amplicon pyrosequencing of the IncP-1 trfA gene coding for the replication initiation protein revealed high IncP-1 plasmid diversity and an increase in the abundance of IncP-1β and a decrease in the abundance of IncP-1ε over time. The data of the chemical analysis showed increasing concentrations of various pesticides over the course of the agricultural season. As an increase in the relative abundances of bacteria carrying IncP-1β plasmids also occurred, this might point to a role of these plasmids in the degradation of many different pesticides. PMID:24771027

  11. The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination

    PubMed Central

    Viel, Alessia; Legras, Jean-Luc; Nadai, Chiara; Carlot, Milena; Lombardi, Angiolella; Crespan, Manna; Migliaro, Daniele; Giacomini, Alessio; Corich, Viviana

    2017-01-01

    In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota. PMID:28883812

  12. Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape

    PubMed Central

    Bohan, David A; Boffey, Caroline W.H; Brooks, David R; Clark, Suzanne J; Dewar, Alan M; Firbank, Les G; Haughton, Alison J; Hawes, Cathy; Heard, Matthew S; May, Mike J; Osborne, Juliet L; Perry, Joe N; Rothery, Peter; Roy, David B; Scott, Rod J; Squire, Geoff R; Woiwod, Ian P; Champion, Gillian T

    2005-01-01

    We evaluated the effects of the herbicide management associated with genetically modified herbicide-tolerant (GMHT) winter oilseed rape (WOSR) on weed and invertebrate abundance and diversity by testing the null hypothesis that there is no difference between the effects of herbicide management of GMHT WOSR and that of comparable conventional varieties. For total weeds there were few treatment differences between GMHT and conventional cropping, but large and opposite treatment effects were observed for dicots and monocots. In the GMHT treatment, there were fewer dicots and more monocots than in conventional crops. At harvest, dicot biomass and seed rain in the GMHT treatment were one-third of that in the conventional, while monocot biomass was threefold greater and monocot seed rain almost fivefold greater in the GMHT treatment than in the conventional. These differential effects persisted into the following two years of the rotation. Bees and butterflies that forage and select for dicot weeds were less abundant in GMHT WOSR management in July. Year totals for Collembola were greater under GMHT management. There were few other treatment effects on invertebrates, despite the marked effects of herbicide management on the weeds. PMID:15799941

  13. Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape.

    PubMed

    Bohan, David A; Boffey, Caroline W H; Brooks, David R; Clark, Suzanne J; Dewar, Alan M; Firbank, Les G; Haughton, Alison J; Hawes, Cathy; Heard, Matthew S; May, Mike J; Osborne, Juliet L; Perry, Joe N; Rothery, Peter; Roy, David B; Scott, Rod J; Squire, Geoff R; Woiwod, Ian P; Champion, Gillian T

    2005-03-07

    We evaluated the effects of the herbicide management associated with genetically modified herbicide-tolerant (GMHT) winter oilseed rape (WOSR) on weed and invertebrate abundance and diversity by testing the null hypotheses that there is no difference between the effects of herbicide management of GMHT WOSR and that of comparable conventional varieties. For total weeds, there were few treatment differences between GMHT and conventional cropping, but large and opposite treatment effects were observed for dicots and monocots. In the GMHT treatment, there were fewer dicots and monocots than in conventional crops. At harvest, dicot biomass and seed rain in the GMHT treatment were one-third of that in the conventional, while monocot biomass was threefold greater and monocot seed rain almost fivefold greater in the GMHT treatment than in the conventional. These differential effects persisted into the following two years of the rotation. Bees and Butterflies that forage and select for dicot weeds were less abundant in GMHT WORS management in July. Year totals for Collembola were greater under GMHT management. There were few other treatment effects on invertebrates, despite the marked effects of herbicide management on the weeds.

  14. Chapter 14: Genetic diversity

    Treesearch

    C. I. Millar

    1999-01-01

    Genetic diversity rarely makes headline news. Whereas species extinctions, loss of old-growth forests, and catastrophic forest fires are readily grasped public issues, genetic diversity is often perceived as arcane and academic. Yet genes are the fundamental unit of biodiversity, the raw material for evolution, and the ultimate source of all variation among plants and...

  15. Analysis of the trap gene provides evidence for the role of elevation and vector abundance in the genetic diversity of Plasmodium relictum in Hawaii

    USGS Publications Warehouse

    Farias, Margaret E.M.; Atkinson, Carter T.; LaPointe, Dennis A.; Jarvi, Susan I.

    2012-01-01

    Background: The avian disease system in Hawaii offers an ideal opportunity to investigate host-pathogen interactions in a natural setting. Previous studies have recognized only a single mitochondrial lineage of avian malaria (Plasmodium relictum) in the Hawaiian Islands, but cloning and sequencing of nuclear genes suggest a higher degree of genetic diversity. Methods: In order to evaluate genetic diversity of P. relictum at the population level and further understand host-parasite interactions, a modified single-base extension (SBE) method was used to explore spatial and temporal distribution patterns of single nucleotide polymorphisms (SNPs) in the thrombospondin-related anonymous protein (trap) gene of P. relictum infections from 121 hatch-year amakihi (Hemignathus virens) on the east side of Hawaii Island. Results: Rare alleles and mixed infections were documented at three of eight SNP loci; this is the first documentation of genetically diverse infections of P. relictum at the population level in Hawaii. Logistic regression revealed that the likelihood of infection with a rare allele increased at low-elevation, but decreased as mosquito capture rates increased. The inverse relationship between vector capture rates and probability of infection with a rare allele is unexpected given current theories of epidemiology developed in human malarias. Conclusions: The results of this study suggest that pathogen diversity in Hawaii may be driven by a complex interaction of factors including transmission rates, host immune pressures, and parasite-parasite competition.

  16. Analysis of the trap gene provides evidence for the role of elevation and vector abundance in the genetic diversity of Plasmodium relictum in Hawaii.

    PubMed

    Farias, Margaret E M; Atkinson, Carter T; LaPointe, Dennis A; Jarvi, Susan I

    2012-09-03

    The avian disease system in Hawaii offers an ideal opportunity to investigate host-pathogen interactions in a natural setting. Previous studies have recognized only a single mitochondrial lineage of avian malaria (Plasmodium relictum) in the Hawaiian Islands, but cloning and sequencing of nuclear genes suggest a higher degree of genetic diversity. In order to evaluate genetic diversity of P. relictum at the population level and further understand host-parasite interactions, a modified single-base extension (SBE) method was used to explore spatial and temporal distribution patterns of single nucleotide polymorphisms (SNPs) in the thrombospondin-related anonymous protein (trap) gene of P. relictum infections from 121 hatch-year amakihi (Hemignathus virens) on the east side of Hawaii Island. Rare alleles and mixed infections were documented at three of eight SNP loci; this is the first documentation of genetically diverse infections of P. relictum at the population level in Hawaii. Logistic regression revealed that the likelihood of infection with a rare allele increased at low-elevation, but decreased as mosquito capture rates increased. The inverse relationship between vector capture rates and probability of infection with a rare allele is unexpected given current theories of epidemiology developed in human malarias. The results of this study suggest that pathogen diversity in Hawaii may be driven by a complex interaction of factors including transmission rates, host immune pressures, and parasite-parasite competition.

  17. Analysis of the trap gene provides evidence for the role of elevation and vector abundance in the genetic diversity of Plasmodium relictum in Hawaii

    PubMed Central

    2012-01-01

    Background The avian disease system in Hawaii offers an ideal opportunity to investigate host-pathogen interactions in a natural setting. Previous studies have recognized only a single mitochondrial lineage of avian malaria (Plasmodium relictum) in the Hawaiian Islands, but cloning and sequencing of nuclear genes suggest a higher degree of genetic diversity. Methods In order to evaluate genetic diversity of P. relictum at the population level and further understand host-parasite interactions, a modified single-base extension (SBE) method was used to explore spatial and temporal distribution patterns of single nucleotide polymorphisms (SNPs) in the thrombospondin-related anonymous protein (trap) gene of P. relictum infections from 121 hatch-year amakihi (Hemignathus virens) on the east side of Hawaii Island. Results Rare alleles and mixed infections were documented at three of eight SNP loci; this is the first documentation of genetically diverse infections of P. relictum at the population level in Hawaii. Logistic regression revealed that the likelihood of infection with a rare allele increased at low-elevation, but decreased as mosquito capture rates increased. The inverse relationship between vector capture rates and probability of infection with a rare allele is unexpected given current theories of epidemiology developed in human malarias. Conclusions The results of this study suggest that pathogen diversity in Hawaii may be driven by a complex interaction of factors including transmission rates, host immune pressures, and parasite-parasite competition. PMID:22943788

  18. Genetic diversity in Gossypium genus

    USDA-ARS?s Scientific Manuscript database

    The overall objectives of this paper are to report on cotton germplasm resources, morphobiological and agronomic diversity of Gossypium genus and review efforts on molecular genetic diversity of cotton gene pools as well as on the challenges and perspectives of exploiting genetic diversity in cotton...

  19. Genetic diversity, inbreeding and cancer.

    PubMed

    Ujvari, Beata; Klaassen, Marcel; Raven, Nynke; Russell, Tracey; Vittecoq, Marion; Hamede, Rodrigo; Thomas, Frédéric; Madsen, Thomas

    2018-03-28

    Genetic diversity is essential for adaptive capacities, providing organisms with the potential of successfully responding to intrinsic and extrinsic challenges. Although a clear reciprocal link between genetic diversity and resistance to parasites and pathogens has been established across taxa, the impact of loss of genetic diversity by inbreeding on the emergence and progression of non-communicable diseases, such as cancer, has been overlooked. Here we provide an overview of such associations and show that low genetic diversity and inbreeding associate with an increased risk of cancer in both humans and animals. Cancer being a multifaceted disease, loss of genetic diversity can directly (via accumulation of oncogenic homozygous mutations) and indirectly (via increased susceptibility to oncogenic pathogens) impact abnormal cell emergence and escape of immune surveillance. The observed link between reduced genetic diversity and cancer in wildlife may further imperil the long-term survival of numerous endangered species, highlighting the need to consider the impact of cancer in conservation biology. Finally, the somewhat incongruent data originating from human studies suggest that the association between genetic diversity and cancer development is multifactorial and may be tumour specific. Further studies are therefore crucial in order to elucidate the underpinnings of the interactions between genetic diversity, inbreeding and cancer. © 2018 The Author(s).

  20. Genetic diversity, inbreeding and cancer

    PubMed Central

    Klaassen, Marcel; Raven, Nynke; Russell, Tracey; Vittecoq, Marion; Hamede, Rodrigo; Thomas, Frédéric

    2018-01-01

    Genetic diversity is essential for adaptive capacities, providing organisms with the potential of successfully responding to intrinsic and extrinsic challenges. Although a clear reciprocal link between genetic diversity and resistance to parasites and pathogens has been established across taxa, the impact of loss of genetic diversity by inbreeding on the emergence and progression of non-communicable diseases, such as cancer, has been overlooked. Here we provide an overview of such associations and show that low genetic diversity and inbreeding associate with an increased risk of cancer in both humans and animals. Cancer being a multifaceted disease, loss of genetic diversity can directly (via accumulation of oncogenic homozygous mutations) and indirectly (via increased susceptibility to oncogenic pathogens) impact abnormal cell emergence and escape of immune surveillance. The observed link between reduced genetic diversity and cancer in wildlife may further imperil the long-term survival of numerous endangered species, highlighting the need to consider the impact of cancer in conservation biology. Finally, the somewhat incongruent data originating from human studies suggest that the association between genetic diversity and cancer development is multifactorial and may be tumour specific. Further studies are therefore crucial in order to elucidate the underpinnings of the interactions between genetic diversity, inbreeding and cancer. PMID:29563261

  1. Implications of recurrent disturbance for genetic diversity.

    PubMed

    Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C

    2016-02-01

    Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes.

  2. Genetic Diversity and Human Equality.

    ERIC Educational Resources Information Center

    Dobzhansky, Theodosius

    The idea of equality often, if not frequently, bogs down in confusion and apparent contradictions; equality is confused with identity, and diversity with inequality. It would seem that the easiest way to discredit the idea of equality is to show that people are innately, genetically, and, therefore, irremediably diverse and unlike. The snare is,…

  3. Genetic Diversity of Toscana Virus

    PubMed Central

    Collao, Ximena; Palacios, Gustavo; Sanbonmatsu-Gámez, Sara; Pérez-Ruiz, Mercedes; Negredo, Ana I.; Navarro-Marí, José-María; Grandadam, Marc; Aransay, Ana Maria; Lipkin, W. Ian; Tenorio, Antonio

    2009-01-01

    Distribution of Toscana virus (TOSV) is evolving with climate change, and pathogenicity may be higher in nonexposed populations outside areas of current prevalence (Mediterranean Basin). To characterize genetic diversity of TOSV, we determined the coding sequences of isolates from Spain and France. TOSV is more diverse than other well-studied phleboviruses (e.g.,Rift Valley fever virus). PMID:19331735

  4. Genetic diversity within species

    Treesearch

    D. L. Rogers; C. I. Millar; R. D Westfall

    1996-01-01

    Based on our review of literature and survey of geneticists workingon California taxa, we find genetic information lacking for most speciesin the Sierra Nevada. This situation is likely to remain infuture, with specific groups of taxa or occasional rare or high-interestspecies receiving specific study. Where we do have empirical information,we find few generalities...

  5. Global issues of genetic diversity.

    PubMed

    Vida, G

    1994-01-01

    Genetic diversity within species is highly significant during their adaptation to environmental changes and, consequently, for their long-term survival. The genetic variability of species is also the basis for the evolution of higher levels of biodiversity, the evolution of species, and it might be an indispensible prerequisite for the functioning of our biosphere. Studies which promote understanding of the maintenance and the functional aspects of biodiversity at any level are therefore essential for the future welfare of mankind.

  6. Genetic diversity in Trichomonas vaginalis.

    PubMed

    Meade, John C; Carlton, Jane M

    2013-09-01

    Recent advances in genetic characterisation of Trichomonas vaginalis isolates show that the extensive clinical variability in trichomoniasis and its disease sequelae are matched by significant genetic diversity in the organism itself, suggesting a connection between the genetic identity of isolates and their clinical manifestations. Indeed, a high degree of genetic heterogeneity in T vaginalis isolates has been observed using multiple genotyping techniques. A unique two-type population structure that is both local and global in distribution has been identified, and there is evidence of recombination within each group, although sexual recombination between the groups appears to be constrained. There is conflicting evidence in these studies for correlations between T vaginalis genetic identity and clinical presentation, metronidazole susceptibility, and the presence of T vaginalis virus, underscoring the need for adoption of a common standard for genotyping the parasite. Moving forward, microsatellite genotyping and multilocus sequence typing are the most robust techniques for future investigations of T vaginalis genotype-phenotype associations.

  7. Genetic selection and conservation of genetic diversity*.

    PubMed

    Blackburn, H D

    2012-08-01

    For 100s of years, livestock producers have employed various types of selection to alter livestock populations. Current selection strategies are little different, except our technologies for selection have become more powerful. Genetic resources at the breed level have been in and out of favour over time. These resources are the raw materials used to manipulate populations, and therefore, they are critical to the past and future success of the livestock sector. With increasing ability to rapidly change genetic composition of livestock populations, the conservation of these genetic resources becomes more critical. Globally, awareness of the need to steward genetic resources has increased. A growing number of countries have embarked on large scale conservation efforts by using in situ, ex situ (gene banking), or both approaches. Gene banking efforts have substantially increased and data suggest that gene banks are successfully capturing genetic diversity for research or industry use. It is also noteworthy that both industry and the research community are utilizing gene bank holdings. As pressures grow to meet consumer demands and potential changes in production systems, the linkage between selection goals and genetic conservation will increase as a mechanism to facilitate continued livestock sector development. © 2012 Blackwell Verlag GmbH.

  8. Rarity and genetic diversity in Indo–Pacific Acropora corals

    PubMed Central

    Richards, Zoe T; Oppen, Madeleine J H

    2012-01-01

    Among various potential consequences of rarity is genetic erosion. Neutral genetic theory predicts that rare species will have lower genetic diversity than common species. To examine the association between genetic diversity and rarity, variation at eight DNA microsatellite markers was documented for 14 Acropora species that display different patterns of distribution and abundance in the Indo–Pacific Ocean. Our results show that the relationship between rarity and genetic diversity is not a positive linear association because, contrary to expectations, some rare species are genetically diverse and some populations of common species are genetically depleted. Our data suggest that inbreeding is the most likely mechanism of genetic depletion in both rare and common corals, and that hybridization is the most likely explanation for higher than expected levels of genetic diversity in rare species. A significant hypothesis generated from our study with direct conservation implications is that as a group, Acropora corals have lower genetic diversity at neutral microsatellite loci than may be expected from their taxonomic diversity, and this may suggest a heightened susceptibility to environmental change. This hypothesis requires validation based on genetic diversity estimates derived from a large portion of the genome. PMID:22957189

  9. Genetic diversity of the Arctic fox using SRAP markers.

    PubMed

    Zhang, M; Bai, X J

    2013-12-04

    Sequence-related amplified polymorphism (SRAP) is a recently developed molecular marker technique that is stable, simple, reliable, and achieves moderate to high numbers of codominant markers. This study is the first to apply SRAP markers in a mammal, namely the Arctic fox. In order to investigate the genetic diversity of the Arctic fox and to provide a reference for use of its germplasm, we analyzed 7 populations of Arctic fox by SRAP. The genetic similarity coefficient, genetic distance, proportion of polymorphic loci, total genetic diversity (Ht), genetic diversity within populations (Hs), and genetic differentiation (Gst) were calculated using the Popgene software package. The results indicated abundant genetic diversity among the different populations of Arctic fox studied in China. The genetic similarity coefficient ranged from 0.1694 to 0.0417, genetic distance ranged from 0.8442 to 0.9592, and the proportion of polymorphic loci was smallest in the TS group. Genetic diversity ranged from 0.2535 to 0.3791, Ht was 0.3770, Hs was 0.3158, Gst was 0.1624, and gene flow (Nm) was estimated at 2.5790. Thus, a high level of genetic diversity and many genetic relationships were found in the populations of Arctic fox evaluated in this study.

  10. Liana abundance, diversity, and distribution on Barro Colorado Island, Panama.

    PubMed

    Schnitzer, Stefan A; Mangan, Scott A; Dalling, James W; Baldeck, Claire A; Hubbell, Stephen P; Ledo, Alicia; Muller-Landau, Helene; Tobin, Michael F; Aguilar, Salomon; Brassfield, David; Hernandez, Andres; Lao, Suzanne; Perez, Rolando; Valdes, Oldemar; Yorke, Suzanne Rutishauser

    2012-01-01

    Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community composition, diversity, abundance, and spatial distribution - critical components for measuring the contribution of lianas to forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas ≥1 cm rooted in a 50-ha plot on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree densities have increased on BCI compared to surveys conducted 30-years earlier. This study represents the most comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for stems ≥1 cm diameter and nearly 140% for stems ≥5 cm diameter, while tree density on BCI decreased 11.5%; a finding consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps, and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCI and other neotropical forests.

  11. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes.

    PubMed

    Osborne, Megan J; Perkin, Joshuah S; Gido, Keith B; Turner, Thomas F

    2014-12-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. © 2014 John Wiley & Sons Ltd.

  12. Measuring β-diversity with species abundance data.

    PubMed

    Barwell, Louise J; Isaac, Nick J B; Kunin, William E

    2015-07-01

    In 2003, 24 presence-absence β-diversity metrics were reviewed and a number of trade-offs and redundancies identified. We present a parallel investigation into the performance of abundance-based metrics of β-diversity. β-diversity is a multi-faceted concept, central to spatial ecology. There are multiple metrics available to quantify it: the choice of metric is an important decision. We test 16 conceptual properties and two sampling properties of a β-diversity metric: metrics should be 1) independent of α-diversity and 2) cumulative along a gradient of species turnover. Similarity should be 3) probabilistic when assemblages are independently and identically distributed. Metrics should have 4) a minimum of zero and increase monotonically with the degree of 5) species turnover, 6) decoupling of species ranks and 7) evenness differences. However, complete species turnover should always generate greater values of β than extreme 8) rank shifts or 9) evenness differences. Metrics should 10) have a fixed upper limit, 11) symmetry (βA,B  = βB,A ), 12) double-zero asymmetry for double absences and double presences and 13) not decrease in a series of nested assemblages. Additionally, metrics should be independent of 14) species replication 15) the units of abundance and 16) differences in total abundance between sampling units. When samples are used to infer β-diversity, metrics should be 1) independent of sample sizes and 2) independent of unequal sample sizes. We test 29 metrics for these properties and five 'personality' properties. Thirteen metrics were outperformed or equalled across all conceptual and sampling properties. Differences in sensitivity to species' abundance lead to a performance trade-off between sample size bias and the ability to detect turnover among rare species. In general, abundance-based metrics are substantially less biased in the face of undersampling, although the presence-absence metric, βsim , performed well overall. Only

  13. Coral-Associated Actinobacteria: Diversity, Abundance, and Biotechnological Potentials

    PubMed Central

    Mahmoud, Huda M.; Kalendar, Aisha A.

    2016-01-01

    Marine Actinobacteria, particularly coral-associated Actinobacteria, have attracted attention recently. In this study, the abundance and diversity of Actinobacteria associated with three types of coral thriving in a thermally stressed coral reef system north of the Arabian Gulf were investigated. Coscinaraea columna, Platygyra daedalea and Porites harrisoni have been found to harbor equivalent numbers of culturable Actinobacteria in their tissues but not in their mucus. However, different culturable actinobacterial communities have been found to be associated with different coral hosts. Differences in the abundance and diversity of Actinobacteria were detected between the mucus and tissue of the same coral host. In addition, temporal and spatial variations in the abundance and diversity of the cultivable actinobacterial communities were detected. In total, 19 different actinobacterial genera, namely Micrococcus, Brachybacterium, Brevibacterium, Streptomyces, Micromonospora, Renibacterium, Nocardia, Microbacterium, Dietzia, Cellulomonas, Ornithinimicrobium, Rhodococcus, Agrococcus, Kineococcus, Dermacoccus, Devriesea, Kocuria, Marmoricola, and Arthrobacter, were isolated from the coral tissue and mucus samples. Furthermore, 82 isolates related to Micromonospora, Brachybacterium, Nocardia, Micrococcus, Arthrobacter, Rhodococcus, and Streptomyces showed antimicrobial activities against representative Gram-positive and/or Gram-negative bacteria. Even though Brevibacterium and Kocuria were the most dominant actinobacterial isolates, they failed to show any antimicrobial activity, whereas less dominant genera, such as Streptomyces, did show antimicrobial activity. Focusing on the diversity of coral-associated Actinobacteria may help to understand how corals thrive under harsh environmental conditions and may lead to the discovery of novel antimicrobial metabolites with potential biotechnological applications. PMID:26973601

  14. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    PubMed Central

    Lemloh, Marie-Louise; Fromont, Jane; Brümmer, Franz; Usher, Kayley M

    2009-01-01

    Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA) with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide range of sponges in a wide range

  15. Peudomonas fluorescens diversity and abundance in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Amina, Melinai; Ahmed, Bensoltane; Khaladi, Mederbel

    2010-05-01

    It is now over 30 years since that a several plant associated strains of fluorescent Pseudomonas spp. are known to produce antimicrobial metabolites, playing a significant role in the biological control of a lot of plant diseases. For that, the interest in the use of these bacteria for biocontrol of plant pathogenic agents has increased. However, few comprehensive studies have described the abundance of this soil borne bacteria in the region of Mascara (Northern-Algerian West). In the connection of this problem, this work was done by monitoring the number of indigenous Pseudomonas fluorescens organisms in three stations characterizing different ecosystems, to document their abundance, diversity and investigate the relationship between P. fluorescens abundance and soil properties. Our quantitative plate counting results hence the conception of their ecology in the rhizosphere. Thus, quantitative results has confirmed that P. fluorescens are successful root colonizers with strong predominance and competed for many ecological niche, where their distribution were correlated significantly (P<0.05) with the majority of soil properties. Keywords: P. Fluorescens, Ecosystems, Abundance, Diversity, Correlated, Soil Properties.

  16. Severe plant invasions can increase mycorrhizal fungal abundance and diversity.

    PubMed

    Lekberg, Ylva; Gibbons, Sean M; Rosendahl, Søren; Ramsey, Philip W

    2013-07-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)--but not cheatgrass (Bromus tectorum)--support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance.

  17. Severe plant invasions can increase mycorrhizal fungal abundance and diversity

    PubMed Central

    Lekberg, Ylva; Gibbons, Sean M; Rosendahl, Søren; Ramsey, Philip W

    2013-01-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)—but not cheatgrass (Bromus tectorum)—support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance. PMID:23486251

  18. Relationships between plant diversity and grasshopper diversity and abundance in the Little Missouri National Grassland

    USDA-ARS?s Scientific Manuscript database

    A continuing challenge in Orthoptera ecology is to understand what determines grasshopper species diversity at a given site. In this study, the objective was to determine if variation in grasshopper abundance and diversity between 23 sites in western North Dakota (USA) could be explained by variatio...

  19. Genetic Diversity and Societally Important Disparities

    PubMed Central

    Rosenberg, Noah A.; Kang, Jonathan T. L.

    2015-01-01

    The magnitude of genetic diversity within human populations varies in a way that reflects the sequence of migrations by which people spread throughout the world. Beyond its use in human evolutionary genetics, worldwide variation in genetic diversity sometimes can interact with social processes to produce differences among populations in their relationship to modern societal problems. We review the consequences of genetic diversity differences in the settings of familial identification in forensic genetic testing, match probabilities in bone marrow transplantation, and representation in genome-wide association studies of disease. In each of these three cases, the contribution of genetic diversity to social differences follows from population-genetic principles. For a fourth setting that is not similarly grounded, we reanalyze with expanded genetic data a report that genetic diversity differences influence global patterns of human economic development, finding no support for the claim. The four examples describe a limit to the importance of genetic diversity for explaining societal differences while illustrating a distinction that certain biologically based scenarios do require consideration of genetic diversity for solving problems to which populations have been differentially predisposed by the unique history of human migrations. PMID:26354973

  20. Office space bacterial abundance and diversity in three metropolitan areas.

    PubMed

    Hewitt, Krissi M; Gerba, Charles P; Maxwell, Sheri L; Kelley, Scott T

    2012-01-01

    People in developed countries spend approximately 90% of their lives indoors, yet we know little about the source and diversity of microbes in built environments. In this study, we combined culture-based cell counting and multiplexed pyrosequencing of environmental ribosomal RNA (rRNA) gene sequences to investigate office space bacterial diversity in three metropolitan areas. Five surfaces common to all offices were sampled using sterile double-tipped swabs, one tip for culturing and one for DNA extraction, in 30 different offices per city (90 offices, 450 total samples). 16S rRNA gene sequences were PCR amplified using bar-coded "universal" bacterial primers from 54 of the surfaces (18 per city) and pooled for pyrosequencing. A three-factorial Analysis of Variance (ANOVA) found significant differences in viable bacterial abundance between offices inhabited by men or women, among the various surface types, and among cities. Multiplex pyrosequencing identified more than 500 bacterial genera from 20 different bacterial divisions. The most abundant of these genera tended to be common inhabitants of human skin, nasal, oral or intestinal cavities. Other commonly occurring genera appeared to have environmental origins (e.g., soils). There were no significant differences in the bacterial diversity between offices inhabited by men or women or among surfaces, but the bacterial community diversity of the Tucson samples was clearly distinguishable from that of New York and San Francisco, which were indistinguishable. Overall, our comprehensive molecular analysis of office building microbial diversity shows the potential of these methods for studying patterns and origins of indoor bacterial contamination. "[H]umans move through a sea of microbial life that is seldom perceived except in the context of potential disease and decay." - Feazel et al. (2009).

  1. Natural variation in stomatal abundance of Arabidopsis thaliana includes cryptic diversity for different developmental processes

    PubMed Central

    Delgado, Dolores; Alonso-Blanco, Carlos; Fenoll, Carmen; Mena, Montaña

    2011-01-01

    Background and Aims Current understanding of stomatal development in Arabidopsis thaliana is based on mutations producing aberrant, often lethal phenotypes. The aim was to discover if naturally occurring viable phenotypes would be useful for studying stomatal development in a species that enables further molecular analysis. Methods Natural variation in stomatal abundance of A. thaliana was explored in two collections comprising 62 wild accessions by surveying adaxial epidermal cell-type proportion (stomatal index) and density (stomatal and pavement cell density) traits in cotyledons and first leaves. Organ size variation was studied in a subset of accessions. For all traits, maternal effects derived from different laboratory environments were evaluated. In four selected accessions, distinct stomatal initiation processes were quantitatively analysed. Key Results and Conclusions Substantial genetic variation was found for all six stomatal abundance-related traits, which were weakly or not affected by laboratory maternal environments. Correlation analyses revealed overall relationships among all traits. Within each organ, stomatal density highly correlated with the other traits, suggesting common genetic bases. Each trait correlated between organs, supporting supra-organ control of stomatal abundance. Clustering analyses identified accessions with uncommon phenotypic patterns, suggesting differences among genetic programmes controlling the various traits. Variation was also found in organ size, which negatively correlated with cell densities in both organs and with stomatal index in the cotyledon. Relative proportions of primary and satellite lineages varied among the accessions analysed, indicating that distinct developmental components contribute to natural diversity in stomatal abundance. Accessions with similar stomatal indices showed different lineage class ratios, revealing hidden developmental phenotypes and showing that genetic determinants of primary and

  2. Genetic Structure and Potential Environmental Determinants of Local Genetic Diversity in Japanese Honeybees (Apis cerana japonica)

    PubMed Central

    Nagamitsu, Teruyoshi; Yasuda, Mika; Saito-Morooka, Fuki; Inoue, Maki N.; Nishiyama, Mio; Goka, Koichi; Sugiura, Shinji; Maeto, Kaoru; Okabe, Kimiko; Taki, Hisatomo

    2016-01-01

    Declines in honeybee populations have been a recent concern. Although causes of the declines remain unclear, environmental factors may be responsible. We focused on the potential environmental determinants of local populations of wild honeybees, Apis cerana japonica, in Japan. This subspecies has little genetic variation in terms of its mitochondrial DNA sequences, and genetic variations at nuclear loci are as yet unknown. We estimated the genetic structure and environmental determinants of local genetic diversity in nuclear microsatellite genotypes of fathers and mothers, inferred from workers collected at 139 sites. The genotypes of fathers and mothers showed weak isolation by distance and negligible genetic structure. The local genetic diversity was high in central Japan, decreasing toward the peripheries, and depended on the climate and land use characteristics of the sites. The local genetic diversity decreased as the annual precipitation increased, and increased as the proportion of urban and paddy field areas increased. Positive effects of natural forest area, which have also been observed in terms of forager abundance in farms, were not detected with respect to the local genetic diversity. The findings suggest that A. cerana japonica forms a single population connected by gene flow in its main distributional range, and that climate and landscape properties potentially affect its local genetic diversity. PMID:27898704

  3. What factors shape genetic diversity in cetaceans?

    PubMed

    Vachon, Felicia; Whitehead, Hal; Frasier, Timothy R

    2018-02-01

    Understanding what factors drive patterns of genetic diversity is a central aspect of many biological questions, ranging from the inference of historical demography to assessing the evolutionary potential of a species. However, as a larger number of datasets have become available, it is becoming clear that the relationship between the characteristics of a species and its genetic diversity is more complex than previously assumed. This may be particularly true for cetaceans, due to their relatively long lifespans, long generation times, complex social structures, and extensive ranges. In this study, we used microsatellite and mitochondrial DNA data from a systematic literature review to produce estimates of diversity for both markers across 42 cetacean species. Factors relating to demography, distribution, classification, biology, and behavior were then tested using phylogenetic methods and linear models to assess their relative influence on the genetic diversity of both marker types. The results show that while relative nuclear diversity is correlated with population size, mitochondrial diversity is not. This is particularly relevant given the widespread use of mitochondrial DNA to infer historical demography. Instead, mitochondrial diversity was mostly influenced by the range and social structure of the species. In addition to population size, habitat type (neritic vs. oceanic) had a significant correlation with relative nuclear diversity. Combined, these results show that many often-unconsidered factors are likely influencing patterns of genetic diversity in cetaceans, with implications regarding how to interpret, and what can be inferred from, existing patterns of diversity.

  4. [Evolutionary process unveiled by the maximum genetic diversity hypothesis].

    PubMed

    Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi

    2013-05-01

    As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature.

  5. Diverse and abundant antibiotic resistance genes in Chinese swine farms

    PubMed Central

    Zhu, Yong-Guan; Johnson, Timothy A.; Su, Jian-Qiang; Qiao, Min; Guo, Guang-Xia; Stedtfeld, Robert D.; Hashsham, Syed A.; Tiedje, James M.

    2013-01-01

    Antibiotic resistance genes (ARGs) are emerging contaminants posing a potential worldwide human health risk. Intensive animal husbandry is believed to be a major contributor to the increased environmental burden of ARGs. Despite the volume of antibiotics used in China, little information is available regarding the corresponding ARGs associated with animal farms. We assessed type and concentrations of ARGs at three stages of manure processing to land disposal at three large-scale (10,000 animals per year) commercial swine farms in China. In-feed or therapeutic antibiotics used on these farms include all major classes of antibiotics except vancomycins. High-capacity quantitative PCR arrays detected 149 unique resistance genes among all of the farm samples, the top 63 ARGs being enriched 192-fold (median) up to 28,000-fold (maximum) compared with their respective antibiotic-free manure or soil controls. Antibiotics and heavy metals used as feed supplements were elevated in the manures, suggesting the potential for coselection of resistance traits. The potential for horizontal transfer of ARGs because of transposon-specific ARGs is implicated by the enrichment of transposases—the top six alleles being enriched 189-fold (median) up to 90,000-fold in manure—as well as the high correlation (r2 = 0.96) between ARG and transposase abundance. In addition, abundance of ARGs correlated directly with antibiotic and metal concentrations, indicating their importance in selection of resistance genes. Diverse, abundant, and potentially mobile ARGs in farm samples suggest that unmonitored use of antibiotics and metals is causing the emergence and release of ARGs to the environment. PMID:23401528

  6. Synthesis and assessment of date palm genetic diversity studies

    USDA-ARS?s Scientific Manuscript database

    A thorough assessment of genetic diversity and population differentiation of Phoenix dactylifera are critical for its dynamic conservation and sustainable utilization of its genetic diversity. Estimates of genetic diversity based on phenotypic, biochemical and molecular markers; and fruit quality tr...

  7. Does population size affect genetic diversity? A test with sympatric lizard species.

    PubMed

    Hague, M T J; Routman, E J

    2016-01-01

    Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations.

  8. Abundance and functional diversity of riboswitches in microbial communities

    PubMed Central

    Kazanov, Marat D; Vitreschak, Alexey G; Gelfand, Mikhail S

    2007-01-01

    Background Several recently completed large-scale enviromental sequencing projects produced a large amount of genetic information about microbial communities ('metagenomes') which is not biased towards cultured organisms. It is a good source for estimation of the abundance of genes and regulatory structures in both known and unknown members of microbial communities. In this study we consider the distribution of RNA regulatory structures, riboswitches, in the Sargasso Sea, Minnesota Soil and Whale Falls metagenomes. Results Over three hundred riboswitches were found in about 2 Gbp metagenome DNA sequences. The abundabce of riboswitches in metagenomes was highest for the TPP, B12 and GCVT riboswitches; the S-box, RFN, YKKC/YXKD, YYBP/YKOY regulatory elements showed lower but significant abundance, while the LYS, G-box, GLMS and YKOK riboswitches were rare. Regions downstream of identified riboswitches were scanned for open reading frames. Comparative analysis of identified ORFs revealed new riboswitch-regulated functions for several classes of riboswitches. In particular, we have observed phosphoserine aminotransferase serC (COG1932) and malate synthase glcB (COG2225) to be regulated by the glycine (GCVT) riboswitch; fatty acid desaturase ole1 (COG1398), by the cobalamin (B12) riboswitch; 5-methylthioribose-1-phosphate isomerase ykrS (COG0182), by the SAM-riboswitch. We also identified conserved riboswitches upstream of genes of unknown function: thiamine (TPP), cobalamine (B12), and glycine (GCVT, upstream of genes from COG4198). Conclusion This study demonstrates applicability of bioinformatics to the analysis of RNA regulatory structures in metagenomes. PMID:17908319

  9. [Genetic diversity of DNA microsatellite for Tibetan Yak].

    PubMed

    Li, Duo; Chai, Zhi-Xin; Ji, Qiu-Mei; Zhang, Cheng-Fu; Xin, Jin-Wei; Zhong, Jin-Cheng

    2013-02-01

    To assess the genetic diversity and relationship of the Tibetan yak breeds. The genetic diversity and phylogenies of a total of 480 individual from 11 Tibetan yak groups were analyzed using PCR and multiplex gel electrophoresis of silver staining technology with eight pairs of microsatellite markers.The result showed that these markers were highly polymorphic loci with rich genetic diversity in the Tibetan yak populations.The average polymorphic information content (PIC) in 11 groups of yak were higher than 0.5. The highest HEL13 was 0.8496, and the lowest TGLA57 was 0.7349. Among them, the PICof Dingqing yak was minimum (0.7505), indicating that the group is relatively pure.Sangri Yak had the highest PIC value (0.7949) indicating greater genetic variationwithinthe groups. Among the 11 groups examined, the order of heterozygosity size wasSangri(0.8193)>Jiangda(0.8190)>Sangsang(0.8157)>Baqing(0.8150)>Kangbu(0.8123)> Jiali(0.8087)>Gongbujiangda(0.8054)>Sibu(0.8041)>Leiwuqi(0.8033)>Pali(0.8031)>Dingqing(0.7831). The groups from eastern Tibet had grater genetic diversity than those from Western Tibet, which indicate that Tibet may be one of the cradles of the yak.According to the genetic distance, the cluster relationship constructed with UPGMA and NJ methods showed that 11 yak groups in Tibet could be divided into three forms. In summary,Tibet yak has abundant genetic diversity and the selected microsatellite markers can be used to evaluategenetic diversity of Tibetan yak.

  10. Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages.

    PubMed

    Morard, Raphaël; Garet-Delmas, Marie-José; Mahé, Frédéric; Romac, Sarah; Poulain, Julie; Kucera, Michal; de Vargas, Colomban

    2018-02-07

    Since the advent of DNA metabarcoding surveys, the planktonic realm is considered a treasure trove of diversity, inhabited by a small number of abundant taxa, and a hugely diverse and taxonomically uncharacterized consortium of rare species. Here we assess if the apparent underestimation of plankton diversity applies universally. We target planktonic foraminifera, a group of protists whose known morphological diversity is limited, taxonomically resolved and linked to ribosomal DNA barcodes. We generated a pyrosequencing dataset of ~100,000 partial 18S rRNA foraminiferal sequences from 32 size fractioned photic-zone plankton samples collected at 8 stations in the Indian and Atlantic Oceans during the Tara Oceans expedition (2009-2012). We identified 69 genetic types belonging to 41 morphotaxa in our metabarcoding dataset. The diversity saturated at local and regional scale as well as in the three size fractions and the two depths sampled indicating that the diversity of foraminifera is modest and finite. The large majority of the newly discovered lineages occur in the small size fraction, neglected by classical taxonomy. These unknown lineages dominate the bulk [>0.8 µm] size fraction, implying that a considerable part of the planktonic foraminifera community biomass has its origin in unknown lineages.

  11. Evaluating noninvasive genetic sampling techniques to estimate large carnivore abundance.

    PubMed

    Mumma, Matthew A; Zieminski, Chris; Fuller, Todd K; Mahoney, Shane P; Waits, Lisette P

    2015-09-01

    Monitoring large carnivores is difficult because of intrinsically low densities and can be dangerous if physical capture is required. Noninvasive genetic sampling (NGS) is a safe and cost-effective alternative to physical capture. We evaluated the utility of two NGS methods (scat detection dogs and hair sampling) to obtain genetic samples for abundance estimation of coyotes, black bears and Canada lynx in three areas of Newfoundland, Canada. We calculated abundance estimates using program capwire, compared sampling costs, and the cost/sample for each method relative to species and study site, and performed simulations to determine the sampling intensity necessary to achieve abundance estimates with coefficients of variation (CV) of <10%. Scat sampling was effective for both coyotes and bears and hair snags effectively sampled bears in two of three study sites. Rub pads were ineffective in sampling coyotes and lynx. The precision of abundance estimates was dependent upon the number of captures/individual. Our simulations suggested that ~3.4 captures/individual will result in a < 10% CV for abundance estimates when populations are small (23-39), but fewer captures/individual may be sufficient for larger populations. We found scat sampling was more cost-effective for sampling multiple species, but suggest that hair sampling may be less expensive at study sites with limited road access for bears. Given the dependence of sampling scheme on species and study site, the optimal sampling scheme is likely to be study-specific warranting pilot studies in most circumstances. © 2015 John Wiley & Sons Ltd.

  12. Microbial diversity--insights from population genetics.

    PubMed

    Mes, Ted H M

    2008-01-01

    Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.

  13. Environmental bacteria produce abundant and diverse antibiofilm compounds.

    PubMed

    Farmer, J T; Shimkevitch, A V; Reilly, P S; Mlynek, K D; Jensen, K S; Callahan, M T; Bushaw-Newton, K L; Kaplan, J B

    2014-12-01

    The aim of this study was to isolate novel antibiofilm compounds produced by environmental bacteria. Cell-free extracts were prepared from lawns of bacteria cultured on agar. A total of 126 bacteria isolated from soil, cave and river habitats were employed. Extracts were tested for their ability to inhibit Staphylococcus aureus biofilm in a 96-well microtitre plate assay. A total of 55/126 extracts (44%) significantly inhibited Staph. aureus biofilm. Seven extracts were selected for further analysis. The antibiofilm activities in all seven extracts exhibited unique patterns of molecular mass, chemical polarity, heat stability and spectrum of activity against Staph. aureus, Staphylococcus epidermidis and Pseudomonas fluorescens, suggesting that these seven antibiofilm activities were mediated by unique chemical compounds with different mechanisms of action. Environmental bacteria produce abundant and diverse antibiofilm compounds. Screening cell-free extracts is a useful method for identifying secreted compounds that regulate biofilm formation. Such compounds may represent a novel source of antibiofilm agents for technological development. © 2014 The Society for Applied Microbiology.

  14. Exploring abundance, diversity and variation of a widespread antibiotic resistance gene in wastewater treatment plants.

    PubMed

    Wei, Ziyan; Feng, Kai; Li, Shuzhen; Zhang, Yu; Chen, Hongrui; Yin, Huaqun; Xu, Meiying; Deng, Ye

    2018-05-09

    An updated sul1 gene sequence database was constructed and new degenerate primers were designed to better investigate the abundance, diversity, and variation of a ubiquitous antibiotic resistance gene, sul1, with PCR-based methods in activated sludge from wastewater treatment plants (WWTPs). The newly designed degenerate primers showed high specificity and higher coverage in both in-silico evaluations and activated sludge samples compared to previous sul1 primers. Using the new primers, the abundance and diversity of sul1 gene, together with 16S rRNA gene, in activated sludge from five WWTPs in summer and winter were determined by quantitative PCR and MiSeq sequencing. The sul1 gene was found to be prevalent and displayed a comparable abundance (0.081 copies per bacterial cell in average) to the total bacteria across all samples. However, compared to the significant seasonal and geographical divergences in the quantity and diversity of bacterial communities in WWTPs, there were no significant seasonal or geographical variations of representative clusters of sul1 gene in most cases. Additionally, the representative sul1 clusters showed fairly close phylogeny and there was no obvious correlation between sul1 gene and the dominant bacterial genera, as well as the int1 gene, suggesting that bacterial hosts of sul1 gene is not stable, the sul1 gene may be carried by mobile genetic elements, sometimes integrated with class 1 integrons and sometimes not. Thus mobile genetic elements likely play a greater role than specific microbial taxa in determining the composition of sul1 gene in WWTPs. Copyright © 2018. Published by Elsevier Ltd.

  15. Genetic diversity promotes homeostasis in insect colonies.

    PubMed

    Oldroyd, Benjamin P; Fewell, Jennifer H

    2007-08-01

    Although most insect colonies are headed by a singly mated queen, some ant, wasp and bee taxa have evolved high levels of multiple mating or 'polyandry'. We argue here that a contributing factor towards the evolution of polyandry is that the resulting genetic diversity within colonies provides them with a system of genetically based task specialization, enabling them to respond resiliently to environmental perturbation. An alternate view is that genetic contributions to task specialization are a side effect of multiple mating, which evolved through other causes, and that genetically based task specialization now makes little or no contribution to colony fitness.

  16. Diversity and abundance of nitrate assimilation genes in the northern South china sea.

    PubMed

    Cai, Haiyuan; Jiao, Nianzhi

    2008-11-01

    Marine heterotrophic microorganisms that assimilate nitrate play an important role in nitrogen and carbon cycling in the water column. The nasA gene, encoding the nitrate assimilation enzyme, was selected as a functional marker to examine the nitrate assimilation community in the South China Sea (SCS). PCR amplification, restriction fragment length polymorphism (RFLP) screening, and phylogenetic analysis of nasA gene sequences were performed to characterize in situ nitrate assimilatory bacteria. Furthermore, the effects of nutrients and other environmental factors on the genetic heterogeneity of nasA fragments from the SCS were evaluated at the surface in three stations, and at two other depths in one of these stations. The diversity indices and rarefaction curves indicated that the nasA gene was more diverse in offshore waters than in the Pearl River estuary. The phylotype rank abundance curve showed an abundant and unique RFLP pattern in all five libraries, indicating that a high diversity but low abundance of nasA existed in the study areas. Phylogenetic analysis of environmental nasA gene sequences further revealed that the nasA gene fragments came from several common aquatic microbial groups, including the Proteobacteria, Cytophaga-Flavobacteria (CF), and Cyanobacteria. In addition to the direct PCR/sequence analysis of environmental samples, we also cultured a number of nitrate assimilatory bacteria isolated from the field. Comparison of nasA genes from these isolates and from the field samples indicated the existence of horizontal nasA gene transfer. Application of real-time quantitative PCR to these nasA genes revealed a great variation in their abundance at different investigation sites and water depths.

  17. The challenges of tumor genetic diversity.

    PubMed

    Mroz, Edmund A; Rocco, James W

    2017-05-15

    The authors review and discuss the implications of genomic analyses documenting the diversity of tumors, both among patients and within individual tumors. Genetic diversity among solid tumors limits targeted therapies, because few mutations that drive tumors are both targetable and at high prevalence. Many more driver mutations and how they affect cellular signaling pathways must be identified if targeted therapy is to become widely useful. Genetic diversity within a tumor-intratumor genetic heterogeneity-makes the tumor a collection of subclones: related yet distinct cancers. Selection for pre-existing, resistant subclones by conventional or targeted therapies may explain many treatment failures. Immune therapy faces the same fundamental challenges. Nevertheless, the processes that generate and maintain heterogeneity might provide novel therapeutic targets. Addressing both types of diversity requires genomic tumor analyses linked to detailed clinical data. The trend toward sequencing restricted cancer gene panels, however, limits the ability to discover new driver mutations and assess intratumor heterogeneity. Clinical data currently collected with genomic analyses often lack critical information, substantially limiting their use in understanding tumor diversity. Now that diversity among and within tumors can no longer be ignored, research and clinical practice must adapt to take diversity into account. Cancer 2017;123:917-27. © 2016 American Cancer Society. © 2016 American Cancer Society.

  18. Evolution and genetic diversity of Theileria.

    PubMed

    Sivakumar, Thillaiampalam; Hayashida, Kyoko; Sugimoto, Chihiro; Yokoyama, Naoaki

    2014-10-01

    Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Diversity of potato genetic resources

    PubMed Central

    Machida-Hirano, Ryoko

    2015-01-01

    A considerable number of highly diverse species exist in genus Solanum. Because they can adapt to a broad range of habitats, potato wild relatives are promising sources of desirable agricultural traits. Potato taxonomy is quite complex because of introgression, interspecific hybridization, auto- and allopolyploidy, sexual compatibility among many species, a mixture of sexual and asexual reproduction, possible recent species divergence, phenotypic plasticity, and the consequent high morphological similarity among species. Recent researchers using molecular tools have contributed to the identification of genes controlling several types of resistance as well as to the revision of taxonomical relationships among potato species. Historically, primitive forms of cultivated potato and its wild relatives have been used in breeding programs and there is still an enormous and unimaginable potential for discovering desirable characteristics, particularly in wild species Different methods have been developed to incorporate useful alleles from these wild species into the improved cultivars. Potato germplasm comprising of useful alleles for different breeding objectives is preserved in various gene banks worldwide. These materials, with their invaluable information, are accessible for research and breeding purposes. Precise identification of species base on the new taxonomy is essential for effective use of the germplasm collection. PMID:25931978

  20. Genetic Diversity of Natural Crossing in Cotton

    USDA-ARS?s Scientific Manuscript database

    We have shown previously genetic diversity in mature cotton pollen sensitivity to low humidity. This study investigated the impact of pollen sensitivity to low humidity on the amount of outcrossing to neighboring plants. We utilized “red” and “green” pigmented cotton, in addition to gossypol glan...

  1. Neglect of genetic diversity in implementation of the Convention on Biological Diversity

    Treesearch

    Linda Laikre; Fred W. Allendorf; Laurel C. Aroner; C. Scott Baker; David P. Gregovich; Michael M. Hansen; Jennifer A. Jackson; Katherine C. Kendall; Kevin Mckelvey; Maile C. Neel; Isabelle Olivieri; Nils Ryman; Michael K. Schwartz; Ruth Short Bull; Jeffrey B. Stetz; David A. Tallmon; Barbara L. Taylor; Christina D. Vojta; Donald M. Waller; Robin S. Waples

    2009-01-01

    Genetic diversity is the foundation for all biological diversity; the persistence and evolutionary potential of species depend on it. World leaders have agreed on the conservation of genetic diversity as an explicit goal of the Convention on Biological Diversity (CBD). Nevertheless, actions to protect genetic diversity are largely lacking. With only months left to the...

  2. Genetic Diversity on the Sex Chromosomes

    PubMed Central

    Wilson Sayres, Melissa A

    2018-01-01

    Abstract Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system. PMID:29635328

  3. Abundance and genetic damage of barn swallows from Fukushima

    PubMed Central

    Bonisoli-Alquati, A.; Koyama, K.; Tedeschi, D. J.; Kitamura, W.; Sukuzi, H.; Ostermiller, S.; Arai, E.; Møller, A. P.; Mousseau, T. A.

    2015-01-01

    A number of studies have assessed or modeled the distribution of the radionuclides released by the accident at the Fukushima-Daiichi Nuclear Power Plant (FDNPP). Few studies however have investigated its consequences for the local biota. We tested whether exposure of barn swallow (Hirundo rustica) nestlings to low dose ionizing radiation increased genetic damage to their peripheral erythrocytes. We estimated external radiation exposure by using thermoluminescent dosimeters, and by measuring radioactivity of the nest material. We then assessed DNA damage by means of the neutral comet assay. In addition, we conducted standard point-count censuses of barn swallows across environmental radiation levels, and estimated their abundance and local age ratio. Radioactivity of nest samples was in the range 479–143,349 Bq kg−1, while external exposure varied between 0.15 and 4.9 mGy. Exposure to radioactive contamination did not correlate with higher genetic damage in nestlings. However, at higher levels of radioactive contamination the number of barn swallows declined and the fraction of juveniles decreased, indicating lower survival and lower reproduction and/or fledging rate. Thus, genetic damage to nestlings does not explain the decline of barn swallows in contaminated areas, and a proximate mechanism for the demographic effects documented here remains to be clarified. PMID:25838205

  4. Accessing genetic diversity for crop improvement.

    PubMed

    Glaszmann, J C; Kilian, B; Upadhyaya, H D; Varshney, R K

    2010-04-01

    Vast germplasm collections are accessible but their use for crop improvement is limited-efficiently accessing genetic diversity is still a challenge. Molecular markers have clarified the structure of genetic diversity in a broad range of crops. Recent developments have made whole-genome surveys and gene-targeted surveys possible, shedding light on population dynamics and on the impact of selection during domestication. Thanks to this new precision, germplasm description has gained analytical power for resolving the genetic basis of trait variation and adaptation in crops such as major cereals, chickpea, grapevine, cacao, or banana. The challenge now is to finely characterize all the facets of plant behavior in carefully chosen materials. We suggest broadening the use of 'core reference sets' so as to facilitate material sharing within the scientific community.

  5. Diversity and abundance of phosphonate biosynthetic genes in nature

    USDA-ARS?s Scientific Manuscript database

    Phosphonates, molecules containing direct C-P bonds, comprise a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than fifty years ago, the extent and diversity of phosphonate production in natur...

  6. Diversity is maintained by seasonal variation in species abundance

    PubMed Central

    2013-01-01

    Background Some of the most marked temporal fluctuations in species abundances are linked to seasons. In theory, multispecies assemblages can persist if species use shared resources at different times, thereby minimizing interspecific competition. However, there is scant empirical evidence supporting these predictions and, to the best of our knowledge, seasonal variation has never been explored in the context of fluctuation-mediated coexistence. Results Using an exceptionally well-documented estuarine fish assemblage, sampled monthly for over 30 years, we show that temporal shifts in species abundances underpin species coexistence. Species fall into distinct seasonal groups, within which spatial resource use is more heterogeneous than would be expected by chance at those times when competition for food is most intense. We also detect seasonal variation in the richness and evenness of the community, again linked to shifts in resource availability. Conclusions These results reveal that spatiotemporal shifts in community composition minimize competitive interactions and help stabilize total abundance. PMID:24007204

  7. Genetic diversity of Syrian Arabian horses.

    PubMed

    Almarzook, S; Reissmann, M; Arends, D; Brockmann, G A

    2017-08-01

    Although Arabian horses have been bred in strains for centuries and pedigrees have been recorded in studbooks, to date, little is known about the genetic diversity within and between these strains. In this study, we tested if the three main strains of Syrian Arabian horses descend from three founders as suggested by the studbook. We examined 48 horses representing Saglawi (n = 18), Kahlawi (n = 16) and Hamdani (n = 14) strains using the Equine SNP70K BeadChip. For comparison, an additional 24 Arabian horses from the USA and three Przewalski's horses as an out group were added. Observed heterozygosis (H o ) ranged between 0.30 and 0.32, expected heterozygosity (H e ) between 0.30 and 0.31 and inbreeding coefficients (F is ) between -0.02 and -0.05, indicating high genetic diversity within Syrian strains. Likewise, the genetic differentiation between the three Syrian strains was very low (F st  < 0.05). Hierarchical clustering showed a clear distinction between Arabian and Przewalski's horses. Among Arabian horses, we found three clusters containing either horses from the USA or horses from Syria or horses from Syria and the USA together. Individuals from the same Syrian Arabian horse strain were spread across different sub-clusters. When analyzing Syrian Arabian horses alone, the best population differentiation was found with three distinct clusters. In contrast to expectations from the studbook, these clusters did not coincide with strain affiliation. Although this finding supports the hypothesis of three founders, the genetic information is not consistent with the currently used strain designation system. The information can be used to reconsider the current breeding practice. Beyond that, Syrian Arabian horses are an important reservoir for genetic diversity. © 2017 Stichting International Foundation for Animal Genetics.

  8. Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves.

    PubMed

    Tscheulin, T; Neokosmidis, L; Petanidou, T; Settele, J

    2011-10-01

    The diversity and abundance of wild bees ensures the delivery of pollination services and the maintenance of ecosystem diversity. As previous studies carried out in Central Europe and the US have shown, bee diversity and abundance is influenced by the structure and the composition of the surrounding landscape. Comparable studies have so far not been carried out in the Mediterranean region. The present study examines the influence of Mediterranean landscape context on the diversity and abundance of wild bees. To do this, we sampled bees in 13 sites in olive groves on Lesvos Island, Greece. Bees were assigned to five categories consisting of three body size groups (small, medium and large bees), the single most abundant bee species (Lasioglossum marginatum) and all species combined. The influence of the landscape context on bee abundance and species richness was assessed at five radii (250, 500, 750, 1000 and 1250 m) from the centre of each site. We found that the abundance within bee groups was influenced differently by different landscape parameters and land covers, whereas species richness was unaffected. Generally, smaller bees' abundance was impacted by landscape parameters at smaller scales and larger bees at larger scales. The land cover that influenced bee abundance positively was olive grove, while phrygana, conifer forest, broad-leaved forest, cultivated land, rock, urban areas and sea had mostly negative or no impact. We stress the need for a holistic approach, including all land covers, when assessing the effects of landscape context on bee diversity and abundance in the Mediterranean.

  9. Mapping human genetic diversity in Asia.

    PubMed

    Abdulla, Mahmood Ameen; Ahmed, Ikhlak; Assawamakin, Anunchai; Bhak, Jong; Brahmachari, Samir K; Calacal, Gayvelline C; Chaurasia, Amit; Chen, Chien-Hsiun; Chen, Jieming; Chen, Yuan-Tsong; Chu, Jiayou; Cutiongco-de la Paz, Eva Maria C; De Ungria, Maria Corazon A; Delfin, Frederick C; Edo, Juli; Fuchareon, Suthat; Ghang, Ho; Gojobori, Takashi; Han, Junsong; Ho, Sheng-Feng; Hoh, Boon Peng; Huang, Wei; Inoko, Hidetoshi; Jha, Pankaj; Jinam, Timothy A; Jin, Li; Jung, Jongsun; Kangwanpong, Daoroong; Kampuansai, Jatupol; Kennedy, Giulia C; Khurana, Preeti; Kim, Hyung-Lae; Kim, Kwangjoong; Kim, Sangsoo; Kim, Woo-Yeon; Kimm, Kuchan; Kimura, Ryosuke; Koike, Tomohiro; Kulawonganunchai, Supasak; Kumar, Vikrant; Lai, Poh San; Lee, Jong-Young; Lee, Sunghoon; Liu, Edison T; Majumder, Partha P; Mandapati, Kiran Kumar; Marzuki, Sangkot; Mitchell, Wayne; Mukerji, Mitali; Naritomi, Kenji; Ngamphiw, Chumpol; Niikawa, Norio; Nishida, Nao; Oh, Bermseok; Oh, Sangho; Ohashi, Jun; Oka, Akira; Ong, Rick; Padilla, Carmencita D; Palittapongarnpim, Prasit; Perdigon, Henry B; Phipps, Maude Elvira; Png, Eileen; Sakaki, Yoshiyuki; Salvador, Jazelyn M; Sandraling, Yuliana; Scaria, Vinod; Seielstad, Mark; Sidek, Mohd Ros; Sinha, Amit; Srikummool, Metawee; Sudoyo, Herawati; Sugano, Sumio; Suryadi, Helena; Suzuki, Yoshiyuki; Tabbada, Kristina A; Tan, Adrian; Tokunaga, Katsushi; Tongsima, Sissades; Villamor, Lilian P; Wang, Eric; Wang, Ying; Wang, Haifeng; Wu, Jer-Yuarn; Xiao, Huasheng; Xu, Shuhua; Yang, Jin Ok; Shugart, Yin Yao; Yoo, Hyang-Sook; Yuan, Wentao; Zhao, Guoping; Zilfalil, Bin Alwi

    2009-12-11

    Asia harbors substantial cultural and linguistic diversity, but the geographic structure of genetic variation across the continent remains enigmatic. Here we report a large-scale survey of autosomal variation from a broad geographic sample of Asian human populations. Our results show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography. Most populations show relatedness within ethnic/linguistic groups, despite prevalent gene flow among populations. More than 90% of East Asian (EA) haplotypes could be found in either Southeast Asian (SEA) or Central-South Asian (CSA) populations and show clinal structure with haplotype diversity decreasing from south to north. Furthermore, 50% of EA haplotypes were found in SEA only and 5% were found in CSA only, indicating that SEA was a major geographic source of EA populations.

  10. Global genetic diversity of Aedes aegypti.

    PubMed

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi Bin; Fernandez-Salas, Ildefonso; Kamal, Hany A; Kamgang, Basile; Khater, Emad I M; Kramer, Laura D; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B; Saleh, Amag A; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A; Tabachnick, Walter J; Troyo, Adriana; Powell, Jeffrey R

    2016-11-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations. © 2016 John Wiley & Sons Ltd.

  11. Global Genetic Diversity of Aedes aegypti

    PubMed Central

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D.; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi bin; Fernandez-Salas, Ildefonso; Kamal, Hany A.; Kamgang, Basile; Khater, Emad I. M.; Kramer, Laura D.; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B.; Saleh, Amag A.; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A.; Tabachnick, Walter J.; Troyo, Adriana; Powell, Jeffrey R.

    2016-01-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti, from 30 countries in six continents and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya) the two subspecies remain genetically distinct whereas in urban settings they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats, and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th Centuries was followed by its introduction to Asia in the late 19th Century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l.. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for methods using genetic modification of populations. PMID:27671732

  12. Diversity, Abundance and Community Structure of Benthic Macro- and Megafauna on the Beaufort Shelf and Slope

    PubMed Central

    Nephin, Jessica; Juniper, S. Kim; Archambault, Philippe

    2014-01-01

    Diversity and community patterns of macro- and megafauna were compared on the Canadian Beaufort shelf and slope. Faunal sampling collected 247 taxa from 48 stations with box core and trawl gear over the summers of 2009–2011 between 50 and 1,000 m in depth. Of the 80 macrofaunal and 167 megafaunal taxa, 23% were uniques, present at only one station. Rare taxa were found to increase proportional to total taxa richness and differ between the shelf ( 100 m) where they tended to be sparse and the slope where they were relatively abundant. The macrofauna principally comprised polychaetes with nephtyid polychaetes dominant on the shelf and maldanid polychaetes (up to 92% in relative abundance/station) dominant on the slope. The megafauna principally comprised echinoderms with Ophiocten sp. (up to 90% in relative abundance/station) dominant on the shelf and Ophiopleura sp. dominant on the slope. Macro- and megafauna had divergent patterns of abundance, taxa richness ( diversity) and diversity. A greater degree of macrofaunal than megafaunal variation in abundance, richness and diversity was explained by confounding factors: location (east-west), sampling year and the timing of sampling with respect to sea-ice conditions. Change in megafaunal abundance, richness and diversity was greatest across the depth gradient, with total abundance and richness elevated on the shelf compared to the slope. We conclude that megafaunal slope taxa were differentiated from shelf taxa, as faunal replacement not nestedness appears to be the main driver of megafaunal diversity across the depth gradient. PMID:25007347

  13. Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010.

    PubMed

    Schipper, Aafke M; Belmaker, Jonathan; de Miranda, Murilo Dantas; Navarro, Laetitia M; Böhning-Gaese, Katrin; Costello, Mark J; Dornelas, Maria; Foppen, Ruud; Hortal, Joaquín; Huijbregts, Mark A J; Martín-López, Berta; Pettorelli, Nathalie; Queiroz, Cibele; Rossberg, Axel G; Santini, Luca; Schiffers, Katja; Steinmann, Zoran J N; Visconti, Piero; Rondinini, Carlo; Pereira, Henrique M

    2016-12-01

    Although it is generally recognized that global biodiversity is declining, few studies have examined long-term changes in multiple biodiversity dimensions simultaneously. In this study, we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity, and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on 5-year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four subgroups based on breeding habitat affinity (grassland, woodland, wetland, and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional, or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species subgroups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multifaceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional, or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. Diversity of rare and abundant bacteria in surface waters of the Southern Adriatic Sea.

    PubMed

    Quero, Grazia Marina; Luna, Gian Marco

    2014-10-01

    Bacteria are fundamental players in the functioning of the ocean, yet relatively little is known about the diversity of bacterioplankton assemblages and the factors shaping their spatial distribution. We investigated the diversity and community composition of bacterioplankton in surface waters of the Southern Adriatic sub-basin (SAd) in the Mediterranean Sea, across an environmental gradient from coastal to offshore stations. Bacterioplankton diversity was investigated using a whole-assemblage genetic fingerprinting technique (Automated Ribosomal Intergenic Spacer Analysis, ARISA) coupled with 16S rDNA amplicon pyrosequencing. The main physico-chemical variables showed clear differences between coastal and offshore stations, with the latter displaying generally higher temperature, salinity and oxygen content. Bacterioplankton richness was higher in coastal than offshore waters. Bacterial community composition (BCC) differed significantly between coastal and offshore waters, and appeared to be influenced by temperature (explaining up to 30% of variance) and by the trophic state. Pyrosequencing evidenced dominance of Alphaproteobacteria (SAR11 cluster), uncultured Gammaproteobacteria (Rhodobacteraceae) and Cyanobacteria (Synechococcus). Members of the Bacteroidetes phylum were also abundant, and accounted for 25% in the station characterized by the higher organic carbon availability. Bacterioplankton assemblages included a few dominant taxa and a very large proportion (85%) of rare (<0.1%) bacteria, the vast majority of which was unique to each sampling station. The first detailed census of bacterioplankton taxa in the SAd sub-basin, performed using next generation sequencing, indicates that assemblages are highly heterogeneous, spatially structured according to the environmental conditions, and comprise a large number of rare taxa. The high turnover diversity, particularly evident at the level of the rare taxa, suggests to direct future investigations toward larger

  15. Genetic Diversity of HIV-1 in Tunisia.

    PubMed

    El Moussi, Awatef; Thomson, Michael M; Delgado, Elena; Cuevas, María Teresa; Nasr, Majda; Abid, Salma; Ben Hadj Kacem, Mohamed Ali; Benaissa Tiouiri, Hanene; Letaief, Amel; Chakroun, Mohamed; Ben Jemaa, Mounir; Hamdouni, Hayet; Tej Dellagi, Rafla; Kheireddine, Khaled; Boutiba, Ilhem; Pérez-Álvarez, Lucía; Slim, Amine

    2017-01-01

    In this study, the genetic diversity of HIV-1 in Tunisia was analyzed. For this, 193 samples were collected in different regions of Tunisia between 2012 and 2015. A protease and reverse transcriptase fragment were amplified and sequenced. Phylogenetic analyses were performed through maximum likelihood and recombination was analyzed by bootscanning. Six HIV-1 subtypes (B, A1, G, D, C, and F2), 5 circulating recombinant forms (CRF02_AG, CRF25_cpx, CRF43_02G, CRF06_cpx, and CRF19_cpx), and 11 unique recombinant forms were identified. Subtype B (46.4%) and CRF02_AG (39.4%) were the predominant genetic forms. A group of 44 CRF02_AG sequences formed a distinct Tunisian cluster, which also included four viruses from western Europe. Nine viruses were closely related to isolates collected in other African or in European countries. In conclusion, a high HIV-1 genetic diversity is observed in Tunisia and the local spread of CRF02_AG is first documented in this country.

  16. Diversity and abundance of leafhoppers in Canadian vineyards

    PubMed Central

    Saguez, Julien; Olivier, Chrystel; Hamilton, Andrew; Lowery, Thomas; Stobbs, Lorne; Lasnier, Jacques; Galka, Brian; Chen, Xiangsheng; Mauffette, Yves; Vincent, Charles

    2014-01-01

    Abstract Leafhoppers (Hemiptera: Cicadellidae) are pests of many temperate crops, including grapevines ( Vitis species). Uncontrolled populations can induce direct and indirect damage to crops due to feeding that results in significant yield losses and increased mortality in infected vineyards due to virus, bacteria, or phytoplasmas vectored by leafhoppers. The main objective of this work was to determine the diversity of leafhoppers found in vineyards of the three main Canadian production provinces, i.e., in British Columbia, Ontario, and Quebec. Approximately 18,000 specimens were collected in 80 commercial vineyards from 2006 to 2008. We identified 54 genera and at least 110 different species associated with vineyards, among which 22 were predominant and represented more than 91% of all the leafhoppers. Species richness and diversity were estimated by both Shannon’s and Pielou’s indices. For each province, results indicated a temporal variation in species composition. Color photographs provide a tool to quickly identify 72 leafhoppers commonly associated with vineyards. PMID:25373220

  17. Limited genetic diversity of Brucella spp.

    PubMed

    Gándara, B; Merino, A L; Rogel, M A; Martínez-Romero, E

    2001-01-01

    Multilocus enzyme electrophoresis (MLEE) of 99 Brucella isolates, including the type strains from all recognized species, revealed a very limited genetic diversity and supports the proposal of a monospecific genus. In MLEE-derived dendrograms, Brucella abortus and a marine Brucella sp. grouped into a single electrophoretic type related to Brucella neotomae and Brucella ovis. Brucella suis and Brucella canis formed another cluster linked to Brucella melitensis and related to Rhizobium tropici. The Brucella strains tested that were representatives of the six electrophoretic types had the same rRNA gene restriction fragment length polymorphism patterns and identical ribotypes. All 99 isolates had similar chromosome profiles as revealed by the Eckhardt procedure.

  18. Relationships among walleye population characteristics and genetic diversity in northern Wisconsin Lakes

    USGS Publications Warehouse

    Waterhouse, Matthew D.; Sloss, Brian L.; Isermann, Daniel A.

    2014-01-01

    The maintenance of genetic integrity is an important goal of fisheries management, yet little is known regarding the effects of management actions (e.g., stocking, harvest regulations) on the genetic diversity of many important fish species. Furthermore, relationships between population characteristics and genetic diversity remain poorly understood. We examined relationships among population demographics (abundance, recruitment, sex ratio, and mean age of the breeding population), stocking intensity, and genetic characteristics (heterozygosity, effective number of alleles, allelic richness, Wright's inbreeding coefficient, effective population size [Ne], mean d2 [a measure of inbreeding], mean relatedness, and pairwise population ΦST estimates) for 15 populations of Walleye Sander vitreus in northern Wisconsin. We also tested for potential demographic and genetic influences on Walleye body condition and early growth. Combinations of demographic variables explained 47.1–79.8% of the variation in genetic diversity. Skewed sex ratios contributed to a reduction in Ne and subsequent increases in genetic drift and relatedness among individuals within populations; these factors were correlated to reductions in allelic richness and early growth rate. Levels of inbreeding were negatively related to both age-0 abundance and mean age, suggesting Ne was influenced by recruitment and generational overlap. A negative relationship between the effective number of alleles and body condition suggests stocking affected underlying genetic diversity of recipient populations and the overall productivity of the population. These relationships may result from poor performance of stocked fish, outbreeding depression, or density-dependent factors. An isolation-by-distance pattern of genetic diversity was apparent in nonstocked populations, but was disrupted in stocked populations, suggesting that stocking affected genetic structure. Overall, demographic factors were related to genetic

  19. The Effect and Relative Importance of Neutral Genetic Diversity for Predicting Parasitism Varies across Parasite Taxa

    PubMed Central

    Ruiz-López, María José; Monello, Ryan J.; Gompper, Matthew E.; Eggert, Lori S.

    2012-01-01

    Understanding factors that determine heterogeneity in levels of parasitism across individuals is a major challenge in disease ecology. It is known that genetic makeup plays an important role in infection likelihood, but the mechanism remains unclear as does its relative importance when compared to other factors. We analyzed relationships between genetic diversity and macroparasites in outbred, free-ranging populations of raccoons (Procyon lotor). We measured heterozygosity at 14 microsatellite loci and modeled the effects of both multi-locus and single-locus heterozygosity on parasitism using an information theoretic approach and including non-genetic factors that are known to influence the likelihood of parasitism. The association of genetic diversity and parasitism, as well as the relative importance of genetic diversity, differed by parasitic group. Endoparasite species richness was better predicted by a model that included genetic diversity, with the more heterozygous hosts harboring fewer endoparasite species. Genetic diversity was also important in predicting abundance of replete ticks (Dermacentor variabilis). This association fit a curvilinear trend, with hosts that had either high or low levels of heterozygosity harboring fewer parasites than those with intermediate levels. In contrast, genetic diversity was not important in predicting abundance of non-replete ticks and lice (Trichodectes octomaculatus). No strong single-locus effects were observed for either endoparasites or replete ticks. Our results suggest that in outbred populations multi-locus diversity might be important for coping with parasitism. The differences in the relationships between heterozygosity and parasitism for the different parasites suggest that the role of genetic diversity varies with parasite-mediated selective pressures. PMID:23049796

  20. Impacts of large herbivorous mammals on bird diversity and abundance in an African savanna.

    PubMed

    Ogada, D L; Gadd, M E; Ostfeld, R S; Young, T P; Keesing, F

    2008-05-01

    Large native mammals are declining dramatically in abundance across Africa, with strong impacts on both plant and animal community dynamics. However, the net effects of this large-scale loss in megafauna are poorly understood because responses by several ecologically important groups have not been assessed. We used a large-scale, replicated exclusion experiment in Kenya to investigate the impacts of different guilds of native and domestic large herbivores on the diversity and abundance of birds over a 2-year period. The exclusion of large herbivorous native mammals, including zebras (Equus burchelli), giraffes (Giraffa camelopardalis), elephants (Loxodonta africana), and buffalos (Syncerus caffer), increased the diversity of birds by 30%. Most of this effect was attributable to the absence of elephants and giraffes; these megaherbivores reduced both the canopy area of subdominant woody vegetation and the biomass of ground-dwelling arthropods, and both of these factors were good predictors of the diversity of birds. The canopy area of subdominant trees was positively correlated with the diversity of granivorous birds. The biomass of ground-dwelling arthropods was positively correlated with the diversity of insectivorous birds. Our results suggest that most native large herbivores are compatible with an abundant and diverse bird fauna, as are cattle if they are at a relatively low stocking rate. Future research should focus on determining the spatial arrangements and densities of megaherbivores that will optimize both megaherbivore abundance and bird diversity.

  1. The silent threat of low genetic diversity

    USGS Publications Warehouse

    Hunter, Margaret E.

    2013-01-01

    Across the Caribbean, protected coastal waters have served as primary feeding and breeding grounds for the endangered Antillean manatee. Unfortunately, these same coastal waters are also a popular “habitat” for humans. In the past, the overlap between human and manatee habitat allowed for manatee hunting and threatened the survival of these gentle marine mammals. Today, however, threats are much more inadvertent and are often related to coastal development, degraded habitats and boat strikes. In the state of Florida, decades of research on the species’ biological needs have helped conservationists address threats to its survival. For example, low wake zones and boater education have protected manatees from boat strikes, and many of their critical winter refuges are now protected. The Florida population has grown steadily, thus increasing from approximately 1,200 in 1991 to more than 5,000 in 2010. It is conceivable that in Florida manatees may one day be reclassified as “threatened” rather than “endangered.” Yet, in other parts of the Caribbean, threats still loom. This includes small, isolated manatee populations found on islands that can be more susceptible to extinction and lack of genetic diversity. To ensure the species’ long-term viability, scientists have turned their sights to the overall population dynamics of manatees throughout the Caribbean. Molecular genetics has provided new insights into long-term threats the species faces. Fortunately, the emerging field of conservation genetics provides managers with tools and strategies for protecting the species’ long-term viability.

  2. Diversity, abundance and community structure of benthic macro- and megafauna on the Beaufort shelf and slope.

    PubMed

    Nephin, Jessica; Juniper, S Kim; Archambault, Philippe

    2014-01-01

    Diversity and community patterns of macro- and megafauna were compared on the Canadian Beaufort shelf and slope. Faunal sampling collected 247 taxa from 48 stations with box core and trawl gear over the summers of 2009-2011 between 50 and 1,000 m in depth. Of the 80 macrofaunal and 167 megafaunal taxa, 23% were uniques, present at only one station. Rare taxa were found to increase proportional to total taxa richness and differ between the shelf (< 100 m) where they tended to be sparse and the slope where they were relatively abundant. The macrofauna principally comprised polychaetes with nephtyid polychaetes dominant on the shelf and maldanid polychaetes (up to 92% in relative abundance/station) dominant on the slope. The megafauna principally comprised echinoderms with Ophiocten sp. (up to 90% in relative abundance/station) dominant on the shelf and Ophiopleura sp. dominant on the slope. Macro- and megafauna had divergent patterns of abundance, taxa richness (α diversity) and β diversity. A greater degree of macrofaunal than megafaunal variation in abundance, richness and β diversity was explained by confounding factors: location (east-west), sampling year and the timing of sampling with respect to sea-ice conditions. Change in megafaunal abundance, richness and β diversity was greatest across the depth gradient, with total abundance and richness elevated on the shelf compared to the slope. We conclude that megafaunal slope taxa were differentiated from shelf taxa, as faunal replacement not nestedness appears to be the main driver of megafaunal β diversity across the depth gradient.

  3. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons

    NASA Astrophysics Data System (ADS)

    Kumari, Priyanka; Woo, Cheolwoon; Yamamoto, Naomichi; Choi, Hong-Lim

    2016-11-01

    We examined the abundance, diversity and community composition of airborne fungi in swine houses during winter and summer seasons by using quantitative PCR and Illumina HiSeq sequencing of ITS1 region. The abundance of airborne fungi varied significantly only between seasons, while fungal diversity varied significantly both within and between seasons, with both abundance and diversity peaked in winter. The fungal OTU composition was largely structured by the swine house unit and season as well as by their interactions. Of the measured microclimate variables, relative humidity, particulate matters (PMs), ammonia, and stocking density were significantly correlated with fungal OTU composition. The variation in beta diversity was higher within swine houses during summer, which indicates that the airborne fungal community composition was more heterogeneous in summer compared to winter. We also identified several potential allergen/pathogen related fungal genera in swine houses. The total relative abundance of potential allergen/pathogen related fungal genera varied between swine houses in both seasons, and showed positive correlation with PM2.5. Overall, our findings show that the abundance, diversity and composition of airborne fungi are highly variable in swine houses and to a large extent structured by indoor microclimate variables of swine houses.

  4. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons

    PubMed Central

    Kumari, Priyanka; Woo, Cheolwoon; Yamamoto, Naomichi; Choi, Hong-Lim

    2016-01-01

    We examined the abundance, diversity and community composition of airborne fungi in swine houses during winter and summer seasons by using quantitative PCR and Illumina HiSeq sequencing of ITS1 region. The abundance of airborne fungi varied significantly only between seasons, while fungal diversity varied significantly both within and between seasons, with both abundance and diversity peaked in winter. The fungal OTU composition was largely structured by the swine house unit and season as well as by their interactions. Of the measured microclimate variables, relative humidity, particulate matters (PMs), ammonia, and stocking density were significantly correlated with fungal OTU composition. The variation in beta diversity was higher within swine houses during summer, which indicates that the airborne fungal community composition was more heterogeneous in summer compared to winter. We also identified several potential allergen/pathogen related fungal genera in swine houses. The total relative abundance of potential allergen/pathogen related fungal genera varied between swine houses in both seasons, and showed positive correlation with PM2.5. Overall, our findings show that the abundance, diversity and composition of airborne fungi are highly variable in swine houses and to a large extent structured by indoor microclimate variables of swine houses. PMID:27892507

  5. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting.

    PubMed

    Qian, Xun; Gu, Jie; Sun, Wei; Wang, Xiao-Juan; Su, Jian-Qiang; Stedfeld, Robert

    2018-02-15

    Aerobic composting is used widely for animal manure recycling, and it may reduce the amount of antibiotic resistance genes (ARGs) that enter the environment. We sampled three types of animal (bovine, chicken, and pig) manure and the corresponding composts from 12 large-scale farms, and tested multiple ARGs and mobile genetic elements (MGEs) by high-throughput qPCR. A total of 109 ARGs were detected in the manure and compost samples, thereby demonstrating that both are important ARG reservoirs. The diversity and abundance of ARGs were significantly higher in chicken and pig manure than bovine manure, but industrial composting was more efficient at reducing the ARGs in chicken manure than pig and bovine manure. Composting universally reduced some ARGs, but inconsistently influenced other ARGs from different types of animal manures. Network analysis detected the widespread co-occurrence of ARGs and MGEs. floR, ermF, catB3, aac(6')-lb(akaaacA4), and aadA were identified as suitable indicator genes for estimating the total abundance of ARGs. Our results suggest that different animal species had significant effects on the diversity, abundance, and persistence of ARGs, where the abundance of transposons, heavy metal concentration, total nitrogen level, and the dosage and duration of exposure to antibiotics may explain these differences. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Limited Genetic Diversity of Brucella spp.

    PubMed Central

    Gándara, Benjamín; Merino, Ahidé López; Rogel, Marco Antonio; Martínez-Romero, Esperanza

    2001-01-01

    Multilocus enzyme electrophoresis (MLEE) of 99 Brucella isolates, including the type strains from all recognized species, revealed a very limited genetic diversity and supports the proposal of a monospecific genus. In MLEE-derived dendrograms, Brucella abortus and a marine Brucella sp. grouped into a single electrophoretic type related to Brucella neotomae and Brucella ovis. Brucella suis and Brucella canis formed another cluster linked to Brucella melitensis and related to Rhizobium tropici. The Brucella strains tested that were representatives of the six electrophoretic types had the same rRNA gene restriction fragment length polymorphism patterns and identical ribotypes. All 99 isolates had similar chromosome profiles as revealed by the Eckhardt procedure. PMID:11136777

  7. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia

    PubMed Central

    Ghaderpour, Aziz; Ho, Wing Sze; Chew, Li-Lee; Bong, Chui Wei; Chong, Ving Ching; Thong, Kwai-Lin; Chai, Lay Ching

    2015-01-01

    E.coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant, and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34%) of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83%) and beta-lactams (37%). Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%). Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1%) were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry. PMID:26483759

  8. Genetic diversity and species diversity of stream fishes covary across a land-use gradient

    USGS Publications Warehouse

    Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackson, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S.

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems. ?? 2011 Springer-Verlag.

  9. Genetic diversity and species diversity of stream fishes covary across a land-use gradient.

    PubMed

    Blum, Michael J; Bagley, Mark J; Walters, David M; Jackson, Suzanne A; Daniel, F Bernard; Chaloud, Deborah J; Cade, Brian S

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems.

  10. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    PubMed

    Erfmeier, Alexandra; Hantsch, Lydia; Bruelheide, Helge

    2013-01-01

    Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of invasive plants, a clear

  11. Relationship of Course Woody Debris to Red-Cockaded Woodpecker Prey Diversity and Abundance

    SciTech Connect

    Horn, G.S.

    1999-09-03

    The abundance of diversity of prey commonly used by the red-cockaded woodpecker were monitored in experimental plots in which course woody debris was manipulated. In one treatment, all the woody debris over four inches was removed. In the second treatment, the natural amount of mortality remained intact. The overall diversity of prey was unaffected; however, wood roaches were significantly reduced by removal of woody debris. The latter suggests that intensive utilizations or harvesting practices may reduce foraging.

  12. Understanding crop genetic diversity under modern plant breeding.

    PubMed

    Fu, Yong-Bi

    2015-11-01

    Maximizing crop yield while at the same time minimizing crop failure for sustainable agriculture requires a better understanding of the impacts of plant breeding on crop genetic diversity. This review identifies knowledge gaps and shows the need for more research into genetic diversity changes under plant breeding. Modern plant breeding has made a profound impact on food production and will continue to play a vital role in world food security. For sustainable agriculture, a compromise should be sought between maximizing crop yield under changing climate and minimizing crop failure under unfavorable conditions. Such a compromise requires better understanding of the impacts of plant breeding on crop genetic diversity. Efforts have been made over the last three decades to assess crop genetic diversity using molecular marker technologies. However, these assessments have revealed some temporal diversity patterns that are largely inconsistent with our perception that modern plant breeding reduces crop genetic diversity. An attempt was made in this review to explain such discrepancies by examining empirical assessments of crop genetic diversity and theoretical investigations of genetic diversity changes over time under artificial selection. It was found that many crop genetic diversity assessments were not designed to assess diversity impacts from specific plant breeding programs, while others were experimentally inadequate and contained technical biases from the sampling of cultivars and genomes. Little attention has been paid to theoretical investigations on crop genetic diversity changes from plant breeding. A computer simulation of five simplified breeding schemes showed the substantial effects of plant breeding on the retention of heterozygosity over generations. It is clear that more efforts are needed to investigate crop genetic diversity in space and time under plant breeding to achieve sustainable crop production.

  13. Increasing aridity reduces soil microbial diversity and abundance in global drylands.

    PubMed

    Maestre, Fernando T; Delgado-Baquerizo, Manuel; Jeffries, Thomas C; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Quero, José Luis; García-Gómez, Miguel; Gallardo, Antonio; Ulrich, Werner; Bowker, Matthew A; Arredondo, Tulio; Barraza-Zepeda, Claudia; Bran, Donaldo; Florentino, Adriana; Gaitán, Juan; Gutiérrez, Julio R; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Miriti, Maria; Naseri, Kamal; Ospina, Abelardo; Stavi, Ilan; Wang, Deli; Woods, Natasha N; Yuan, Xia; Zaady, Eli; Singh, Brajesh K

    2015-12-22

    Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands.

  14. Increasing aridity reduces soil microbial diversity and abundance in global drylands

    PubMed Central

    Delgado-Baquerizo, Manuel; Jeffries, Thomas C.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Quero, José Luis; García-Gómez, Miguel; Gallardo, Antonio; Ulrich, Werner; Bowker, Matthew A.; Arredondo, Tulio; Barraza-Zepeda, Claudia; Bran, Donaldo; Florentino, Adriana; Gaitán, Juan; Gutiérrez, Julio R.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Miriti, Maria; Naseri, Kamal; Ospina, Abelardo; Stavi, Ilan; Wang, Deli; Woods, Natasha N.; Yuan, Xia; Zaady, Eli; Singh, Brajesh K.

    2015-01-01

    Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands. PMID:26647180

  15. Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity.

    USGS Publications Warehouse

    Vandergast, Amy G.; Perry, William M.; Lugo, Roberto V.; Hathaway, Stacie A.

    2011-01-01

    The Landscape Genetics GIS Toolbox contains tools that run in the Geographic Information System software, ArcGIS, to map genetic landscapes and to summarize multiple genetic landscapes as average and variance surfaces. These tools can be used to visualize the distribution of genetic diversity across geographic space and to study associations between patterns of genetic diversity and geographic features or other geo-referenced environmental data sets. Together, these tools create genetic landscape surfaces directly from tables containing genetic distance or diversity data and sample location coordinates, greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic Information System.

  16. Inbred or Outbred? Genetic Diversity in Laboratory Rodent Colonies

    PubMed Central

    Brekke, Thomas D.; Steele, Katherine A.; Mulley, John F.

    2017-01-01

    Nonmodel rodents are widely used as subjects for both basic and applied biological research, but the genetic diversity of the study individuals is rarely quantified. University-housed colonies tend to be small and subject to founder effects and genetic drift; so they may be highly inbred or show substantial genetic divergence from other colonies, even those derived from the same source. Disregard for the levels of genetic diversity in an animal colony may result in a failure to replicate results if a different colony is used to repeat an experiment, as different colonies may have fixed alternative variants. Here we use high throughput sequencing to demonstrate genetic divergence in three isolated colonies of Mongolian gerbil (Meriones unguiculatus) even though they were all established recently from the same source. We also show that genetic diversity in allegedly “outbred” colonies of nonmodel rodents (gerbils, hamsters, house mice, deer mice, and rats) varies considerably from nearly no segregating diversity to very high levels of polymorphism. We conclude that genetic divergence in isolated colonies may play an important role in the “replication crisis.” In a more positive light, divergent rodent colonies represent an opportunity to leverage genetically distinct individuals in genetic crossing experiments. In sum, awareness of the genetic diversity of an animal colony is paramount as it allows researchers to properly replicate experiments and also to capitalize on other genetically distinct individuals to explore the genetic basis of a trait. PMID:29242387

  17. Distribution, abundance, and diversity of stream fishes under variable environmental conditions

    Treesearch

    Christopher M. Taylor; Thomas L. Holder; Richard A. Fiorillo; Lance R. Williams; R. Brent Thomas; Melvin L. Warren

    2006-01-01

    The effects of stream size and flow regime on spatial and temporal variability of stream fish distribution, abundance, and diversity patterns were investigated. Assemblage variability and species richness were each significantly associated with a complex environmental gradient contrasting smaller, hydrologically variable stream localities with larger localities...

  18. Diversity and abundance of human-pathogenic fungi associated with pigeon faeces in urban environments.

    PubMed

    Lee, Won Dong; Fong, Jonathan J; Eimes, John A; Lim, Young Woon

    2017-09-01

    Pathogenic fungi are a growing health concern worldwide, particularly in large, densely populated cities. The dramatic upsurge of pigeon populations in cities has been implicated in the increased incidence of invasive fungal infections. In this study, we used a culture-independent, high-throughput sequencing approach to describe the diversity of clinically relevant fungi (CRF) associated with pigeon faeces and map the relative abundance of CRF across Seoul, Korea. In addition, we tested whether certain geographical, sociological and meteorological factors were significantly associated with the diversity and relative abundance of CRF. Finally, we compared the CRF diversity of fresh and old pigeon faeces to identify the source of the fungi and the role of pigeons in dispersal. Our results demonstrated that both the composition and relative abundance of CRF are unevenly distributed across Seoul. The green area ratio and the number of multiplex houses were positively correlated with species diversity, whereas wind speed and number of households were negatively correlated. The number of workers and green area ratio were positively correlated with the relative abundance of CRF, whereas wind speed was negatively correlated. Because many CRF were absent in fresh faeces, we inferred that most species cannot survive the gastrointestinal tract of pigeons and instead are likely transmitted through soil or air and use pigeon faeces as a substrate for proliferation. © 2017 John Wiley & Sons Ltd.

  19. Status of genetic diversity of U. S. dairy goat breeds

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity underpins the livestock breeders’ ability to improve the production potential of their livestock. Therefore, it is important to periodically assess genetic diversity within a breed. Such an analysis was conducted on U.S. dairy goat breeds: Alpine, LaMancha, Nigerian Dwarf, Nubian, ...

  20. Effects of Transgenic Bt+CpTI cotton on the abundance and diversity of rhizosphere ammonia oxidizing bacteria and archaea.

    PubMed

    Dong, Lianhua; Meng, Ying; Wang, Jing; Sun, Guoqing

    2016-09-01

    Genetically modified crops (GMCs) hold great promise for improving agricultural output, but at the same time present challenges in terms of environmental safety assessment. Ammonia oxidizers, including ammonia oxidizing bacteria (AOB) and archaea (AOA), are very important functional microbial groups in nitrogen cycle. The abundance and diversity of AOA and AOB in the rhizosphere of genetically modified cotton (SGK321) and non-GM cotton (SY321) across growth stages were investigated using real time quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (T-RFLP). Results showed that cotton genotype had a significant effect on the change in abundance of AOA and AOB, as indicated by amoA copy number. Variations in AOB abundance in rhizosphere of SY321 differed from those in SGK321. The number of AOB in the rhizosphere of SY321 fluctuated considerably: It dramatically decreased from 1.2?106 copies g-1 dry soil to 3?105 copies g-1 dry soil during the flowering stage and then increased to 1.1?106 copies g-1 and 1.5?106 copies g-1 at the belling and boll opening stages, respectively. However, abundance of AOB in the rhizosphere of SGK321 was relatively stable during all the stages of growth. The effect of SGK321 and SY321 on AOA number was quite similar to that of AOB: AOA abundance in SGK321 increased smoothly from 1.0 ?105 copies g-1 dry soil to 1.4?106 copies g-1 dry soil during growth, but that in SY321 fluctuated. Correspondence analysis (CA), canonical CA (CCA), and partial CCA (pCCA) of T-RFLP profiles of AOA and AOB showed that AOB community changed across growth stages in both cotton genotypes, and cotton genotype was the most important factor affecting the AOA community. In conclusion, the current findings indicated no adverse effect of GM cotton on functional microorganisms.

  1. Low worldwide genetic diversity in the killer whale (Orcinus orca): implications for demographic history.

    PubMed Central

    Hoelzel, A Rus; Natoli, Ada; Dahlheim, Marilyn E; Olavarria, Carlos; Baird, Robin W; Black, Nancy A

    2002-01-01

    A low level of genetic variation in mammalian populations where the census population size is relatively large has been attributed to various factors, such as a naturally small effective population size, historical bottlenecks and social behaviour. The killer whale (Orcinus orca) is an abundant, highly social species with reduced genetic variation. We find no consistent geographical pattern of global diversity and no mtDNA variation within some regional populations. The regional lack of variation is likely to be due to the strict matrilineal expansion of local populations. The worldwide pattern and paucity of diversity may indicate a historical bottleneck as an additional factor. PMID:12137576

  2. Integrating population and genetic monitoring to understand changes in the abundance of a threatened seabird

    Treesearch

    Catalina Vásquez-Carrillo; R. William Henry; Laird Henkel; M. Zachariah Peery

    2013-01-01

    Population monitoring programs for threatened species are rarely designed to disentangle the effects of movements from changes in birth and death rates on estimated trends in abundance. Here, we illustrate how population and genetic monitoring can be integrated to understand the cause of large changes in the abundance of a threatened species of seabird, the Marbled...

  3. Genetic Diversity of Salt Tolerance in Miscanthus

    PubMed Central

    Chen, Chang-Lin; van der Schoot, Hanneke; Dehghan, Shiva; Alvim Kamei, Claire L.; Schwarz, Kai-Uwe; Meyer, Heike; Visser, Richard G. F.; van der Linden, C. Gerard

    2017-01-01

    Miscanthus is a woody rhizomatous C4 grass that can be used as a CO2 neutral biofuel resource. It has potential to grow in marginal areas such as saline soils, avoiding competition for arable lands with food crops. This study explored genetic diversity for salt tolerance in Miscanthus and discovered mechanisms and traits that can be used to improve the yield under salt stress. Seventy genotypes of Miscanthus (including 57 M. sinensis, 5 M. sacchariflorus, and 8 hybrids) were evaluated for salt tolerance under saline (150 mM NaCl) and normal growing conditions using a hydroponic system. Analyses of shoot growth traits and ion concentrations revealed the existence of large variation for salt tolerance in the genotypes. We identified genotypes with potential for high biomass production both under control and saline conditions that may be utilized for growth under marginal, saline conditions. Several relatively salt tolerant genotypes had clearly lower Na+ concentrations and showed relatively high K+/Na+ ratios in the shoots under salt stress, indicating that a Na+ exclusion mechanism was utilized to prevent Na+ accumulation in the leaves. Other genotypes showed limited reduction in leaf expansion and growth rate under saline conditions, which may be indicative of osmotic stress tolerance. The genotypes demonstrating potentially different salt tolerance mechanisms can serve as starting material for breeding programs aimed at improving salinity tolerance of Miscanthus. PMID:28261243

  4. Genetic diversity of Echinococcus spp. in Russia.

    PubMed

    Konyaev, Sergey V; Yanagida, Tetsuya; Nakao, Minoru; Ingovatova, Galina M; Shoykhet, Yakov N; Bondarev, Alexandr Y; Odnokurtsev, Valeriy A; Loskutova, Kyunnyay S; Lukmanova, Gulnur I; Dokuchaev, Nikolai E; Spiridonov, Sergey; Alshinecky, Mikhail V; Sivkova, Tatyana N; Andreyanov, Oleg N; Abramov, Sergey A; Krivopalov, Anton V; Karpenko, Sergey V; Lopatina, Natalia V; Dupal, Tamara A; Sako, Yasuhito; Ito, Akira

    2013-11-01

    In Russia, both alveolar and cystic echinococcoses are endemic. This study aimed to identify the aetiological agents of the diseases and to investigate the distribution of each Echinococcus species in Russia. A total of 75 Echinococcus specimens were collected from 14 host species from 2010 to 2012. Based on the mitochondrial DNA sequences, they were identified as Echinococcus granulosus sensu stricto (s.s.), E. canadensis and E. multilocularis. E. granulosus s.s. was confirmed in the European Russia and the Altai region. Three genotypes, G6, G8 and G10 of E. canadensis were detected in Yakutia. G6 was also found in the Altai region. Four genotypes of E. multilocularis were confirmed; the Asian genotype in the western Siberia and the European Russia, the Mongolian genotype in an island of Baikal Lake and the Altai Republic, the European genotype from a captive monkey in Moscow Zoo and the North American genotype in Yakutia. The present distributional record will become a basis of public health to control echinococcoses in Russia. The rich genetic diversity demonstrates the importance of Russia in investigating the evolutionary history of the genus Echinococcus.

  5. Endemic insular and coastal Tunisian date palm genetic diversity.

    PubMed

    Zehdi-Azouzi, Salwa; Cherif, Emira; Guenni, Karim; Abdelkrim, Ahmed Ben; Bermil, Aymen; Rhouma, Soumaya; Salah, Mohamed Ben; Santoni, Sylvain; Pintaud, Jean Christophe; Aberlenc-Bertossi, Frédérique; Hannachi, Amel Salhi

    2016-04-01

    The breeding of crop species relies on the valorisation of ancestral or wild varieties to enrich the cultivated germplasm. The Tunisian date palm genetic patrimony is being threatened by diversity loss and global climate change. We have conducted a genetic study to evaluate the potential of spontaneous coastal resources to improve the currently exploited Tunisian date palm genetic pool. Eighteen microsatellite loci of Phoenix dactylifera L. were used to compare the genetic diversity of coastal accessions from Kerkennah, Djerba, Gabès and continental date palm accessions from Tozeur. A collection of 105 date palms from the four regions was analysed. This study has provided us with an extensive understanding of the local genetic diversity and its distribution. The coastal date palm genotypes exhibit a high and specific genetic diversity. These genotypes are certainly an untapped reservoir of agronomically important genes to improve cultivated germplasm in continental date palm.

  6. Identification of hydrologic indicators related to fish diversity and abundance: A data mining approach for fish community analysis

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Chen E.; Cai, Ximing; Herricks, Edwin E.

    2008-04-01

    This paper develops a new approach to identify hydrologic indicators related to fish community and generate a quantitative function between an ecological target index and the identified hydrologic indicators. The approach is based on genetic programming (GP), a data mining method. Using the Shannon Index (a fish community diversity index) or the number of individuals (total abundance) of a fish community, as an ecological target, the GP identified the most ecologically relevant hydrologic indicators (ERHIs) from 32 indicators of hydrologic alteration, for the case study site, the upper Illinois River. Robustness analysis showed that different GP runs found a similar set of ERHIs; each of the identified ERHI from different GP runs had a consistent relationship with the target index. By comparing the GP results with those from principal component analysis and autecology matrix, the three approaches identified a small number (six) of common ERHIs. Particularly, the timing of low flow (Dmin) seems to be more relevant to the diversity of the fish community, while the magnitude of the low flow (Qb) is more relevant to the total fish abundance; large rising rates result in a significant improvement of fish diversity, which is counterintuitive and against previous findings. The quantitative function developed by GP was further used to construct an indicator impact matrix (IIM), which was demonstrated as a potentially useful tool for streamflow restoration design.

  7. Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity.

    PubMed

    Fridley, Jason D; Grime, J Philip

    2010-08-01

    Studies of whether plant community structure and ecosystem properties depend on the genetic diversity of component populations have been largely restricted to species monocultures and have involved levels of genetic differentiation that do not necessarily correspond to that exhibited by neighboring mature individuals in the field. We established experimental communities of varying intraspecific genetic diversity, using genotypes of eight species propagated from clonal material of individuals derived from a small (100-m2) limestone grassland community, and tested whether genetic diversity (one, four, and eight genotypes per species) influenced community composition and annual aboveground productivity across communities of one, four, and eight species. Eight-species communities were represented by common grass, sedge, and forb species, and four- and one-species communities were represented by four graminoids and the dominant grass Festuca ovina, respectively. After three years of community development, there was a marginal increase of species diversity with increased genetic diversity in four- and eight-species communities, and genetic diversity altered the performance of genotypes in monospecific communities of F. ovina. However, shifts in composition from genetic diversity were not sufficient to alter patterns of community productivity. Neighborhood models describing pairwise interactions between species indicated that genetic diversity decreased the intensity of competition between species in four-species mixtures, thereby promoting competitive equivalency and enhancing species equitability. In F. ovina monocultures, neighborhood models revealed both synergistic and antagonistic interactions between genotypes that were reduced in intensity on more stressful shallow soils. Although the dependence of F. ovina genotype performance on neighborhood genetic composition did not influence total productivity, such dependence was sufficient to uncouple genotype performance

  8. Determining the Diversity and Species Abundance Patterns in Arctic Soils using Rational Methods for Exploring Microbial Diversity

    NASA Astrophysics Data System (ADS)

    Ovreas, L.; Quince, C.; Sloan, W.; Lanzen, A.; Davenport, R.; Green, J.; Coulson, S.; Curtis, T.

    2012-12-01

    Arctic microbial soil communities are intrinsically interesting and poorly characterised. We have inferred the diversity and species abundance distribution of 6 Arctic soils: new and mature soil at the foot of a receding glacier, Arctic Semi Desert, the foot of bird cliffs and soil underlying Arctic Tundra Heath: all near Ny-Ålesund, Spitsbergen. Diversity, distribution and sample sizes were estimated using the rational method of Quince et al., (Isme Journal 2 2008:997-1006) to determine the most plausible underlying species abundance distribution. A log-normal species abundance curve was found to give a slightly better fit than an inverse Gaussian curve if, and only if, sequencing error was removed. The median estimates of diversity of operational taxonomic units (at the 3% level) were 3600-5600 (lognormal assumed) and 2825-4100 (inverse Gaussian assumed). The nature and origins of species abundance distributions are poorly understood but may yet be grasped by observing and analysing such distributions in the microbial world. The sample size required to observe the distribution (by sequencing 90% of the taxa) varied between ~ 106 and ~105 for the lognormal and inverse Gaussian respectively. We infer that between 5 and 50 GB of sequencing would be required to capture 90% or the metagenome. Though a principle components analysis clearly divided the sites into three groups there was a high (20-45%) degree of overlap in between locations irrespective of geographical proximity. Interestingly, the nearest relatives of the most abundant taxa at a number of most sites were of alpine or polar origin. Samples plotted on first two principal components together with arbitrary discriminatory OTUs

  9. Human land use promotes the abundance and diversity of exotic species on caribbean islands.

    PubMed

    Jesse, Wendy A M; Behm, Jocelyn E; Helmus, Matthew R; Ellers, Jacintha

    2018-05-31

    Human land use causes major changes in species abundance and composition, yet native and exotic species can exhibit different responses to land use change. Native populations generally decline in human-impacted habitats while exotic species often benefit. In this study, we assessed the effects of human land use on exotic and native reptile diversity, including functional diversity, which relates to the range of habitat use strategies in biotic communities. We surveyed 114 reptile communities from localities that varied in habitat structure and human impact level on two Caribbean islands, and calculated species richness, overall abundance and evenness for every plot. Functional diversity indices were calculated using published trait data, which enabled us to detect signs of trait filtering associated with impacted habitats. Our results show that environmental variation among sampling plots was explained by two PCA ordination axes related to habitat structure (i.e. forest or non-forest) and human impact level (i.e. addition of man-made constructions such as roads and buildings). Several diversity indices were significantly correlated with the two PCA axes, but exotic and native species showed opposing responses. Native species reached the highest abundance in forests, while exotic species were absent in this habitat. Human impact was associated with an increase in exotic abundance and species richness, while native species showed no significant associations. Functional diversity was highest in non-forested environments on both islands, and further increased on St. Martin with the establishment of functionally unique exotic species in non-forested habitat. Habitat structure, rather than human impact, proved to be an important agent for environmental filtering of traits, causing divergent functional trait values across forested and non-forested environments. Our results illustrate the importance of considering various elements of land use when studying its impact on

  10. Weed management practices affect the diversity and relative abundance of physic nut mites.

    PubMed

    Saraiva, Althiéris de Sousa; Sarmento, Renato A; Erasmo, Eduardo A L; Pedro-Neto, Marçal; de Souza, Danival José; Teodoro, Adenir V; Silva, Daniella G

    2015-03-01

    Crop management practices determine weed community, which in turn may influence patterns of diversity and abundance of associated arthropods. This study aimed to evaluate whether local weed management practices influence the diversity and relative abundance of phytophagous and predatory mites, as well as mites with undefined feeding habits--of the families Oribatidae and Acaridae--in a physic nut (Jatropha curcas L.) plantation subjected to (1) within-row herbicide spraying and between-row mowing; (2) within-row herbicide spraying and no between-row mowing; (3) within-row weeding and between-row mowing; (4) within-row weeding and no between-row mowing; and (5) unmanaged (control). The herbicide used was glyphosate. Herbicide treatments resulted in higher diversity and relative abundance of predatory mites and mites with undefined feeding habit on physic nut shrubs. This was probably due to the toxic effects of the herbicide on mites or to removal of weeds. Within-row herbicide spraying combined with between-row mowing was the treatment that most contributed to this effect. Our results show that within-row weeds harbor important species of predatory mites and mites with undefined feeding habit. However, the dynamics of such mites in the system can be changed according to the weed management practice applied. Among the predatory mites of the family Phytoseiidae Amblydromalus sp. was the most abundant, whereas Brevipalpus phoenicis was the most frequent phytophagous mite and an unidentified oribatid species was the most frequent mite with undefined feeding habit.

  11. Arthropods associated with fungal galls: do large galls support more abundant and diverse inhabitants?

    NASA Astrophysics Data System (ADS)

    Funamoto, Daichi; Sugiura, Shinji

    2017-02-01

    Fungus-induced galls can attract spore-feeding arthropods as well as gall-feeding ones, resulting in diverse communities. Do large fungal galls support more abundant and diverse arthropod communities than small fungal galls? To address this question, we investigated the structure of the arthropod community associated with bud galls induced by the fungus Melanopsichium onumae on the tree species Cinnamomum yabunikkei (Lauraceae) in central Japan. Thirteen species of arthropods were associated with M. onumae galls. Dominant arthropod species were represented by the larvae of a salpingid beetle (a spore feeder), a nitidulid beetle (a spore feeder), a cosmopterigid moth (a spore feeder), an unidentified moth (a gall tissue feeder), and a drosophilid species (a gall tissue feeder). Arthropod abundance and species richness were positively correlated with gall diameter. The majority of the most abundant species were more frequently found in large galls than in small ones, indicating that large fungal galls, which have more food and/or space for arthropods, could support a more abundant and diverse arthropod community.

  12. Effects of understory structure on the abundance, richness and diversity of Collembola (Arthropoda) in southern Brazil.

    PubMed

    Ribeiro-Troian, Vera R; Baldissera, Ronei; Hartz, Sandra M

    2009-01-01

    The purpose of this study was to investigate the effects of different landscape structures on the understory Collembola community. Four different forest physiognomies were compared: Pinus spp. plantation, Eucalyptus spp. plantation, Araucaria angustifolia plantation, and a remaining native Araucaria forest. Three areas containing two sampling units (25 mx2 m each) were selected in each forest physiognomy. Understory Collembola collection was done with a 1x1 m canvas sheet held horizontally below the vegetation, which was beaten with a 1 m long stick, seasonally from September 2003 to August 2004. We evaluated the influence of forest physiognomies on the abundance, richness and diversity of Collembola communities. It was also verified if the habitat structure of each physiognomy was associated with the composition of the Collembola community. A total number of 4,111 individuals were collected belonging to the families Entomobrydae and Tomocerida (Entomobryomorpha), and Sminthuridae (Symphypleona), and divided in 12 morphospecies. Pinus plantation presented the highest richness, abundance and diversity of Collembola and it was associated to diverse understory vegetation. The abundance of Entomobrydae and Sminthuridae was associated to the presence of bushes, while Tomoceridae abundance was associated to the presence of trees. The habitat structure, measured through understory vegetation density and composition, plays an important role on the determination of the structure and composition of the Collembola community.

  13. Vascular plant abundance and diversity in an alpine heath under observed and simulated global change

    PubMed Central

    Alatalo, Juha M.; Little, Chelsea J.; Jägerbrand, Annika K.; Molau, Ulf

    2015-01-01

    Global change is predicted to cause shifts in species distributions and biodiversity in arctic tundra. We applied factorial warming and nutrient manipulation to a nutrient and species poor alpine/arctic heath community for seven years. Vascular plant abundance in control plots increased by 31%. There were also notable changes in cover in the nutrient and combined nutrient and warming treatments, with deciduous and evergreen shrubs declining, grasses overgrowing these plots. Sedge abundance initially increased significantly with nutrient amendment and then declined, going below initial values in the combined nutrient and warming treatment. Nutrient addition resulted in a change in dominance hierarchy from deciduous shrubs to grasses. We found significant declines in vascular plant diversity and evenness in the warming treatment and a decline in diversity in the combined warming and nutrient addition treatment, while nutrient addition caused a decline in species richness. The results give some experimental support that species poor plant communities with low diversity may be more vulnerable to loss of species diversity than communities with higher initial diversity. The projected increase in nutrient deposition and warming may therefore have negative impacts on ecosystem processes, functioning and services due to loss of species diversity in an already impoverished environment. PMID:25950370

  14. [Ichthyofauna associated to Thalassia testudinum at Lobos reef, Veracruz, Mexico: diversity and abundance].

    PubMed

    González-Gándara, Carlos; Trinidad-Martínez, Silvia del Carmen; Chávez-Morales, Víctor Manuel

    2006-03-01

    The diversity and abundance of ichthyofauna associated with Thalassia testudinum in the Lobos coral reef, Veracruz, Mexico, were studied in September and October 2002. Thirty six visual censuses in four sample sites were made using a 50 x 2 m transect belt. On each census, fish species, abundance and size were recorded. Leaf size and cover of T. testudinum were estimated. The similarity of fish groups was calculated with the Gower coefficient. The most abundant coral reef fishes were: Scarus iseri, Halichoeres bivittatus, Sparisoma radians, Stegastes adustus and Stegastes leucostictus. The highest density (0.04078 ind/m2) and biomass (0.72408 g/m2) of fish species were recorded in site II, where leaf size was greater (30.8 cm). The analysis of variance showed significant differences between sites in leaf size (F = 18.30856; p = 0.00001) and cover (H = 33.8119; p = 0.00001). These differences suggest a relationship between fish diversity and abundance, and T. testudinum leaf size and cover. The Gower similarity index produced two groups of fishes; one of them (site II) showed the highest abundance. In this reef, the fishes associated to sea grasses seem to reflect the characteristics of T. testudinum.

  15. Diversity and relative abundance of the bacterial pathogen, Flavobacterium spp., infecting reproductive ecotypes of kokanee salmon.

    PubMed

    Lemay, Matthew A; Russello, Michael A

    2014-11-04

    Understanding the distribution and abundance of pathogens can provide insight into the evolution and ecology of their host species. Previous research in kokanee, the freshwater form of sockeye salmon (Oncorhynchus nerka), found evidence that populations spawning in streams may experience a greater pathogen load compared with populations that spawn on beaches. In this study we tested for differences in the abundance and diversity of the gram-negative bacteria, Flavobacterium spp., infecting tissues of kokanee in both of these spawning habitats (streams and beaches). Molecular assays were carried out using primers designed to amplify a ~200 nucleotide region of the gene encoding the ATP synthase alpha subunit (AtpA) within the genus Flavobacterium. Using a combination of DNA sequencing and quantitative PCR (qPCR) we compared the diversity and relative abundance of Flavobacterium AtpA amplicons present in DNA extracted from tissue samples of kokanee collected from each spawning habitat. We identified 10 Flavobacterium AtpA haplotypes among the tissues of stream-spawning kokanee and seven haplotypes among the tissues of beach-spawning kokanee, with only two haplotypes shared between spawning habitats. Haplotypes occurring in the same clade as F. psychrophilum were the most prevalent (92% of all reads, 60% of all haplotypes), and occurred in kokanee from both spawning habitats (streams and beaches). Subsequent qPCR assays did not find any significant difference in the relative abundance of Flavobacterium AtpA amplicons between samples from the different spawning habitats. We confirmed the presence of Flavobacterium spp. in both spawning habitats and found weak evidence for increased Flavobacterium diversity in kokanee sampled from stream-spawning sites. However, the quantity of Flavobacterium DNA did not differ between spawning habitats. We recommend further study aimed at quantifying pathogen diversity and abundance in population-level samples of kokanee combined with

  16. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments

    PubMed Central

    Kubo, Kyoko; Lloyd, Karen G; F Biddle, Jennifer; Amann, Rudolf; Teske, Andreas; Knittel, Katrin

    2012-01-01

    Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and quantification of MCG crenarchaeota in diverse types of marine sediments and microbial mats. In general, abundance of MCG (cocci, 0.4 μm) relative to other archaea was highest (12–100%) in anoxic, low-energy environments characterized by deeper sulfate depletion and lower microbial respiration rates (P=0.06 for slot blot and P=0.05 for qPCR). When studied in high depth resolution in the White Oak River estuary and Hydrate Ridge methane seeps, changes in MCG abundance relative to total archaea and MCG phylogenetic composition did not correlate with changes in sulfate reduction or methane oxidation with depth. In addition, MCG abundance did not vary significantly (P>0.1) between seep sites (with high rates of methanotrophy) and non-seep sites (with low rates of methanotrophy). This suggests that MCG are likely not methanotrophs. MCG crenarchaeota are highly diverse and contain 17 subgroups, with a range of intragroup similarity of 82 to 94%. This high diversity and widespread distribution in subsurface sediments indicates that this group is globally important in sedimentary processes. PMID:22551871

  17. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance

    PubMed Central

    Taylor, Joe D; Cunliffe, Michael

    2016-01-01

    Mycoplankton have so far been a neglected component of pelagic marine ecosystems, having been poorly studied relative to other plankton groups. Currently, there is a lack of understanding of how mycoplankton diversity changes through time, and the identity of controlling environmental drivers. Using Fungi-specific high-throughput sequencing and quantitative PCR analysis of plankton DNA samples collected over 6 years from the coastal biodiversity time series site Station L4 situated off Plymouth (UK), we have assessed changes in the temporal variability of mycoplankton diversity and abundance in relation to co-occurring environmental variables. Mycoplankton diversity at Station L4 was dominated by Ascomycota, Basidiomycota and Chytridiomycota, with several orders within these phyla frequently abundant and dominant in multiple years. Repeating interannual mycoplankton blooms were linked to potential controlling environmental drivers, including nitrogen availability and temperature. Specific relationships between mycoplankton and other plankton groups were also identified, with seasonal chytrid blooms matching diatom blooms in consecutive years. Mycoplankton α-diversity was greatest during periods of reduced salinity at Station L4, indicative of riverine input to the ecosystem. Mycoplankton abundance also increased during periods of reduced salinity, and when potential substrate availability was increased, including particulate organic matter. This study has identified possible controlling environmental drivers of mycoplankton diversity and abundance in a coastal sea ecosystem, and therefore sheds new light on the biology and ecology of an enigmatic marine plankton group. Mycoplankton have several potential functional roles, including saprotrophs and parasites, that should now be considered within the consensus view of pelagic ecosystem functioning and services. PMID:26943623

  18. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales.

    PubMed

    Hendershot, John Nicholas; Read, Quentin D; Henning, Jeremiah A; Sanders, Nathan J; Classen, Aimée T

    2017-07-01

    Macroecology seeks to understand broad-scale patterns in the diversity and abundance of organisms, but macroecologists typically study aboveground macroorganisms. Belowground organisms regulate numerous ecosystem functions, yet we lack understanding of what drives their diversity. Here, we examine the controls on belowground diversity along latitudinal and elevational gradients. We performed a global meta-analysis of 325 soil communities across 20 studies conducted along temperature and soil pH gradients. Belowground taxa, whether bacterial or fungal, observed along a given gradient of temperature or soil pH were equally likely to show a linear increase, linear decrease, humped pattern, trough-shaped pattern, or no pattern in diversity along the gradient. Land-use intensity weakly affected the diversity-temperature relationship, but no other factor did so. Our study highlights disparities among diversity patterns of soil microbial communities. Belowground diversity may be controlled by the associated climatic and historical contexts of particular gradients, by factors not typically measured in community-level studies, or by processes operating at scales that do not match the temporal and spatial scales under study. Because these organisms are responsible for a suite of key processes, understanding the drivers of their distribution and diversity is fundamental to understanding the functioning of ecosystems. © 2017 by the Ecological Society of America.

  19. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama

    PubMed Central

    Crawford, Andrew J.; Lips, Karen R.; Bermingham, Eldredge

    2010-01-01

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity. PMID:20643927

  20. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama.

    PubMed

    Crawford, Andrew J; Lips, Karen R; Bermingham, Eldredge

    2010-08-03

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity.

  1. The contributions of forest structure and substrate to bryophyte diversity and abundance in mature coniferous forests of the Pacific Northwest

    Treesearch

    Shelley A. Evans; Charles B. Halpern; Donald McKenzie

    2012-01-01

    Many aspects of forest structure are thought to contribute to the presence, abundance, and diversity of forest-floor bryophytes. To what extent easily measured characteristics of local environment (overstory structure or substrate availability) explain patterns of abundance and diversity remains unclear in most forest ecosystems. We explore these relationships in four...

  2. The effects of coastal development on sponge abundance, diversity, and community composition on Jamaican coral reefs.

    PubMed

    Stubler, Amber D; Duckworth, Alan R; Peterson, Bradley J

    2015-07-15

    Over the past decade, development along the northern coast of Jamaica has accelerated, resulting in elevated levels of sedimentation on adjacent reefs. To understand the effects of this development on sponge community dynamics, we conducted surveys at three locations with varying degrees of adjacent coastal development to quantify species richness, abundance and diversity at two depths (8-10 m and 15-18 m). Sediment accumulation rate, total suspended solids and other water quality parameters were also quantified. The sponge community at the location with the least coastal development and anthropogenic influence was often significantly different from the other two locations, and exhibited higher sponge abundance, richness, and diversity. Sponge community composition and size distribution were statistically different among locations. This study provides correlative evidence that coastal development affects aspects of sponge community ecology, although the precise mechanisms are still unclear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evaluation of genetic diversity and population structure of West-Central Indian cattle breeds.

    PubMed

    Shah, Tejas M; Patel, Jaina S; Bhong, Chandrakant D; Doiphode, Aakash; Umrikar, Uday D; Parmar, Shivnandan S; Rank, Dharamshibhai N; Solanki, Jitendra V; Joshi, Chaitanya G

    2013-08-01

    Evaluations of genetic diversity in domestic livestock populations are necessary to implement region-specific conservation measures. We determined the genetic diversity and evolutionary relationships among eight geographically and phenotypically diverse cattle breeds indigenous to west-central India by genotyping these animals for 22 microsatellite loci. A total of 326 alleles were detected, and the expected heterozygosity ranged from 0.614 (Kenkatha) to 0.701 (Dangi). The mean number of alleles among the cattle breeds ranged from 7.182 (Khillar) to 9.409 (Gaolao). There were abundant genetic variations displayed within breeds, and the genetic differentiation was also high between the Indian cattle breeds, which displayed 15.9% of the total genetic differentiation among the different breeds. The genetic differentiation (pairwise FST ) among the eight Indian breeds varied from 0.0126 for the Kankrej-Malvi pair to 0.2667 for Khillar-Kenkatha pair. The phylogeny, principal components analysis, and structure analysis further supported close grouping of Kankrej, Malvi, Nimari and Gir; Gaolao and Kenkatha, whereas Dangi and Khillar remained at distance from other breeds. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  4. [Genetic diversity of microsatellite loci in captive Amur tigers].

    PubMed

    Zhang, Yu-Gaung; Li, Di-Qiang; Xiao, Qi-Ming; Rao, Li-Qun; Zhang, Xue-Wen

    2004-09-01

    The tiger is one of the most threatened wildlife species since the abundance and distribution of tiger have decreased dramatically in the last century. The wild Amur tiger (Panthera tigris altaica) only distributed in northeast China, the far east area of Russia and the north Korea and its size of wild population is about 450 in the world and 20 in China. Several hundred captive populations of Amur tigers are the main source to protect gene library of tiger and the source of recovering the wild populations. The Breeding Center for Felidae at Hengdaohezi and Haoerbin Tiger Park in Heilongjiang Province is the biggest captive breeding base in China. How to make clear the genetic pedigree and establish reasonable breeding system is the urgent issues. So we use the microsatellite DNA markers and non-invasive technology to research on the genetic diversity of captive Amur tiger in this study. Ten microsatellite loci (Fca005, Fca075, Fca094, Fca152, Fca161, Fca294, Pti002, Pti003, Pti007 and Pti010), highly variable nuclear markers, were studied their genetic diversity in 113 captive Amur tigers. The PCR amplified products of microsatellite loci were detected by non-denatured polyacrylamide gel electrophoresis. Allele numbers, allelic frequency, gene heterozygosity(H(e)), polymorphism information content(PIC) and effective number of allele(N(e)) were calculated. 41 alleles were found and their size were ranged from 110bp to 250bp in ten microsatellite loci, Fca152 had 6 alleles, Fca075, Fca094 and Fca294 had 5 alleles, Fca005 and Pti002 had 4 alleles and the others had 3 alleles in all tiger samples, respectively. The allelic frequencies were from 0.009 to 0.767; The He ranged from 0.385 to 0.707, and Fca294 and Pti010 locus had the highest and lowest value; the PIC were from 0.353 to 0.658, Fca294 and Pti010 locus had the highest and lowest value; and N(e) were from 1.626 to 3.409, Fca294 and Pti010 locus had the highest and lowest value, which showed the ten

  5. Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River.

    PubMed

    Sun, Haohao; He, Xiwei; Ye, Lin; Zhang, Xu-Xiang; Wu, Bing; Ren, Hongqiang

    2017-03-01

    The fecal bacteria in natural waters may pose serious risks on human health. Although many source tracking methods have been developed and used to determine the possible sources of the fecal pollution, little is known about the overall diversity and abundance of fecal bacterial community in natural waters. In this study, a method based on fecal bacterial sequence library was introduced to evaluate the fecal bacterial profile in the Yangtze River (Nanjing section). Our results suggested that the Yangtze River water harbors diverse fecal bacteria. Fifty-eight fecal operational taxonomic units (97% identity level) were detected in the Yangtze River water samples and the relative abundance of fecal bacteria in these samples ranged from 0.1 to 8%. It was also found that the relative abundances of the fecal bacteria in locations near to the downstream of wastewater treatment plants were obviously higher than those in other locations. However, the high abundance of fecal bacteria could decrease to the normal level in 2~4 km in the river due to degradation or dilution, and the overall fecal bacteria level changed little when the Yangtze River flew through the Nanjing City. Moreover, the fecal bacteria in the Yangtze River water were found to be highly associated (Spearman rho = 0.804, P < 0.001) with the potential pathogenic bacteria. Collectively, the findings in this study reveal the diversity, abundance, and possible sources of fecal bacteria in the Yangtze River and advance our understandings of the fecal bacteria community in the natural waters.

  6. Using species abundance distribution models and diversity indices for biogeographical analyses

    NASA Astrophysics Data System (ADS)

    Fattorini, Simone; Rigal, François; Cardoso, Pedro; Borges, Paulo A. V.

    2016-01-01

    We examine whether Species Abundance Distribution models (SADs) and diversity indices can describe how species colonization status influences species community assembly on oceanic islands. Our hypothesis is that, because of the lack of source-sink dynamics at the archipelago scale, Single Island Endemics (SIEs), i.e. endemic species restricted to only one island, should be represented by few rare species and consequently have abundance patterns that differ from those of more widespread species. To test our hypothesis, we used arthropod data from the Azorean archipelago (North Atlantic). We divided the species into three colonization categories: SIEs, archipelagic endemics (AZEs, present in at least two islands) and native non-endemics (NATs). For each category, we modelled rank-abundance plots using both the geometric series and the Gambin model, a measure of distributional amplitude. We also calculated Shannon entropy and Buzas and Gibson's evenness. We show that the slopes of the regression lines modelling SADs were significantly higher for SIEs, which indicates a relative predominance of a few highly abundant species and a lack of rare species, which also depresses diversity indices. This may be a consequence of two factors: (i) some forest specialist SIEs may be at advantage over other, less adapted species; (ii) the entire populations of SIEs are by definition concentrated on a single island, without possibility for inter-island source-sink dynamics; hence all populations must have a minimum number of individuals to survive natural, often unpredictable, fluctuations. These findings are supported by higher values of the α parameter of the Gambin mode for SIEs. In contrast, AZEs and NATs had lower regression slopes, lower α but higher diversity indices, resulting from their widespread distribution over several islands. We conclude that these differences in the SAD models and diversity indices demonstrate that the study of these metrics is useful for

  7. Linking Carbonic Anhydrase Abundance and Diversity in Soils to Ecological Function

    NASA Astrophysics Data System (ADS)

    Pang, E.; Meredith, L. K.; Welander, P. V.

    2015-12-01

    Carbonic anhydrase (CA) is an ancient enzyme widespread among bacteria, archaea, and eukarya that catalyzes the following reaction: CO2 + H2O ⇌ HCO3- + H+. Its functions are critical for key cellular processes such as concentrating CO2 for autotrophic growth, pH regulation, and pathogen survival in hosts. Currently, there are six known CA classes (α, β, γ, δ, η, ζ) arising from several distinct evolutionary lineages. CA are widespread in sequenced genomes, with many organisms containing multiple classes of CA or multiple CA of the same class. Soils host rich microbial communities with diverse and important ecological functions, but the diversity and abundance of CA in soils has not been explored. CA appears to play an important, but poorly understood, role in some biogeochemical cycles such as those of CO2 and its oxygen isotope composition and also carbonyl sulfide (COS), which are potential tracers in predictive carbon cycle models. Recognizing the prevalence and functional significance of CA in soils, we used a combined bioinformatics and molecular biology approach to address fundamental questions regarding the abundance, diversity, and function of CA in soils. To characterize the abundance and diversity of the different CA classes in soils, we analyzed existing soil metagenomic and metatranscriptomic data from the DOE Joint Genome Institute databases. Out of the six classes of CA, we only found the α, β, and γ classes to be present in soils, with the β class being the most abundant. We also looked at genomes of sequenced soil microorganisms to learn what combination of CA classes they contain, from which we can begin to predict the physiological role of CA. To characterize the functional roles of the different CA classes in soils, we collected soil samples from a variety of biomes with diverse chemical and physical properties and quantified the rate of two CA-mediated processes: soil uptake of COS and acceleration of the oxygen isotope exchange

  8. Surviving with low genetic diversity: the case of albatrosses

    PubMed Central

    Milot, Emmanuel; Weimerskirch, Henri; Duchesne, Pierre; Bernatchez, Louis

    2007-01-01

    Low genetic diversity is predicted to negatively impact species viability and has been a central concern for conservation. In contrast, the possibility that some species may thrive in spite of a relatively poor diversity has received little attention. The wandering and Amsterdam albatrosses (Diomedea exulans and Diomedea amsterdamensis) are long-lived seabirds standing at an extreme along the gradient of life strategies, having traits that may favour inbreeding and low genetic diversity. Divergence time of the two species is estimated at 0.84 Myr ago from cytochrome b data. We tested the hypothesis that both albatrosses inherited poor genetic diversity from their common ancestor. Within the wandering albatross, per cent polymorphic loci and expected heterozygosity at amplified fragment length polymorphisms were approximately one-third of the minimal values reported in other vertebrates. Genetic diversity in the Amsterdam albatross, which is recovering from a severe bottleneck, was about twice as low as in the wandering albatross. Simulations supported the hypothesis that genetic diversity in albatrosses was already depleted prior to their divergence. Given the generally high breeding success of these species, it is likely that they are not suffering much from their impoverished diversity. Whether albatrosses are unique in this regard is unknown, but they appear to challenge the classical view about the negative consequences of genetic depletion on species survival. PMID:17251114

  9. Effects of complex life cycles on genetic diversity: cyclical parthenogenesis.

    PubMed

    Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S

    2016-11-01

    Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks).

  10. Abundance, diversity and community composition of free-living protozoa on vegetable sprouts.

    PubMed

    Chavatte, N; Lambrecht, E; Van Damme, I; Sabbe, K; Houf, K

    2016-05-01

    Interactions with free-living protozoa (FLP) have been implicated in the persistence of pathogenic bacteria on food products. In order to assess the potential involvement of FLP in this contamination, detailed knowledge on their occurrence, abundance and diversity on food products is required. In the present study, enrichment and cultivation methods were used to inventory and quantify FLP on eight types of commercial vegetable sprouts (alfalfa, beetroot, cress, green pea, leek, mung bean, red cabbage and rosabi). In parallel, total aerobic bacteria and Escherichia coli counts were performed. The vegetable sprouts harbored diverse communities of FLP, with Tetrahymena (ciliate), Bodo saltans and cercomonads (flagellates), and Acanthamoeba and Vannella (amoebae) as the dominant taxa. Protozoan community composition and abundance significantly differed between the sprout types. Beetroot harbored the most abundant and diverse FLP communities, with many unique species such as Korotnevella sp., Vannella sp., Chilodonella sp., Podophrya sp. and Sphaerophrya sp. In contrast, mung bean sprouts were species-poor and had low FLP numbers. Sampling month and company had no significant influence, suggesting that seasonal and local factors are of minor importance. Likewise, no significant relationship between protozoan community composition and bacterial load was observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Genetic Diversity in Introduced Populations with an Allee Effect

    PubMed Central

    Wittmann, Meike J.; Gabriel, Wilfried; Metzler, Dirk

    2014-01-01

    A phenomenon that strongly influences the demography of small introduced populations and thereby potentially their genetic diversity is the demographic Allee effect, a reduction in population growth rates at small population sizes. We take a stochastic modeling approach to investigate levels of genetic diversity in populations that successfully overcame either a strong Allee effect, in which populations smaller than a certain critical size are expected to decline, or a weak Allee effect, in which the population growth rate is reduced at small sizes but not negative. Our results indicate that compared to successful populations without an Allee effect, successful populations with a strong Allee effect tend to (1) derive from larger founder population sizes and thus have a higher initial amount of genetic variation, (2) spend fewer generations at small population sizes where genetic drift is particularly strong, and (3) spend more time around the critical population size and thus experience more genetic drift there. In the case of multiple introduction events, there is an additional increase in diversity because Allee-effect populations tend to derive from a larger number of introduction events than other populations. Altogether, a strong Allee effect can either increase or decrease genetic diversity, depending on the average founder population size. By contrast, a weak Allee effect tends to decrease genetic diversity across the entire range of founder population sizes. Finally, we show that it is possible in principle to infer critical population sizes from genetic data, although this would require information from many independently introduced populations. PMID:25009147

  12. Bee communities along a prairie restoration chronosequence: similar abundance and diversity, distinct composition.

    PubMed

    Tonietto, Rebecca K; Ascher, John S; Larkin, Daniel J

    2017-04-01

    Recognition of the importance of bee conservation has grown in response to declines of managed honey bees and some wild bee species. Habitat loss has been implicated as a leading cause of declines, suggesting that ecological restoration is likely to play an increasing role in bee conservation efforts. In the midwestern United States, restoration of tallgrass prairie has traditionally targeted plant community objectives without explicit consideration for bees. However, restoration of prairie vegetation is likely to provide ancillary benefits to bees through increased foraging and nesting resources. We investigated community assembly of bees across a chronosequence of restored eastern tallgrass prairies and compared patterns to those in control and reference habitats (old fields and prairie remnants, respectively). We collected bees for 3 yr and measured diversity and abundance of in-bloom flowering plants, vegetation structure, ground cover, and surrounding land use as predictors of bee abundance and bee taxonomic and functional diversity. We found that site-level variables, but not site type or restoration age, were significant predictors of bee abundance (bloom diversity, P = 0.004; bare ground cover, P = 0.02) and bee diversity (bloom diversity, P = 0.01). There were significant correlations between overall composition of bee and blooming plant communities (Mantel test, P = 0.002), and both plant and bee assemblages in restorations were intermediate between those of old fields and remnant prairies. Restorations exhibited high bee beta diversity, i.e., restored sites' bee assemblages were taxonomically and functionally differentiated from each other. This pattern was strong in younger restorations (<20 yr old), but absent from older restorations (>20 yr), suggesting restored prairie bee communities become more similar to one another and more similar to remnant prairie bee communities over time with the arrival of more species and functional groups of

  13. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems

    PubMed Central

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H.; Hickey, William J.

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, and coffee hulls), which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase) and the finished product (mature phase). The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (group I.1b), in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have significant effects on its performance as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities) with nitrification in these systems. PMID:22787457

  14. Demographic Events and Evolutionary Forces Shaping European Genetic Diversity

    PubMed Central

    Veeramah, Krishna R.; Novembre, John

    2014-01-01

    Europeans have been the focus of some of the largest studies of genetic diversity in any species to date. Recent genome-wide data have reinforced the hypothesis that present-day European genetic diversity is strongly correlated with geography. The remaining challenge now is to understand more precisely how patterns of diversity in Europe reflect ancient demographic events such as postglacial expansions or the spread of farming. It is likely that recent advances in paleogenetics will give us some of these answers. There has also been progress in identifying specific segments of European genomes that reflect adaptations to selective pressures from the physical environment, disease, and dietary shifts. A growing understanding of how modern European genetic diversity has been shaped by demographic and evolutionary forces is not only of basic historical and anthropological interest but also aids genetic studies of disease. PMID:25059709

  15. Sexual selection and individual genetic diversity in a songbird.

    PubMed

    Marshall, Rupert C; Buchanan, Katherine L; Catchpole, Clive K

    2003-11-07

    Here, we report for the first time, to our knowledge, a strong correlation between a measure of individual genetic diversity and song complexity, a sexually selected male trait in sedge warblers, Acrocephalus schoenobaenus. We also find that females prefer to mate with males who will maximize this diversity in individual progeny. The genetic diversity of each offspring is further increased by means of nonrandom fertilization, as we also show that the fertilizing sperm contains a haplotype more genetically distant to that of the egg than expected by chance. These findings suggest that species' mating preferences may be subject to fine tuning aimed at increasing offspring viability through increased genetic diversity. This includes external and internal mechanisms of selection, even within the ejaculate of a single male.

  16. Dengue and yellow fever virus vectors: seasonal abundance, diversity and resting preferences in three Kenyan cities.

    PubMed

    Agha, Sheila B; Tchouassi, David P; Bastos, Armanda D S; Sang, Rosemary

    2017-12-29

    The transmission patterns of dengue (DENV) and yellow fever (YFV) viruses, especially in urban settings, are influenced by Aedes (Stegomyia) mosquito abundance and behavior. Despite recurrent dengue outbreaks on the Kenyan coast, these parameters remain poorly defined in this and other areas of contrasting dengue endemicity in Kenya. In assessing the transmission risk of DENV/YFV in three Kenyan cities, we determined adult abundance and resting habits of potential Aedes (Stegomyia) vectors in Kilifi (dengue-outbreak prone), and Nairobi and Kisumu (no dengue outbreaks reported). In addition, mosquito diversity, an important consideration for changing mosquito-borne disease dynamics, was compared. Between October 2014 and June 2016, host-seeking adult mosquitoes were sampled using CO 2 -baited BG-Sentinel traps (12 traps daily) placed in vegetation around homesteads, across study sites in the three major cities. Also, indoor and outdoor resting mosquitoes were sampled using Prokopack aspirators. Three samplings, each of five consecutive days, were conducted during the long-rains, short-rains and dry season for each city. Inter-city and seasonal variation in mosquito abundance and diversity was evaluated using general linear models while mosquito-resting preference (indoors vs outdoors) was compared using Chi-square test. Aedes aegypti, which comprised 60% (n = 7772) of the total 12,937 host-seeking mosquitoes collected, had comparable numbers in Kisumu (45.2%, n = 3513) and Kilifi (37.7%, n = 2932), both being significantly higher than Nairobi (17.1%, n = 1327). Aedes aegypti abundance was significantly lower in the short-rains and dry season relative to the long-rains (P < 0.0001). Aedes bromeliae, which occurred in low numbers, did not differ significantly between seasons or cities. Mosquito diversity was highest during the long-rains and in Nairobi. Only 10% (n = 43) of the 450 houses aspirated were found positive for resting Ae. aegypti

  17. Genetic diversity, population structure, and traditional culture of Camellia reticulata.

    PubMed

    Xin, Tong; Huang, Weijuan; De Riek, Jan; Zhang, Shuang; Ahmed, Selena; Van Huylenbroeck, Johan; Long, Chunlin

    2017-11-01

    Camellia reticulata is an arbor tree that has been cultivated in southwestern China by various sociolinguistic groups for esthetic purposes as well as to derive an edible seed oil. This study examined the influence of management, socio-economic factors, and religion on the genetic diversity patterns of Camellia reticulata utilizing a combination of ethnobotanical and molecular genetic approaches. Semi-structured interviews and key informant interviews were carried out with local communities in China's Yunnan Province. We collected plant material ( n  = 190 individuals) from five populations at study sites using single-dose AFLP markers in order to access the genetic diversity within and between populations. A total of 387 DNA fragments were produced by four AFLP primer sets. All DNA fragments were found to be polymorphic (100%). A relatively high level of genetic diversity was revealed in C. reticulata samples at both the species ( H sp  = 0.3397, I sp  = 0.5236) and population (percentage of polymorphic loci = 85.63%, H pop  = 0.2937, I pop  = 0.4421) levels. Findings further revealed a relatively high degree of genetic diversity within C. reticulata populations (Analysis of Molecular Variance = 96.31%). The higher genetic diversity within populations than among populations of C. reticulata from different geographies is likely due to the cultural and social influences associated with its long cultivation history for esthetic and culinary purposes by diverse sociolinguistic groups. This study highlights the influence of human management, socio-economic factors, and other cultural variables on the genetic and morphological diversity of C. reticulata at a regional level. Findings emphasize the important role of traditional culture on the conservation and utilization of plant genetic diversity.

  18. A call for tiger management using "reserves" of genetic diversity.

    PubMed

    Bay, Rachael A; Ramakrishnan, Uma; Hadly, Elizabeth A

    2014-01-01

    Tigers (Panthera tigris), like many large carnivores, are threatened by anthropogenic impacts, primarily habitat loss and poaching. Current conservation plans for tigers focus on population expansion, with the goal of doubling census size in the next 10 years. Previous studies have shown that because the demographic decline was recent, tiger populations still retain a large amount of genetic diversity. Although maintaining this diversity is extremely important to avoid deleterious effects of inbreeding, management plans have yet to consider predictive genetic models. We used coalescent simulations based on previously sequenced mitochondrial fragments (n = 125) from 5 of 6 extant subspecies to predict the population growth needed to maintain current genetic diversity over the next 150 years. We found that the level of gene flow between populations has a large effect on the local population growth necessary to maintain genetic diversity, without which tigers may face decreases in fitness. In the absence of gene flow, we demonstrate that maintaining genetic diversity is impossible based on known demographic parameters for the species. Thus, managing for the genetic diversity of the species should be prioritized over the riskier preservation of distinct subspecies. These predictive simulations provide unique management insights, hitherto not possible using existing analytical methods.

  19. Inference of genetic diversity in popcorn S3 progenies.

    PubMed

    Pena, G F; do Amaral, A T; Ribeiro, R M; Ramos, H C C; Boechat, M S B; Santos, J S; Mafra, G S; Kamphorst, S H; de Lima, V J; Vivas, M; de Souza Filho, G A

    2016-05-09

    Molecular markers are a useful tool for identification of complementary heterotic groups in breeding programs aimed at the production of superior hybrids, particularly for crops such as popcorn in which heterotic groups are not well-defined. The objective of the present study was to analyze the genetic diversity of 47 genotypes of tropical popcorn to identify possible heterotic groups for the development of superior hybrids. Four genotypes of high genetic value were studied: hybrid IAC 125, strain P2, and varieties UENF 14 and BRS Angela. In addition, 43 endogamous S3 progenies obtained from variety UENF 14 were used. Twenty-five polymorphic SSR-EST markers were analyzed. A genetic distance matrix was obtained and the following molecular diversity parameters were estimated: number of alleles, number of effective alleles, polymorphism information content (PIC), observed and expected heterozygosities, Shannon diversity index, and coefficient of inbreeding. We found a moderate PIC and high diversity index, indicating that the studied population presents both good discriminatory ability and high informativeness for the utilized markers. The dendrogram built based on the dissimilarity matrix indicated six distinct groups. Our findings demonstrate the genetic diversity among the evaluated genotypes and provide evidence for heterotic groups in popcorn. Furthermore, the functional genetic diversity indicates that there are informative genetic markers for popcorn.

  20. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States.

    PubMed

    Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff

    2015-12-01

    Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse

  1. Genetic diversity of Chlamydia among captive birds from central Argentina.

    PubMed

    Frutos, María C; Monetti, Marina S; Vaulet, Lucia Gallo; Cadario, María E; Fermepin, Marcelo Rodríguez; Ré, Viviana E; Cuffini, Cecilia G

    2015-01-01

    To study the occurrence of Chlamydia spp. and their genetic diversity, we analysed 793 cloacal swabs from 12 avian orders, including 76 genera, obtained from 80 species of asymptomatic wild and captive birds that were examined with conventional nested polymerase chain reaction and quantitative polymerase chain reaction. Chlamydia spp. were not detected in wild birds; however, four species (Chlamydia psittaci, Chlamydia pecorum, Chlamydia pneumoniae and Chlamydia gallinacea) were identified among captive birds (Passeriformes, n = 20; Psittaciformes, n = 15; Rheiformes, n = 8; Falconiformes n = 2; Piciformes n = 2; Anseriformes n = 1; Galliformes n = 1; Strigiformes n = 1). Two pathogens (C. pneumoniae and C. pecorum) were identified simultaneously in samples obtained from captive birds. Based on nucleotide-sequence variations of the ompA gene, three C. psittaci-positive samples detected were grouped into a cluster with the genotype WC derived from mammalian hosts. A single positive sample was phylogenetically related to a new strain of C. gallinacea. This report contributes to our increasing understanding of the abundance of Chlamydia in the animal kingdom.

  2. The Effect of Urbanization on Ant Abundance and Diversity: A Temporal Examination of Factors Affecting Biodiversity

    PubMed Central

    Buczkowski, Grzegorz; Richmond, Douglas S.

    2012-01-01

    Numerous studies have examined the effect of urbanization on species richness and most studies implicate urbanization as the major cause of biodiversity loss. However, no study has identified an explicit connection between urbanization and biodiversity loss as the impact of urbanization is typically inferred indirectly by comparing species diversity along urban-rural gradients at a single time point. A different approach is to focus on the temporal rather than the spatial aspect and perform “before and after” studies where species diversity is cataloged over time in the same sites. The current study examined changes in ant abundance and diversity associated with the conversion of natural habitats into urban habitats. Ant abundance and diversity were tracked in forested sites that became urbanized through construction and were examined at 3 time points - before, during, and after construction. On average, 4.3±1.2 unique species were detected in undisturbed plots prior to construction. Ant diversity decreased to 0.7±0.8 species in plots undergoing construction and 1.5±1.1 species in plots 1 year after construction was completed. With regard to species richness, urbanization resulted in the permanent loss of 17 of the 20 species initially present in the study plots. Recovery was slow and only 3 species were present right after construction was completed and 4 species were present 1 year after construction was completed. The second objective examined ant fauna recovery in developed residential lots based on time since construction, neighboring habitat quality, pesticide inputs, and the presence of invasive ants. Ant diversity was positively correlated with factors that promoted ecological recovery and negatively correlated with factors that promoted ecological degradation. Taken together, these results address a critical gap in our knowledge by characterizing the short- and long-term the effects of urbanization on the loss of ant biodiversity. PMID:22876291

  3. The effect of urbanization on ant abundance and diversity: a temporal examination of factors affecting biodiversity.

    PubMed

    Buczkowski, Grzegorz; Richmond, Douglas S

    2012-01-01

    Numerous studies have examined the effect of urbanization on species richness and most studies implicate urbanization as the major cause of biodiversity loss. However, no study has identified an explicit connection between urbanization and biodiversity loss as the impact of urbanization is typically inferred indirectly by comparing species diversity along urban-rural gradients at a single time point. A different approach is to focus on the temporal rather than the spatial aspect and perform "before and after" studies where species diversity is cataloged over time in the same sites. The current study examined changes in ant abundance and diversity associated with the conversion of natural habitats into urban habitats. Ant abundance and diversity were tracked in forested sites that became urbanized through construction and were examined at 3 time points - before, during, and after construction. On average, 4.3 ± 1.2 unique species were detected in undisturbed plots prior to construction. Ant diversity decreased to 0.7 ± 0.8 species in plots undergoing construction and 1.5 ± 1.1 species in plots 1 year after construction was completed. With regard to species richness, urbanization resulted in the permanent loss of 17 of the 20 species initially present in the study plots. Recovery was slow and only 3 species were present right after construction was completed and 4 species were present 1 year after construction was completed. The second objective examined ant fauna recovery in developed residential lots based on time since construction, neighboring habitat quality, pesticide inputs, and the presence of invasive ants. Ant diversity was positively correlated with factors that promoted ecological recovery and negatively correlated with factors that promoted ecological degradation. Taken together, these results address a critical gap in our knowledge by characterizing the short- and long-term the effects of urbanization on the loss of ant biodiversity.

  4. Distribution, abundance, diversity and habitat associations of fishes across a bioregion experiencing rapid coastal development

    NASA Astrophysics Data System (ADS)

    McLean, Dianne L.; Langlois, Tim J.; Newman, Stephen J.; Holmes, Thomas H.; Birt, Matthew J.; Bornt, Katrina R.; Bond, Todd; Collins, Danielle L.; Evans, Scott N.; Travers, Michael J.; Wakefield, Corey B.; Babcock, Russ C.; Fisher, Rebecca

    2016-09-01

    Knowledge of the factors that influence spatial patterns in fish abundance, distribution and diversity are essential for informing fisheries and conservation management. The present study was conducted in the nearshore Pilbara bioregion of north-western Australia where the dynamic marine environment is characterised by large embayments, numerous islands and islets, coexisting with globally significant petrochemical and mineral industries. Within Western Australia, this nearshore bioregion has high biodiversity and is considered to play an essential role in the recruitment of species of commercial importance. To better inform future investigations into both ecological processes and planning scenarios for management, a rapid assessment of the distribution, abundance and associations with nearshore habitats of fishes across the region was conducted. Baited remote underwater stereo-video systems (stereo-BRUVs) were used to simultaneously sample the fish assemblage and habitat composition. Generalised additive mixed models (GAMMs) were used to determine whether the abundance of fishes were related to habitat and a range of environmental variables (visibility, depth, distance to 30 m and 200 m depth isobars, boat ramps and the nearest large embayment (Exmouth Gulf). A diverse fish assemblage comprising 343 species from 58 families was recorded. The abundance and distribution patterns of fishery-target species and of the five most common and abundant species and families were linked positively with areas of high relief, hard coral cover, reef and macroalgae and negatively with the distance to the nearest oceanic waters (200 m depth isobar). This study provides information that can contribute to future marine spatial planning scenarios for management of the Pilbara using a unique, analytical approach that has broad application in biogeography.

  5. Accumulation of genetic diversity in the US Potato Genebank

    USDA-ARS?s Scientific Manuscript database

    Efficient management of ex-situ collections includes understanding how conservation technologies impact the genetic diversity and integrity of these collections. For over 60 years, research at the US Potato Genebank has produced helpful scientific insights on diverse aspects of potato conservation. ...

  6. Genetic diversity of Toxoplama gondii isolates from Ethiopian feral cats

    USDA-ARS?s Scientific Manuscript database

    Recent studies indicate greater genetic variability among isolates of Toxoplasma gondii worldwide than previously thought. However, there is no information on genetic diversity of T. gondii from any host in Ethiopia. In the present study, genotyping was performed on viable T. gondii isolates by bioa...

  7. Diversity and Abundance of Chlorophyta in Krakal Beach, Gunung Kidul, Yogyakarta

    NASA Astrophysics Data System (ADS)

    Putri, A. C.; Nugroho, I. C.; Firdaus, N. U. N.; Puspita, N. O. J.; Fajrin, S. A. R.; Hamzah, S. D. A.

    2017-10-01

    Chlorophyta plays an important role in energy flow as the main producer in marine food chain, material circulation, bioaccumulation, and bio-indicator in the intertidal zone. Several genera of Chlorophyta have been used by local society around coastal area of Gunung Kidul, Yogyakarta as local product, but the research about diversity and abundance information of Chlorophyta in Krakal beach was not yet understood. The aim of this study is to gain the information about diversity and abundancy of Chlorophyta in Krakal Beach, Gunung Kidul,Yogyakarta. This research was conducted in March 11th 2017. This research utilizes Line Transect and Stratified Random Sampling method which is used 1x1 m plot. There are six genera of Chlorophyta have been identified in this research, such as Chaetomorpha sp.; Boergesenia sp; Ulva sp.; Cladophora sp.; Enteromorpha sp.; and Halicystis sp. From 6 genera of Chlorophyta, the highest genera coverage is Enteromorpha sp. (9.88%). This research is expected to record data of macroalgae abundance especially Chlorophyta, in Krakal Beach. By this research, monitoring of macroalgae could be done and supported by government and local people to maintain the sustainability of Chlorophyta.

  8. Organic amendments enhance microbial diversity and abundance of functional genes in Australian Soils

    NASA Astrophysics Data System (ADS)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2016-04-01

    Food and cash crops play important roles in Australia's economy with black, grey and red clay soil, widely use for growing cotton, wheat, corn and other crops in rotation. While the majority of cotton growers use nitrogen and phosphate fertilizers only in the form of agrochemicals, a few experiment with the addition of manure or composted plant material before planting. We hypothesized that the use of such organic amendments would enhance the soil microbial function through increased microbial diversity and abundance, thus contribute to improved soil sustainability. To test the hypothesis we collected soil samples from two cotton-growing farms in close geographical proximity and with mostly similar production practices other than one grower has been using composted plants as organic amendment and the second farmer uses only agrochemicals. We applied the Biolog Ecoplate system to study the metabolic signature of microbial communities and used qPCR to estimate the abundance of functional genes in the soil. The soil treated with organic amendments clearly showed higher metabolic activity of a more diverse range of carbon sources as well as higher abundance of genes involved in the nitrogen and phosphorous cycles. Since microbes undertake a large number of soil functions, the use of organic amendments can contribute to the sustainability of agricultural soils.

  9. Post-Hurricane Successional Dynamics in Abundance and Diversity of Canopy Arthropods in a Tropical Rainforest.

    PubMed

    Schowalter, T D; Willig, M R; Presley, S J

    2017-02-01

    We quantified long-term successional trajectories of canopy arthropods on six tree species in a tropical rainforest ecosystem in the Luquillo Mountains of Puerto Rico that experienced repeated hurricane-induced disturbances during the 19-yr study (1991-2009). We expected: 1) differential performances of arthropod species to result in taxon- or guild-specific responses; 2) differences in initial conditions to result in distinct successional responses to each hurricane; and 3) the legacy of hurricane-created gaps to persist despite subsequent disturbances. At least one significant effect of gap, time after hurricane, or their interaction occurred for 53 of 116 analyses of taxon abundance, 31 of 84 analyses of guild abundance, and 21 of 60 analyses of biodiversity (e.g., richness, evenness, dominance, and rarity). Significant responses were ∼60% more common for time after hurricane than for gap creation, indicating that temporal changes in habitat during recovery were of primary importance. Both increases and decreases in abundance or diversity occurred in response to each factor. Guild-level responses were probably driven by changes in the abundance of resources on which they rely. For example, detritivores were most abundant soon after hurricanes when litter resources were elevated, whereas sap-suckers were most abundant in gaps where new foliage growth was the greatest. The legacy of canopy gaps created by Hurricane Hugo persisted for at least 19 yr, despite droughts and other hurricanes of various intensities that caused forest damage. This reinforces the need to consider historical legacies when seeking to understand responses to disturbance. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. The influence of land use on the abundance and diversity of ammonia oxidizers.

    PubMed

    Zhao, Dayong; Luo, Juan; Wang, Jianqun; Huang, Rui; Guo, Kun; Li, Yi; Wu, Qinglong L

    2015-02-01

    Nitrification plays a significant role in soil nitrogen cycling, a process in which the first step can be catalyzed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). In this study, six soil samples with distinct land-use regimes (forestland soil, paddy soil, wheat-planted soil, fruit-planted soil, grassland soil, and rape-planted soil) were collected from Chuzhou city in the Anhui province to elucidate the effects of land use on the abundance and diversity of AOA and AOB. The abundance of the archaeal amoA gene ranged from 2.12 × 10(4) copies per gram of dry soil to 2.57 × 10(5) copies per gram of dry soil, while the abundance of the bacterial amoA gene ranged from 5.58 × 10(4) copies per gram of dry soil to 1.59 × 10(8) copies per gram of dry soil. The grassland and the rape-planted soil samples maintained the highest abundance of the bacterial and archaeal amoA genes, respectively. The abundance of the archaeal amoA gene was positively correlated with the pH (P < 0.05). The ammonia concentrations exhibited a significantly positive relation with the abundance of the bacterial amoA gene (P < 0.01) and the number of OTUs of AOB (P < 0.05). The community composition of AOB was more sensitive to the land-use regimes than that of AOA. The data obtained in this study may be useful to better understand the nitrification process in soils with different land-use regimes.

  11. Promiscuity, sexual selection, and genetic diversity: a reply to Spurgin.

    PubMed

    Lifjeld, Jan T; Gohli, Jostein; Johnsen, Arild

    2013-10-01

    We recently reported a positive association between female promiscuity and genetic diversity across passerine birds, and launched the hypothesis that female promiscuity acts as a balancing selection, pressure maintaining genetic diversity in populations (Gohli et al.2013). Spurgin (2013) questions both our analyses and interpretations. While we agree that the hypothesis needs more comprehensive empirical testing, we find his specific points of criticism unjustified. In a more general perspective, we call for a more explicit recognition of female mating preferences as mechanisms of selection in population genetics theory. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  12. Wildlife Abundance and Diversity as Indicators of Tourism Potential in Northern Botswana

    PubMed Central

    Winterbach, Christiaan W.; Whitesell, Carolyn; Somers, Michael J.

    2015-01-01

    Wildlife tourism can provide economic incentives for conservation. Due to the abundance of wildlife and the presence of charismatic species some areas are better suited to wildlife tourism. Our first objective was to develop criteria based on wildlife abundance and diversity to evaluate tourism potential in the Northern Conservation Zone of Botswana. Secondly we wanted to quantify and compare tourism experiences in areas with high and low tourism potential. We used aerial survey data to estimate wildlife biomass and diversity to determine tourism potential, while data from ground surveys quantified the tourist experience. Areas used for High Paying Low Volume tourism had significantly higher mean wildlife biomass and wildlife diversity than the areas avoided for this type of tourism. Only 22% of the Northern Conservation Zone has intermediate to high tourism potential. The areas with high tourism potential, as determined from the aerial survey data, provided tourists with significantly better wildlife sightings (ground surveys) than the low tourism potential areas. Even Low Paying tourism may not be economically viable in concessions that lack areas with intermediate to high tourism potential. The largest part of the Northern Conservation Zone has low tourism potential, but low tourism potential is not equal to low conservation value. Alternative conservation strategies should be developed to complement the economic incentive provided by wildlife-based tourism in Botswana. PMID:26308859

  13. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area

    NASA Astrophysics Data System (ADS)

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area.

  14. Wildlife Abundance and Diversity as Indicators of Tourism Potential in Northern Botswana.

    PubMed

    Winterbach, Christiaan W; Whitesell, Carolyn; Somers, Michael J

    2015-01-01

    Wildlife tourism can provide economic incentives for conservation. Due to the abundance of wildlife and the presence of charismatic species some areas are better suited to wildlife tourism. Our first objective was to develop criteria based on wildlife abundance and diversity to evaluate tourism potential in the Northern Conservation Zone of Botswana. Secondly we wanted to quantify and compare tourism experiences in areas with high and low tourism potential. We used aerial survey data to estimate wildlife biomass and diversity to determine tourism potential, while data from ground surveys quantified the tourist experience. Areas used for High Paying Low Volume tourism had significantly higher mean wildlife biomass and wildlife diversity than the areas avoided for this type of tourism. Only 22% of the Northern Conservation Zone has intermediate to high tourism potential. The areas with high tourism potential, as determined from the aerial survey data, provided tourists with significantly better wildlife sightings (ground surveys) than the low tourism potential areas. Even Low Paying tourism may not be economically viable in concessions that lack areas with intermediate to high tourism potential. The largest part of the Northern Conservation Zone has low tourism potential, but low tourism potential is not equal to low conservation value. Alternative conservation strategies should be developed to complement the economic incentive provided by wildlife-based tourism in Botswana.

  15. Abundance and diversity of microbial inhabitants in European spacecraft-associated clean rooms.

    PubMed

    Stieglmeier, Michaela; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Pukall, Rüdiger; Wirth, Reinhard; Moissl-Eichinger, Christine

    2012-06-01

    The determination of the microbial load of a spacecraft en route to interesting extraterrestrial environments is mandatory and currently based on the culturable, heat-shock-surviving portion of microbial contaminants. Our study compared these classical bioburden measurements as required by NASA's and ESA's guidelines for the microbial examination of flight hardware, with molecular analysis methods (16S rRNA gene cloning and quantitative PCR) to further develop our understanding of the diversity and abundance of the microbial communities of spacecraft-associated clean rooms. Three samplings of the Herschel Space Observatory and its surrounding clean rooms were performed in two different European facilities. Molecular analyses detected a broad diversity of microbes typically found in the human microbiome with three bacterial genera (Staphylococcus, Propionibacterium, and Brevundimonas) common to all three locations. Bioburden measurements revealed a low, but heterogeneous, abundance of spore-forming and other heat-resistant microorganisms. Total cell numbers estimated by quantitative real-time PCR were typically 3 orders of magnitude greater than those determined by viable counts, which indicates a tendency for traditional methods to underestimate the extent of clean room bioburden. Furthermore, the molecular methods allowed the detection of a much broader diversity than traditional culture-based methods.

  16. Seasonal variations in the diversity and abundance of diazotrophic communities across soils.

    PubMed

    Pereira e Silva, Michele C; Semenov, Alexander V; van Elsas, Jan Dirk; Salles, Joana Falcão

    2011-07-01

    The nitrogen (N)-fixing community is a key functional community in soil, as it replenishes the pool of biologically available N that is lost to the atmosphere via anaerobic ammonium oxidation and denitrification. We characterized the structure and dynamic changes in diazotrophic communities, based on the nifH gene, across eight different representative Dutch soils during one complete growing season, to evaluate the amplitude of the natural variation in abundance and diversity, and identify possible relationships with abiotic factors. Overall, our results indicate that soil type is the main factor influencing the N-fixing communities, which were more abundant and diverse in the clay soils (n=4) than in the sandy soils (n=4). On average, the amplitude of variation in community size as well as the range-weighted richness were also found to be higher in the clay soils. These results indicate that N-fixing communities associated with sandy and clay soil show a distinct amplitude of variation under field conditions, and suggest that the diazotrophic communities associated with clay soil might be more sensitive to fluctuations associated with the season and agricultural practices. Moreover, soil characteristics such as ammonium content, pH and texture most strongly correlated with the variations observed in the diversity, size and structure of N-fixing communities, whose relative importance was determined across a temporal and spatial scale. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Unlocking the genetic diversity of Creole wheats.

    PubMed

    Vikram, Prashant; Franco, Jorge; Burgueño-Ferreira, Juan; Li, Huihui; Sehgal, Deepmala; Saint Pierre, Carolina; Ortiz, Cynthia; Sneller, Clay; Tattaris, Maria; Guzman, Carlos; Sansaloni, Carolina Paola; Ellis, Mark; Fuentes-Davila, Guillermo; Reynolds, Matthew; Sonders, Kai; Singh, Pawan; Payne, Thomas; Wenzl, Peter; Sharma, Achla; Bains, Navtej Singh; Singh, Gyanendra Pratap; Crossa, José; Singh, Sukhwinder

    2016-03-15

    Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.

  18. The structural diversity of artificial genetic polymers

    PubMed Central

    Anosova, Irina; Kowal, Ewa A.; Dunn, Matthew R.; Chaput, John C.; Van Horn, Wade D.; Egli, Martin

    2016-01-01

    Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson–Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space. PMID:26673703

  19. Large-Scale Microzooplankton Abundance and Diversity in the North Sea in Mid-Winter

    NASA Astrophysics Data System (ADS)

    Bils, F.; Moyano, M.; Peck, M. A.

    2016-02-01

    Protists and other microzooplankters (20-200 µm) are often not sampled in ecosystem monitoring programs despite the trophodynamic importance of this size fraction as grazers in the microbial loop and as prey for larger zooplankton and early larval stages of fish. We investigated the microzooplankton composition, diversity and abundance at 40 stations across the North Sea (from 3.2° W-7.6° E and 50.5-59.8°N) in mid-winter of 2014. Microzooplankton was collected with a CTD rosette at 10 m depth and manually counted and identified to the lowest possible taxa. A total of 35 taxa of dinoflagellates and ciliates was identified. Gymnodinium spp and Torodinium sp contributed most to the total dinoflagellate abundance (34 and 24 %) and Strombidium spp was the most abundant ciliate taxon (52 % of total ciliate abundance). Total microzooplankton biomass ranged between 0.08 and 2.4 µg C *L-1, much lower than those observed in spring or summer (up to > 100 µgC L-1). The highest biomass (> 0.5 µgC L-1) were found in the English Channel, south of 52°N, in contrast with those calculated for stations north of 57°N (< 0.2 µgC L-1). Changes in the community composition will be discussed in relation to observed gradients in hydrographic conditions and the ability of microzooplankton to support dietary requirements of overwintering larvae of marine fishes.

  20. Relationships between Plant Diversity and the Abundance and α-Diversity of Predatory Ground Beetles (Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem

    PubMed Central

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems. PMID:24376582

  1. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum.

    PubMed

    Melito, Sara; Sias, Angela; Petretto, Giacomo L; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil.

  2. Genetic and Metabolite Diversity of Sardinian Populations of Helichrysum italicum

    PubMed Central

    Melito, Sara; Sias, Angela; Petretto, Giacomo L.; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Background Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. Key results The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. Conclusions The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil. PMID:24260149

  3. The Genetic Diversity of the Americas.

    PubMed

    Adhikari, Kaustubh; Chacón-Duque, Juan Camilo; Mendoza-Revilla, Javier; Fuentes-Guajardo, Macarena; Ruiz-Linares, Andrés

    2017-08-31

    The history of the Americas involved the encounter of millions of Native Americans, Europeans, and Africans. A variable admixture of these three continental groups has taken place throughout the continent, influenced by demography and a range of social factors. This variable admixture has had a major influence on the genetic makeup of populations across the continent. Here, we summarize the demographic history of the region, highlight some social factors that affected historical admixture, and review major patterns of ancestry across the Western Hemisphere based on genetic data.

  4. Assessment of Genetic Diversity of Sweet Potato in Puerto Rico

    PubMed Central

    Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E.; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

    2014-01-01

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied. PMID:25551388

  5. Abundant mtDNA diversity and ancestral admixture in Colombian criollo cattle (Bos taurus).

    PubMed

    Carvajal-Carmona, Luis G; Bermudez, Nelson; Olivera-Angel, Martha; Estrada, Luzardo; Ossa, Jorge; Bedoya, Gabriel; Ruiz-Linares, Andrés

    2003-11-01

    Various cattle populations in the Americas (known as criollo breeds) have an origin in some of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). These cattle constitute a potentially important genetic reserve as they are well adapted to local environments and show considerable variation in phenotype. To examine the genetic ancestry and diversity of Colombian criollo we obtained mitochondrial DNA control region sequence information for 110 individuals from seven breeds. Old World haplogroup T3 is the most commonly observed CR lineage in criollo (0.65), in agreement with a mostly European ancestry for these cattle. However, criollo also shows considerable frequencies of haplogroups T2 (0.9) and T1 (0.26), with T1 lineages in criollo being more diverse than those reported for West Africa. The distribution and diversity of Old World lineages suggest some North African ancestry for criollo, probably as a result of the Arab occupation of Iberia prior to the European migration to the New World. The mtDNA diversity of criollo is higher than that reported for European and African cattle and is consistent with a differentiated ancestry for some criollo breeds.

  6. Identification and conservation of apple genetic diversity

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS National Plant Germplasm System (NPGS) maintains a vast collection of plant genetic resources that includes over 570,000 accessions representing nearly 15,000 species. This collection is dispersed amongst 17 active sites throughout the United States. The NPGS base collection at the Nati...

  7. Genetic Diversity and Genome Complexity of Sugarcane

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp.) as a C4 plant, is one of the most efficient crops in converting solar energy into chemical energy. Sugarcane cultivar improvement programs have not yet systematically utilized the most of the genetic sources of yield potential and resistance to stresses that may exist in t...

  8. Ensuring the genetic diversity of potatoes

    USDA-ARS?s Scientific Manuscript database

    Opportunities for advances in the potato crop through genetics are great, since potato has many needs for improvement, and many related species with the traits required are available. Genebanks provide a centralized and specialized resource for providing the services of acquisition, classification, ...

  9. Design for mosquito abundance, diversity, and phenology sampling within the National Ecological Observatory Network

    USGS Publications Warehouse

    Hoekman, D.; Springer, Yuri P.; Barker, C.M.; Barrera, R.; Blackmore, M.S.; Bradshaw, W.E.; Foley, D. H.; Ginsberg, Howard; Hayden, M. H.; Holzapfel, C. M.; Juliano, S. A.; Kramer, L. D.; LaDeau, S. L.; Livdahl, T. P.; Moore, C. G.; Nasci, R.S.; Reisen, W.K.; Savage, H. M.

    2016-01-01

    The National Ecological Observatory Network (NEON) intends to monitor mosquito populations across its broad geographical range of sites because of their prevalence in food webs, sensitivity to abiotic factors and relevance for human health. We describe the design of mosquito population sampling in the context of NEON’s long term continental scale monitoring program, emphasizing the sampling design schedule, priorities and collection methods. Freely available NEON data and associated field and laboratory samples, will increase our understanding of how mosquito abundance, demography, diversity and phenology are responding to land use and climate change.

  10. Polishing the craft of genetic diversity creation in directed evolution.

    PubMed

    Tee, Kang Lan; Wong, Tuck Seng

    2013-12-01

    Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating "smart" libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field. © 2013. Published by Elsevier Inc. All rights reserved.

  11. Effects of complex life cycles on genetic diversity: cyclical parthenogenesis

    PubMed Central

    Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S

    2016-01-01

    Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks). PMID:27436524

  12. High genetic diversity of Jatropha curcas assessed by ISSR.

    PubMed

    Díaz, B G; Argollo, D M; Franco, M C; Nucci, S M; Siqueira, W J; de Laat, D M; Colombo, C A

    2017-05-31

    Jatropha curcas L. is a highly promising oilseed for sustainable production of biofuels and bio-kerosene due to its high oil content and excellent quality. However, it is a perennial and incipiently domesticated species with none stable cultivar created until now despite genetic breeding programs in progress in several countries. Knowledge of the genetic structure and diversity of the species is a necessary step for breeding programs. The molecular marker can be used as a tool for speed up the process. This study was carried out to assess genetic diversity of a germplasm bank represented by J. curcas accessions from different provenance beside interspecific hybrid and backcrosses generated by IAC breeding programs using inter-simple sequence repeat markers. The molecular study revealed 271 bands of which 98.9% were polymorphic with an average of 22.7 polymorphic bands per primer. Genetic diversity of the germplasm evaluated was slightly higher than other germplasm around the world and ranged from 0.55 to 0.86 with an average of 0.59 (Jaccard index). Cluster analysis (UPGMA) revealed no clear grouping as to the geographical origin of accessions, consistent with genetic structure analysis using the Structure software. For diversity analysis between groups, accessions were divided into eight groups by origin. Nei's genetic distance between groups was 0.14. The results showed the importance of Mexican accessions, congeneric wild species, and interspecific hybrids for conservation and development of new genotypes in breeding programs.

  13. Speciation and genetic diversity in Centaurea subsect. Phalolepis in Anatolia

    PubMed Central

    López-Pujol, Jordi; López-Vinyallonga, Sara; Susanna, Alfonso; Ertuğrul, Kuddisi; Uysal, Tuna; Tugay, Osman; Guetat, Arbi; Garcia-Jacas, Núria

    2016-01-01

    Mountains of Anatolia are one of the main Mediterranean biodiversity hotspots and their richness in endemic species amounts for 30% of the flora. Two main factors may account for this high diversity: the complex orography and its role as refugia during past glaciations. We have investigated seven narrow endemics of Centaurea subsection Phalolepis from Anatolia by means of microsatellites and ecological niche modelling (ENM), in order to analyse genetic polymorphisms and getting insights into their speciation. Despite being narrow endemics, all the studied species show moderate to high SSR genetic diversity. Populations are genetically isolated, but exchange of genes probably occurred at glacial maxima (likely through the Anatolian mountain arches as suggested by the ENM). The lack of correlation between genetic clusters and (morpho) species is interpreted as a result of allopatric diversification on the basis of a shared gene pool. As suggested in a former study in Greece, post-glacial isolation in mountains would be the main driver of diversification in these plants; mountains of Anatolia would have acted as plant refugia, allowing the maintenance of high genetic diversity. Ancient gene flow between taxa that became sympatric during glaciations may also have contributed to the high levels of genetic diversity. PMID:27886271

  14. Genetic diversity analysis of common beans based on molecular markers

    PubMed Central

    Gill-Langarica, Homar R.; Muruaga-Martínez, José S.; Vargas-Vázquez, M.L. Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-01-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation. PMID:22215964

  15. Genetic diversity analysis of common beans based on molecular markers.

    PubMed

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  16. Spider fauna of semiarid eastern Colorado agroecosystems: diversity, abundance, and effects of crop intensification.

    PubMed

    Kerzicnik, Lauren M; Peairs, Frank B; Cushing, Paula E; Draney, Michael L; Merrill, Scott C

    2013-02-01

    Spiders are critical predators in agroecosystems. Crop management practices can influence predator density and diversity, which, in turn, can influence pest management strategies. Crop intensification is a sustainable agricultural technique that can enhance crop production although optimizing soil moisture. To date, there is no information on how crop intensification affects natural enemy populations, particularly spiders. This study had two objectives: to characterize the abundance and diversity of spiders in eastern Colorado agroecosystems, and to test the hypothesis that spider diversity and density would be higher in wheat (Triticum aestivum L.) in crop-intensified rotations compared with wheat in conventional rotations. We collected spiders through pitfall, vacuum, and lookdown sampling from 2002 to 2007 to test these objectives. Over 11,000 spiders in 19 families from 119 species were captured from all sampling techniques. Interestingly, the hunting spider guild represented 89% of the spider fauna captured from all sites with the families Gnaphosidae and Lycosidae representing 75% of these spiders. Compared with European agroecosystems, these agroecosystems had greater diversity, which can be beneficial for the biological control of pests. Overall, spider densities were low in these semiarid cropping systems, and crop intensification effects on spider densities were not evident at this scale.

  17. Genetic diversity in the interference selection limit.

    PubMed

    Good, Benjamin H; Walczak, Aleksandra M; Neher, Richard A; Desai, Michael M

    2014-03-01

    Pervasive natural selection can strongly influence observed patterns of genetic variation, but these effects remain poorly understood when multiple selected variants segregate in nearby regions of the genome. Classical population genetics fails to account for interference between linked mutations, which grows increasingly severe as the density of selected polymorphisms increases. Here, we describe a simple limit that emerges when interference is common, in which the fitness effects of individual mutations play a relatively minor role. Instead, similar to models of quantitative genetics, molecular evolution is determined by the variance in fitness within the population, defined over an effectively asexual segment of the genome (a "linkage block"). We exploit this insensitivity in a new "coarse-grained" coalescent framework, which approximates the effects of many weakly selected mutations with a smaller number of strongly selected mutations that create the same variance in fitness. This approximation generates accurate and efficient predictions for silent site variability when interference is common. However, these results suggest that there is reduced power to resolve individual selection pressures when interference is sufficiently widespread, since a broad range of parameters possess nearly identical patterns of silent site variability.

  18. Genetic Diversity in the Interference Selection Limit

    PubMed Central

    Good, Benjamin H.; Walczak, Aleksandra M.; Neher, Richard A.; Desai, Michael M.

    2014-01-01

    Pervasive natural selection can strongly influence observed patterns of genetic variation, but these effects remain poorly understood when multiple selected variants segregate in nearby regions of the genome. Classical population genetics fails to account for interference between linked mutations, which grows increasingly severe as the density of selected polymorphisms increases. Here, we describe a simple limit that emerges when interference is common, in which the fitness effects of individual mutations play a relatively minor role. Instead, similar to models of quantitative genetics, molecular evolution is determined by the variance in fitness within the population, defined over an effectively asexual segment of the genome (a “linkage block”). We exploit this insensitivity in a new “coarse-grained” coalescent framework, which approximates the effects of many weakly selected mutations with a smaller number of strongly selected mutations that create the same variance in fitness. This approximation generates accurate and efficient predictions for silent site variability when interference is common. However, these results suggest that there is reduced power to resolve individual selection pressures when interference is sufficiently widespread, since a broad range of parameters possess nearly identical patterns of silent site variability. PMID:24675740

  19. Nitrifier Gene Abundance and Diversity in Sediments Impacted by Acid Mine Drainage

    PubMed Central

    Ramanathan, Bhargavi; Boddicker, Andrew M.; Roane, Timberley M.; Mosier, Annika C.

    2017-01-01

    Extremely acidic and metal-rich acid mine drainage (AMD) waters can have severe toxicological effects on aquatic ecosystems. AMD has been shown to completely halt nitrification, which plays an important role in transferring nitrogen to higher organisms and in mitigating nitrogen pollution. We evaluated the gene abundance and diversity of nitrifying microbes in AMD-impacted sediments: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB). Samples were collected from the Iron Springs Mining District (Ophir, CO, United States) during early and late summer in 2013 and 2014. Many of the sites were characterized by low pH (<5) and high metal concentrations. Sequence analyses revealed AOA genes related to Nitrososphaera, Nitrosotalea, and Nitrosoarchaeum; AOB genes related to Nitrosomonas and Nitrosospira; and NOB genes related to Nitrospira. The overall abundance of AOA, AOB and NOB was examined using quantitative PCR (qPCR) amplification of the amoA and nxrB functional genes and 16S rRNA genes. Gene copy numbers ranged from 3.2 × 104 – 4.9 × 107 archaeal amoA copies ∗ μg DNA-1, 1.5 × 103 – 5.3 × 105 AOB 16S rRNA copies ∗ μg DNA-1, and 1.3 × 106 – 7.7 × 107 Nitrospira nxrB copies ∗ μg DNA-1. Overall, Nitrospira nxrB genes were found to be more abundant than AOB 16S rRNA and archaeal amoA genes in most of the sample sites across 2013 and 2014. AOB 16S rRNA and Nitrospira nxrB genes were quantified in sediments with pH as low as 3.2, and AOA amoA genes were quantified in sediments as low as 3.5. Though pH varied across all sites (pH 3.2–8.3), pH was not strongly correlated to the overall community structure or relative abundance of individual OTUs for any gene (based on CCA and Spearman correlations). pH was positivity correlated to the total abundance (qPCR) of AOB 16S rRNA genes, but not for any other genes. Metals were not correlated to the overall nitrifier community composition or abundance, but

  20. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  1. A metagenomic survey of viral abundance and diversity in mosquitoes from Hubei province.

    PubMed

    Shi, Chenyan; Liu, Yi; Hu, Xiaomin; Xiong, Jinfeng; Zhang, Bo; Yuan, Zhiming

    2015-01-01

    Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process.

  2. A Metagenomic Survey of Viral Abundance and Diversity in Mosquitoes from Hubei Province

    PubMed Central

    Shi, Chenyan; Liu, Yi; Hu, Xiaomin; Xiong, Jinfeng; Zhang, Bo; Yuan, Zhiming

    2015-01-01

    Mosquitoes as one of the most common but important vectors have the potential to transmit or acquire a lot of viruses through biting, however viral flora in mosquitoes and its impact on mosquito-borne disease transmission has not been well investigated and evaluated. In this study, the metagenomic techniquehas been successfully employed in analyzing the abundance and diversity of viral community in three mosquito samples from Hubei, China. Among 92,304 reads produced through a run with 454 GS FLX system, 39% have high similarities with viral sequences belonging to identified bacterial, fungal, animal, plant and insect viruses, and 0.02% were classed into unidentified viral sequences, demonstrating high abundance and diversity of viruses in mosquitoes. Furthermore, two novel viruses in subfamily Densovirinae and family Dicistroviridae were identified, and six torque tenosus virus1 in family Anelloviridae, three porcine parvoviruses in subfamily Parvovirinae and a Culex tritaeniorhynchus rhabdovirus in Family Rhabdoviridae were preliminarily characterized. The viral metagenomic analysis offered us a deep insight into the viral population of mosquito which played an important role in viral initiative or passive transmission and evolution during the process. PMID:26030271

  3. Diversity of abundance patterns of neutron-capture elements in very metal-poor stars

    NASA Astrophysics Data System (ADS)

    Aoki, Misa; Aoki, Wako; Ishimaru, Yuhri; Wanajo, Shinya

    2014-05-01

    Observations of Very Metal-Poor stars indicate that there are at least two sites to r-process; "weak r-process" and "main r-process". A question is whether these two are well separated or there exists a variation in the r-process. We present the results of abundance analysis of neutron-capture elements in the two Very Metal-Poor stars HD107752 and HD110184 in the Milky Way halo observed with the Subaru Telescope HDS. The abundance patterns show overabundace at light n-capture elements (e.g. Sr, Y), inferring the element yielding of weak r-process, while heavy neutron-capture elements (e.g. Ba, Eu) are deficient; however, the overabundance of light ones is not as significant as that previously found in stars representing the weak r-process (e.g. HD122563; Honda et al. 2006). Our study show diversity in the abundance patterns from light to heavy neutron-capture elements in VMP stars, suggesting a variation in r-process, which may depend on electron fraction of environment.

  4. Effects of copper on the abundance and diversity of ammonia oxidizers during dairy cattle manure composting.

    PubMed

    Yin, Yanan; Song, Wen; Gu, Jie; Zhang, Kaiyu; Qian, Xun; Zhang, Xin; Zhang, Yajun; Li, Yang; Wang, Xiaojuan

    2016-12-01

    This study investigated the effects of adding Cu(II) at two exposure levels (50 and 500mgkg -1 , i.e., Cu50 and Cu500 treatments, respectively) on the activity of ammonia-oxidizing microorganisms during dairy cattle manure composting. The results showed that the pH, NH 4 + -N, NO 3 - -N, and potential ammonia oxidation values were inhibited significantly by the addition of Cu(II). Furthermore, the abundances of the ammonia-oxidizing archaea (AOA) amoA gene and ammonia-oxidizing bacteria (AOB) amoA gene were determined by quantitative PCR, and their compositions were evaluated by denaturing gradient gel electrophoresis (DGGE). AOA was the dominant ammonia oxidizing microorganism, of which the abundance was much higher than AOB during composting. Cu50 and Cu500 had significant inhibitory effects on the abundance of the amoA gene. The DGGE profile and statistical analysis showed that Cu(II) changed the AOA and AOB community structure and diversity, where Nitrosomonas and Crenarchaeota dominated throughout the composting process. Copyright © 2016. Published by Elsevier Ltd.

  5. Bacterial abundance and diversity in pond water supplied with different feeds

    NASA Astrophysics Data System (ADS)

    Qin, Ya; Hou, Jie; Deng, Ming; Liu, Quansheng; Wu, Chongwei; Ji, Yingjie; He, Xugang

    2016-10-01

    The abundance and diversity of bacteria in two types of ponds were investigated by quantitative PCR and Illumina MiSeq sequencing. The results revealed that the abundance of bacterial 16S rRNA genes in D ponds (with grass carp fed sudan grass) was significantly lower than that in E ponds (with grass carp fed commercial feed). The microbial communities were dominated by Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria in both E and D ponds, while the abundance of some genera was significantly different between the two types of ponds. Specifically, some potential pathogens such as Acinetobacter and Aeromonas were found to be significantly decreased, while some probiotics such as Comamonadaceae unclassified and Bacillales unclassified were significantly increased in D ponds. In addition, water quality of D ponds was better than that of E ponds. Temperature, dissolved oxygen and nutrients had significant influence on bacterial communities. The differences in bacterial community compositions between the two types of ponds could be partially explained by the different water conditions.

  6. Seasonal Variation in Abundance and Diversity of Bacterial Methanotrophs in Five Temperate Lakes

    PubMed Central

    Samad, Md Sainur; Bertilsson, Stefan

    2017-01-01

    Lakes are significant sources of methane (CH4) to the atmosphere. Within these systems, methanotrophs consume CH4 and act as a potential biofilter mitigating the emission of this potent greenhouse gas. However, it is still not well understood how spatial and temporal variation in environmental parameters influence the abundance, diversity, and community structure of methanotrophs in lakes. To address this gap in knowledge, we collected water samples from three depths (surface, middle, and bottom) representing oxic to suboxic or anoxic zones of five different Swedish lakes in winter (ice-covered) and summer. Methanotroph abundance was determined by quantitative real time polymerase chain reaction and a comparison to environmental variables showed that temperature, season as well as depth, phosphate concentration, dissolved oxygen, and CH4 explained the observed variation in methanotroph abundance. Due to minimal differences in methane concentrations (0.19 and 0.29 μM for summer and winter, respectively), only a weak and even negative correlation was observed between CH4 and methanotrophs, which was possibly due to usage of CH4. Methanotrophs were present at concentrations ranging from 105 to 106 copies/l throughout the oxic (surface) and suboxic/anoxic (bottom) water mass of the lakes, but always contributed less than 1.3% to the total microbial community. Relative methanotroph abundance was significantly higher in winter than in summer and consistently increased with depth in the lakes. Phylogenetic analysis of pmoA genes in two clone libraries from two of the ice-covered lakes (Ekoln and Ramsen) separated the methanotrophs into five distinct clusters of Methylobacter sp. (Type I). Terminal restriction fragment length polymorphism analysis of the pmoA gene further revealed significant differences in methanotrophic communities between lakes as well as between winter and summer while there were no significant differences between water layers. The study provides new

  7. The study of relatedness and genetic diversity in cranes

    USGS Publications Warehouse

    Gee, G.F.; Dessauer, H.C.; Longmire, J.; Briles, W.E.; Simon, R.C.; Wood, Don A.

    1992-01-01

    The U.S. Fish and Wildlife Service (Service) is responsible for recovery of endangered species in the wild and, when necessary, maintenance in captivity. These programs provide an immediate measure of insurance against extinction. A prerequisite inherent in all of these programs is the preservation of enough genetic diversity to maintain a viable population and to maintain the capacity of the population to respond to change. Measures of genetic diversity examine polymorphic genes that are not influenced by selection pressures. Examples of these techniques and those used to determine relatedness are discussed. Studies of genetic diversity, electrophoresis of blood proteins, relatedness, blood typing, and restriction fragment length polymorphisms which are being used by the Patuxent Wildlife Research Center are discussed in detail.

  8. Genetic Diversity among Ancient Nordic Populations

    PubMed Central

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R.; Kivisild, Toomas; Dissing, Jørgen

    2010-01-01

    Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (∼2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type “diluted” by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300–3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture. PMID:20689597

  9. Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecosystems.

    PubMed

    Lynn, Tin Mar; Ge, Tida; Yuan, Hongzhao; Wei, Xiaomeng; Wu, Xiaohong; Xiao, Keqing; Kumaresan, Deepak; Yu, San San; Wu, Jinshui; Whiteley, Andrew S

    2017-04-01

    CO 2 assimilation by autotrophic microbes is an important process in soil carbon cycling, and our understanding of the community composition of autotrophs in natural soils and their role in carbon sequestration of these soils is still limited. Here, we investigated the autotrophic C incorporation in soils from three natural ecosystems, i.e., wetland (WL), grassland (GR), and forest (FO) based on the incorporation of labeled C into the microbial biomass. Microbial assimilation of 14 C ( 14 C-MBC) differed among the soils from three ecosystems, accounting for 14.2-20.2% of 14 C-labeled soil organic carbon ( 14 C-SOC). We observed a positive correlation between the cbbL (ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit gene) abundance, 14 C-SOC level, and 14 C-MBC concentration confirming the role of autotrophic bacteria in soil carbon sequestration. Distinct cbbL-bearing bacterial communities were present in each soil type; form IA and form IC RubisCO-bearing bacteria were most abundant in WL, followed by GR soils, with sequences from FO soils exclusively derived from the form IC clade. Phylogenetically, the diversity of CO 2 -fixing autotrophs and CO oxidizers differed significantly with soil type, whereas cbbL-bearing bacterial communities were similar when assessed using coxL. We demonstrate that local edaphic factors such as pH and salinity affect the C-fixation rate as well as cbbL and coxL gene abundance and diversity. Such insights into the effect of soil type on the autotrophic bacterial capacity and subsequent carbon cycling of natural ecosystems will provide information to enhance the sustainable management of these important natural ecosystems.

  10. Mineralogic control on abundance and diversity of surface-adherent microbial communities

    USGS Publications Warehouse

    Mauck, Brena S.; Roberts, Jennifer A.

    2007-01-01

    In this study, we investigated the role of mineral-bound P and Fe in defining microbial abundance and diversity in a carbon-rich groundwater. Field colonization experiments of initially sterile mineral surfaces were combined with community structure characterization of the attached microbial population. Silicate minerals containing varying concentrations of P (∼1000 ppm P) and Fe (∼4 wt % Fe 2 O3), goethite (FeOOH), and apatite [Ca5(PO4)3(OH)] were incubated for 14 months in three biogeochemically distinct zones within a petroleum-contaminated aquifer. Phospholipid fatty acid analysis of incubated mineral surfaces and groundwater was used as a measure of microbial community structure and biomass. Microbial biomass on minerals exhibited distinct trends as a function of mineralogy depending on the environment of incubation. In the carbon-rich, aerobic groundwater attached biomass did not correlate to the P- or Fe- content of the mineral. In the methanogenic groundwater, however, biomass was most abundant on P-containing minerals. Similarly, in the Fe-reducing groundwater a correlation between Fe-content and biomass was observed. The community structure of the mineral-adherent microbial population was compared to the native groundwater community. These two populations were significantly different regardless of mineralogy, suggesting differentiation of the planktonic community through attachment, growth, and death of colonizing cells. Biomarkers specific for dissimilatory Fe-reducing bacteria native to the aquifer were identified only on Fe-containing minerals in the Fe-reducing groundwater. These results demonstrate that the trace nutrient content of minerals affects both the abundance and diversity of surface-adherent microbial communities. This behavior may be a means to access limiting nutrients from the mineral, creating a niche for a particular microbial population. These results suggest that heterogeneity of microbial populations and their associated

  11. Increased gut microbiota diversity and abundance of Faecalibacterium prausnitzii and Akkermansia after fasting: a pilot study.

    PubMed

    Remely, Marlene; Hippe, Berit; Geretschlaeger, Isabella; Stegmayer, Sonja; Hoefinger, Ingrid; Haslberger, Alexander

    2015-05-01

    An impaired gut microbiota has been reported as an important factor in the pathogenesis of obesity. Weight reduction has already been mentioned to improve gut microbial subpopulations involved in inflammatory processes, though other subpopulations still need further investigation. Thus, weight reduction in the context of a fasting program together with a probiotic intervention may improve the abundance and diversity of gut microbiota. In this pilot study, overweight people underwent a fasting program with laxative treatment for 1 week followed by a 6 week intervention with a probiotic formula. Gut microbiota were analyzed on the basis of 16s rDNA with a quantitative real time polymerase chain reaction. Additionally, a food frequency questionnaire with questions about nutritional behavior, lifestyle, and physical activity was administered before and after the intervention. We observed an increase in microbial diversity over the study period. No significant changes in abundance of total bacteria, or of Bacteroidetes, Prevotella, Clostridium cluster XIVa, or Clostridium cluster IV were found, although Faecalibacterium prausnitzii showed an increase over the study period. In addition, Akkermanisa and Bifidobacteria increased in abundance due to intervention. The inflammation-associated gut microbes Enterobacteria and Lactobacilli increased during the first week and then declined by the end of the intervention. Two-thirds of the study participants harbored Archaea. No significant improvements of eating habits were reported, although physical activity improved due to the intervention. Our results show that caloric restriction affects gut microbiota by proliferating mucin-degrading microbial subpopulations. An additional intervention with a probiotic formula increased probiotic-administered gut microbial populations.

  12. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    PubMed

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning.

  13. Abundance, diversity and domain architecture variability in prokaryotic DNA-binding transcription factors.

    PubMed

    Perez-Rueda, Ernesto; Hernandez-Guerrero, Rafael; Martinez-Nuñez, Mario Alberto; Armenta-Medina, Dagoberto; Sanchez, Israel; Ibarra, J Antonio

    2018-01-01

    Gene regulation at the transcriptional level is a central process in all organisms, and DNA-binding transcription factors, known as TFs, play a fundamental role. This class of proteins usually binds at specific DNA sequences, activating or repressing gene expression. In general, TFs are composed of two domains: the DNA-binding domain (DBD) and an extra domain, which in this work we have named "companion domain" (CD). This latter could be involved in one or more functions such as ligand binding, protein-protein interactions or even with enzymatic activity. In contrast to DBDs, which have been widely characterized both experimentally and bioinformatically, information on the abundance, distribution, variability and possible role of the CDs is scarce. Here, we investigated these issues associated with the domain architectures of TFs in prokaryotic genomes. To this end, 19 families of TFs in 761 non-redundant bacterial and archaeal genomes were evaluated. In this regard we found four main groups based on the abundance and distribution in the analyzed genomes: i) LysR and TetR/AcrR; ii) AraC/XylS, SinR, and others; iii) Lrp, Fis, ArsR, and others; and iv) a group that included only two families, ArgR and BirA. Based on a classification of the organisms according to the life-styles, a major abundance of regulatory families in free-living organisms, in contrast with pathogenic, extremophilic or intracellular organisms, was identified. Finally, the protein architecture diversity associated to the 19 families considering a weight score for domain promiscuity evidenced which regulatory families were characterized by either a large diversity of CDs, here named as "promiscuous" families given the elevated number of variable domains found in those TFs, or a low diversity of CDs. Altogether this information helped us to understand the diversity and distribution of the 19 Prokaryotes TF families. Moreover, initial steps were taken to comprehend the variability of the extra domain

  14. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras

    PubMed Central

    2012-01-01

    Background Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite’s circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. Methods Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. Results and conclusion A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77) for pvama-1; 23 (n = 84) for pvcsp; and 23 (n = 35) for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2) was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30) block 2 (K1, MAD20, and RO33), and both allelic families described for the central domain of pfmsp-2 (n = 11) (3D7 and FC27) were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission. PMID:23181845

  15. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras.

    PubMed

    Lopez, Ana Cecilia; Ortiz, Andres; Coello, Jorge; Sosa-Ochoa, Wilfredo; Torres, Rosa E Mejia; Banegas, Engels I; Jovel, Irina; Fontecha, Gustavo A

    2012-11-26

    Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite's circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77) for pvama-1; 23 (n = 84) for pvcsp; and 23 (n = 35) for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2) was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30) block 2 (K1, MAD20, and RO33), and both allelic families described for the central domain of pfmsp-2 (n = 11) (3D7 and FC27) were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission.

  16. Genetic diversity analysis of fruit characteristics of hawthorn germplasm.

    PubMed

    Su, K; Guo, Y S; Wang, G; Zhao, Y H; Dong, W X

    2015-12-07

    One hundred and six accessions of hawthorn intraspecific resources, from the National Germplasm Repository at Shenyang, were subjected to genetic diversity and principal component analysis based on evaluation data of 15 fruit traits. Results showed that the genetic diversity of hawthorn fruit traits varied. Among the 15 traits, the fruit shape variable coefficient had the most obvious evaluation, followed by fruit surface state, dot color, taste, weight of single fruit, sepal posture, peduncle form, and metula traits. These are the primary traits by which hawthorn could be classified in the future. The principal component demonstrated that these traits are the most influential factors of hawthorn fruit characteristics.

  17. Integrating abundance and functional traits reveals new global hotspots of fish diversity.

    PubMed

    Stuart-Smith, Rick D; Bates, Amanda E; Lefcheck, Jonathan S; Duffy, J Emmett; Baker, Susan C; Thomson, Russell J; Stuart-Smith, Jemina F; Hill, Nicole A; Kininmonth, Stuart J; Airoldi, Laura; Becerro, Mikel A; Campbell, Stuart J; Dawson, Terence P; Navarrete, Sergio A; Soler, German A; Strain, Elisabeth M A; Willis, Trevor J; Edgar, Graham J

    2013-09-26

    Species richness has dominated our view of global biodiversity patterns for centuries. The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management. However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling). Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao's Q), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only. There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites ('community evenness'), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness. Our findings suggest that the contribution of species diversity to a range of

  18. Roads, interrupted dispersal, and genetic diversity in timber rattlesnakes.

    PubMed

    Clark, Rulon W; Brown, William S; Stechert, Randy; Zamudio, Kelly R

    2010-08-01

    Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine-scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic-assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.

  19. The deep-sea zooplankton of the North, Central, and South Atlantic: Biomass, abundance, diversity

    NASA Astrophysics Data System (ADS)

    Vereshchaka, Alexander; Abyzova, Galina; Lunina, Anastasia; Musaeva, Eteri

    2017-03-01

    Ocean-scale surveys of vertical distribution of the zooplankton from the surface to the bathypelagic zone along transects are quite rare in the North Atlantic and absent in the Equatorial and South Atlantic. We present the first deep-sea quantitative survey of the zooplankton in the Equatorial and South Atlantic, analyze the interaction between environment (depth, water masses, surface productivity) and zooplankton abundance and biomass, and assess the biodiversity and role of copepods in various deep strata. Samples were taken at 20 sites along a submeridional transect between 40°N and 30°S at four discrete depth strata: epi- meso-, upper- and lower- bathypelagic. A closing Bogorov-Rass plankton net (1 m2 opening, 500 μm mesh size, towed at a speed of 1 m s-1) was used and three major plankton groups were defined: non-gelatinous mesozooplankton (mainly copepods and chaetognaths; 1-30 mm length), gelatinous mesozooplankton (mainly siphonophorans, medudae and salps; individual or zooid; 1-30 mm length) and macroplankton (mainly shrimps; over 30 mm length). Over 300 plankton taxa were identified, among which 243 belonged to Copepoda. Two-dimensional distribution (latitude versus depth zone) of major group biomass, total copepod abundance, and abundance of dominant species is presented as well as distribution of biodiversity parameters (number of species, Shannon and 'dominance' indices). Biomass and abundance of all major groups were depth-dependent. The number of taxa (N) was depended on surface productivity, diversity of the communities was strongly linked to depth, whilst 'evenness' was independant upon both variables. Each of depth strata was inhabited by distinct copepod assemblages, which significantly differed from each other. The paper is concluded with brief descriptions of the deep Atlantic plankton communities from studied strata.

  20. HIV Genetic Diversity and Drug Resistance.

    PubMed

    Santos, André F; Soares, Marcelo A

    2010-02-01

    Most of the current knowledge on antiretroviral (ARV) drug development and resistance is based on the study of subtype B of HIV-1, which only accounts for 10% of the worldwide HIV infections. Cumulative evidence has emerged that different HIV types, groups and subtypes harbor distinct biological properties, including the response and susceptibility to ARV. Recent laboratory and clinical data highlighting such disparities are summarized in this review. Variations in drug susceptibility, in the emergence and selection of specific drug resistance mutations, in viral replicative capacity and in the dynamics of resistance acquisition under ARV selective pressure are discussed. Clinical responses to ARV therapy and associated confounding factors are also analyzed in the context of infections by distinct HIV genetic variants.

  1. HIV Genetic Diversity and Drug Resistance

    PubMed Central

    Santos, André F.; Soares, Marcelo A.

    2010-01-01

    Most of the current knowledge on antiretroviral (ARV) drug development and resistance is based on the study of subtype B of HIV-1, which only accounts for 10% of the worldwide HIV infections. Cumulative evidence has emerged that different HIV types, groups and subtypes harbor distinct biological properties, including the response and susceptibility to ARV. Recent laboratory and clinical data highlighting such disparities are summarized in this review. Variations in drug susceptibility, in the emergence and selection of specific drug resistance mutations, in viral replicative capacity and in the dynamics of resistance acquisition under ARV selective pressure are discussed. Clinical responses to ARV therapy and associated confounding factors are also analyzed in the context of infections by distinct HIV genetic variants. PMID:21994646

  2. Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene.

    PubMed

    Martin, Simon H; Möst, Markus; Palmer, William J; Salazar, Camilo; McMillan, W Owen; Jiggins, Francis M; Jiggins, Chris D

    2016-05-01

    A combination of selective and neutral evolutionary forces shape patterns of genetic diversity in nature. Among the insects, most previous analyses of the roles of drift and selection in shaping variation across the genome have focused on the genus Drosophila A more complete understanding of these forces will come from analyzing other taxa that differ in population demography and other aspects of biology. We have analyzed diversity and signatures of selection in the neotropical Heliconius butterflies using resequenced genomes from 58 wild-caught individuals of Heliconius melpomene and another 21 resequenced genomes representing 11 related species. By comparing intraspecific diversity and interspecific divergence, we estimate that 31% of amino acid substitutions between Heliconius species are adaptive. Diversity at putatively neutral sites is negatively correlated with the local density of coding sites as well as nonsynonymous substitutions and positively correlated with recombination rate, indicating widespread linked selection. This process also manifests in significantly reduced diversity on longer chromosomes, consistent with lower recombination rates. Although hitchhiking around beneficial nonsynonymous mutations has significantly shaped genetic variation in H. melpomene, evidence for strong selective sweeps is limited overall. We did however identify two regions where distinct haplotypes have swept in different populations, leading to increased population differentiation. On the whole, our study suggests that positive selection is less pervasive in these butterflies as compared to fruit flies, a fact that curiously results in very similar levels of neutral diversity in these very different insects. Copyright © 2016 by the Genetics Society of America.

  3. Mitochondrial DNA perspective of Serbian genetic diversity.

    PubMed

    Davidovic, Slobodan; Malyarchuk, Boris; Aleksic, Jelena M; Derenko, Miroslava; Topalovic, Vladanka; Litvinov, Andrey; Stevanovic, Milena; Kovacevic-Grujicic, Natasa

    2015-03-01

    Although south-Slavic populations have been studied to date from various aspects, the population of Serbia, occupying the central part of the Balkan Peninsula, is still genetically understudied at least at the level of mitochondrial DNA (mtDNA) variation. We analyzed polymorphisms of the first and the second mtDNA hypervariable segments (HVS-I and HVS-II) and informative coding-region markers in 139 Serbians to shed more light on their mtDNA variability, and used available data on other Slavic and neighboring non-Slavic populations to assess their interrelations in a broader European context. The contemporary Serbian mtDNA profile is consistent with the general European maternal landscape having a substantial proportion of shared haplotypes with eastern, central, and southern European populations. Serbian population was characterized as an important link between easternmost and westernmost south-Slavic populations due to the observed lack of genetic differentiation with all other south-Slavic populations and its geographical positioning within the Balkan Peninsula. An increased heterogeneity of south Slavs, most likely mirroring turbulent demographic events within the Balkan Peninsula over time (i.e., frequent admixture and differential introgression of various gene pools), and a marked geographical stratification of Slavs to south-, east-, and west-Slavic groups, were also found. A phylogeographic analyses of 20 completely sequenced Serbian mitochondrial genomes revealed not only the presence of mtDNA lineages predominantly found within the Slavic gene pool (U4a2a*, U4a2a1, U4a2c, U4a2g, HV10), supporting a common Slavic origin, but also lineages that may have originated within the southern Europe (H5*, H5e1, H5a1v) and the Balkan Peninsula in particular (H6a2b and L2a1k). © 2014 Wiley Periodicals, Inc.

  4. Genetic diversity in wild populations of Paulownia fortune.

    PubMed

    Li, H Y; Ru, G X; Zhang, J; Lu, Y Y

    2014-11-01

    The genetic diversities of 16 Paulownia fortunei populations involving 143 individuals collected from 6 provinces in China were analyzed using amplified fragment length polymorphism (AFLP). A total of 9 primer pairs with 1169 polymorphic loci were screened out, and each pair possessed 132 bands on average. The percentage of polymorphic bands (98.57%), the effective number of alleles (1.2138-1.2726), Nei's genetic diversity (0.1566-0.1887), and Shannon's information index (0.2692-0.3117) indicated a plentiful genetic diversity and different among Paulownia fortunei populations. The genetic differentiation coefficient between populations was 0.2386, while the gene flow was 1.0954, and the low gene exchange promoted genetic differentiation. Analysis of variance indicated that genetic variation mainly occurred within populations (81.62% of total variation) rather than among populations (18.38%). The 16 populations were divided by unweighted pair-group method with arithmetic means (UPGMA) into 4 groups with obvious regionalism, in which the populations with close geographical locations (latitude) were clustered together.

  5. Diel fluctuations in the abundance and community diversity of coastal bacterioplankton assemblages over a tidal cycle.

    PubMed

    Olapade, Ola A

    2012-01-01

    The diel change in abundance and community diversity of the bacterioplankton assemblages within the Pacific Ocean at a fixed location in Monterey Bay, California (USA) were examined with several culture-independent (i.e., nucleic acid staining, fluorescence in situ hybridization {FISH}, and 16S ribosomal RNA gene libraries) approaches over a tidal cycle. FISH analyses revealed the quantitative predominance of bacterial members belonging to the Cytophaga-Flavobacterium cluster as well as two Proteobacteria (α- and γ-) subclasses within the bacterioplankton assemblages, especially during high tide (HT) and outgoing tide (OT) than the other tidal events. While the clone libraries showed that majority of the sequences were similar to the 16S rRNA gene sequences of unknown bacteria (32% to 73%), however, the operational taxonomic units from members of the α-Proteobacteria, Bacteroidetes, Firmicutes, and Cyanobacteria were also well represented during the four tidal events examined. Comparatively, sequence diversity was highest in OT, lowest in low tide, and very similar between HT and incoming tide. The results indicate that the dynamics of bacterial occurrence and diversity appeared to be more pronounced during HT and OT, further indicative of the ecological importance of several environmental variables including temperature, light intensity, and nutrient availability that are also concurrently fluctuating during these tidal events in marine systems.

  6. Seasonal abundance and habitat use of bird species in and around Wondo Genet Forest, south-central Ethiopia.

    PubMed

    Girma, Zerihun; Mamo, Yosef; Mengesha, Girma; Verma, Ashok; Asfaw, Tsyon

    2017-05-01

    The habitat use and seasonal migratory pattern of birds in Ethiopia is less explored as compared to diversity studies. To this end, this study aimed at investigating the patterns of distribution related to seasonality and the effect of habitat characteristics (elevation, slope, and average vegetation height) on habitat use of birds of Wondo Genet Forest Patch. A stratified random sampling design was used to assess the avian fauna across the four dominant habitat types found in the study area: natural forest, wooded grassland, grassland, and agroforestry land. A point transect count was employed to investigate avian species richness and abundance per habitat type per season. Ancillary data, such as elevation above sea level, latitude and longitude, average vegetation height, and percent slope inclination, were recorded with a GPS and clinometers per plot. A total of 33 migratory bird species were recorded from the area, of which 20 species were northern (Palearctic) migrants while 13 were inter-African migrants. There was a significant difference in the mean abundance of migratory bird species between dry and wet seasons ( t  = 2.13, p  = .038, df  = 44). The variation in mean abundance per plot between the dry and wet seasons in the grassland habitat was significant ( t  = 2.35, p  = .051, df  = 7). In most habitat types during both dry and wet seasons, omnivore birds were the most abundant. While slope was a good predictor for bird species abundance in the dry season, altitude and average vegetation height accounted more in the wet season. The patch of forest and its surrounding is an important bird area for migratory, endemic, and global threatened species. Hence, it is conservation priority area, and the study suggests that conservation coupled with ecotourism development is needed for its sustainability.

  7. Seeding method influences warm-season grass abundance and distribution but not local diversity in grassland restoration

    USGS Publications Warehouse

    Yurkonis, Kathryn A.; Wilsey, Brian J.; Moloney, Kirk A.; Drobney, Pauline; Larson, Diane L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands.

  8. Seeding Method Influences Warm-Season Grass Abundance and Distribution but not Local Diversity in Grassland Restoration

    USGS Publications Warehouse

    Yurkonis, K.A.; Wilsey, B.J.; Moloney, K.A.; Drobney, P.; Larson, D.L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands. ?? 2010 Society for Ecological Restoration International.

  9. Parametric scaling from species relative abundances to absolute abundances in the computation of biological diversity: a first proposal using Shannon's entropy.

    PubMed

    Ricotta, Carlo

    2003-01-01

    Traditional diversity measures such as the Shannon entropy are generally computed from the species' relative abundance vector of a given community to the exclusion of species' absolute abundances. In this paper, I first mention some examples where the total information content associated with a given community may be more adequate than Shannon's average information content for a better understanding of ecosystem functioning. Next, I propose a parametric measure of statistical information that contains both Shannon's entropy and total information content as special cases of this more general function.

  10. Defining the landscape of adaptive genetic diversity.

    PubMed

    Eckert, Andrew J; Dyer, Rodney J

    2012-06-01

    Whether they are used to describe fitness, genome architecture or the spatial distribution of environmental variables, the concept of a landscape has figured prominently in our collective reasoning. The tradition of landscapes in evolutionary biology is one of fitness mapped onto axes defined by phenotypes or molecular sequence states. The characteristics of these landscapes depend on natural selection, which is structured across both genomic and environmental landscapes, and thus, the bridge among differing uses of the landscape concept (i.e. metaphorically or literally) is that of an adaptive phenotype and its distribution across geographical landscapes in relation to selective pressures. One of the ultimate goals of evolutionary biology should thus be to construct fitness landscapes in geographical space. Natural plant populations are ideal systems with which to explore the feasibility of attaining this goal, because much is known about the quantitative genetic architecture of complex traits for many different plant species. What is less known are the molecular components of this architecture. In this issue of Molecular Ecology, Parchman et al. (2012) pioneer one of the first truly genome-wide association studies in a tree that moves us closer to this form of mechanistic understanding for an adaptive phenotype in natural populations of lodgepole pine (Pinus contorta Dougl. ex Loud.). © 2012 Blackwell Publishing Ltd.

  11. Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris.

    PubMed

    Rodriguez, Monica; Rau, Domenico; Bitocchi, Elena; Bellucci, Elisa; Biagetti, Eleonora; Carboni, Andrea; Gepts, Paul; Nanni, Laura; Papa, Roberto; Attene, Giovanna

    2016-03-01

    Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Genetic diversity of the human immunoglobulin heavy chain VH region.

    PubMed

    Li, Honghua; Cui, Xiangfeng; Pramanik, Sreemanta; Chimge, Nyam-Osor

    2002-12-01

    The human immunoglobulin heavy chain VH region is one of the most complex regions in the human genome. The high level of diversity of this region has been shown by a number of studies. However, because of the limitations of the conventional experimental methods, it has been difficult to learn the extent of the diversity and the underlying mechanisms. This review describes a number of new genetic approaches developed in the authors' laboratory. By using these approaches, significant progress has been made in assigning different VH sequences to their respective loci, in learning the diversity of gene segment number and composition among the VH haplotypes, and in learning VH gene segment organization in individual haplotypes. Information obtained toward this direction could help in understanding the mechanisms underlying VH region diversity and the biological impact of the VH region diversity.

  13. Maintenance of genetic diversity through plant-herbivore interactions

    PubMed Central

    Gloss, Andrew D.; Dittrich, Anna C. Nelson; Goldman-Huertas, Benjamin; Whiteman, Noah K.

    2013-01-01

    Identifying the factors governing the maintenance of genetic variation is a central challenge in evolutionary biology. New genomic data, methods and conceptual advances provide increasing evidence that balancing selection, mediated by antagonistic species interactions, maintains functionally-important genetic variation within species and natural populations. Because diverse interactions between plants and herbivorous insects dominate terrestrial communities, they provide excellent systems to address this hypothesis. Population genomic studies of Arabidopsis thaliana and its relatives suggest spatial variation in herbivory maintains adaptive genetic variation controlling defense phenotypes, both within and among populations. Conversely, inter-species variation in plant defenses promotes adaptive genetic variation in herbivores. Emerging genomic model herbivores of Arabidopsis could illuminate how genetic variation in herbivores and plants interact simultaneously. PMID:23834766

  14. Diversity and abundance of dung beetles (Coleoptera: Scaraebidae) at several different ecosystem functions in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah; Hazmi, Izfa Riza

    2015-09-01

    Dung beetles has known for its bioindicator characteristic. Sensitive towards forest disturbance, dung beetles population and diversity will be less in disturbed and modified area. The objective of this study is to evaluate the diversity and distribution of dung beetles in different type of ecosystems in Peninsular Malaysia. Fifteen baited pitfall traps aligned in three transects were used in this study. Samples were collected after 24 h and repeated three time collections and identified afterwards. Two ecosystem types were selected, which are forested and agricultural ecosystem (livestock and plantation). A total of 4249 individuals, 47 species, in 11 genera was successfully collected from all localities. The H' index for Fraser Hill, Langkawi, Bangi Reserve Forest, Selangor (HSB), Sungkai Reserve Forest, Perak (SRF), Chini Lake, Bera Lake, chicken farm, goat farm, Longan plantation, and palm oil plantation were 1.58, 1.74, 2.17, 2.63, 1.80, 1.52, 1.63, 0.46, 0.00 and 1.98 respectively.Forest ecosystem, SRF shows the highest abundance (1486 individuals) and diversity, while for agricultural ecosystem,palm oil plantation shows the highest with 273 individuals and 16 species. Based onDetrended Correspondence Analysis (DCA) shows two groups that separate forest ecosystem with the agricultural ecosystem, with palm oil is the nearest to the forest. Palm oil ecosystem can sustain a dung beetles population due to the area can provide the requirements for the dung beetles to survive, such as food which comes from local domestic cows, shade from sunlight provide by the palm oil trees, and ground cover from small plants and shrubs.Even though modified ecosystem should have lower diversity of dung beetles, but some factors must be measured as well in order to have a better point of view.

  15. Genetic diversity and reproductive success in mandrills (Mandrillus sphinx).

    PubMed

    Charpentier, M; Setchell, J M; Prugnolle, F; Knapp, L A; Wickings, E J; Peignot, P; Hossaert-McKey, M

    2005-11-15

    Recent studies of wild animal populations have shown that estimators of neutral genetic diversity, such as mean heterozygosity, are often correlated with various fitness traits, such as survival, disease susceptibility, or reproductive success. We used two estimators of genetic diversity to explore the relationship between heterozygosity and reproductive success in male and female mandrills (Mandrillus sphinx) living in a semifree ranging setting in Gabon. Because social rank is known to influence reproductive success in both sexes, we also examined the correlation between genetic diversity and social rank in females, and acquisition of alpha status in males, as well as length of alpha male tenure. We found that heterozygous individuals showed greater reproductive success, with both females and males producing more offspring. However, heterozygosity influenced reproductive success only in dominant males, not in subordinates. Neither the acquisition of alpha status in males, nor social rank in females, was significantly correlated with heterozygosity, although more heterozygous alpha males showed longer tenure than homozygous ones. We also tested whether the benefits of greater genetic diversity were due mainly to a genome-wide effect of inbreeding depression or to heterosis at one or a few loci. Multilocus effects best explained the correlation between heterozygosity and reproductive success and tenure, indicating the occurrence of inbreeding depression in this mandrill colony.

  16. Estimation of genetic diversity using SSR markers in sunflower

    USDA-ARS?s Scientific Manuscript database

    Sunflower is a major oilseed crop in central Asia, but little is known of the molecular diversity among collections of sunflower from Pakistan region. This paper described inherent genetic relationships among sunflower collections using Simple Sequence Repeat molecular markers. Results should help...

  17. Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico.

    PubMed

    Jiménez-Becerril, María F; Hernández-Delgado, Sanjuana; Solís-Oba, Myrna; González Prieto, Juan M

    2018-01-01

    The current understanding of the genetic diversity of the phytopathogenic fungus Ustilago maydis is limited. To determine the genetic diversity and structure of U. maydis, 48 fungal isolates were analyzed using mitochondrial simple sequence repeats (SSRs). Tumours (corn smut or 'huitlacoche') were collected from different Mexican states with diverse environmental conditions. Using bioinformatic tools, five microsatellites were identified within intergenic regions of the U. maydis mitochondrial genome. SSRMUM4 was the most polymorphic marker. The most common repeats were hexanucleotides. A total of 12 allelic variants were identified, with a mean of 2.4 alleles per locus. An estimate of the genetic diversity using analysis of molecular variance (AMOVA) revealed that the highest variance component is within states (84%), with moderate genetic differentiation between states (16%) (F ST  = 0.158). A dendrogram generated using the unweighted paired-grouping method with arithmetic averages (UPGMA) and the Bayesian analysis of population structure grouped the U. maydis isolates into two subgroups (K = 2) based on their shared SSRs.

  18. Extensive genetic diversity present within North American switchgrass germplasm

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is a perennial, native North American grass currently grown for ecological restoration and forage purposes that has potential as a biofuel feedstock crop. Understanding the genetic diversity of switchgrass can provide insight into allelic variants important in devel...

  19. Genetic diversity and conservation of Mexican forest trees

    Treesearch

    C. Wehenkel; S. Mariscal-Lucero; J.P. Jaramillo-Correa; C.A. López-Sánchez; J.J. Vargas Hernández; C. Sáenz-Romero

    2017-01-01

    Over the last 200 years, humans have impacted the genetic diversity of forest trees. Because of widespread deforestation and over-exploitation, about 9,000 tree species are listed worldwide as threatened with extinction, including more than half of the ~600 known conifer taxa. A comprehensive review of the floristic-taxonomic literature compiled a list of 4,331...

  20. Worldwide genetic diversity for mineral element concentrations in rice grain

    USDA-ARS?s Scientific Manuscript database

    With the aim of identifying rice (Oryza spp.) germplasm having enhanced grain nutritional value, the mineral nutrient and trace element content (a.k.a. ionome) of whole (unmilled) grains from a set of 1763 rice accessions of diverse geographic and genetic origin were evaluated. Seed for analysis o...

  1. Coalescence and genetic diversity in sexual populations under selection.

    PubMed

    Neher, Richard A; Kessinger, Taylor A; Shraiman, Boris I

    2013-09-24

    In sexual populations, selection operates neither on the whole genome, which is repeatedly taken apart and reassembled by recombination, nor on individual alleles that are tightly linked to the chromosomal neighborhood. The resulting interference between linked alleles reduces the efficiency of selection and distorts patterns of genetic diversity. Inference of evolutionary history from diversity shaped by linked selection requires an understanding of these patterns. Here, we present a simple but powerful scaling analysis identifying the unit of selection as the genomic "linkage block" with a characteristic length, , determined in a self-consistent manner by the condition that the rate of recombination within the block is comparable to the fitness differences between different alleles of the block. We find that an asexual model with the strength of selection tuned to that of the linkage block provides an excellent description of genetic diversity and the site frequency spectra compared with computer simulations. This linkage block approximation is accurate for the entire spectrum of strength of selection and is particularly powerful in scenarios with many weakly selected loci. The latter limit allows us to characterize coalescence, genetic diversity, and the speed of adaptation in the infinitesimal model of quantitative genetics.

  2. Parasites and genetic diversity in an invasive bumblebee.

    PubMed

    Jones, Catherine M; Brown, Mark J F

    2014-11-01

    Biological invasions are facilitated by the global transportation of species and climate change. Given that invasions may cause ecological and economic damage and pose a major threat to biodiversity, understanding the mechanisms behind invasion success is essential. Both the release of non-native populations from natural enemies, such as parasites, and the genetic diversity of these populations may play key roles in their invasion success. We investigated the roles of parasite communities, through enemy release and parasite acquisition, and genetic diversity in the invasion success of the non-native bumblebee, Bombus hypnorum, in the United Kingdom. The invasive B. hypnorum had higher parasite prevalence than most, or all native congeners for two high-impact parasites, probably due to higher susceptibility and parasite acquisition. Consequently parasites had a higher impact on B. hypnorum queens' survival and colony-founding success than on native species. Bombus hypnorum also had lower functional genetic diversity at the sex-determining locus than native species. Higher parasite prevalence and lower genetic diversity have not prevented the rapid invasion of the United Kingdom by B. hypnorum. These data may inform our understanding of similar invasions by commercial bumblebees around the world. This study suggests that concerns about parasite impacts on the small founding populations common to re-introduction and translocation programs may be less important than currently believed. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  3. Assessment of genetic diversity of sweet potato in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand ...

  4. Conserving genetic diversity in Ponderosa Pine ecosystem restoration

    Treesearch

    L.E. DeWald

    2017-01-01

    Restoration treatments in the ponderosa pine (Pinus ponderosa P. & C. Lawson) ecosystems of the southwestern United States often include removing over 80 percent of post-EuroAmerican settlement-aged trees to create healthier forest structural conditions. These types of stand density reductions can have negative effects on genetic diversity. Allozyme analyses...

  5. Genetic diversity of Kenyan native oyster mushroom (Pleurotus).

    PubMed

    Otieno, Ojwang D; Onyango, Calvin; Onguso, Justus Mungare; Matasyoh, Lexa G; Wanjala, Bramwel W; Wamalwa, Mark; Harvey, Jagger J W

    2015-01-01

    Members of the genus Pleurotus, also commonly known as oyster mushroom, are well known for their socioeconomic and biotechnological potentials. Despite being one of the most important edible fungi, the scarce information about the genetic diversity of the species in natural populations has limited their sustainable utilization. A total of 71 isolates of Pleurotus species were collected from three natural populations: 25 isolates were obtained from Kakamega forest, 34 isolates from Arabuko Sokoke forest and 12 isolates from Mount Kenya forest. Amplified fragment length polymorphism (AFLP) was applied to thirteen isolates of locally grown Pleurotus species obtained from laboratory samples using five primer pair combinations. AFLP markers and internal transcribed spacer (ITS) sequences of the ribosomal DNA were used to estimate the genetic diversity and evaluate phylogenetic relationships, respectively, among and within populations. The five primer pair combinations generated 293 polymorphic loci across the 84 isolates. The mean genetic diversity among the populations was 0.25 with the population from Arabuko Sokoke having higher (0.27) diversity estimates compared to Mount Kenya population (0.24). Diversity between the isolates from the natural population (0.25) and commercial cultivars (0.24) did not differ significantly. However, diversity was greater within (89%; P > 0.001) populations than among populations. Homology search analysis against the GenBank database using 16 rDNA ITS sequences randomly selected from the two clades of AFLP dendrogram revealed three mushroom species: P. djamor, P. floridanus and P. sapidus; the three mushrooms form part of the diversity of Pleurotus species in Kenya. The broad diversity within the Kenyan Pleurotus species suggests the possibility of obtaining native strains suitable for commercial cultivation. © 2015 by The Mycological Society of America.

  6. Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa.

    PubMed

    Broz, Amanda K; Manter, Daniel K; Vivanco, Jorge M

    2007-12-01

    Interactions between plants and soil microbes are important determinants of both above- and belowground community composition, and ultimately ecosystem function. As exotic plants continue to invade and modify native plant communities, there has been increasing interest in determining the influence of exotic invasives on native soil microbial communities. Here, using highly sensitive molecular techniques, we examine fungal abundance and diversity in the soil surrounding a particularly aggressive invasive plant species in North America, Centaurea maculosa Lam. In mixed stands, we show that this invasive weed can alter the native fungal community composition within its own rhizosphere and that of neighboring native plants. At higher densities, the effect of C. maculosa on native soil fungal communities was even greater. Our results demonstrate that this invasive weed can have significant effects not only on visible aboveground biodiversity but also on the native soil microbial community that extends beyond its rhizosphere.

  7. Genetic diversity of Entamoeba: Novel ribosomal lineages from cockroaches

    PubMed Central

    Kawano, Tetsuro; Imada, Mihoko; Chamavit, Pennapa; Kobayashi, Seiki; Hashimoto, Tetsuo

    2017-01-01

    Our current taxonomic perspective on Entamoeba is largely based on small-subunit ribosomal RNA genes (SSU rDNA) from Entamoeba species identified in vertebrate hosts with minor exceptions such as E. moshkovskii from sewage water and E. marina from marine sediment. Other Entamoeba species have also been morphologically identified and described from non-vertebrate species such as insects; however, their genetic diversity remains unknown. In order to further disclose the diversity of the genus, we investigated Entamoeba spp. in the intestines of three cockroach species: Periplaneta americana, Blaptica dubia, and Gromphadorhina oblongonota. We obtained 134 Entamoeba SSU rDNA sequences from 186 cockroaches by direct nested PCR using the DNA extracts of intestines from cockroaches, followed by scrutinized BLASTn screening and phylogenetic analyses. All the sequences identified in this study were distinct from those reported from known Entamoeba species, and considered as novel Entamoeba ribosomal lineages. Furthermore, they were positioned at the base of the clade of known Entamoeba species and displayed remarkable degree of genetic diversity comprising nine major groups in the three cockroach species. This is the first report of the diversity of SSU rDNA sequences from Entamoeba in non-vertebrate host species, and should help to understand the genetic diversity of the genus Entamoeba. PMID:28934335

  8. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments.

    PubMed

    Webster, Gordon; O'Sullivan, Louise A; Meng, Yiyu; Williams, Angharad S; Sass, Andrea M; Watkins, Andrew J; Parkes, R John; Weightman, Andrew J

    2015-02-01

    Archaea are widespread in marine sediments, but their occurrence and relationship with natural salinity gradients in estuarine sediments is not well understood. This study investigated the abundance and diversity of Archaea in sediments at three sites [Brightlingsea (BR), Alresford (AR) and Hythe (HY)] along the Colne Estuary, using quantitative real-time PCR (qPCR) of 16S rRNA genes, DNA hybridization, Archaea 16S rRNA and mcrA gene phylogenetic analyses. Total archaeal 16S rRNA abundance in sediments were higher in the low-salinity brackish sediments from HY (2-8 × 10(7) 16S rRNA gene copies cm(-3)) than the high-salinity marine sites from BR and AR (2 × 10(4)-2 × 10(7) and 4 × 10(6)-2 × 10(7) 16S rRNA gene copies cm(-3), respectively), although as a proportion of the total prokaryotes Archaea were higher at BR than at AR or HY. Phylogenetic analysis showed that members of the 'Bathyarchaeota' (MCG), Thaumarchaeota and methanogenic Euryarchaeota were the dominant groups of Archaea. The composition of Thaumarchaeota varied with salinity, as only 'marine' group I.1a was present in marine sediments (BR). Methanogen 16S rRNA genes from low-salinity sediments at HY were dominated by acetotrophic Methanosaeta and putatively hydrogentrophic Methanomicrobiales, whereas the marine site (BR) was dominated by mcrA genes belonging to methylotrophic Methanococcoides, versatile Methanosarcina and methanotrophic ANME-2a. Overall, the results indicate that salinity and associated factors play a role in controlling diversity and distribution of Archaea in estuarine sediments. © The Author 2014. Published by Oxford University Press on behalf of Federation of European Microbiological Society.

  9. Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments

    PubMed Central

    Webster, Gordon; O'Sullivan, Louise A.; Meng, Yiyu; Williams, Angharad S.; Sass, Andrea M.; Watkins, Andrew J.; Parkes, R. John; Weightman, Andrew J.

    2014-01-01

    Archaea are widespread in marine sediments, but their occurrence and relationship with natural salinity gradients in estuarine sediments is not well understood. This study investigated the abundance and diversity of Archaea in sediments at three sites [Brightlingsea (BR), Alresford (AR) and Hythe (HY)] along the Colne Estuary, using quantitative real-time PCR (qPCR) of 16S rRNA genes, DNA hybridization, Archaea 16S rRNA and mcrA gene phylogenetic analyses. Total archaeal 16S rRNA abundance in sediments were higher in the low-salinity brackish sediments from HY (2–8 × 107 16S rRNA gene copies cm−3) than the high-salinity marine sites from BR and AR (2 × 104–2 × 107 and 4 × 106–2 × 107 16S rRNA gene copies cm−3, respectively), although as a proportion of the total prokaryotes Archaea were higher at BR than at AR or HY. Phylogenetic analysis showed that members of the ‘Bathyarchaeota’ (MCG), Thaumarchaeota and methanogenic Euryarchaeota were the dominant groups of Archaea. The composition of Thaumarchaeota varied with salinity, as only ‘marine’ group I.1a was present in marine sediments (BR). Methanogen 16S rRNA genes from low-salinity sediments at HY were dominated by acetotrophic Methanosaeta and putatively hydrogentrophic Methanomicrobiales, whereas the marine site (BR) was dominated by mcrA genes belonging to methylotrophic Methanococcoides, versatile Methanosarcina and methanotrophic ANME-2a. Overall, the results indicate that salinity and associated factors play a role in controlling diversity and distribution of Archaea in estuarine sediments. PMID:25764553

  10. Diversity and abundance of invertebrate epifaunal assemblages associated with gorgonians are driven by colony attributes

    NASA Astrophysics Data System (ADS)

    Cúrdia, João; Carvalho, Susana; Pereira, Fábio; Guerra-García, José Manuel; Santos, Miguel N.; Cunha, Marina R.

    2015-06-01

    The present study aimed to explicitly quantify the link between the attributes of shallow-water gorgonian colonies (Octocorallia: Alcyonacea) and the ecological patterns of associated non-colonial epifaunal invertebrates. Based on multiple regression analysis, we tested the contribution of several attributes (colony height, width, and area, fractal dimension as a measure of colony complexity, lacunarity as a measure of the heterogeneity, and "colonial" epibiont cover) to abundance and taxonomic richness of associated assemblages. The results highlight the variation in the response of epifaunal assemblages to the gorgonian colony characteristics. The nature and intensity of the relationships were gorgonian species-dependent and varied from one taxonomic group to another. For both gorgonian species analyzed, the strongest predictor of species richness and abundance of the epifaunal assemblages was "colonial" epibiont cover, possibly due to a trophic effect (direct or indirect enhancement of food availability) combined with the surface available for colonization (species-area effect). Although structural complexity is usually indicated as the main driver for rich and abundant coral-associated assemblages, no significant relationship was observed between fractal dimension and the community descriptors; lacunarity, which reflects the sizes of the inter-branch spaces, was only linked to taxonomic richness in the assemblages associated with Leptogorgia lusitanica. The validity of the paradigm that structural complexity enhances biodiversity may be scale-dependent. In the case of gorgonians, the effect of complexity at the "garden" level may be more relevant than at the individual colony level. This reinforces the need for the conservation of gorgonian aggregation areas as a whole in order to preserve host diversity and size structure.

  11. Diversity, abundance, and consistency of microbial oxygenase expression and biodegradation in a shallow contaminated aquifer

    SciTech Connect

    Yagi, J.M.; Madsen, E.L.

    The diversity of Rieske dioxygenase genes and short-term temporal variability in the abundance of two selected dioxygenase gene sequences were examined in a naphthalene-rich, coal tar waste-contaminated subsurface study site. Using a previously published PCR-based approach (S. M. Ni Chadhain, R. S. Norman, K. V. Pesce, J. J. Kukor, and G. J. Zylstra, Appl. Environ. Microbiol. 72: 4078-4087, 2006) a broad suite of genes was detected, ranging from dioxygenase sequences associated with Rhodococcus and Sphingomonas to 32 previously uncharacterized Rieske gene sequence clone groups. The nag genes appeared frequently (20% of the total) in two groundwater monitoring wells characterized bymore » low (similar to 10{sup 2} ppb; similar to 1 {mu} M) ambient concentrations of naphthalene. A quantitative competitive PCR assay was used to show that abundances of nag genes (and archetypal nah genes) fluctuated substantially over a 9-month period. To contrast short-term variation with long-term community stability, in situ community gene expression (dioxygenase mRNA) and biodegradation potential (community metabolism of naphthalene in microcosms) were compared to measurements from 6 years earlier. cDNA sequences amplified from total RNA extracts revealed that nah- and nag-type genes were expressed in situ, corresponding well with structural gene abundances. Despite evidence for short-term (9-month) shifts in dioxygenase gene copy number, agreement in field gene expression (dioxygenase mRNA) and biodegradation potential was observed in comparisons to equivalent assays performed 6 years earlier. Thus, stability in community biodegradation characteristics at the hemidecadal time frame has been documented for these subsurface microbial communities.« less

  12. Effects of High Hydrostatic Pressure on Coastal Bacterial Community Abundance and Diversity

    PubMed Central

    Marietou, Angeliki

    2014-01-01

    Hydrostatic pressure is an important parameter influencing the distribution of microbial life in the ocean. In this study, the response of marine bacterial populations from surface waters to pressures representative of those under deep-sea conditions was examined. Southern California coastal seawater collected 5 m below the sea surface was incubated in microcosms, using a range of temperatures (16 to 3°C) and hydrostatic pressure conditions (0.1 to 80 MPa). Cell abundance decreased in response to pressure, while diversity increased. The morphology of the community also changed with pressurization to a predominant morphotype of small cocci. The pressure-induced community changes included an increase in the relative abundance of Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Flavobacteria largely at the expense of Epsilonproteobacteria. Culturable high-pressure-surviving bacteria were obtained and found to be phylogenetically similar to isolates from cold and/or deep-sea environments. These results provide novel insights into the response of surface water bacteria to changes in hydrostatic pressure. PMID:25063663

  13. Abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China.

    PubMed

    Song, Zhao-Qi; Wang, Li; Wang, Feng-Ping; Jiang, Hong-Chen; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Li, Wen-Jun

    2013-09-01

    It has been suggested that archaea carrying the accA gene, encoding the alpha subunit of the acetyl CoA carboxylase, autotrophically fix CO2 using the 3-hydroxypropionate/4-hydroxybutyrate pathway in low-temperature environments (e.g., soils, oceans). However, little new information has come to light regarding the occurrence of archaeal accA genes in high-temperature ecosystems. In this study, we investigated the abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China, using DNA- and RNA-based phylogenetic analyses and quantitative polymerase chain reaction. The results showed that archaeal accA genes were present and expressed in the investigated Yunnan hot springs with a wide range of temperatures (66-96 °C) and pH (4.3-9.0). The majority of the amplified archaeal accA gene sequences were affiliated with the ThAOA/HWCG III [thermophilic ammonia-oxidizing archaea (AOA)/hot water crenarchaeotic group III]. The archaeal accA gene abundance was very close to that of AOA amoA gene, encoding the alpha subunit of ammonia monooxygenase. These data suggest that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  14. [Genetic diversity and genetic structure of endangered wild Sinopodophyllum emodi by start codon targeted polymorphism].

    PubMed

    Chen, Da-Xia; Zhao, Ji-Feng; Liu, Xiang; Wang, Chang-Hua; Zhang, Zhi-Wei; Qin, Song-Yun; Zhong, Guo-Yue

    2013-01-01

    Revealed the genetic diversity level and genetic structure characteristics in Sinopodophyllum emodi, a rare and endangered species in China. We detected the genetic polymorphism within and among six wild populations (45 individuals) by the approach of Start Codon Targeted (SCoT) Polymorphism. The associated genetic parameters were calculated by POP-GENE1.31 and the relationship was constructed based on UPGMA method. A total of 350 bands were scored by 27 primers and 284 bands of them were polymorphic. The average polymorphic bands of each primer were 10.52. At species level, there was a high level of genetic diversity among six populations (PPB = 79.27%, N(e) = 1.332 7, H = 0.210 9 and H(sp) = 0.328 6). At population level, the genetic diversity level was low (PPB = 10.48% (4.00% -23.71%), N(e) = 1.048 7 (1.020 7-1.103 7), H = 0.029 7 (0.012 9-0.063 1), H(pop) = 0.046 2 (0.019 9-0.098 6). The Nei's coefficient of genetic differentiation was 0.841 1, which was consistent with the Shannon's coefficient of genetic differentiation (0.849 4). Two calculated methods all showed that most of the genetic variation existed among populations. The gene flow (N(m) = 0.094 4) was less among populations, indicating that the degree of genetic differentiation was higher. Genetic similarity coefficient were changed from 0.570 8 to 0.978 7. By clustering analysis, the tested populations were divided into two classes and had a tendency that the same geographical origin or material of similar habitats clustered into one group. The genetic diversity of samples of S. emodi is high,which laid a certain foundation for effective protection and improvement of germplasm resources.

  15. Genetic diversity and population genetics of mosquitoes (Diptera: Culicidae: Culex spp.) from the Sonoran Desert of North America.

    PubMed

    Pfeiler, Edward; Flores-López, Carlos A; Mada-Vélez, Jesús Gerardo; Escalante-Verdugo, Juan; Markow, Therese A

    2013-01-01

    The population genetics and phylogenetic relationships of Culex mosquitoes inhabiting the Sonoran Desert region of North America were studied using mitochondrial DNA and microsatellite molecular markers. Phylogenetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) from mosquitoes collected over a wide geographic area, including the Baja California peninsula, and mainland localities in southern Arizona, USA and Sonora, Mexico, showed several well-supported partitions corresponding to Cx. quinquefasciatus, Cx. tarsalis, and two unidentified species, Culex sp. 1 and sp. 2. Culex quinquefasciatus was found at all localities and was the most abundant species collected. Culex tarsalis was collected only at Tucson, Arizona and Guaymas, Sonora. The two unidentified species of Culex were most abundant at Navojoa in southern Sonora. Haplotype and nucleotide diversities in the COI gene segment were substantially lower in Cx. quinquefasciatus compared with the other three species. Analysis of molecular variance revealed little structure among seven populations of Cx. quinquefasciatus, whereas significant structure was found between the two populations of Cx. tarsalis. Evidence for an historical population expansion beginning in the Pleistocene was found for Cx. tarsalis. Possible explanations for the large differences in genetic diversity between Cx. quinquefasciatus and the other species of Culex are presented.

  16. Genetic Diversity and Population Genetics of Mosquitoes (Diptera: Culicidae: Culex spp.) from the Sonoran Desert of North America

    PubMed Central

    Pfeiler, Edward; Flores-López, Carlos A.; Mada-Vélez, Jesús Gerardo; Escalante-Verdugo, Juan; Markow, Therese A.

    2013-01-01

    The population genetics and phylogenetic relationships of Culex mosquitoes inhabiting the Sonoran Desert region of North America were studied using mitochondrial DNA and microsatellite molecular markers. Phylogenetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) from mosquitoes collected over a wide geographic area, including the Baja California peninsula, and mainland localities in southern Arizona, USA and Sonora, Mexico, showed several well-supported partitions corresponding to Cx. quinquefasciatus, Cx. tarsalis, and two unidentified species, Culex sp. 1 and sp. 2. Culex quinquefasciatus was found at all localities and was the most abundant species collected. Culex tarsalis was collected only at Tucson, Arizona and Guaymas, Sonora. The two unidentified species of Culex were most abundant at Navojoa in southern Sonora. Haplotype and nucleotide diversities in the COI gene segment were substantially lower in Cx. quinquefasciatus compared with the other three species. Analysis of molecular variance revealed little structure among seven populations of Cx. quinquefasciatus, whereas significant structure was found between the two populations of Cx. tarsalis. Evidence for an historical population expansion beginning in the Pleistocene was found for Cx. tarsalis. Possible explanations for the large differences in genetic diversity between Cx. quinquefasciatus and the other species of Culex are presented. PMID:24302868

  17. Synthetic biology: advancing the design of diverse genetic systems

    PubMed Central

    Wang, Yen-Hsiang; Wei, Kathy Y.; Smolke, Christina D.

    2013-01-01

    A main objective of synthetic biology is to make the process of designing genetically-encoded biological systems more systematic, predictable, robust, scalable, and efficient. The examples of genetic systems in the field vary widely in terms of operating hosts, compositional approaches, and network complexity, ranging from a simple genetic switch to search-and-destroy systems. While significant advances in synthesis capabilities support the potential for the implementation of pathway- and genome-scale programs, several design challenges currently restrict the scale of systems that can be reasonably designed and implemented. Synthetic biology offers much promise in developing systems to address challenges faced in manufacturing, the environment and sustainability, and health and medicine, but the realization of this potential is currently limited by the diversity of available parts and effective design frameworks. As researchers make progress in bridging this design gap, advances in the field hint at ever more diverse applications for biological systems. PMID:23413816

  18. Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems

    PubMed Central

    van der Meer, Sascha; Jacquemyn, Hans

    2015-01-01

    Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68), which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G” ST = 0.269 and 0.164 and D EST = 0.190 and 0.124, respectively) and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands. PMID:26079603

  19. Genetic diversity, morphological uniformity and polyketide production in dinoflagellates (Amphidinium, Dinoflagellata).

    PubMed

    Murray, Shauna A; Garby, Tamsyn; Hoppenrath, Mona; Neilan, Brett A

    2012-01-01

    Dinoflagellates are an intriguing group of eukaryotes, showing many unusual morphological and genetic features. Some groups of dinoflagellates are morphologically highly uniform, despite indications of genetic diversity. The species Amphidinium carterae is abundant and cosmopolitan in marine environments, grows easily in culture, and has therefore been used as a 'model' dinoflagellate in research into dinoflagellate genetics, polyketide production and photosynthesis. We have investigated the diversity of 'cryptic' species of Amphidinium that are morphologically similar to A. carterae, including the very similar species Amphidinium massartii, based on light and electron microscopy, two nuclear gene regions (LSU rDNA and ITS rDNA) and one mitochondrial gene region (cytochrome b). We found that six genetically distinct cryptic species (clades) exist within the species A. massartii and four within A. carterae, and that these clades differ from one another in molecular sequences at levels comparable to other dinoflagellate species, genera or even families. Using primers based on an alignment of alveolate ketosynthase sequences, we isolated partial ketosynthase genes from several Amphidinium species. We compared these genes to known dinoflagellate ketosynthase genes and investigated the evolution and diversity of the strains of Amphidinium that produce them.

  20. Genetic Diversity, Morphological Uniformity and Polyketide Production in Dinoflagellates (Amphidinium, Dinoflagellata)

    PubMed Central

    Hoppenrath, Mona; Neilan, Brett A.

    2012-01-01

    Dinoflagellates are an intriguing group of eukaryotes, showing many unusual morphological and genetic features. Some groups of dinoflagellates are morphologically highly uniform, despite indications of genetic diversity. The species Amphidinium carterae is abundant and cosmopolitan in marine environments, grows easily in culture, and has therefore been used as a ‘model’ dinoflagellate in research into dinoflagellate genetics, polyketide production and photosynthesis. We have investigated the diversity of ‘cryptic’ species of Amphidinium that are morphologically similar to A. carterae, including the very similar species Amphidinium massartii, based on light and electron microscopy, two nuclear gene regions (LSU rDNA and ITS rDNA) and one mitochondrial gene region (cytochrome b). We found that six genetically distinct cryptic species (clades) exist within the species A. massartii and four within A. carterae, and that these clades differ from one another in molecular sequences at levels comparable to other dinoflagellate species, genera or even families. Using primers based on an alignment of alveolate ketosynthase sequences, we isolated partial ketosynthase genes from several Amphidinium species. We compared these genes to known dinoflagellate ketosynthase genes and investigated the evolution and diversity of the strains of Amphidinium that produce them. PMID:22675531

  1. Evidence of two genetic clusters of manatees with low genetic diversity in Mexico and implications for their conservation.

    PubMed

    Nourisson, Coralie; Morales-Vela, Benjamín; Padilla-Saldívar, Janneth; Tucker, Kimberly Pause; Clark, Annmarie; Olivera-Gómez, Leon David; Bonde, Robert; McGuire, Peter

    2011-07-01

    The Antillean manatee (Trichechus manatus manatus) occupies the tropical coastal waters of the Greater Antilles and Caribbean, extending from Mexico along Central and South America to Brazil. Historically, manatees were abundant in Mexico, but hunting during the pre-Columbian period, the Spanish colonization and throughout the history of Mexico, has resulted in the significantly reduced population occupying Mexico today. The genetic structure, using microsatellites, shows the presence of two populations in Mexico: the Gulf of Mexico (GMx) and Chetumal Bay (ChB) on the Caribbean coast, with a zone of admixture in between. Both populations show low genetic diversity (GMx: N(A) = 2.69; H(E) = 0.41 and ChB: N(A) = 3.0; H(E) = 0.46). The lower genetic diversity found in the GMx, the largest manatee population in Mexico, is probably due to a combination of a founder effect, as this is the northern range of the sub-species of T. m. manatus, and a bottleneck event. The greater genetic diversity observed along the Caribbean coast, which also has the smallest estimated number of individuals, is possibly due to manatees that come from the GMx and Belize. There is evidence to support limited or unidirectional gene flow between these two important areas. The analyses presented here also suggest minimal evidence of a handful of individual migrants possibly between Florida and Mexico. To address management issues we suggest considering two distinct genetic populations in Mexico, one along the Caribbean coast and one in the riverine systems connected to the GMx.

  2. Evidence of two genetic clusters of manatees with low genetic diversity in Mexico and implications for their conservation

    USGS Publications Warehouse

    Nourisson, C.; Morales-Vela, B.; Padilla-Saldivar, J.; Tucker, K.P.; Clark, A.; Olivera-Gomez, L. D.; Bonde, R.; McGuire, P.

    2011-01-01

    The Antillean manatee (Trichechus manatus manatus) occupies the tropical coastal waters of the Greater Antilles and Caribbean, extending from Mexico along Central and South America to Brazil. Historically, manatees were abundant in Mexico, but hunting during the pre-Columbian period, the Spanish colonization and throughout the history of Mexico, has resulted in the significantly reduced population occupying Mexico today. The genetic structure, using microsatellites, shows the presence of two populations in Mexico: the Gulf of Mexico (GMx) and Chetumal Bay (ChB) on the Caribbean coast, with a zone of admixture in between. Both populations show low genetic diversity (GMx: NA=2.69; HE=0.41 and ChB: NA=3.0; HE=0.46). The lower genetic diversity found in the GMx, the largest manatee population in Mexico, is probably due to a combination of a founder effect, as this is the northern range of the sub-species of T. m. manatus, and a bottleneck event. The greater genetic diversity observed along the Caribbean coast, which also has the smallest estimated number of individuals, is possibly due to manatees that come from the GMx and Belize. There is evidence to support limited or unidirectional gene flow between these two important areas. The analyses presented here also suggest minimal evidence of a handful of individual migrants possibly between Florida and Mexico. To address management issues we suggest considering two distinct genetic populations in Mexico, one along the Caribbean coast and one in the riverine systems connected to the GMx. ?? 2011 Springer Science+Business Media B.V.

  3. Evidence of two genetic clusters of manatees with low genetic diversity in Mexico and implications for their conservation

    USGS Publications Warehouse

    Nourisson, Coralie; Morales-Vela, Benjamin; Padilla-Saldivar, Janneth; Tucker, Kimberly Pause; Clark, Ann Marie; Olivera-Gomez, Leon David; Bonde, Robert; McGuire, Peter

    2011-01-01

    The Antillean manatee (Trichechus manatus manatus) occupies the tropical coastal waters of the Greater Antilles and Caribbean, extending from Mexico along Central and South America to Brazil. Historically, manatees were abundant in Mexico, but hunting during the pre-Columbian period, the Spanish colonization and throughout the history of Mexico, has resulted in the significantly reduced population occupying Mexico today. The genetic structure, using microsatellites, shows the presence of two populations in Mexico: the Gulf of Mexico (GMx) and Chetumal Bay (ChB) on the Caribbean coast, with a zone of admixture in between. Both populations show low genetic diversity (GMx: NA = 2.69; HE = 0.41 and ChB: NA = 3.0; HE = 0.46). The lower genetic diversity found in the GMx, the largest manatee population in Mexico, is probably due to a combination of a founder effect, as this is the northern range of the sub-species of T. m. manatus, and a bottleneck event. The greater genetic diversity observed along the Caribbean coast, which also has the smallest estimated number of individuals, is possibly due to manatees that come from the GMx and Belize. There is evidence to support limited or unidirectional gene flow between these two important areas. The analyses presented here also suggest minimal evidence of a handful of individual migrants possibly between Florida and Mexico. To address management issues we suggest considering two distinct genetic populations in Mexico, one along the Caribbean coast and one in the riverine systems connected to the GMx.

  4. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest

    PubMed Central

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  5. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest.

    PubMed

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-02-10

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community.

  6. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity

    PubMed Central

    Edgar, Graham J.; Alexander, Timothy J.; Lefcheck, Jonathan S.; Bates, Amanda E.; Kininmonth, Stuart J.; Thomson, Russell J.; Duffy, J. Emmett; Costello, Mark J.; Stuart-Smith, Rick D.

    2017-01-01

    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and −15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas. PMID:29057321

  7. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states.

    PubMed

    Šantl-Temkiv, Tina; Gosewinkel, Ulrich; Starnawski, Piotr; Lever, Mark; Finster, Kai

    2018-04-01

    The Arctic is undergoing dramatic climatic changes that cause profound transformations in its terrestrial ecosystems and consequently in the microbial communities that inhabit them. The assembly of these communities is affected by aeolian deposition. However, the abundance, diversity, sources and activity of airborne microorganisms in the Arctic are poorly understood. We studied bacteria in the atmosphere over southwest Greenland and found that the diversity of bacterial communities correlated positively with air temperature and negatively with relative humidity. The communities consisted of 1.3×103 ± 1.0×103 cells m-3, which were aerosolized from local terrestrial environments or transported from marine, glaciated and terrestrial surfaces over long distances. On average, airborne bacterial cells displayed a high activity potential, reflected in the high 16S rRNA copy number (590 ± 300 rRNA cell-1), that correlated positively with water vapor pressure. We observed that bacterial clades differed in their activity potential. For instance, a high activity potential was seen for Rubrobacteridae and Clostridiales, while a low activity potential was observed for Proteobacteria. Of those bacterial families that harbor ice-nucleation active species, which are known to facilitate freezing and may thus be involved in cloud and rain formation, cells with a high activity potential were rare in air, but were enriched in rain.

  8. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity.

    PubMed

    Edgar, Graham J; Alexander, Timothy J; Lefcheck, Jonathan S; Bates, Amanda E; Kininmonth, Stuart J; Thomson, Russell J; Duffy, J Emmett; Costello, Mark J; Stuart-Smith, Rick D

    2017-10-01

    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and -15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas.

  9. Genetic Diversity and Genetic Relationships of Purple Willow (Salix purpurea L.) from Natural Locations

    PubMed Central

    Prinz, Kathleen; Przyborowski, Jerzy A.

    2017-01-01

    In this study, the genetic diversity and structure of 13 natural locations of Salix purpurea were determined with the use of AFLP (amplified length polymorphism), RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeats). The genetic relationships between 91 examined S. purpurea genotypes were evaluated by analyses of molecular variance (AMOVA), principal coordinates analyses (PCoA) and UPGMA (unweighted pair group method with arithmetic mean) dendrograms for both single marker types and a combination of all marker systems. The locations were assigned to distinct regions and the analysis of AMOVA (analysis of molecular variance) revealed a high genetic diversity within locations. The genetic diversity between both regions and locations was relatively low, but typical for many woody plant species. The results noted for the analyzed marker types were generally comparable with few differences in the genetic relationships among S. purpurea locations. A combination of several marker systems could thus be ideally suited to understand genetic diversity patterns of the species. This study makes the first attempt to broaden our knowledge of the genetic parameters of the purple willow (S. purpurea) from natural location for research and several applications, inter alia breeding purposes. PMID:29301207

  10. Intraspecific genetic diversity and composition modify species-level diversity-productivity relationships.

    PubMed

    Schöb, Christian; Kerle, Sarah; Karley, Alison J; Morcillo, Luna; Pakeman, Robin J; Newton, Adrian C; Brooker, Rob W

    2015-01-01

    Biodiversity regulates ecosystem functions such as productivity, and experimental studies of species mixtures have revealed selection and complementarity effects driving these responses. However, the impacts of intraspecific genotypic diversity in these studies are unknown, despite it forming a substantial part of the biodiversity. In a glasshouse experiment we constructed plant communities with different levels of barley (Hordeum vulgare) genotype and weed species diversity and assessed their relative biodiversity effects through additive partitioning into selection and complementarity effects. Barley genotype diversity had weak positive effects on aboveground biomass through complementarity effects, whereas weed species diversity increased biomass predominantly through selection effects. When combined, increasing genotype diversity of barley tended to dilute the selection effect of weeds. We interpret these different effects of barley genotype and weed species diversity as the consequence of small vs large trait variation associated with intraspecific barley diversity and interspecific weed diversity, respectively. The different effects of intra- vs interspecific diversity highlight the underestimated and overlooked role of genetic diversity for ecosystem functioning. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  11. Diverse spore rains and limited local exchange shape fern genetic diversity in a recently created habitat colonized by long-distance dispersal

    PubMed Central

    De Groot, G. A.; During, H. J.; Ansell, S. W.; Schneider, H.; Bremer, P.; Wubs, E. R. J.; Maas, J. W.; Korpelainen, H.; Erkens, R. H. J.

    2012-01-01

    Background and Aims Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal. Methods Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos. Key Results A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species. Conclusions The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated

  12. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study.

    PubMed

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-03-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  13. Estimating the Population Size and Genetic Diversity of Amur Tigers in Northeast China

    PubMed Central

    Dou, Hailong; Yang, Haitao; Feng, Limin; Mou, Pu; Wang, Tianming; Ge, Jianping

    2016-01-01

    Over the past century, the endangered Amur tiger (Panthera tigris altaica) has experienced a severe contraction in demography and geographic range because of habitat loss, poaching, and prey depletion. In its historical home in Northeast China, there appears to be a single tiger population that includes tigers in Southwest Primorye and Northeast China; however, the current demographic status of this population is uncertain. Information on the abundance, distribution and genetic diversity of this population for assessing the efficacy of conservation interventions are scarce. We used noninvasive genetic detection data from scats, capture-recapture models and an accumulation curve method to estimate the abundance of Amur tigers in Northeast China. We identified 11 individual tigers (6 females and 5 males) using 10 microsatellite loci in three nature reserves between April 2013 and May 2015. These tigers are confined primarily to a Hunchun Nature Reserve along the border with Russia, with an estimated population abundance of 9–11 tigers during the winter of 2014–2015. They showed a low level of genetic diversity. The mean number of alleles per locus was 2.60 and expected and observed heterozygosity were 0.42 and 0.49, respectively. We also documented long-distance dispersal (~270 km) of a male Amur tiger to Huangnihe Nature Reserve from the border, suggesting that the expansion of neighboring Russian populations may eventually help sustain Chinese populations. However, the small and isolated population recorded by this study demonstrate that there is an urgent need for more intensive regional management to create a tiger-permeable landscape and increased genetic connectivity with other populations. PMID:27100387

  14. Estimating the Population Size and Genetic Diversity of Amur Tigers in Northeast China.

    PubMed

    Dou, Hailong; Yang, Haitao; Feng, Limin; Mou, Pu; Wang, Tianming; Ge, Jianping

    2016-01-01

    Over the past century, the endangered Amur tiger (Panthera tigris altaica) has experienced a severe contraction in demography and geographic range because of habitat loss, poaching, and prey depletion. In its historical home in Northeast China, there appears to be a single tiger population that includes tigers in Southwest Primorye and Northeast China; however, the current demographic status of this population is uncertain. Information on the abundance, distribution and genetic diversity of this population for assessing the efficacy of conservation interventions are scarce. We used noninvasive genetic detection data from scats, capture-recapture models and an accumulation curve method to estimate the abundance of Amur tigers in Northeast China. We identified 11 individual tigers (6 females and 5 males) using 10 microsatellite loci in three nature reserves between April 2013 and May 2015. These tigers are confined primarily to a Hunchun Nature Reserve along the border with Russia, with an estimated population abundance of 9-11 tigers during the winter of 2014-2015. They showed a low level of genetic diversity. The mean number of alleles per locus was 2.60 and expected and observed heterozygosity were 0.42 and 0.49, respectively. We also documented long-distance dispersal (~270 km) of a male Amur tiger to Huangnihe Nature Reserve from the border, suggesting that the expansion of neighboring Russian populations may eventually help sustain Chinese populations. However, the small and isolated population recorded by this study demonstrate that there is an urgent need for more intensive regional management to create a tiger-permeable landscape and increased genetic connectivity with other populations.

  15. Genetic Diversity and Population Structure of Theileria annulata in Oman

    PubMed Central

    Al-Hamidhi, Salama; H. Tageldin, Mohammed.; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H.; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Background Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Methods Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. Results We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST

  16. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    PubMed

    Al-Hamidhi, Salama; H Tageldin, Mohammed; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075, θ = 0.07) were

  17. Genetic Diversity in the Paramecium aurelia Species Complex

    PubMed Central

    Catania, Francesco; Wurmser, François; Potekhin, Alexey A.; Przyboś, Ewa; Lynch, Michael

    2009-01-01

    Current understanding of the population genetics of free-living unicellular eukaryotes is limited, and the amount of genetic variability in these organisms is still a matter of debate. We characterized—reproductively and genetically—worldwide samples of multiple Paramecium species belonging to a cryptic species complex, Paramecium aurelia, whose species have been shown to be reproductively isolated. We found that levels of genetic diversity both in the nucleus and in the mitochondrion are substantial within groups of reproductively compatible P. aurelia strains but drop considerably when strains are partitioned according to their phylogenetic groupings. Our study reveals the existence of discrepancies between the mating behavior of a number of P. aurelia strains and their multilocus genetic profile, a controversial finding that has major consequences for both the current methods of species assignment and the species problem in the P. aurelia complex. PMID:19023087

  18. Diverse and Abundant Secondary Metabolism Biosynthetic Gene Clusters in the Genomes of Marine Sponge Derived Streptomyces spp. Isolates.

    PubMed

    Jackson, Stephen A; Crossman, Lisa; Almeida, Eduardo L; Margassery, Lekha Menon; Kennedy, Jonathan; Dobson, Alan D W

    2018-02-20

    The genus Streptomyces produces secondary metabolic compounds that are rich in biological activity. Many of these compounds are genetically encoded by large secondary metabolism biosynthetic gene clusters (smBGCs) such as polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) which are modular and can be highly repetitive. Due to the repeats, these gene clusters can be difficult to resolve using short read next generation datasets and are often quite poorly predicted using standard approaches. We have sequenced the genomes of 13 Streptomyces spp. strains isolated from shallow water and deep-sea sponges that display antimicrobial activities against a number of clinically relevant bacterial and yeast species. Draft genomes have been assembled and smBGCs have been identified using the antiSMASH (antibiotics and Secondary Metabolite Analysis Shell) web platform. We have compared the smBGCs amongst strains in the search for novel sequences conferring the potential to produce novel bioactive secondary metabolites. The strains in this study recruit to four distinct clades within the genus Streptomyces . The marine strains host abundant smBGCs which encode polyketides, NRPS, siderophores, bacteriocins and lantipeptides. The deep-sea strains appear to be enriched with gene clusters encoding NRPS. Marine adaptations are evident in the sponge-derived strains which are enriched for genes involved in the biosynthesis and transport of compatible solutes and for heat-shock proteins. Streptomyces spp. from marine environments are a promising source of novel bioactive secondary metabolites as the abundance and diversity of smBGCs show high degrees of novelty. Sponge derived Streptomyces spp. isolates appear to display genomic adaptations to marine living when compared to terrestrial strains.

  19. Genetic diversity of Bromeliaceae species from the Atlantic Forest.

    PubMed

    Sheu, Y; Cunha-Machado, A S; Gontijo, A B P L; Favoreto, F C; Soares, T B C; Miranda, F D

    2017-04-20

    The Bromeliaceae family includes a range of species used for many purposes, including ornamental use and use as food, medicine, feed, and fiber. The state of Espírito Santo, Brazil is a center of diversity for this family in the Atlantic Forest. We evaluated the genetic diversity of five populations of the Bromeliaceae family, including specimens of the genera Aechmea, Billbergia (subfamily Bromelioideae), and Pitcairnia (subfamily Pitcairnioidea), all found in the Atlantic Forest and distributed in the state of Espírito Santo. The number of alleles per locus in populations ranged from two to six and the fixation index (F), estimated for some simple sequence repeats in bromeliad populations, was less than zero in all populations. All markers in the Pitcairnia flammea population were in Hardy-Weinberg equilibrium (P < 0.05). Moreover, significant deviations from Hardy-Weinberg equilibrium were observed at some loci in populations of the five bromeliad species. In most cases, this can be attributed to the presence of inbreeding or the Wahlund effect. The genetic diversity indices of five species showed greater allelic richness in P. flammea (3.55). Therefore, we provide useful information for the characterization of genetic diversity in natural populations of Aechmea ramosa, Aechmea nudicaulis, Billbergia horrid, Billbergia euphemia, and P. flammea in Atlantic Forest remnants in the south of Espírito Santo state.

  20. Genetic diversity affects colony survivorship in commercial honey bee colonies

    NASA Astrophysics Data System (ADS)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  1. Genetic diversity affects colony survivorship in commercial honey bee colonies.

    PubMed

    Tarpy, David R; Vanengelsdorp, Dennis; Pettis, Jeffrey S

    2013-08-01

    Honey bee (Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency (m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e  ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e  > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  2. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers

    PubMed Central

    Jasim Aljumaili, Saba; Sakimin, Siti Zaharah; Arolu, Ibrahim Wasiu; Miah, Gous

    2018-01-01

    Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak) with 3 released varieties as a control using the 32 simple sequence repeat (SSR) markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index (I) ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon's information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity (He) of 0.60 and mean Nei's gene diversity index of 0.36. The dendrogram based on UPGMA and Nei's genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA) revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816) from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development. PMID:29736396

  3. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers.

    PubMed

    Jasim Aljumaili, Saba; Rafii, M Y; Latif, M A; Sakimin, Siti Zaharah; Arolu, Ibrahim Wasiu; Miah, Gous

    2018-01-01

    Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak) with 3 released varieties as a control using the 32 simple sequence repeat (SSR) markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index ( I ) ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon's information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity ( H e ) of 0.60 and mean Nei's gene diversity index of 0.36. The dendrogram based on UPGMA and Nei's genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA) revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816) from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development.

  4. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted

  5. Analysis of genetic diversity in Bolivian llama populations using microsatellites.

    PubMed

    Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Romero, F; Saavedra, V; Chiri, R; Rodríguez, T; Arranz, J J

    2013-08-01

    South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations. © 2012 Blackwell Verlag GmbH.

  6. Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment

    PubMed Central

    Velo-Antón, Guillermo; Becker, C. Guilherme; Cordero-Rivera, Adolfo

    2011-01-01

    Background Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations. PMID:21533278

  7. Genetic diversity and environmental associations of sacsaoul ( Haloxylon ammodendron)

    NASA Astrophysics Data System (ADS)

    Zhang, Linjing; Zhao, Guifang; Yue, Ming; Pan, Xiaoling

    2003-07-01

    Random amplified polymorphic DNA (RAPD) markers were used to assess levels and patterns of genetic diversity in H. ammodendron (Chenopodiaceae). A total of 117 plants from 6 subpopulations on oasis-desert ecotone was analyzed by 16 arbitrarily chosen primers resulting in highly reproducible RAPD bands. The analysis of molecular variance (AMOVA) with distances among individuals showed that most of the variation (74%) occurred among individuals within subpopulations, which is expected for a crossing organism, and 26% of variation among subpopulations. Estimates of Shannon index and Nei"s index from allele frequencies corroborated AMOVA partitioning in H. ammodendron. UPGMA cluster analyses, based on genetic distance, do not revealed grouping of some geographically proximate populations. This is the first report of the partitioning of genetic variability within and between subpopulations of H. ammodendron and provides important baseline data for optimizing sampling strategies and for conserving the genetic resources of this species. The Percentage of polymorphic loci was as high as 96%, presumably being response to oasis-desert ecotone. There were gene flows (Nm=5.38 individuals/generation), based on gene differentiation coefficient (GST was 0.1567) between subpopulations, and strong habitat selection override the gene flow to maintain the subpopulation differentiation. Correlation analyses showed that there was significant relationship between genetic diversity and soil CL ion.

  8. Exploiting a wheat EST database to assess genetic diversity.

    PubMed

    Karakas, Ozge; Gurel, Filiz; Uncuoglu, Ahu Altinkut

    2010-10-01

    Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F(2) individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01.

  9. Date Palm Genetic Diversity Analysis Using Microsatellite Polymorphism.

    PubMed

    Khierallah, Hussam S M; Bader, Saleh M; Hamwieh, Alladin; Baum, Michael

    2017-01-01

    Date palm (Phoenix dactylifera L.) is considered one of the great socioeconomic resources in the Middle East and the Arab regions. The tree has been and still is at the center of the comprehensive agricultural development. The number of known date palm cultivars, distributed worldwide, is approximately 3000. The success of genetic diversity conservation or any breeding program depends on an understanding of the amount and distribution of the genetic variation already in existence in the genetic pool. Development of suitable DNA molecular markers for this tree may allow researchers to estimate genetic diversity, which will ultimately lead to the genetic conservation of date palm. Simple sequence repeats (SSRs) are DNA strands, consisting of tandemly repeated mono-, di-, tri-, tetra-, or penta-nucleotide units that are arranged throughout the genomes of most eukaryotic species. Microsatellite markers, developed from genomic libraries, belong to either the transcribed region or the non-transcribed region of the genome, and there is rarely available information on their functions. Microsatellite sequences are especially suited to distinguish closely related genotypes due to a high degree of variability making them ideally suitable in population studies and the identification of closely related cultivars. This chapter focuses on the methods employed to characterize date palm genotypes using SSR markers.

  10. GENETIC DIVERSITY AND THE ORIGINS OF CULTURAL FRAGMENTATION

    PubMed Central

    Ashraf, Quamrul; Galor, Oded

    2013-01-01

    Despite the importance attributed to the effects of diversity on the stability and prosperity of nations, the origins of the uneven distribution of ethnic and cultural fragmentation across countries have been underexplored. Building on the role of deeply-rooted biogeographical forces in comparative development, this research empirically demonstrates that genetic diversity, predominantly determined during the prehistoric “out of Africa” migration of humans, is an underlying cause of various existing manifestations of ethnolinguistic heterogeneity. Further exploration of this uncharted territory may revolutionize the understanding of the effects of deeply-rooted factors on economic development and the composition of human capital across the globe. PMID:25506084

  11. Diversity, abundance, and host relationships of avian malaria and related haemosporidians in New Mexico pine forests.

    PubMed

    Marroquin-Flores, Rosario A; Williamson, Jessie L; Chavez, Andrea N; Bauernfeind, Selina M; Baumann, Matthew J; Gadek, Chauncey R; Johnson, Andrew B; McCullough, Jenna M; Witt, Christopher C; Barrow, Lisa N

    2017-01-01

    Avian malaria and related haemosporidian parasites (genera Haemoproteus , Plasmodium , and Leucocytozoon ) affect bird demography, species range limits, and community structure, yet they remain unsurveyed in most bird communities and populations. We conducted a community-level survey of these vector-transmitted parasites in New Mexico, USA, to describe their diversity, abundance, and host associations. We focused on the breeding-bird community in the transition zone between piñon-juniper woodland and ponderosa pine forests (elevational range: 2,150-2,460 m). We screened 186 birds representing 49 species using both standard PCR and microscopy techniques to detect infections of all three avian haemosporidian genera. We detected infections in 68 out of 186 birds (36.6%), the highest proportion of which were infected with Haemoproteus (20.9%), followed by Leucocytozoon (13.4%), then Plasmodium (8.0%). We sequenced mtDNA for 77 infections representing 43 haplotypes (25 Haemoproteus , 12 Leucocytozoon , 6 Plasmodium ). When compared to all previously known haplotypes in the MalAvi and GenBank databases, 63% (27) of the haplotypes we recovered were novel. We found evidence for host specificity at the avian clade and species level, but this specificity was variable among parasite genera, in that Haemoproteus and Leucocytozoon were each restricted to three avian groups (out of six), while Plasmodium occurred in all groups except non-passerines. We found striking variation in infection rate among host species, with nearly universal infection among vireos and no infection among nuthatches. Using rarefaction and extrapolation, we estimated the total avian haemosporidian diversity to be 70 haplotypes (95% CI [43-98]); thus, we may have already sampled ∼60% of the diversity of avian haemosporidians in New Mexico pine forests. It is possible that future studies will find higher diversity in microhabitats or host species that are under-sampled or unsampled in the present study

  12. Diversity, abundance, and host relationships of avian malaria and related haemosporidians in New Mexico pine forests

    PubMed Central

    Marroquin-Flores, Rosario A.; Williamson, Jessie L.; Chavez, Andrea N.; Bauernfeind, Selina M.; Baumann, Matthew J.; Gadek, Chauncey R.; Johnson, Andrew B.; McCullough, Jenna M.

    2017-01-01

    Avian malaria and related haemosporidian parasites (genera Haemoproteus, Plasmodium, and Leucocytozoon) affect bird demography, species range limits, and community structure, yet they remain unsurveyed in most bird communities and populations. We conducted a community-level survey of these vector-transmitted parasites in New Mexico, USA, to describe their diversity, abundance, and host associations. We focused on the breeding-bird community in the transition zone between piñon-juniper woodland and ponderosa pine forests (elevational range: 2,150–2,460 m). We screened 186 birds representing 49 species using both standard PCR and microscopy techniques to detect infections of all three avian haemosporidian genera. We detected infections in 68 out of 186 birds (36.6%), the highest proportion of which were infected with Haemoproteus (20.9%), followed by Leucocytozoon (13.4%), then Plasmodium (8.0%). We sequenced mtDNA for 77 infections representing 43 haplotypes (25 Haemoproteus, 12 Leucocytozoon, 6 Plasmodium). When compared to all previously known haplotypes in the MalAvi and GenBank databases, 63% (27) of the haplotypes we recovered were novel. We found evidence for host specificity at the avian clade and species level, but this specificity was variable among parasite genera, in that Haemoproteus and Leucocytozoon were each restricted to three avian groups (out of six), while Plasmodium occurred in all groups except non-passerines. We found striking variation in infection rate among host species, with nearly universal infection among vireos and no infection among nuthatches. Using rarefaction and extrapolation, we estimated the total avian haemosporidian diversity to be 70 haplotypes (95% CI [43–98]); thus, we may have already sampled ∼60% of the diversity of avian haemosporidians in New Mexico pine forests. It is possible that future studies will find higher diversity in microhabitats or host species that are under-sampled or unsampled in the present study

  13. Natural Genetic Variation Influences Protein Abundances in C. elegans Developmental Signalling Pathways

    PubMed Central

    Singh, Kapil Dev; Roschitzki, Bernd; Snoek, L. Basten; Grossmann, Jonas; Zheng, Xue; Elvin, Mark; Kamkina, Polina; Schrimpf, Sabine P.; Poulin, Gino B.; Kammenga, Jan E.; Hengartner, Michael O.

    2016-01-01

    Complex traits, including common disease-related traits, are affected by many different genes that function in multiple pathways and networks. The apoptosis, MAPK, Notch, and Wnt signalling pathways play important roles in development and disease progression. At the moment we have a poor understanding of how allelic variation affects gene expression in these pathways at the level of translation. Here we report the effect of natural genetic variation on transcript and protein abundance involved in developmental signalling pathways in Caenorhabditis elegans. We used selected reaction monitoring to analyse proteins from the abovementioned four pathways in a set of recombinant inbred lines (RILs) generated from the wild-type strains N2 (Bristol) and CB4856 (Hawaii) to enable quantitative trait locus (QTL) mapping. About half of the cases from the 44 genes tested showed a statistically significant change in protein abundance between various strains, most of these were however very weak (below 1.3-fold change). We detected a distant QTL on the left arm of chromosome II that affected protein abundance of the phosphatidylserine receptor protein PSR-1, and two separate QTLs that influenced embryonic and ionizing radiation-induced apoptosis on chromosome IV. Our results demonstrate that natural variation in C. elegans is sufficient to cause significant changes in signalling pathways both at the gene expression (transcript and protein abundance) and phenotypic levels. PMID:26985669

  14. Isolation of Genetically Diverse Marburg Viruses from Egyptian Fruit Bats

    PubMed Central

    Towner, Jonathan S.; Amman, Brian R.; Sealy, Tara K.; Carroll, Serena A. Reeder; Comer, James A.; Kemp, Alan; Swanepoel, Robert; Paddock, Christopher D.; Balinandi, Stephen; Khristova, Marina L.; Formenty, Pierre B. H.; Albarino, Cesar G.; Miller, David M.; Reed, Zachary D.; Kayiwa, John T.; Mills, James N.; Cannon, Deborah L.; Greer, Patricia W.; Byaruhanga, Emmanuel; Farnon, Eileen C.; Atimnedi, Patrick; Okware, Samuel; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W.; Zaki, Sherif R.; Ksiazek, Thomas G.; Nichol, Stuart T.; Rollin, Pierre E.

    2009-01-01

    In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans. PMID:19649327

  15. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats.

    PubMed

    Towner, Jonathan S; Amman, Brian R; Sealy, Tara K; Carroll, Serena A Reeder; Comer, James A; Kemp, Alan; Swanepoel, Robert; Paddock, Christopher D; Balinandi, Stephen; Khristova, Marina L; Formenty, Pierre B H; Albarino, Cesar G; Miller, David M; Reed, Zachary D; Kayiwa, John T; Mills, James N; Cannon, Deborah L; Greer, Patricia W; Byaruhanga, Emmanuel; Farnon, Eileen C; Atimnedi, Patrick; Okware, Samuel; Katongole-Mbidde, Edward; Downing, Robert; Tappero, Jordan W; Zaki, Sherif R; Ksiazek, Thomas G; Nichol, Stuart T; Rollin, Pierre E

    2009-07-01

    In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.

  16. CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes

    PubMed Central

    2013-01-01

    Background Bacteria and archaea develop immunity against invading genomes by incorporating pieces of the invaders' sequences, called spacers, into a clustered regularly interspaced short palindromic repeats (CRISPR) locus between repeats, forming arrays of repeat-spacer units. When spacers are expressed, they direct CRISPR-associated (Cas) proteins to silence complementary invading DNA. In order to characterize the invaders of human microbiomes, we use spacers from CRISPR arrays that we had previously assembled from shotgun metagenomic datasets, and identify contigs that contain these spacers' targets. Results We discover 95,000 contigs that are putative invasive mobile genetic elements, some targeted by hundreds of CRISPR spacers. We find that oral sites in healthy human populations have a much greater variety of mobile genetic elements than stool samples. Mobile genetic elements carry genes encoding diverse functions: only 7% of the mobile genetic elements are similar to known phages or plasmids, although a much greater proportion contain phage- or plasmid-related genes. A small number of contigs share similarity with known integrative and conjugative elements, providing the first examples of CRISPR defenses against this class of element. We provide detailed analyses of a few large mobile genetic elements of various types, and a relative abundance analysis of mobile genetic elements and putative hosts, exploring the dynamic activities of mobile genetic elements in human microbiomes. A joint analysis of mobile genetic elements and CRISPRs shows that protospacer-adjacent motifs drive their interaction network; however, some CRISPR-Cas systems target mobile genetic elements lacking motifs. Conclusions We identify a large collection of invasive mobile genetic elements in human microbiomes, an important resource for further study of the interaction between the CRISPR-Cas immune system and invaders. PMID:23628424

  17. A genomic scale map of genetic diversity in Trypanosoma cruzi

    PubMed Central

    2012-01-01

    Background Trypanosoma cruzi, the causal agent of Chagas Disease, affects more than 16 million people in Latin America. The clinical outcome of the disease results from a complex interplay between environmental factors and the genetic background of both the human host and the parasite. However, knowledge of the genetic diversity of the parasite, is currently limited to a number of highly studied loci. The availability of a number of genomes from different evolutionary lineages of T. cruzi provides an unprecedented opportunity to look at the genetic diversity of the parasite at a genomic scale. Results Using a bioinformatic strategy, we have clustered T. cruzi sequence data available in the public domain and obtained multiple sequence alignments in which one or two alleles from the reference CL-Brener were included. These data covers 4 major evolutionary lineages (DTUs): TcI, TcII, TcIII, and the hybrid TcVI. Using these set of alignments we have identified 288,957 high quality single nucleotide polymorphisms and 1,480 indels. In a reduced re-sequencing study we were able to validate ~ 97% of high-quality SNPs identified in 47 loci. Analysis of how these changes affect encoded protein products showed a 0.77 ratio of synonymous to non-synonymous changes in the T. cruzi genome. We observed 113 changes that introduce or remove a stop codon, some causing significant functional changes, and a number of tri-allelic and tetra-allelic SNPs that could be exploited in strain typing assays. Based on an analysis of the observed nucleotide diversity we show that the T. cruzi genome contains a core set of genes that are under apparent purifying selection. Interestingly, orthologs of known druggable targets show statistically significant lower nucleotide diversity values. Conclusions This study provides the first look at the genetic diversity of T. cruzi at a genomic scale. The analysis covers an estimated ~ 60% of the genetic diversity present in the population, providing an

  18. Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication

    USDA-ARS?s Scientific Manuscript database

    Patterns of genetic diversity in domesticated plants are affected by geographic region of origin and cultivation, intentional artificial selection, and unintentional loss of diversity referred to as genetic bottlenecks. While bottlenecks are mainly associated with the initial domestication process, ...

  19. ASSOCIATIONS BETWEEN GENETIC DIVERSITY AND ANTHROPOGENIC DISTURBANCE IN MIDWESTERN STREAM-DWELLING MINNOWS

    EPA Science Inventory

    Anthropogenic disturbances may leave imprints on patterns of intraspecific genetic diversity through their effects on population size, adaptation, migration, and mutation. We examined patterns of genetic diversity for a stream-dwelling minnow (the central stoneroller, Campostoma...

  20. The origin of diverse α-element abundances in galaxy discs

    NASA Astrophysics Data System (ADS)

    Mackereth, J. Ted; Crain, Robert A.; Schiavon, Ricardo P.; Schaye, Joop; Theuns, Tom; Schaller, Matthieu

    2018-04-01

    Spectroscopic surveys of the Galaxy reveal that its disc stars exhibit a spread in [α/Fe] at fixed [Fe/H], manifest at some locations as a bimodality. The origin of these diverse, and possibly distinct, stellar populations in the Galactic disc is not well understood. We examine the Fe and α-element evolution of 133 Milky Way-like galaxies from the EAGLE simulation, to investigate the origin and diversity of their [α/Fe]-[Fe/H] distributions. We find that bimodal [α/Fe] distributions arise in galaxies whose gas accretion histories exhibit episodes of significant infall at both early and late times, with the former fostering more intense star formation than the latter. The shorter characteristic consumption timescale of gas accreted in the earlier episode suppresses its enrichment with iron synthesised by Type Ia SNe, resulting in the formation of a high-[α/Fe] sequence. We find that bimodality in [α/Fe] similar to that seen in the Galaxy is rare, appearing in approximately 5 percent of galaxies in our sample. We posit that this is a consequence of an early gas accretion episode requiring the mass accretion history of a galaxy's dark matter halo to exhibit a phase of atypically-rapid growth at early epochs. The scarcity of EAGLE galaxies exhibiting distinct sequences in the [α/Fe]-[Fe/H] plane may therefore indicate that the Milky Way's elemental abundance patterns, and its accretion history, are not representative of the broader population of ˜L⋆ disc galaxies.

  1. The origin of diverse α-element abundances in galaxy discs

    NASA Astrophysics Data System (ADS)

    Mackereth, J. Ted; Crain, Robert A.; Schiavon, Ricardo P.; Schaye, Joop; Theuns, Tom; Schaller, Matthieu

    2018-07-01

    Spectroscopic surveys of the Galaxy reveal that its disc stars exhibit a spread in [α/Fe] at fixed [Fe/H], manifest at some locations as a bimodality. The origin of these diverse, and possibly distinct, stellar populations in the Galactic disc is not well understood. We examine the Fe and α-element evolution of 133 Milky Way-like galaxies from the EAGLE simulation, to investigate the origin and diversity of their [α/Fe]-[Fe/H] distributions. We find that bimodal [α/Fe] distributions arise in galaxies whose gas accretion histories exhibit episodes of significant infall at both early and late times, with the former fostering more intense star formation than the latter. The shorter characteristic consumption time-scale of gas accreted in the earlier episode suppresses its enrichment with iron synthesized by Type Ia SNe, resulting in the formation of a high-[α/Fe] sequence. We find that bimodality in [α/Fe] similar to that seen in the Galaxy is rare, appearing in approximately 5 per cent of galaxies in our sample. We posit that this is a consequence of an early gas accretion episode requiring the mass accretion history of a galaxy's dark matter halo to exhibit a phase of atypically rapid growth at early epochs. The scarcity of EAGLE galaxies exhibiting distinct sequences in the [α/Fe]-[Fe/H] plane may therefore indicate that the Milky Way's elemental abundance patterns, and its accretion history, are not representative of the broader population of ˜L⋆ disc galaxies.

  2. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils

    PubMed Central

    Sanford, Robert A.; Wagner, Darlene D.; Wu, Qingzhong; Chee-Sanford, Joanne C.; Thomas, Sara H.; Cruz-García, Claribel; Rodríguez, Gina; Massol-Deyá, Arturo; Krishnani, Kishore K.; Ritalahti, Kirsti M.; Nissen, Silke; Konstantinidis, Konstantinos T.; Löffler, Frank E.

    2012-01-01

    Agricultural and industrial practices more than doubled the intrinsic rate of terrestrial N fixation over the past century with drastic consequences, including increased atmospheric nitrous oxide (N2O) concentrations. N2O is a potent greenhouse gas and contributor to ozone layer destruction, and its release from fixed N is almost entirely controlled by microbial activities. Mitigation of N2O emissions to the atmosphere has been attributed exclusively to denitrifiers possessing NosZ, the enzyme system catalyzing N2O to N2 reduction. We demonstrate that diverse microbial taxa possess divergent nos clusters with genes that are related yet evolutionarily distinct from the typical nos genes of denitirifers. nos clusters with atypical nosZ occur in Bacteria and Archaea that denitrify (44% of genomes), do not possess other denitrification genes (56%), or perform dissimilatory nitrate reduction to ammonium (DNRA; (31%). Experiments with the DNRA soil bacterium Anaeromyxobacter dehalogenans demonstrated that the atypical NosZ is an effective N2O reductase, and PCR-based surveys suggested that atypical nosZ are abundant in terrestrial environments. Bioinformatic analyses revealed that atypical nos clusters possess distinctive regulatory and functional components (e.g., Sec vs. Tat secretion pathway in typical nos), and that previous nosZ-targeted PCR primers do not capture the atypical nosZ diversity. Collectively, our results suggest that nondenitrifying populations with a broad range of metabolisms and habitats are potentially significant contributors to N2O consumption. Apparently, a large, previously unrecognized group of environmental nosZ has not been accounted for, and characterizing their contributions to N2O consumption will advance understanding of the ecological controls on N2O emissions and lead to refined greenhouse gas flux models. PMID:23150571

  3. Genetic diversity and accession structure in European Cynara cardunculus collections

    PubMed Central

    Fernández, Juan A.; Sonnante, Gabriella; Egea-Gilabert, Catalina

    2017-01-01

    Understanding the distribution of genetic variations and accession structures is an important factor for managing genetic resources, but also for using proper germplasm in association map analyses and breeding programs. The globe artichoke is the fourth most important horticultural crop in Europe. Here, we report the results of a molecular analysis of a collection including globe artichoke and leafy cardoon germplasm present in the Italian, French and Spanish gene banks. The aims of this study were to: (i) assess the diversity present in European collections, (ii) determine the population structure, (iii) measure the genetic distance between accessions; (iv) cluster the accessions; (v) properly distinguish accessions present in the different national collections carrying the same name; and (vi) understand the diversity distribution in relation to the gene bank and the geographic origin of the germplasm. A total of 556 individuals grouped into 174 accessions of distinct typologies were analyzed by different types of molecular markers, i.e. dominant (ISSR and AFLP) and co-dominant (SSR). The data of the two crops (globe artichoke and leafy cardoon) were analyzed jointly and separately to compute, among other aims, the gene diversity, heterozygosity (He, Ho), fixation indexes, AMOVA, genetic distance and structure. The findings underline the huge diversity present in the analyzed material, and the existence of alleles that are able to discriminate among accessions. The accessions were clustered not only on the basis of their typology, but also on the basis of the gene bank they come from. Probably, the environmental conditions of the different field gene banks affected germplasm conservation. These outcomes will be useful in plant breeding to select accessions and to fingerprint varieties. Moreover, the results highlight the particular attention that should be paid to the method used to conserve the Cynara cardunculus germplasm and suggest to the preference of using

  4. Genetic Diversity Among Historical Olive (Olea europaea L.) Genotypes from Southern Anatolia Based on SSR Markers.

    PubMed

    Sakar, Ebru; Unver, Hulya; Ercisli, Sezai

    2016-12-01

    Olive (Olea europaea) is an ancient and important crop in both olive oil production and table use. It is important to identify the genetic diversity of olive genetic resources for cultivar development and evaluation of olive germplasm. In the study, 14 microsatellite markers (UDO4, UDO8, UDO9, UDO11, UDO12, UDO22, UDO24, UDO26, UDO28, DCA9, DCA11, DCA13, DCA15, and DCA18) were used to assess the genetic variation on 76 olive (Olea europaea L.) genotypes from Mardin province together with 6 well-known Turkish and 4 well-known foreign reference cultivars. All microsatellite markers showed polymorphism and the number of alleles varied between 9 and 22, with an average of 14.57. The most informative loci were DCA 11 (22 alleles) and DCA 9 (21 alleles). Dendrogram based on genetic distances was constructed for the 86 olive genotypes/cultivars, which revealed the existence of different clusters. The high genetic similarity was evident between Bakırkire2 and Zinnar5 (0.74) genotypes, while the most genetically divergent genotypes were Gürmeşe5 and Yedikardeşler2 (0.19). It was concluded that there was abundant SSR polymorphism in olive germplasm in southern Anatolia in Turkey and could be important for future breeding activities.

  5. Genetic diversity and recombination analysis of sweepoviruses from Brazil

    PubMed Central

    2012-01-01

    Background Monopartite begomoviruses (genus Begomovirus, family Geminiviridae) that infect sweet potato (Ipomoea batatas) around the world are known as sweepoviruses. Because sweet potato plants are vegetatively propagated, the accumulation of viruses can become a major constraint for root production. Mixed infections of sweepovirus species and strains can lead to recombination, which may contribute to the generation of new recombinant sweepoviruses. Results This study reports the full genome sequence of 34 sweepoviruses sampled from a sweet potato germplasm bank and commercial fields in Brazil. These sequences were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic diversity and patterns of genetic exchange in sweepoviruses isolated from Brazil, as well as to review the classification and nomenclature of sweepoviruses in accordance with the current guidelines proposed by the Geminiviridae Study Group of the International Committee on Taxonomy of Viruses (ICTV). Co-infections and extensive recombination events were identified in Brazilian sweepoviruses. Analysis of the recombination breakpoints detected within the sweepovirus dataset revealed that most recombination events occurred in the intergenic region (IR) and in the middle of the C1 open reading frame (ORF). Conclusions The genetic diversity of sweepoviruses was considerably greater than previously described in Brazil. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of sweepovirus species and strains and provided valuable new information for understanding the diversity and evolution of sweepoviruses. PMID:23082767

  6. Abundance and Diversity of Soil Arthropods in the Olive Grove Ecosystem

    PubMed Central

    Gonçalves, Maria Fátima; Pereira, José Alberto

    2012-01-01

    Arthropods are part of important functional groups in soil food webs. Recognizing these arthropods and understanding their function in the ecosystem as well as when they are active is essential to understanding their roles. In the present work, the abundance and diversity of soil arthropods is examined in olive groves in the northeast region of Portugal during the spring. Five classes of arthropods were found: Chilopoda, Malacostraca, Entognatha, Insecta, and Arachnida. Captures were numerically dominated by Collembola within Entognatha, representing 70.9% of total captures. Arachnida and Insecta classes represented about 20.4 and 9.0%, respectively. Among the predatory arthropods, the most representative groups were Araneae and Opiliones from Arachnida, and Formicidae, Carabidae, and Staphylinidae from Insecta. From the Formicidae family, Tetramorium semilaeve (Andre 1883), Tapinoma nigerrimum (Nylander 1856), and Crematogaster scutellaris (Olivier 1792) were the most representative ant species. Arthropods demonstrated preference during the day, with 74% of the total individuals recovered in this period, although richness and similarity were analogous during the day and night. PMID:22943295

  7. High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean.

    PubMed

    Xu, Wei; Pang, Ka-Lai; Luo, Zhu-Hua

    2014-11-01

    Knowledge about the presence and ecological significance of bacteria and archaea in the deep-sea environments has been well recognized, but the eukaryotic microorganisms, such as fungi, have rarely been reported. The present study investigated the composition and abundance of fungal community in the deep-sea sediments of the Pacific Ocean. In this study, a total of 1,947 internal transcribed spacer (ITS) regions of fungal rRNA gene clones were recovered from five sediment samples at the Pacific Ocean (water depths ranging from 5,017 to 6,986 m) using three different PCR primer sets. There were 16, 17, and 15 different operational taxonomic units (OTUs) identified from fungal-universal, Ascomycota-, and Basidiomycota-specific clone libraries, respectively. Majority of the recovered sequences belonged to diverse phylotypes of Ascomycota (25 phylotypes) and Basidiomycota (18 phylotypes). The multiple primer approach totally recovered 27 phylotypes which showed low similarities (≤97 %) with available fungal sequences in the GenBank, suggesting possible new fungal taxa occurring in the deep-sea environments or belonging to taxa not represented in the GenBank. Our results also recovered high fungal LSU rRNA gene copy numbers (3.52 × 10(6) to 5.23 × 10(7)copies/g wet sediment) from the Pacific Ocean sediment samples, suggesting that the fungi might be involved in important ecological functions in the deep-sea environments.

  8. Genetic diversity and relationship analysis of Gossypium arboreum accessions.

    PubMed

    Liu, F; Zhou, Z L; Wang, C Y; Wang, Y H; Cai, X Y; Wang, X X; Zhang, Z S; Wang, K B

    2015-11-19

    Simple sequence repeat techniques were used to identify the genetic diversity of 101 Gossypium arboreum accessions collected from India, Vietnam, and the southwest of China (Guizhou, Guangxi, and Yunnan provinces). Twenty-six pairs of SSR primers produced a total of 103 polymorphic loci with an average of 3.96 polymorphic loci per primer. The average of the effective number of alleles, Nei's gene diversity, and Shannon's information index were 0.59, 0.2835, and 0.4361, respectively. The diversity varied among different geographic regions. The result of principal component analysis was consistent with that of unweighted pair group method with arithmetic mean clustering analysis. The 101 G. arboreum accessions were clustered into 2 groups.

  9. Assessing Date Palm Genetic Diversity Using Different Molecular Markers.

    PubMed

    Atia, Mohamed A M; Sakr, Mahmoud M; Adawy, Sami S

    2017-01-01

    Molecular marker technologies which rely on DNA analysis provide powerful tools to assess biodiversity at different levels, i.e., among and within species. A range of different molecular marker techniques have been developed and extensively applied for detecting variability in date palm at the DNA level. Recently, the employment of gene-targeting molecular marker approaches to study biodiversity and genetic variations in many plant species has increased the attention of researchers interested in date palm to carry out phylogenetic studies using these novel marker systems. Molecular markers are good indicators of genetic distances among accessions, because DNA-based markers are neutral in the face of selection. Here we describe the employment of multidisciplinary molecular marker approaches: amplified fragment length polymorphism (AFLP), start codon targeted (SCoT) polymorphism, conserved DNA-derived polymorphism (CDDP), intron-targeted amplified polymorphism (ITAP), simple sequence repeats (SSR), and random amplified polymorphic DNA (RAPD) to assess genetic diversity in date palm.

  10. Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction

    PubMed Central

    Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C.; Kuhn, David N.; Glaz, Barry; Gilbert, Robert A.; Comstock, Jack C.; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  11. Extraordinary Genetic Diversity in a Wood Decay Mushroom.

    PubMed

    Baranova, Maria A; Logacheva, Maria D; Penin, Aleksey A; Seplyarskiy, Vladimir B; Safonova, Yana Y; Naumenko, Sergey A; Klepikova, Anna V; Gerasimov, Evgeny S; Bazykin, Georgii A; James, Timothy Y; Kondrashov, Alexey S

    2015-10-01

    Populations of different species vary in the amounts of genetic diversity they possess. Nucleotide diversity π, the fraction of nucleotides that are different between two randomly chosen genotypes, has been known to range in eukaryotes between 0.0001 in Lynx lynx and 0.16 in Caenorhabditis brenneri. Here, we report the results of a comparative analysis of 24 haploid genotypes (12 from the United States and 12 from European Russia) of a split-gill fungus Schizophyllum commune. The diversity at synonymous sites is 0.20 in the American population of S. commune and 0.13 in the Russian population. This exceptionally high level of nucleotide diversity also leads to extreme amino acid diversity of protein-coding genes. Using whole-genome resequencing of 2 parental and 17 offspring haploid genotypes, we estimate that the mutation rate in S. commune is high, at 2.0 × 10(-8) (95% CI: 1.1 × 10(-8) to 4.1 × 10(-8)) per nucleotide per generation. Therefore, the high diversity of S. commune is primarily determined by its elevated mutation rate, although high effective population size likely also plays a role. Small genome size, ease of cultivation and completion of the life cycle in the laboratory, free-living haploid life stages and exceptionally high variability of S. commune make it a promising model organism for population, quantitative, and evolutionary genetics. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Broad-Scale Genetic Diversity of Cannabis for Forensic Applications.

    PubMed

    Dufresnes, Christophe; Jan, Catherine; Bienert, Friederike; Goudet, Jérôme; Fumagalli, Luca

    2017-01-01

    Cannabis (hemp and marijuana) is an iconic yet controversial crop. On the one hand, it represents a growing market for pharmaceutical and agricultural sectors. On the other hand, plants synthesizing the psychoactive THC produce the most widespread illicit drug in the world. Yet, the difficulty to reliably distinguish between Cannabis varieties based on morphological or biochemical criteria impedes the development of promising industrial programs and hinders the fight against narcotrafficking. Genetics offers an appropriate alternative to characterize drug vs. non-drug Cannabis. However, forensic applications require rapid and affordable genotyping of informative and reliable molecular markers for which a broad-scale reference database, representing both intra- and inter-variety variation, is available. Here we provide such a resource for Cannabis, by genotyping 13 microsatellite loci (STRs) in 1 324 samples selected specifically for fibre (24 hemp varieties) and drug (15 marijuana varieties) production. We showed that these loci are sufficient to capture most of the genome-wide diversity patterns recently revealed by NGS data. We recovered strong genetic structure between marijuana and hemp and demonstrated that anonymous samples can be confidently assigned to either plant types. Fibres appear genetically homogeneous whereas drugs show low (often clonal) diversity within varieties, but very high genetic differentiation between them, likely resulting from breeding practices. Based on an additional test dataset including samples from 41 local police seizures, we showed that the genetic signature of marijuana cultivars could be used to trace crime scene evidence. To date, our study provides the most comprehensive genetic resource for Cannabis forensics worldwide.

  13. Broad-Scale Genetic Diversity of Cannabis for Forensic Applications

    PubMed Central

    Dufresnes, Christophe; Jan, Catherine; Bienert, Friederike; Goudet, Jérôme; Fumagalli, Luca

    2017-01-01

    Cannabis (hemp and marijuana) is an iconic yet controversial crop. On the one hand, it represents a growing market for pharmaceutical and agricultural sectors. On the other hand, plants synthesizing the psychoactive THC produce the most widespread illicit drug in the world. Yet, the difficulty to reliably distinguish between Cannabis varieties based on morphological or biochemical criteria impedes the development of promising industrial programs and hinders the fight against narcotrafficking. Genetics offers an appropriate alternative to characterize drug vs. non-drug Cannabis. However, forensic applications require rapid and affordable genotyping of informative and reliable molecular markers for which a broad-scale reference database, representing both intra- and inter-variety variation, is available. Here we provide such a resource for Cannabis, by genotyping 13 microsatellite loci (STRs) in 1 324 samples selected specifically for fibre (24 hemp varieties) and drug (15 marijuana varieties) production. We showed that these loci are sufficient to capture most of the genome-wide diversity patterns recently revealed by NGS data. We recovered strong genetic structure between marijuana and hemp and demonstrated that anonymous samples can be confidently assigned to either plant types. Fibres appear genetically homogeneous whereas drugs show low (often clonal) diversity within varieties, but very high genetic differentiation between them, likely resulting from breeding practices. Based on an additional test dataset including samples from 41 local police seizures, we showed that the genetic signature of marijuana cultivars could be used to trace crime scene evidence. To date, our study provides the most comprehensive genetic resource for Cannabis forensics worldwide. PMID:28107530

  14. Analysis of genetic diversity of rapeseed genetic resources in Japan and core collection construction

    PubMed Central

    Chen, Ruikun; Hara, Takashi; Ohsawa, Ryo; Yoshioka, Yosuke

    2017-01-01

    Diversity analysis of rapeseed accessions preserved in the Japanese Genebank can provide valuable information for breeding programs. In this study, 582 accessions were genotyped with 30 SSR markers covering all 19 rapeseed chromosomes. These markers amplified 311 alleles (10.37 alleles per marker; range, 3–39). The genetic diversity of Japanese accessions was lower than that of overseas accessions. Analysis of molecular variance indicated significant genetic differentiation between Japanese and overseas accessions. Small but significant differences were found among geographical groups in Japan, and genetic differentiation tended to increase with geographical distance. STRUCTURE analysis indicated the presence of two main genetic clusters in the NARO rapeseed collection. With the membership probabilities threshold, 227 accessions mostly originating from overseas were assigned to one subgroup, and 276 accessions mostly originating from Japan were assigned to the other subgroup. The remaining 79 accessions are assigned to admixed group. The core collection constructed comprises 96 accessions of diverse origin. It represents the whole collection well and thus it may be useful for rapeseed genetic research and breeding programs. The core collection improves the efficiency of management, evaluation, and utilization of genetic resources. PMID:28744177

  15. Removing an invasive shrub (Chinese privet) increases native bee diversity and abundance in riparian forests of the southeastern United States

    Treesearch

    James L. Hanula; Scott Horn

    2011-01-01

    1. Chinese privet (Ligustrum sinense Lour.) was removed from riparian forests in the Piedmont of Georgia in November 2005 by mulching with a track-mounted mulching machine or by chainsaw felling. The remaining privet in the herbaceous layer was killed with herbicide in December 2006. 2. Bee (Hymentoptera: Apoidea) abundance, diversity and community similarity in the...

  16. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.

    PubMed

    Shen, Lan; Hua, Yufeng; Fu, Yaping; Li, Jian; Liu, Qing; Jiao, Xiaozhen; Xin, Gaowei; Wang, Junjie; Wang, Xingchun; Yan, Changjie; Wang, Kejian

    2017-05-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease 9 (CRISPR/Cas9) system has emerged as a promising technology for specific genome editing in many species. Here we constructed one vector targeting eight agronomic genes in rice using the CRISPR/Cas9 multiplex genome editing system. By subsequent genetic transformation and DNA sequencing, we found that the eight target genes have high mutation efficiencies in the T 0 generation. Both heterozygous and homozygous mutations of all editing genes were obtained in T 0 plants. In addition, homozygous sextuple, septuple, and octuple mutants were identified. As the abundant genotypes in T 0 transgenic plants, various phenotypes related to the editing genes were observed. The findings demonstrate the potential of the CRISPR/Cas9 system for rapid introduction of genetic diversity during crop breeding.

  17. Genetic diversity and trait genomic prediction in a pea diversity panel.

    PubMed

    Burstin, Judith; Salloignon, Pauline; Chabert-Martinello, Marianne; Magnin-Robert, Jean-Bernard; Siol, Mathieu; Jacquin, Françoise; Chauveau, Aurélie; Pont, Caroline; Aubert, Grégoire; Delaitre, Catherine; Truntzer, Caroline; Duc, Gérard

    2015-02-21

    Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection. A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted. The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being

  18. Genetic Diversity of the Two Commercial Tetraploid Cotton Species in the Gossypium Diversity Reference Set.

    PubMed

    Hinze, Lori L; Gazave, Elodie; Gore, Michael A; Fang, David D; Scheffler, Brian E; Yu, John Z; Jones, Don C; Frelichowski, James; Percy, Richard G

    2016-05-01

    A diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G. barbadense. The reference set contained 410 G. barbadense accessions and 1523 G. hirsutum accessions. Observed numbers of polymorphic and private bands indicated a greater diversity in G. hirsutum as compared to G. barbadense as well as in wild-type accessions as compared to improved accessions in both species. The markers clearly differentiated the 2 species. Patterns of diversity within species were observed but not clearly delineated, with much overlap occurring between races and regions of origin for wild accessions and between historical and geographic breeding pools for cultivated accessions. Although the percentage of accessions showing introgression was higher among wild accessions than cultivars in both species, the average level of introgression within individual accessions, as indicated by species-specific bands, was much higher in wild accessions of G. hirsutum than in wild accessions of G. barbadense. The average level of introgression within individual accessions was higher in improved G. barbadense cultivars than in G. hirsutum cultivars. This molecular characterization reveals the levels and distributions of genetic diversity that will allow for better exploration and utilization of cotton genetic resources. Published by Oxford University Press on behalf of the American Genetic Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Genetic diversity for wheat improvement as a conduit to food security

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity is paramount for any crops genetic improvement and this resides in three gene pools of the Triticeae for wheat. Access to the diversity and its exploitation is based upon genetic distance of the species relatives from the wheat genomes. Apart from the conventional genetic base fo...

  20. Genetic diversity, linkage disequilibrium, and association mapping analyses of gossypium barbadense l. germplasm and cultivars

    USDA-ARS?s Scientific Manuscript database

    Limited polymorphism and narrow genetic base, due to genetic bottleneck through historic domestication, highlight a need for comprehensive characterization and utilization of existing genetic diversity in cotton germplasm collections. In this study, 288 worldwide Gossypium barbadense L. cotton germ...

  1. A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY

    EPA Science Inventory

    In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

  2. Genetic calibration of species diversity among North America's freshwater fishes.

    PubMed

    April, Julien; Mayden, Richard L; Hanner, Robert H; Bernatchez, Louis

    2011-06-28

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required.

  3. Genetic calibration of species diversity among North America's freshwater fishes

    PubMed Central

    April, Julien; Mayden, Richard L.; Hanner, Robert H.; Bernatchez, Louis

    2011-01-01

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required. PMID:21670289

  4. Ethnohistory, intertribal relationships, and genetic diversity among Amazonian Indians.

    PubMed

    Aguiar, G F

    1991-12-01

    The influence of recent ethnohistorical factors on the microevolution of South American Indians has not been adequately evaluated by population geneticists. This makes difficult a reasonable interpretation of the present genetic structure of these groups. In this article the genetic diversity of 18 tribes of the Amazon and neighboring areas belonging to 3 linguistic groups (Tupi, Carib, and Gê) is analyzed in light of documentary sources about historical events, such as demographic changes, geographic movements, intertribal relationships, and marriage practices, that have taken place since the end of the eighteenth century. The high depopulation rate suffered by the Tupi groups (61.4% on average) is a probable factor conditioning the large intergroup genetic distances in this linguistic stock, for depopulation is a phenomenon associated with random genetic drift caused by a bottleneck effect. On the other hand, the relatively high similarity of the Gê and the Carib shows an association with two main factors: (1) reduced spatial dispersion of the Gê in the recent past, providing adequate conditions for within-stock gene flow, and (2) strong tradition of intergroup contacts among the Carib, frequently followed by genetic admixture and even fusion of groups, as verified for the Wayana and the Aparaí. The patterns of biologic variation of some Tupi tribes (Waiãpi, Emerillon, Parakanã, and Assurini) are better explained by historical and regional contingencies than by linguistic classification.

  5. Genetic diversity of disease-associated loci in Turkish population.

    PubMed

    Karaca, Sefayet; Cesuroglu, Tomris; Karaca, Mehmet; Erge, Sema; Polimanti, Renato

    2015-04-01

    Many consortia and international projects have investigated the human genetic variation of a large number of ethno-geographic groups. However, populations with peculiar genetic features, such as the Turkish population, are still absent in publically available datasets. To explore the genetic predisposition to health-related traits of the Turkish population, we analyzed 34 genes associated with different health-related traits (for example, lipid metabolism, cardio-vascular diseases, hormone metabolism, cellular detoxification, aging and energy metabolism). We observed relevant differences between the Turkish population and populations with non-European ancestries (that is, Africa and East Asia) in some of the investigated genes (that is, AGT, APOE, CYP1B1, GNB3, IL10, IL6, LIPC and PON1). As most complex traits are highly polygenic, we developed polygenic scores associated with different health-related traits to explore the genetic diversity of the Turkish population with respect to other human groups. This approach showed significant differences between the Turkish population and populations with non-European ancestries, as well as between Turkish and Northern European individuals. This last finding is in agreement with the genetic structure of European and Middle East populations, and may also agree with epidemiological evidences about the health disparities of Turkish communities in Northern European countries.

  6. Diversity and abundance of mosquitoes (Diptera:Culicidae) in an urban park: larval habitats and temporal variation.

    PubMed

    Medeiros-Sousa, Antônio R; Ceretti-Júnior, Walter; de Carvalho, Gabriela C; Nardi, Marcello S; Araujo, Alessandra B; Vendrami, Daniel P; Marrelli, Mauro T

    2015-10-01

    Urban parks are areas designated for human recreation but also serve as shelter and refuge for populations of several species of native fauna, both migratory and introduced. In Brazil, the effect of annual climate variations on Aedes aegypti and dengue epidemics in large cities like São Paulo is well known, but little is known about how such variations can affect the diversity of mosquito vectors in urban parks and the risk of disease transmission by these vectors. This study investigates the influence of larval habitats and seasonal factors on the diversity and abundance of Culicidae fauna in Anhanguera Park, one of the largest remaining green areas in the city of São Paulo. Species composition and richness and larval habitats were identified. Seasonality (cold-dry and hot-rainy periods) and year were considered as explanatory variables and the models selection approach was developed to investigate the relationship of these variables with mosquito diversity and abundance. A total of 11,036 specimens from 57 taxa distributed in 13 genera were collected. Culex nigripalpus, Cx. quinquefasciatus and Aedes albopictus were the most abundant species. Bamboo internodes and artificial breeding sites showed higher abundance, while ponds and puddles showed greater richness. Significant relationships were observed between abundance and seasonality, with a notable increase in the mosquitos abundance in the warm-rainy periods. The Shannon and Berger-Parker indices were related with interaction between seasonality and year, however separately these predictors showed no relationship with ones. The increased abundance of mosquitoes in warm-rainy months and the fact that some of the species are epidemiologically important increase not only the risk of pathogen transmission to people who frequent urban parks but also the nuisance represented by insect bites. The findings of this study highlight the importance of knowledge of culicid ecology in green areas in urban environments

  7. Effects of transgenic cry1Ie maize on non-lepidopteran pest abundance, diversity and community composition.

    PubMed

    Guo, Jingfei; He, Kanglai; Bai, Shuxiong; Zhang, Tiantao; Liu, Yunjun; Wang, Fuxin; Wang, Zhenying

    2016-12-01

    Non-lepidopteran pests are exposed to, and may be influenced by, Bt toxins when feeding on Bt maize that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt). In order to assess the potential effects of transgenic cry1Ie maize on non-lepidopteran pest species and ecological communities, a 2-year field study was conducted to compare the non-lepidopteran pest abundance, diversity and community composition between transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) by whole plant inspections. Results showed that Bt maize had no effects on non-lepidopteran pest abundance and diversity (Shannon-Wiener diversity index, Simpson's diversity index, species richness, and Pielou's index). There was a significant effect of year and sampling time on those indices analyzed. Redundancy analysis indicated maize type, sampling time and year totally explained 20.43 % of the variance in the non-lepidopteran pest community composition, but no association was presented between maize type (Bt maize and non-Bt maize) and the variance. Nonmetric multidimensional scaling analysis showed that sampling time and year, rather than maize type had close relationship with the non-lepidopteran pest community composition. These results corroborated the hypothesis that, at least in the short-term, the transgenic cry1Ie maize had negligible effects on the non-lepidopteran pest abundance, diversity and community composition.

  8. Exploiting a wheat EST database to assess genetic diversity

    PubMed Central

    2010-01-01

    Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F2 individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01. PMID:21637582

  9. Genetic diversity patterns of microeukaryotic plankton communities in Shenhu Bay, southeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Pan, Yongbo; Yu, Lingyu; Liu, Lemian

    2017-06-01

    Microeukaryotic plankton is an abundant and diverse component of marine environments and plays an important role in microbial food webs. However, few studies have been conducted on the genetic diversity of microeukaryotes in the subtropical bays of China. In the present study, we investigated the microeukaryotic plankton in the Shenhu Bay by using denaturing gradient gel electrophoresis (DGGE) and sequencing of prominent bands. Our results indicated that Copepoda and Dinophyceae were the most diverse groups, and that the microeukaryotic communities varied significantly between summer and autumn, with the autumn communities exhibited a higher diversity than summer communities. Furthermore, the community composition and diversity from both surface and bottom waters showed more significant differences in summer than in autumn. Environmental parameters also displayed obvious seasonal patterns. Redundancy analysis (RDA) showed that temperature was the most significant environmental factor shaping the seasonal patterns of the microplanktonic members in the Shenhu Bay. Community-level molecular techniques such as DGGE appear as useful tools to detect the presence of red tide causing species and to guide the management of coastal water mariculture.

  10. Invasion success in Cogongrass (Imperata cylindrica): A population genetic approach exploring genetic diversity and historical introductions

    Treesearch

    Rima D. Lucardi; Lisa E. Wallace; Gary N. Ervin

    2014-01-01

    Propagule pressure significantly contributes to and limits the potential success of a biological invasion, especially during transport, introduction, and establishment. Events such as multiple introductions of foreign parent material and gene flow among them can increase genetic diversity in founding populations, often leading to greater invasion success. We applied...

  11. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    PubMed

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These

  12. Origin, genetic diversity, and population structure of Chinese domestic sheep.

    PubMed

    Chen, Shan-Yuan; Duan, Zi-Yuan; Sha, Tao; Xiangyu, Jinggong; Wu, Shi-Fang; Zhang, Ya-Ping

    2006-07-19

    To characterize the origin, genetic diversity, and phylogeographic structure of Chinese domestic sheep, we here analyzed a 531-bp fragment of mtDNA control region of 449 Chinese autochthonous sheep from 19 breeds/populations from 13 geographic regions, together with previously reported 44 sequences from Chinese indigenous sheep. Phylogenetic analysis showed that all three previously defined lineages A, B, and C were found in all sampled Chinese sheep populations, except for the absence of lineage C in four populations. Network profiles revealed that the lineages B and C displayed a star-like phylogeny with the founder haplotype in the centre, and that two star-like subclades with two founder haplotypes were identified in lineage A. The pattern of genetic variation in lineage A, together with the divergence time between the two central founder haplotypes suggested that two independent domestication events have occurred in sheep lineage A. Considerable mitochondrial diversity was observed in Chinese sheep. Weak structuring was observed either among Chinese indigenous sheep populations or between Asian and European sheep and this can be attributable to long-term strong gene flow induced by historical human movements. The high levels of intra-population diversity in Chinese sheep and the weak phylogeographic structuring indicated three geographically independent domestication events have occurred and the domestication place was not only confined to the Near East, but also occurred in other regions.

  13. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    PubMed Central

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  14. Genetic diversity of Aspergillus fumigatus in indoor hospital environments.

    PubMed

    Araujo, Ricardo; Amorim, António; Gusmão, Leonor

    2010-09-01

    Environmental isolates of Aspergillus fumigatus are less studied than those recovered from clinical sources. In the present study, the genetic diversity among such environmental isolates was assessed, as well as their dispersion ability and the acquisition of new strains in 19 medical units of the same hospital. A. fumigatus isolates were genotyped using a single multiplex PCR-based reaction with eight microsatellite markers and an insertion/deletion polymorphism. A total of 130 unique genotypes were found among a total of 250 A. fumigatus isolates. Genotypic diversity ranged from 0.86 to 1 in samples from hospital rooms, and there was no correlation between these samples and the presence of high-efficiency particulate air filters or any other air filtration system. Four of the six most prevalent A. fumigatus strains were recovered from water samples. The occurrence of microvariation was common among environmental isolates, which affected each of the microsatellite markers. The assessment of the genetic diversity of A. fumigatus is a useful tool for illustrating the presence or absence of specific clonal populations in a clinical setting. A. fumigatus populations were highly dynamic indoors, and new populations were found in just a few months. Due to the high indoor dispersion capability of A. fumigatus, more attention should be given to strains with increased pathogenic potential or reduced susceptibility to anti-fungal drugs.

  15. Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger

    PubMed Central

    Menzies, Brandon R.; Renfree, Marilyn B.; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B.; Pask, Andrew J.

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago. PMID:22530022

  16. Genetic diversity of polysporic isolates of Moniliophthora perniciosa (Tricholomataceae).

    PubMed

    Ferreira, L F R; Duarte, K M R; Gomes, L H; Carvalho, R S; Leal Junior, G A; Aguiar, M M; Armas, R D; Tavares, F C A

    2012-08-16

    The causal agent of witches' broom disease, Moniliophthora perniciosa is a hemibiotrophic and endemic fungus of the Amazon basin and the most important cocoa disease in Brazil. The purpose of this study was to analyze the genetic diversity of polysporic isolates of M. perniciosa to evaluate the adaptation of the pathogen from different Brazilian regions and its association with different hosts. Polysporic isolates obtained previously in potato dextrose agar cultures of M. perniciosa from different Brazilian states and different hosts (Theobroma cacao, Solanum cernuum, S. paniculatum, S. lycocarpum, Solanum sp, and others) were analyzed by somatic compatibility grouping where the mycelium interactions were distinguished after 4-8 weeks of confrontation between the different isolates of M. perniciosa based on the precipitation line in the transition zone and by protein electrophoresis through SDS-PAGE. The diversity of polysporic isolates of M. perniciosa was grouped according to geographic proximity and respective hosts. The great genetic diversity of M. perniciosa strains from different Brazilian states and hosts favored adaptation in unusual environments and dissemination at long distances generating new biotypes.

  17. HIV genetic diversity in Cameroon: possible public health importance.

    PubMed

    Ndongmo, Clement B; Pieniazek, Danuta; Holberg-Petersen, Mona; Holm-Hansen, Carol; Zekeng, Leopold; Jeansson, Stig L; Kaptue, Lazare; Kalish, Marcia L

    2006-08-01

    To monitor the evolving molecular epidemiology and genetic diversity of HIV in a country where many distinct strains cocirculate, we performed genetic analyses on sequences from 75 HIV-1-infected Cameroonians: 74 were group M and 1 was group O. Of the group M sequences, 74 were classified into the following env gp41 subtypes or recombinant forms: CRF02 (n = 54), CRF09 (n = 2), CRF13 (n = 2), A (n = 5), CRF11 (n = 4), CRF06 (n = 1), G (n = 2), F2 (n = 2), and E (n = 1, CRF01), and 1 was a JG recombinant. Comparison of phylogenies for 70 matched gp41 and protease sequences showed inconsistent classifications for 18 (26%) strains. Our data show that recombination is rampant in Cameroon with recombinant viruses continuing to recombine, adding to the complexity of circulating HIV strains. This expanding genetic diversity raises public health concerns for the ability of diagnostic assays to detect these unique HIV mosaic variants and for the development of broadly effective HIV vaccines.

  18. Genetic diversity and paternal origin of domestic donkeys.

    PubMed

    Han, H; Chen, N; Jordana, J; Li, C; Sun, T; Xia, X; Zhao, X; Ji, C; Shen, S; Yu, J; Ainhoa, F; Chen, H; Lei, C; Dang, R

    2017-12-01

    Numerous studies have been conducted to investigate genetic diversity, origins and domestication of donkey using autosomal microsatellites and the mitochondrial genome, whereas the male-specific region of the Y chromosome of modern donkeys is largely uncharacterized. In the current study, 14 published equine Y chromosome-specific microsatellites (Y-STR) were investigated in 395 male donkey samples from China, Egypt, Spain and Peru using fluorescent labeled microsatellite markers. The results showed that seven Y-STRs-EcaYP9, EcaYM2, EcaYE2, EcaYE3, EcaYNO1, EcaYNO2 and EcaYNO4-were male specific and polymorphic, showing two to eight alleles in the donkeys studied. A total of 21 haplotypes corresponding to three haplogroups were identified, indicating three independent patrilines in domestic donkey. These markers are useful for the study the Y-chromosome diversity and population genetics of donkeys in Africa, Europe, South America and China. © 2017 Stichting International Foundation for Animal Genetics.

  19. Molecular markers: a potential resource for ginger genetic diversity studies.

    PubMed

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  20. The abundance and diversity of antibiotic resistance genes in the atmospheric environment of composting plants.

    PubMed

    Gao, Min; Qiu, Tianlei; Sun, Yanmei; Wang, Xuming

    2018-07-01

    Composting is considered to reduce the introduction of antimicrobial resistance genes (ARGs) into the environment through land application of manure; however, the possible pollution of ARGs in the atmospheric environment of composting plants is unknown. In this study, 29 air samples including up- and downwind, composting, packaging, and office areas from 4 composting plants were collected. Dynamic concentrations of 22 subtypes of ARGs, class 1 integron (intl1), and 2 potential human pathogenic bacteria (HPB), and bacterial communities were investigated using droplet digital PCR and 16S rRNA gene sequencing, respectively. In this study, intl1 and 22 subtypes of ARGs (except tetQ) were detected in air of composting, packaging, office, and downwind areas. The highest concentration of 15 out of 22 subtypes of ARGs was detected in the packaging areas, and intl1 also had the maximum average concentration of 10 4  copies/m 3 , with up to (1.78 ± 0.49) × 10 -2 copies/16S rRNA copy. Non-metric multi-dimensional scaling of ARGs, potential HPBs, and bacterial components all indicated that the bioaerosol pollutant pattern in packaging areas was most similar to that in composting areas, followed by office, downwind, and upwind areas. The co-occurrence between ARGs and bacterial taxa assessed by Procrustes test, mantel test, and network analysis implied that aerosolized ARG fragments from composting and packaging areas contributed to the compositions of ARG aerosols in office and downwind areas. The results presented here show that atmoshperic environments of composting plants harbor abundant and diverse ARGs, which highlight the urgent need for comprehensive evaluation of potential human health and ecological risks of composts during both production as well as land application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Endoparasites in a Norwegian moose (Alces alces) population – Faunal diversity, abundance and body condition

    PubMed Central

    Davidson, Rebecca K.; Ličina, Tina; Gorini, Lucrezia; Milner, Jos M.

    2015-01-01

    Many health surveillance programs for wild cervids do not include routine parasite screening despite evidence that gastrointestinal parasites can affect wildlife population dynamics by influencing host fecundity and survival. Slaughter weights of moose in some regions of Norway have been decreasing over recent decades but any role of parasites has not yet been considered. We investigated parasite faunal diversity of moose in Hedmark, SE Norway, by faecal analysis and identification of adult abomasal and caecal nematodes during the autumn hunting season. We related parasite prevalence and abundance to estimates of body condition, gender and age. We identified 11 parasite groups. Moose had high abomasal gastrointestinal nematode (GIN) burdens and all individuals were infected. Ostertagia antipini and Spiculopteragia alcis were the most prevalent abomasal GINs identified. O. leptospicularis and Telodorsagia circumcincta were also identified in the abomasa while a range of other GIN and Moniezia sp. eggs, and coccidia, Dictyocaulus sp. and Protostrongylid larvae were found in faeces. Female moose had higher mean abomasal nematode counts than males, particularly among adults. However, adult males had higher faecal egg counts than adult females which may reflect reduction in faecal volume with concentration of eggs among males during the rut. We found no strong evidence for the development of acquired immunity to abomasal nematodes with age, although there was a higher Protostrongylid and Moniezia infection prevalence in younger animals. High burdens of several parasites were associated with poor body condition in terms of slaughter weight relative to skeletal size but unrelated to visually evaluated fat reserves. Given findings from earlier experimental studies, our results imply sub-clinical effects of GI parasite infection on host condition. Managers should be aware that autumn faecal egg counts and field assessments of fat reserves may not be reliable indicators of

  2. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation

    PubMed Central

    Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R.; Luke, Sarah H.; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data. PMID:26881747

  3. Composition, Diversity and Abundance of Gut Microbiome in Prediabetes and Type 2 Diabetes.

    PubMed

    Lambeth, Stacey M; Carson, Trechelle; Lowe, Janae; Ramaraj, Thiruvarangan; Leff, Jonathan W; Luo, Li; Bell, Callum J; Shah, Vallabh O

    2015-12-26

    Association between type 2 diabetes (T2DM) and compositional changes in the gut micro biota is established, however little is known about the dysbiosis in early stages of Prediabetes (preDM). The purpose of this investigation is to elucidate the characteristics of the gut micro biome in preDM and T2DM, compared to Non-Diabetic (nonDM) subjects. Forty nine subjects were recruited for this study, 15 nonDM, 20 preDM and 14 T2DM. Bacterial community composition and diversity were investigated in fecal DNA samples using Illumina sequencing of the V4 region within the 16S rRNA gene. The five most abundant phyla identified were: Bacteroidetes, Firmicutes, Proteobacteria, Verrucomicrobia , and Actinobacteria . Class Chloracido bacteria was increased in preDM compared to T2DM (p = 0.04). An unknown genus from family Pseudonocardiaceae was significantly present in preDM group compared to the others (p = 0.04). Genus Collinsella , and an unknown genus belonging to family Enterobacteriaceae were both found to be significantly increased in T2DM compared to the other groups (Collinsella, and p = 0.03, Enterobacteriaceae genus p = 0.02). PERMANOVA and Mantel tests performed did not reveal a relationship between overall composition and diagnosis group or HbA1C level. This study identified dysbiosis associated with both preDM and T2DM, specifically at the class and genus levels suggesting that earlier treatment in preDM could possibly have an impact on the intestinal micro flora transitioning to T2DM.

  4. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation.

    PubMed

    Májeková, Maria; Paal, Taavi; Plowman, Nichola S; Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R; Luke, Sarah H; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package "traitor" to facilitate assessments of missing trait data.

  5. Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter

    PubMed Central

    Gao, Jing-Feng; Fan, Xiao-Yan; Pan, Kai-Ling; Li, Hong-Yu; Sun, Li-Xin

    2016-01-01

    Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m−3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]−1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5. PMID:27941955

  6. Photoautotrophic organisms control microbial abundance and diversity in biological soil crusts

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Maier, Stefanie; Wu, Dianming; Caesar, Jennifer; Hoffman, Timm; Grube, Martin; Weber, Bettina

    2017-04-01

    Vascular vegetation is typically quite sparse or even absent in dryland ecosystems all over the world, but the ground surface is not bare and largely covered by biological soil crusts (referred to as biocrusts hereafter). These biocrust communities generally comprise poikilohydric organisms. They are usually dominated by photoautotrophic cyanobacteria, lichens and mosses, growing together with heterotrophic fungi, bacteria and archaea in varying composition. Cyanobacteria-, lichen- and moss-dominated biocrusts are known to stabilize the soil and to influence the water budgets and plant establishment. The autotrophic organisms take up atmospheric CO2, and (cyano-)bacteria fix atmospheric nitrogen. The intention of the present project was to study the relevance of the dominating photoautotrophic organisms for biocrust microbial composition and physiology. High-throughput sequencing revealed that soil microbiota of biocrusts largely differ from the bacterial community in bare soil. We observed that bacterial and fungal abundance (16S and 18S rRNA gene copy numbers) as well as alpha diversity was lowest in bare soil, and increasing from cyanobacteria-, and chlorolichen- to moss-dominated biocrusts. CO2 gas exchange measurements revealed large respiration rates of the soil in moss-dominated biocrusts, which was not observed for cyanobacteria- and chlorolichen-dominated biocrusts. Thus, soil respiration of moss-dominated biocrusts is mainly due to the activity of the microbial communities, whereas the microorganisms in the other biocrust types are either dormant or feature functionally different microbial communities. Our results indicate that biocrust type determines the pattern of microbial communities in the underlying soil layer.

  7. The evolutionary history of steelhead (Oncorhynchus mykiss) along the US Pacific Coast: Developing a conservation strategy using genetic diversity

    USGS Publications Warehouse

    Nielsen, J.L.

    1999-01-01

    Changes in genetic variation across a species range may indicate patterns of population structure resulting from past ecological and demographic events that are otherwise difficult to infer and thus provide insight into evolutionary development. Genetic data is used, drawn from 11 microsatellite loci amplified from anadromous steelhead (Oncorhynchus mykiss) sampled throughout its range in the eastern Pacific Ocean, to explore population structure at the southern edge in California. Steelhead populations in this region represent less than 10% of their reported historic abundance and survive in very small populations found in fragmented habitats. Genetic data derived from three independent molecular systems (allozymes, mtDNA, and microsatellites) have shown that the southernmost populations are characterized by a relatively high genetic diversity. Two hypothetical models supporting genetic population substructure such as observed were considered: (1) range expansion with founder-flush effects and subsequent population decline; (2) a second Pleistocene radiation from the Gulf of California. Using genetic and climatic data, a second Pleistocene refugium contributing to a southern ecotone seems more feasible. These data support strong conservation measures based on genetic diversity be developed to ensure the survival of this uniquely diverse gene pool.

  8. Are Eimeria Genetically Diverse, and Does It Matter?

    PubMed

    Clark, Emily L; Tomley, Fiona M; Blake, Damer P

    2017-03-01

    Eimeria pose a risk to all livestock species as a cause of coccidiosis, reducing productivity and compromising animal welfare. Pressure to reduce drug use in the food chain makes the development of cost-effective vaccines against Eimeria essential. For novel vaccines to be successful, understanding genetic and antigenic diversity in field populations is key. Eimeria species that infect chickens are most significant, with Eimeria tenella among the best studied and most economically important. Genome-wide single nucleotide polymorphism (SNP)-based haplotyping has been used to determine population structure, genotype distribution, and potential for cross-fertilization between E. tenella strains. Here, we discuss recent developments in our understanding of diversity for Eimeria in relation to its specialized life cycle, distribution across the globe, and the challenges posed to vaccine development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The impact of recent events on human genetic diversity

    PubMed Central

    Jobling, Mark A.

    2012-01-01

    The historical record tells us stories of migrations, population expansions and colonization events in the last few thousand years, but what was their demographic impact? Genetics can throw light on this issue, and has mostly done so through the maternally inherited mitochondrial DNA (mtDNA) and the male-specific Y chromosome. However, there are a number of problems, including marker ascertainment bias, possible influences of natural selection, and the obscuring layers of the palimpsest of historical and prehistorical events. Y-chromosomal lineages are particularly affected by genetic drift, which can be accentuated by recent social selection. A diversity of approaches to expansions in Europe is yielding insights into the histories of Phoenicians, Roma, Anglo-Saxons and Vikings, and new methods for producing and analysing genome-wide data hold much promise. The field would benefit from more consensus on appropriate methods, and better communication between geneticists and experts in other disciplines, such as history, archaeology and linguistics. PMID:22312046

  10. Spatio-temporal variations in the diversity and abundance of commercially important Decapoda and Stomatopoda in subtropical Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Lui, Karen K. Y.; Ng, Jasmine S. S.; Leung, Kenneth M. Y.

    2007-05-01

    In subtropical Hong Kong, western waters (WW) are strongly influenced by the freshwater input from the Pearl River estuary, especially during summer monsoon, whereas eastern waters (EW) are predominantly influenced by oceanic currents throughout the year. Such hydrographical differences may lead to spatio-temporal differences in biodiversity of benthic communities. This study investigated the diversity and abundance of commercially important decapods and stomatopods in EW (i.e. Tolo Harbour and Channel) and WW (i.e. Tuen Mun and Lantau Island) of Hong Kong using monthly trawl surveys (August 2003-May 2005). In total, 22 decapod and nine stomatopod species were recorded. The penaeid Metapenaeopsis sp. and stomatopod Oratosquillina interrupta were the most abundant and dominant crustaceans in EW and WW, respectively. Both univariate and multivariate analyses showed that WW supported significantly higher abundance, biomass and diversity of crustaceans than EW, although there were significant between-site and within-site variations in community structure. Higher abundance and biomass of crustaceans were recorded in summer than winter. Such spatio-temporal variations could be explained by differences in the hydrography, environmental conditions and anthropogenic impacts between the two areas. Temporal patterns in the abundance-biomass comparison curves and negative W-statistics suggest that the communities have been highly disturbed in both areas, probably due to anthropogenic activities such as bottom trawling and marine pollution.

  11. Population genetic analysis of the recently rediscovered Hula painted frog (Latonia nigriventer) reveals high genetic diversity and low inbreeding.

    PubMed

    Perl, R G Bina; Geffen, Eli; Malka, Yoram; Barocas, Adi; Renan, Sharon; Vences, Miguel; Gafny, Sarig

    2018-04-03

    After its recent rediscovery, the Hula painted frog (Latonia nigriventer) has remained one of the world's rarest and least understood amphibian species. Together with its apparently low dispersal capability and highly disturbed niche, the low abundance of this living fossil calls for urgent conservation measures. We used 18 newly developed microsatellite loci and four different models to calculate the effective population size (N e ) of a total of 125 Hula painted frog individuals sampled at a single location. We compare the N e estimates to the estimates of potentially reproducing adults in this population (N ad ) determined through a capture-recapture study on 118 adult Hula painted frogs captured at the same site. Surprisingly, our data suggests that, despite N ad estimates of only ~234-244 and N e estimates of ~16.6-35.8, the species appears to maintain a very high genetic diversity (H O  = 0.771) and low inbreeding coefficient (F IS  = -0.018). This puzzling outcome could perhaps be explained by the hypotheses of either genetic rescue from one or more unknown Hula painted frog populations nearby or by recent admixture of genetically divergent subpopulations. Independent of which scenario is correct, the original locations of these populations still remain to be determined.

  12. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    PubMed Central

    Young, Carolyn A.; Schardl, Christopher L.; Panaccione, Daniel G.; Florea, Simona; Takach, Johanna E.; Charlton, Nikki D.; Moore, Neil; Webb, Jennifer S.; Jaromczyk, Jolanta

    2015-01-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  13. Chloroplast genomes: diversity, evolution, and applications in genetic engineering

    SciTech Connect

    Daniell, Henry; Lin, Choun -Sea; Yu, Ming

    Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. Here, we also discuss the potential biotechnological applications of chloroplast genomes.

  14. Chloroplast genomes: diversity, evolution, and applications in genetic engineering

    DOE PAGES

    Daniell, Henry; Lin, Choun -Sea; Yu, Ming; ...

    2016-06-23

    Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. Here, we also discuss the potential biotechnological applications of chloroplast genomes.

  15. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity.

    PubMed

    Grange, Laura J; Smith, Craig R

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436-725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400-700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  16. Megafaunal Communities in Rapidly Warming Fjords along the West Antarctic Peninsula: Hotspots of Abundance and Beta Diversity

    PubMed Central

    Grange, Laura J.; Smith, Craig R.

    2013-01-01

    Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436–725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400–700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the

  17. Diversity and genetic structure among subpopulations of Gossypium mustelinum (Malvaceae).

    PubMed

    Alves, M F; Barroso, P A V; Ciampi, A Y; Hoffmann, L V; Azevedo, V C R; Cavalcante, U

    2013-02-27

    Gossypium mustelinum is the only cotton species native to Brazil; it is endemic to the semi-arid region of the northeast. The populations are found near perennial and semi-perennial sources of water, such as ponds or pools in intermittent streams. Problems with in situ conservation derive from human interference in its habitat, mainly because of excessive cattle grazing and deforestation. Establishing efficient strategies for in situ conservation requires knowledge of the genetic structure of the populations. We evaluated the structure and genetic variability of populations of G. mustelinum in the Tocó and Capivara Rivers (State of Bahia). Two hundred and eighteen mature G. mustelinum plants were genotyped with SSR markers. The molecular data were used to estimate the allelic frequencies, the heterozygosity, the F statistics, and the genetic distance among the populations and among individuals. We found high genetic diversity among the populations. The FST indexes for each population were also high and strongly correlated with physical distance. The high estimated level of endogamy and the low observed heterozygosity are indicative that the populations reproduce mainly by self-fertilization and crosses between related individuals. Consequently, strategies for in situ preservation should include at least three occurrence sites of G. mustelinum from each population. For ex situ conservation, the collections should include as many sites as possible.

  18. Ethnic diversity in the genetics of venous thromboembolism.

    PubMed

    Tang, Liang; Hu, Yu

    2015-11-01

    Genetic susceptibility is considered as a crucial factor for the development of venous thromboembolism (VTE). Epidemiologic and genetic studies have revealed clear disparities in the incidence of VTE and the distribution of genetic factors for VTE in populations stratified by ethnicity worldwide. While gain-of-function polymorphisms in the procoagulant genes are common inherited factors in European-origin populations, the most prevalent molecular basis for venous thrombosis in Asians is confirmed to be dysfunctional variants in the anticoagulant genes. With the breakthrough of genomic technologies, a set of novel common alleles and rare mutations associated with VTE have also been identified, in different ethnic groups. Several putative pathways contributing to the pathogenesis of thrombophilia in populations of African-ancestry are largely unknown, as current knowledge of hereditary and acquired risk factors do not fully explain the highest risk of VTE in Black groups. In-depth studies across diverse ethnic populations are needed to unravel the whole genetics of VTE, which will help developing individual risk prediction models and strategies to minimise VTE in all populations.

  19. Genetic diversity and connectivity of the megamouth shark (Megachasma pelagios)

    PubMed Central

    Joung, Shoou Jeng; Yu, Chi-Ju; Hsu, Hua-Hsun; Tsai, Wen-Pei; Liu, Kwang Ming

    2018-01-01

    The megamouth shark (Megachasma pelagios) was described as a new species in 1983. Since then, only ca. 100 individuals have been observed or caught. Its horizontal migration, dispersal, and connectivity patterns are still unknown due to its rarity. Two genetic markers were used in this study to reveal its genetic diversity and connectivity pattern. This approach provides a proxy to indirectly measure gene flow between populations. Tissues from 27 megamouth sharks caught by drift nets off the Hualien coast (eastern Taiwan) were collected from 2013 to 2015. With two additional tissue samples from megamouths caught in Baja California, Mexico, and sequences obtained from GenBank, we were able to perform the first population genetic analyses of the megamouth shark. The mtDNA cox1 gene and a microsatellite (Loc 6) were sequenced and analyzed. Our results showed that there is no genetic structure in the megamouth shark, suggesting a possible panmictic population. Based on occurrence data, we also suggest that the Kuroshio region, including the Philippines, Taiwan, and Japan, may act as a passageway for megamouth sharks to reach their feeding grounds from April to August. Our results provide insights into the dispersal and connectivity of megamouth sharks. Future studies should focus on collecting more samples and conducting satellite tagging to better understand the global migration and connectivity pattern of the megamouth shark. PMID:29527411

  20. Centennial olive trees as a reservoir of genetic diversity

    PubMed Central

    Díez, Concepción M.; Trujillo, Isabel; Barrio, Eladio; Belaj, Angjelina; Barranco, Diego; Rallo, Luis

    2011-01-01

    Background and Aims Genetic characterization and phylogenetic analysis of the oldest trees could be a powerful tool both for germplasm collection and for understanding the earliest origins of clonally propagated fruit crops. The olive tree (Olea europaea L.) is a suitable model to study the origin of cultivars due to its long lifespan, resulting in the existence of both centennial and millennial trees across the Mediterranean Basin. Methods The genetic identity and diversity as well as the phylogenetic relationships among the oldest wild and cultivated olives of southern Spain were evaluated by analysing simple sequence repeat markers. Samples from both the canopy and the roots of each tree were analysed to distinguish which trees were self-rooted and which were grafted. The ancient olives were also put into chronological order to infer the antiquity of traditional olive cultivars. Key Results Only 9·6 % out of 104 a priori cultivated ancient genotypes matched current olive cultivars. The percentage of unidentified genotypes was higher among the oldest olives, which could be because they belong to ancient unknown cultivars or because of possible intra-cultivar variability. Comparing the observed patterns of genetic variation made it possible to distinguish which trees were grafted onto putative wild olives. Conclusions This study of ancient olives has been fruitful both for germplasm collection and for enlarging our knowledge about olive domestication. The findings suggest that grafting pre-existing wild olives with olive cultivars was linked to the beginnings of olive growing. Additionally, the low number of genotypes identified in current cultivars points out that the ancient olives from southern Spain constitute a priceless reservoir of genetic diversity. PMID:21852276

  1. Genetic diversity, breed composition and admixture of Kenyan domestic pigs.

    PubMed

    Mujibi, Fidalis Denis; Okoth, Edward; Cheruiyot, Evans K; Onzere, Cynthia; Bishop, Richard P; Fèvre, Eric M; Thomas, Lian; Masembe, Charles; Plastow, Graham; Rothschild, Max

    2018-01-01

    The genetic diversity of African pigs, whether domestic or wild has not been widely studied and there is very limited published information available. Available data suggests that African domestic pigs originate from different domestication centers as opposed to international commercial breeds. We evaluated two domestic pig populations in Western Kenya, in order to characterize the genetic diversity, breed composition and admixture of the pigs in an area known to be endemic for African swine fever (ASF). One of the reasons for characterizing these specific populations is the fact that a proportion of indigenous pigs have tested ASF virus (ASFv) positive but do not present with clinical symptoms of disease indicating some form of tolerance to infection. Pigs were genotyped using either the porcine SNP60 or SNP80 chip. Village pigs were sourced from Busia and Homabay counties in Kenya. Because bush pigs (Potamochoerus larvatus) and warthogs (Phacochoerus spp.) are known to be tolerant to ASFv infection (exhibiting no clinical symptoms despite infection), they were included in the study to assess whether domestic pigs have similar genomic signatures. Additionally, samples representing European wild boar and international commercial breeds were included as references, given their potential contribution to the genetic make-up of the target domestic populations. The data indicate that village pigs in Busia are a non-homogenous admixed population with significant introgression of genes from international commercial breeds. Pigs from Homabay by contrast, represent a homogenous population with a "local indigenous' composition that is distinct from the international breeds, and clusters more closely with the European wild boar than African wild pigs. Interestingly, village pigs from Busia that tested negative by PCR for ASFv genotype IX, had significantly higher local ancestry (>54%) compared to those testing positive, which contained more commercial breed gene introgression

  2. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    PubMed

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian Savanna under different land use systems.

    PubMed

    Rampelotto, Pabulo Henrique; de Siqueira Ferreira, Adão; Barboza, Anthony Diego Muller; Roesch, Luiz Fernando Wurdig

    2013-10-01

    The Brazilian Savanna, also known as "Cerrado", is the richest and most diverse savanna in the world and has been ranked as one of the main hotspots of biodiversity. The Cerrado is a representative biome in Central Brazil and the second largest biome in species diversity of South America. Nevertheless, large areas of native vegetation have been converted to agricultural land including grain production, livestock, and forestry. In this view, understanding how land use affects microbial communities is fundamental for the sustainable management of agricultural ecosystems. The aim of this work was to analyze and compare the soil bacterial communities from the Brazilian Cerrado associated with different land use systems using high throughput pyrosequencing of 16S rRNA genes. Relevant differences were observed in the abundance and structure of bacterial communities in soils under different land use systems. On the other hand, the diversity of bacterial communities was not relevantly changed among the sites studied. Land use systems had also an important impact on specific bacterial groups in soil, which might change the soil function and the ecological processes. Acidobacteria, Proteobacteria, and Actinobacteria were the most abundant groups in the Brazilian Cerrado. These findings suggest that more important than analyzing the general diversity is to analyze the composition of the communities. Since soil type was the same among the sites, we might assume that land use was the main factor defining the abundance and structure of bacterial communities.

  4. Estimates of abundance and diversity of Shewanella genus in natural and engineered aqueous environments with newly designed primers.

    PubMed

    Li, Bing-Bing; Cheng, Yuan-Yuan; Fan, Yang-Yang; Liu, Dong-Feng; Fang, Cai-Yun; Wu, Chao; Li, Wen-Wei; Yang, Zong-Chuang; Yu, Han-Qing

    2018-05-12

    Shewanella species have a diverse respiratory ability and wide distribution in environments and play an important role in bioremediation and the biogeochemical cycles of elements. Primers with more accuracy and broader coverage are required with consideration of the increasing number of Shewanella species and evaluation of their roles in various environments. In this work, a new primer set of 640F/815R was developed to quantify the abundance of Shewanella species in natural and engineered environments. In silico tools for primer evaluation, quantitative polymerase chain reaction (qPCR) and clone library results showed that 640F/815R had a higher specificity and coverage than the previous primers in quantitative analysis of Shewanella. Another newly developed primer pair of 211F/815cR was also adopted to analyze the Shewanella diversity and demonstrated to be the best candidate in terms of specificity and coverage. We detected more Shewanella-related species in freshwater environments and found them to be substantially different from those in marine environments. Abundance and diversity of Shewanella species in wastewater treatment plants were largely affected by the process and operating conditions. Overall, this study suggests that investigations of abundance and diversity of Shewanella in various environments are of great importance to evaluate their ecophysiology and potential ecological roles. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Genetic diversity, structure and differentiation in cultivate walnut (Juglans regia L.)

    Treesearch

    M. Aradhya; K. Woeste; D. Velasco

    2012-01-01

    An analysis of genetic structure and differentiation in cultivated walnut (Juglans regia) using 15 microsatellite loci revealed a considerable amount of genetic variation with a mild genetic structure indicating five genetic groups corresponding to the centers of diversity within the home range of walnut in Eurasia. Despite the narrow genetic...

  6. Genetic diversity of drug and multidrug-resistant Mycobacterium tuberculosis circulating in Veracruz, Mexico

    PubMed Central

    Munro-Rojas, Daniela; Fernandez-Morales, Esdras; Zarrabal-Meza, José; Martínez-Cazares, Ma. Teresa; Parissi-Crivelli, Aurora; Fuentes-Domínguez, Javier; Séraphin, Marie Nancy; Lauzardo, Michael; González-y-Merchand, Jorge Alberto; Rivera-Gutierrez, Sandra

    2018-01-01

    Background Mexico is one of the most important contributors of drug and multidrug-resistant tuberculosis in Latin America; however, knowledge of the genetic diversity of drug-resistant tuberculosis isolates is limited. Methods In this study, the genetic structure of 112 Mycobacterium tuberculosis strains from the southeastern Mexico was determined by spoligotyping and 24-loci MIRU-VNTRs. Findings The results show eight major lineages, the most of which was T1 (24%), followed by LAM (16%) and H (15%). A total of 29 (25%) isolates were identified as orphan. The most abundant SITs were SIT53/T1 and SIT42/LAM9 with 10 isolates each and SIT50/H3 with eight isolates. Fifty-two spoligotype patterns, twenty-seven clusters and ten clonal complexes were observed, demonstrating an important genetic diversity of drug and multidrug-resistant tuberculosis isolates in circulation and transmission level of these aggravated forms of tuberculosis. Being defined as orphan or as part of an orphan cluster, was a risk factor for multidrug resistant-tuberculosis (OR 2.5, IC 1.05–5.86 and OR 3.3, IC 1–11.03, respectively). Multiple correspondence analyses showed association of some clusters and SITs with specific geographical locations. Conclusions Our study provides one of the most detailed description of the genetic structure of drug and multidrug-resistant tuberculosis strains in southeast Mexico, establishing for the first time a baseline of the genotypes observed in resistant isolates circulating, however further studies are required to better elucidate the genetic structure of tuberculosis in region and the factors that could be participating in their dispersion. PMID:29543819

  7. Population Genetic Structure, Abundance, and Health Status of Two Dominant Benthic Species in the Saba Bank National Park, Caribbean Netherlands: Montastraea cavernosa and Xestospongia muta.

    PubMed

    de Bakker, Didier M; Meesters, Erik H W G; van Bleijswijk, Judith D L; Luttikhuizen, Pieternella C; Breeuwer, Hans J A J; Becking, Leontine E

    2016-01-01

    Saba Bank, a submerged atoll in the Caribbean Sea with an area of 2,200 km2, has attained international conservation status due to the rich diversity of species that reside on the bank. In order to assess the role of Saba Bank as a potential reservoir of diversity for the surrounding reefs, we examined the population genetic structure, abundance and health status of two prominent benthic species, the coral Montastraea cavernosa and the sponge Xestospongia muta. Sequence data were collected from 34 colonies of M. cavernosa (nDNA ITS1-5.8S-ITS2; 892 bp) and 68 X. muta sponges (mtDNA I3-M11 partition of COI; 544 bp) on Saba Bank and around Saba Island, and compared with published data across the wider Caribbean. Our data indicate that there is genetic connectivity between populations on Saba Bank and the nearby Saba Island as well as multiple locations in the wider Caribbean, ranging in distance from 100s-1000s km. The genetic diversity of Saba Bank populations of M. cavernosa (π = 0.055) and X. muta (π = 0.0010) was comparable to those in other regions in the western Atlantic. Densities and health status were determined along 11 transects of 50 m2 along the south-eastern rim of Saba Bank. The densities of M. cavernosa (0.27 ind. m-2, 95% CI: 0.12-0.52) were average, while the densities of X. muta (0.09 ind. m-2, 95% CI: 0.02-0.32) were generally higher with respect to other Caribbean locations. No disease or bleaching was present in any of the specimens of the coral M. cavernosa, however, we did observe partial tissue loss (77.9% of samples) as well as overgrowth (48.1%), predominantly by cyanobacteria. In contrast, the majority of observed X. muta (83.5%) showed signs of presumed bleaching. The combined results of apparent gene flow among populations on Saba Bank and surrounding reefs, the high abundance and unique genetic diversity, indicate that Saba Bank could function as an important buffer for the region. Either as a natural source of larvae to replenish

  8. Population Genetic Structure, Abundance, and Health Status of Two Dominant Benthic Species in the Saba Bank National Park, Caribbean Netherlands: Montastraea cavernosa and Xestospongia muta

    PubMed Central

    de Bakker, Didier M.; Meesters, Erik H. W. G.; van Bleijswijk, Judith D. L.; Luttikhuizen, Pieternella C.; Breeuwer, Hans J. A. J.; Becking, Leontine E.

    2016-01-01

    Saba Bank, a submerged atoll in the Caribbean Sea with an area of 2,200 km2, has attained international conservation status due to the rich diversity of species that reside on the bank. In order to assess the role of Saba Bank as a potential reservoir of diversity for the surrounding reefs, we examined the population genetic structure, abundance and health status of two prominent benthic species, the coral Montastraea cavernosa and the sponge Xestospongia muta. Sequence data were collected from 34 colonies of M. cavernosa (nDNA ITS1-5.8S-ITS2; 892 bp) and 68 X. muta sponges (mtDNA I3-M11 partition of COI; 544 bp) on Saba Bank and around Saba Island, and compared with published data across the wider Caribbean. Our data indicate that there is genetic connectivity between populations on Saba Bank and the nearby Saba Island as well as multiple locations in the wider Caribbean, ranging in distance from 100s–1000s km. The genetic diversity of Saba Bank populations of M. cavernosa (π = 0.055) and X. muta (π = 0.0010) was comparable to those in other regions in the western Atlantic. Densities and health status were determined along 11 transects of 50 m2 along the south-eastern rim of Saba Bank. The densities of M. cavernosa (0.27 ind. m-2, 95% CI: 0.12–0.52) were average, while the densities of X. muta (0.09 ind. m-2, 95% CI: 0.02–0.32) were generally higher with respect to other Caribbean locations. No disease or bleaching was present in any of the specimens of the coral M. cavernosa, however, we did observe partial tissue loss (77.9% of samples) as well as overgrowth (48.1%), predominantly by cyanobacteria. In contrast, the majority of observed X. muta (83.5%) showed signs of presumed bleaching. The combined results of apparent gene flow among populations on Saba Bank and surrounding reefs, the high abundance and unique genetic diversity, indicate that Saba Bank could function as an important buffer for the region. Either as a natural source of larvae to

  9. Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo)

    PubMed Central

    2012-01-01

    Background The turkey (Meleagris gallopavo) is an important agricultural species and the second largest contributor to the world’s poultry meat production. Genetic improvement is attributed largely to selective breeding programs that rely on highly heritable phenotypic traits, such as body size and breast muscle development. Commercial breeding with small effective population sizes and epistasis can result in loss of genetic diversity, which in turn can lead to reduced individual fitness and reduced response to selection. The presence of genomic diversity in domestic livestock species therefore, is of great importance and a prerequisite for rapid and accurate genetic improvement of selected breeds in various environments, as well as to facilitate rapid adaptation to potential changes in breeding goals. Genomic selection requires a large number of genetic markers such as e.g. single nucleotide polymorphisms (SNPs) the most abundant source of genetic variation within the genome. Results Alignment of next generation sequencing data of 32 individual turkeys from different populations was used for the discovery of 5.49 million SNPs, which subsequently were used for the analysis of genetic diversity among the different populations. All of the commercial lines branched from a single node relative to the heritage varieties and the South Mexican turkey population. Heterozygosity of all individuals from the different turkey populations ranged from 0.17-2.73 SNPs/Kb, while heterozygosity of populations ranged from 0.73-1.64 SNPs/Kb. The average frequency of heterozygous SNPs in individual turkeys was 1.07 SNPs/Kb. Five genomic regions with very low nucleotide variation were identified in domestic turkeys that showed state of fixation towards alleles different than wild alleles. Conclusion The turkey genome is much less diverse with a relatively low frequency of heterozygous SNPs as compared to other livestock species like chicken and pig. The whole genome SNP discovery

  10. Spatial patterns of distribution, abundance, and species diversity of small odontocetes estimated using density surface modeling with line transect sampling

    NASA Astrophysics Data System (ADS)

    Kanaji, Yu; Okazaki, Makoto; Miyashita, Tomio

    2017-06-01

    Spatial patterns of distribution, abundance, and species diversity of small odontocetes including species in the Delphinidae and Phocoenidae families were investigated using long-term dedicated sighting survey data collected between 1983 and 2006 in the North Pacific. Species diversity indices were calculated from abundance estimated using density surface modeling of line-transect data. The estimated abundance ranged from 19,521 individuals in killer whale to 1,886,022 in pantropical spotted dolphin. The predicted density maps showed that the habitats of small odontocetes corresponded well with distinct oceanic domains. Species richness was estimated to be highest between 30 and 40°N where warm- and cold-water currents converge. Simpson's Diversity Index showed latitudinal diversity gradients of decreasing species numbers toward the poles. Higher diversity was also estimated in the coastal areas and the zonal areas around 35-42°N. Coastal-offshore gradients and latitudinal gradients are known for many taxa. The zonal areas around 35°N and 40°N coincide with the Kuroshio Current and its extension and the subarctic boundary, respectively. These results suggest that the species diversity of small odontocetes primarily follows general patterns of latitudinal and longitudinal gradients, while the confluence of faunas originating in distinct water masses increases species diversify in frontal waters around 30-40°N. Population densities tended to be higher for the species inhabiting higher latitudes, but were highest for intermediate latitudes at approximately 35-40°N. According to latitudinal gradients in water temperature and biological productivity, the costs for thermoregulation will decrease in warmer low latitudes, while feeding efficiency will increase in colder high latitudes. These trade-offs could optimize population density in intermediate latitudes.

  11. Genetic Competence Drives Genome Diversity in Bacillus subtilis

    PubMed Central

    Chevreux, Bastien; Serra, Cláudia R; Schyns, Ghislain; Henriques, Adriano O

    2018-01-01

    Abstract Prokaryote genomes are the result of a dynamic flux of genes, with increases achieved via horizontal gene transfer and reductions occurring through gene loss. The ecological and selective forces that drive this genomic flexibility vary across species. Bacillus subtilis is a naturally competent bacterium that occupies various environments, including plant-associated, soil, and marine niches, and the gut of both invertebrates and vertebrates. Here, we quantify the genomic diversity of B. subtilis and infer the genome dynamics that explain the high genetic and phenotypic diversity observed. Phylogenomic and comparative genomic analyses of 42 B. subtilis genomes uncover a remarkable genome diversity that translates into a core genome of 1,659 genes and an asymptotic pangenome growth rate of 57 new genes per new genome added. This diversity is due to a large proportion of low-frequency genes that are acquired from closely related species. We find no gene-loss bias among wild isolates, which explains why the cloud genome, 43% of the species pangenome, represents only a small proportion of each genome. We show that B. subtilis can acquire xenologous copies of core genes that propagate laterally among strains within a niche. While not excluding the contributions of other mechanisms, our results strongly suggest a process of gene acquisition that is largely driven by competence, where the long-term maintenance of acquired genes depends on local and global fitness effects. This competence-driven genomic diversity provides B. subtilis with its generalist character, enabling it to occupy a wide range of ecological niches and cycle through them. PMID:29272410

  12. On the proportional abundance of species: Integrating population genetics and community ecology.

    PubMed

    Marquet, Pablo A; Espinoza, Guillermo; Abades, Sebastian R; Ganz, Angela; Rebolledo, Rolando

    2017-12-01

    The frequency of genes in interconnected populations and of species in interconnected communities are affected by similar processes, such as birth, death and immigration. The equilibrium distribution of gene frequencies in structured populations is known since the 1930s, under Wright's metapopulation model known as the island model. The equivalent distribution for the species frequency (i.e. the species proportional abundance distribution (SPAD)), at the metacommunity level, however, is unknown. In this contribution, we develop a stochastic model to analytically account for this distribution (SPAD). We show that the same as for genes SPAD follows a beta distribution, which provides a good description of empirical data and applies across a continuum of scales. This stochastic model, based upon a diffusion approximation, provides an alternative to neutral models for the species abundance distribution (SAD), which focus on number of individuals instead of proportions, and demonstrate that the relative frequency of genes in local populations and of species within communities follow the same probability law. We hope our contribution will help stimulate the mathematical and conceptual integration of theories in genetics and ecology.

  13. Insights into Penicillium roqueforti Morphological and Genetic Diversity

    PubMed Central

    Gillot, Guillaume; Jany, Jean-Luc; Coton, Monika; Le Floch, Gaétan; Debaets, Stella; Ropars, Jeanne; López-Villavicencio, Manuela; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana; Coton, Emmanuel

    2015-01-01

    Fungi exhibit substantial morphological and genetic diversity, often associated with cryptic species differing in ecological niches. Penicillium roqueforti is used as a starter culture for blue-veined cheeses, being responsible for their flavor and color, but is also a common spoilage organism in various foods. Different types of blue-veined cheeses are manufactured and consumed worldwide, displaying specific organoleptic properties. These features may be due to the different manufacturing methods and/or to the specific P. roqueforti strains used. Substantial morphological diversity exists within P. roqueforti and, although not taxonomically valid, several technological names have been used for strains on different cheeses (e.g., P. gorgonzolae, P. stilton). A worldwide P. roqueforti collection from 120 individual blue-veined cheeses and 21 other substrates was analyzed here to determine (i) whether P. roqueforti is a complex of cryptic species, by applying the Genealogical Concordance Phylogenetic Species Recognition criterion (GC-PSR), (ii) whether the population structure assessed using microsatellite markers correspond to blue cheese types, and (iii) whether the genetic clusters display different morphologies. GC-PSR multi-locus sequence analyses showed no evidence of cryptic species. The population structure analysis using microsatellites revealed the existence of highly differentiated populations, corresponding to blue cheese types and with contrasted morphologies. This suggests that the population structure has been shaped by different cheese-making processes or that different populations were recruited for different cheese types. Cheese-making fungi thus constitute good models for studying fungal diversification under recent selection. PMID:26091176

  14. Neonicotinoid pesticides can reduce honeybee colony genetic diversity

    PubMed Central

    Troxler, Aline; Retschnig, Gina; Gauthier, Laurent; Straub, Lars; Moritz, Robin F. A.; Neumann, Peter; Williams, Geoffrey R.

    2017-01-01

    Neonicotinoid insecticides can cause a variety of adverse sub-lethal effects in bees. In social species such as the honeybee, Apis mellifera, queens are essential for reproduction and colony functioning. Therefore, any negative effect of these agricultural chemicals on the mating success of queens may have serious consequences for the fitness of the entire colony. Queens were exposed to the common neonicotinoid pesticides thiamethoxam and clothianidin during their developmental stage. After mating, their spermathecae were dissected to count the number of stored spermatozoa. Furthermore, their worker offspring were genotyped with DNA microsatellites to determine the number of matings and the genotypic composition of the colony. Colonies providing the male mating partners were also inferred. Both neonicotinoid and control queens mated with drones originating from the same drone source colonies, and stored similar number of spermatozoa. However, queens reared in colonies exposed to both neonicotinoids experienced fewer matings. This resulted in a reduction of the genetic diversity in their colonies (i.e. higher intracolonial relatedness). As decreased genetic diversity among worker bees is known to negatively affect colony vitality, neonicotinoids may have a cryptic effect on colony health by reducing the mating frequency of queens. PMID:29059234

  15. Genetic diversity in Spanish donkey breeds using microsatellite DNA markers

    PubMed Central

    Aranguren-Méndez, José; Jordana, Jordi; Gomez, Mariano

    2001-01-01

    Genetic diversity at 13 equine microsatellite loci was compared in five endangered Spanish donkey breeds: Andaluza, Catalana, Mallorquina, Encartaciones and Zamorano-Leonesa. All of the equine microsatellites used in this study were amplified and were polymorphic in the domestic donkey breeds with the exception of HMS1, which was monomorphic, and ASB2, which failed to amplify. Allele number, frequency distributions and mean heterozygosities were very similar among the Spanish donkey breeds. The unbiased expected heterozygosity (HE) over all the populations varied between 0.637 and 0.684 in this study. The low GST value showed that only 3.6% of the diversity was between breeds (P < 0.01). Significant deviations from Hardy-Weinberg equilibrium were shown for a number of locus-population combinations, except HMS5 that showed agreement in all analysed populations. The cumulative exclusion probability (PE) was 0.999 in each breed, suggesting that the loci would be suitable for donkey parentage testing. The constructed dendrogram from the DA distance matrix showed little differentiation between Spanish breeds, but great differentiation between them and the Moroccan ass and also with the horse, used as an outgroup. These results confirm the potential use of equine microsatellite loci as a tool for genetic studies in domestic donkey populations, which could also be useful for conservation plans. PMID:11559485

  16. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    PubMed

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  17. Combining counts and incidence data: an efficient approach for estimating the log-normal species abundance distribution and diversity indices.

    PubMed

    Bellier, Edwige; Grøtan, Vidar; Engen, Steinar; Schartau, Ann Kristin; Diserud, Ola H; Finstad, Anders G

    2012-10-01

    Obtaining accurate estimates of diversity indices is difficult because the number of species encountered in a sample increases with sampling intensity. We introduce a novel method that requires that the presence of species in a sample to be assessed while the counts of the number of individuals per species are only required for just a small part of the sample. To account for species included as incidence data in the species abundance distribution, we modify the likelihood function of the classical Poisson log-normal distribution. Using simulated community assemblages, we contrast diversity estimates based on a community sample, a subsample randomly extracted from the community sample, and a mixture sample where incidence data are added to a subsample. We show that the mixture sampling approach provides more accurate estimates than the subsample and at little extra cost. Diversity indices estimated from a freshwater zooplankton community sampled using the mixture approach show the same pattern of results as the simulation study. Our method efficiently increases the accuracy of diversity estimates and comprehension of the left tail of the species abundance distribution. We show how to choose the scale of sample size needed for a compromise between information gained, accuracy of the estimates and cost expended when assessing biological diversity. The sample size estimates are obtained from key community characteristics, such as the expected number of species in the community, the expected number of individuals in a sample and the evenness of the community.

  18. Hidden MHC genetic diversity in the Iberian ibex (Capra pyrenaica).

    PubMed

    Angelone, Samer; Jowers, Michael J; Molinar Min, Anna Rita; Fandos, Paulino; Prieto, Paloma; Pasquetti, Mario; Cano-Manuel, Francisco Javier; Mentaberre, Gregorio; Olvera, Jorge Ramón López; Ráez-Bravo, Arián; Espinosa, José; Pérez, Jesús M; Soriguer, Ramón C; Rossi, Luca; Granados, José Enrique

    2018-05-08

    Defining hidden genetic diversity within species is of great significance when attempting to maintain the evolutionary potential of natural populations and conduct appropriate management. Our hypothesis is that isolated (and eventually small) wild animal populations hide unexpected genetic diversity due to their maintenance of ancient polymorphisms or introgressions. We tested this hypothesis using the Iberian ibex (Capra pyrenaica) as an example. Previous studies based on large sample sizes taken from its principal populations have revealed that the Iberian ibex has a remarkably small MHC DRB1 diversity (only six remnant alleles) as a result of recent population bottlenecks and a marked demographic decline that has led to the extinction of two recognized subspecies. Extending on the geographic range to include non-studied isolated Iberian ibex populations, we sequenced a new MHC DRB1 in what seemed three small isolated populations in Southern Spain (n = 132). The findings indicate a higher genetic diversity than previously reported in this important gene. The newly discovered allele, MHC DRB1*7, is identical to one reported in the domestic goat C. aegagrus hircus. Whether or not this is the result of ancient polymorphisms maintained by balancing selection or, alternatively, introgressions from domestic goats through hybridization needs to be clarified in future studies. However, hybridization between Iberian ibex and domestic goats has been reported in Spain and the fact that the newly discovered allele is only present in one of the small isolated populations and not in the others suggests introgression. The new discovered allele is not expected to increase fitness in C. pyrenaica since it generates the same protein as the existing MHC DRB1*6. Analysis of a microsatellite locus (OLADRB1) near the new MHC DRB1*7 gene reveals a linkage disequilibrium between these two loci. The allele OLADRB1, 187 bp in length, was unambiguously linked to the MHC DRB1*7 allele

  19. Genetic diversity among and within cultured cyanobionts of diverse species of Azolla.

    PubMed

    Sood, A; Prasanna, R; Prasanna, B M; Singh, P K

    2008-01-01

    The cyanobionts isolated from 10 Azolla accessions belonging to 6 species (Azolla mexicana, A. microphylla, A. rubra, A. caroliniana, A. filiculoides, A. pinnata) were cultured under laboratory conditions and analyzed on the basis of whole cell protein profiles and molecular marker dataset generated using repeat sequence primers (STRR(mod) and HipTG). The biochemical and molecular marker profiles of the cyanobionts were compared with those of the free-living cyanobacteria and symbiotic Nostoc strains from Anthoceros sp., Cycas sp. and Gunnera monoika. Cluster analysis revealed the genetic diversity among the selected strains, and identified 3 distinct clusters. Group 1 included cyanobionts from all the 10 accessions of Azolla, group 2 comprised all the symbiotic Nostoc strains, while group 3 included the free-living cyanobacteria belonging to the genera Nostoc and Anabaena. The interrelationships among the Azolla cyanobionts were further revealed by principal component analysis. Cyanobionts from A. caroliniana-A. microphylla grouped together while cyanobionts associated with A. mexicana-A. filiculoides along with A. pinnata formed another group. A. rubra cyanobionts had intermediate relationship with both the subgroups. This is the first study analyzing the diversity existing among the cultured cyanobionts of diverse Azolla species through the use of biochemical and molecular profiles and also the genetic distinctness of these free-living cyanobionts as compared to cyanobacterial strains of the genera Anabaena and Nostoc.

  20. Genetic diversity in tef [Eragrostis tef (Zucc.) Trotter

    PubMed Central

    Assefa, Kebebew; Cannarozzi, Gina; Girma, Dejene; Kamies, Rizqah; Chanyalew, Solomon; Plaza-Wüthrich, Sonia; Blösch, Regula; Rindisbacher, Abiel; Rafudeen, Suhail; Tadele, Zerihun

    2015-01-01

    Tef [Eragrostis tef (Zucc.) Trotter] is a cereal crop resilient to adverse climatic and soil conditions, and possessing desirable storage properties. Although tef provides high quality food and grows under marginal conditions unsuitable for other cereals, it is considered to be an orphan crop because it has benefited little from genetic improvement. Hence, unlike other cereals such as maize and wheat, the productivity of tef is extremely low. In spite of the low productivity, tef is widely cultivated by over six million small-scale farmers in Ethiopia where it is annually grown on more than three million hectares of land, accounting for over 30% of the total cereal acreage. Tef, a tetraploid with 40 chromosomes (2n = 4x = 40), belongs to the family Poaceae and, together with finger millet (Eleusine coracana Gaerth.), to the subfamily Chloridoideae. It was originated and domesticated in Ethiopia. There are about 350 Eragrostis species of which E. tef is the only species cultivated for human consumption. At the present time, the gene bank in Ethiopia holds over five thousand tef accessions collected from geographical regions diverse in terms of climate and elevation. These germplasm accessions appear to have huge variability with regard to key agronomic and nutritional traits. In order to properly utilize the variability in developing new tef cultivars, various techniques have been implemented to catalog the extent and unravel the patterns of genetic diversity. In this review, we show some recent initiatives investigating the diversity of tef using genomics, transcriptomics and proteomics and discuss the prospect of these efforts in providing molecular resources that can aid modern tef breeding. PMID:25859251

  1. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex

    PubMed Central

    Garrido-Sanz, Daniel; Meier-Kolthoff, Jan P.; Göker, Markus; Martín, Marta; Rivilla, Rafael; Redondo-Nieto, Miguel

    2016-01-01

    The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR. PMID:26915094

  2. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum.

    PubMed

    Stewart, Jane E; Brooks, Kyle; Brannen, Phillip M; Cline, William O; Brewer, Marin T

    2015-01-01

    Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum), highbush blueberry (V. corymbosum), and southern highbush blueberry (V. corymbosum hybrids) from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium) from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing host population

  3. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum

    PubMed Central

    Stewart, Jane E.; Brooks, Kyle; Brannen, Phillip M.; Cline, William O.; Brewer, Marin T.

    2015-01-01

    Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum), highbush blueberry (V. corymbosum), and southern highbush blueberry (V. corymbosum hybrids) from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium) from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing host population

  4. Pre-Whaling Genetic Diversity and Population Ecology in Eastern Pacific Gray Whales: Insights from Ancient DNA and Stable Isotopes

    PubMed Central

    Alter, S. Elizabeth; Newsome, Seth D.; Palumbi, Stephen R.

    2012-01-01

    Commercial whaling decimated many whale populations, including the eastern Pacific gray whale, but little is known about how population dynamics or ecology differed prior to these removals. Of particular interest is the possibility of a large population decline prior to whaling, as such a decline could explain the ∼5-fold difference between genetic estimates of prior abundance and estimates based on historical records. We analyzed genetic (mitochondrial control region) and isotopic information from modern and prehistoric gray whales using serial coalescent simulations and Bayesian skyline analyses to test for a pre-whaling decline and to examine prehistoric genetic diversity, population dynamics and ecology. Simulations demonstrate that significant genetic differences observed between ancient and modern samples could be caused by a large, recent population bottleneck, roughly concurrent with commercial whaling. Stable isotopes show minimal differences between modern and ancient gray whale foraging ecology. Using rejection-based Approximate Bayesian Computation, we estimate the size of the population bottleneck at its minimum abundance and the pre-bottleneck abundance. Our results agree with previous genetic studies suggesting the historical size of the eastern gray whale population was roughly three to five times its current size. PMID:22590499

  5. Genetic diversity of water use efficiency in Jerusalem artichoke (Helianthus tuberosus L.) germplasm

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity in crop germplasm is an important resource for crop improvement, but information on genetic diversity is rare for Jerusalem artichoke, especially for traits related to water use efficiency. The objectives of this study were to investigate genetic variations for water use and water...

  6. Dynamics of Viral Abundance and Diversity in a Sphagnum-Dominated Peatland: Temporal Fluctuations Prevail Over Habitat.

    PubMed

    Ballaud, Flore; Dufresne, Alexis; Francez, André-Jean; Colombet, Jonathan; Sime-Ngando, Télesphore; Quaiser, Achim

    2015-01-01

    Viruses impact microbial activity and carbon cycling in various environments, but their diversity and ecological importance in Sphagnum-peatlands are unknown. Abundances of viral particles and prokaryotes were monitored bi-monthly at a fen and a bog at two different layers of the peat surface. Viral particle abundance ranged from 1.7 x 10(6) to 5.6 x 10(8) particles mL(-1), and did not differ between fen and bog but showed seasonal fluctuations. These fluctuations were positively correlated with prokaryote abundance and dissolved organic carbon, and negatively correlated with water-table height and dissolved oxygen. Using shotgun metagenomics we observed a shift in viral diversity between winter/spring and summer/autumn, indicating a seasonal succession of viral communities, mainly driven by weather-related environmental changes. Based on the seasonal asynchrony between viral and microbial diversity, we hypothesize a seasonal shift in the active microbial communities associated with a shift from lysogenic to lytic lifestyles. Our results suggest that temporal variations of environmental conditions rather than current habitat differences control the dynamics of virus-host interactions in Sphagnum-dominated peatlands.

  7. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China

    PubMed Central

    Wang, Shaojun; Chen, Han Y. H.; Tan, Yan; Fan, Huan; Ruan, Honghua

    2016-01-01

    Soil fauna are critical for ecosystem function and sensitive to the changes of soil fertility. The effects of fertilization on soil fauna communities, however, remain poorly understood. We examined the effects of fertilization form and quantity on the abundance, diversity and composition of soil fauna across an age-sequence of poplar plantations (i.e., 4-, 9- and 20-yr-old) in the coastal region of eastern China. We found that the effects of fertilization on faunal abundance, diversity, and composition differed among stand ages. Organic fertilizers increased the total abundance of soil fauna, whereas low level inorganic fertilizers imparted increases only in the 4- and 9-yr-old stands. The number of faunal groups did not change with fertilization, but Shannon’s and Margalef diversity indices increased under low level organic fertilization, and decreased under inorganic fertilization in the 9- and 20-yr-old stands. Community composition of soil fauna differed strongly with fertilization and stand age. The changes in soil fauna were strongly associated with the changes in microbial biomass carbon, dissolved organic carbon and nitrogen, and available phosphorus and potassium. Our findings suggest that the responses of soil fauna to fertilization may be mediated through the fertilization effects on soil nutrient availability. PMID:26857390

  8. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China.

    PubMed

    Wang, Shaojun; Chen, Han Y H; Tan, Yan; Fan, Huan; Ruan, Honghua

    2016-02-09

    Soil fauna are critical for ecosystem function and sensitive to the changes of soil fertility. The effects of fertilization on soil fauna communities, however, remain poorly understood. We examined the effects of fertilization form and quantity on the abundance, diversity and composition of soil fauna across an age-sequence of poplar plantations (i.e., 4-, 9- and 20-yr-old) in the coastal region of eastern China. We found that the effects of fertilization on faunal abundance, diversity, and composition differed among stand ages. Organic fertilizers increased the total abundance of soil fauna, whereas low level inorganic fertilizers imparted increases only in the 4- and 9-yr-old stands. The number of faunal groups did not change with fertilization, but Shannon's and Margalef diversity indices increased under low level organic fertilization, and decreased under inorganic fertilization in the 9- and 20-yr-old stands. Community composition of soil fauna differed strongly with fertilization and stand age. The changes in soil fauna were strongly associated with the changes in microbial biomass carbon, dissolved organic carbon and nitrogen, and available phosphorus and potassium. Our findings suggest that the responses of soil fauna to fertilization may be mediated through the fertilization effects on soil nutrient availability.

  9. Valuing the Recreational Benefits of Wetland Adaptation to Climate Change: A Trade-off Between Species' Abundance and Diversity

    NASA Astrophysics Data System (ADS)

    Faccioli, Michela; Riera Font, Antoni; Torres Figuerola, Catalina M.

    2015-03-01

    Climate change will further exacerbate wetland deterioration, especially in the Mediterranean region. On the one side, it will accelerate the decline in the populations and species of plants and animals, this resulting in an impoverishment of biological abundance. On the other one, it will also promote biotic homogenization, resulting in a loss of species' diversity. In this context, different climate change adaptation policies can be designed: those oriented to recovering species' abundance and those aimed at restoring species' diversity. Based on the awareness that knowledge about visitors' preferences is crucial to better inform policy makers and secure wetlands' public use and conservation, this paper assesses the recreational benefits of different adaptation options through a choice experiment study carried out in S'Albufera wetland (Mallorca). Results show that visitors display positive preferences for an increase in both species' abundance and diversity, although they assign a higher value to the latter, thus suggesting a higher social acceptability of policies pursuing wetlands' differentiation. This finding acquires special relevance not only for adaptation management in wetlands but also for tourism planning, as most visitors to S'Albufera are tourists. Thus, given the growing competition to attract visitors and the increasing demand for high environmental quality and unique experiences, promoting wetlands' differentiation could be a good strategy to gain competitive advantage over other wetland areas and tourism destinations.

  10. Impact of Grassland Reseeding, Herbicide Spraying and Ploughing on Diversity and Abundance of Soil Arthropods

    PubMed Central

    Liu, Wei; Zhang, Junling; Norris, Stuart L.; Murray, Philip J.

    2016-01-01

    In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: (1) before chemical herbicide spray; (2) after spray but before ploughing; (3) after ploughing but before reseeding; and (4) after 1 year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida) and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favored those predators with a larger body size and individual weight. After 1 year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating. PMID:27555863

  11. Impact of Grassland Reseeding, Herbicide Spraying and Ploughing on Diversity and Abundance of Soil Arthropods.

    PubMed

    Liu, Wei; Zhang, Junling; Norris, Stuart L; Murray, Philip J

    2016-01-01

    In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: (1) before chemical herbicide spray; (2) after spray but before ploughing; (3) after ploughing but before reseeding; and (4) after 1 year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida) and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favored those predators with a larger body size and individual weight. After 1 year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating.

  12. Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance.

    PubMed

    Wood, Chelsea L; Sandin, Stuart A; Zgliczynski, Brian; Guerra, Ana Sofía; Micheli, Fiorenza

    2014-07-01

    Despite the ubiquity and ecological importance of parasites, relatively few studies have assessed their response to anthropogenic environmental change. Heuristic models have predicted both increases and decreases in parasite abundance in response to human disturbance, with empirical support for both. However, most studies focus on one or a few selected parasite species. Here, we assess the abundance of parasites of seven species of coral reef fishes collected from three fished and three unfished islands of the Line Islands archipelago in the central equatorial Pacific. Because we chose fish hosts that spanned different trophic levels, taxonomic groups, and body sizes, we were able to compare parasite responses across a broad cross section of the total parasite community in the presence and absence of fishing, a major human impact on marine ecosystems. We found that overall parasite species richness was substantially depressed on fished islands, but that the response of parasite abundance varied among parasite taxa: directly transmitted parasites were significantly more abundant on fished than on unfished islands, while the reverse was true for trophically transmitted parasites. This probably arises because trophically transmitted parasites require multiple host species, some of which are the top predators most sensitive to fishing impacts. The increase in directly transmitted parasites appeared to be due to fishing-driven compensatory increases in the abundance of their hosts. Together, these results provide support for the predictions of both heuristic models, and indicate that the direction of fishing's impact on parasite abundance is mediated by parasite traits, notably parasite transmission strategies.

  13. Fish assemblage in a semi-arid Neotropical reservoir: composition, structure and patterns of diversity and abundance.

    PubMed

    Novaes, J L C; Moreira, S I L; Freire, C E C; Sousa, M M O; Costa, R S

    2014-05-01

    The aim of this study was to analyse the composition, structure and spatial and temporal patterns of diversity and abundance of the ichthyofauna of the Santa Cruz Reservoir in semi-arid Brazil. Data were collected quarterly at eight sampling locations on the reservoir between February 2010 and November 2011 using gillnets from 12- to 70-mm mesh that were left in the water for 12h00min during the night. We evaluated the composition, structure and assemblage descriptors (Shannon-Wiener diversity index and equitability, respectively) and catch per unit effort by the number (CPUEn) and biomass (CPUEb) of the ichthyofauna. The 6,047 individuals (399,211.6 g) captured represented three orders, ten families and 20 species, of which four belonged to introduced species. The family Characidae was the most abundant with a total of 2,772 (45.8%) individuals captured. The species-abundance curve fit the log-normal model. In the spatial analysis of diversity, there were significant differences between sampling sites in the lacustrine and fluvial regions, and the highest values were found in the lacustrine region. In the temporal analysis of diversity, significant differences were also observed between the rainy and dry seasons, and the higher values were found during the dry season. Equitability followed the same spatiotemporal pattern as diversity. The Spearman correlation was significantly negative between diversity and rainfall. A cluster analysis spatially separated the ichthyofauna into two groups: one group formed by sampling sites in the fluvial region and another group formed by the remainder of the points in the lacustrine region. Both the CPUEn and CPUEb values were higher at point 8 (fluvial region) and during the rainy season. A two-way ANOVA showed that the CPUEn and CPUEb values were spatially and temporally significant. We conclude that the spatial and temporal trends of diversity in the Santa Cruz reservoir differ from those of other Brazilian reservoirs but that

  14. Genetic diversity in the feline leukemia virus gag gene.

    PubMed

    Kawamura, Maki; Watanabe, Shinya; Odahara, Yuka; Nakagawa, So; Endo, Yasuyuki; Tsujimoto, Hajime; Nishigaki, Kazuo

    2015-06-02

    Feline leukemia virus (FeLV) belongs to the Gammaretrovirus genus and is horizontally transmitted among cats. FeLV is known to undergo recombination with endogenous retroviruses already present in the host during FeLV-subgroup A infection. Such recombinant FeLVs, designated FeLV-subgroup B or FeLV-subgroup D, can be generated by transduced endogenous retroviral env sequences encoding the viral envelope. These recombinant viruses have biologically distinct properties and may mediate different disease outcomes. The generation of such recombinant viruses resulted in structural diversity of the FeLV particle and genetic diversity of the virus itself. FeLV env diversity through mutation and recombination has been studied, while gag diversity and its possible effects are less well understood. In this study, we investigated recombination events in the gag genes of FeLVs isolated from naturally infected cats and reference isolates. Recombination and phylogenetic analyses indicated that the gag genes often contain endogenous FeLV sequences and were occasionally replaced by entire endogenous FeLV gag genes. Phylogenetic reconstructions of FeLV gag sequences allowed for classification into three distinct clusters, similar to those previously established for the env gene. Analysis of the recombination junctions in FeLV gag indicated that these variants have similar recombination patterns within the same genotypes, indicating that the recombinant viruses were horizontally transmitted among cats. It remains to be investigated whether the recombinant sequences affect the molecular mechanism of FeLV transmission. These findings extend our understanding of gammaretrovirus evolutionary patterns in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Inhibition of BET Bromodomain Targets Genetically Diverse Glioblastoma

    PubMed Central

    Cheng, Zhixiang; Gong, Yuanying; Ma, Yufang; Lu, Kaihua; Lu, Xiang; Pierce, Larry A.; Thompson, Reid C.; Muller, Susanne; Knapp, Stefan; Wang, Jialiang

    2014-01-01

    Purpose Glioblastoma is refractory to conventional therapies. The bromodomain and extraterminal domain (BET) proteins are epigenetic readers that selectively bind to acetylated lysine residues on histone tails. These proteins recently emerged as important therapeutic targets in NUT midline carcinoma and several types of hematopoietic cancers. In this study, the therapeutic potential of a novel BET bromodomain inhibitor, JQ1, was assessed in a panel of genetically heterogeneous glioblastoma samples. Experimental Design The antineoplastic effects of JQ1 were shown using ex vivo cultures derived from primary glioblastoma xenograft lines and surgical specimens of different genetic background. The in vivo efficacy was assessed in orthotopic glioblastoma tumors. Results We showed that JQ1 induced marked G1 cell-cycle arrest and apoptosis, which was phenocopied by knockdown of individual BET family members. JQ1 treatment resulted in significant changes in expression of genes that play important roles in glioblastoma such as c-Myc, p21CIP1/WAF1, hTERT, Bcl-2, and Bcl-xL. Unlike the observations in some hematopoietic cancer cell lines, exogenous c-Myc did not significantly protect glioblastoma cells against JQ1. In contrast, ectopically expressed Bcl-xL partially rescued cells from JQ1-induced apoptosis, and knockdown of p21CIP1/WAF1 attenuated JQ1-induced cell-cycle arrest. Cells genetically engineered for Akt hyperactivation or p53/Rb inactivation did not compromise JQ1 efficacy, suggesting that these frequently mutated signaling pathways may not confer resistance to JQ1. Furthermore, JQ1 significantly repressed growth of orthotopic glioblastoma tumors. Conclusion Our results suggest potentially broad therapeutic use of BET bromodomain inhibitors for treating genetically diverse glioblastoma tumors. PMID:23403638

  16. Diversity and abundance of forest frogs (Anura: Leptodactylidae) before and after Hurricane Georges in the Cordillera Central of Puerto Rico

    USGS Publications Warehouse

    Vilella, F.J.; Fogarty, J.H.

    2005-01-01

    Caribbean hurricanes often impact terrestrial vertebrates in forested environments. On 21 September 1998, Hurricane Georges impacted Puerto Rico with sustained winds in excess of 166 km/hr, causing damage to forests of the island's principal mountain range; the Cordillera Central. We estimated forest frog abundance and diversity from call counts conducted along marked transects before and after Hurricane Georges in two forests reserves of the Cordillera Central (Maricao and Guilarte). We used distance sampling to estimate density of Eleutherodactylus coqui and recorded counts of other species. After the hurricane, the abundance of E. coqui increased in both reserves compared to prehurricane levels while abundance of other frog species decreased. In Maricao, relative abundance of E. richmondi (P = 0.013) and E. brittoni (P = 0.034) were significantly lower after the hurricane. Moreover, species richness and evenness of the Maricao and Guilarte frog assemblages declined after the hurricane. Our results on abundance patterns of the forest frog assemblages of Maricao and Guilarte Forests were similar to those reported from the Luquillo Experimental Forest after Hurricane Hugo in September 1989. Long-term demographic patterns of the forest frog assemblages in the Cordillera Central may be associated with changes due to the ecological succession in post-hurricane forests. Copyright 2005 College of Arts and Sciences.

  17. Phages Infecting Vibrio vulnificus Are Abundant and Diverse in Oysters (Crassostrea virginica) Collected from the Gulf of Mexico

    PubMed Central

    DePaola, Angelo; Motes, Miles L.; Chan, Amy M.; Suttle, Curtis A.

    1998-01-01

    Phages infecting Vibrio vulnificus were abundant (>104 phages g of oyster tissue−1) throughout the year in oysters (Crassostrea virginica) collected from estuaries adjacent to the Gulf of Mexico (Apalachicola Bay, Fla.; Mobile Bay, Ala.; and Black Bay, La.). Estimates of abundance ranged from 101 to 105 phages g of oyster tissue−1 and were dependent on the bacterial strain used to assay the sample. V. vulnificus was near or below detection limits (<0.3 cell g−1) from January through March and was most abundant (103 to 104 cells g−1) during the summer and fall, when phage abundances also tended to be greatest. The phages isolated were specific to strains of V. vulnificus, except for one isolate that caused lysis in a few strains of V. parahaemolyticus. Based on morphological evidence obtained by transmission electron microscopy, the isolates belonged to the Podoviridae, Styloviridae, and Myoviridae, three families of double-stranded DNA phages. One newly described morphotype belonging to the Podoviridae appears to be ubiquitous in Gulf Coast oysters. Isolates of this morphotype have an elongated capsid (mean, 258 nm; standard deviation, 4 nm; n = 35), with some isolates having a relatively broad host range among strains of V. vulnificus. Results from this study indicate that a morphologically diverse group of phages which infect V. vulnificus is abundant and widely distributed in oysters from estuaries bordering the northeastern Gulf of Mexico. PMID:9435088

  18. Diversity, abundance, and size structure of bivalve assemblages in the Sipsey River, Alabama

    Treesearch

    Wendell R. Haag; Melvin L. Jr. Warren

    2010-01-01

    1. Patterns of mussel diversity and assemblage structure in the Sipsey River, Alabama, are described. Qualitative data were used to describe river-wide patterns of diversity. Quantitative data were used to describe the structure of mussel assemblages at several sites based on whole-substrate sampling that ensured all size classes were detected. 2. Major human impacts...

  19. Comparative composition, diversity, and abundance of oligosaccharides in early lactation milk from commercial dairy and beef cows.

    PubMed

    Sischo, William M; Short, Diana M; Geissler, Mareen; Bunyatratchata, Apichaya; Barile, Daniela

    2017-05-01

    Prebiotics are nondigestible dietary ingredients, usually oligosaccharides (OS), that provide a health benefit to the host by directly modulating the gut microbiota. Although there is some information describing OS content in dairy-source milk, no information is available to describe the OS content of beef-source milk. Given the different trait emphasis between dairy and beef for milk production and calf survivability, it is plausible that OS composition, diversity, and abundance differ between production types. The goal of this study was to compare OS in milk from commercial dairy and beef cows in early lactation. Early-lactation multiparous cows (5-12 d in milk) from 5 commercial Holstein dairy herds and 5 Angus or Angus hybrid beef herds were sampled once. Milk was obtained from each enrolled cow and frozen on the farm. Subsequently, each milk sample was assessed for total solids, pH, and OS content and relative abundance. Oligosaccharide diversity and abundance within and between samples was transformed through principal component analysis to reduce data complexity. Factors from principal component analysis were used to create similarity clusters, which were subsequently used in a multivariate logistic regression. In total, 30 OS were identified in early-lactation cow milk, including 21 distinct OS and 9 isomers with unique retention times. The majority of OS detected in the milk samples were present in all individual samples regardless of production type. Two clusters described distribution patterns of OS for the study sample; when median OS abundance was compared between the 2 clusters, we found that overall OS relative abundance was consistently greater in the cluster dominated by beef cows. For several of the structures, including those with known prebiotic effect, the difference in abundance was 2- to 4-fold greater in the beef-dominated cluster. Assuming that beef OS content in milk is the gold standard for cattle, it is likely that preweaning dairy

  20. Comparative composition, diversity, and abundance of oligosaccharides in early lactation milk from commercial dairy and beef cows

    PubMed Central

    Sischo, William M.; Short, Diana M.; Geissler, Mareen; Bunyatratchata, Apichaya; Barile, Daniela

    2017-01-01

    Prebiotics are nondigestible dietary ingredients, usually oligosaccharides (OS), that provide a health benefit to the host by directly modulating the gut microbiota. Although there is some information describing OS content in dairy-source milk, no information is available to describe the OS content of beef-source milk. Given the different trait emphasis between dairy and beef for milk production and calf survivability, it is plausible that OS composition, diversity, and abundance differ between production types. The goal of this study was to compare OS in milk from commercial dairy and beef cows in early lactation. Early-lactation multiparous cows (5–12 d in milk) from 5 commercial Holstein dairy herds and 5 Angus or Angus hybrid beef herds were sampled once. Milk was obtained from each enrolled cow and frozen on the farm. Subsequently, each milk sample was assessed for total solids, pH, and OS content and relative abundance. Oligosaccharide diversity and abundance within and between samples was transformed through principal component analysis to reduce data complexity. Factors from principal component analysis were used to create similarity clusters, which were subsequently used in a multivariate logistic regression. In total, 30 OS were identified in early-lactation cow milk, including 21 distinct OS and 9 isomers with unique retention times. The majority of OS detected in the milk samples were present in all individual samples regardless of production type. Two clusters described distribution patterns of OS for the study sample; when median OS abundance was compared between the 2 clusters, we found that overall OS relative abundance was consistently greater in the cluster dominated by beef cows. For several of the structures, including those with known prebiotic effect, the difference in abundance was 2- to 4-fold greater in the beef-dominated cluster. Assuming that beef OS content in milk is the gold standard for cattle, it is likely that preweaning dairy

  1. On the relative roles of background selection and genetic hitchhiking in shaping human cytomegalovirus genetic diversity.

    PubMed

    Renzette, Nicholas; Kowalik, Timothy F; Jensen, Jeffrey D

    2016-01-01

    A central focus of population genetics has been examining the contribution of selective and neutral processes in shaping patterns of intraspecies diversity. In terms of selection specifically, surveys of higher organisms have shown considerable variation in the relative contributions of background selection and genetic hitchhiking in shaping the distribution of polymorphisms, although these analyses have rarely been extended to bacteria and viruses. Here, we study the evolution of a ubiquitous, viral pathogen, human cytomegalovirus (HCMV), by analysing the relationship among intraspecies diversity, interspecies divergence and rates of recombination. We show that there is a strong correlation between diversity and divergence, consistent with expectations of neutral evolution. However, after correcting for divergence, there remains a significant correlation between intraspecies diversity and recombination rates, with additional analyses suggesting that this correlation is largely due to the effects of background selection. In addition, a small number of loci, centred on long noncoding RNAs, also show evidence of selective sweeps. These data suggest that HCMV evolution is dominated by neutral mechanisms as well as background selection, expanding our understanding of linked selection to a novel class of organisms. © 2015 John Wiley & Sons Ltd.

  2. Abundance and diversity of soybean-nodulating rhizobia in black soil are impacted by land use and crop management.

    PubMed

    Yan, Jun; Han, Xiao Zeng; Ji, Zhao Jun; Li, Yan; Wang, En Tao; Xie, Zhi Hong; Chen, Wen Feng

    2014-09-01

    To investigate the effects of land use and crop management on soybean rhizobial communities, 280 nodule isolates were trapped from 7 fields with different land use and culture histories. Besides the known Bradyrhizobium japonicum, three novel genospecies were isolated from these fields. Grassland (GL) maintained a higher diversity of soybean bradyrhizobia than the other cultivation systems. Two genospecies (Bradyrhizobium spp. I and III) were distributed widely in all treatments, while Bradyrhizobium sp. II was found only in GL treatment. Cultivation with soybeans increased the rhizobial abundance and diversity, except for the soybean monoculture (S-S) treatment. In monoculture systems, soybeans favored Bradyrhizobium sp. I, while maize and wheat favored Bradyrhizobium sp. III. Fertilization decreased the rhizobial diversity indexes but did not change the species composition. The organic carbon (OC) and available phosphorus (AP) contents and pH were the main soil parameters positively correlated with the distribution of Bradyrhizobium spp. I and II and Bradyrhizobium japonicum and negatively correlated with Bradyrhizobium sp. III. These results revealed that different land uses and crop management could not only alter the diversity and abundance of soybean rhizobia, but also change interactions between rhizobia and legume or nonlegume plants, which offered novel information about the biogeography of rhizobia. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Demographic collapse and low genetic diversity of the Irrawaddy dolphin population inhabiting the Mekong River

    PubMed Central

    Beasley, Isabel; Ackermann, Corinne Y.; Lieckfeldt, Dietmar; Ludwig, Arne; Ryan, Gerard E.; Bejder, Lars; Parra, Guido J.; Wolfensberger, Rebekka; Spencer, Peter B. S.

    2018-01-01

    In threatened wildlife populations, it is important to determine whether observed low genetic diversity may be due to recent anthropogenic pressure or the consequence of historic events. Historical size of the Irrawaddy dolphin (Orcaella brevirostris) population inhabiting the Mekong River is unknown and there is significant concern for long-term survival of the remaining population as a result of low abundance, slow reproduction rate, high neonatal mortality, and continuing anthropogenic threats. We investigated population structure and reconstructed the demographic history based on 60 Irrawaddy dolphins samples collected between 2001 and 2009. The phylogenetic analysis indicated reciprocal monophyly of Mekong River Orcaella haplotypes with respect to haplotypes from other populations, suggesting long-standing isolation of the Mekong dolphin population from other Orcaella populations. We found that at least 85% of all individuals in the two main study areas: Kratie and Stung Treng, bore the same mitochondrial haplotype. Out of the 21 microsatellite loci tested, only ten were polymorphic and exhibited very low levels of genetic diversity. Both individual and frequency-based approaches suggest very low and non-significant genetic differentiation of the Mekong dolphin population. Evidence for recent bottlenecks was equivocal. Some results suggested a recent exponential decline in the Mekong dolphin population, with the current size being only 5.2% of the ancestral population. In order for the Mekong dolphin population to have any potential for long-term survival, it is imperative that management priorities focus on preventing any further population fragmentation or genetic loss, reducing or eliminating anthropogenic threats, and promoting connectivity between all subpopulations. PMID:29298312

  4. Conservation genetics in Chinese sheep: diversity of fourteen indigenous sheep (Ovis aries) using microsatellite markers.

    PubMed

    E, Guang-Xin; Zhong, Tao; Ma, Yue-Hui; Gao, Hui-Jiang; He, Jian-Ning; Liu, Nan; Zhao, Yong-Ju; Zhang, Jia-Hua; Huang, Yong-Fu

    2016-02-01

    The domestic sheep (Ovis aries) has been an economically and culturally important farm animal species since its domestication around the world. A wide array of sheep breeds with abundant phenotypic diversity exists including domestication and selection as well as the indigenous breeds may harbor specific features as a result of adaptation to their environment. The objective of this study was to investigate the population structure of indigenous sheep in a large geographic location of the Chinese mainland. Six microsatellites were genotyped for 611 individuals from 14 populations. The mean number of alleles (±SD) ranged from 7.00 ± 3.69 in Gangba sheep to 10.50 ± 4.23 in Tibetan sheep. The observed heterozygote frequency (±SD) within a population ranged from 0.58 ± 0.03 in Gangba sheep to 0.71 ± 0.03 in Zazakh sheep and Minxian black fur sheep. In addition, there was a low pairwise difference among the Minxian black fur sheep, Mongolian sheep, Gansu alpine merino, and Lanzhou fat-tailed sheep. Bayesian analysis with the program STRUCTURE showed support for 3 clusters, revealing a vague genetic clustering pattern with geographic location. The results of the current study inferred high genetic diversity within these native sheep in the Chinese mainland.

  5. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    PubMed Central

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-01-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings. PMID:23569417

  6. Fatty Acid Diversity is Not Associated with Neutral Genetic Diversity in Native Populations of the Biodiesel Plant Jatropha curcas L.

    PubMed

    Martínez-Díaz, Yesenia; González-Rodríguez, Antonio; Rico-Ponce, Héctor Rómulo; Rocha-Ramírez, Víctor; Ovando-Medina, Isidro; Espinosa-García, Francisco J

    2017-01-01

    Jatropha curcas L. (Euphorbiaceae) is a shrub native to Mexico and Central America, which produces seeds with a high oil content that can be converted to biodiesel. The genetic diversity of this plant has been widely studied, but it is not known whether the diversity of the seed oil chemical composition correlates with neutral genetic diversity. The total seed oil content, the diversity of profiles of fatty acids and phorbol esters were quantified, also, the genetic diversity obtained from simple sequence repeats was analyzed in native populations of J. curcas in Mexico. Using the fatty acids profiles, a discriminant analysis recognized three groups of individuals according to geographical origin. Bayesian assignment analysis revealed two genetic groups, while the genetic structure of the populations could not be explained by isolation-by-distance. Genetic and fatty acid profile data were not correlated based on Mantel test. Also, phorbol ester content and genetic diversity were not associated. Multiple linear regression analysis showed that total oil content was associated with altitude and seasonality of temperature. The content of unsaturated fatty acids was associated with altitude. Therefore, the cultivation planning of J. curcas should take into account chemical variation related to environmental factors. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  7. 454 Pyrosequencing to Describe Microbial Eukaryotic Community Composition, Diversity and Relative Abundance: A Test for Marine Haptophytes

    PubMed Central

    Egge, Elianne; Bittner, Lucie; Andersen, Tom; Audic, Stéphane; de Vargas, Colomban; Edvardsen, Bente

    2013-01-01

    Next generation sequencing of ribosomal DNA is increasingly used to assess the diversity and structure of microbial communities. Here we test the ability of 454 pyrosequencing to detect the number of species present, and assess the relative abundance in terms of cell numbers and biomass of protists in the phylum Haptophyta. We used a mock community consisting of equal number of cells of 11 haptophyte species and compared targeting DNA and RNA/cDNA, and two different V4 SSU rDNA haptophyte-biased primer pairs. Further, we tested four different bioinformatic filtering methods to reduce errors in the resulting sequence dataset. With sequencing depth of 11000–20000 reads and targeting cDNA with Haptophyta specific primers Hap454 we detected all 11 species. A rarefaction analysis of expected number of species recovered as a function of sampling depth suggested that minimum 1400 reads were required here to recover all species in the mock community. Relative read abundance did not correlate to relative cell numbers. Although the species represented with the largest biomass was also proportionally most abundant among the reads, there was generally a weak correlation between proportional read abundance and proportional biomass of the different species, both with DNA and cDNA as template. The 454 sequencing generated considerable spurious diversity, and more with cDNA than DNA as template. With initial filtering based only on match with barcode and primer we observed 100-fold more operational taxonomic units (OTUs) at 99% similarity than the number of species present in the mock community. Filtering based on quality scores, or denoising with PyroNoise resulted in ten times more OTU99% than the number of species. Denoising with AmpliconNoise reduced the number of OTU99% to match the number of species present in the mock community. Based on our analyses, we propose a strategy to more accurately depict haptophyte diversity using 454 pyrosequencing. PMID:24069303

  8. Genetic Diversity of Cryptosporidium spp. in Captive Reptiles

    PubMed Central

    Xiao, Lihua; Ryan, Una M.; Graczyk, Thaddeus K.; Limor, Josef; Li, Lixia; Kombert, Mark; Junge, Randy; Sulaiman, Irshad M.; Zhou, Ling; Arrowood, Michael J.; Koudela, Břetislav; Modrý, David; Lal, Altaf A.

    2004-01-01

    The genetic diversity of Cryptosporidium in reptiles was analyzed by PCR-restriction fragment length polymorphism and sequence analysis of the small subunit rRNA gene. A total of 123 samples were analyzed, of which 48 snake samples, 24 lizard samples, and 3 tortoise samples were positive for Cryptosporidium. Nine different types of Cryptosporidium were found, including Cryptosporidium serpentis, Cryptosporidium desert monitor genotype, Cryptosporidium muris, Cryptosporidium parvum bovine and mouse genotypes, one C. serpentis-like parasite in a lizard, two new Cryptosporidium spp. in snakes, and one new Cryptosporidium sp. in tortoises. C. serpentis and the desert monitor genotype were the most common parasites and were found in both snakes and lizards, whereas the C. muris and C. parvum parasites detected were probably the result of ingestion of infected rodents. Sequence and biologic characterizations indicated that the desert monitor genotype was Cryptosporidium saurophilum. Two host-adapted C. serpentis genotypes were found in snakes and lizards. PMID:14766569

  9. Genetic characterization of Toxoplasma gondii from Brazilian wildlife revealed abundant new genotypes.

    PubMed

    Vitaliano, S N; Soares, H S; Minervino, A H H; Santos, A L Q; Werther, K; Marvulo, M F V; Siqueira, D B; Pena, H F J; Soares, R M; Su, C; Gennari, S M

    2014-12-01

    This study aimed to isolate and genotype T. gondii from Brazilian wildlife. For this purpose, 226 samples were submitted to mice bioassay and screened by PCR based on 18S rRNA sequences. A total of 15 T. gondii isolates were obtained, including samples from four armadillos (three Dasypus novemcinctus, one Euphractus sexcinctus), three collared anteaters (Tamandua tetradactyla), three whited-lipped peccaries (Tayassu pecari), one spotted paca (Cuniculus paca), one oncilla (Leopardus tigrinus), one hoary fox (Pseudalopex vetulus), one lineated woodpecker (Dryocopus lineatus) and one maned wolf (Chrysocyon brachyurus). DNA from the isolates, originated from mice bioassay, and from the tissues of the wild animal, designated as "primary samples", were genotyped by PCR-restriction fragment length polymorphism (PCR/RFLP), using 12 genetic markers (SAG1, SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L258, PK1, CS3 and Apico). A total of 17 genotypes were identified, with 13 identified for the first time and four already reported in published literature. Results herein obtained corroborate previous studies in Brazil, confirming high diversity and revealing unique genotypes in this region. Given most of genotypes here identified are different from previous studies in domestic animals, future studies on T. gondii from wildlife is of interest to understand population genetics and structure of this parasite.

  10. Genetic characterization of Toxoplasma gondii from Brazilian wildlife revealed abundant new genotypes

    PubMed Central

    Vitaliano, S.N.; Soares, H.S.; Minervino, A.H.H.; Santos, A.L.Q.; Werther, K.; Marvulo, M.F.V.; Siqueira, D.B.; Pena, H.F.J.; Soares, R.M.; Su, C.; Gennari, S.M.

    2014-01-01

    This study aimed to isolate and genotype T. gondii from Brazilian wildlife. For this purpose, 226 samples were submitted to mice bioassay and screened by PCR based on 18S rRNA sequences. A total of 15 T. gondii isolates were obtained, including samples from four armadillos (three Dasypus novemcinctus, one Euphractus sexcinctus), three collared anteaters (Tamandua tetradactyla), three whited-lipped peccaries (Tayassu pecari), one spotted paca (Cuniculus paca), one oncilla (Leopardus tigrinus), one hoary fox (Pseudalopex vetulus), one lineated woodpecker (Dryocopus lineatus) and one maned wolf (Chrysocyon brachyurus). DNA from the isolates, originated from mice bioassay, and from the tissues of the wild animal, designated as “primary samples”, were genotyped by PCR–restriction fragment length polymorphism (PCR/RFLP), using 12 genetic markers (SAG1, SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L258, PK1, CS3 and Apico). A total of 17 genotypes were identified, with 13 identified for the first time and four already reported in published literature. Results herein obtained corroborate previous studies in Brazil, confirming high diversity and revealing unique genotypes in this region. Given most of genotypes here identified are different from previous studies in domestic animals, future studies on T. gondii from wildlife is of interest to understand population genetics and structure of this parasite. PMID:25426424

  11. Genetic diversity of Echinococcus granulosus in center of Iran.

    PubMed

    Pestechian, Nader; Hosseini Safa, Ahmad; Tajedini, Mohammadhasan; Rostami-Nejad, Mohammad; Mousavi, Mohammad; Yousofi, Hosseinali; Haghjooy Javanmard, Shaghayegh

    2014-08-01

    Hydatid cyst caused by Echinococcus granulosus is one of the most important parasitic diseases around the world and many countries in Asia, including Iran, are involved with this infection. This disease can cause high mortality in humans as well as economic losses in livestock. To date, several molecular methods have been used to determine the genetic diversity of E. granulosus. So far, identification of E. granulosus using real-time PCR fluorescence-based quantitative assays has not been studied worldwide, also in Iran. Therefore, the aim of this study was to investigate the genetic diversity of E. granulosus from center of Iran using real-time PCR method. A total of 71 hydatid cysts were collected from infected sheep, goat, and cattle slaughtered in Isfahan, Iran during 2013. DNA was extracted from protoscolices and/or germinal layers from each individual cyst and used as template to amplify the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) (420 bp). Five cattle isolates out of 71 isolates were sterile and excluded from further investigation. Overall, of 66 isolates, partial sequences of the cox1 gene of E. granulosus indicated the presence of genotypes G1 in 49 isolates (74.2%), G3 in 15 isolates (22.7%), and G6 in 2 isolates (3.0%) in infected intermediate hosts. Sixteen sequences of G1 genotype had microgenetic variants, and they were compared to the original sequence of cox1. However, isolates identified as G3 and G6 genotypes were completely consistent with original sequences. G1 genotype in livestock was the dominant genotype in Isfahan region, Iran.

  12. Epidemiology and genetic diversity of Taenia asiatica: a systematic review.

    PubMed

    Ale, Anita; Victor, Bjorn; Praet, Nicolas; Gabriël, Sarah; Speybroeck, Niko; Dorny, Pierre; Devleesschauwer, Brecht

    2014-01-22

    Taenia asiatica has made a remarkable journey through the scientific literature of the past 50 years, starting with the paradoxical observation of high prevalences of T. saginata-like tapeworms in non-beef consuming populations, to the full description of its mitochondrial genome. Experimental studies conducted in the 1980s and 1990s have made it clear that the life cycle of T. asiatica is comparable to that of T. saginata, except for pigs being the preferential intermediate host and liver the preferential location of the cysts. Whether or not T. asiatica can cause human cysticercosis, as is the case for Taenia solium, remains unclear. Given the specific conditions needed to complete its life cycle, in particular the consumption of raw or poorly cooked pig liver, the transmission of T. asiatica shows an important ethno-geographical association. So far, T. asiatica has been identified in Taiwan, South Korea, Indonesia, the Philippines, Thailand, south-central China, Vietnam, Japan and Nepal. Especially this last observation indicates that its distribution is not restricted to South-East-Asia, as was thought so far. Indeed, the molecular tools developed over the last 20 years have made it increasingly possible to differentiate T. asiatica from other taeniids. Such tools also indicated that T. asiatica is related more closely to T. saginata than to T. solium, feeding the debate on its taxonomic status as a separate species versus a subspecies of T. saginata. Furthermore, the genetic diversity within T. asiatica appears to be very minimal, indicating that this parasite may be on the verge of extinction. However, recent studies have identified potential hybrids between T. asiatica and T. saginata, reopening the debate on the genetic diversity of T. asiatica and its status as a separate species.

  13. Epidemiology and genetic diversity of Taenia asiatica: a systematic review

    PubMed Central

    2014-01-01

    Taenia asiatica has made a remarkable journey through the scientific literature of the past 50 years, starting with the paradoxical observation of high prevalences of T. saginata-like tapeworms in non-beef consuming populations, to the full description of its mitochondrial genome. Experimental studies conducted in the 1980s and 1990s have made it clear that the life cycle of T. asiatica is comparable to that of T. saginata, except for pigs being the preferential intermediate host and liver the preferential location of the cysts. Whether or not T. asiatica can cause human cysticercosis, as is the case for Taenia solium, remains unclear. Given the specific conditions needed to complete its life cycle, in particular the consumption of raw or poorly cooked pig liver, the transmission of T. asiatica shows an important ethno-geographical association. So far, T. asiatica has been identified in Taiwan, South Korea, Indonesia, the Philippines, Thailand, south-central China, Vietnam, Japan and Nepal. Especially this last observation indicates that its distribution is not restricted to South-East-Asia, as was thought so far. Indeed, the molecular tools developed over the last 20 years have made it increasingly possible to differentiate T. asiatica from other taeniids. Such tools also indicated that T. asiatica is related more closely to T. saginata than to T. solium, feeding the debate on its taxonomic status as a separate species versus a subspecies of T. saginata. Furthermore, the genetic diversity within T. asiatica appears to be very minimal, indicating that this parasite may be on the verge of extinction. However, recent studies have identified potential hybrids between T. asiatica and T. saginata, reopening the debate on the genetic diversity of T. asiatica and its status as a separate species. PMID:24450957

  14. High local genetic diversity of canine parvovirus from Ecuador.

    PubMed

    Aldaz, Jaime; García-Díaz, Juan; Calleros, Lucía; Sosa, Katia; Iraola, Gregorio; Marandino, Ana; Hernández, Martín; Panzera, Yanina; Pérez, Ruben

    2013-09-27

    Canine parvovirus (CPV) comprises three antigenic variants (2a, 2b, and 2c) that are distributed globally with different frequencies and levels of genetic variability. CPVs from central Ecuador were herein analyzed to characterize the strains and to provide new insights into local viral diversity, evolution, and pathogenicity. Variant prevalence was analyzed by PCR and partial sequencing for 53 CPV-positive samples collected during 2011 and 2012. The full-length VP2 gene was sequenced in 24 selected strains and a maximum-likelihood phylogenetic tree was constructed using both Ecuadorian and worldwide strains. Ecuadorian CPVs have a remarkable genetic diversity that includes the circulation of all three variants and the existence of different evolutionary groups or lineages. CPV-2c was the most prevalent variant (54.7%), confirming the spread of this variant in America. Ecuadorian CPV-2c strains clustered in two lineages, which represent the first evidence of polyphyletic CPV-2c circulating in South America. CPV-2a strains constituted 41.5% of the samples and clustered in a single lineage. The two detected CPV-2b strains (3.8%) were clearly polyphyletic and appeared related to Ecuadorian CPV-2a or foreign CPV-2b strains. Besides the substitution at residue 426 that is used to identify the variants, two amino acid changes occurred in Ecuadorian strains: Val139Iso and Thr440Ser. Ser(440) occurred in a biologically relevant domain of VP2 and is here described for the first time in CPV. The associations of Ecuadorian CPV-2c and CPV-2a with clinical symptoms indicate that dull mentation, hemorrhagic gastroenteritis and hypothermia occurred more frequently in infection with CPV-2c than with CPV-2a. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. EFFECTS OF CHEMICAL CONTAMINANTS ON GENETIC DIVERSITY IN NATURAL POPULATIONS: IMPLICATIONS FOR BIOMONITORING AND ECOTOXICOLOGY

    EPA Science Inventory

    The conservation of genetic diversity has emerged as one of the central issues in conservation biology. Although researchers in the areas of evolutionary biology, population management, and conservation biology routinely investigate genetic variability in natural populations, onl...

  16. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population1[W][OPEN

    PubMed Central

    Penning, Bryan W.; Sykes, Robert W.; Babcock, Nicholas C.; Dugard, Christopher K.; Held, Michael A.; Klimek, John F.; Shreve, Jacob T.; Fowler, Matthew; Ziebell, Angela; Davis, Mark F.; Decker, Stephen R.; Turner, Geoffrey B.; Mosier, Nathan S.; Springer, Nathan M.; Thimmapuram, Jyothi; Weil, Clifford F.; McCann, Maureen C.; Carpita, Nicholas C.

    2014-01-01

    Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass. PMID:24972714

  17. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population

    DOE PAGES

    Penning, Bryan W.; Sykes, Robert W.; Babcock, Nicholas C.; ...

    2014-06-27

    Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 x 3 Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yieldmore » was shared. A genome-wide association study for lignin abundance and sugar yield of the 282- member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. Finally, these results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass.« less

  18. Genetic Determinants for Enzymatic Digestion of Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a Maize Recombinant Inbred Population.

    PubMed

    Penning, Bryan W; Sykes, Robert W; Babcock, Nicholas C; Dugard, Christopher K; Held, Michael A; Klimek, John F; Shreve, Jacob T; Fowler, Matthew; Ziebell, Angela; Davis, Mark F; Decker, Stephen R; Turner, Geoffrey B; Mosier, Nathan S; Springer, Nathan M; Thimmapuram, Jyothi; Weil, Clifford F; McCann, Maureen C; Carpita, Nicholas C

    2014-08-01

    Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Tropical Rainforest and Human-Modified Landscapes Support Unique Butterfly Communities That Differ in Abundance and Diversity.

    PubMed

    Sambhu, Hemchandranauth; Northfield, Tobin; Nankishore, Alliea; Ansari, Abdullah; Turton, Stephen

    2017-12-08

    Tropical forests account for at least 50% of documented diversity, but anthropogenic activities are converting forests to agriculture and urban areas at an alarming rate, with potentially strong effects on insect abundance and diversity. However, the questions remain whether insect populations are uniformly affected by land conversion and if insect conservation can occur in agricultural margins and urban gardens. We compare butterfly populations in tropical secondary forests to those found in sugarcane and urban areas in coastal Guyana and evaluate the potential for particular butterfly communities to inhabit human-modified landscapes. Butterflies were sampled for 1 yr using fruit-baited traps in three separated geographical locations on the coast. We used nonmetric multidimensional scaling to assess differences in species assemblages and a generalized linear mixed model to evaluate abundance, species richness, evenness, and diversity. The secondary forests in all three locations supported higher butterfly abundance and diversity than other human-modified areas, although the magnitude of this effect varied by season and location. However, each land use supported its own type of butterfly community, as species composition was different across the three land uses. Sugarcane field margins and urban gardens supported populations of butterflies rarely found in our tropical secondary forest sites. Land management practices that encourage forest conservation along with butterfly-friendly activities in human settlements and agricultural areas could improve butterfly conservation. To this end, butterfly conservation in Guyana and other tropical landscapes would benefit from a shift from inadvertently to actively making the landscape attractive for butterflies. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Genetic structure and diversity of Nodularia douglasiae (Bivalvia: Unionida) from the middle and lower Yangtze River drainage.

    PubMed

    Liu, Xiongjun; Cao, Yanling; Xue, Taotao; Wu, Ruiwen; Zhou, Yu; Zhou, Chunhua; Zanatta, David T; Ouyang, Shan; Wu, Xiaoping

    2017-01-01

    The Yangtze River drainage in China is among the most species rich rivers for freshwater mussels (order Unionida) on Earth with at least 68 species known. The freshwater mussels of the Yangtze River face a variety of threats with indications that species are declining in abundance and area of occupancy. This study represents the first analyses of the genetic structure and diversity for the common and widespread freshwater mussel Nodularia douglasiae based on microsatellite DNA genotypes and mitochondrial DNA sequences. Phylogenetic analysis a fragment of the COI mitochondrial gene indicated that N. douglasiae collected from across the middle and lower Yangtze River drainage are monophyletic with N. douglasiae from Japan, Russia, and South Korea. The results of the analysis of both the mtDNA and microsatellite datasets indicated that the seven collection locations of N. douglasiae in the middle and lower Yangtze River drainage showed high genetic diversity, significant genetic differentiation and genetic structure, and stable population dynamics over time. Moreover, we found that the connections among tributaries rivers and lakes in the Yangtze River drainage were important in maintaining gene flow among locations that N. douglasiae inhabits. An understanding of the genetic structure and diversity of a widespread species like N. douglasiae could be used as a surrogate to better understand the populations of other freshwater mussel species that are more rare in the Yangtze River drainage. At the same time, these results could provide a basis for the protection of genetic diversity and management of unionid mussels diversity and other aquatic organisms in the system.

  1. Genetic structure and diversity of Nodularia douglasiae (Bivalvia: Unionida) from the middle and lower Yangtze River drainage

    PubMed Central

    Liu, Xiongjun; Cao, Yanling; Xue, Taotao; Wu, Ruiwen; Zhou, Yu; Zhou, Chunhua; Zanatta, David T.; Ouyang, Shan

    2017-01-01

    The Yangtze River drainage in China is among the most species rich rivers for freshwater mussels (order Unionida) on Earth with at least 68 species known. The freshwater mussels of the Yangtze River face a variety of threats with indications that species are declining in abundance and area of occupancy. This study represents the first analyses of the genetic structure and diversity for the common and widespread freshwater mussel Nodularia douglasiae based on microsatellite DNA genotypes and mitochondrial DNA sequences. Phylogenetic analysis a fragment of the COI mitochondrial gene indicated that N. douglasiae collected from across the middle and lower Yangtze River drainage are monophyletic with N. douglasiae from Japan, Russia, and South Korea. The results of the analysis of both the mtDNA and microsatellite datasets indicated that the seven collection locations of N. douglasiae in the middle and lower Yangtze River drainage showed high genetic diversity, significant genetic differentiation and genetic structure, and stable population dynamics over time. Moreover, we found that the connections among tributaries rivers and lakes in the Yangtze River drainage were important in maintaining gene flow among locations that N. douglasiae inhabits. An understanding of the genetic structure and diversity of a widespread species like N. douglasiae could be used as a surrogate to better understand the populations of other freshwater mussel species that are more rare in the Yangtze River drainage. At the same time, these results could provide a basis for the protection of genetic diversity and management of unionid mussels diversity and other aquatic organisms in the system. PMID:29261733

  2. AFRICAN GENETIC DIVERSITY: Implications for Human Demographic History, Modern Human Origins, and Complex Disease Mapping

    PubMed Central

    Campbell, Michael C.; Tishkoff, Sarah A.

    2010-01-01

    Comparative studies of ethnically diverse human populations, particularly in Africa, are important for reconstructing human evolutionary history and for understanding the genetic basis of phenotypic adaptation and complex disease. African populations are characterized by greater levels of genetic diversity, extensive population substructure, and less linkage disequilibrium (LD) among loci compared to non-African populations. Africans also possess a number of genetic adaptations that have evolved in response to diverse climates and diets, as well as exposure to infectious disease. This review summarizes patterns and the evolutionary origins of genetic diversity present in African populations, as well as their implications for the mapping of complex traits, including disease susceptibility. PMID:18593304

  3. Genetic diversity and genetic relationships of japonica rice varieties in Northeast Asia based on SSR markers

    PubMed Central

    Wang, Jingguo; Jiang, Tingbo; Zou, Detang; Zhao, Hongwei; Li, Qiang; Liu, Hualong; Zhou, Changjun

    2014-01-01

    Genetic diversity and the relationship among nine japonica rice groups consisting of 288 landraces and varieties in different geographical origins of Northeast Asia (China, Japan, Korea, Democratic People's Republic of Korea) and the Russian Far East district of the Russian Federation were evaluated with 154 simple sequence repeat (SSR) markers. A total of 823 alleles were detected. The observed allele numbers (Na) per locus, Nei's gene diversity (He) and the polymorphism information content (PIC) ranged from 2 to 9, 0.061 to 0.869 and 0.060 to 0.856, with an average of 5.344, 0.624 and 0.586, respectively. Five SSR loci, RM1350, RM1369, RM257, RM336 and RM1374, provided the highest PIC values and are potential for exploring the genetic diversity of rice cultivars in Northeast Asia. Molecular variance analysis showed that a significant difference existed both among groups (91.6%) and within each group (8.4%). The low genetic variation within each group indicated that the gene pool is narrow and alien genetic variation should be introduced into the rice breeding program in Northeast Asia. Based on the He and PIC values, the nine groups were ranked in a descending order: Heilongjiang landraces, Jilin landraces, Japanese improved varieties, Heilongjiang improved varieties, Russian Far East district of the Russian Federation improved varieties, Liaoning improved varieties, Jilin improved varieties, Korean improved varieties and Democratic People's Republic of Korea improved varieties. The nine groups were further divided into three subgroups and the 288 varieties into five clusters. This study provided information for parent selection in order to broaden the gene pool of the japonica rice germplasm in Northeast Asia. PMID:26019508

  4. Genetic diversity and genetic relationships of japonica rice varieties in Northeast Asia based on SSR markers.

    PubMed

    Wang, Jingguo; Jiang, Tingbo; Zou, Detang; Zhao, Hongwei; Li, Qiang; Liu, Hualong; Zhou, Changjun

    2014-03-04

    Genetic diversity and the relationship among nine japonica rice groups consisting of 288 landraces and varieties in different geographical origins of Northeast Asia (China, Japan, Korea, Democratic People's Republic of Korea) and the Russian Far East district of the Russian Federation were evaluated with 154 simple sequence repeat (SSR) markers. A total of 823 alleles were detected. The observed allele numbers (Na) per locus, Nei's gene diversity (He) and the polymorphism information content (PIC) ranged from 2 to 9, 0.061 to 0.869 and 0.060 to 0.856, with an average of 5.344, 0.624 and 0.586, respectively. Five SSR loci, RM1350, RM1369, RM257, RM336 and RM1374, provided the highest PIC values and are potential for exploring the genetic diversity of rice cultivars in Northeast Asia. Molecular variance analysis showed that a significant difference existed both among groups (91.6%) and within each group (8.4%). The low genetic variation within each group indicated that the gene pool is narrow and alien genetic variation should be introduced into the rice breeding program in Northeast Asia. Based on the He and PIC values, the nine groups were ranked in a descending order: Heilongjiang landraces, Jilin landraces, Japanese improved varieties, Heilongjiang improved varieties, Russian Far East district of the Russian Federation improved varieties, Liaoning improved varieties, Jilin improved varieties, Korean improved varieties and Democratic People's Republic of Korea improved varieties. The nine groups were further divided into three subgroups and the 288 varieties into five clusters. This study provided information for parent selection in order to broaden the gene pool of the japonica rice germplasm in Northeast Asia.

  5. Genetic diversity in commercial wineries: effects of the farming system and vinification management on wine yeasts.

    PubMed

    Tello, J; Cordero-Bueso, G; Aporta, I; Cabellos, J M; Arroyo, T

    2012-02-01

    Analysis of the diversity and distribution of wine yeasts isolated from organically and conventionally grown grapes, and during the subsequent fermentation with or without starter cultures in six different commercial wineries. PCR-RFLP screening of isolates revealed the involvement of ten different species. Saccharomyces cerevisiae, scarcely isolated from grapes, was the dominant species during the latter phases of fermentation, identifying 108 different genotypes by means of SSR analysis. Species and strains' diversity and presence were strongly influenced by the farming system used to grow the grapes and the system of vinification. Organic farming management was more beneficial in terms of diversity and abundance than the conventional one. Induced fermentation generated a great replacement of native yeasts. Although winery-resident yeasts resulted to be predominant in the process, some noncommercial strains originally in the vineyard were found in final stages of the fermentation, confirming that autochthonous strains of S. cerevisiae are capable to conduct the fermentation process up to its end. The study of natural yeast communities from commercial vineyards and wineries is an important step towards the preservation of native genetic resources. Our results have special relevance because it is the first time that the real situation of the yeast ecology of alcoholic fermentation in commercial wineries belonging to the relevant wine-producing Appellation of Origin 'Vinos de Madrid' is shown. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  6. Assessing the functionality and genetic diversity of lactococcal prophages.

    PubMed

    Kelleher, Philip; Mahony, Jennifer; Schweinlin, Katharina; Neve, Horst; Franz, Charles M; van Sinderen, Douwe

    2018-05-02

    Lactococcus lactis is a lactic acid bacterium that is intensively and globally exploited in commercial dairy food fermentations. Though the presence of prophages in lactococcal genomes is widely reported, only limited studies pertaining to the stability of prophages in lactococcal genomes have been performed. The current study reports on the complete genome exploration of thirty lactococcal strains for the presence of potentially intact prophages, so as to assess their genomic diversity and the associated risk or benefit of harbouring such prophages. Genomic predictions partnered with mitomycin C inductions and flow cytometric analysis of the induced cell lysates confirmed that only four strains consistently produced intact phage particles, thus indicating a relatively low risk associated with prophage induction in the fermentation setting. Our analysis revealed the widespread presence of putative phage-resistance systems encoded by lactococcal prophages, thus highlighting the potential benefits for host fitness. Many of the identified lactococcal prophages belong to the so-called P335 phage group, while a large group of phage remnants bear similarity to members of the 936 phage group. The P335 phage group was recently shown to encompass four distinct genetic lineages. Our study identified an additional lineage, thus expanding the diversity of this industrially significant phage group. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Genetic diversity of Babesia bovis in virulent and attenuated strains.

    PubMed

    Mazuz, M L; Molad, T; Fish, L; Leibovitz, B; Wolkomirsky, R; Fleiderovitz, L; Shkap, V

    2012-03-01

    The aim of this study was to compare the genetic diversity of the single copy Bv80 gene sequences of Babesia bovis in populations of attenuated and virulent parasites. PCR/ RT-PCR followed by cloning and sequence analyses of 4 attenuated and 4 virulent strains were performed. Multiple fragments in the range of 420 to 744 bp were amplified by PCR or RT-PCR. Cloning of the PCR fragments and sequence analyses revealed the presence of mixed subpopulations in either virulent or attenuated parasites with a total of 19 variants with 12 different sequences that differed in number and type of tandem repeats. High levels of intra- and inter-strain diversity of the Bv80 gene, with the presence of mixed populations of parasites were found in both the virulent field isolates and the attenuated vaccine strains. In addition, during the attenuation process, sequence analyses showed changes in the pattern of the parasite subpopulations. Despite high polymorphism found by sequence analyses, the patterns observed and the number of repeats, order, or motifs found could not discriminate between virulent field isolates and attenuated vaccine strains of the parasite.

  8. Genetic signatures of ecological diversity along an urbanization gradient.

    PubMed

    Kelly, Ryan P; O'Donnell, James L; Lowell, Natalie C; Shelton, Andrew O; Samhouri, Jameal F; Hennessey, Shannon M; Feist, Blake E; Williams, Gregory D

    2016-01-01

    Despite decades of work in environmental science and ecology, estimating human influences on ecosystems remains challenging. This is partly due to complex chains of causation among ecosystem elements, exacerbated by the difficulty of collecting biological data at sufficient spatial, temporal, and taxonomic scales. Here, we demonstrate the utility of environmental DNA (eDNA) for quantifying associations between human land use and changes in an adjacent ecosystem. We analyze metazoan eDNA sequences from water sampled in nearshore marine eelgrass communities and assess the relationship between these ecological communities and the degree of urbanization in the surrounding watershed. Counter to conventional wisdom, we find strongly increasing richness and decreasing beta diversity with greater urbanization, and similar trends in the diversity of life histories with urbanization. We also find evidence that urbanization influences nearshore communities at local (hundreds of meters) rather than regional (tens of km) scales. Given that different survey methods sample different components of an ecosystem, we then discuss the advantages of eDNA-which we use here to detect hundreds of taxa simultaneously-as a complement to traditional ecological sampling, particularly in the context of broad ecological assessments where exhaustive manual sampling is impractical. Genetic data are a powerful means of uncovering human-ecosystem interactions that might otherwise remain hidden; nevertheless, no sampling method reveals the whole of a biological community.

  9. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide

    PubMed Central

    Lam, Joseph S.; Taylor, Véronique L.; Islam, Salim T.; Hao, Youai; Kocíncová, Dana

    2011-01-01

    Lipopolysccharide (LPS) is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacterium–host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag). Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band), and the other a heteropolymer of three to five distinct (and often unique dideoxy) sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band). Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host–pathogen interactions and the control/prevention of infection. PMID:21687428

  10. Adapting populations in space: clonal interference and genetic diversity

    NASA Astrophysics Data System (ADS)

    Weissman, Daniel; Barton, Nick

    Most species inhabit ranges much larger than the scales over which individuals interact. How does this spatial structure interact with adaptive evolution? We consider a simple model of a spatially-extended, adapting population and show that, while clonal interference severely limits the adaptation of purely asexual populations, even rare recombination is enough to allow adaptation at rates approaching those of well-mixed populations. We also find that the genetic hitchhiking produced by the adaptive alleles sweeping through the population has strange effects on the patterns of genetic diversity. In large spatial ranges, even low rates of adaptation cause all individuals in the population to rapidly trace their ancestry back to individuals living in a small region in the center of the range. The probability of fixation of an allele is thus strongly dependent on the allele's spatial location, with alleles from the center favored. Surprisingly, these effects are seen genome-wide (instead of being localized to the regions of the genome undergoing the sweeps). The spatial concentration of ancestry produces a power-law dependence of relatedness on distance, so that even individuals sampled far apart are likely to be fairly closely related, masking the underlying spatial structure.

  11. Genetic diversity among sea otter isolates of Toxoplasma gondii

    USGS Publications Warehouse

    Sundar, N.; Cole, Rebecca A.; Thomas, N.J.; Majumdar, D.; Dubey, J.P.; Su, C.

    2008-01-01

    Sea otters (Enhydra lutris) have been reported to become infected with Toxoplasma gondiiand at times succumb to clinical disease. Here, we determined genotypes of 39 T. gondiiisolates from 37 sea otters in two geographically distant locations (25 from California and 12 from Washington). Six genotypes were identified using 10 PCR-RFLP genetic markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico, and by DNA sequencing of loci SAG1 and GRA6 in 13 isolates. Of these 39 isolates, 13 (33%) were clonal Type II which can be further divided into two groups at the locus Apico. Two of the 39 isolates had Type II alleles at all loci except a Type I allele at locus L358. One isolate had Type II alleles at all loci except the Type I alleles at loci L358 and Apico. One isolate had Type III alleles at all loci except Type II alleles at SAG2 and Apico. Two sea otter isolates had a mixed infection. Twenty-one (54%) isolates had an unique allele at SAG1 locus. Further genotyping or DNA sequence analysis for 18 of these 21 isolates at loci SAG1 and GRA6 revealed that there were two different genotypes, including the previously identified Type X (four isolates) and a new genotype named Type A (14 isolates). The results from this study suggest that the sea otter isolates are genetically diverse.

  12. Genetic diversity and antifungal susceptibility of Fusarium isolates in onychomycosis.

    PubMed

    Rosa, Priscila D; Heidrich, Daiane; Corrêa, Carolina; Scroferneker, Maria Lúcia; Vettorato, Gerson; Fuentefria, Alexandre M; Goldani, Luciano Z

    2017-09-01

    Fusarium species have emerged as an important human pathogen in skin disease, onychomycosis, keratitis and invasive disease. Onychomycosis caused by Fusarium spp. The infection has been increasingly described in the immunocompetent and immunosuppressed hosts. Considering onychomycosis is a difficult to treat infection, and little is known about the genetic variability and susceptibility pattern of Fusarium spp., further studies are necessary to understand the pathogenesis and better to define the appropriate antifungal treatment for this infection. Accordingly, the objective of this study was to describe the in vitro susceptibility to different antifungal agents and the genetic diversity of 35 Fusarium isolated from patients with onychomycosis. Fusarium spp. were isolated predominantly from female Caucasians, and the most frequent anatomical location was the nail of the hallux. Results revealed that 25 (71.4%) of isolates belonged to the Fusarium solani species complex, followed by 10 (28.5%) isolates from the Fusarium oxysporum species complex. Noteworthy, the authors report the first case of Neocosmospora rubicola isolated from a patient with onychomycosis. Amphotericin B was the most effective antifungal agent against the majority of isolates (60%, MIC ≤4 μg/mL), followed by voriconazole (34.2%, MIC ≤4 μg/mL). In general, Fusarium species presented MIC values >64 μg/mL for fluconazole, itraconazole and terbinafine. Accurate pathogen identification, characterisation and susceptibility testing provide a better understanding of pathogenesis of Fusarium in onychomycosis. © 2017 Blackwell Verlag GmbH.

  13. Genetic diversity of Toxoplasma gondii isolates from Ethiopian feral cats.

    PubMed

    Dubey, J P; Choudhary, S; Tilahun, G; Tiao, N; Gebreyes, W A; Zou, X; Su, C

    2013-09-01

    Recent studies indicate greater genetic variability among isolates of Toxoplasma gondii worldwide than previously thought. However, there is no information on genetic diversity of T. gondii from any host in Ethiopia. In the present study, genotyping was performed on viable T. gondii isolates by bioassays in mice from tissues and feces of 27 cats from Ethiopia. Viable T. gondii was isolated from hearts of 26 cats, feces alone of 1 cat, and feces and tissues of 6 cats; in total there were 33 isolates. Genotyping was performed on DNA from cell-cultured derived T. gondii tachyzoites and by using 10 PCR-restriction fragment length polymorphism markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico). Four genotypes were recognized, including ToxoDB #1 (Type II clonal, nine isolates), ToxoDB #2 (Type III, five isolates), Toxo DB #3 (Type II variant, ten isolates), and ToxoDB #20 (nine isolates). Of interest is the isolation of different genotypes from tissues and feces of two cats, suggesting re-infection or mixed strain T. gondii infection. These findings are of epidemiological significance with respect to shedding of oocysts by cats. This is the first report of genotyping of T. gondii from any host in Ethiopia. Published by Elsevier B.V.

  14. Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya.

    PubMed

    Mwangangi, Joseph M; Shililu, Josephat; Muturi, Ephantus J; Muriu, Simon; Jacob, Benjamin; Kabiru, Ephantus W; Mbogo, Charles M; Githure, John; Novak, Robert J

    2010-08-09

    The diversity and abundance of Anopheles larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya. Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru), unplanned rice cultivation (Kiamachiri) and non-irrigated (Murinduko) agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent Azolla cover were taken for each habitat. Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total Anopheles immatures sampled (n = 29,252), respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower Anopheles larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage Azolla cover, distance to nearest homestead, depth and water turbidity were the best predictors for Anopheles mosquito larval abundance. These results suggest that agricultural

  15. The Genetic Diversity of Mesodinium and Associated Cryptophytes

    PubMed Central

    Johnson, Matthew D.; Beaudoin, David J.; Laza-Martinez, Aitor; Dyhrman, Sonya T.; Fensin, Elizabeth; Lin, Senjie; Merculief, Aaron; Nagai, Satoshi; Pompeu, Mayza; Setälä, Outi; Stoecker, Diane K.

    2016-01-01

    Ciliates from the genus Mesodinium are globally distributed in marine and freshwater ecosystems and may possess either heterotrophic or mixotrophic nutritional modes. Members of the Mesodinium major/rubrum species complex photosynthesize by sequestering and maintaining organelles from cryptophyte prey, and under certain conditions form periodic or recurrent blooms (= red tides). Here, we present an analysis of the genetic diversity of Mesodinium and cryptophyte populations from 10 environmental samples (eight globally dispersed habitats including five Mesodinium blooms), using group-specific primers for Mesodinium partial 18S, ITS, and partial 28S rRNA genes as well as cryptophyte large subunit RuBisCO genes (rbcL). In addition, 22 new cryptophyte and four new M. rubrum cultures were used to extract DNA and sequence rbcL and 18S-ITS-28S genes, respectively, in order to provide a stronger phylogenetic context for our environmental sequences. Bloom samples were analyzed from coastal Brazil, Chile, two Northeastern locations in the United States, and the Pribilof Islands within the Bering Sea. Additionally, samples were also analyzed from the Baltic and Barents Seas and coastal California under non-bloom conditions. Most blooms were dominated by a single Mesodinium genotype, with coastal Brazil and Chile blooms composed of M. major and the Eastern USA blooms dominated by M. rubrum variant B. Sequences from all four blooms were dominated by Teleaulax amphioxeia-like cryptophytes. Non-bloom communities revealed more diverse assemblages of Mesodinium spp., including heterotrophic species and the mixotrophic Mesodinium chamaeleon. Similarly, cryptophyte diversity was also higher in non-bloom samples. Our results confirm that Mesodinium blooms may be caused by M. major, as well as multiple variants of M. rubrum, and further implicate T. amphioxeia as the key cryptophyte species linked to these phenomena in temperate and subtropical regions. PMID:28066344

  16. The Genetic Diversity of Mesodinium and Associated Cryptophytes.

    PubMed

    Johnson, Matthew D; Beaudoin, David J; Laza-Martinez, Aitor; Dyhrman, Sonya T; Fensin, Elizabeth; Lin, Senjie; Merculief, Aaron; Nagai, Satoshi; Pompeu, Mayza; Setälä, Outi; Stoecker, Diane K

    2016-01-01

    Ciliates from the genus Mesodinium are globally distributed in marine and freshwater ecosystems and may possess either heterotrophic or mixotrophic nutritional modes. Members of the Mesodinium major/rubrum species complex photosynthesize by sequestering and maintaining organelles from cryptophyte prey, and under certain conditions form periodic or recurrent blooms (= red tides). Here, we present an analysis of the genetic diversity of Mesodinium and cryptophyte populations from 10 environmental samples (eight globally dispersed habitats including five Mesodinium blooms), using group-specific primers for Mesodinium partial 18S, ITS, and partial 28S rRNA genes as well as cryptophyte large subunit RuBisCO genes ( rbcL ). In addition, 22 new cryptophyte and four new M. rubrum cultures were used to extract DNA and sequence rbcL and 18S-ITS-28S genes, respectively, in order to provide a stronger phylogenetic context for our environmental sequences. Bloom samples were analyzed from coastal Brazil, Chile, two Northeastern locations in the United States, and the Pribilof Islands within the Bering Sea. Additionally, samples were also analyzed from the Baltic and Barents Seas and coastal California under non-bloom conditions. Most blooms were dominated by a single Mesodinium genotype, with coastal Brazil and Chile blooms composed of M. major and the Eastern USA blooms dominated by M. rubrum variant B. Sequences from all four blooms were dominated by Teleaulax amphioxeia -like cryptophytes. Non-bloom communities revealed more diverse assemblages of Mesodinium spp., including heterotrophic species and the mixotrophic Mesodinium chamaeleon . Similarly, cryptophyte diversity was also higher in non-bloom samples. Our results confirm that Mesodinium blooms may be caused by M. major , as well as multiple variants of M. rubrum , and further implicate T. amphioxeia as the key cryptophyte species linked to these phenomena in temperate and subtropical regions.

  17. Seed-Mediated Gene Flow Promotes Genetic Diversity of Weedy Rice within Populations: Implications for Weed Management

    PubMed Central

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice—a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka. PMID:25436611

  18. Seed-mediated gene flow promotes genetic diversity of weedy rice within populations: implications for weed management.

    PubMed

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice-a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.

  19. [Diversity and abundance of molluscs in Thalassia testudinum prairie of the Bay of Mochinma, Mochima National Park, Venezuela].

    PubMed

    Prieto, Antulio; Sant, Sybil; Méndez, Elizabeth; Lodeiros, César

    2003-06-01

    The diversity and abundance of benthic malacological communities associated to Thalassia testudinum beds was studied at four localities of Mochima Bay, Sucre state, Venezuela. At each locality, samples were taken monthly on perpendicular transect at different depths (0-4 m), from January 1991 to December 1991, using a quadrate (0.25 m2) for collecting mollusks and sediments. A total of 2,988 organisms of infauna and epifauna belonging to 81 species of the classes Gastropoda (41) and Bivalvia (40) were collected. More abundant species were Anadara notabilis, Codakia orbicularis, Cerithium litteratum, Cerithium eburneum, Batillaria minima, Modiolus squamosus, Modulus modulus, Chione cancellata, Turritella variegata, Arca zebra, y Laevicardium laevigatum. There were significant differences in number of organisms between depth and month at La Gabarra which presented the highest value of total (4.51 bits/ind) and monthly diversity (2.71-3.90 bits/ind). Biomass and abundance were low in the Mochima Bay while Varadero station presented the highest value. The bivalve A. notabilis and gastropod M. modulus were species common to the four stations.

  20. Temporal variation in earthworm abundance and diversity along hedgerow-to-field transects in contrasting agricultural land uses

    NASA Astrophysics Data System (ADS)

    Prendergast-Miller, Miranda T.; Jones, David; Hodson, Mark E.

    2017-04-01

    Earthworms are regarded as ecosystem engineers, integral to soil processes such as aggregation, nutrient cycling, water infiltration, plant growth and microbial function. Earthworm surveys were conducted for one year on hedge-to-field transects in arable and pasture fields (Yorkshire, UK). The transects incorporated hedgerow and field margin habitats and extended 60 m into the arable or pasture field. At defined distances, earthworm abundance and biomass were recorded, and earthworms were identified to species and ecological group. Soil density, moisture and temperature were also measured. Additional transects were surveyed on experimental plots with arable-to-ley conversions in the arable fields (wheat crop to grass-clover ley), and tilled plots in the pasture fields (grass-clover ley to wheat crop). The conversion plots were established to determine the benefit of grass-clover leys on soil function; and the tilled pasture plots were established to compare the impact of conventional or minimum tillage practices on earthworm abundance and diversity. A baseline survey was conducted before establishment of the experimental ley and tillage plots. The results showed differences in earthworm abundance, with greater earthworm numbers in the pasture soils compared to arable soils. In both soils, abundance of ecological group was endogeic > epigeic > anecic, and each group was dominated by the same species: Allolobophora chlorotica, Lumbricus castaneus and Apporectodea longa. After one year of treatment, there was some indication of increased earthworm abundance in the arable-to-ley conversion strips. Conversely, tillage in the pasture plots tended to reduce earthworm abundance, and conventional tillage tended to have the greater impact. However, within these major changes, there was also evidence of spatial (distance along transect; field location) and temporal (seasonal) variation on earthworm abundance. Although conversion to ley or tillage did not alter the pattern of

  1. Genetic diversity among Angus, American Brahman, Senepol and Romosinuano cattle breeds.

    PubMed

    Brenneman, R A; Chase, C C; Olson, T A; Riley, D G; Coleman, S W

    2007-02-01

    The objective of this study was to quantify the genetic diversity among breeds under evaluation for tropical adaptability traits that affect the performance of beef cattle at the USDA/ARS SubTropical Agricultural Research Station (STARS) near Brooksville, FL, USA. Twenty-six microsatellite loci were used to estimate parameters of genetic diversity among the breeds American Brahman, Angus, Senepol and Romosinuano; the latter was comprised of two distinct bloodlines (Costa Rican and Venezuelan). Genotypes of 47 animals from each of these STARS herds were analysed for genetic diversity and genetic distance. Using two methods, the greatest genetic distance was detected between the Costa Rican line of Romosinuano and the Senepol. Gene diversity ranged between 0.64 (Costa Rican line of Romosinuano) and 0.75 (American Brahman). The breed relationship inferences, which are based on genetic distance, provide additional tools for consideration in future crossbreeding studies and for testing the relationship between quantified breed diversity and observed heterosis.

  2. sGD: software for estimating spatially explicit indices of genetic diversity.

    PubMed

    Shirk, A J; Cushman, S A

    2011-09-01

    Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is therefore crucial to assessing the viability of small populations. Diversity indices are typically calculated from the multilocus genotypes of all individuals sampled within discretely defined habitat patches or larger regional extents. Importantly, discrete population approaches do not capture the clinal nature of populations genetically isolated by distance or landscape resistance. Here, we introduce spatial Genetic Diversity (sGD), a new spatially explicit tool to estimate genetic diversity based on grouping individuals into potentially overlapping genetic neighbourhoods that match the population structure, whether discrete or clinal. We compared the estimates and patterns of genetic diversity using patch or regional sampling and sGD on both simulated and empirical populations. When the population did not meet the assumptions of an island model, we found that patch and regional sampling generally overestimated local heterozygosity, inbreeding and allelic diversity. Moreover, sGD revealed fine-scale spatial heterogeneity in genetic diversity that was not evident with patch or regional sampling. These advantages should provide a more robust means to evaluate the potential for genetic factors to influence the viability of clinal populations and guide appropriate conservation plans. © 2011 Blackwell Publishing Ltd.

  3. Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Bridge, T.; Scott, A.; Steinberg, D.

    2012-12-01

    Anemonefishes and their host sea anemones are iconic inhabitants of coral reef ecosystems. While studies have documented their abundance in shallow-water reef habitats in parts of the Indo-Pacific, none have examined these species on mesophotic reefs. In this study, we used autonomous underwater vehicle imagery to examine the abundance and diversity of anemones and anemonefishes at Viper Reef and Hydrographers Passage in the central Great Barrier Reef at depths between 50 and 65 m. A total of 37 host sea anemones (31 Entacmaea quadricolor and 6 Heteractis crispa) and 24 anemonefishes (23 Amphiprion akindynos and 1 A. perideraion) were observed. Densities were highest at Viper Reef, with 8.48 E. quadricolor and A. akindynos per 100 m2 of reef substratum. These results support the hypothesis that mesophotic reefs have many species common to shallow-water coral reefs and that many taxa may occur at depths greater than currently recognised.

  4. Soil compaction and organic matter affect conifer seedling nonmycorrhizal and ectomycorrhizal root tip abundance and diversity. Forest Service research paper

    SciTech Connect

    Amaranthus, M.P.; Page-Dumroese, D.; Harvey, A.

    1996-05-01

    Three levels of organic matter removal (bole only; bole and crowns; and bole, crowns, and forest floor) and three levels of mechanical soil compaction (no compaction, moderate compaction, and severe soil compaction) were studied as they influence Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and western white pine (Pinus monticola Dougl. ex D. Don) seedlings following outplanting. Moderate and severe soil compaction significantly reduced nonmycorrhizal root tip abundance on both Douglas-fir and western white pine seedlings (p less than or equal to 0.05). Ectomycorrhizal root tip abundance was significantly reduced on Douglas-fir seedlings in severely compacted areas with bole andmore » crowns and bole, crowns, and forest floor removed. Ectomycorrhizal diversity also was significantly reduced on Douglas-fir seedlings in all severely compacted areas.« less

  5. Human age and skin physiology shape diversity and abundance of Archaea on skin

    DOE PAGES

    Moissl-Eichinger, Christine; Probst, Alexander J.; Birarda, Giovanni; ...

    2017-06-22

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or youngermore » than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. In conclusion, amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.« less

  6. Human age and skin physiology shape diversity and abundance of Archaea on skin

    SciTech Connect

    Moissl-Eichinger, Christine; Probst, Alexander J.; Birarda, Giovanni

    The human skin microbiome acts as an i